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Abstract: Cutting out an infinite tube around r = 0 formally removes the Schwarzschild

singularity, but without a physical mechanism, this procedure seems ad hoc and artificial.

In this paper, we provide justification for such a mechanism by means of non-locality.

Motivated by the Gauss law, we define a suitable radius variable as the inverse of a regular

non-local potential, and use this variable to model a non-singular black hole. The resulting

geometry has a de Sitter core, and for generic values of the regulator, there is no inner

horizon , saving this model from potential issues via mass inflation. An outer horizon

only exists for masses above a critical threshold, thereby reproducing the conjectured

“mass gap” for black holes in non-local theories. The geometry’s density and pressure

terms decrease exponentially, thereby rendering it an almost-exact vacuum solution of

the Einstein equations outside of astrophysical black holes. Its thermodynamic properties

resemble those of the Hayward black hole, with the notable exception that for critical mass,

the horizon radius is zero.

Keywords: non-singular black hole models; spacetime singularities; non-locality

1. Introduction

The presence of singularities inside black holes is a robust prediction of general

relativity. However, it is commonly believed that a suitable UV completion of gravity

ameliorates this behavior and renders all physical quantities finite in proximity to the

center of the black hole. While there are indications that putative theories of quantum

gravity feature regular black holes in their semiclassical limits, an explicit derivation of

such objects proves cumbersome.

For this reason, Bardeen [1] considered a simple modification of the Schwarzschild

metric that is manifestly finite at r = 0 but reproduces the large-distance behavior known

from general relativity. Others have followed similar approaches and have developed a

rich family of non-singular black hole geometries [2–12] (and references therein). In this

paper, we focus on static regular black holes and postpone a discussion of time-dependent

formation (and evaporation) to later studies. Static non-singular black hole geometries

typically have several properties:

1. They do not solve the vacuum Einstein equations exactly, but their Einstein tensor

decreases polynomially with distance away from the center at r = 0. Alternatively,

this can be viewed as the presence of an effective energy–momentum tensor, and the

properties of this matter source can be analyzed with respect to energy conditions.

In accordance with Penrose’s singularity theorem, an energy condition is violated if

the inner black hole singularity is avoided.

2. In addition to the outer event horizon at r ≈ 2GM, there exists an inner horizon at

r ∼ ℓ as well, where ℓ is the regularization scale.
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3. Close to r = 0, the geometry approaches a de Sitter form.

4. The curvature upper bound is given by 1/ℓ2 and is independent of the black hole

mass, which is also called the “limiting curvature condition” [6,13–15].

5. At large distances r ≪ ℓ, the regulator terms decrease rapidly and the metric increas-

ingly approximates the Schwarzschild metric of general relativity.

Moreover, in the spherically symmetric and static case, the regularity is achieved by

replacing the mass parameter M by a mass function M(r) that scales in a suitable fashion

to remove the singularity at r = 0. A well-known model is that of Hayward [4],

ds2 = − fH(r)dt2 +
dr2

fH(r)
+ r2dΩ

2 , fH(r) = 1 − 2Mr2

r3 + 2Mℓ2
, (1)

where ℓ > 0 is the regularization length scale and we employ units, wherein G = 1.

The complicated appearance of the black hole mass parameter M in the denominator of the

function fH(r) guarantees the limiting curvature condition. Typically, the function fH(r)

has two zeroes, corresponding to the inner horizon and the outer horizon, respectively.

Of course, in the absence of a fundamental theory predicting the precise form of a

non-singular metric, many different parametrizations can be explored. From a fundamental

physics perspective, however, this is somewhat dissatisfying, since there is no physical

argument that favors one type of non-singular metric over another equally non-singular

one. In this paper, we propose an avenue to approach this problem by connecting the

regularity properties of static black hole spacetime metrics with Gauss’ law. Starting from a

modified radius variable, we construct a non-singular metric that turns out to not have an

inner horizon but still features a de Sitter core. The form of the modified radius variable is

motivated by recent results in non-local gravity, thereby removing a layer of ambiguities.

