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Abstract

This thesis consists of two projects wherein we explore some mathematical
aspects of field theory.

In the first project, we address Nahm’s equations, which is an integrable
system with a Lax pair. We consider boundary conditions on Nahm’s equa-
tions that correspond to the Dirac multimonopole in Yang-Mills theory. The
algebro-geometric integration method is to construct solutions via a linear
flow in the Jacobian of the spectral curve associated to the Lax pair. We
construct a frame of sections of this linear flow, which allows us to obtain
exact solutions to Nahm’s equations for arbitrary rank n.

Nahm'’s equations with our boundary conditions correspond to the Dirac
multimonopole via the ADHMN construction. The ADHMN construction
requires us to find normalizable zero modes of Dirac operators. We again use
the frame of sections of the linear flow on the Jacobian of the spectral curve
to construct these normalizable zero modes.

In the second project, we consider weak Jacobi forms of weight 0. The
polar coefficients of such weak Jacobi form are known to uniquely determine
the weak Jacobi form, and we improve on the number of polar coefficients
that determine the weight 0 form.

Weak Jacobi forms of weight 0 may be exponentially lifted to Siegel mod-
ular forms, which appear in the string-theory of black holes. In connection
to this, the growth of a certain sum about a term ¢%y® in the Fourier-Jacobi
expansion of the underlying weak Jacobi form is of interest to us.

We discover that the weak Jacobi forms which are quotients of theta
functions give us a large class of forms that are slow growing about their
most polar term. Additionally, the characteristics of growth behavior for a
weak Jacobi form about a term 3” are known, here we investigate growth
behavior about an arbitrary ¢%y® term and find several analogues.



Chapter 1

Introduction

Gauge theory is a powerful mathematical framework for studying a wide vari-
ety of physical phenomena. Its roots developed as early as the second half of
the 19" century with Maxwell’s equations describing electromagnetism, and
entered its golden period in the 1970s and 1980s, culminating with the estab-
lishment of the standard model of particle physics. However, the standard
model does not adequately explain some fundamental physical phenomena,
such as gravity. Attempts to go beyond the standard model have proved
quite challenging, given our available methods and computing power. In-
stead, we can look at simpler models in an attempt to better understand
the mathematical structures at hand. It is in this spirit that this thesis is
undertaken.

In this thesis, we describe two different projects, unified by the common
goal of understanding some mathematical aspect of simple field theories. In
the first, we consider Nahm’s equations, which arise from Yang-Mills gauge
theory. We construct exact solutions to those equations, subject to a simple
boundary condition. Chapters 2| [8] and [ are dedicated to this project.
In the second, we consider weak Jacobi forms and the growth behavior of
a certain sum of their Fourier-Jacobi coefficients. This growth behavior is
of interest to us as it has connections to the holographic behavior of a 2D
conformal field theory. Chapters [6] [7, and [§] are dedicated to this project.

In the following sections of this chapter, we elaborate on the motivations
behind each project and summarize our findings.
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1.1 Overview of Nahm’s Equations

Nahm'’s equations for antihermitian matrix-valued functions Ti(s), Tx(s),
T3(s) with s in some interval in R are

dTy

— =115 — 13715,

ds

dT.

—2 =TT — TV T3, (1.1)
ds

dT.

3 Ty, — T

ds

Nahm'’s equations are an integrable system, a system of nonlinear ordi-
nary differential equations with sufficiently many conserved quantities to be
solved by means of algebraic geometry. The starting point for this algebro-
geometric integration method is to discover a Lax representation with spec-
tral parameter ¢ for matrix-valued functions L and M such that the system
is equivalent to

d

EL(&C) = [L(57C)7M(57C)] (12>
This Lax equation implies the spectrum of L(s, () is independent of the vari-
able s, indeed trL* are the conserved quantities of the system. For Nahm’s
equations, ¢ € P! and we obtain an algebraic curve S in TP!

det(nl — L(s,¢)) =0, (1.3)

for na% € TP'. One then defines for generic L(s, () a line bundle F* over S
with fiber at ((,n) the n-eigenspace of L(s, () and one obtains from the flow
of L(s,() alinear flow F* in the Jacobian Jac(S) [I]. The method concludes
with writing a solution for the system in terms of an appropriate basis of
the linear flow. For some overviews on integrable systems from this point of
view, see [2] and [3].

