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Qoolchain: A QUBO Preprocessing Toolchain for Enhancing
Quantum Optimization

Giacomo Orlandi,* Deborah Volpe, Mariagrazia Graziano, and Giovanna Turvani

Solving combinatorial optimization problems is crucial in research and
industry but still challenging since these problems are usually NP-hard or
NP-complete. Classical solvers struggle with their non-polynomial complexity.
Although heuristic algorithms are widely used, they often fall short in
execution time and accuracy, increasing the interest in quantum computing
alternatives using Quadratic Unconstrained Binary Optimization (QUBO)
formulations. However, current Noisy Intermediate-Scale Quantum (NISQ)
computers and future early fault-tolerant quantum devices face limitations in
qubit availability and circuit depth, necessitating preprocessing to reduce
problem complexity. This study introduces Qoolchain, a QUBO preprocessing
toolchain designed to reduce problem size and enhance solver performance.
Developed in Cython, Qoolchain is compatible with major quantum
frameworks and optimized for the Grover Adaptive Search (GAS) algorithm. It
includes steps like persistency identification, decomposition, and probing to
estimate function bounds, all with polynomial complexity. Qoolchain also
proposes using the Grover Search algorithm for problem segments whose
optimal value is known a priori from graph theory and Shannon
decomposition to reduce QUBO problem complexity further. Evaluated
against the D-Wave preprocessing toolchain on various problems, Qoolchain
demonstrates higher efficiency and accuracy. It represents a significant
advancement in enabling practical quantum solvers, addressing hardware
limitations, and solving complex industry-relevant problems.

1. Introduction

Optimization plays a strategic role in both research and industry
contexts. It aims to identify the input configuration, minimizing
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or maximizing a merit expression, called
objective function. If the inputs are discrete
variables, it is defined as combinatorial. Ap-
plications of optimization span a spectrum
of scenarios, enclosing tasks such as re-
source allocation[1–3] within an industrial
setting and scheduling.[4]

Unfortunately, combinatorial optimiza-
tion problems are classified as NP-hard or
NP-complete, indicating that their classical
solving approaches have a non-polynomial
complexity. A naive and exact method for
solving them is called brute-force and con-
sists of evaluating the outcome with all
possible input configurations. However, it
is feasible from the computational point
of view only for modest-size problems. Al-
ternatively, a deterministic algorithm (e.g.,
based on gradient computation) can ex-
plore the solution space. Nevertheless, the
approaches’ effectiveness depends on the
problem characteristics, e.g., they are un-
suitable for multimodal objective func-
tions, and reaching the convergence could
be time-consuming. Heuristic algorithms,
e.g., simulated annealing (SA),[5] are the
most employed approaches for identifying
optimal or sub-optimal solutions in large-
scale problems.

Although numerous classical approaches have been intro-
duced in recent years, they consistently fail to meet expecta-
tions regarding execution time or accuracy. Consequently, the
interest in quantum alternatives has risen significantly, pushed
by the captivating promise of obtaining a speed-up by exploit-
ing its virtual intrinsic parallel exploration capability obtained
through quantum principles such as superposition, entangle-
ment, and tunneling.
For exploiting quantum-compliant approaches, themost feasi-

ble formulations are Quadratic Unconstrained Binary Optimiza-
tion (QUBO) and Ising. Two paradigms have emerged in the
quest for quantum advantage: Quantum Annealing (QA) and
gate-based computing. The former leverages a special-purpose
quantum computer theorized in 1998[6–10] and tries to exploit the
inherent quantum system properties to find the optimal solu-
tion of an optimization problem. The latter is based on general-
purpose quantum computers, where the state of quantum sys-
tem evolution is stimulated by applying a sequence of unitary
transformations called quantum gates.[11] This approach can be
exploitedwith algorithms that are either fully or partially executed
on these systems. Indeed, general-purpose quantum computers
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are currently employed as sub-routines to accelerate specific tasks
of complex algorithms involving classical computers. Several al-
gorithms have been proposed in recent years in this context.
Among these, there is the Grover Adaptive Search (GAS),[12–15]

which nicely illustrates the accelerator role played by the quan-
tum computer. GAS progressively improves the solution by ex-
ecuting the Grover Search algorithm[16] for sampling increas-
ingly negative values of a cost function. The cost function is
shifted upward classically by the obtained sample at each iter-
ation until the last negative is found. Other hybrid quantum-
classical optimization algorithms are the Variational Quantum
Eigensolver (VQE)[17] and the Quantum Approximate Optimiza-
tion Algorithm (QAOA),[18] both based on variational routines.
Contemporary Noisy Intermediate-Scale Quantum (NISQ) com-
puters suffer from a severe limitation in terms of qubit (i.e. quan-
tum bits) availability, and they are affected by non-ideal phenom-
ena that become more relevant as the depth of the quantum cir-
cuit increases. Similarly, early Fault-Tolerant Quantum Comput-
ers (FTQC) expected in the future, for which GAS is designed to
offer a significant speedup, will also need to address constraints
in both qubit count and circuit depth. Therefore, for exploiting
quantum approaches for relevant optimization problems, i.e.,
involving a high number of variables, preprocessing steps are
needed to reduce the problem’s complexity.
This article introduces Qoolchain, a QUBO preprocessing

toolchain for reducing the problem complexity, making the ex-
ploitation of the quantum approaches feasible. The toolchain
may be used for any optimization problem solver, but it has been
thought to be employed, in its entirety, with GAS.
It is written in Cython language, i.e., with a C++ core, ensuring

high code efficiency. Its external Python interface makes it com-
patible with the main quantum framework. It comprises a set
of steps with, at most, polynomial complexity, including persis-
tency identification and problem decomposition for reducing the
number of variables and the Probing technique for estimating the
upper and lower bound of the problem cost function. Moreover,
the decomposition could enable leveraging the Grover algorithm
independently to address segments of the decomposed problem,
whose minimum value is known in advance thanks to the theo-
rem presented in ref. [19] and discussed in Section 4.3, resulting
in faster attainment of that portion of the solution. Additionally,
if prior steps are insufficient in reducing problem size for exploit-
ing quantum solvers, Shannon decomposition is applied. Despite
its exponential complexity, it has the potential to eliminate multi-
ple variables with each subproblem, and its iteration-limited ap-
plication significantly reduces its impact on the toolchain execu-
tion time. The results show that these strategies’ effectiveness
depends on the problem’s peculiarity, such as the type of prob-
lem and the QUBO matrix density. The function’s bounds ob-
tained allow reasonable estimation of the necessary qubits for the
GAS quantum circuit, the accuracy of which again depends on
the problem’s characteristics. Furthermore, this work proves the
necessity of preprocessing steps for exploiting the current quan-
tum solvers and, generally, finding the solution to more complex
problems. It also highlights the main bottleneck (presented in
Section 4.3) in the decomposition of QUBO problems.
The article is organized as follows. Section 2 presents the

QUBO formulation, Grover Adaptive Search algorithm, and the
related work in the literature. The proposed idea behind the

toolchain and its structure are presented in Section 3, while it is
analyzed step-by-step in Section 4. Section 5 shows the results,
highlighting the relation between problem characteristics and
the effectiveness of strategies. Finally, in Section 6, conclusions
are drawn, and future perspectives are illustrated.

2. Theoretical Foundations

This section provides a concise overview of the foundational con-
cepts in quantum computing and QUBO formulation, focusing
on the GAS solver. Additionally, it presents an overview of the
related work in the literature, emphasizing the gaps and unmet
requirements within this context.

2.1. Quantum Computing Basis

Quantum computing represents a new computational paradigm,
leveraging the principles of quantum mechanics, including su-
perposition and entanglement, for accelerating data-intensive ap-
plications.
The qubit is the fundamental unit of information. Differently

from the bit, its classical counterpart, which can either be in a
state 0 or 1, the qubit can assume infinite possible states obtained
as any linear combination of its basis states |0⟩ and |1⟩. Exploiting
the Dirac notation, its state |𝜓⟩ can be described as a state vector
as shown in the following:

|𝜓⟩ = c0 |0⟩ + c1 |1⟩ = c0

(
1
0

)
+ c1

(
0
1

)
=
(
c0
c1

)
(1)

where c0, c1 ∈ ℂ are, respectively, the amplitude probability as-
sociated with the states |0⟩ and |1⟩. The basis states form an
orthogonal basis in the Hilbert space; thus, their linear com-
binations span the entire space. This numerical representation
demonstrates that, owing to the superposition principle, a qubit
can exist in any linear combination of its basis states, providing
infinite possible states. Furthermore, the qubit state can be vi-
sually represented as a point on the surface of a unitary sphere
called the Bloch sphere, shown in Figure 1, by expressing it in
polar coordinates:

|𝜓⟩ = cos 𝜃
2
|0⟩ + ei𝜙 sin 𝜃

2
|1⟩ (2)

where 𝜃 and 𝜙 are angles in the ranges [0, 2𝜋] and [0,𝜋], respec-
tively.
However, for observing a qubit state, it is necessary to perform

a measurement operation, inducing it to collapse into either of
the two computational bases, |0⟩ and |1⟩, with a probability equal
to the squared normof each amplitude (P(0) = |c0|2,P(1) = |c1|2).
The act of measurement forces the qubit into one of these two
states, thus destroying the superposition. Since the two events
are complementary, the following relation must be satisfied:

|c0|2 + |c1|2 = 1 (3)

A n-qubit system can be described by expanding the numerical
representation of a single qubit, writing its state vector |𝜓⟩ as the

Adv. Quantum Technol. 2025, 8, 2400384 2400384 (2 of 23) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 2025, 5, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/qute.202400384, W

iley O
nline L

ibrary on [15/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

Figure 1. Representation of the qubit state on the Bloch sphere. On the
right side, the Bloch vector shows the coordinates of the state vector |𝜙⟩
in the three-dimensional space.

