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Abstract: We propose a two-qubit phase gate based on trapped ions that uses fast electric

field pulses and spin-dependent local traps generated by optical tweezers. The phases are

engineered by spin-dependent coherent evolution, interspersed with momentum kicks.

We derive a set of commensurability conditions and expressions for the spin-dependent

accumulated phase that, when satisfied, realize the target two-qubit phase gate within

tens of microseconds. We study the scalability of our proposal in larger-ion crystals and

demonstrate the existence of solutions with up to four ions. Gates in larger crystals should

also be possible but will require more commensurability conditions to be fulfilled.

Keywords: optical tweezers; quantum computation; trapped ions; fast gate

1. Introduction

Trapped ions are one of the leading platforms for quantum computing. Qubits en-

coded in individual ions can be very precisely manipulated and addressed and feature

long coherence times [1–3]. However, especially as the algorithm complexity increases,

there is a demand for calculations with a higher number of operations. It is then of im-

portance to develop schemes for high-speed and high-fidelity gates, which can outpace

decoherence, whilst maintaining robustness. The goal is to obtain short operational times

which protect the system against heating and other sources of decoherence. This has led

to the development of faster gate schemes [4–7], which rely on non-adiabatic excitations

of motional modes. In this way, gate operations can achieve gate speeds faster than one

oscillation period.

Previous fast gates schemes have considered lasers for generating the state-dependent

force needed to couple motional states and spin-states [4,8]. Such proposals have been

realized in experiments [9,10], as well as generalized to large ion arrays [5,11,12] and

microtraps [13]. However, laser-based kicks require exceptional control over the timing

and phase coherence of laser pulses with high power. This is challenging to realize in

experiments and scales poorly with the ion number. An alternative proposition is the

use of Rydberg ions [14], in which the state dependence derives from the difference in
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the trapping potential experienced due to the large polarizability of the Rydberg states.

Another option is to use trapped ions interacting with an optical lattice [15].

In this work, we propose a different mechanism for generating the qubit state-

dependent force: optical tweezers that generate a state-dependent potential localized

around each ion. This extends our recent work in [16] to the non-perturbative regime,

where the tweezer potential modifies not only the mode frequencies but also the normal

mode structure [17–20]. This allows us to realize a faster gate implementation that is more

robust to decoherence. An illustration of the gate mechanism applied to a two-qubit crystal

is depicted in Figure 1.
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Figure 1. The setup required for the proposed phase gate. (a) An ion chain with tweezers pinning the

two target ions. (b) The tweezers modify the phonon spectrum spin-dependently. (c) The illustrated

spin-dependent phase space trajectory for an arbitrary spin-state. The coherent evolution depends on

the mode frequencies, and the commensurability conditions ensure that the phase space loops are

closed. The accumulated phase equals the area of each phase loop.

Our scheme is an extension of the scheme of Ref. [4]. It uses momentum kicks applied

at specific times generated by an electric field, interspersed with tweezer-modified coherent

evolution for predetermined durations, such that the phase accumulated by each two-qubit

state is the appropriate phase required by the target logic gate [4]. Furthermore, we require

that the motional modes follow closed trajectories in phase space such that the initial state

is recuperated, effectively decoupling the electronic and motional states by the end of

the gate [21]. The set of commensurability conditions which must be satisfied in order to

achieve this scales as 22Ni, where Ni is the number of ions in the crystal. Clearly, with

increasing ion numbers, it becomes increasingly hard to exactly satisfy these conditions,

but an optimal solution can be found numerically in large-ion crystals.