2. Modified Radius Variable

In a local field theory in four spacetime dimensions, the potential of a point particle

decreases monotonically with the inverse spatial distance (in suitable units),

ϕloc = −1

r
. (2)

Similarly, the field strength decreases with the inverse area, due to Gauss’ law. Simply

speaking, this is a consequence of the Poisson equation,

∇2ϕloc(r) = −4π δ(r)(r) . (3)

Now, reversing this logic, one could measure the field strength and thereby deduce

the radial distance away from the source. As the field strength diverges, one reaches r = 0.

For the sake of simplicity, but without loss of generality, in what follows, we shall consider

the potential as the fundamental variable, for which similar mathematical properties hold

true. Hence, one may be inclined to define a radius to be the inverse of the potential,

r ≡ − 1

ϕloc
. (4)

However, the singularity of the local potential is deemed unphysical since it gives

rise to infinite forces and accelerations. It is possible to modify the equations of motion for

scalar potentials, and at the linear level, a class of non-local theories has proven particularly

successful in removing the divergence at r = 0 [16–23]; for earlier work in non-commutative

geometry and regular black holes, see Refs. [24–27]. Within a quantum mechanical approach
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to the singularity problem, one also encounters non-local terms [28,29]. For these reasons,

we consider the non-local equation

F(∇2)∇2ϕnl = −4π δ(3)(x) . (5)

Therein, F(∇2) is a so-called form factor that depends on a regularization parameter

ℓ > 0 and that satisfies F(0) = 1. A popular choice motivated from string field theory

is [17]

F(∇2) = e−ℓ2∇2
. (6)

This equation can be used with the method of non-local Green functions; for a com-

prehensive review, we refer to Ch. 2.8 in [23] as well as the references therein. For a general

form factor, the spherically symmetric point particle solution takes the form

ϕnl(r) = −1

r

√

2

π

∞
∫

0

dz√
z

1

F
(

− z2

r2

) J1/2(z) , (7)

where J1/2(z) =
√

2/(πx) sin x is the Bessel function of the first kind, and the Coulomb

potential is recovered by setting F ≡ 1 and using
∫

∞

0 dx x−1 sin x = π/2. For the above

choice of form factor, one readily obtains

ϕnl = −erf
(

r
2ℓ

)

r
, (8)

where erf(x) denotes the error function which asymptotes exponentially fast to unity [30]:

erf(x → ∞) ≈ 1 − e−x2

√
πx

. (9)

This relation guarantees that in the limit r/(2ℓ) → ∞ (that is, at large distances r

compared to the regulator ℓ, or at vanishing regulator scale ℓ → 0 at fixed r)m we recover

the Coulomb potential. At small distances, however, this potential differs appreciably from

the singular Coulomb potential: it is finite and regular at r = 0. Using this non-locally

regularized potential, we may now define a modified radial distance

r̃ ≡ − 1

ϕnl
=

r

erf
(

r
2ℓ

) . (10)

In Figure 1, we plot the local potential with its regularized, non-local counterpart,

as well as the two corresponding radius variables. As becomes apparent, the modified

radius variable r̃ has a minimal value proportional to the regulator scale ℓ:

r̃(r → 0) =
√

πℓ+O(r2) . (11)

At large distances, however, the two radial coordinates approach each other exponen-

tially fast [30],

r̃(r → ∞) = r +
2ℓ√

π
e−r2/(4ℓ2) . (12)

Hence, taking this non-locally modified radius variable r̃ as the physical radius variable

effectively cuts out the region r ∈ [0,
√

πℓ] from the manifold, while rapidly approaching

the standard radius definition for distances larger than ℓ.
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Figure 1. Newtonian and regularized potential (left), and corresponding radius functions (right).

3. Non-Singular “Gauss” Black Hole Model

Let us now explore the ramifications for a static and spherically symmetric black hole

spacetime subjected to the formal substitution r 7→ r̃(r),

ds2 = − fnl(r)dt2 +
dr2

fnl(r)
+ r̃2dΩ

2 , fnl(r) = 1 − 2M

r̃(r)
, r̃ =

r

erf
(

r
2ℓ

) . (13)

Due to its motivation via the non-local Gauss law (and the appearance of the error

function erf(x) as well as Gaussian factors e−r2/(4ℓ2) in the radius and curvature), we shall

refer to it as the “Gauss” model. Note that this is not a coordinate transformation since

we explicitly keep r as the coordinate radius variable. However, it is clear that circles of

r = const now have the proper circumference 2πr̃(r). Unlike what is usually assumed

in non-singular black hole models, we here explicitly rescale the spherical part of the

geometry as well, which is a necessary step to render this black hole model finite at r = 0.

