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Abstract: We propose a two-qubit phase gate based on trapped ions that uses fast electric
field pulses and spin-dependent local traps generated by optical tweezers. The phases are
engineered by spin-dependent coherent evolution, interspersed with momentum kicks.
We derive a set of commensurability conditions and expressions for the spin-dependent
accumulated phase that, when satisfied, realize the target two-qubit phase gate within
tens of microseconds. We study the scalability of our proposal in larger-ion crystals and
demonstrate the existence of solutions with up to four ions. Gates in larger crystals should
also be possible but will require more commensurability conditions to be fulfilled.

Keywords: optical tweezers; quantum computation; trapped ions; fast gate

1. Introduction

Trapped ions are one of the leading platforms for quantum computing. Qubits en-
coded in individual ions can be very precisely manipulated and addressed and feature
long coherence times [1-3]. However, especially as the algorithm complexity increases,
there is a demand for calculations with a higher number of operations. It is then of im-
portance to develop schemes for high-speed and high-fidelity gates, which can outpace
decoherence, whilst maintaining robustness. The goal is to obtain short operational times
which protect the system against heating and other sources of decoherence. This has led
to the development of faster gate schemes [4-7], which rely on non-adiabatic excitations
of motional modes. In this way, gate operations can achieve gate speeds faster than one
oscillation period.

Previous fast gates schemes have considered lasers for generating the state-dependent
force needed to couple motional states and spin-states [4,8]. Such proposals have been
realized in experiments [9,10], as well as generalized to large ion arrays [5,11,12] and
microtraps [13]. However, laser-based kicks require exceptional control over the timing
and phase coherence of laser pulses with high power. This is challenging to realize in
experiments and scales poorly with the ion number. An alternative proposition is the
use of Rydberg ions [14], in which the state dependence derives from the difference in
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the trapping potential experienced due to the large polarizability of the Rydberg states.
Another option is to use trapped ions interacting with an optical lattice [15].

In this work, we propose a different mechanism for generating the qubit state-
dependent force: optical tweezers that generate a state-dependent potential localized
around each ion. This extends our recent work in [16] to the non-perturbative regime,
where the tweezer potential modifies not only the mode frequencies but also the normal
mode structure [17-20]. This allows us to realize a faster gate implementation that is more
robust to decoherence. An illustration of the gate mechanism applied to a two-qubit crystal
is depicted in Figure 1.
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Figure 1. The setup required for the proposed phase gate. (a) An ion chain with tweezers pinning the
two target ions. (b) The tweezers modify the phonon spectrum spin-dependently. (c) The illustrated
spin-dependent phase space trajectory for an arbitrary spin-state. The coherent evolution depends on
the mode frequencies, and the commensurability conditions ensure that the phase space loops are
closed. The accumulated phase equals the area of each phase loop.

Our scheme is an extension of the scheme of Ref. [4]. It uses momentum kicks applied
at specific times generated by an electric field, interspersed with tweezer-modified coherent
evolution for predetermined durations, such that the phase accumulated by each two-qubit
state is the appropriate phase required by the target logic gate [4]. Furthermore, we require
that the motional modes follow closed trajectories in phase space such that the initial state
is recuperated, effectively decoupling the electronic and motional states by the end of
the gate [21]. The set of commensurability conditions which must be satisfied in order to
achieve this scales as 22N, where N; is the number of ions in the crystal. Clearly, with
increasing ion numbers, it becomes increasingly hard to exactly satisfy these conditions,
but an optimal solution can be found numerically in large-ion crystals.

2. System Description: Two Ions

Consider Nj = 2 ions in a one-dimensional harmonic trap with the trapping frequency
w. The motion of the ions is described by

Ho =1y wm(aham+1/2), 1)

where a,, (a},) are the bosonic annihilation (and creation) operators for the center of mass
(com) and stretch modes with the corresponding mode frequencies w, = w and w, = v/3w,
respectively.
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We consider state-dependent optical tweezers focused at the equilibrium positions of
the ions, each with a local trapping frequency wiw ~ wy

Flow = smady, ¥ 2111, @)
2 i=1,2

where we have used the harmonic approximation for the Gaussian tweezer potential. Here,
m is the mass of the ion, and Z; is the position of the ith ion with respect to its equilibrium
position. Equation (2) is a state-dependent potential that mixes the native com and stretch
modes, resulting in new state-dependent modes b;, with the corresponding frequencies
w,,; and creation (annihilation) operators a;t (a;). Weuse +1,+ € {1,1} to represent the
internal state of the first and second ions, respectively. We use this notation throughout to
denote that a term is state-dependent.