2. System Description: Two Ions

Consider Ni = 2 ions in a one-dimensional harmonic trap with the trapping frequency

ω. The motion of the ions is described by

H0 = h̄ ∑
m

ωm(a†
mam + 1/2), (1)

where am (a†
m) are the bosonic annihilation (and creation) operators for the center of mass

(com) and stretch modes with the corresponding mode frequencies ωc = ω and ωr =
√

3ω,

respectively.
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We consider state-dependent optical tweezers focused at the equilibrium positions of

the ions, each with a local trapping frequency ωtw ∼ ωm

Ĥtw =
1

2
mω2

tw ∑
i=1,2

ẑ2
i |↑〉〈↑|i, (2)

where we have used the harmonic approximation for the Gaussian tweezer potential. Here,

m is the mass of the ion, and ẑi is the position of the ith ion with respect to its equilibrium

position. Equation (2) is a state-dependent potential that mixes the native com and stretch

modes, resulting in new state-dependent modes b··

m with the corresponding frequencies

ω··

m and creation (annihilation) operators a··m
† (a··m). We use ·1, ·2 ∈ {↑, ↓} to represent the

internal state of the first and second ions, respectively. We use this notation throughout to

denote that a term is state-dependent.

Finally, we require a force F generated by an instantaneous, spatially uniform electric

field E that gives a momentum kick to the ions:

Ĥkick(F) = F · ẑ, (3)

where ẑ = {ẑ1, ẑ2}, such that the elements of F describe the force on each ion.

The gate sequence we consider consists of two evolution steps applied N times:

(i) evolution under Ĥfree = Ĥ0 + Ĥtw for a duration τk, followed by (ii) a kick gener-

ated by Ĥkick with the force Fk applied at time tk for a time δt → 0, where k references

the kick sequence number. The evolution of the total sequence is therefore given by

Utotal = ∏
N
k=1 U

(k)
kickU

(k)
free.

To characterize the protocol, we consider the action of the unitary on coherent states in

the presence of the tweezers |· ·, α··1 , α··2 〉, where |α··1 〉 (|α··2 〉) is the spin-dependent coherent

state of the com (stretch) mode. Such states can be prepared by cooling the motional modes

in the absence of tweezers to prepare the ground state |0〉, before adiabatically ramping the

tweezer’s strength for approximately one trap period to prepare |0··〉. We describe this in

more detail in Appendix A.

The action of the free evolution operator is

U (k)
free|· ·, α··1 , α··2 〉 = e−i ∑m ω··

m(a··m
†a··m+1/2)τk |· ·, α··1 , α··2 〉〉

= e−(i/2)(ω··

1 +ω··

2 )τk |· ·, e−iω··

1 τk α··1 , e−iω··

2 τk α··2 〉. (4)

The electric field kick can be expanded by substituting in the position operator

ẑ = ∑m l··m(a··m
† + a··m)b

··

m, yielding

U (k)
kick = exp(−i ∑

m

l··m(b
··

m · Fk)(a··m
† + a··m)δt/h̄), (5)

where l··m =
√

h̄/2Mω··

m is the (spin-dependent) harmonic oscillator length scale. The kick

operator is thus simply a displacement operator such that

U (k)
kick |· ·, α··1 , α··2 〉 = exp(−i ∑

m

p··m,kRe{αm}) |· ·, α1 − ip··1,k, α2 − ip··2,k〉 , (6)

where we have introduced p··m,k = Fkδtl··m(b̃
··

m · 12)/h̄, which is in the order of unity, with 12

the two-element vector (1, 1).

Finally, the total unitary produces Utotal |· ·, α··1 , α··2 〉 = eiξ |· ·, α̃··1 , α̃··2 〉, with
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ξ = ∑
m

(

Θ··

m − θ··N
2

−
N

∑
n=2

Re

[

α··m

N

∑
k=1

p··m,ke−iθ··n

])

, (7)

and

α̃··m = α··me−iθ··N − i
N

∑
k=1

p··m,ke−i(θ··k −θ··N), (8)

where we have defined the phases Θ··

m = −∑
N
n=2 ∑

n−1
k=1 p··m,n p··m,k sin(ω··

m(tk − tn)) and

θ··k = ω··

m ∑
k
n=1 τn.