This is similar to the model proposed by Simpson and Visser [9]. In what follows, we

will discuss this metric in more detail. In particular, we will discuss (i) the horizons, and,

in particular, the absence of an inner horizon; (ii) the absence of an outer horizon for

large regulators (“mass gap”); (iii) a thorough study of curvature invariants including

the Kretschmann scalar as well as squared of the Weyl tensor, the tracefree Ricci tensor,

and the Ricci scalar, demonstrating the manifest regularity of this metric; (iv) the question

of universal boundedness in curvature (“limiting curvature condition”); (v) the properties

of the effective energy–momentum tensor and violation of energy conditions; (vi) the

Hawking temperature and entropy of this metric as compared to the Schwarzschild case;

and, finally, (vii) the interpretation of the hypersurface r = 0 in relation to wormholes and

geodesic completeness.

3.1. Horizons

Let us briefly compare the metric function fnl(r) to that of general relativity and

the Hayward model; see Figure 2. For generic values of ℓ and M, where we assume

that M/ℓ > 1, it is clear that the behavior at r = 0 is rather different. In the general

relativity case, one has the standard spacelike singularity, whereas the Hayward model is

de Sitter-like. At r = 0, the Gauss model behaves as

f (r ≪ ℓ) ≈ 1 − 2M√
πℓ

+
Mr2

6
√

πℓ3
, (14)

which shows that for large masses 2M >
√

πℓ, the geometry is indeed de Sitter-like at

the origin.



Universe 2025, 11, 112 5 of 15

  

Figure 2. Metric functions for the Schwarzschild, Hayward, and Gauss black hole.

The striking difference between the Gauss and Hayward models lies in the absence

of an inner horizon for the latter. An apparent horizon is located wherever the following

condition is satisfied:

(∇r)2 = grr = 0 , (15)

such that the locations of apparent horizons correspond to the zeros of the metric function

f (r), or, equivalently, wherever the vector field ∂µr = δ
µ
r becomes null. While the outer

horizons are roughly located around r ∼ 2M, modulo small corrections due to ℓ, there is

an inner horizon for the Hayward model, but none for the Gauss and Schwarzschild black

holes; see Figure 3 for a visualization of the horizon radii.

  

Figure 3. Horizon radii for the Gauss black hole compared to the Schwarzschild metric and Hayward

metric. Note that the horizon radius for the Gauss black hole at critical mass M0 is zero.

Since inner horizons make black holes susceptible to mass inflation [31,32], the generic

absence of such a structure in this model is an interesting feature of the non-local regulator.

While more work is needed to understand the precise origins, it is likely due to the fact

that our model is intrinsically non-polynomial. In this way, the absence of the inner

horizon would be directly inherited from the “ghost-free property” of non-local gravity

which in turn heavily relies upon entire non-polynomial functions for the gravitational

propagator [23,33,34], such as e−ℓ2∇2
as employed in Equation (5).

In fact, one may check that substituting the complicated function erf(x) by a rational

approximation x2/(1 + x2) gives rise to an inner horizon; see Figure 4 for a plot of the

metric functions as well as the error function and its approximation. (The substitution
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x/(1+ x) is not allowed since it induces a conical singularity around r = 0.) For this reason,

we believe that the absence of the inner horizon is indeed due to the non-rational form of

our modification.

    

Figure 4. (Left): The metric function f (r) for the Gauss regular black hole (solid line),

the Schwarzschild metric (dotted line), and the Gauss regular black hole subjected to the approx-

imation erf(x) → x2/(1+ x2) (dashed line). Clearly, this approximation induces an inner horizon.

(Right): The error function erf(x) and its approximation x2/(1+ x2) in direct comparison.

