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Abstract: A modified gravity model of Starobinsky inflation and primordial black hole production
is proposed in good (within 1¢) agreement with current measurements of the cosmic microwave
background radiation. The model is an extension of the singularity-free Appleby-Battye-Starobinsky
model by the R* term with different values of the parameters whose fine-tuning leads to the effi-
cient production of primordial black holes on smaller scales with the asteroid-size masses between
1016 g and 1020 g. Those primordial black holes may be part (or the whole) of the current dark matter,
while the proposed model can be confirmed or falsified by the detection or absence of the induced
gravitational waves with the frequencies in the 1072 Hz range. The relative size of quantum (loop)
corrections to the power spectrum of scalar perturbations in the model is found to be of the order of
1073 or less, so that the model is not ruled out by the quantum corrections.

Keywords: inflation; primordial black holes; dark matter; gravitational waves

1. Introduction

The Starobinsky model of inflation [1] as the modified (R + aR?) gravity is theoretically
well motivated (see, e.g., Refs. [2,3] for a recent review), being in excellent agreement
with the current cosmic microwave background (CMB) radiation measurements [4-6].
The Starobinsky model can be extended within modified F(R) gravity in order to describe
double slow-roll (SR) inflation with an ultra-slow-roll (USR) phase by engineering the
function F(R) leading to a near-inflection point in the inflaton potential below the scale of
inflation [7-9]. It results in large density perturbations whose gravitational collapse leads
to the production of primordial black holes (PBHs).

Adding the near-inflection point and the USR phase requires fine-tuning the model
parameters [10,11], which often lowers the value of the CMB tilt #; of scalar perturbations
and thus leads to a tension with CMB measurements [12], while large perturbations may
imply significant non-Gaussianity and quantum (loop) corrections that may invalidate
classical single-field models of inflation and PBH production [13-17].

In this paper, we derive the peak amplitude and the frequency of the PBH-production-
induced stochastic gravitational waves (GWs) and estimate quantum loop corrections in
the model of Ref. [8] by using the N formalism [18,19]. We use the natural units with
¢ = h = Mp = 1 where Mp is the reduced Planck mass in our equations, while restoring
them for the values of dimensional physical observables.

2. The Model

The phenomenological model [8] of inflation and PBH production has the F(R) grav-
ity action

5= %/d‘*x\/ng(R), (1)
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whose F-function of the spacetime scalar curvature R reads
cosh(E% - b) R2 R4
F(R) = (1+gtanhb)R + gEapl -0 , 2
(R) = (1+gtanhb)R +gEapIn cosh(b) + 6M2 " 48M° @

where the first three terms are known in the literature as the Appleby-Battye-Starobinsky
(ABS) model [20] with the Starobinsky mass M = 1.3 x 10~ defining the scale of the first
SR phase of inflation. The ABS parameter

Ry

- 2g1In(1 + 2b) ©)

EaB

has the new scale R defining the second SR phase of inflation below the Starobinsky scale.
The other parameters g and b define the shape of the inflaton potential and have to be
fine-tuned in order to obtain a near-inflection point. The last term in Equation (2) may be
considered as a quantum gravity correction that was employed in Ref. [8] in order to obtain
good (within 10) agreement with the measured CMB value of n;. The function (2) obeys
the no-ghost (stability) conditions, F/(R) > 0 and F”(R) > 0, for the relevant values of R,
avoids singularities, obeys the Newtonian limit, and describes double inflation with three
phases (SR-USR-SR) after fine-tuning the parameters [8].