To perform a closed loop in phase space, we require that α̃··m = α··m for all two-qubit

states. From Equation (8), we therefore require that

C··

m ≡
N

∑
k=1

p··m,ke−iω··

mtk = 0, (9)

where we have made the substitution ∑
k
n=1 τn = tk, as well as either

α··m = 0, or (10a)

eiθ··N = 1. (10b)

Satisfying Equations (9) and (10a)—we will call this protocol 1—requires preparing

the tweezer ground state and means that the accumulated phase depends on the zero-point

energy term, so that Equations (7) and (8) can be simplified into

ξ ≡ ∑
m

(

Θ··

m − θ··N
2

)

, (11)

In contrast, satisfying Equations (9) and (10b), which we will call protocol 2, makes

the gate independent of the initial motional state amplitude, α̃··m = α··m, and removes the

zero-point energy term from the accumulated phase, so that the phase now becomes

ξ ≡ ∑
m

Θ··

m. (12)

Protocol 1 is easier in computational terms; however, it requires the system to be

cooled down to the ground state. Protocol 2, conversely, is more powerful as it provides

temperature-insensitive solutions, but it is much harder to satisfy, as it requires that the

zero-point energy term, Equation (10b), is in phase for all four spin combinations. In this

article, we consider the implementation of protocol 1. The commensurability conditions,

Equation (9), mean we have, for each of three (four different spin combinations exist, but the

eigenvalues of |↑↓〉 and |↓↑〉 are identical for a two-ion crystal) possible spin combinations

|· ·〉, two normal modes m and for each of these N sets of kicks, totaling six equations. If

we are to add the requirement for temperature insensitivity, Equation (10b), the fact that

this term is spin-dependent means that we will necessarily be adding another six equations

to our total. This, in turn, will scale with the number of ions in the gate, as adding one

ion means adding one motional mode to the system. In order to perform the logic gate,

we must not only satisfy these conditions but must also guarantee that the overall phase

accumulated over the system’s evolution realizes the desired phase gate:
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ξ = ∑
m

−θ··N/2 + Θ··

m + Ξ··

m =
π

4











1

−1

−1

1











. (13)

Full expressions for Ξ·· and Θ·· for each of the four different possible qubit states can

be found in Appendix E.

3. Results

In order to implement the phase gate, we search for solutions of the type (zk ≡ Fkδt, τk),

with k denoting each sequence step. Besides satisfying the commensurability conditions

and the overall phase constraint, we choose the total number of steps, N, and also constrain

the momentum amplitude of the kicks zk in each step or the total gate time Tgate. To

facilitate this search, spin-echo sequences could potentially be performed at any point in

the sequence to eliminate dephasing between states and facilitate the search for an adequate

gate sequence.

An example sequence can be observed in Figure 1c, which represents a two-ion phase

gate for on a two-ion crystal, with the tweezers pinning the two ions in the array. The

kicks represent pure displacements in momentum space, and the free evolution periods are

secular motion in 〈x, p〉 space with a constant phase. The initial phase space orbit for each

of the normal modes is restored by the end of the pulse sequence, demonstrating that the

commensurability conditions are satisfied.

In order to quantify the gate performance, we investigate the average gate fidelity [22]:

F̄(E ,U ) =
∑j Tr(UU †

j U †E(Uj)) + d2

d2(d + 1)
, (14)

where U is the target gate operation, E is our generated unitary, and E(Uj) = trFS[E(|n〉 〈n|
⊗ Uj)E ] is its projection on the motional modes |αi〉 and on the SU(2) generalized Pauli

matrices, Uj, of dimension d, with d = 4 for two-ion gates.

After sweeping over different values for the kick number, N, and tweezer frequency,

ωtw, we obtain the results shown in Figure 2 for a gate performed in a two-ion crystal.

The infidelities obtained are as good as 1 − F̄ ∼
[

10−5
]

, so long as we have an adequate

number of kicks (generally N > 12), and the employed tweezer frequency is ωtw/ω ≥ 0.5;

see Figure 2a.