Let us understand the consequences of the error function approximation at a deeper

level. To that end, in non-local field theory, we may write the inverse of the form factor as

the following regularized integral over the potential of a point particle [23],

1

F(−k2)
= −k lim

ϵ→0

∞
∫

0

dr e−ϵr2
r sin(kr)ϕ(r) . (16)

One may verify that setting ϕ(r) = −1/r yields F(−k2) = 1, as expected. A non-trivial

check for ϕ(r) = ϕnl(r), however, gives instead

1

F(−k2)
= +k lim

ϵ→0

∞
∫

0

dr e−ϵr2
r sin(kr)

erf
(

r
2ℓ

)

r
= e−k2ℓ2

, (17)

meaning F(−k2) = ek2ℓ2
, in exact correspondence to Equation (6) under the Fourier substi-

tution ∇2 → −k2. The propagator D of this theory is schematically given by

D ∼ 1

k2

1

F(−k2)
, (18)

This implies that every pole of this function corresponds to a propagating degree of

freedom [34]. The function F(−k2) = ek2ℓ2
is everywhere non-vanishing, which implies that

for non-local theories, there are no additional propagating degrees of freedom. Incidentally,

this is one of the reasons that non-local theories are sometimes also referred to as “ghost-free”.

If one instead computes the above integral for the approximated error function,

one finds

1

F(−k2)
= 1 + (kℓ)

[

e2kℓEi(−2kℓ)− e−2kℓEi(+2kℓ)
]

. (19)

One can easily verify that 1/F(−k2) assumes negative values for k exceeding a critical

value k0, where 1/F(k2
0) = 0. This then makes the propagator of the theory change sign

above a certain energy threshold, which has been shown to be related to instabilities [34],

thereby demonstrating the pathological features of such a rational function approximation.

We note, finally, that an inner horizon also does not exist for the Simpson–Visser

choice [9], which is given by f (r) = 1 − 2M/
√

r2 + ℓ2 and r̃ =
√

r2 + ℓ2 and uses the

square root function. Conversely, in Frolov’s regular black hole models that utilize rational
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functions, an inner horizon persists [6]. These considerations hence further underline the

apparent necessity of non-rational regular black hole metrics if one wants to avoid an

inner horizon.

3.2. Mass Gap

It is well known that in higher-derivative as well as non-local infinite-derivative

theories of gravity, there exists a mass gap for the dynamical formation of black holes via a

spherically symmetric collapse of null dust [35,36], and this mass gap is proportional to

the regularization scale. In other words, small black holes do not form unless their mass

parameter exceeds a critical value.

In the present context, note that the modified radius variable r̃ is always larger than

the minimal distance
√

πℓ. For this reason, the apparent horizon condition (15) can only be

satisfied if

M > M0 =

√
πℓ

2
, (20)

that is, the mass parameter exceeds a critical value. As expected, in the limiting case of ℓ →
0, this mass gap vanishes as one recovers the Schwarzschild case. While the considerations

presented in this paper are focused on the time-independent scenario, it is still interesting

that they qualitatively reproduce the mass gap found in dynamical situations.

If the mass is less than the critical value, M < M0, the resulting geometry is horizonless

but regular at r = 0. Specifically, r = 0 then corresponds to a wormhole throat moving

forward in time, just as in the Simpson–Visser case [9]; for comments on the analytic

continuation, see below.

Let us conclude this section by addressing an interesting feature of the proposed

“Gauss” regular black hole: at minimal mass, M = M0, the horizon radius of the Gauss black

hole is zero. Conversely, for the Hayward metric evaluated at its critical mass, the horizon

radius is non-zero. This will become relevant in the thermodynamical studies later.

3.3. Regularity and Curvature Invariants

To show the regularity of this metric, one may calculate several scalar curvature

invariants. We focus here on the Ricci scalar R, and the square of the traceless Ricci tensor

S2 = (Sµν)2, as well as the square of the Weyl tensor C2 = (Cµνρσ)2 and the Kretschmann

scalar K = (Rµνρσ)2. These quantities are related to each other via

K = C2 + 2S2 +
1

6
R2 . (21)

Their general expressions are quite cumbersome, so we will not show their explicit

values here. At r = 0, they take the following simpler form:

R =
3
√

πM + (6 − 2π)ℓ

3πℓ3
− 7

√
πM + 2(10 + π)ℓ

60πℓ5
r2 +O(r4) , (22)

S2 =
9πM2 + 4(3 − 2π)