tensor product of |𝜓i⟩ of the single qubits:
|𝜓⟩ = |𝜓n−1⟩⊗ |𝜓n−2⟩⊗⋯⊗ |𝜓1⟩⊗ |𝜓0⟩

=
(
c0,n−1
c1,n−1

)
⊗

(
c0,n−2
c1,n−2

)
⊗⋯⊗

(
c0,1
c1,1

)
⊗

(
c0,0
c1,0

)
=

⎛⎜⎜⎜⎜⎜⎝

c00⋯00
c00⋯01
⋮

c11⋯10
c11⋯11

⎞⎟⎟⎟⎟⎟⎠
= c00⋯00 |00⋯ 00⟩ + c00⋯01 |00⋯ 01⟩ +⋯ + c11⋯10 |11⋯ 10⟩
+ c11⋯11 |11⋯ 11⟩ (4)

where the probability amplitude c00⋯00 is associated with the ba-
sis state of the n-qubit system |00⋯ 00⟩, c00⋯01 to |00⋯ 01⟩ and
so forth.
Quantum gates, formally described as a unitary matrix U (for

which UU† = U†U = I) and performing reversible operations,
must be applied to modify a qubit state. A sequence of gates
forms a quantum circuit, as shown in Figure 2. The fundamental
single qubit gates are the Pauli gates X , Y and Z, inducing a ro-
tation of 𝜋 along the x, y, z axis, respectively, and the Hadamard
gate (H), which is exploited for creating the uniform superposi-
tion of the two bases states when applied to an input |0⟩.
X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
,

Z =
[
1 0
0 −1

]
, H = 1√

2

[
1 1
1 −1

]
(5)

Other fundamental gates are the rotation ones, allowing the rota-
tion of the state vector around any direction by a parametric angle
𝜃:

Rx(𝜃) =

[
cos 𝜃

2
−i sin 𝜃

2
−i sin 𝜃

2
cos 𝜃

2

]
, Ry(𝜃) =

[
cos 𝜃

2
− sin 𝜃

2
sin 𝜃

2
cos 𝜃

2

]
,

Rz(𝜃) =

[
e−i

𝜃

2 0
0 ei

𝜃

2

]
(6)

Entanglement is a strong correlation between qubits, making the
state of one dependent on the other. It can be created by applying
gates involving at least two qubits. These gates are called con-
trolled gates, and they do or do not perform an operation on a
qubit or a set of qubits, called targets, according to the state of
another qubit or set of qubits, referred to as controls. The most
common gate in this category is the CNOT gate, a controlled ver-
sion of the X gate that toggles the target only if the control is
in the state |1⟩. When the control qubit is the Least Significant
Qubit (LSQ), and the target is the Most Significant Qubit (MSQ),
its matrix is the following:

CNOT =
⎛⎜⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎟⎠ (7)

2.2. QUBO

Quadratic unconstrained binary optimization (QUBO)[20] is a
mathematical formulation that allows the description of com-
binatorial optimization problems through a quadratic pseudo-
boolean cost function. Every objective function involving binary
variables can be reformulated into a polynomial form, reducible
to second order, i.e., compliant with the QUBO formulation,
at the expense of adding auxiliary variables.[21] Therefore, the
QUBOmodel allows the representation of any combinatorial op-
timization problem and is inherently compatible with quantum
solvers. TheQUBOmodel can be described in two different ways.
The first description can be obtained with the following objective
function:

minimize f (x) = q0 +
∑
i

qixi +
∑
i<j

qijxixj (8)

where xi ∈ [0, 1] is a binary variable, xixj is a coupling term that al-
lows two variables to influence each other, qi is a weight or bias as-
sociated with a single variable, qij is a strength which controls the
influence of variables i and j, whereas q0 is an offset, which can be
neglected during the optimization. Alternatively, the model can
be expressed in matrix form:

y = xtQx (9)

where x is the vector of binary variables, andQ is a square matrix
(in upper triangular or symmetric form) in which the diagonal
terms correspond to linear coefficients and the off-diagonal ones
to quadratic.
Differently from what its acronym would suggest, the QUBO

model can also take into account problems’ constraints by in-
tegrating them into the initial cost function through weighted
quadratic penalties:

minimize f ′(x) = f (x) + Pg(x) (10)

where f (x) is the initial cost function, g(x) the penalty function
associated with the constraint, P a positive weight and f ′(x) the
final objective function. A configuration of variables that does not
breach any constraint results in a null penalty function, thus not
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Figure 2. Example of a three-qubit quantum circuit. Vertical dotted lines highlight different layers. On the top, it shows how to compute the state vector
evolution layer by layer, while the bottom right corner shows how the final state vector can be computed through the direct application of the overall
circuit unitary matrix.

increasing the cost. The choice of P value is crucial since it should
be high enough to penalize solutions that violate constraints but
not so much to make it challenging to identify the optimal so-
lution among the other valid ones. Indeed, a too-low value could
lead to a non-valid solution, while an excessively high value could
flatten the problem energy profile. Some techniques have been
presented for estimating the optimal P based on the estimation
of the initial cost function boundaries.[22–24]

For several commonly employed constraints, the penalty func-
tion is known a priori. Nevertheless, executing the following step
makes it possible to obtain the penalty function for a generic con-
straint. Let us consider a generic optimization problem:

minimize f (x) = xtCx ,

subject to: Ax = b
(11)

The penalty function of a constraint expressed as a linear system
can always be derived with the subsequent method:

f (x) = xtCx + P(Ax − b)t(Ax − b) = xtCx + xtDx + c = xtQx + c
(12)

where the additive constant c can be neglected since it does not
affect the solutions, but only their corresponding energy value (it
behaves as an overall offset). All the constraints can be written
as a linear system, eventually, as in the case of inequality con-
straint, at the expense of adding auxiliary variables (called slack
variables), allowing the inclusion in the QUBO model. An at-
tractive intrinsic feature of QUBO formulation is its equivalence
to the Ising model,[25] a physical-mathematical model of ferro-
magnetism used in statistical mechanics. It allows theminimiza-
tion of combinatorial optimization problems through systems in-
spired by the behavior of a physical system. The only difference
between the two models lies in the nature of the binary variables
involved—QUBO employs unipolar binary variables (0, 1), while
the Isingmodel utilizes bipolar ones (−1, 1). Therefore, any prob-
lem formulated in QUBO can always be converted to the Ising
model can to Ising by exploiting the following equivalence:

si = 2xi − 1 (13)

where si indicates an Ising variable, also called spin.

2.2.1. Benchmark Problems Considered

The problems considered for benchmarking the toolchain are
presented in this section. They were chosen since they are suf-

ficiently different from each other, allowing the evaluation of the
approach’s performance in different contexts and the identifi-
cation of ones in which the toolchain application could be ef-
fective or not. QUBO formulation is written by employing the
qubovert[26] library for each type of benchmark. In addition, for
some of them, sets of problems available in the literature were ex-
ploited. This work considered a set of randomly generated prob-
lems of various sizes and densities for each benchmark. Specifi-
cally, for graph-based problems, the density is defined as follows:

Definition. The density of a QUBO function (or matrix) is the
fraction of the nonzero terms over all the possible quadratic terms. It
measures how filled the QUBO matrix is with nonzero values and,
consequently, offers an insight into the level of connectivity of the im-
plication network based on the number of edges it comprises.

Maximum Cliques: Given an undirected graph G(V, E), with
vertex set V and edge set E, a clique is the subgraph G′, where
an edge connects every vertex with all the other nodes in the sub-
graph. Therefore, the maximum clique’s problem aims to iden-
tify the cliques involving the highest number of nodes, as shown
in Figure 3a. The QUBO formulation can be written by associat-
ing a binary variable xi for each vertex, which assumes the value
1 if it is part of the clique or is equal to 0 otherwise. Consequently,
the problem can be written in the following way:

minimize f (x) = −
∑

i inV xi,

subject to: xi + xj ≤ 1 ∀(i, j) ∈ E
(14)

where E indicates the set of couples of nodes not connected by
an edge. The final cost function, including the constraint, is the
following:

minimize f (x) = −
∑
i∈V

xi + P
⎛⎜⎜⎝
∑
(i,j)∈E

xixj
⎞⎟⎟⎠ (15)

where the penalty coefficient is often chosen as P = 2. For es-
timating the toolchain performance with max clique, a set of
randomly generated problems of different sizes and densities
were considered.
Minimum Vertex Cover: The Minimum Vertex Cover

problem[20] is an optimization job that involves an undi-
rected graph with a set of vertices V and edges E. A vertex cover
represents a subset of vertices in which every edge is incident to
at least one vertex from the subset. Thus, the primary objective is
to identify the cover with the smallest number of vertices in the
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Figure 3. Optimization problems considered for benchmarking.

subset. For instance, in Figure 3b, the orange nodes constitute
a vertex cover, as each edge in the depicted graph is connected
to at least one of them, making it the optimal solution with the
fewest involved nodes. With N vertices in consideration, the
QUBO formulation introduces N binary variables, denoted as
xi, where each variable’s value is one if the corresponding node
is part of the cover. The final objective function consists of two
components. The first component minimizes the number of
nodes in the subset:

Minimize y1 =
∑
i∈V

xi (16)

The second component ensures that each edge is incident to at
least one vertex in the subset, enforcing the condition xi + xj ≥ 1
for every pair of nodes i and j:

y2 =
∑
i,j∈E

(
1 − xi − xj + xixj

)
(17)

Consequently, the complete objective function is expressed as:

fvertex(x) =
∑
i∈V

xi + P
∑
i,j∈E

(
1 − xi − xj + xixj

)
(18)