Larger numbers of kicks, as in Figure 2a,b, Ni, generally translate into lower achievable

infidelities regardless of the tweezer frequency but at the expense of the overall gate time

Tgate. We attribute this trend to the added degrees of freedom which a higher number of

kicks introduces into the problem, thus increasing the solution space and the probability

of finding converging solutions. In general, we conclude that having higher tweezer

frequencies means lower infidelities can be achieved, requiring smaller kick numbers and

thus shorter gate times; see Figure 2b.
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Figure 2. Gate infidelity, 1 − F̄, as a function of (a) tweezer frequency, ωtw, and (b) overall gate time

for a two-ion crystal. These results were obtained by performing a search over different possible

kick number values in a range pf 8 ≤ N ≤ 20. We observe that the gate is harder to perform at

lower tweezer frequencies, which is the reason why below ωtw/ω = 0.5, solutions were found only

in the region 1 − F̄ > 10−4. In addition, small kick numbers, despite resulting in smaller gate times,

usually result in higher infidelities as the number of free parameters is reduced, whereas longer gate

times yield more solutions with better infidelities, at the cost of the overall gate time. The infidelity is

presented on a logarithmic scale.

Gates in a Four-Ion Crystal

We investigate the scalability of this scheme by increasing the number of ions in the

crystal to four. Even though the gate is performed solely between two ions, the electric field

kicks must be determined so that the new additional motional modes also recover their

initial states. The additional constraints hinder the convergence of our numerical methods

such that it is harder to find solutions. The solutions found do not perform as well as in

the two-ion case; we observe an overall reduction in fidelity: the produced unitary does

not match the desired target phase gate as well as it does in the two-ion case, and for some

motional mode/spin-state combinations, the overlap between the initial and final states is

not exact; see Figure 3. Another way to visualize the overlap between the initial and final

states is to look at the phase space trajectories of the different modes throughout the gate

and compare the final phase space position with the initial one; see Figure 4.

↑↑ ↓↑ ↑↓ ↓↓

com

stretch

wobbling

anti-stretch

1.0 1.0 1.0 1.0

1.0 1.0 1.0 1.0

0.9994 0.9998 0.9999 1.0

0.9997 0.9991 0.9993 1.0

0.9990

0.9992

0.9994

0.9996

0.9998

1.0000

Figure 3. The overlap between the initial and final motional states for a gate performed in a four-ion

crystal, with tweezers pinning the two left-most ions, using a tweezer frequency ωtw = 0.8ω and

N = 16 kicks. The gate takes 37 µs and has an average gate fidelity of F̄ = 0.996. For each mode and

spin combination pair, we plot the coherent state overlap between the initial (before gate) and final

(after gate) state configurations, 〈αi|α f 〉.

Even though we observe a reduction in performance on scaling up the ion crystal size,

it is important to note that a beneficial aspect in the scalability of this gate scheme is that the
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relative extent of the excursions in the phase space is reduced for higher-frequency modes;

see Figure 4. This happens because the electric field only couples to the center-of-mass

character of the mode, and this favors the low-frequency modes in ions. When adding

ions to a crystal, the number of modes increases through ‘adding’ higher-frequency modes,

while the modes that were already there remain unchanged. So, while we add error by

adding ions, the amount of error that is added per ion reduces. It is therefore conceivable

that not all modes have to be taken into account for large-ion crystals, at the expense of a

small but unavoidable error in the gate.

Figure 4. The phase space trajectories of the spin-state |↓↑〉 for the four motional modes in a 4-ion

crystal, performing the gate on the 2 left-most ions. These trajectories correspond to the same gate

used in Figure 3, with a tweezer frequency ωtw = 0.8ωz and N = 16 kicks. It can be observed in the

lower-right and -left panels how the wobbling and anti-stretch modes do not exactly close at the end

of the trajectory.

To conclude, we can successfully find four-ion crystal solutions with average phase

gate infidelities as good as 1 − F̄ ∼ 10−4, though more commonly with 1 − F̄ ∼ 10−2; see

Table 1.

Together with the results in Figure 2, these results lead us to believe that the choice of

tweezer frequency does not condition our scheme in a monotonous way (meaning there

is not a clear trend in how it affects the gate performance), but rather it conditions our

results in two ways: one, it defines how strongly our states are coupled to motion and how

much our eigenfrequencies are modified. So, with a higher tweezer frequency, it is easier

to accumulate the desired phases with fewer kicks, whereas lower tweezer frequencies

require more kicks; see Figure 2a). Secondly, while studying the four-ion case, we realize

that it is easier to perform multiple-ion gates (>two ions) using lower tweezer frequencies,

a fact justified due to the tweezer inducing lower state mixing, which reduces the amount

of dephasing gathered at each step by the different motional states.
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Table 1. Average phase gate infidelity and gate time for several four-ion solutions. We present

solutions with different kick numbers for a tweezer frequency ωtw = 0.4ω and one sixteen-kick

solution for a tweezer frequency ωtw = 0.8ω.