Finally, we require a force F generated by an instantaneous, spatially uniform electric
field E that gives a momentum kick to the ions:

He(F) =F -2, 3)

where 2 = {21, 25}, such that the elements of F describe the force on each ion.

The gate sequence we consider consists of two evolution steps applied N times:
(i) evolution under Hgee = Ho + Hiw for a duration 13, followed by (ii) a kick gener-
ated by HAy;q with the force Fj applied at time t; for a time 6t — 0, where k references
the kick sequence number. The evolution of the total sequence is therefore given by
Uuorar =TT Uy

To characterize the protocol, we consider the action of the unitary on coherent states in
the presence of the tweezers |- -, a7, ay), where |a;") (Jay)) is the spin-dependent coherent
state of the com (stretch) mode. Such states can be prepared by cooling the motional modes
in the absence of tweezers to prepare the ground state |0), before adiabatically ramping the
tweezer’s strength for approximately one trap period to prepare |0"). We describe this in
more detail in Appendix A.

The action of the free evolution operator is

uf(r?e|° S, ay) = e TR AT/ 2T g ey

_ ef(i/Z)(w'l'eré')Tk | . efiwi'rklx-l.’ e—iw'z'rka.z.>. @)

The electric field kick can be expanded by substituting in the position operator
2=y, (a;" +a;)b;, yielding

UL = exp(—i Y I (by, - Fo) (gt + a)ot /1), 5)

where I, = \/l1/2Mwy;, is the (spin-dependent) harmonic oscillator length scale. The kick
operator is thus simply a displacement operator such that

U | ay,ay) = exp(—i Y py Re{an}) |+ - a1 — ipyp a2 — ipsy) (6)
m

where we have introduced p;, , = Fdtl;; (b;;, - 12) /h, which is in the order of unity, with 1,
the two-element vector (1,1).
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where we have defined the phases ®;, = — YN, Zz;ll PPy i SIn(wyy (f — 1)) and

0, = wy er(l:1 Tn.
To perform a closed loop in phase space, we require that &;, = «;, for all two-qubit
states. From Equation (8), we therefore require that

N . ..
Con =Y pyye “nft =0, )
k=1

where we have made the substitution YX_; 7, = t;, as well as either

a,; =0, or (10a)
N = 1. (10b)

Satisfying Equations (9) and (10a)—we will call this protocol 1—requires preparing
the tweezer ground state and means that the accumulated phase depends on the zero-point
energy term, so that Equations (7) and (8) can be simplified into

B . 0:
gz;(®m_é\])/ (11)

In contrast, satisfying Equations (9) and (10b), which we will call protocol 2, makes
the gate independent of the initial motional state amplitude, &;, = «;;, and removes the
zero-point energy term from the accumulated phase, so that the phase now becomes

Z=) 0o. (12)

Protocol 1 is easier in computational terms; however, it requires the system to be
cooled down to the ground state. Protocol 2, conversely, is more powerful as it provides
temperature-insensitive solutions, but it is much harder to satisfy, as it requires that the
zero-point energy term, Equation (10b), is in phase for all four spin combinations. In this
article, we consider the implementation of protocol 1. The commensurability conditions,
Equation (9), mean we have, for each of three (four different spin combinations exist, but the
eigenvalues of | 1)) and || 1) are identical for a two-ion crystal) possible spin combinations
|- ), two normal modes m and for each of these N sets of kicks, totaling six equations. If
we are to add the requirement for temperature insensitivity, Equation (10b), the fact that
this term is spin-dependent means that we will necessarily be adding another six equations
to our total. This, in turn, will scale with the number of ions in the gate, as adding one
ion means adding one motional mode to the system. In order to perform the logic gate,
we must not only satisfy these conditions but must also guarantee that the overall phase
accumulated over the system’s evolution realizes the desired phase gate:
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E=Y —03/240;+5;, = (13)
m

4 -1

Full expressions for & and @ for each of the four different possible qubit states can
be found in Appendix E.