To produce PBHs, one needs a large enhancement of the power spectrum of scalar
perturbations by seven orders of magnitude against the CMB spectrum. Then, as was
shown in Ref. [8], the parameters (R, g, ) should be fine-tuned as

Ry~ 3.00M?, g¢~225 and b~ 2.89. (4)
It leads to the production of PBHs with asteroid-size masses in the range between 10'° g
and 10%° g [8], exceeding the Hawking (black hole) evaporation limit of 10'° g, so that those
PBHs may form part (or the whole) of dark matter (DM) in the current universe [21].
A modified F(R)-gravity is known to be equivalent to the quintessence (scalar—tensor
gravity) in terms of the canonical inflaton field ¢ with the scalar potential V(R(¢)) in the
parametric form [22],

V(R) = S (R) = \fi InF, ©)

where the primes denote the derivatives with respect to R. The (numerically obtained)
profile of the inflaton potential V(¢) for some values of Ry and ¢ is given in Figure 1.
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Figure 1. On the left, the inflaton potential having two plateaus for ¢ = 2.25 and b = 2.89 with
Vo = %Mz. On the right, zoom of the potential for lower values of ¢ with a near-inflection point.
The potential is unstable for negative values of 6 and has the infinite plateau for § = 0 describing the
Starobinsky inflation.
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The standard SR conditions are given by €5y < 1 and |#sr| < 1, where
1(V'(9)\ V' (¢)
= — d =
xl) =5 (igy ) 0 o) = ©

while the time clock is conveniently defined by the number N of e-folds, N(t) = [, H()dE,
where H(t) is the Hubble function. The CMB tilt 1, of scalar perturbations and the tensor-
to-scalar ratio r are related to the values of the SR parameters at the horizon exit with the
standard pivot scale k, = 0.05 Mpc L. In the model [8], the tensor-to-scalar ratio r is well
inside the current observational bound, » < 0.032, and the tilt n; agrees within 1¢ with the
current CMB measurements [4-6], 15 = 0.9649 + 0.0042, with 6 ~ 10~7.

The primordial spectrum P; (k) of 3-dimensional scalar (density) perturbations Z(x) in
a flat Friedman universe is defined by the 2-point correlation function as

(55 ) _ K i) Pl

¢ /)7 lwF B 4

where k = 271/ is the co-moving number. The scale k is simply related to the e-folds

number NviaN = — [ *dk/k. Though the USR phase has dynamics different from the SR
one, the dimensionless power spectrum of scalar perturbations in the SR approximation

H2
8m2ey;

P; ®)

appears to be a good approximation in the USR phase as well. The power spectrum is
given in Figure 2 in the best case given by the 3rd row of Table 1 in Ref. [8]. Accordingly,
the SR parameter €, drops to very low values, indicating the USR phase.

Pz
0.001
1076
107°

10712

‘ : : : : ~ tMp
50 100 150 200 250 300

Figure 2. The primordial power spectrum P;(t) of scalar perturbations from Equation (8). A deriva-
tion of the spectrum from the Mukhanov-Sasaki equation leads to a very similar result.
The power spectrum-related observables in our model best case are given by [8]

ns ~ 0965, r=~0.0095, Mppy~1.0-10"g. 9)

The corresponding peak in the power spectrum of Figure 2 can be roughly approxi-
mated by the lognormal fit [23]

A —1n?(k/ky)
peak -~ ¢ [4
PE (k) ~ JarA exp | —— 3 (10)

with the amplitude A; ~ 0.06 and the width A ~ 1.5, where k, ~ 4.5 - 10'2 Mpc ™ is the
location of the peak; see Figure 3.
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Figure 3. The primordial power spectrum P; (k) of scalar perturbations (in green) and the lognormal fit
(inblack). The green lines (both dotted and solid) represent the results of our numerical calculations of
the spectrum. The solid green line against the dotted green line highlights a slightly better agreement
with Equation (8).

The value of 15 =~ —0.025 in the USR phase practically does not depend upon the
parameters Ry and 4. The more illuminating functions are given by the Hubble flow
parameters

en— 10, = ey
H= "y M= 5 0

(11)

Though €5 and ey can be identified, the evolution of 7 and g is different during the
USR phase; see Figure 4.

(5% NH
0.1 2{ J
B I t Mpy
1074 50 100 150 200
-2
107
-4
10—10
-6
tMp
0 50 100 150 200 250 300 -8

Figure 4. The evolution of e (#) and 17y (t) with the initial conditions ¢;, = 7.01 and ¢;,, = 0, and the
parameters § = 2.7 x 1078 and Ry = 3.0 M2. In the USR phase, the value of 17y (t) is close to —6.