ωtw/ω N 1 − F̄ Tgate (µs)

0.4 16 0.0373 22.5717
0.4 20 0.0100 17.2863
0.4 28 0.0402 41.5518
0.4 30 0.0002 16.3239
0.8 16 0.0039 37.0045

4. Experimental Considerations

The electric field’s amplitude E0 and pulse duration δt represent experimental bot-

tlenecks in terms of gate feasibility. To justify the assumption of instantaneous kicks, the

electric field pulses must be much faster than the motion of the ion in the trap. Since typical

trap frequencies lie in the MHz range, we must set δt ≪ µs. We can estimate the typical

electric fields required by setting lmeE0δt/h̄ = 1. For electric field pulse durations in the

10–100 ns range, we calculate E0 ∼ 1–10 V/m, with a slight dependence on the ion species.

Our results yield electric field requirements in the order of ∼ {10−6, 10−7}[Vs/m], which

are thus experimentally feasible.

In this article, we have stayed within the confines of protocol 1, which requires ground

state cooling and for Equation (10a) to be satisfied. In this way, it is relevant to investigate how

the gate performs if this cooling is not perfect and there is some mode occupation beyond

the ground state. These results are portrayed in Figure 5, where an originally 1 − F̄ = 10−6

solution is exposed to increasing com. mode occupation, n̄c, for three different values of

occupation of the stretch mode, n̄s. We observe how the infidelity decays to 10−2 as the

com number occupation rises to the same value, following the same exponential trend. The

number occupation of the stretch mode equally limits the minimum achievable infidelity.

10−5 10−4 10−3 10−2 10−1 100

n̄c

10−5

10−4

10−3

10−2

10−1

100

1
−
F̄

n̄s = 0.0

n̄s = 0.001

n̄s = 0.01

Figure 5. Infidelity as a function of com mode number occupation, n̄c, for gates originally with

infidelities ∼10−6 and three different stretch mode occupations, n̄s. The gate solution used to

generate this graph employed seven kicks and had a gate time of ∼23 µs.

Finally, it can be experimentally challenging to generate a large difference in polar-

izability between the two qubit states. Here, one approach is to employ optical qubits

in which one of the qubit states is encoded in a metastable electronic state. For instance,

we can consider the qubit states |0〉 = |S1/2, mj = 1/2〉 and |1〉 = |D5/2, mj = 3/2〉 in
40Ca+ [23]. We can use a tweezer at 532 nm with circular σ+ polarization. Setting the waist

to 1 µm and using a modest power of P = 1 mW generates a tweezer trap frequency of

ωtw = 2π× 49.1 (2.7) kHz for the state |0〉 (|1〉). We calculate the photon scattering to be

γ . 1 s−1. Note that the photon scattering may be reduced further by employing hollow
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tweezers, allowing for larger ωtw values. For these calculations, we took into account the

main dipole-allowed transitions and used the energies and transition dipole moments

reported in [24].

5. Conclusions and Outlook

We proposed a two-qubit gate scheme on an array of trapped ions which relied on optical

tweezers to generate the state dependence. Electric field pulses generate momentum kicks

which produce the desired phases and accelerate the phase space trajectories. We calculate

that the gate can be performed within accessible experimental conditions, with the caveat

being that ground state cooling is required in the studied regime. We obtain gate times that are

up to two orders of magnitude faster than those in the case studied in [16] but still fall short

of the oscillation period of the ions in their trap [4]. This is due to the fact that this scheme

requires dealing with the excitation of all modes, whose excursions in phase space must be

undone, an effort which is leveraged against the speed of the fast pulses.