√
πMℓ+ 2(18 + π2)ℓ2

36π2ℓ6

− 63πM2 + 2(51 − 13π)
√

πMℓ+ 4[90 + (15 + π)π]ℓ2

1080π2ℓ8
r2 +O(r4) , (23)

C2 =
[3
√

πM − (6 + π)ℓ]2

27π2ℓ6
− (27

√
πM − 4(5 + π)ℓ)[3

√
πM − (6 + π)ℓ]

270π2ℓ8
r2 +O(r4) , (24)

K =
9πM2 − 8π3/2 Mℓ+ 2(18 + π2)ℓ2

9π2ℓ6

− 123πM2 − 8
√

π(15 + 7π)Mℓ+ 4(90 + 15π + π2)ℓ2

270π2ℓ8
r2 +O(r4) . (25)
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Somewhat cumbersome expressions aside, it is clear that the scalar curvature at r = 0

is positive for large masses M > (2π − 6)ℓ/(3
√

π), consistent with our previous estimate

2M >
√

πℓ. Moreover, the invariants are all manifestly finite as well as regular at r = 0

since no linear terms in r appear.

3.4. Limiting Curvature Condition

However, the behavior of the invariants at r = 0 is not bounded by a universal

constant. Demanding that the curvature scales at most Planckian for typical astrophysical

black holes,

R ∼ GM⊙
c2ℓ3

≲
1

ℓ2
p

, (26)

gives the constraint that ℓ ≳ 10−22 m, which is thirteen orders of magnitude larger than the

Planck scale. Using this as a reference value, we can now estimate the order of magnitude

of deviations from the Schwarzschild black hole outside the horizon of an astrophysical

black hole, given by

e−GM2
⊙/(c2ℓ2) ≈ e−1050 ≈ 0 . (27)

This is to be compared to the case of polynomial non-singular black holes, where

deviations are equal to simple powers of c2ℓ/(GM⊙) ∼ 10−25.

3.5. Effective Energy–Momentum Tensor and Energy Conditions

While the singularity-ridden black hole solutions of general relativity are vacuum

solutions of the field equations, regular black hole models such as the one presented in

this paper do not solve these field equations. This is to be expected since by virtue of the

Birkhoff theorem, the Schwarzschild solution is the unique spherically symmetric static

vacuum solution of the field equations of general relativity. However, one may argue that

in a UV-finite theory of gravity, the field equations would deviate from those of general

relativity, and hence it is not a substantial impediment that regular black hole models are

no vacuum solutions.

One may certainly take the point of view that regular black hole models are supported

by special types of matter, and then relate the regularity properties (and deviations from the

Schwarzschild metric) to the properties of this form of matter. For example, this has been

achieved in the context of non-linear electrodynamics [37], but this method does not work

for all regular black holes, and hence this analysis is outside of the scope of the present

paper. Alternatively, we may view Tµν = Gµν/(8π) as the effective energy–momentum

tensor of the proposed metric.

In that framework, we can now address energy conditions on the effective energy–

momentum tensor. Since all energy conditions (dominant, weak, strong) imply the null

energy condition, we opt to study the possible violation of the null energy condition as

another indicator for the regularity of the proposed spacetime.

Following the discussion by Simpson and Visser [9], we define the energy and density

of the effective energy–momentum tensor as

ρ = (−1)Tt
t , p|| = Tr

r , p⊥ = Tθ
θ = Tφ

φ . (28)

The null energy condition is then equivalent to

ρ + p|| ≥ 0 , ρ + p⊥ ≥ 0 . (29)
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Computing the effective energy–momentum tensor, the energy density ρ is given by

8πρ =
erf
(

r
2ℓ

)2 − 1

r2
+

2Me−r2/(4ℓ2)

√
πℓ3

− 8Me−r2/(4ℓ2)

√
πr2ℓ

− 5Me−r2/(2ℓ2)

πℓ2erf
(

r
2ℓ

)2

− re−r2/(4ℓ2)

√
πℓ3erf

(

r
2ℓ

) +
8Me−r2/(2ℓ2)

πrℓ2erf
(

r
2ℓ

) +
6e−r2/(4ℓ2)