3. PBH-Induced GW and PBH-DM Density Fraction

PBH production in the early universe leads to stochastic gravitational waves (GWs)
different from primordial GWs caused by inflation. The current energy density fraction of
those PBH-induced GWs can be computed in the second order with respect to perturbations
as [24,25]

Qo [V o, [® , [(@—=1/3)(s*—1/3)]
Qaw(k) =222 [ ad [/ ds[( /3 ~1/ )} x
V3

2 _ 2
P; (k\f(s + d)) P; (k\f(s - d)) [zc(d,s)z +Is(d,s>2}, (12)
where the functions Z.(d, s) and Z;(d, s) are
T.(ds) = —3671W9(5 ~1),
T.(d,s) = —365(2ij22_)22 [Sz(s‘;fz d;)zln ‘ji — ‘ + 2}, (13)
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with Q9 ~ 8.6 x 107° being the current energy density fraction of radiation, (s — 1) is
the step function, and ¢y ~ 0.4.

A numerical calculation of Equation (12) with the power spectrum in Figure 2 yields
the result given in Figure 5 in green. The numerical plot can be well approximated by the
lognormal fit given in Figure 5 in black, with the analytic formula

__Acw I (k/ky)
V2TToGw ZU'éW ’

the amplitude Agw ~ 5.6 - 10~8, and the width ogw ~ A/v2 =~ 1.06, where A is the

width of the power spectrum in Figure 2. The Qgi%k(k) near the peak is roughly given by

10~° Pg (k), in agreement with the estimates in Refs. [26,27].

aw (k) (14)

Qaw

1079+

10—12,

10—15,

. . . . . . kikp
1076 1074 0.01 1 100 104

Figure 5. The PBH-induced stochastic GW density fraction (in green) with the lognormal fit (in black)

in Equation (14). The dotted and solid green lines mean that the log-normal fit (14) applies only to
the top of the peak.

The induced GW frequencies f, are related to the PBH masses as [28]

fr= 5.7( Mo >1/2109 Hz, (15)
Mpgn

033 020

where the Sun mass is given by My ~ 2 - 10> g. Given the PBH masses of 10’ g, as in our
model, it results in the GW frequency f, ~ 0.0255 Hz. It is higher than the GW frequencies
between 3 and 400 nHz detected by NANOGrav [29]. A detection of the GW peak with that
frequency in the 10~ Hz range would provide observational support to our model provided
the peak is due to generation of the secondary GWs. A more specific comparison of our
predictions with future GW observations is possible by plotting the GW spectrum in our model
against the expected sensitivity curves in future space-based gravitational interferometers
such as LISA [30,31], TianQin [32], Taiji [33,34], and DECIGO [35]; see Figure 6, where we
have used Refs. [36-38] for the colored curves. The space-based experiments are expected
to be sensitive to stochastic GWs in the frequencies between 103 and 10~! Hz, while the
predicted black curve in Figure 6 in our model belongs to that frequency range.

The PBH-in-DM density fraction f (k) on scale k can be estimated in the Press—Schechter
formalism [39] as

_ Oppu(k) 1.2-10%B¢ (k) N '
f) = T e S 17 Mpe)By (), (16)
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where [40,41]
o(k) - o2 16 rd 4 o0
il = =0, 2= 8 [ (1) e ep), 17)
c .

with the constant J, depending upon the shape of the PBH peak in the power spectrum
and representing the density threshold for PBH formation. The integral in Equation (17)
can be estimated as 384
2 . peak
~ —P 1

M TR A 18)
where PP* s the value of the power spectrum at the PBH peak. Then, Equations (16) and
(17) imply

peak
108 3 o938/ ppeak

o (19)
Mppp(k)g~! oc

This equation demonstrates the high sensitivity of the PBH-in-DM fraction upon the

fk) ~

value of 62/ Pgeak. In the case of the power spectrum in Figure 2, we have é. ~ 0.45 and

PP ~ 0.05. Given the range of the model parameters in Ref. [8], Equation (19) gives the
PBH fraction in DM between 0.1% and 100%. In addition, the Press—-Schechter formalism
itself should be considered with a grain of salt because it was found to be unreliable [42—44].
It is also worth mentioning that even a small PBH fraction could have an important role in
cosmology [21].

