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Abstract: A modified gravity model of Starobinsky inflation and primordial black hole production

is proposed in good (within 1σ) agreement with current measurements of the cosmic microwave

background radiation. The model is an extension of the singularity-free Appleby–Battye–Starobinsky

model by the R4 term with different values of the parameters whose fine-tuning leads to the effi-

cient production of primordial black holes on smaller scales with the asteroid-size masses between

1016 g and 1020 g. Those primordial black holes may be part (or the whole) of the current dark matter,

while the proposed model can be confirmed or falsified by the detection or absence of the induced

gravitational waves with the frequencies in the 10−2 Hz range. The relative size of quantum (loop)

corrections to the power spectrum of scalar perturbations in the model is found to be of the order of

10−3 or less, so that the model is not ruled out by the quantum corrections.

Keywords: inflation; primordial black holes; dark matter; gravitational waves

1. Introduction

The Starobinsky model of inflation [1] as the modified (R+ αR2) gravity is theoretically
well motivated (see, e.g., Refs. [2,3] for a recent review), being in excellent agreement
with the current cosmic microwave background (CMB) radiation measurements [4–6].
The Starobinsky model can be extended within modified F(R) gravity in order to describe
double slow-roll (SR) inflation with an ultra-slow-roll (USR) phase by engineering the
function F(R) leading to a near-inflection point in the inflaton potential below the scale of
inflation [7–9]. It results in large density perturbations whose gravitational collapse leads
to the production of primordial black holes (PBHs).

Adding the near-inflection point and the USR phase requires fine-tuning the model
parameters [10,11], which often lowers the value of the CMB tilt ns of scalar perturbations
and thus leads to a tension with CMB measurements [12], while large perturbations may
imply significant non-Gaussianity and quantum (loop) corrections that may invalidate
classical single-field models of inflation and PBH production [13–17].

In this paper, we derive the peak amplitude and the frequency of the PBH-production-
induced stochastic gravitational waves (GWs) and estimate quantum loop corrections in
the model of Ref. [8] by using the δN formalism [18,19]. We use the natural units with
c = h̄ = MP = 1 where MP is the reduced Planck mass in our equations, while restoring
them for the values of dimensional physical observables.

2. The Model

The phenomenological model [8] of inflation and PBH production has the F(R) grav-
ity action

S =
1

2

∫
d4x
√
−g F(R), (1)
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whose F-function of the spacetime scalar curvature R reads

F(R) = (1 + g tanh b)R + gEAB ln




cosh
(

R
EAB

− b
)

cosh(b)


+

R2

6M2
− δ

R4

48M6
, (2)

where the first three terms are known in the literature as the Appleby–Battye–Starobinsky
(ABS) model [20] with the Starobinsky mass M ≈ 1.3 × 10−5 defining the scale of the first
SR phase of inflation. The ABS parameter

EAB =
R0

2g ln(1 + e2b)
(3)

has the new scale R0 defining the second SR phase of inflation below the Starobinsky scale.1

The other parameters g and b define the shape of the inflaton potential and have to be
fine-tuned in order to obtain a near-inflection point. The last term in Equation (2) may be
considered as a quantum gravity correction that was employed in Ref. [8] in order to obtain
good (within 1σ) agreement with the measured CMB value of ns. The function (2) obeys
the no-ghost (stability) conditions, F′(R) > 0 and F′′(R) > 0, for the relevant values of R,
avoids singularities, obeys the Newtonian limit, and describes double inflation with three
phases (SR-USR-SR) after fine-tuning the parameters [8].

To produce PBHs, one needs a large enhancement of the power spectrum of scalar
perturbations by seven orders of magnitude against the CMB spectrum. Then, as was
shown in Ref. [8], the parameters (R0, g, b) should be fine-tuned as

R0 ≈ 3.00M2 , g ≈ 2.25 and b ≈ 2.89. (4)

It leads to the production of PBHs with asteroid-size masses in the range between 1016 g
and 1020 g [8], exceeding the Hawking (black hole) evaporation limit of 1015 g, so that those
PBHs may form part (or the whole) of dark matter (DM) in the current universe [21].