3. Results

In order to implement the phase gate, we search for solutions of the type (zx = Fdt, 1),
with k denoting each sequence step. Besides satisfying the commensurability conditions
and the overall phase constraint, we choose the total number of steps, N, and also constrain
the momentum amplitude of the kicks z; in each step or the total gate time Tgare. To
facilitate this search, spin-echo sequences could potentially be performed at any point in
the sequence to eliminate dephasing between states and facilitate the search for an adequate
gate sequence.

An example sequence can be observed in Figure 1c, which represents a two-ion phase
gate for on a two-ion crystal, with the tweezers pinning the two ions in the array. The
kicks represent pure displacements in momentum space, and the free evolution periods are
secular motion in (x, p) space with a constant phase. The initial phase space orbit for each
of the normal modes is restored by the end of the pulse sequence, demonstrating that the
commensurability conditions are satisfied.

In order to quantify the gate performance, we investigate the average gate fidelity [22]:

L TrUUTUTE Uy)) + d?

FEu) = 2+ 1) '

(14)

where U is the target gate operation, & is our generated unitary, and &(U;) = trpg[E(|n) (]
® U;)E] is its projection on the motional modes |«;) and on the SU(2) generalized Pauli
matrices, Uj, of dimension d, with d = 4 for two-ion gates.

After sweeping over different values for the kick number, N, and tweezer frequency,
Wiw, We obtain the results shown in Figure 2 for a gate performed in a two-ion crystal.
The infidelities obtained are as good as 1 — F ~ [10~°], so long as we have an adequate
number of kicks (generally N > 12), and the employed tweezer frequency is wgy /w > 0.5;
see Figure 2a.

Larger numbers of kicks, as in Figure 2a,b, Nj, generally translate into lower achievable
infidelities regardless of the tweezer frequency but at the expense of the overall gate time
Tgate- We attribute this trend to the added degrees of freedom which a higher number of
kicks introduces into the problem, thus increasing the solution space and the probability
of finding converging solutions. In general, we conclude that having higher tweezer
frequencies means lower infidelities can be achieved, requiring smaller kick numbers and
thus shorter gate times; see Figure 2b.
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Figure 2. Gate infidelity, 1 — F, as a function of (a) tweezer frequency, wy, and (b) overall gate time
for a two-ion crystal. These results were obtained by performing a search over different possible
kick number values in a range pf 8 < N < 20. We observe that the gate is harder to perform at
lower tweezer frequencies, which is the reason why below wyy /w = 0.5, solutions were found only
in the region 1 — F > 10~*. In addition, small kick numbers, despite resulting in smaller gate times,
usually result in higher infidelities as the number of free parameters is reduced, whereas longer gate
times yield more solutions with better infidelities, at the cost of the overall gate time. The infidelity is
presented on a logarithmic scale.

Gates in a Four-Ion Crystal

We investigate the scalability of this scheme by increasing the number of ions in the
crystal to four. Even though the gate is performed solely between two ions, the electric field
kicks must be determined so that the new additional motional modes also recover their
inijtial states. The additional constraints hinder the convergence of our numerical methods
such that it is harder to find solutions. The solutions found do not perform as well as in
the two-ion case; we observe an overall reduction in fidelity: the produced unitary does
not match the desired target phase gate as well as it does in the two-ion case, and for some
motional mode/spin-state combinations, the overlap between the initial and final states is
not exact; see Figure 3. Another way to visualize the overlap between the initial and final
states is to look at the phase space trajectories of the different modes throughout the gate
and compare the final phase space position with the initial one; see Figure 4.

1.0000

com

0.9998

stretch 1.0 1.0 1.0 0.9996

wobbling | 0.9994 [URSSSIERIKEIS . 0.9994
0.9992
anti-stretch USRS 0.9991  0.9993 .