A set of randomly generated problems of different sizes and den-
sities were considered to evaluate the toolchain performance with
minimum vertex cover.
Max Cut: Max cut[27,28] (Figure 3c) stands out as one of the

most noteworthy combinatorial optimization (CO) problems. It
aims to partition a graph into two complementary subsets, S and
S, where the sum of weights over all edges connecting the two
vertex subsets is maximized. This problem finds applications in
several real-world scenarios such as network design, statistical
physics, VLSI design, and circuit layout design.[29] The QUBO
formulation of max cut involves a binary variable for each node,
where the value is either 1 or 0, indicating the subset to which
the node belongs. A cut is defined as severing edges connecting
nodes in different sets. The quantity 𝜖(i,j) = xi + xj − 2xixj deter-
mines whether the edge (i, j) is in the cut. Specifically, the edge
(i, j) is part of the cut if 𝜖(i,j) = 1, which occurs only when xi ≠ xj.
If both xi and xj are either 1 or 0, then 𝜖(i,j) = 0. Considering the
contributions of each edge, the objective function is expressed as
follows:

Maximize y =
∑
(i,j)∈E

wi,j𝜖(i,j) =
∑
(i,j)∈E

wi,j ⋅ (xi + xj − 2xixj) (19)

In this equation, wi,j denotes the weight of the edge connecting
the ith and jth node. A remarkable characteristic of the max cut
problem is its symmetric energy profile, i.e., solutions and their
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complements (e.g., [0,1,1,0,1] and [1,0,0,1,0]) have the same en-
ergy, as the resulting subsets are interchangeable.
This work considers the well-known G-set max cut problems

and a set of randomly generated problems of different sizes and
densities for benchmarking purposes.
Number Partitioning: The objective of number partition-

ing optimization, as described in [20], is to divide a set S =
s1, s2,… , sm ofm positive integers into two subsets S1 and S2 such
that the sum of the numbers belonging each subset is equal. A
graphical description is provided in Figure 3d. TheQUBO formu-
lation requires a binary variable xi for each number in the initial
set S, taking the value 0 if the ith number is assigned to subset S2
and 1 otherwise. As a result, the sum of the numbers in the first
subset is expressed as:

sum1 =
m∑
i=1

sixi (20)

while the sum of the numbers in the second subset is given by:

sum2 =
m∑
i=1

si −
m∑
i=1

sixi (21)

Consequently, the difference between the two sums is:

diff = sum2 − sum1 =
m∑
i=1

si − 2
m∑
i=1

sixi (22)

which needs to be minimized to achieve the problem’s objective.
Thus, the final objective function is given by:

fnumber(x) =
( m∑

i=1
si − 2

m∑
i=1

sixi

)2

(23)

Similarly to the max cut problem, number partitioning exhibits
symmetric energy profiles.
A set of randomly generated problems of different sizes and

densities were considered for estimating the performance of the
preprocessing techniques with the number partitioning task.
Graph Coloring: Graph coloring[20] is an optimization prob-

lem that aspires to assign distinct color labels to neighboring
nodes, as represented in Figure 3e. This concept finds applica-
tions in various industrial and scientific domains, such as printed
circuit design.[30] The associated QUBO formulation involves
N ⋅ K binary variables—where N is the number of nodes and K
the number of colors — , with one for each node-color pair, tak-
ing a value of one if the kth color is assigned to the nth node. Sev-
eral requirements must be met to obtain a valid solution. Firstly,
adjacent nodes must be associated with different colors:

∀k : ∀(i, j) adjacent node : xik + xjk ≤ 1 (24)

expressible as:

∀k :
∑
i,j∈E

xikxjk = 0 (25)

where E denotes the set of edges in the graph. Moreover, each
node must be assigned precisely one color:

∀n :
K∑
k=1

xnk = 1 (26)

Finally, the objective function is defined as follows:

fcoloring(x) = P1

N∑
n=1

( K∑
k=1

xnk − 1
)2

+ P2

K∑
k=1

∑
i,j∈E

xikxjk (27)

A set of randomly generated problems of different sizes and den-
sities was considered to estimate the toolchain effectiveness with
graph coloring.
An alternative formulation of the graph coloring problem was

proposed in the state-of-the-art to reduce the number of re-
quired variables, although this comes at the expense of introduc-
ing higher-order terms.[15] This approach is particularly advan-
tageous when using solvers that can handle Polynomial Uncon-
strained Binary Optimization (PUBO) problems directly,[14] such
as Grover Adaptive Search (GAS). However, since the proposed
toolchain operates on QUBO problems and aims to be compati-
ble with all quantum solvers—even if it offers additional support
for GAS—the traditional formulation is exploited for benchmark-
ing in this article.

2.3. Grover Adaptive Search

The Grover Adaptive Search is a sequential hybrid quantum-
classical method for finding the minimum of a cost function
f (x), describing a combinatorial optimization problem.[12–15,31] It
is composed of the following steps:

1. Initialize the iteration index i and the variable yi to zero.
2. Adjust the cost function f (x) by vertically shifting it based on

yi.
3. Increment the iteration index i.
4. Randomly select a value yi from the range of f (x) such that

yi < 0.
5. Treat yi as the new optimal value, as a negative value of the ad-

justed cost function consistently indicates a lower value than
the previously set offset yi−1.

6. Repeat steps 2–5 until no more negative values are sampled.
This process identifies the combination of variables where
f (x) = 0, which is the solution to the optimization problem.

A significant example of this approach is reported in Figure 4,
where it is possible to notice how the minimum of the cost func-
tion can be identified by repeating the sample-and-shift proce-
dure.
An effective negative sampling method must be identified to

exploit the presented approach adequately. The best option for
this charge is the Grover Search (GS)[32] routine, a quantum
approach for searching items in an unordered dataset with a
quadratic speed-up compared with the classical counterpart. The
flowchart of the approach is reported in Figure 5, where the task
separation between the classical and quantum worlds is under-
lined.

Adv. Quantum Technol. 2025, 8, 2400384 2400384 (6 of 23) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 4. GAS steps.

Initially, the objective function shifted by an amount yi has to
be encoded into a quantum state as a uniform superposition of
the domain-image obtained through the employment of a quan-
tum dictionary,[14] which is the quantum counterpart of a classi-
cal dictionary and allows the description of key-value pair data
structures. It is important to remember that the f (x) image is
described according to the binary two’s complement represen-
tation for signed integers. In general, cost function coefficients
can also be expressed as real values by exploiting the technique
described in ref. [33]. Therefore, for encoding an n-variable prob-
lem, n qubits for the keys, and m — sufficiently high to avoid
overflow, so depending on the function bounds—for the values
are required. Unfortunately, the computational complexity for ex-
act estimation of the cost function bounds is the same as solving
the problem with a brute-force approach, i.e., grows as 2n. Proper
estimation techniques are required since a too-low value compro-
mises the mechanism’s effectiveness, and a too-high is a waste
of resources. Preprocessing is thereby necessary for choosing a
proper value of m.
The following equation describes the quantum dictionary op-

erator Ui:

Ui |0⟩n |0⟩m = 1√
2n

2n−1∑
x=0

|x⟩n |f (x) − yi⟩m (28)

At this point, the Grover phase oracle is applied for labeling the
desired items of the dataset—in this case, the negative samples
of the objective function—and the diffuser operator is employed
for amplifying the probability amplitude of the corresponding
states. For implementing an effective GS, phase oracle and dif-

fuser have to be repeated r times, where r is also called “number
of rotations,” and its optimal value depends on the dataset char-
acteristics. It can be estimated through the following equation:

r ≈ 𝜋

4

√
2n

M
(29)

where M is the number of desired items, i.e., the negative
samples, which is unknown a priori. This number of rota-
tions ensures finding one of the M states with the maximum
probability[11]; hence, either a too-high or too-low r may lead to
an incorrect result. Its estimation in each GS execution is cru-
cial, and some techniques were proposed in the literature for this
purpose.[12] The quantum circuit employed for GS execution in
the GAS algorithm is reported in Figure 6.
Once a negative value has been acquired, the function can be

classically shifted by that amount and re-encoded in the quan-
tum dictionary for searching a new negative. The samples ob-
tained are, with each iteration, closer to the function’s minimum
until the last negative was obtained, corresponding to the opti-
mal solution. However, determining whether negative values are
still to be sampled is a crucial task. Theoretically, a character-
istic of GS can be used for this goal: when no item meets the
conditions of the GS, any possible configuration can be sam-
pled according to a uniform probability distribution. If only non-
negative function values are available, the GS outcomes are pos-
itive or null samples. Unfortunately, there are other situations
where a non-negative value can be obtained since it can also
emerge when an incorrect number of Grover rotations is cho-
sen. Consequently, proper techniques, principally based on the

Figure 5. GAS algorithm.

Adv. Quantum Technol. 2025, 8, 2400384 2400384 (7 of 23) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 6. GAS circuit.

counts of consequently positive samples and the employment of
thresholds, were defined in the state of the art for stopping the
algorithm.[12]

2.4. QUBO Preprocessing: State of the Art

In recent years, D-wave has released the first QUBO prepro-
cessing toolchain[34] optimized for their Quantum Annealer plat-
form, including methods for fixing persistencies and estimating
the lower bound of the objective function based on approaches
presented in ref. [35]. This represents the only previous work
in this direction. In addition to D-Wave preprocessing methods,
Qoolchain provides the following tools:

1) the Probing technique presented in ref. [35] for identifying
further persistence and improving the estimation of the func-
tion bounds;

2) the Trivial decomposition, proposed in this article for the
first time, for subdividing the problem into independent sub-
problems of smaller size;

3) decomposition enabling the employment ofGrover Search for
identifying the optimal solution of a sub-graph whose optimal
value is known a priori through graph theory properties;

4) the Shannon decomposition, proposed in this article for the
first time, for breaking Complete Strongly Connected Com-
ponents (defined in 4.1.4), allowing further reduction of the
QUBO problem.

Table 1 provides a comprehensive comparison between D-
wave preprocessing and Qoolchain.

3. Towards the Idea of the QUBO Preprocessing
Toolchain

This section presents the motivations behind a QUBO prepro-
cessing toolchain targeting the Grover Adaptive Search algo-
rithm. Moreover, it comprehensively overviews the key prepro-
cessing steps and delves into the framework’s structure.