A modified F(R)-gravity is known to be equivalent to the quintessence (scalar–tensor
gravity) in terms of the canonical inflaton field ϕ with the scalar potential V(R(ϕ)) in the
parametric form [22],

V(R) =
F′R − F

2(F′)2
, ϕ(R) =

√
3

2
ln F′, (5)

where the primes denote the derivatives with respect to R. The (numerically obtained)
profile of the inflaton potential V(ϕ) for some values of R0 and δ is given in Figure 1.
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Figure 1. On the left, the inflaton potential having two plateaus for g = 2.25 and b = 2.89 with

V0 = 3
4 M2. On the right, zoom of the potential for lower values of ϕ with a near-inflection point.

The potential is unstable for negative values of δ and has the infinite plateau for δ = 0 describing the

Starobinsky inflation.
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The standard SR conditions are given by ϵsr ≪ 1 and |ηsr| ≪ 1, where

ϵsr(ϕ) =
1

2

(
V′(ϕ)
V(ϕ)

)2

and ηsr(ϕ) =
V′′(ϕ)
V(ϕ)

, (6)

while the time clock is conveniently defined by the number N of e-folds, N(t) =
∫

t H(t̃)dt̃,
where H(t) is the Hubble function. The CMB tilt ns of scalar perturbations and the tensor-
to-scalar ratio r are related to the values of the SR parameters at the horizon exit with the
standard pivot scale k∗ = 0.05 Mpc−1. In the model [8], the tensor-to-scalar ratio r is well
inside the current observational bound, r < 0.032, and the tilt ns agrees within 1σ with the
current CMB measurements [4–6], ns = 0.9649 ± 0.0042, with δ ∼ 10−7.

The primordial spectrum Pζ(k) of 3-dimensional scalar (density) perturbations ζ(x) in
a flat Friedman universe is defined by the 2-point correlation function as

〈
δζ(x)

ζ
· δζ(y)

ζ

〉
=
∫

d3k

k3
eik·(x−y) Pζ(k)

P0
, (7)

where k = 2π/λ is the co-moving number. The scale k is simply related to the e-folds

number N via N = −
∫ k

dk̃/k̃. Though the USR phase has dynamics different from the SR
one, the dimensionless power spectrum of scalar perturbations in the SR approximation

Pζ =
H2

8π2ϵsr
(8)

appears to be a good approximation in the USR phase as well. The power spectrum is
given in Figure 2 in the best case given by the 3rd row of Table 1 in Ref. [8]. Accordingly,
the SR parameter ϵsr drops to very low values, indicating the USR phase.

50 100 150 200 250 300
t MPl

10
-12

10
-9

10
-6

0.001

Pζ

Figure 2. The primordial power spectrum Pζ(t) of scalar perturbations from Equation (8). A deriva-

tion of the spectrum from the Mukhanov–Sasaki equation leads to a very similar result.

The power spectrum-related observables in our model best case are given by [8]

ns ≈ 0.965, r ≈ 0.0095, MPBH ≈ 1.0 · 1020 g. (9)

The corresponding peak in the power spectrum of Figure 2 can be roughly approxi-
mated by the lognormal fit [23]

P
peak
ζ (k) ≈ Aζ√

2π∆
exp

[
− ln2(k/kp)

2∆2

]
(10)

with the amplitude Aζ ≈ 0.06 and the width ∆ ≈ 1.5, where kp ≈ 4.5 · 1012 Mpc−1 is the
location of the peak; see Figure 3.
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Figure 3. The primordial power spectrum Pζ(k) of scalar perturbations (in green) and the lognormal fit

(in black). The green lines (both dotted and solid) represent the results of our numerical calculations of

the spectrum. The solid green line against the dotted green line highlights a slightly better agreement

with Equation (8).