10—11

107

1074 o0 oo0t0 o101 T oo
f, Hz
Figure 6. The GW density induced by the power spectrum of scalar perturbations in our model (in
black) against the expected sensitivity curves for future space-based GW experiments (in color).

4. Loop Corrections

In the 6N formalism [19] for single-field inflation, a scalar (comoving curvature)
perturbation N = { is a function of variation J¢ of inflaton ¢; at its initial value,

SN = N'(¢)5¢p + %wz + %W Y. (20)

where perturbations are not assumed to be small. The power spectrum of scalar perturba-
tions is defined by a two-point function of Fourier components ;, as

3
(o) = @0V (p1+p2)P(p), Prlp) = 5 P(P), el

where
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" " 3
{p = N'ogp + % / 2 [; 0¢q0Pp—q + ]\;l / (Z q)l (d q)23 004100, 00p—qi—qo - -- (22)
in terms of external 3D momenta p and loop momenta q. Substituting Equation (22) into
Equation (21) yields the loop expansion of the power spectrum P;(p). In order to apply
that to a particular model, one has to know the function N(¢) explicitly. It was derived in
Ref. [16],

Nowt($) = o [1+ 2 (= g0)] = 3 14 2828 4L infagym, — 62, @3
where the first term refers to the SR(I) phase with the initial value ¢; and the end value
¢s, the second term refers to the USR phase with the initial momentum value 715 and the
end momentum value 77, and the third terms refers to the SR(II) phase with the slow-roll
parameters ey and 7y. The subscripts (s, e) refer to values of any quantity at the start and
end of the USR phase, respectively. The leading contribution comes from the first term in
Equation (23).

To compute loop corrections, one has to calculate the derivatives N(")(¢). The first
three derivatives can be estimated as follows:

N~ CODR g s g 2 (24)
V26 V2e, 2¢; (2€5)3727
where ANygg is the duration of the USR phase and #7sr = #sr(¢s)-
To compute loop corrections to the amplitude of the power spectrum, we considered
the effective action up to the third order with respect to d¢(x, t) on the background ¢(t),

1 v 1/ 1
Ssp = Sig +555 =2 / dtx\/=g (gwa” 399" — V¢¢5<P2> +3 / d4x\/*g( - 3V,¢q>4>f54>3)- (25)

A comparable contribution of the quartic coupling V ¢y¢p was investigated in Ref. [45].
When using the FLRW background, the effective action reads

554, = % / d*x ﬂ3(i’) [5¢2 — a‘z(t) (854))2 — V,4>(P5¢ /d4 —31—V¢¢¢(5¢ } (26)

where d =} ; 9; is a sum of spatial derivatives. The mode functions arising in the solutions
to classical equations of motion from the action (26) with Bunch-Davies initial conditions,

H )
u (1) = 1+ ikt)e T, 27
k(T) @( ) (27)
are written down in terms of the conformal time dt = where —o0 < T < 0. The CMB
modes that left the horizon during inflation are given by up(0) = \/I;%

Canonical quantization implies a decomposition into positive and negative parts,
as well as the commutation relations (in the interaction picture)

Sy (1) = 5yl (T) 4 8¢y (1) = wi(T)ax + up(t)aty,
[QP’ ] ( )353(77 - q)r [apr aq] = [ﬂ;, ﬂ;] =0.