3.1. Motivations

Assessing the potential of quantum solvers, especially those
based on the quantum circuit model paradigm like GAS, in iden-
tifying the optimal solution to real-world optimization problems
poses significant challenges. Indeed, nowadays, quantum hard-
ware is strongly limited in terms of qubit counts, connectiv-
ity, and fidelity. Therefore, the prevalent approach for develop-
ing quantum solutions involves leveraging quantum simulators,
which offer ideal outcomes unaffected by current hardware lim-
itations. Unfortunately, the simulation complexity grows expo-
nentially with the number of involved qubits, making the ex-
ecution of large circuits impractical. All these aspects inhibit
the exploration of quantum computing-based solutions for real-
world problems.
The toolchain introduced in this article aims to address these

challenges by providing instruments to streamline the complex-
ity of QUBO models, thereby making the execution of quan-
tum solvers, especially GAS, feasible even for optimization prob-
lems encountered in industrial environments. Specifically, the
toolchain endeavors to achieve this goal through:

1) the reduction of the number of QUBO variables of the prob-
lem to solve, fixing those whose optimal solution can be a

Table 1. Comparison of D-wave preprocessing and Qoolchain. * identifies the method proposed in this article for the first time;✓ indicates the supported
approaches; ✗ signifies that the method is not supported.

Tools Source-reachable persistencies Strongly connected persistencies Probing Trivial Decomposition* Grover Search solving* Shannon Decomposition*

D-wave ✓ ✓ ✗ ✗ ✗ ✗

Qoolchain ✓ ✓ ✓ ✓ ✓ ✓

Adv. Quantum Technol. 2025, 8, 2400384 2400384 (8 of 23) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 7. Toolchain structure overview.

priori identified (persistency) and decomposing problems in
smaller subproblems;

2) the estimation of the function bounds for choosing the num-
ber of qubits for values representation in proper GAS.

While the toolchain is designed to enhance accessibility to quan-
tum solutions within the current hardware limitations, it is ex-
pected to retain its utility even as quantum computers surpass
existing constraints. Indeed, effective QUBO preprocessing, in
general, overcomes the limits of the target solver, allowing the
evaluation of even bigger problems.

3.2. Structure

The toolchain comprises several stages, analyzing and reducing
the QUBO formulation of interest, as shown in Figure 7. The
toolchain requires the optimization problem expressed according
to the QUBO formalism as input, exploiting the qubovert[26] li-
brary or providing the QUBOmatrix in its upper triangular form.
First of all, the input QUBO problem is analyzed for identi-

fying the persistencies—i.e., all the binary variables whose opti-
mal configuration can be detected a priori[35]—through the Fix
persistencies block. Afterward, their optimal configuration can be
substituted in the cost function, reducing its size. As detailed in
Section 4.1, the recognition of those variables, through the appli-
cation of a proper algorithm, requires the transformation of the

QUBO function into a graph representation called flow network,
consisting of a directed graph whose edges have non-negative
weights where it is possible to distinguish a source nodewith only
outgoing edges and a sinkwith only ingoing edges. Subsequently,
the Probing technique, detailed in Section 4.2, estimates the cost
function bounds and, consequently, the number of qubits neces-
sary for encoding the cost function in a quantum dictionary. The
application of this technique potentially allows the identification
of further persistencies.
Afterwards, a Decomposition step, presented in Section 4.3, is

applied. It comprises three mainmethods. The first finds discon-
nected components in the networks, which correspondwith inde-
pendent subfunctions. The second identifies and extracts Com-
plete Strongly Connected Components (CSCCs), which are a par-
ticular kind of strongly connected components (SCCs) that can
be encountered in residual networks, whose formal definition is
given in Section 4.1.4. Finally, the Shannon decomposition tech-
nique is only employed when the problem size exceeds a pre-
defined threshold. In analogy with the Shannon expansion for
Boolean functions, it selects a variable and generates two subnet-
works, each with one less variable. However, all previous meth-
ods can be applied again to the new subnetworks aiming to break
CSCCs for which no method is currently known.
Finally, the residual networks are transformed back to QUBO

function representations to be provided as inputs for the last step
composed of the Grover Adaptive Search, or in general, any op-
timization solver. CSCC and CSCC-free functions can be solved

Adv. Quantum Technol. 2025, 8, 2400384 2400384 (9 of 23) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Table 2. Implemented method computational complexity. n is the number of graph nodes;m is the number of graph edges; t is a user-defined threshold,
i.e., the number of repetitions of the Shannon Decomposition procedure.

Residual Network Source-reachable persistencies Strongly connected persistencies Probing Trivial Decomposition Shannon Decomposition

(n2
√
m) (n +m) (n(n +m))* (n3

√
m) (n) (2t)**

*
For strongly connected persistencies for each SCC, a BFS is executed, hence just in the worst case the number of SCCs is n∕4, but it is not likely to happen. **

The execution
of the Shannon decomposition is limited by a predetermined threshold t which has been set to 5 in all the tests reported in this paper.

in two different instances, considering that once the former are
solved, the minima of the latter are already known, as discussed
in Section 4.3 (Table 2).

4. Implementation

The core of the proposed toolchain has been developed in C++,
leveraging object-oriented programming principles. As the main
quantum frameworks are mostly written in Python, the exter-
nal interface for calling its functions has been implemented in
Python, facilitating user-friendly interactions with other quan-
tum tools. Specifically, Cython[36] has been exploited to estab-
lish a bridge between C++ and Python. Cython enables the
compilation of C or C++ functions into Python extension mod-
ules, thereby enabling the development of tools that combine the
speed of compiled languages with the user-friendly and flexible
interface of Python.

Cython, derived from Pyrex, is a language designed for cre-
ating Python extension modules that abstract the Python/C API
from the user. This abstraction allows users to easily combine
Python and C data structures without requiring knowledge of the
Python/C API. To encapsulate C++ functions within a Pyrex file
(or a Python file), it is essential to follow the workflow shown in

Figure 8. This process involves creating a wrapper file — which
translates function declarations from the header file into Cython
syntax, converts parameters from Python data structures to C++,
and returns C++ objects to Python ones — and compiling the
C++ sources with a proper setup script. The outcome is a stan-
dard Pythonmodule that can be called within any Python script.
This section presents the implemented toolchain, focusing on

each step composing it, and providing relevant examples.

4.1. Persistencies

In ref. [35] persistencies have been defined as follows:

Definition. Let a ∈ 𝔹 be a binary value, a variable xi is a strong
persistency if xi = a for all the minima of the objective function,
whereas it is a weak persistency if xi = a for at least one minimum
of the function.

In order to identify persistencies, the QUBO function has to be
transformed into an Implication network, i.e., a particular type
of flow network, introduced in ref. [37]. The peculiarity of a flow
network is that it is possible to define a function that assigns a
value to each edge no larger than its weight, known as flow (𝜑).[38]

A flow function must fulfill specific properties:

toolchain.cpp toolchain.h

wrapper.pyx setup.py wrapper.cpp

toolchain.pyd

generate

import

toolchain.py

Developer Cython compiler

User

Figure 8. Graphical representation of the procedure for obtaining a Python module with a C/C++ core by exploiting the Cython language. First, the
developer writes the C/C++ function of interest (.cpp and .h) and the Pyrex file with the header file containing the declaration of the function of
interest (.h). In the Pyrex file, the target function has to be translated into Cython syntax, and the C++ function must be called within a wrapper
function that converts its inputs from Python data structures to C++ types and converts the returned from C++ types to Python data structures. Then,
the setup.py file, which specifies the name of the Python extension to obtain and the C++ and Pyrex files to consider, is exploited for compiling the
C++ source with Cython. All the files produced by the developer are shown in the magenta box. The compilation produces an optimized translation of
the wrapper (_wrapper.cpp), and the Python module to import in other scripts (.pyd). These files are shown in the green box. The obtained module
can be imported by the user as a standard Pythonmodule, as illustrated in the orange box.
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 25119044, 2025, 5, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/qute.202400384, W

iley O
nline L

ibrary on [15/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

• The flow from a node u to a node v is equivalent to the negation
of the flow from v to u (𝜑(u, v) = −𝜑(v, u)).

• The total amount of flow entering a node, except source and
sink, must be the same as the amount of flow exiting the node.

Subsequently, the flow allows transforming a flow network into
a residual network. This is the data structure on which all the
toolchain algorithms operate. Translating the QUBO cost func-
tion into a residual network requires several steps that are ex-
plored in the following sections.

4.1.1. Implication Network

The first stage is purely mathematical and allows obtaining a
quadratic expression with only nonnegative coefficients, except
eventually a constant term, called posiform. Starting from a
QUBO cost function, the result is a quadratic posiform. How-
ever, the same method can be applied to any polynomial expres-
sion. In general, any polynomial pseudo boolean function can be
transformed into a posiform with linear complexity scaling with
the number of nonzero coefficients. All the steps for translating
a QUBO function into a posiform are shown in ref. [35]. The ob-
tained pseudo-boolean function has the following form:

𝜙(x) = co +
∑
u∈L

cuu +
∑
u,v∈L

cuvuv (30)

where L is the set of literals, i.e. the set of all the variables and
their complements, and cu ≥ 0 and cuv ≥ 0, for any u, v ∈ L. Note
that it is possible from a posiform to go back to a quadratic
pseudo-boolean function using the inverse procedure.

Example. Let’s consider the following QUBO function:

f (x) = 3 + 2x1 + 3x2 − x3 + x4 + x1x2 − 4x2x3 + x3x5 − 2x4x5
(31)

First of all, to convert the function in a posiform, the qijxixj = qijxi(1 −
xj) = qijxi − qijxixj transformation, where is xj is the xj variable com-
plement, has to be applied to every negative quadratic coefficient:

𝜙(x) = 3 + 2x1 + 3x2 − x3 + x4 + x1x2 − 4x2(1 − x3) + x3x5

− 2x4(1 − x5) (32)

= 3 + 2x1 − x2 − x3 − x4 + x1x2 + 4x2x3 + x3x5 + 2x4x5
(33)

Now, for every linear term with a negative coefficient, the substitution
xi = 1 − xi is applied:

𝜙(x) = 3 + 2x1 − (1 − x2) − (1 − x3) − (1 − x4) + x1x2

+ 4x2x3 + x3x5 + 2x4x5 (34)

= +2x1 + x2 + x3 + x4 + x1x2 + 4x2x3 + x3x5 + 2x4x5 (35)

The obtained expression is the posiform of the QUBO problem of in-
terest.