The value of ηsr ≈ −0.025 in the USR phase practically does not depend upon the
parameters R0 and δ. The more illuminating functions are given by the Hubble flow
parameters

ϵH = − Ḣ

H2
, ηH = ϵH − ϵ̇H

2ϵH H
. (11)

Though ϵsr and ϵH can be identified, the evolution of ηsr and ηH is different during the
USR phase; see Figure 4.

0 50 100 150 200 250 300
t MPl

10
-10

10
-7

10
-4

0.1

ϵH

50 100 150 200
t MPl

-8

-6

-4

-2

2

ηH

Figure 4. The evolution of ϵH(t) and ηH(t) with the initial conditions ϕin = 7.01 and ϕ̇in = 0, and the

parameters δ = 2.7 × 10−8 and R0 = 3.0 M2. In the USR phase, the value of ηH(t) is close to −6.

3. PBH-Induced GW and PBH-DM Density Fraction

PBH production in the early universe leads to stochastic gravitational waves (GWs)
different from primordial GWs caused by inflation. The current energy density fraction of
those PBH-induced GWs can be computed in the second order with respect to perturbations
as [24,25]

ΩGW(k) =
cgΩr,0

36

∫ 1√
3

0
dd
∫ ∞

1√
3

ds

[
(d2 − 1/3)(s2 − 1/3)

s2 − d2

]2

×

Pζ

(
k
√

3

2
(s + d)

)
Pζ

(
k
√

3

2
(s − d)

)[
Ic(d, s)2 + Is(d, s)2

]
, (12)

where the functions Ic(d, s) and Is(d, s) are

Ic(d, s) = −36π
(s2 + d2 − 2)2

(s2 − d2)3
θ(s − 1) ,

Is(d, s) = −36
s2 + d2 − 2

(s2 − d2)2

[
s2 + d2 − 2

(s2 − d2)
ln

∣∣∣∣
d2 − 1

s2 − 1

∣∣∣∣+ 2

]
, (13)
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with Ωr,0 ∼ 8.6 × 10−5 being the current energy density fraction of radiation, θ(s − 1) is
the step function, and cg ≈ 0.4.

A numerical calculation of Equation (12) with the power spectrum in Figure 2 yields
the result given in Figure 5 in green. The numerical plot can be well approximated by the
lognormal fit given in Figure 5 in black, with the analytic formula

GW(k) =
AGW√
2πσGW

exp

[
− ln2(k/kp)

2σ2
GW

]
, (14)

the amplitude AGW ≈ 5.6 · 10−8, and the width σGW ≈ ∆/
√

2 ≈ 1.06, where ∆ is the

width of the power spectrum in Figure 2. The Ω
peak
GW (k) near the peak is roughly given by

10−6 P2
ζ (k), in agreement with the estimates in Refs. [26,27].

10
-6

10
-4

0.01 1 100 10
4

k/kp

10
-15

10
-12

10
-9

ΩGW

Figure 5. The PBH-induced stochastic GW density fraction (in green) with the lognormal fit (in black)

in Equation (14). The dotted and solid green lines mean that the log-normal fit (14) applies only to

the top of the peak.

The induced GW frequencies fp are related to the PBH masses as [28]

fp ≈ 5.7

(
M⊙

MPBH

)1/2

10−9 Hz, (15)

where the Sun mass is given by M⊙ ≈ 2 · 1033 g. Given the PBH masses of 1020 g, as in our
model, it results in the GW frequency fp ≈ 0.0255 Hz. It is higher than the GW frequencies
between 3 and 400 nHz detected by NANOGrav [29]. A detection of the GW peak with that
frequency in the 10−2 Hz range would provide observational support to our model provided
the peak is due to generation of the secondary GWs. A more specific comparison of our
predictions with future GW observations is possible by plotting the GW spectrum in our model
against the expected sensitivity curves in future space-based gravitational interferometers
such as LISA [30,31], TianQin [32], Taiji [33,34], and DECIGO [35]; see Figure 6, where we
have used Refs. [36–38] for the colored curves. The space-based experiments are expected
to be sensitive to stochastic GWs in the frequencies between 10−3 and 10−1 Hz, while the
predicted black curve in Figure 6 in our model belongs to that frequency range.