One goal of this paper is to carry out the algebro-geometric method
of integration explicitly and obtain exact solutions to Nahm’s equations in
boundary conditions we specify. In general, exact solutions have proved dif-
ficult to construct but one classical solution is provided by the substitutions
T;(s) = fi(s)p; for p; a constant matrix and f;(s) a scalar function, in which
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case the Nahm equations implies p; must form a representation of su(2) and
the functions f;(s) must satisfy the Euler top system

fi = fofa,
f2= faf, (1.4)
fs = fifa

and exact solutions can then be given in terms of Jacobi elliptic functions
[4].

Nahm’s equations arose in the context of four-dimensional gauge theory
where Nahm in [5], [6], [7], [8], and [9] showed that solutions of the Nahm
equations are in 1-to-1 correspondence with monopoles, in the sense that
there is a sort of non-abelian Fourier transform, called the Nahm transform
or the ADHMN transform, that takes solutions of one system to the other.
We will later place this transform in its wider context when we discuss the
anti-self dual Yang-Mills equation.

We now introduce the monopole. The magnetic monopole was first pro-
posed by Dirac in [I0], a pointlike magnetic charge with its charge at the
origin of R? solving the Maxwell equations in electromagnetism, with a sin-
gularity at the origin. The monopole is a topological soliton and a major part
of its attraction for physicists is that its existence would complete the electro-
magnetic duality of Maxwell’s equations, putting electricity and magnetism
on equal footing, and provide an explanation for the observed quantization
of electric charge.

The monopole attracted considerably more attention after ‘t Hooft [11]
and Polyakov [12] demonstrated that non-abelian gauge theories admitted
magnetic monopoles as regular solutions on the whole R? space to the Yang-
Mills equations of motion. For a comprehensive survey on monopoles, see
[13]. Exact solutions for the gauge group G = U(1) were given by Dirac in
[10]. For G = SU(2) Prasad and Sommerfield [I4] discovered exact solutions
for the spherically symmetric monopole, and Prasad and Rossi [15] [16] dis-
covered exact solutions for the axially symmetric monopole. Exact solutions
in terms of elliptic functions are also known for monopoles having a Platonic
solid symmetry [I7] [18] [19]. Later, Braden and Enolski constructed exact
solutions for any charge 2 SU(2) monopole [20].

In general, there is rich array of tools to construct monopole and Nahm
data such as rational maps [21] [22], Backlund transformations [23], and the
twistorial approach [24]. Exact solutions are in general difficult to obtain, see
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the book by Weinberg [25] for a more complete history of such solutions. In
[26], Hitchin proved that there is a spectral curve associated to each SU(2)
monopole solution and that this spectral curve is the same as the one ap-
pearing in its Nahm counterpart. In [27], Hurtubise classified the spectral
curves for charge 2 SU(2) monopoles and in [28], he and Murray extended
the spectral curve correspondence to monopoles for all compact Lie groups
G. Here we will follow the program established by Nahm [7] and Hitchin
[26], illustrated in the diagram below.

Spectral Curve
Twistors Spectral Method

Nahm Transform

Monopole < » Nahm Data

To fully appreciate this story, we must give the context of Yang-Mills the-
ory in four-dimensions and situate the Nahm transform in this background.
In four-dimensional gauge theory, the anti-self dual Yang-Mills equation
(ASD) in a complex oriented Riemannian four-manifold is a completely inte-
grable system that arises naturally from Yang-Mills theory. Given a principal
G-bundle over the manifold and A a connection 1-form with Fy = dA+AANA
its curvature 2-form, the anti-self dual Yang-Mills equation is

*F'y = —Fjy, (1.5)

where x is the Hodge star operation on differential forms. The anti-self dual
equation arises in Yang-Mills theory as the minimizer of the action Sy, with

Syai[A] = /M Tu(F A +F). (1.6)

The four-dimensional space of interest to us is R*. Over this space, Ward
[29] applied the twistorial methods of Penrose to provide a paradigm for
integrability of ASD, and shortly thereafter its solution was given by the now-
famous ADHM construction [30] of Atiyah, Drinfeld, Hitchin, and Manin.

The space R* is in fact a hyperkahler manifold and in [31], the ASD equa-
tion is shown to be the hyperkahler moment map for the action of the gauge
group and the moduli space of solutions to ASD is then a formal hyperkahler
space. A hyperkahler manifold is a Riemannian manifold of dimension 4n
with holonomy in Sp(n) so that its tangent space is quaternionic. It has a
S? family of complex structures and may be thought of as the quaternionic
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counterpart of complex Kahler manifolds. Penrose showed that an arbitrary
hyperkahler manifold X admits a twistor space Tw(X) over the space X

Tw(X)

|

X

with S2 fibers given by the complex structures.
Ward used this in [29] to establish a 1-1 correspondence

g ¢« Ward o AGD

| |

Tw(X) —— X

between ASD connections and holomorphic bundles £ satisfying some addi-
tional conditions over the twistor space Tw(X). Thus, the ASD equation
is equivalent to a problem in complex analysis and then finally to one of
algebraic geometry.