0.5

0.5

0.5

2 2

1 10.5

0.5

0.5

0.5

0.5

1 11 1

Figure 9. Example of implication network associated with the QUBO
cost function f (x) = 3 + 2x1 + 3x2 − x3 + x4 + x1x2 − 4x2x3 + x3x5 − 2x4x5.

A posiform can be expressed as an implication network. How-
ever, it has to be transformed into a purely quadratic function,
i.e., including only quadratic terms. For this purpose, all the lin-
ear terms are multiplied by a fictitious variable x0 with a fixed
assignment x0 = 1. Instead, The constant term can be moved to
the left-hand side of the equation and just be considered an off-
set. For each term cuvuv, there are two edges, (u, v) and (v, u), in
the implication network, having a weight equal to half of their
coupling coefficient (Figure 9).

𝛾(u, v) = 𝛾(v, u) = 1
2
cuv (36)

Since the literal x0 has only outgoing edges and the literal x0 has
only ingoing edges, they can be called the network source and
sink, respectively. The name of this graph representation comes
from the fact that if a literal u receives the assignment u = 1, it
implies that all literals reached through an edge starting from
u must also be assigned to 1. This prevents an increase in the
posiform’s value; otherwise, uvwould equal 1. Conversely, if u re-
ceives the assignment u = 0, all literals capable of reaching node
u must be assigned to 0; otherwise, the term vu, corresponding
with the edge (v, u), would equal 1.

Example. Considering the previous example:

𝜙(x) = +2x0x1 + x0x2 + x0x3 + x0x4 + x1x2

+ 4x2x3 + x3x5 + 2x4x5 (37)

The network associated with this purely quadratic function is shown
in Figure 9. For instance, the term 2x0x1 produces two edges (x0, x1)
and (x1, x0) both with weight cx0x1∕2 = 1.

Adv. Quantum Technol. 2025, 8, 2400384 2400384 (11 of 23) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH
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Figure 10. Example of residual network symmetrization.

4.1.2. Residual Network

Definition. Given a flow network with node set N and edge set E and
indicating the flow of an edge (u, v) as 𝜑(u, v), a residual network is
a network with the same node set N and edge set E𝜑 with residual
weight 𝛾𝜑(u, v) = 𝛾(u, v) − 𝜑(u, v). Since a property of the flow is that
𝜑(u, v) = −𝜑(v, u), if an edge (u, v)was present in the implication net-
work, an edge (v, u) can be created in the residual one.

The maximum flow is the flow for which there are no paths
from source to sink in the relative residual network. In order
to attain this residual network, the maximum flow is computed
through the push-relabel method[39,40] with the highest-label im-
plementation which has (n2

√
m) computational complexity,[41]

where n is the number of nodes andm is the number of edges in
the network. The obtained residual network may be asymmetri-
cal, i.e. 𝛾𝜑(u, v) may be different from 𝛾𝜑(v, u). However, the im-
plication network has a one-to-one correspondence with its posi-
form. This relation should be kept in the residual network since
it has to be eventually transformed back into a QUBO function.
Therefore, for each edge (u, v), the final weight is given by the av-
erage between its weight and the weight of its symmetrical coun-
terpart.

𝛾𝜑(u, v) = 𝛾𝜑(v, u) =
1
2
(𝛾𝜑(u, v) + 𝛾𝜑(v, u)) (38)

In all the residual network representations throughout this paper,
edges entering the source and exiting the sink are not depicted
since they have no role in all the algorithms presented. Further-
more, in this article, referring to the residual network always in-
dicates the residual network constructed with themaximumflow.

Example. The previous example forms an already symmetrical
residual network. However, considering the following cost function:

f (x) = 4 + 4x2 − 4x1x2 + 4x1x3 − 4x2x3 (39)

The residual network obtained after constructing the implication net-
work and computing the flow is reported on the left inFigure 10. As it is
possible to notice, the symmetrization step is required in this case. For
instance, 𝛾𝜑(x1, x2) = 0, but 𝛾𝜑(x2, x1) = 2 and the same can be ob-
served for any edge in this graph. The symmetrization result is shown
on the right in Figure 10

4.1.3. Source-Reachable Persistencies

Each variable connected directly or indirectly to the source can
be assigned to 1. For this reason, this type of persistencies will
be called source-reachable persistencies from herefore. To prove
that each source-reachable node is a persistency, proof by contra-
diction can be provided. Let us consider a subset S collecting the
nodes that can be reached with a path from the source x0, where
all the edges have positive weights. Defining T = {v|v ∈ S}, the
following reflections can be derived:

• If a quadratic term auvuv in the posiform has auv > 0, the nodes
u and v cannot both belong to S since it implies the existence of
an edge (u, v) with positive weight. If v ∈ S, then v ∈ T , thus
implying the existence of a path from source to sink, violat-
ing the maximality of the flow. This condition is impossible
in a residual network by definition. Therefore, if a node is con-
nected to the source, it is always possible to find an assignment
eliminating the terms in which it appears.

• Linear terms auu produces an edge (x0, u) in the network,
which can be eliminated by assigning u = 1. Consequently, all
the literals in S are strong persistencies since the assignment
that sets them to 1 makes all the terms in which they are in-
volved vanish. This is also in agreement with the definition of
implication network for which all the nodes reachable from a
node assigned to 1 must also be assigned to 1.

These source-reachable persistencies can be identified by using
a breadth-first search (BFS) starting from the source to mark all
the visited nodes.

4.1.4. Strongly Connected Persistencies

Definition. The strongly connected components (SCCs) Ki (also
called strong components) of a graph are subgraphs in which every
node can be reached by any other node. Due to the symmetry of resid-
ual networks, if a node v belongs to a strong component, it can be
deduced that either v ∈ Ki or v ∈ K ′

i , where K
′
i is the component con-

taining the complements of all the literals belonging to Ki.

Definition. Complete strongly connected components (CSCCs)
are strong components including both the literal v and its complement
v.

All the variables included in a strong component not belong-
ing to the CSCC category are weak persistencies. In particular,
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Figure 11. Example of source-reachable and strongly connected weak per-
sistencies. The former are highlighted in blue and the path to reach them
is indicated in red. The two strongly connected components are indicated
with blue nodes connected by blue edges.

both the configuration with all the literals in the component as-
signed to 0 and all of them to 1 are present in at least one optimal
solution. Indeed, an edge (u, v) corresponds to a uv term in the
posiform, which is null if the literals in the component have the
same value. Moreover, based on the definition of the implication
network and considering that in a strong component each node
has a closed cycle starting and ending with itself, if a node is as-
signed a value of 1, all other nodes in that component can be
reached from it and must also be assigned a value of 1. Alterna-
tively, if a node is assigned to 0, all the nodes that can reach it, i.e.,
all the nodes in the strong component, must be assigned to 0.
If an edge exists between Ki and K

′
i , all the involved variables

are strong persistencies. If the edge starts from anode inKi, all lit-
erals inKimust be assigned a value of 0, and all literals inK ′

i must
be assigned a value of 1 since they are complementary. Specifi-
cally, an edge starting from a node assigned 1 can only lead to
another node assigned 1. Given that Ki and K

′
i have complemen-

tary values by definition, all terms can vanish if and only if the
starting node’s value is 0 and the ending node’s value is 1. Con-
versely, if the edge starts in K ′

i and ends in Ki, all literals in K
′
i are

assigned a value of 0, and all literals in Ki are assigned a value of
1.

Example. Continuing from the example in Section 4.1.1, after
computing the maximum flow and obtaining the residual network it
is possible to identify the two types of persistencies presented in this
section (Figure 11).

To detect this type of persistency, first of all, Tarjan’s
algorithm[42] is exploited to find all the strong components in the
residual network. Successively, all the strong persistencies found

can be substituted by their optimal values and removed from the
residual network.
On the contrary, assigning weak persistencies is more com-

plex because each is valid only in a subset of optimal solutions.
Therefore, the assignments chosen for two distinct sets of weak
persistenciesmay belong to different solutions.When combined,
these assignments could yield a suboptimal solution. To eval-
uate if it is possible to assign them, it is necessary to verify if
the component of weak persistencies can not be reached by any
path originating from other persistencies. Indeed, in an implica-
tion network, two dependent variables are always connected by a
path, and consequently, if a path connecting them does not ex-
ist, they are independent. Hence, if a component of weak persis-
tencies can not be reached by any path originating from other
persistencies, they can be indiscriminately assigned to 0 or 1. If
other weak persistencies reach the component, these persisten-
cies have to be assigned first, hence variables in the component
are temporarily not assigned. To verify if other components of
weak persistencies reach the current component, a reverse BFS
can be utilized, which traverses the edges in the opposite direc-
tion. Subsequently, when a component, on which other groups
of persistencies are dependent, is examined, a BFS is executed to
find all variables it reaches. According to the implication network
rules, where nodes assigned a value of 1 only lead to other nodes
assigned to 1, an assignment is determined for all these variables.