Although the proposed scheme may be easier to implement than either schemes based

on pulsed lasers or Rydberg ions, it is limited by the challenge of supplying large state-

dependent potentials to the ions without significant photon scattering. We note that the

use of hollow tweezers would offer benefits in this regard [16,25,26]. We study how well

the scheme performs as we scale up to a four-ion crystal, finding infidelities generally

two orders of magnitude below the two-ion crystal solutions. Finally, a different search

strategy or problem formulation could yield temperature-independent solutions, making

the scheme more accessible under realistic experimental conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

ZPE Zero-point energy

COM Center-of-mass

Appendix A. New-Mode Coherent State Preparation

In the main text, we assume the tweezers are retained during state preparation and

throughout the whole gate, meaning that we work on a tweezer-modified coherent state

basis. In this section, we investigate a scenario where state preparation to the ground

state is performed with the tweezers off, and only then is the tweezers’ intensity ramped
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up adiabatically. We observe that this enables high-fidelity preparation of the new-mode

coherent states without significantly compromising on the gate time.

In Figure A1, we plot the spectrum of H0 + Htw, which describes the motion of the

ions including the optical tweezers. At ωtw/ω = 0, the three lowest eigen-energies are

E0 = 1
2 (1 +

√
3)ω, E1 = 3

2 + 1
2

√
3ω, and E2 = 1

2 + 3
2

√
3ω, as expected. Turning on

the tweezers increases the energies of all states, with the energy gaps changing due to

squeezing, which occurs given the changing frequency of the harmonic oscillator. We see

that the largest gap is between the ground state and the first excited state, suggesting that

the best state to adiabatically ramp from is the ground state.

0.0 0.2 0.4 0.6 0.8 1.0

Time (1/2πMHz)

2

4

6

8

E
(h̄
ω
)

Figure A1. The dependence of the energy spectrum of the system on tweezer pinning frequency

ωtw/ω. Level crossings are visible at higher energies due to the change in com mode frequency

scaling differing to that in the stretch mode. The three dashed lines correspond to the first three

energy eigenvalues; see Appendix F.

In Figure A2a, we linearly ramp the tweezer trapping frequency ωtw, with the corre-

sponding instantaneous fidelity with the ground state shown in Figure A2b. Switching on

the tweezers after ground state preparation yields a ground state overlap higher than 0.998

with the tweezer ramping times under a trap period. For a higher fidelity, ramping as slow

as for five trapping periods yields a fidelity above 0.9995, with this time representing less

than one microsecond added to the overall gate time.

0 2 4 6 8 10

Time (1/2πMHz)

0.0

0.1

0.2

0.3

0.4

0.5

ω
tw
/ω

(a)

0 2 4 6 8 10

Time (1/2πMHz)

0.9980

0.9985

0.9990

0.9995

1.0000

In
st
an
ta
n
eo
u
s
fid
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(b)

Figure A2. Linearly ramping the tweezer power to ωtw = 0.5ω for various ramp times

τramp = (0.5, 1, 5, 10)/ω. The ramp profiles are plotted in (a). In (b), the instantaneous fidelity

with the ground state is plotted. The fidelity decays as the ramp speed is increased. However, all

four ramps produce the new ground state with high fidelity (>99%). Assuming a trapping frequency

ω = 2π MHz, the slowest ramp considered here corresponds to a time of ∼ 1.6 µs, one order of

magnitude higher than the trap period. All the others stay under this value and guarantee fidelity

with up to 10−4 accuracy.
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Appendix B. The Gate Performance with Tweezer Stability

In the main text, we assume a fixed and controlled tweezer frequency. However, in a

real-life implementation, tweezer drifts can affect the gate performance and cause a decay

in the gate fidelity.

We study how much this affects the proposed gate by determining the average mean

infidelity of all of the two-ion solutions in Figure 2 with a fidelity above 0.95 and determin-

ing how this average mean would behave when small drifts, ǫ, were added to each gate’s

expected tweezer frequency; see Figure A3.

0.000 0.002 0.004 0.006 0.008 0.010

ωtw(1 + ǫ)/ω

10−3

10−2

10−1

1
−

F̄

Figure A3. The decay in the mean average gate fidelity upon the introduction of frequency drifts, ǫ,

around the expected tweezer frequencies, ωtw.