P 0-9990

Figure 3. The overlap between the initial and final motional states for a gate performed in a four-ion
crystal, with tweezers pinning the two left-most ions, using a tweezer frequency wyy = 0.8w and
N = 16 kicks. The gate takes 37 us and has an average gate fidelity of F = 0.996. For each mode and
spin combination pair, we plot the coherent state overlap between the initial (before gate) and final
(after gate) state configurations, (a;[a).

Even though we observe a reduction in performance on scaling up the ion crystal size,
it is important to note that a beneficial aspect in the scalability of this gate scheme is that the
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relative extent of the excursions in the phase space is reduced for higher-frequency modes;
see Figure 4. This happens because the electric field only couples to the center-of-mass
character of the mode, and this favors the low-frequency modes in ions. When adding
ions to a crystal, the number of modes increases through ‘adding’ higher-frequency modes,
while the modes that were already there remain unchanged. So, while we add error by
adding ions, the amount of error that is added per ion reduces. It is therefore conceivable
that not all modes have to be taken into account for large-ion crystals, at the expense of a
small but unavoidable error in the gate.

(x) - (V2/z0) (x) - (v2/0)

75 =50 =2 0.0 2.5 5.0 —0.2 0.0 0.2

Ut
T

(p) - (V2/n)
(p) - (V2/h)

C.0.11. stretch
wobbling anti-stretch

(p) - (V2/h)
() - (V2/h)

1-0.05

1-0.10

=02 01 00 01 02 —0.15 —0.0 —0.05 0.0 0.05 0.10
(@) - (V2/x0) (@) - (V2/x0)

Figure 4. The phase space trajectories of the spin-state || 1) for the four motional modes in a 4-ion

crystal, performing the gate on the 2 left-most ions. These trajectories correspond to the same gate

used in Figure 3, with a tweezer frequency wyw = 0.8w; and N = 16 kicks. It can be observed in the

lower-right and -left panels how the wobbling and anti-stretch modes do not exactly close at the end

of the trajectory.

To conclude, we can successfully find four-ion crystal solutions with average phase
gate infidelities as good as 1 — F ~ 10~#, though more commonly with 1 — F ~ 1072; see
Table 1.

Together with the results in Figure 2, these results lead us to believe that the choice of
tweezer frequency does not condition our scheme in a monotonous way (meaning there
is not a clear trend in how it affects the gate performance), but rather it conditions our
results in two ways: one, it defines how strongly our states are coupled to motion and how
much our eigenfrequencies are modified. So, with a higher tweezer frequency, it is easier
to accumulate the desired phases with fewer kicks, whereas lower tweezer frequencies
require more kicks; see Figure 2a). Secondly, while studying the four-ion case, we realize
that it is easier to perform multiple-ion gates (>two ions) using lower tweezer frequencies,
a fact justified due to the tweezer inducing lower state mixing, which reduces the amount
of dephasing gathered at each step by the different motional states.
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Table 1. Average phase gate infidelity and gate time for several four-ion solutions. We present
solutions with different kick numbers for a tweezer frequency wyw = 0.4w and one sixteen-kick

solution for a tweezer frequency wyy = 0.8w.

wiwlw N 1-F Tgate (us)
04 16 0.0373 225717
0.4 20 0.0100 17.2863
0.4 28 0.0402 41.5518
0.4 30 0.0002 16.3239
0.8 16 0.0039 37.0045

4. Experimental Considerations

The electric field’s amplitude Ey and pulse duration 4t represent experimental bot-
tlenecks in terms of gate feasibility. To justify the assumption of instantaneous kicks, the
electric field pulses must be much faster than the motion of the ion in the trap. Since typical
trap frequencies lie in the MHz range, we must set Jt < ys. We can estimate the typical
electric fields required by setting I,,eEqdt /i = 1. For electric field pulse durations in the
10-100 ns range, we calculate Ey ~ 1-10 V/m, with a slight dependence on the ion species.
Our results yield electric field requirements in the order of ~ {107°,10~7}[Vs/m], which
are thus experimentally feasible.