The PBH-in-DM density fraction f (k) on scale k can be estimated in the Press–Schechter
formalism [39] as

f (k) =
ΩPBH(k)

ΩDM
≈

1.2 · 1024β f (k)√
MPBH(k)g−1

≈ 17.1(k · Mpc)β f (k), (16)
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where [40,41]

β f (k) ≃
σ(k)√
2πδc

e
− δ2

c
2σ2(k) , σ2(k) =

16

81

∫
dq

q

( q

k

)4
e−q2/k2

Pζ(q), (17)

with the constant δc depending upon the shape of the PBH peak in the power spectrum
and representing the density threshold for PBH formation. The integral in Equation (17)
can be estimated as

σ2 ≈ 3.84

81
P

peak
ζ , (18)

where P
peak
ζ is the value of the power spectrum at the PBH peak. Then, Equations (16) and

(17) imply

f (k) ∼ 1023

√
MPBH(k)g−1




√
P

peak
ζ

δc


e

−9.3 δ2
c /P

peak
ζ . (19)

This equation demonstrates the high sensitivity of the PBH-in-DM fraction upon the

value of δ2
c /P

peak
ζ . In the case of the power spectrum in Figure 2, we have δc ≈ 0.45 and

P
peak
ζ ≈ 0.05. Given the range of the model parameters in Ref. [8], Equation (19) gives the

PBH fraction in DM between 0.1% and 100%. In addition, the Press–Schechter formalism
itself should be considered with a grain of salt because it was found to be unreliable [42–44].
It is also worth mentioning that even a small PBH fraction could have an important role in
cosmology [21].ΩGW

LISA

TianQin

Taiji

DECIGO

10-4 0.001 0.010 0.100 1 10 100

10-14

10-11

10-8

f, Hz

Figure 6. The GW density induced by the power spectrum of scalar perturbations in our model (in

black) against the expected sensitivity curves for future space-based GW experiments (in color).

4. Loop Corrections

In the δN formalism [19] for single-field inflation, a scalar (comoving curvature)
perturbation δN ≡ ζ is a function of variation δϕ of inflaton ϕi at its initial value,

δN = N′(ϕ)δϕ +
N′′(ϕ)

2!
δϕ2 +

N′′′(ϕ)
3!

δϕ3 + . . . , (20)

where perturbations are not assumed to be small. The power spectrum of scalar perturba-
tions is defined by a two-point function of Fourier components ζp as

⟨ζp1 ζp2⟩ = (2π)3δ3(p1 + p2)P(p) , Pζ(p) =
k3

2π2
P(p), (21)

where



Universe 2024, 10, 354 7 of 12

ζp = N′δϕp +
N′′

2!

∫
d3q

(2π)3
δϕqδϕp−q +

N′′′

3!

∫
d3q1

(2π)3

d3q2

(2π)3
δϕq1 δϕq2 δϕp−q1−q2 + . . . (22)

in terms of external 3D momenta p and loop momenta q. Substituting Equation (22) into
Equation (21) yields the loop expansion of the power spectrum Pζ(p). In order to apply
that to a particular model, one has to know the function N(ϕ) explicitly. It was derived in
Ref. [16],

Ntotal(ϕi) ≃
1

ηsr
ln
[
1 +

ηsr√
2ϵsr

(ϕi − ϕs)
]
− 1

3
ln
[
1 +

3(ϕs − ϕe)

πs

]
+

1

ηV
ln[−2ηVπe − 6

√
2ϵV], (23)

where the first term refers to the SR(I) phase with the initial value ϕi and the end value
ϕs, the second term refers to the USR phase with the initial momentum value πs and the
end momentum value πe, and the third terms refers to the SR(II) phase with the slow-roll
parameters ϵV and ηV. The subscripts (s, e) refer to values of any quantity at the start and
end of the USR phase, respectively. The leading contribution comes from the first term in
Equation (23).