We observe that the drifts should be under ǫ ∼ 0.001/ωz in order to minimize the

compromise in the gate performance. This means that if we were to have an ordinary axial

trap frequency of 500 kHz, then our tweezer trap frequency could not vary by more than

500 Hz.

We consider the origin of such instability in the tweezer frequency. More specifically,

the tweezer trap frequency scales as ωtw = −4Udip/(mω2
0) [16], and the dipole moment

Udip ∝ Re{α}I, with the Gaussian beam intensity I ≈ 2P/(πω2
0) [27]. We then obtain the

following relation:

ωtw = − 8P

πmω4
0

. (A1)

As the polarizability is only dependent on the atom species and light polarization,

the biggest source of instability in the tweezer frequency will be the beam power (linearly

dependent) and the beam waist (quartically dependent).

Appendix C. Sensitivity to Timing Errors

We wish to gauge how sensitive this scheme is to imprecision in the timing of the

sequence kicks. We add/subtract small delays (in the order of a few nanoseconds) according

to a normal distribution to/from all of the kicks in the two-ion solutions presented in

Figure 2 with a fidelity above 0.95 and observe how this affects the gate performance.

As this timing change affects the decoupling of the motional and internal states, besides

looking at how well we performed the desired phase gate (the average phase gate infidelity),

we also look at how the final acquired state overlaps with the initial state, as a measure

of how well the motion and spin have decoupled; see Figure A4. We conclude that the

scheme is too sensitive for timing errors above 2 ns.
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Figure A4. An analysis of timing error sensitivity for the developed scheme. The purple axis

quantifies the decoupling between the motional and internal states of the ions, showing the overlap

between the initial and final motional states. And the green axis quantifies how well the obtained

unitary still corresponds to the target unitary.

Appendix D. Zero-Point Energy Rephasing Points

In order to study the relative phase difference between the three different spin-states,

we consider the spin-dependent zpe phase:

θ·· = exp i(ω··

c + ω··

s )t. (A2)

The relative phase differences are studied by plotting θdiff =
∣

∣θ↑↑ − θ↑↓
∣

∣+
∣

∣θ↑↑ − θ↓↓
∣

∣ for

different tweezer frequencies; see Figure A5.
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Figure A5. An analysis of the zero-point energy dephasing contribution (quantified as the relative

phase difference, θdiff) as a function of time (a) and tweezer frequency (b) in the range of tens of

microseconds. Higher tweezer frequencies are observed to have a faster rephasing period.

When θdiff = 0, the three spin-dependent phases are the same and have thus re-phased.

Higher tweezer frequencies show a shorter rephasing period; however, we do not observe

complete rephasing like in t = 0. This means that in principle, we could start the gate at

any motional state and wait for an approximate rephasing, but the small phase difference

remaining will limit the attainable fidelities.
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Appendix E. Spin-Dependent Phase Factors

The acquired phase from the kick unitary has been defined as ξ = ∑m(−θ··N/2 + Θ··

m +

Ξ··

m), with

Θ··

m = −
N

∑
n=2

n−1

∑
k=1

p··

m,np··

m,k sin(ω··

m∆tkn) , pmk = zkl··mb··

m, (A3)

= −
N

∑
n=2

n−1

∑
k=1

znzk

[

l··m
2(b··

m · 12)
2 sin(ω··

m∆tkn)
]

, l··m =

√

h̄

2Mω··

m
. (A4)

And with

Ξ··

m = −
N

∑
n=2

Re

{

αm

N

∑
k=1

p··m,ke−iθ··n

}

, θ··n = ω··

m

n

∑
j=1

τj = ω··

mtn. (A5)

For two ions, the mode vectors are obtainable analytically. This enables us to write the

phase factors as

Θ·· = Φ··

− + Φ··

+1, Ξ·· = Γ··, ·· = {↑↑, ↓↓}, (A6a)