4.2. Probing

The Probing technique aims to discover new persistencies and
establish a lower bound for the function’s minimum, which is
based on the roof dual bound presented in ref. [35]:

c0 + v(𝜑) ≤ min𝜙(x) (40)

where 𝜙(x) indicates the posiform, c0 is the constant term of
the posiform and v(𝜑) is the value of the maximum flow, de-
fined as the maximum amount of flow exiting from the source
node. Probing consists of generating two different networks for
each variable xi out of the n variables. The first receives an added
penalty term for xi = 0 and the second a penalty for xi = 1 by in-
serting two new edges in the original residual network. Calling
M the penalty coefficient, the following equation holds:

min𝜙(x) = min(min𝜙(x) +Mxi, min𝜙(x) +Mxi) (41)

To obtain the best roof dual estimation,Mmust be large enough
to ensure that the maximum amount of flow is always computed.
Knowing an upper bound U on the minimum of the posiform,
ifM > U − c0, the edges exiting the source and entering the sink
are able to carry more flow than the maximum, thus the largest
amount of flow is calculated, and the roof dual bound achieves an
approximation closer to the actual minimum. In the toolchain,
Probing is directly applied to the residual network for which the
constant term has already been dropped, hence c0 = 0. The De-
vour Digest Tidy-up (DDT)[43] heuristic algorithm is used to ob-
tain the upper bound U, in its one-pass version[44] to attain the
result with the fastest implementation.
The Probing procedure is repeated for each variable. There-

fore, computing 2N times the maximum flow. Calling LBu the
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Figure 12. Example of Probing. The paths from source to sink are high-
lighted respectively in blue (penalty added for x3) and red (penalty for x3).

lower bound obtained for the posiform 𝜙(x) +Mu and LBu that
associated with the posiform 𝜙(x) +Mu, the lower bound of the
original posiform can be improved in the following way:

LB = max
u∈L

(
min(LBu, LBu)

)
(42)

where L is the set of literals. For any variable xi, if the flow in-
creases in both cases, the lower bound increases regardless of
the value of xi (Figure 12). The same method employed to find
the lower bound can be applied to find the upper bound just by
negating the QUBO cost function, i.e., pretending to maximize
it instead of minimizing it when it is not trivial. In some cases,
such as a max cut on a graph with only positive edges, the upper
bound is found by assigning all the variables to 0 since the cut is
null if no subset is identified. Thanks to the Probing technique, it
is possible to estimate the range of values assumed by the QUBO
function, which is fundamental to choosing a proper number of
qubits for the quantum dictionary value in GAS and so for the
algorithm effectiveness, as explained in Section 3.1.

Example. From the residual network reported in Figure 12, it is
possible to observe a successful application of Probing. If the variable
x3 is selected, a path from source to sink is formed when a penalty is
added both for x3 and x3. Consequently, the flow can be recomputed
and the lower bound can be improved.

Furthermore, the residual networksmodified by Probing allow
the detection of new persistencies. Since it is not known a priori
the value of the variable chosen for Probing, the information of
both networks must be combined to reduce the QUBO size fur-

ther. Calling Su andWu the sets of strong and weak persistencies
and Lu the lower bound identified for the posiform 𝜙 +Mu:[35]

1. If Lu > U, u = 0 is a strong persistency for Φ;
2. if v ∈ Su ∩ Su, v is a strong persistency for Φ;
3. if v ∈ Wu ∩Wu, v is a weak persistency for Φ;
4. if v ∈ Su and v ∈ Su then u = v is a strong persistency for Φ;
5. if v ∈ Wu and v ∈ Wu then u = v is a weak persistency for Φ;
6. for all v ∈ Su and w ∈ Su the quadratic relations u ≤ v, u ≤ w

and w ≤ v are all strong persistencies for Φ;
7. for all v ∈ Wu andw ∈ Wu the quadratic relations u ≤ v, u ≤ w

and w ≤ v are all weak persistencies for Φ.

With Probing, the discovered weak persistencies can be as-
signed and replaced in the network, as for the strong persisten-
cies case. In a single iteration, all the weak persistencies are deter-
mined through the method described in Section 4.1, hence they
belong to the same minimum and can be fixed. Across different
iterations, the weak persistencies are mutually independent, al-
lowing their identification and assignment. If this were not the
case, there would have been an implication in the network, i.e. a
path connecting the preceding persistency with the new one, al-
lowing its detection. In essence, each persistency is independent
of the previous one, otherwise, they would have been found si-
multaneously. Persistencies that do not find an assignment but a
relation between variables (points from (4) to (7)) still have to be
implemented inQoolchain andwill be the subject of future work.

4.3. Decomposition

The goal of decomposition is subdividing the problem into in-
dependent sub-instances with smaller sizes, which can be opti-
mized in parallel, to reduce the overall execution time and also
allow the usage of current quantum hardware.

4.3.1. Trivial Decomposition

The first method identifies mutually independent subfunctions
in the residual network. If two subfunctions are defined on dis-
joint sets of variables, then:

f (x) = g(x) + h(x) ⇒ minf (x) = ming(x) +minh(x) (43)

This method is called Trivial decomposition and finds discon-
nected components in the residual network through the disjoint-
set union-based algorithm. Due to symmetry, the corresponding
functions act on disjoint sets of variables if there is no connection
between two subnetworks.

4.3.2. Complete Strongly Connected Components

Once persistencies have been removed from the residual net-
work, the cost function represented is homogeneously quadratic
since all the linear terms vanished. When also all the non-
complete strongly connected components are extracted, the only
subgraphs left to examine in the network are the complete ones
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Figure 13. Example of a CSCC in a residual network (nodes highlighted in
blue).

(CSCCs, Figure 13)—whose definition is provided in Section 4.1.
Aspvall, Plass and Tarjan demonstrated in ref. [37] that conjunc-
tion of boolean clauses, where each clause is a disjunction of at
most two literals can be satisfied if and only if there are no CSCCs
in the implication graph associated with the boolean expression
of these clauses. A conjunction of boolean clauses is expressed
as uv + wz, while a term in a purely quadratic posiform takes
the form auvuv. The unique distinction lies in the presence of
weights, but the theorem is equally applicable. The theorem can
be demonstrated by recalling that two conditions must occur for
all the terms of the posiform to vanish:

• a literal xi and its complement xi have complementary values;
• no edge starts from a true node (assigned to 1) and ends in a
false node (assigned to 0).

If a node u is in the same strongly connected component of its
negated counterpart u, any truth assignment to the graph nodes
violates one of the two conditions mentioned above. Since there
is a path from u to u, either the two nodes have complementary
truth values, or there is a path from a true node to a false one.
Therefore, all the terms in a posiform can vanish if and only if
no CSCC exists. If a true node leads only to true nodes and a
false node is reached only by false nodes, thus, if no CSCC is
present, the minimum of the corresponding posiform is 0. This
is demonstrated in the following. Since CSCCs are subsets of the
whole residual network it is known that:

c∑
i=1

minΦi ≤ minΦ (44)

where c indicates the number of CSCCs in the graph and Φi is
the posiform associated with the ith component. The minimum
of a posiform linked to a CSCC in the network is given by the

Table 3. Optimal solutions for the original problem and the decomposed
one.

Solution f 𝚽CSCC 𝚽noCSCC

no. (x1, x2, x3, x4, x5) (x1, x2, x3) (x3, x4, x5)

1 (0, 0, 0, 0, 0) (0, 0, 0) (0, 0, 0)

2 (0, 0, 0, 0, 1) (0, 0, 0) (0, 0, 1)

3 (0, 0, 0, 1, 0) (0, 0, 0) (0, 1, 0)

4 (0, 0, 1, 1, 0) (0, 0, 1) (1, 1, 0)

5 (0, 1, 1, 1, 0) (0, 1, 1) (1, 1, 0)

6 (1, 1, 1, 1, 0) (1, 1, 1) (1, 1, 0)

sum of the smallest weights that, if removed, would make the
component no longer strongly connected.[19] This value can be
obtained by solving the QUBO problem corresponding to this
CSCC. Therefore, a posiform generating a network with CSCCs
can be considered as the sum of a CSCC-free posiform and Ti
terms whose corresponding edges would produce c CSCCs, at-
taining that:

minΦ ≤

c∑
i=1

∑
k∈Ti

ak =
c∑
i=1

minΦi (45)

where ak are the coefficients of the added terms. Recalling Equa-
tion (44), this demonstrates that the minimum of a posiform is
equal to the sum of the minima of the posiforms associated with
the CSCCs in the residual network:

minΦ =
c∑
i=1

minΦi (46)

This means that the CSCCs can be extracted from the network
and their corresponding QUBO functions can be solved indepen-
dently. Successively, the variable assignments found can be sub-
stituted in the network achieving a CSCC-free QUBO function
whose minimum is just given by the posiform’s offset. Further-
more, a Grover oracle can be designed to identify the inputs’ con-
figuration associated with the value of the minimum for CSCC-
free functions, which is known a priori. This makes the Grover
Adaptive Search unnecessary, as Grover’s search alone is suf-
ficient to solve the optimization problem. Leveraging a purely
quantum algorithm leads to faster execution, eliminating the
need for classical iterations.

Example. Considering the following cost function:

f (x) = 4 + 8x1 + 10x2 + 4x3 − 12x1x2 + 4x1x3 − 10x2x3

− 4x3x4 + 2x4x5 (47)

The residual network obtained by constructing the implication net-
work and calculating the maximum flow is represented in Figure 13.
The corresponding optimization problem has six different optimal so-
lutions (Table 3). If the CSCC is extracted from the network, then
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two subnetworks are obtained, which are related to the two following
posiforms:

ΦCSCC(x) = 10x1x2 + 2x1x2 + 2x1x3 + 2x1x3 + 8x2x3 + 2x2x3 .

ΦnoCSCC = 4x3x4 + 2x4x5
(48)

In the CSCC-free posiform, all the nodes belonging to the CSCC and
sharing an edge with a node outside the CSCC are also present in the
function. When merged, the solutions of these two posiforms form the
same solutions of the original optimization problem (Table 3).

4.3.3. Shannon Decomposition

After CSCC decomposition, the obtained subfunctions may still
have a size larger thanwhat current quantumhardware can solve.
Hence, the goal is to apply a decompositionmethod that is always
applicable and capable of breaking CSCCs for which, to the best
of our knowledge, no technique is known so far. Therefore, in
this article, we propose a new decomposition method called the
Shannon decomposition since it applies the same principle of
Shannon’s expansion theorem for boolean algebra. The Shannon
decomposition selects a variable xi and evaluates the cost func-
tion for xi = 0 and xi = 1, producing two different subfunctions
with one less variable. If applied recursively for all the variables,
it is equivalent to solving an NP problem with a brute-force ap-
proach, which is highly inefficient. However, if the selected vari-
able in a residual network with CSCCs is a strong articulation
point, the two subfunctions’ corresponding networks either have
two CSCCs or none.