√
πrℓerf

(

r
2ℓ

) , (30)

whereas the parallel and transverse pressures p|| and p⊥ take the form

8πp|| =
1 − erf

(

r
2ℓ

)2

r2
+

e−r2/(2ℓ2)

πℓ2erf
(

r
2ℓ

)2
− 2e−r2/(4ℓ2)

√
πrℓerf

(

r
2ℓ

) , (31)

8πp⊥ =
e−r2/(2ℓ2)

[

r − Merf
(

r
2ℓ

)]

[

4rℓ+
√

π(r2 − 4ℓ2)erf
(

r
2ℓ

)

e+r2/(4ℓ2)
]

2πr2ℓ3erf
(

r
2ℓ

)2
. (32)

Then, one finds

8π(ρ + p||) = (−1)
e−r2/(2ℓ2)

[

r − 2Merf
(

r
2ℓ

)]

[

4rℓ+
√

π(r2 − 4ℓ2)erf
(

r
2ℓ

)

e+r2/(4ℓ2)
]

πr2ℓ3erf
(

r
2ℓ

)2
, (33)

8π(ρ + p⊥) =
erf
(

r
2ℓ

)2 − 1

r2
+

3Me−r2/(4ℓ2)

2
√

πℓ3
− 6Me−r2/(4ℓ2)

√
πr2ℓ

− 3e−r2/(2ℓ2)

πℓ2erf
(

r
2ℓ

)2

− re−r2/(4ℓ2)

√
πℓ3erf

(

r
2ℓ

) +
6Me−r2/(2ℓ2)

πrℓ2erf
(

r
2ℓ

) +
4e−r2/(4ℓ2)

√
πrℓerf

(

r
2ℓ

) . (34)

Recall that the black hole horizon is located at

f (rh) = 1 − 2M

rh
erf
( rh

2ℓ

)

= 0 , (35)

which implies that outside of the black hole, for r > rh, one has

r − 2Merf
( r

2ℓ

)

> 0 , (36)

implying that ρ + p|| < 0 outside of the black hole (assuming that r > 2ℓ which is always

satisfied in the black hole exterior above the mass gap). Hence, the null energy condition is

violated in the black hole exterior. An identical argument holds for inside the black hole

as, for example, Simpson and Visser point out [9]: inside, t and r switch their places, and we

define instead ρ̃ = (−1)Tr
r and p̃|| = Tt

t. Inside the horizon, the expression r − Merf
(

r
2ℓ

)

switches sign but so does ρ + p|| = (−1)Tt
t + Tr

r = −(ρ̃ + p̃||). Hence, the null energy

condition is identically violated past the outer horizon, in the black hole interior.

Similarly, there exist values for which ρ + p⊥ > 0 is violated, but this expression is

more cumbersome and hence difficult to study analytically. Hence, to avoid all ambiguities,

we also numerically verify the above statements. To that end, it is useful to work in the

dimensionless quantities r/(2ℓ) as well as M/(2ℓ); see Figure 5.

In conclusion, this shows that the Gauss black hole, like all other known regular black

hole models, violates one of the energy conditions in its vicinity as well as in its interior.
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Figure 5. Visual inspection of the violation of null energy conditions, expressed at fixed ℓ for

various masses M and radial distances r. The highlighted benchmark point (visualized as a star

in the above) is located at {r/(2ℓ), M/(2ℓ)} = {5.9, 1.8} and violates the null energy condition as

8πGℓ2(ρ + p||) = −1.921 × 10−15 < 0 and 8πGℓ2(ρ + p⊥) = −1.379 × 10−16 < 0.

3.6. Black Hole Thermodynamics

To begin our considerations of the thermodynamic properties of the proposed metric,

recall that the horizon of the black hole is defined implicitly via the transcendental equation

f (rh) = 0,

rh = 2Merf
( rh

2ℓ

)

, (37)

provided that M > M0 =
√

πℓ/2 (otherwise, no horizon exists). Since the geometry

is static, one may apply standard Euclidean gravity techniques to extract the associated

Hawking temperature as the periodicity of imaginary time [38–40], leading to

TH =
f ′(rh)

4π
=

2M

4πr2
h

[

erf
( rh

2ℓ

)

− rh√
πℓ

exp

(

− r2
h

4ℓ2

)]

(38)