To obtain the one-loop correction according to Equations (21) and (22), one has to evaluate
the three-point correlation function. For this purpose, we applied the in-in formalism that gives

(28)

— i dth dth

(60p00q00—p-q) = (Te To ™ sgloglopl o Te o iy, 29)
where T and T stand for the time ordering and anti-time ordering, respectively, fp and ¢ are
the times associated with the subhorizon and superhorizon scales, respectively, and Hin(f)

is the interaction Hamiltonian in the third order,
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Hinl0) = 310° (Vg | 200" (5))° = 573550 (D [ R A504 (D5} (169" s o(D). (30)

The standard (Friedmann and Klein—Gordon) equations of motion yield the following
asymptotic approximation for the third derivative of the potential in terms of the Hubble
flow parameters (11):

Vo~ 3Hiny
AP = "5 V2en

Expanding the T-exponentials in Equation (29) to the first order with respect to Hint,

we find

(31)

(0¢p (£)0pq(t)0¢p—p—q(t)) ~ —i/t: dt( [0y ()55 (1)L, _g (1), H™ ()])
y , (32)
= 21m<./t0 d?(éq;ll,(t)&q){l(t)&qﬂpq(t)Hznt(m)

After substituting Equations (27), (28), (30), and (31) into Equation (32) and using Wick’s
theorem, we derived the three-point correlator as follows:
(0¢pdpqdp—p—q) =
7)

1 0 5 _ Hy : N .
= 2(27_L_)61m</_00 dTﬂ3(7)%/dSde)‘(‘S‘P;‘S‘l’;‘S‘i’jp*q&‘Pk (7)o, (T)5¢kA(T)>>

Ay (33)

3
= —2(2n)61m<§;% / dSkd3A<54>;(r)éﬁ(r)éqﬁfp_q(r)wk<re)54>A(re)5¢“(re»)

3@ Ayl (HEad B~ ig)? /
2 V2e (29%)%2p3

where the H(0) = Hj denotes the Hubble value during the SR(I), and the reference time was
chosen at T = 0 because we were only interested in the power spectrum on superhorizon
scales relevant to CMB, and p < ¢. To avoid divergences, the vacuum expectation value
was normalized by the volume of the entire system.

The dynamics of the parameter 7y implies it is essentially constant everywhere except
for the moments of a decrease or an increase (corresponding to 7; and 7, respectively),
while the moment of the increase is particularly significant (see Figure 4). The approximate
solution (23) to the equations of motion in our model is smooth as well as the corresponding
i (t) function defined by the second Equation (11). To simplify our calculations, we
employed the derivative of #y with respect to the conformal time as the (Dirac) delta
function, 7j;(7) ~ §(T — 7.) A, where Ay = —6 is the depth of the pit, inside integrations,
which corresponds to a sharp transition. Via integration, the delta function fixes the entire
integrand at the time 7, corresponding to the end of the USR stage.

Equations (20)—(22) lead to a recovery of the tree-level contribution (8) as the lead-
ing term in the loop expansion of the power spectrum, as well as the first (one-loop)
contribution as follows:

IN o A3
Pél %P (p) = Né\] (;l7g3<5¢p‘54’q54’pq>' (34)

After substituting Equations (24) and (33) into Equation (34), we found

3 )2
1—loop  Nsr€ / 2, 3!A7| Hélag Hy (1- ZqTC’) 2igT,
P ~ dq(4 I b
c P ree Jus M) T e e

~ ﬂsre_?’ANUSRPg(p)PQPBH (27-[)3|A’7| (I_IO>

—3ANysr

(35)

4 H,



Universe 2024, 10, 354

9of 12

where PYBH ~ 1072 is the fixed amplitude of the power spectrum on the small scales
associated with the short-wavelength PBH modes exiting the horizon during the USR
phase of inflation. The value of Hy/H, ~ 5 defines the ratio of the inflation and PBH scales
in our model.

It is evident from Equation (35) that the dependence of the one-loop correction upon
the slow-roll parameter 75, comes from the second derivative N”, the exponential factor
depending upon ANygg arises from the first derivative N/, and the dependence upon Pg BH
and Az comes from the third derivative V 444, namely, from #'(7).