The remarkable connection of ASD to Penrose’s twistor paradigm above
begins by expressing the ASD equation as saying that two operators commute
for every choice of complex structure on R*. Let us use the coordinates
(z!, 2% 23, %) on R, with the Euclidean metric and volume form dz! A dz? A
dz® A dx*. In a chosen trivialization, the connection one-form A may be
written A = Ajdx' + Asdr® + Asdx® + Aydx*. With this, ASD may be
written in an equivalent system of two equations:

The Complex Equation,

[Dl - iDg, D3 + ZD4] - O,
and the Real Equation,
[Dy 4Dy, (Dy 4 iDy)"] = [Ds — iDy, (D3 — iD,)].

Here, D, = D o is the covariant derivative, where D,® = 88;9”(1) +
[Alh (I)] .

One ought to think of this from the complexified point of view. Let
2z = x1—1x9 and w = x3+1xy4, then this particular choice of complex structure
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establishes an isomorphism between R* and C?. For D, = £(D; + iDs),
D,, = (D3 — iD4) the Complex Equation states [Ds, D] = 0.

But there is a S? & CP! family of complex structures on R* and there is
nothing special about our given choice of complex structure. Let ¢ € CP! be
the north coordinate, then the Complex Equation for the choice of complex
structure parameterized by ( gives

[D: — Dy(, Dy + D] = 0. (1.7)

Requiring the above commutation to hold for every choice (¢ of complex struc-
ture is equivalent to the ASD equation! For a specific choice of ¢ with cor-
responding complex coordinates z¢, w¢, solving the Complex Equation is not
sufficient to solve the ASD equation. We will use these operators extensively.

The ASD equation admits symmetry reductions by requiring the bun-
dle and its connection A to be invariant under some subgroup of the con-
formal group on R?*, and one has a corresponding quotient manifold and
reduced twistor space. Many well-known integrable systems are obtained
through such symmetry reductions, including the KdV and the nonlinear
Schroedinger equations (NLS)! The latter two systems are obtained by start-
ing with gauge group SL(2,R) and the (2,2) metric signature on R*. The
KdV and NLS then appear as the two possible cases from the symmetry
reduction of requiring the bundle and connection to be invariant under an
orthogonal timelike translation and a null translation. See the book [32] for
more details on these and other symmetry reductions.

The reduced form of holds and the 1-1 correspondence between
solutions to the reduced ASD equation and holomorphic bundles over the
reduced twistor space survives but with additional conditions on the bundle
coming from boundary conditions, reality structures, etc. The symmetry
cases we consider will be the abelian subgroup of the conformal group on
R* given by translations. Let I' be a closed subgroup of R* (the group of
translations) and TV = {f € R* | f(I') € Z} be its dual group.

There is a stunning correspondence called the Nahm transform between
ASD solutions over the quotient space X = R*/T" and ASD solutions over
the quotient space XV = R* /T* [33]. We loosely describe it here by drawing
analogues to the Fourier transform, but an explicit description of the Nahm
transform is given in Chapter

Recall that in elementary Fourier analysis, one has a position space R"”
and a momentum space R". The Fourier transform begins with a function
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f(z) on the position space, and obtains a function on R" x R™ by twisting f(x)
with the characters e”?™¥ then by integrating the twisted function over
the position space, f(z) is transformed to a function f(y) on the momentum
space defined by f(y) = [p, f(x)e 2"*Vdz,

The Nahm transform proceeds in an analogous manner. We take a bundle
with ASD connection over the manifold X, twist the ASD connection with
trivial connections parametrized by the dual manifold X*, and after finding
a certain object (the kernel of the Dirac operator coupled to the twisted
connection) on X x X* we push the object down to X* by integrating over
X and obtain the transformed bundle and ASD connection over the dual
manifold X*.

We emphasize here that the appropriate additional conditions on the
bundles £ and £Y are crucial and must be examined before establishing a
Nahm transform. They are highly nontrivial and much of the literature on
Nahm transforms is dedicated to this task, see the survey by Jardim [34] for
systems corresponding to different choices of I', such as calorons, Hitchin’s
equations, periodic monopoles, doubly periodic instantons, amongst others.
We then have a spectacularly rich interplay of analytical and geometrical
structures, illustrated in the diagram below.

m
— —

ASD APHMN, 416p gv

T T

Tw(X) — > X XV =+— Tw(XV)

The ASD reductions we consider are I' = R?, invariance in three directions
of R*, which reduces ASD to Nahm'’s equations on R*/R3 = R, and its dual
['* = R which reduces ASD to the Bogomolny equation on R*/R = R3.
These are the original spaces for which Nahm proposed his transform [5] [6].