In this article, we have stayed within the confines of protocol 1, which requires ground
state cooling and for Equation (10a) to be satisfied. In this way, it is relevant to investigate how
the gate performs if this cooling is not perfect and there is some mode occupation beyond
the ground state. These results are portrayed in Figure 5, where an originally 1 — F = 10~°
solution is exposed to increasing com. mode occupation, fi., for three different values of
occupation of the stretch mode, 7i;. We observe how the infidelity decays to 102 as the
com number occupation rises to the same value, following the same exponential trend. The
number occupation of the stretch mode equally limits the minimum achievable infidelity.

100
s ®
1071 »
S 1072 * * ww :
[ 4
_ 10 e > : e
10~4 o———flg-=-0:0
[ )
» n,=0.001
107°F o e iy =001

10> 10°%Y 107° 107% 107! 10

Nne

Figure 5. Infidelity as a function of com mode number occupation, fi., for gates originally with
infidelities ~10~® and three different stretch mode occupations, is. The gate solution used to
generate this graph employed seven kicks and had a gate time of ~23 ps.

Finally, it can be experimentally challenging to generate a large difference in polar-
izability between the two qubit states. Here, one approach is to employ optical qubits
in which one of the qubit states is encoded in a metastable electronic state. For instance,
we can consider the qubit states |0) = [S1/2,m; = 1/2) and [1) = |Ds/,,m; = 3/2) in
40Ca™ [23]. We can use a tweezer at 532 nm with circular ot polarization. Setting the waist
to 1 um and using a modest power of P = 1 mW generates a tweezer trap frequency of
wew = 27tx 49.1 (2.7) kHz for the state |0) (|1)). We calculate the photon scattering to be
v < 1571, Note that the photon scattering may be reduced further by employing hollow
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tweezers, allowing for larger wy,, values. For these calculations, we took into account the
main dipole-allowed transitions and used the energies and transition dipole moments
reported in [24].

5. Conclusions and Outlook

We proposed a two-qubit gate scheme on an array of trapped ions which relied on optical
tweezers to generate the state dependence. Electric field pulses generate momentum kicks
which produce the desired phases and accelerate the phase space trajectories. We calculate
that the gate can be performed within accessible experimental conditions, with the caveat
being that ground state cooling is required in the studied regime. We obtain gate times that are
up to two orders of magnitude faster than those in the case studied in [16] but still fall short
of the oscillation period of the ions in their trap [4]. This is due to the fact that this scheme
requires dealing with the excitation of all modes, whose excursions in phase space must be
undone, an effort which is leveraged against the speed of the fast pulses.

Although the proposed scheme may be easier to implement than either schemes based
on pulsed lasers or Rydberg ions, it is limited by the challenge of supplying large state-
dependent potentials to the ions without significant photon scattering. We note that the
use of hollow tweezers would offer benefits in this regard [16,25,26]. We study how well
the scheme performs as we scale up to a four-ion crystal, finding infidelities generally
two orders of magnitude below the two-ion crystal solutions. Finally, a different search
strategy or problem formulation could yield temperature-independent solutions, making
the scheme more accessible under realistic experimental conditions.
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Abbreviations

The following abbreviations are used in this manuscript:

ZPE Zero-point energy
COM Center-of-mass

Appendix A. New-Mode Coherent State Preparation

In the main text, we assume the tweezers are retained during state preparation and
throughout the whole gate, meaning that we work on a tweezer-modified coherent state
basis. In this section, we investigate a scenario where state preparation to the ground
state is performed with the tweezers off, and only then is the tweezers’ intensity ramped
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up adiabatically. We observe that this enables high-fidelity preparation of the new-mode
coherent states without significantly compromising on the gate time.

In Figure A1, we plot the spectrum of Hy + Hiw, which describes the motion of the
ions including the optical tweezers. At wyy/w = 0, the three lowest eigen-energies are
Ey = %(1 + \/g)w, Ei = % + %\@w, and E, = % + %\@w, as expected. Turning on
the tweezers increases the energies of all states, with the energy gaps changing due to
squeezing, which occurs given the changing frequency of the harmonic oscillator. We see
that the largest gap is between the ground state and the first excited state, suggesting that
the best state to adiabatically ramp from is the ground state.