To compute loop corrections, one has to calculate the derivatives N(n)(ϕ). The first
three derivatives can be estimated as follows:

N′ ≈ 1√
2ϵs

≈ e−3∆NUSR

√
2ϵe

, N′′ ≈ − ηsr

2ϵs
, N′′′ ≈ 2η2

sr

(2ϵs)3/2
, (24)

where ∆NUSR is the duration of the USR phase and ηsr ≡ ηsr(ϕs).
To compute loop corrections to the amplitude of the power spectrum, we considered

the effective action up to the third order with respect to δϕ(x, t) on the background ϕ(t),

Sδϕ = S
(2)
δϕ + S

(3)
δϕ =

1
2

∫
d4x
√
−g
(

gµν∂µδϕ∂νδϕ − V,ϕϕδϕ2
)
+

1
2

∫
d4x
√
−g
(
− 1

3 V,ϕϕϕδϕ3
)

. (25)

A comparable contribution of the quartic coupling V,ϕϕϕϕ was investigated in Ref. [45].
When using the FLRW background, the effective action reads

Sδϕ = 1
2

∫
d4x a3(t)

[
˙δϕ

2 − a−2(t)(∂δϕ)2 − V,ϕϕδϕ2
]
+
∫

d4x
[
− a3(t)

3! V,ϕϕϕδϕ3
]
, (26)

where ∂ ≡ ∑i ∂i is a sum of spatial derivatives. The mode functions arising in the solutions
to classical equations of motion from the action (26) with Bunch–Davies initial conditions,

uk(τ) =
H√
2k3

(1 + ikτ)e−ikτ , (27)

are written down in terms of the conformal time dτ = dt
a , where −∞ < τ ≤ 0. The CMB

modes that left the horizon during inflation are given by uk(0) =
H√
2k3

.

Canonical quantization implies a decomposition into positive and negative parts,
as well as the commutation relations (in the interaction picture)

δϕI
k(τ) = δϕ+

k (τ) + δϕ−
k (τ) = uk(τ)ak + u∗

k (τ)a†
−k ,

[ap, a†
q] = (2π)3δ3(p − q), [ap, aq] = [a†

p, a†
q] = 0.

(28)

To obtain the one-loop correction according to Equations (21) and (22), one has to evaluate
the three-point correlation function. For this purpose, we applied the in-in formalism that gives

⟨δϕpδϕqδϕ−p−q⟩ = ⟨Te
i
∫ t

t0
dt̃Hint δϕI

pδϕI
qδϕI

−p−q Te
−i
∫ t

t0
dt̃Hint⟩, (29)

where T and T stand for the time ordering and anti-time ordering, respectively, t0 and t are
the times associated with the subhorizon and superhorizon scales, respectively, and Hint(t̃)
is the interaction Hamiltonian in the third order,
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Hint(t̃) =
1
3! a3(t̃)V,ϕϕϕ

∫
d3x(δϕI(x, t̃))3 =

1

3!(2π)6
a3(t̃)V,ϕϕϕ

∫
d3kd3λδϕI

k(t̃)δϕI
λ
(t̃)δϕI

−k−λ
(t̃). (30)

The standard (Friedmann and Klein–Gordon) equations of motion yield the following
asymptotic approximation for the third derivative of the potential in terms of the Hubble
flow parameters (11):

V,ϕϕϕ ≃ − 3H ˙ηH

2
√

2ϵH
. (31)

Expanding the T-exponentials in Equation (29) to the first order with respect to Hint,
we find

⟨δϕp(t)δϕq(t)δϕ−p−q(t)⟩ ≈ −i
∫ t

t0

dt̃⟨[δϕI
p(t)δϕI

q(t)δϕI
−p−q(t), Hint(t̃)]⟩

= 2Im

( ∫ t

t0

dt̃⟨δϕI
p(t)δϕI

q(t)δϕI
−p−q(t)Hint(t̃)⟩

)
.