Definition. A strong articulation point[45] is a node belonging to
a strong component that if removed would make the component no
longer strongly connected.

Therefore, if two CSCCs are present in the achieved subnet-
works, they can be split by the previously mentioned decomposi-
tion. If no CSCC is present, persistency-finding methods can be
employed to further reduce the subfunction size. In conclusion,
the subfunctions can be solved separately, and the optimal solu-
tion is determined by the subfunction with the lowest minimum
value, combined with the assignments set on the variables cho-
sen for the decomposition. Currently, the policy used to find the
variable that most likely is an articulation point is evaluating the
maximum degree in the residual network, i.e., the variable with
the largest number of connections. This way, the greatest num-
ber of edges (or terms, from the associated posiform perspective)
can be eliminated. The more edges are removed, the higher the
probability of breaking a CSCC. This policy choice is not always
optimal because an articulation point is not necessarily the high-
est degree node. Indeed, a better policy to directly detect such a
point will be investigated in the future. Finally, the Shannon de-
composition is applied a predetermined amount of times to limit
its execution time, ensuring that its high computational complex-
ity does not cancel the benefits of using only polynomial complex-
ity algorithms.

Example. Considering the QUBO cost function:

f (x) = 12 − 4x3 + 4x1x2 − 4x1x4 + 4x2x3 − 4x2x4 + 4x3x4 (49)

After performing all the toolchain steps described in the previous sec-
tions, the residual network at the top of Figure 14 is obtained. This
graph is composed of a whole strongly connected component. Now, let
us apply Shannon decomposition and select the expansion variable as
the one associated with the node with the highest degree. This approach
ensures that the maximum number of terms, or edges, are removed af-
ter the function evaluation. Therefore, choosing x2, the following two
subfunctions are obtained:

fx2 = 12 − 4x3 − 4x1x4 + 4x3x4 .

fx2 = 12 + 4x1 − 4x4 − 4x1x4 + 4x3x4
(50)

The corresponding residual networks are reported in Figure 14 on the
left and the right, respectively. Noticeably, both networks do not have
any CSCCs, the first one can be solved just by applying Grover’s search
and in the second all the variables are persistencies.

5. Results

5.1. Setup

All the tests were performed by exploiting the Cython implemen-
tation of the toolchain and the results were compared against
those obtained with the D-wave preprocessing toolchain. All the
benchmark problems were written with the qubovert[26] Python
library and are available in the GitHub repository.[46]

The benchmarks considered are those described in Sec-
tion 2.2.1. In addition, two well-known benchmarks were used
for themax cut (Gset[47]) and graph coloring problem (FullIns and
Myciel[48,49]).
Tests were executed on a single-process Intel(R) Xeon(R) Gold

6134 CPU @ 3.20 GHz opta-core, Model 85, with a memory of
about 103 GB.[50]

5.2. Figures of Merit

This section presents all the metrics employed to assess the
toolchain algorithms’ efficacy and benchmark the results against
other state-of-the-art techniques. Each figure of merit is designed
to capture the effectiveness of each method based on the at-
tributes of the problem under consideration. Below, the key
figures of merit to assess the quality of the results are outlined:

• Fixed persistencies percentage: average fraction of the vari-
ables identified as persistencies, and thus removed from the
QUBO function, over the total number of variables.

• Number of strongly connected components decomposition:
number of times the decomposition techniques can divide the
network into two subnetworks. If no decomposition is possi-
ble, the count is 0, if the graph is composed of a single CSCC
and the remaining set of variables, the count is 1, thereafter,
the count is equal to the number of CSCCs present in the resid-
ual network.

• Total variable reduction: average ratio, in percentage, between
the size of the largest QUBO subproblem to be solved and that
of the original problem. Alternatively, it can be defined as the
average fraction of the variables that can be removed from the
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Figure 14. Shannon decomposition example. Starting from a strongly connected residual network, by selecting x2 for the subfunctions evaluation, two
subnetworks free of strongly connected components are generated.

QUBO function over the total number of variables. The remov-
able variables are all the variables whose value can be detected
a priori, through persistency-finding techniques and Probing,
and all the variables, part of smaller subnetworks, pulled out
by the decomposition techniques.

• Error over the estimated range: Relative error percentage com-
paring the estimated QUBO function range to the actual range
or the range computed by a reference method.

er =
|(UB − LB) − (UB∗ − LB∗)|

(UB∗ − LB∗)
(51)

whereUB and LB respectively indicate upper and lower bound
and the symbol * identifies the reference solution.

No metric has been defined for evaluating trivial decomposi-
tion results because this method rarely found two disconnected
subsets in the residual networks. Consequently, no significantly
sized disconnected components could be identified for all the
benchmarks used.

5.3. Comparisons

This section presents the results of preprocessing with the
toolchain and solving the benchmark problems outlined

in Section 2.2.1. The evaluation involves comparing each
method employed in the toolchain to one another and
concerning other state-of-the-art algorithms, especially the
D-wave preprocessing toolchain methods. For this purpose,
the D-wave toolchain code was modified to output the num-
ber of persistencies fixed for each problem, allowing a direct
comparison between this data and Qoolchain results.
Minimum vertex cover: For this benchmark, 1840 different

graphs have been randomly generated. These instances range
from a minimum of 10 nodes to a maximum of 100, with in-
crements of 2, and with 4 density values of the corresponding
QUBO formulation: 2%, 4%, 8%, 16%. For each size and density,
10 graphs are generated to calculate the results by averaging.
Figure 15a shows that the number of variables that can be re-

moved from the QUBO cost function decreases by increasing the
size and the density of the problem. For the 2% density problems,
for around 100% of the variables its value can be deduced a pri-
ori, whereas for 16% density the number of variables removed is
relevant only up to 60 nodes. By observing Figure 15b, the dif-
ferences between this work and the D-wave toolchain are due
to the Probing, decomposition, and Shannon techniques, which
are not supported by the D-wave Toolchain. However, the im-
provements brought by Probing and decomposition do not pro-
vide a significant advantage, especially for larger densities. Fur-
thermore, Figure 15c permits understanding why the CSCC de-
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Figure 15. Qoolchain execution and comparisons for the generated minimum vertex cover problems. a) shows the average percentage of variable
reduction comparing the results of this work with those of the D-wave toolchain. Up to 5 iterations of the Shannon decomposition have been employed
in this case. b) highlights, in particular for problems with 4% density, the percentage of variables that can be removed with each of the methods employed
by Qoolchain. The black dashed line indicates the results obtained with the D-wave toolchain. c) displays the average number of CSCCs identified in the
residual networks corresponding to each problem. d) compares the error over the estimated range attained with Qoolchain and the D-wave toolchain.

composition gives a low advantage and persistency-finding tech-
niques become less powerful increasing size and density. Follow-
ing an opposite trend compared to what is observed in Figure 15a,
the number of CSCC approaches 1 as size and density increase.
This implies that persistency techniques and Probing manage to
find a possible assignment for almost all the variables outside
of a CSCC. Nevertheless, when a CSCC is encountered, no as-
signment can be determined. In addition, the maximum num-
ber of CSCCs found never exceeded 1, meaning that decompo-
sition does not have the opportunity to split the problem into
many smaller ones. It mainly separates a single CSCC from the
rest of the network, which explains the limited advantages ob-
served. This result highlights the primary issue that needs to
be addressed. Improving persistency-finding techniques would
not significantly reduce the number of variables, as they are
likely located within a single CSCC. The meaningful reduction
in problem size would come from breaking the CSCC into mul-
tiple smaller graphs. This is the goal of the proposed Shannon
decomposition, which may not substantially impact this bench-

mark because persistencies are easier to identify compared to
other benchmarks.
Finally, Figure 15d showcases that Probing enhances the accu-

racy of the estimated range of the cost function. However, for this
benchmark, where many variables have already been removed
using the previously discussed techniques, the error achieved
by the D-Wave toolchain, employing only roof duality, is already
minimal. This allows for an extremely precise prediction of the
function’s bounds.
Maximum clique: As for the previous case, 1840 different

graphs have been randomly generated. These instances range
from a minimum of 10 nodes to a maximum of 100, with in-
crements of 2, and with 4 density values of the corresponding
QUBO formulation: 2%, 5%, 10%, 20%. For each size and density,
10 graphs are generated to calculate the results by averaging.
The results in Figure 16 are close to those obtained with min-

imum vertex cover, coherently with expectations since the mini-
mum vertex cover and the maximum clique are complementary
problems[51] (given a graphG, a subgraph is a clique if and only if
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Figure 16. Qoolchain execution and comparisons for the generated maximum clique problems. The results for the average percentage of variable
reduction Panel (a) and the error over the estimated range Panel (b) compared with the D-wave implementation are consistent with those of minimum
vertex cover results.

all the nodes outside it form a vertex cover in the complement of
G). The trends observed are analogous also in comparison with
the D-wave toolchain.
Number partitioning: 640 different instances of the number

partitioning problem have been randomly generated, with sets
sizes ranging from a minimum of 10 numbers to a maximum
of 40, with increments of 2. Numbers have been extracted
from 4 different sets of integers starting from 1 and having
as largest number 3, 5, 15, and 20. 10 instances are generated
for each set size and largest number to calculate the results by
averaging.
Every number partitioning problem generated has exactly one

CSCC. This makes this benchmark particularly challenging for
the toolchain’s techniques. For bothQoolchain andD-wave cases,
no variable can be eliminated from theQUBOcost function. Even

with smaller values for the largest number in the set, the densi-
ties of the QUBO matrices are 100%, resulting in the residual
network consisting of a single dense CSCC, making the algo-
rithms ineffective. This confirms the hypothesis that variable val-
ues can be detected a priori only if they are not part of a CSCC. In
these cases, the CSCC is so dense, even for smaller sets, that the
Shannon decomposition does not allow the removal ofmore vari-
ables than that selected for the decomposition. Even without per-
sistency identification, Probing is more accurate than the roof-
duality alone for the estimation of the function range, as shown
in Figure 17b, reporting the comparison between Qoolchain and
theD-wave toolchain. In this benchmark, the benefits of the prob-
ing technique are more relevant than in the others.
Max cut: 1040 different graphs have been randomly generated.