8 —

E (hw)

0.0 0.2 0.4 0.6 0.8 1.0
Time (1/27MHz)

Figure Al. The dependence of the energy spectrum of the system on tweezer pinning frequency
wiw/w. Level crossings are visible at higher energies due to the change in com mode frequency
scaling differing to that in the stretch mode. The three dashed lines correspond to the first three
energy eigenvalues; see Appendix F.

In Figure A2a, we linearly ramp the tweezer trapping frequency wyy, with the corre-
sponding instantaneous fidelity with the ground state shown in Figure A2b. Switching on
the tweezers after ground state preparation yields a ground state overlap higher than 0.998
with the tweezer ramping times under a trap period. For a higher fidelity, ramping as slow
as for five trapping periods yields a fidelity above 0.9995, with this time representing less
than one microsecond added to the overall gate time.

0.5 1.0000
IS
0.4 Z 0.9995
<
=
303 Z 0.9990
302 g
< 0.9985
<
0.1 =
= 0.9930
0.0
0 2 4 6 8 10 0 2 4 6 8 10
Time (1/27MHz) Time (1/27MHz)
(a) (b)
Figure A2. Linearly ramping the tweezer power to ww = 0.5w for various ramp times

Tramp = (0.5,1,5,10) /w. The ramp profiles are plotted in (a). In (b), the instantaneous fidelity
with the ground state is plotted. The fidelity decays as the ramp speed is increased. However, all
four ramps produce the new ground state with high fidelity (>99%). Assuming a trapping frequency
w = 2 MHz, the slowest ramp considered here corresponds to a time of ~ 1.6 us, one order of
magnitude higher than the trap period. All the others stay under this value and guarantee fidelity
with up to 10~* accuracy.
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Appendix B. The Gate Performance with Tweezer Stability

In the main text, we assume a fixed and controlled tweezer frequency. However, in a
real-life implementation, tweezer drifts can affect the gate performance and cause a decay
in the gate fidelity.

We study how much this affects the proposed gate by determining the average mean
infidelity of all of the two-ion solutions in Figure 2 with a fidelity above 0.95 and determin-
ing how this average mean would behave when small drifts, €, were added to each gate’s
expected tweezer frequency; see Figure A3.

1071

\LT_‘ °
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Figure A3. The decay in the mean average gate fidelity upon the introduction of frequency drifts, €,
around the expected tweezer frequencies, Wy.

We observe that the drifts should be under € ~ 0.001/w; in order to minimize the
compromise in the gate performance. This means that if we were to have an ordinary axial
trap frequency of 500 kHz, then our tweezer trap frequency could not vary by more than
500 Hz.

We consider the origin of such instability in the tweezer frequency. More specifically,
the tweezer trap frequency scales as ww = —4Ugip/ (mw}) [16], and the dipole moment
Ugip « Re{a}I, with the Gaussian beam intensity I ~ 2P/ (mué) [27]. We then obtain the
following relation:

W = _im (A1)
Tmw

As the polarizability is only dependent on the atom species and light polarization,
the biggest source of instability in the tweezer frequency will be the beam power (linearly
dependent) and the beam waist (quartically dependent).

Appendix C. Sensitivity to Timing Errors

We wish to gauge how sensitive this scheme is to imprecision in the timing of the
sequence kicks. We add/subtract small delays (in the order of a few nanoseconds) according
to a normal distribution to/from all of the kicks in the two-ion solutions presented in
Figure 2 with a fidelity above 0.95 and observe how this affects the gate performance.
As this timing change affects the decoupling of the motional and internal states, besides
looking at how well we performed the desired phase gate (the average phase gate infidelity),
we also look at how the final acquired state overlaps with the initial state, as a measure
of how well the motion and spin have decoupled; see Figure A4. We conclude that the
scheme is too sensitive for timing errors above 2 ns.
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Figure A4. An analysis of timing error sensitivity for the developed scheme. The purple axis
quantifies the decoupling between the motional and internal states of the ions, showing the overlap
between the initial and final motional states. And the green axis quantifies how well the obtained
unitary still corresponds to the target unitary.