(32)

After substituting Equations (27), (28), (30), and (31) into Equation (32) and using Wick’s
theorem, we derived the three-point correlator as follows:

⟨δϕpδϕqδϕ−p−q⟩ =

= − 1

2(2π)6
Im

( ∫ 0

−∞
dτ̃a3(τ̃)

Hη′(τ̃)√
2ϵ

∫
d3kd3λ⟨δϕ+

p δϕ+
q δϕ+

−p−qδϕ−
k (τ̃)δϕ−

λ
(τ̃)δϕ−

−k−λ
(τ̃)⟩

)

= − ∆η

2(2π)6
Im

(
Hea3

e√
2ϵe

∫
d3kd3λ⟨δϕ+

p (τ)δϕ+
q (τ)δϕ+

−p−q(τ)δϕ−
k (τe)δϕ−

λ
(τe)δϕ−

−k−λ
(τe)⟩

)

≈ 3!(2π)3|∆η|
2

Im

(
H4

e a3
e√

2ϵe

H3
0(1 − iqτe)2

(2q3)22p3
e2iqτe

)
,

(33)

where the H(0) = H0 denotes the Hubble value during the SR(I), and the reference time was
chosen at τ = 0 because we were only interested in the power spectrum on superhorizon
scales relevant to CMB, and p ≪ q. To avoid divergences, the vacuum expectation value
was normalized by the volume of the entire system.

The dynamics of the parameter ηH implies it is essentially constant everywhere except
for the moments of a decrease or an increase (corresponding to τs and τe, respectively),
while the moment of the increase is particularly significant (see Figure 4). The approximate
solution (23) to the equations of motion in our model is smooth as well as the corresponding
ηH(t) function defined by the second Equation (11). To simplify our calculations, we
employed the derivative of ηH with respect to the conformal time as the (Dirac) delta
function, η′

H(τ) ∼ δ(τ − τe)∆η, where ∆η ≈ −6 is the depth of the pit, inside integrations,
which corresponds to a sharp transition. Via integration, the delta function fixes the entire
integrand at the time τe corresponding to the end of the USR stage.

Equations (20)–(22) lead to a recovery of the tree-level contribution (8) as the lead-
ing term in the loop expansion of the power spectrum, as well as the first (one-loop)
contribution as follows:

P
1−loop
ζ (p) ≡ N′N′′

2

∫
d3q

(2π)3
⟨δϕpδϕqδϕ−p−q⟩. (34)

After substituting Equations (24) and (33) into Equation (34), we found

P
1−loop
ζ (p) ≈ ηsre−3∆NUSR

2
√

2ϵe2ϵs

∫

USR
dq(4πq2)

3!|∆η|
2

Im

(
H4

e a3
e√

2ϵe

H3
0(1 − iqτe)2

(2q3)22p3
e2iqτe

)

≈ ηsre−3∆NUSR Pζ(p)PPBH
ζ

(2π)3|∆η|
4

(
H0

He

)
,

(35)
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where PPBH
ζ ∼ 10−2 is the fixed amplitude of the power spectrum on the small scales

associated with the short-wavelength PBH modes exiting the horizon during the USR
phase of inflation. The value of H0/He ≈ 5 defines the ratio of the inflation and PBH scales
in our model.

It is evident from Equation (35) that the dependence of the one-loop correction upon
the slow-roll parameter ηsr comes from the second derivative N′′, the exponential factor
depending upon ∆NUSR arises from the first derivative N′, and the dependence upon PPBH

ζ

and ∆η comes from the third derivative V,ϕϕϕ, namely, from η′(τ).
A detailed calculation of the higher-loop corrections is highly involved and is not

given here. However, it is possible to obtain a rough estimate of the two-loop correction by
using the approximative formula given in Ref. [16],

P
2−loop
ζ (p) ≈ N′N′′′

3!
|δϕp|2

∫
d3q

(2π)3
|δϕq|2 ∼ η2

sr∆NUSRPζ(p)PPBH
ζ . (36)