However, the implicit nature of rh is obfuscating the physical significance of this

expression. While it can be evaluated numerically (given the mass parameter M as well as

the regulator ℓ), it is instructive to utilize Equation (37) to arrive at

TH =
1

4πrh
− 2M

4π3/2rhℓ
exp

(

− r2
h

4ℓ2

)

=
1

4πrh

[

1 − M

M0
exp

(

− r2
h

4ℓ2

)]

. (39)

This form is interesting since it expresses the Hawking temperature to the would-be

Schwarzschild temperature 1/(4πrh), multiplied by a correction term involving both the

regulator scale ℓ (which may be expected) as well as the mass gap M0, which is somewhat

less intuitive. Last, note that we can also recast Equation (37) into an expression for the
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mass. In that case, restoring the appearance of ℓ, we arrive at a third expression for

the temperature,

TH =
1

4πrh

[

1 − 1√
π

rh

ℓ

1

erf
( rh

2ℓ

) exp

(

− r2
h

4ℓ2

)]

. (40)

Recalling the identity

lim
ℓ→0

e−r2/(4ℓ2)

√
4πℓ

= δ(1)(r) (41)

one finds in the limit ℓ → 0 that

TH =
1

4πrh
− M

π
δ(1)(rh) , (42)

where the last term vanishes identically since rh > 0. This guarantees that in the absence of

the regulator ℓ, the black hole temperature coincides with the Schwarzschild case as it must.

The black hole entropy, by similar Euclidean reasoning, is assumed to be given by

the quarter of the area of the event horizon. While this step is particularly trivial in most

regular black hole spacetimes (since the spherical part of the geometry is left unmodified),

this is decidedly not the case in the present paper. Namely, one finds that the entropy is

entirely regulator independent and is directly given by the black hole mass. One computes

S =
A

4
= π

r2
h

erf
( rh

2ℓ

)2

(37)
= 4πM2 . (43)

This coincides with the Schwarzschild case, but it describes a black hole of a different

composition. Importantly, the result follows again from the implicit relation (37). This

result is perhaps the most surprising one encountered in the context of the thermodynamic

study of this black hole.

Let us now address the thermodynamic stability of this metric by computing its

specific heat. To begin with, we introduce a dimensionless temperature T̂H = THℓ as well

as a dimensionless horizon radius r̂h = rh/(2ℓ), arriving at a compact expression for the

temperature as a function,

T̂H =

(

1

4πr̂h

)

[

1 − 2r̂h√
π

e−r̂2
h

erf(r̂h)

]

, (44)

where we extract the Schwarzschild prefactor in parentheses. Defining the specific heat in

the usual manner,

C = T
∂S

∂T
= T

∂S

∂rh

∂rh

∂T
=

T
∂T
∂rh

∂S

∂rh
, (45)

we can then express the dimensionless specific heat in terms of the horizon radius rh

as follows:

Ĉ =
C

(2ℓ)2
=
(

− 2πr̂2
h

)

√
π er̂2

h erf(r̂h)− 2r̂h

erf(r̂h)
2
[

π e2r̂2
h erf(r̂h)2 − 4

√
π r̂3

h er̂2
h erf(r̂h)− 4r̂2

h

] . (46)
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Similar to the above, we extract the Schwarzschild value in the leading paren-

theses. Last, we define the free energy by direct analogy to the Euclidean general

relativity expression,

F ≡ M − T S , (47)

and a related dimensionless free energy taking the form

F̂ =
F

2ℓ
=

(

r̂h

4

)2 erf(r̂h)− 1 + 2r̂h e
−r̂2

h√
π erf(r̂h)

4 erf(r̂h)2
, (48)

where the prefactor is again the Schwarzschild value. Both the ST and the FT phase

diagrams can now be constructed as parametrized plots of the dimensionless horizon

radius r̂h. For definiteness, we included the expressions for Schwarzschild as well as those

for the Hayward metric (where care has been taken that for the Gauss black hole and

the Schwarzschild black hole, we have r̂ ≥ 0, and in the Hayward case, we instead have

r̂h ≥
√

3/2; see Figure 6). Qualitatively, the behavior of the Gauss and Hayward case is

comparable, namely, there exists a maximum temperature. The entropy is equal at the

maximum temperature for the Gauss and Hayward case, but the temperature itself is

slightly larger in the Gauss case. Conversely, the free energy at maximum temperature is

larger for the Hayward case.

