

Undergraduate Texts in Physics

Series Editors

Kurt H. Becker, NYU Polytechnic School of Engineering, Brooklyn, NY, USA

Jean-Marc Di Meglio, Matière et Systèmes Complexes, Université Paris Diderot, Bâtiment Condorcet, Paris, France

Sadri D. Hassani, Department of Physics, Loomis Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, USA

Morten Hjorth-Jensen, Department of Physics, Blindern, University of Oslo, Oslo, Norway

Michael Inglis, Patchogue, NY, USA

Bill Munro, NTT Basic Research Laboratories, Optical Science Laboratories, Atsugi, Kanagawa, Japan

Susan Scott, Department of Quantum Science, Australian National University, Acton, ACT, Australia

Martin Stutzmann, Walter Schottky Institute, Technical University of Munich, Garching, Bayern, Germany

Undergraduate Texts in Physics (UTP) publishes authoritative texts covering topics encountered in a physics undergraduate syllabus. Each title in the series is suitable as an adopted text for undergraduate courses, typically containing practice problems, worked examples, chapter summaries, and suggestions for further reading. UTP titles should provide an exceptionally clear and concise treatment of a subject at undergraduate level, usually based on a successful lecture course. Core and elective subjects are considered for inclusion in UTP.

UTP books will be ideal candidates for course adoption, providing lecturers with a firm basis for development of lecture series, and students with an essential reference for their studies and beyond.

More information about this series at <http://www.springer.com/series/15593>

Giovanni Organtini

Physics Experiments with Arduino and Smartphones

Springer

Giovanni Organtini
Sapienza Università di Roma
Rome, Italy

ISSN 2510-411X

Undergraduate Texts in Physics

ISBN 978-3-030-65139-8

<https://doi.org/10.1007/978-3-030-65140-4>

ISSN 2510-4128 (electronic)

ISBN 978-3-030-65140-4 (eBook)

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Cover by Massimo Buniy, Gabriele D'Andreta and Alessio Ria: "Across the Black Hole" Artwork made for the "Art & Science Across Italy" programme: a European project of the CREATIONS network (H2020) organised by INFN and CERN to promote scientific culture among young people, combining the languages of art and science. Thanks to Prof. Georgia Conti.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

I have been dreaming about writing this textbook for years. Finally, in late 2019, before the COVID-19 pandemic exploded, I met a far-sighted publisher who agreed to print it. I wrote three chapters of this book while Italy was in lockdown and courses at our University had been switched to remote learning, to the obvious detriment of laboratory courses. I was then asked to provide some help as to how these remote courses might be carried out and I came up with a few ideas that were met with scepticism at the beginning but indeed, resulted in complete success. Students were, in fact, learning even more than they might have with traditional courses. The reason, in my opinion, is simple: conducting experiments by yourself (by which I mean assembling all that is needed to perform the experiment, organising data collection and analysing the results through the creation of your own code) teaches a student much much more than they are likely to learn simply by pushing buttons to start an automatic device prepared by a teacher. Moreover, classical physics laboratory courses suffer from the misguided notion that the purpose of the experiments to be proposed to students is to see how closely they can follow the lecture material and imitate original equipment in their own constructions, thus making experiments look quite old-fashioned.

On the contrary, the purpose of laboratory courses should be to teach students how to design and conduct an experiment, interpret data and derive models. These skills must be developed using modern tools, in both hardware and software domains, such that students are prepared for practice in modern physics laboratories.

The idea behind this textbook is that laboratory practice is learnt by doing and is much less formal than theoretical physics courses. Often, the emphasis in these courses is on statistics, and they are full of mathematics that seldom catches the attention of students devoted to experimental physics. The main goal of the proposed experiments is to prove that a physical law is correct, but given that most of the physical laws can be formulated within a framework in which many approximations are done implicitly, this goal is rarely achieved. As a result, students get frustrated and lose confidence in their experimental abilities. Finally, in many cases, operations are tedious (repeat the same measurement many times over, compute complicated derivatives and solve difficult equations or systems of equations, etc.), without even the benefit of being useful for the development of the competencies. None of us compute

averages or uncertainties about measurements using the techniques adopted in university courses. We rather use automatic computation, having learnt a programming language. That's why computer programming is taught in physics courses. However, too often, computers are not used in laboratory courses to derive results, in the mistaken belief that doing math manually is the only way to learn and that writing computer programs is a waste of time.