In our model, according to the plot on the right-hand side of Figure 4, we have ∆NUSR ≈ 3.1.
Therefore, the relative size of the one-loop and two-loop corrections from PBH pro-

duction to the power spectrum at the CMB pivot scale k∗ = 0.05 are

P
1−loop
ζ (k∗ = 0.05)

Pζ(k∗ = 0.05)
≈ ηsre−3∆NUSR PPBH

ζ

(2π)3|∆η|
4

(
H0

He

)
≈ 10−3 (37)

and
P

2−loop
ζ (k∗ = 0.05)

Pζ(k∗ = 0.05)
∼ η2

sr∆NUSRPPBH
ζ ≈ 10−5, (38)

where we used Pζ(k
∗ = 0.05) ≈ 2 · 10−9 for the CMB power spectrum. Therefore, the one-

loop contribution is suppressed by the factor ηsre−3∆NUSR , whereas the two-loop contribu-
tion is suppressed by η2

sr∆NUSR (we recall that ηsr ≈ −0.025 in our model). As regards the
higher n-loop corrections, their structure includes the suppression factor ηn

srPPBH
ζ ∼ 10−2n−2

so that they are expected to be negligible too.
The relative smallness of loop corrections in our model is in agreement with the

considerations of Refs. [16,17,46–48] but in disagreement with the results of Refs. [13,14].
Our calculations were based on the δN formalism, also used in Ref. [16], whereas the
calculations performed in Refs. [13,14] were based on the in-in formalism. It is beyond the
scope of our investigation to compare the two formalisms. 2

The amplitude of the power spectrum during USR was fixed in our approach, while
we effectively assumed a sharp transition in part of our analytic calculations. The sharpness
of transitions can be quantitatively estimated by the parameter h defined by [18]

h = 6

√
2ϵV

•
ϕ (te)

= −6

√
2ϵV

πe
= −6

√
ϵV

ϵs
e3∆NUSR , (39)

where πe is the inflaton momentum at the end of the USR inflation, ϵs ≈ 1 is the SR
parameter at the end of the SR(I) or at the beginning of USR, and ϵV is the SR parameter at
the end of USR. In our model, by using Figure 4, we obtained h ≈ −0.66, which implies a
sharp (though rather mild) transition because, on the one hand, |h| is not much less than
one but on the other hand, it is still away from a truly sharp transition with the “standard”
value h = −6 used in Ref. [13]. As was demonstrated in Ref. [45], the lower value of h also
justifies ignoring the quartic coupling in our analysis. As a result, the one-loop correction
in our model appeared to be small against the tree-level contribution, as in Refs. [17,49].
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5. Conclusions

The main new results of this paper were given by Figure 6, Equations (19) and (35). It
follows that the modified gravity model [8] of Starobinsky inflation with PBH production
may generate a significant part (or the whole) of dark matter from PBHs, while it was not
ruled out by quantum loop corrections because the latter were relatively small by a factor
of 10−3 against the tree-level (classical) contribution. The key role in the last conclusion
was played by the derivatives of the function N(ϕ) during the USR phase, describing
superhorizon curvature perturbations in the δN formalism, which led to the suppression
of loop contributions. It is worth mentioning that our results only apply to the particular
phenomenological model of PBH production related to Starobinsky inflation.

The predicted frequency fp ≈ 2.55 · 10−2 Hz of the PBH production-induced stochastic
GWs is in the range between 10−3 Hz and 10−1 Hz of the frequencies that are expected to
be sensitive to the future space-based gravitational interferometers.

As was recently pointed out in the literature [50–53], the standard result for the pri-
mordial black hole survival at present, based on the Hawking semiclassical evaporation
formula, may be relaxed below 1015 g, when going beyond the semiclassical approxima-
tion. Should this be the case, fine-tuning the parameters in our model for efficient PBH
production (needed for DM) may be significantly relaxed.
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Notes

1 It differs from Ref. [20] where R0 was related to the dark energy scale.
2 See, however, Ref. [45] for a partial comparison.
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