Θ·· = Λ·· + Φ··

+1, Ξ·· = Υ··, ·· = {↑↓, ↓↑}, (A6b)

where we have dropped the m subscript on Θ for convenience and defined β1 =
√

1 + w̄4 − w̄2,

β2 = −
√

1 + w̄4 − w̄2, ω̄ = ωtw/ω. We also introduce the terms

Φ··

± = − h̄

2M

N

∑
n=2

n−1

∑
k=1

znzk

[

1

ω̃··

1

sin(ω̃··

1 ∆tkn)±
1

ω̃··

2

sin(ω̃··

2 ∆tkn)

]

, (A7a)

Λ↑↓ = − h̄

M

N

∑
n=2

n−1

∑
k=1

znzk

[

1

ω̃··

1

χ1 sin(ω̃··

1 ∆tkn) +
1

ω̃··

2

χ2 sin(ω̃··

2 ∆tkn)

]

, (A7b)

Λ↓↑ =
h̄

M

N

∑
n=2

n−1

∑
k=1

znzk

[

1

ω̃··

1

χ2 sin(ω̃··

1 ∆tkn) +
1

ω̃··

2

χ1 sin(ω̃··

2 ∆tkn)

]

, (A7c)

Γ·· = −
√

h̄

M

N

∑
n=2

N

∑
k=1

Re

[

zk
α1
√

ω̃··

1

(σz
1 + σz

2)e
ω̃··

1 tk

]

, (A7d)

Υ↑↓ = −
√

h̄

2M

N

∑
n=2

n−1

∑
k=1

Re



zk
α1

√

ω̃↑↓
1

(β1 − 1)

ζ1
eω̃↑↓

1 tk + zk
α2

√

ω̃↑↓
2

(β2 − 1)

ζ2
eω̃↑↓

2 tk



, (A7e)

Υ↓↑ = −
√

h̄

2M

N

∑
n=2

n−1

∑
k=1

Re



zk
α1

√

ω̃↓↑
1

(β2 + 1)

ζ2
eω̃↓↑

1 tk + zk
α2

√

ω̃↓↑
2

(β1 + 1)

ζ1
eω̃↓↑

2 tk



, (A7f)

where χi = βi/(1 + β2
i ) and ζi =

√

1 + β2
i .

Appendix F. State-Dependent Motional Eigenmodes upon the
Introduction of Optical Tweezers into the System

We determine the motional eigenmodes by following the process described in [28].

They are determined analytically by diagonalizing the system’s Hamiltonian:

H =
M

2

N

∑
n=1

(q̇n)
2 − 1

2

N

∑
m,n=1

qmqn

(

∂2V

∂xm∂xn

)∣

∣

∣

∣

qm,n=0

, (A8)
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with terms representing the trap and the Coulomb repulsion between ions. Here, the

Coulomb potential V(q1, ..., qN) was replaced with its second derivative with a minimal

loss of accuracy. This is possible considering that the variables qm = xm − x
(0)
m are much

smaller than the distance between equilibrium positions x
(0)
m , which means that the potential

resembles its second derivative around these points.

We then determine the Hessian matrix of our system, Anm, with which we can extract

the system’s eigenvalues; see Table A1.

Table A1. The phonon mode frequencies and eigenvectors for the different spin-state combinations

upon the introduction of tweezers into the system, ω̄ = ωtw/ω. βi is defined as β1 =
√

4 + ω̄4 − ω̄2,

β2 = −
√

4 + ω̄4 − ω̄2.

(ω̃
··

1 /ω)2 (ω̃
··

2 /ω)2 b̃1 b̃2

|↓↓〉 1 3 1√
2

(

1
1

)

1√
2

(

−1
1

)

|↑↑〉 1 + ω̄2 3 + ω̄2 1√
2

(

1
1

)

1√
2

(

−1
1

)

|↑↓〉 1
2 (4 − β1)

1
2 (4 − β2) 1√

4+|β1|2

(

β1

2

)

1√
4+|β2|2

(

β2

2

)

|↓↑〉 1
2 (4 − β1)

1
2 (4 − β2) 1√

4+|β2|2

(

−β2

2

)

1√
4+|β1|2

(

−β1

2

)
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