These instances range from a minimum of 10 nodes to a maxi-

Figure 17. Qoolchain execution and comparison for the generated number partitioning problems. In both this work and the D-Wave toolchain, no
variables can be removed from the cost function (a). However, the additional techniques in Qoolchain result in a more accurate estimation of the
function range, particularly when compared to problems with smaller CSCCs, as opposed to the results achieved by the D-Wave toolchain (b).
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Figure 18. Qoolchain execution and comparisons for the generated max cut problems. Panel (a) shows that this benchmark is more challenging from
the variable reduction point of view compared to the others, even if the advantage of Qoolchain techniques over D-wave toolchain ones is more evident.
Also in this case, up to 5 iterations of the Shannon decomposition have been employed. Panel (b) details the percentage of variables that can be removed
with each of the methods employed by Qoolchain for problems with 6% density. Notably, the Shannon decomposition carries a meaningful advantage
compared to the D-wave toolchain, represented by the dashed line. Panel (c) displays that the average number of CSCCs is always around 1 over a certain
graph size. d) Concerning the error over the estimated range, residual networks for this benchmark are formed of denser CSCC, and following the trend
observed with number partitioning, Probing improves the effectiveness of the toolchain.

mumof 60, with increments of 2, and with 4 density values of the
corresponding QUBO formulation: 6%, 8%, 12%, 16%. 10 graphs
are generated for each size and density to calculate the results
by averaging.
Coherently with previous results, max cut residual networks

have a structure that is more likely to comprise a single CSCC
than minimum vertex cover, but less than number partitioning.
Indeed, results for all metrics (Figure 18) are between the other
two benchmarks. Anyway, what stands out in these results is that
the Shannon decomposition is particularly effective for max cut.
Notably, for all densities, the Shannon decomposition is particu-
larly effective for max cut problems compared to that of the other
benchmarks and the improvement over the D-wave toolchain
is greater for max cut problems than for the other benchmarks
(Figure 18a). Figure 18b shows that Probing and decomposition
are poorly effective, and the overall improvement compared to the
D-Wave toolchain is mostly due to the Shannon decomposition.

For graph sizes up to around 40 nodes, just by selecting and fix-
ing the value of 5 variables, it is possible to find a priori the value
of almost 100% of the variables. This proves that, under certain
circumstances, it is possible to break CSCCs and this is the only
way to reduce the dimensionality of the related QUBO formula-
tion for such complex problems. Unfortunately, this is less likely
to happen for larger graphs. Therefore, a greater number of iter-
ations and especially an improved variable selection policy could
enhance the outcomes.
Furthermore, Qoolchain has been executed on the Gset,[47] a

renowned max cut benchmark widely used for testing and val-
idating combinatorial optimization algorithms, which involves
only graphs having 1 or −1 as edges’ weights.
Gset graphs start from aminimum of 800 nodes, hence all the

graphs are entirely constituted of a CSCC and neither Qoolchain
nor the D-wave toolchain can eliminate any variable from the
original QUBO formulation. However, estimating the range of
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Figure 19. Qoolchain execution and comparisons for the Gset benchmark. Panel (a) reports the error over the estimated range compared with the naive
and posnegmethods, whereas Panel (b) shows the comparison with the D-wave implementation.

values that the function assumes is still possible. This metric
is obtained with the D-wave toolchain and two greedy methods
(Naive and Posneg) described in ref. [23, 52]. The latter meth-
ods were originally conceived as bounds estimations to calcu-
late QUBO penalty coefficients, but they are still valid for es-
timating an upper bound on the function range. Comparisons
are reported in Figure 19. Naive and Posneg are one-pass meth-
ods, making them the fastest; nevertheless, their estimation er-
rors are, at best, more than double those achieved by Qoolchain.
This work also performs better than the D-Wave toolchain for all
Gset problems tested. In this case, unlike the randomly gener-
ated max cut instances, the minimal improvement does not jus-
tify the higher computational complexity related to the Probing
technique application for this benchmark problem, for such large
graph sizes. To give an idea about the quality of the estimation,
the best-known value for the QUBO function minimum of the

G1 problem is −11624,[53] while the maximum is 0, equivalent
to finding no cut. Therefore, 14 qubits (⌈log2(|−11624|)⌉ = 14)
are necessary to encode the function values in a quantum state.
Qoolchain’s estimation is −19142, hence just one more qubit is
needed (⌈log2(|−19142|)⌉ = 15).
Graph coloring: The graph coloring problem requires a lower

bound on the chromatic number to define a sufficient num-
ber of variables in the QUBO formulation. Two online bench-
marks (FullIns andMyciel[48,49]), for which the chromatic number
is known, have been employed to test Qoolchain and compare it
with state-of-the-art algorithms.
Figure 20 shows similar results to the Gset tests. In this case

as well, the graphs are entirely constituted of a CSCC, hence no
variable can be removed from the QUBO formulation. Despite
being the fastest, the Posneg and Naive methods achieve a worse
range estimation, at best double that of this work. Moreover, for

Figure 20. Qoolchain execution and comparisons forMyciel and FullIns graph coloring benchmarks. The error over the estimated range calculated with
Qoolchain is compared with the naive and posnegmethods (a) and the D-wave implementation (b).

Adv. Quantum Technol. 2025, 8, 2400384 2400384 (21 of 23) © 2024 The Author(s). Advanced Quantum Technologies published by Wiley-VCH GmbH

 25119044, 2025, 5, D
ow

nloaded from
 https://advanced.onlinelibrary.w

iley.com
/doi/10.1002/qute.202400384, W

iley O
nline L

ibrary on [15/05/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.advancedsciencenews.com
http://www.advquantumtech.com


www.advancedsciencenews.com www.advquantumtech.com

all the problem instances Qoolchain performs better than the D-
wave toolchain. Nevertheless, the improvements are not signif-
icant enough to justify a substantial increase in computational
cost related to the Probing technique application for this bench-
mark problem.
In this case, to reduce the number of involved variables, it is

more advantageous to use the alternative formulation of the prob-
lem proposed in [15], particularly when a quantum solver capable
of handling PUBO problems, such as GAS, is considered.

6. Conclusion

This work introduces Qoolchain, a QUBO preprocessing
toolchain designed to reduce problem complexity and enhance
the exploitability of quantum solvers with current quantum com-
puters. Developed in Cython for compatibility with major quan-
tum frameworks and leveraging the efficiency of C++, Qoolchain
is publicly available on GitHub.[14] It is compatible with any
QUBO-compliant solver but is specifically optimized for GAS.
The toolchain consists of several steps, each with at most poly-

nomial complexity. These steps include persistency identification
and problem decomposition to reduce the number of variables,
as well as the Probing technique to estimate the upper and lower
bounds of the problem’s cost function. Additionally, this work
proposes using the Grover algorithm independently to address
segments of the decomposed problem whose minimum value is
known in advance, thereby reducing the time required for solv-
ing the problem. The Shannon decomposition method is also
introduced. Although it has exponential complexity, it can effec-
tively break the CSCC of the residual network associated with the
QUBO problem, permitting a further reduction in complexity.
The effectiveness of Qoolchain is evaluated against theD-Wave

preprocessing toolchain across several problems: Minimum Ver-
tex Cover, Maximum Clique, Number Partitioning, Max Cut,
and Graph Coloring. For all the problems considered, our tool
demonstrates higher efficiency than the D-Wave preprocessing
toolchain in reducing the complexity of theQUBO to solve. It also
shows greater accuracy compared to both the D-Wave preprocess-
ing toolchain and other methods implemented in the literature
(such as Naive and Posneg) in estimating function bounds.
Furthermore, the results reveal that the effectiveness of QUBO

reduction strategies depends on specific problem characteristics,
such as the density of the associated QUBOmatrix. For example,
variable reduction techniques are highly effective for Minimum
Vertex Cover, Maximum Clique, and Max Cut problems but are
ineffective for Number Partitioning and Graph Coloring. This in-
efficacy is due to Number Partitioning and Graph Coloring being
a high-density problem comprised of a single CSCC, which pre-
vents persistency identification or problem decomposition.
Additionally, our results highlight that the proposed Shannon

decomposition is particularly efficient for the Max Cut problem,
as it permits breaking the CSCC and identifying further persis-
tency through repeated application of the technique.
Even though the results are promising and demonstrate the

potential of the toolchain, there are several areas for improve-
ment. Integrating methods for handling quadratic persistency
could enhance its QUBO reduction capabilities. Additionally, im-
plementing a coefficient normalization step to limit the number
of qubits required for value representation can significantly bene-

fit theGAS. Furthermore,more rigorous and efficient techniques
for node selection in Shannon decomposition could improve
the chance of breaking the CSCC. Finally, introducing solver-
dependent steps tailored to optimize preprocessing for specific
solvers, such as QA, QAOA, and VQE, could enhance overall per-
formance.
Moreover, an analysis of the performance on problems with

natively higher-order terms reduced to quadratic form would be
valuable, as it could help identify situations where it is more ad-
vantageous to solve the PUBOproblem directly—if the solver can
handle it—or to leverage a combination of polynomial reduction
and Qoolchain functions.
In conclusion, the proposed toolchain represents a significant

step forward in enabling the exploitability of the quantum solver,
taking into account the limitations of the current quantum hard-
ware and permitting it to handle more complex problems rele-
vant to industry scenarios.
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