A detailed calculation of the higher-loop corrections is highly involved and is not
given here. However, it is possible to obtain a rough estimate of the two-loop correction by
using the approximative formula given in Ref. [16],

51 N/N/ll d
P (p) ~ =5 10gy[? / " 310¢al” ~ 15 ANusr P (p) P, (36)

In our model, according to the plot on the right-hand side of Figure 4, we have ANygr ~ 3.1.
Therefore, the relative size of the one-loop and two-loop corrections from PBH pro-
duction to the power spectrum at the CMB pivot scale k* = 0.05 are

1-loop /75
Pé' (k* = 0.05) ~7 ¢~ 30Nusg pPBH (277)3|A’7| Ho ~ 1073 (37)
P; (k* = 0.05) o 4 4 H,
and -
PP (k* = 0.05)
4 pPBH -5
A ~1
Pg(k* — 005) Tlsr NUSR 07>, (38)

where we used P; (k* = 0.05) ~ 2- 10~ for the CMB power spectrum. Therefore, the one-
loop contribution is suppressed by the factor #7ge~3#NUsk, whereas the two-loop contribu-
tion is suppressed by 52, ANysg (we recall that 75y ~ —0.025 in our model). As regards the
higher n-loop corrections, their structure includes the suppression factor 7, PPBH ~ 1072172
so that they are expected to be negligible too.

The relative smallness of loop corrections in our model is in agreement with the
considerations of Refs. [16,17,46—48] but in disagreement with the results of Refs. [13,14].
Our calculations were based on the N formalism, also used in Ref. [16], whereas the
calculations performed in Refs. [13,14] were based on the in-in formalism. It is beyond the
scope of our investigation to compare the two formalisms. 2

The amplitude of the power spectrum during USR was fixed in our approach, while
we effectively assumed a sharp transition in part of our analytic calculations. The sharpness
of transitions can be quantitatively estimated by the parameter / defined by [18]

h=6Y2 6V _ g [V aoNusk (39)

9 (te) e e

where 71, is the inflaton momentum at the end of the USR inflation, €5 ~ 1 is the SR
parameter at the end of the SR(I) or at the beginning of USR, and ey is the SR parameter at
the end of USR. In our model, by using Figure 4, we obtained h ~ —0.66, which implies a
sharp (though rather mild) transition because, on the one hand, |k| is not much less than
one but on the other hand, it is still away from a truly sharp transition with the “standard”
value h = —6 used in Ref. [13]. As was demonstrated in Ref. [45], the lower value of & also
justifies ignoring the quartic coupling in our analysis. As a result, the one-loop correction
in our model appeared to be small against the tree-level contribution, as in Refs. [17,49].
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5. Conclusions

The main new results of this paper were given by Figure 6, Equations (19) and (35). It
follows that the modified gravity model [8] of Starobinsky inflation with PBH production
may generate a significant part (or the whole) of dark matter from PBHs, while it was not
ruled out by quantum loop corrections because the latter were relatively small by a factor
of 1073 against the tree-level (classical) contribution. The key role in the last conclusion
was played by the derivatives of the function N(¢) during the USR phase, describing
superhorizon curvature perturbations in the N formalism, which led to the suppression
of loop contributions. It is worth mentioning that our results only apply to the particular
phenomenological model of PBH production related to Starobinsky inflation.

The predicted frequency f, ~ 2.55- 10~ Hz of the PBH production-induced stochastic
GWs is in the range between 1073 Hz and 10~ Hz of the frequencies that are expected to
be sensitive to the future space-based gravitational interferometers.

As was recently pointed out in the literature [50-53], the standard result for the pri-
mordial black hole survival at present, based on the Hawking semiclassical evaporation
formula, may be relaxed below 10'° g, when going beyond the semiclassical approxima-
tion. Should this be the case, fine-tuning the parameters in our model for efficient PBH
production (needed for DM) may be significantly relaxed.
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Notes

! It differs from Ref. [20] where Ry was related to the dark energy scale.

2 See, however, Ref. [45] for a partial comparison.
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