    

Figure 6. Dimensionless entropy (left) and dimensionless free energy (right) as a function of temper-

ature. While a closed form of their functional relation is not available, the above diagrams have been

generated parametrically in terms of the black hole horizon radius rh. Qualitatively, the behavior of

the Gauss and Hayward metric is similar, whereas they only approach the Schwarzschild behavior

for large entropies or large free energies.

We would like to close this section by addressing the specific heat and the temperature

of the Gauss black hole—for a graphical representation, see Figure 7. The specific heat is

singular both in the Hayward and Gauss case, in a very similar fashion: for small black

holes, the specific heat is indicating stability; for large black holes, however, the specific

heat turns out to be negative, similar to the Schwarzschild case, implying instability under

Hawking radiation. However, an interesting consequence (that is not dissimilar to the

fate of the Hayward metric) is that the decay under Hawking radiation will eventually

terminate once a sufficiently small mass is reached, resulting in a remnant. The discussion

of this object, however, is outside of the scope of this paper, and may be addressed at a

later stage.
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Figure 7. We plot the dimensionless temperature and dimensionless specific heat (rescaled by

convenient numerical factors to fit them into one diagram) as a function of the dimensionless horizon

radius. Both the Gauss and Hayward metric exhibit stable small black holes, whereas the specific heat

diverges at an intermediate mass. Beyond that, like the Schwarzschild black hole, the resulting black

hole configurations are unstable. The behavior of the Hawking temperature of both the Hayward

and the Gauss black hole is similar, and approaches the Schwarzschild temperature case for black

holes that are large compared to the regulator scale ℓ.

3.7. Properties of r = 0, Wormholes, and Geodesic (In)Completeness

The location r = 0 corresponds to r̃ =
√

πℓ, and hence the metric is

ds2
∣

∣

∣

r=0
=

(

2M√
πℓ

− 1

)

dt2 + πℓ
2dΩ

2 , (49)

which is nothing but a sphere of surface area 4π2ℓ2 factored with another spatial direction

t, provided the mass parameter M is large enough. It would be interesting to study the

response of this “throat” to infalling matter. A radial null geodesic in a static metric with

−gtt = grr = f (r) has a conserved quantity E = f (r)ṫ, where the dot denotes differentiation

with respect to the affine parameter λ. Then,

ṙ2 = E2 , (50)

implying that any radial geodesic can reach the surface of that sphere (r = 0) at a finite

affine parameter, which in turn implies geodesic incompleteness [41]; for an application

to regular black holes, see Ref. [42]. However, this might not be a serious drawback since

many regular black hole models are geodesically incomplete [43]. In this particular case, it

seems that continuing the variable r to the entire range of R would solve that issue and

potentially give rise to a wormhole-type geometry; see also Simpson and Visser [9]. For that

reason, even though from the outside, the proposed Gauss metric appears as a black hole

(and has been proposed as a candidate for a regular black hole metric), its properties under

analytic continuation may deserve further scrutiny.
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4. Conclusions and Outlook

We have proposed a non-singular “Gauss” black hole from the principle of a non-local

regulator that “cuts out” a piece of spacetime with radii less than the non-local regulariza-

tion scale, providing a mechanism for the procedure described e.g., by Klinkhamer [44].

The presented geometry has several interesting features: first, it has no inner horizon.

Second, its deviation from the Schwarzschild vacuum decreases exponentially fast, which—

similar to the Dymnikova black hole [2]—makes it a rather good approximative vacuum

solution, and its effective energy–momentum tensor demonstrably violates the null energy

condition. And third, perhaps most interestingly, it provides a mechanism to arrive at a

regular spacetime. However, this model does not satisfy the limiting curvature condition,

thereby placing a constraint of ℓ ≳ 10−22 m on the scale of non-locality when applied

to astrophysical black holes. Its thermodynamics resembles that of other regular black

holes, with the interesting difference that at the critical mass M0, below which the horizon

ceases to exist, the horizon radius also approaches zero. The fact that the Gauss black

hole becomes arbitrarily small at finite mass may have interesting applications in quantum

gravity phenomenology.
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