Appendix D. Zero-Point Energy Rephasing Points

In order to study the relative phase difference between the three different spin-states,
we consider the spin-dependent zpe phase:

0" = expi(w. + w; )t (A2)

The relative phase differences are studied by plotting 0q;¢s = |07T — 07+] + |61 — 64| for
different tweezer frequencies; see Figure A5.

—— Wiy /wp=0.6 e Wiy /wy =0.8
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Figure A5. An analysis of the zero-point energy dephasing contribution (quantified as the relative
phase difference, 04;¢) as a function of time (a) and tweezer frequency (b) in the range of tens of
microseconds. Higher tweezer frequencies are observed to have a faster rephasing period.

When 04t = 0, the three spin-dependent phases are the same and have thus re-phased.
Higher tweezer frequencies show a shorter rephasing period; however, we do not observe
complete rephasing like in t = 0. This means that in principle, we could start the gate at

any motional state and wait for an approximate rephasing, but the small phase difference
remaining will limit the attainable fidelities.
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Appendix E. Spin-Dependent Phase Factors

The acquired phase from the kick unitary has been defined as ¢ = }_,,,(—605;/2 + ©;;, +
&), with

N n—
Z Z mnpmk51n w, Atkn) Pmk = Zkl;f;b;'q'w (A3)
n=2k=1

N n—1 ). B

; ; ank[ v 1o) sm(w,};Atkn)] , L= M (A4)

And with

[

N N . n
-y Re{am ) p;q;’ke*len } ;0 =wn Y T = Wty (A5)
n=2

For two ions, the mode vectors are obtainable analytically. This enables us to write the
phase factors as

O =0 +o71, B =17, - ={1 4} (A6a)
O =A"+®71, E"=Y", - ={1L 11} (A6b)
where we have dropped the m subscript on @ for convenience and defined 81 = /1 + @* — @?,

Bo=—V1+aw*— W2, @ = Wy /w. We also introduce the terms

. f N n-1 1 1
O} = 2 ) 2 Y zZnzi | = sin(@y Aty ) £ — sin(@y Aty,) |, (A7a)
2 k=1 wy )
1 no N ol 1 1
AT == Z ZnZk | == X1 SIN(@D] Aty ) + —— X2 sin(@) Aty |, (A7b)
n=2 k=1 Wy )
w_ e Lo Lo
A= Wi Z Z ZnZk | == X2 Sin(@7 Atgy) + == X1 sin(@5 At,) |, (A7¢)
n=2 k=1 Wy )
=y B Y Rels L gof +a§>ewi'fk] (A7d)
M n=2k=1 (’Dl
N n-1 _ B _
N L Y Y Re|z—4 Br=1) ot g, %2 B2=1) ol | (a7
M=o | din g @t G2 |
N n—1 [ ]
NURSIRVRUES o N P N B e
2M S L Jat! G2 M G ]

where x; = B;/(1+ p?) and {; = m

Appendix F. State-Dependent Motional Eigenmodes upon the
Introduction of Optical Tweezers into the System

We determine the motional eigenmodes by following the process described in [28].
They are determined analytically by diagonalizing the system’s Hamiltonian:

MY 02V
=7 Z(Qn Z qmqn <axmaxn>

n=1 mn 1

, (A8)

Jmn =0
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with terms representing the trap and the Coulomb repulsion between ions. Here, the
Coulomb potential V' (g3, ..., qn) was replaced with its second derivative with a minimal

(0)

loss of accuracy. This is possible considering that the variables g, = x;; — x;,” are much
smaller than the distance between equilibrium positions x,g? ) , which means that the potential
resembles its second derivative around these points.

We then determine the Hessian matrix of our system, A;;, with which we can extract

the system’s eigenvalues; see Table A1.

Table A1l. The phonon mode frequencies and eigenvectors for the different spin-state combinations

upon the introduction of tweezers into the system, @ = wiy /w. B; is defined as f; = V4 + @* — @?,
B = —Vi+at— @
(d)llw)z ((Z)Z/w)z b1 b
H 1 3 2 (! a1 (1
) V2 \1 Va1
1) 1+ @? 3+ @? a1 (1 a1 (L
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) 14— py)
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