My textbook is thus organised such that the knowledge is acquired progressively, increasing from chapter to chapter, sometimes overriding (or, more accurately updating) the knowledge acquired up to a given point. Different topics (experiment design, data acquisition, statistical data analysis and their interpretation) are not discussed in dedicated chapters but are mixed in with an introduction to a modern programming language such as Python and complemented by a relatively detailed description of Arduino programming.

Sections are organised such that students (and teachers) less interested in programming can easily skip them to no detrimental effect or, at most, read them superficially. There is no need to conduct the experiments exactly as proposed: the descriptions are intended to be suggestions from which the reader can draw inspiration for his/her own design. Also, the suggested experiments are just examples that any teacher can use to then propose his/her own. The organisation of the volume is such that a teacher is also free to organise his/her own course in the way he/she prefers. Even the order in which the topics are presented does not need to be strictly followed, even if chapters are necessarily organised such that the initial ones present very basic data analysis that is progressively refined.

Primary ideas and important results are highlighted as side notes. All the content of the side notes is then summarised at the end of each chapter.

One final remark point: my personal belief is that laboratory courses do not necessarily have to follow theoretical courses. In fact, physics is done the opposite way: investigate new and unknown phenomena experimentally, formulate models and test them. As a consequence, it is perfectly viable (indeed, in my opinion, sometimes preferable) to perform experiments on topics not yet mastered by students. However, most physics courses are organised differently, and we agreed that it was a bit audacious to propose a radically different textbook. For this reason, the experiments proposed have to do with mechanics, traditionally the first topic taught in physics courses. There is no need to perform the exact same experiments. Many variants can be imagined and possible alternatives are proposed on the book's website.

Rome, Italy

Giovanni Organtini

Acknowledgements

This book would probably never have been written if it had not been for Morten Hjorth-Jensen, from the University of Oslo, who urged me to write it in recognition of its potential. The idea was born during a short stay in Oslo, where I went thanks to a very kind and useful invitation from Morten, whom I want to warmly thank for the opportunity he gave me to visit his wonderful country and to collaborate with a team of researchers and teachers open to innovation and didactic experimentation. I hope to repeat this experience. I also want to thank Marina Forlizzi, who believed in this project and promoted it at Springer.

I also want to thank Julien Bobroff and Frédéric Bouquet, from Université Paris-Saclay, whom I had the good fortune to meet a few years ago, almost by chance, and with whom I share a vision of the importance of conveying science through new languages, including art. It was a great pleasure to work with them and their collaborators, too.

I thank Martín Monteiro, from Universidad ORT in Montevideo, Cecilia Stajano from Fondazione Mondo Digitale and Wolfgang Christian of the AAPT for their contagious enthusiasm.

Let me thank all my students, too: from the very best to the least proficient. Their success, as well as their difficulties, more than my career, is what drives me to always study new forms of teaching.

Last, but not least, I thank Federica for her patience and support. I recognise that, sometimes, it can be difficult to be my wife, but I will be forever grateful to her for that.

Contents

1	Physics and Nature	1
1.1	Physics and Other Sciences	2
1.2	Measurements and the Laws of Physics	5
1.3	The Process of Measurement	7
Summary		8
References		9
2	Establishing a System of Units	11
2.1	Measuring Light Intensity	12
2.2	Definition of Units	13
2.3	Systems of Units	18
Summary		21
References		22
3	Collecting Data	23
3.1	Instruments	24
3.2	Smartphones	26
3.3	Arduino	27
3.4	Open Source Makes It Better	29
3.5	Measuring Light Intensity with a Smartphone	30
3.6	Measuring Light Intensity with Arduino	32
3.7	Understanding Arduino Programming	35
3.8	Python Data Collection	37
Summary		40
4	Uncertainties	43
4.1	Data Analysis	44
4.2	Data Analysis with Python	50
Summary		53
5	Establishing Physical Laws	55
5.1	Light Transmission	56
5.2	Taking the Average with Arduino	57

5.3	A First Look at Data	61
5.4	Plotting Graphs and Interpolating Data	66
5.5	An Approximated Model	69
5.6	Non-polynomial Models	70
5.7	The Exponential Model	74
	Summary	76
6	Free-Fall and Accelerations	79
6.1	Setting Up the Experiment	80
6.2	Measuring Times	81
6.3	Photogates	82
6.4	Measuring Time with Arduino	84
6.5	An Acoustic Stopwatch	86
6.6	Uncertainty Propagation	91
6.7	Measuring Accelerations	92
6.8	MEMS Accelerometers	95
6.9	Annotating Graphs	99
6.10	Instrument Characteristics	100
	Summary	104
7	Understanding Data Distributions	107
7.1	On the Values Returned by Instruments	109
7.2	Probability	110
7.3	Bayes Theorem and Physics	123
7.4	Statistical Distribution of Data	129
7.5	Uniform Distribution	130
7.6	Expected Value, Variance and Moments	133
7.7	Combining Errors, Revisited	137
7.8	The Binomial Distribution	140
7.9	The Shape of the Binomial Distribution	144
7.10	Random Walk	149
7.11	The Poisson Distribution	156
7.12	The Shape of the Poisson Distribution	160
	Summary	162
	References	165
8	Counting Experiments	167
8.1	Experiments with Binomial and Poisson Statistics	168
8.2	Operations on Lists	170
8.3	Chauvenet's Criterion	171
8.4	Simulating Advanced Experiments	172
8.5	Using Arduino Pins	176
8.6	The PHYPHOX Editor	181
8.7	Readily Available Particle Detectors	184
8.8	Image Manipulation with Python	188
	Summary	191
	Reference	193

9	The Normal Distribution	195
9.1	A Distribution Depending on the Distance	196
9.2	The Central Limit Theorem	201
9.3	Experimental Proof of the Central Limit Theorem	202
9.4	The Markov and Chebyschev Inequalities	205
9.5	Testing Chebyschev's Inequality	208
9.6	The Law of Large Numbers	209
9.7	The Uncertainty About the Average	211
	Summary	212
10	Kinematics	215
10.1	Designing the Experiment	216
10.2	Measuring Time and Distances with Arduino	217
10.3	Ultrasonic Sensors	219
10.4	Arduino Data Acquisition	222
10.5	Collecting Data	227
10.6	Data Analysis	227
10.7	Evaluating the Goodness of a Fit	232
10.8	Data Processing	237
10.9	The χ^2 -Distribution	241
10.10	The Least Squares Method	242
10.11	Discarding Bad Data	248
10.12	Measuring Gravity Acceleration	249
	Summary	250
11	Oscillations	255
11.1	An Experiment to Study Elasticity	256
11.2	A Study of Spring Dynamics with Smartphones	260
11.3	Obtaining Parameters from Data	264
11.4	Extracting and Manipulating Data	268
11.5	Optimisation Methods	273
11.6	A Harmonic Oscillator with Arduino	275
11.7	Newton's Laws	282
11.8	A Widely Applicable Model	284
	Summary	288
	Reference	290
12	Maximum Likelihood	291
12.1	Application of the Bayes Theorem to Measurements	292
12.2	An Experimental Proof	295
12.3	Parameter Estimation	298
	Summary	301
13	Physics in Non-inertial Systems	303
13.1	Dynamics in Non-inertial Systems	304
13.2	Free-Fall	305
13.3	Custom Experiments with PHYPHOX	307

13.4	Centripetal and Centrifugal Accelerations	308
13.5	Coriolis Acceleration	312
13.6	Euler Acceleration	314
	Summary	318
14	Dynamics of Rigid Bodies	321
14.1	A Cylinder Rolling Along an Incline	322
14.2	Using a Smartphone's Gyroscope Remotely	327
14.3	Arduino Gyroscopes and I2C Communications	329
14.4	The Arduino Wire Library	335
14.5	Using an SD Card	338
14.6	Using SD Cards to Store Data	340
14.7	The Native SPI Protocol	343
	Summary	344
	References	346
15	Wave Mechanics	347
15.1	Making Waves	348
15.2	Command Line Options	352
15.3	Properties of a Wave	354
15.4	The Student's t-Distribution	358
15.5	Interference	360
15.6	Finding the Distribution of a Random Variable	362
15.7	Beats	364
15.8	Collecting Audio Data with Arduino	365
15.9	Dimensional Analysis	367
15.10	Temperature Measurements with Arduino	371
15.11	The 1-Wire Protocol	374
15.12	Establishing a Correlation	380
	Summary	382
	References	386
	Index	388