The dimensional reduction of ASD on R* to R is Nahm’s equations. The
convention is to set invariance in the x,z9, x3 directions, relabel Ay = Ty,

(A1, Ag, A3) = (T4, T»,T3) and relabel x4 as simply s. Then ASD ([1.5) be-
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comes Nahm'’s equation,

d1y

— + 1o, 11| = |15, T

ds +[ 05 1] [ 25 3]7

dT:

d_32 + [T07T2] - [T37Tl]7 (18)
dT3

—= + |Tp, T3] = |17, T5|.

d8+[07 3] [17 2]

Traditionally, we also choose a specific gauge so that T = 0.

We will consider the case where the Nahm data (77(s), T2(s), T5(s)) are
n X n matrix-valued functions over the interval (0, 00) of R and the boundary
conditions we consider are that the limits Sli_glo T;(s), ii_{%sTj(s) exist and

furthermore,
lim (7 (s), Ta(s), To(s)) € adugu (i1, ir3,i73), i sTj(s) = Z% (1.9)
5—00 S—>

for a chosen irreducible representation o; of dimension n of su(2), i.e. [0;,0;] =
2i€;;,0%, and a chosen triplet (71, 72, 73) that is regular, in the sense that the
stabilizer of 7y, 79, and 73 form a maximal torus in U(n).

In general, Nahm’s equations might be over intervals (—oo, A1) U (A1, A2)U
(A2, A3)U- - -U(Ag, 00) with varying ranks for (77,75, 73) on each interval and
conditions on the jump data between any two intervals, describing how the
Nahm data changes from one interval to the next. A very nice approach to vi-
sualizing these interval and jump conditions uses the D-brane approach, first
proposed in [35]. We recommend [36] for an overview from this perspective.

The boundary conditions on Nahm’s equations can vary, from choosing
an arbitrary representation (not necessarily irreducible) of su(2) for the poles
to choosing irregular triplets (71,72, 73). The study of the moduli space of
solutions to Nahm’s equations was first undertaken by Donaldson [21] for
the interval (0,2) with irreducible su(2) representation at the poles, which
corresponds to the SU(2) monopole. More general boundary conditions were
considered by [37] and [3§], where it was clarified that the moduli space of
solutions to Nahm’s equations arises from intersections of the adjoint orbit
of 7 + im with Slodowy slices in the Lie algebra. See [39] for an overview
from this perspective.

The dimensional reduction of ASD on R* to R? is Bogomolny’s equation.
The convention is to set invariance in the x4 direction and relabel Ay = —®.
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Then ASD becomes Bogomolny’s equation,
D® = xFy. (1.10)

Here, we write the reduced connection as A = A dx! + Ayda® + Asdx® and
F4 is the curvature of this connection with D® the differential. We consider
the Dirac monopole, which is the counterpart under the Nahm Transform
of Nahm’s equations with our boundary conditions . The bundle is the
pullback to R*\ {0} of the Hopf bundle over S? with gauge group U(1). Since
U(1) is abelian, we may take superpositions of Dirac monopoles positioned at
different points in R? to form a Dirac multimonopole. The Nahm transform
from U(1) monopole (A, ®) data to obtain Nahm data requires finding L?
solutions 1 to the Dirac equation:

Dl = 0, (1.11)

where DI is a certain twisted Dirac operator coupled to the (A, ®) data.
Linear superpositions in (A, ®) do not lead to linear superpositions in the
corresponding D] so is difficult to solve for Dirac multimonopoles.
We reduce the problem to a linear system in Proposition and present in
Chapter [3| several methods for construction of these solutions.

1.2 Atiyah’s Conjecture

We introduce Atiyah’s conjecture for ‘stellar’ polynomials. A major moti-
vation of the thesis is to examine the relationship between the conjecture
and Nahm’s equations, in the hope that this will lead to a proof of Atiyah’s
conjecture. In [40], [41] Atiyah constructed a set of n polynomials in C[(]
built from any collection of n distinct points in R®. These polynomials turn
out to play a prominent role in the solutions to Nahm’s equations. We de-
scribe informally his construction, which will account for our labeling of these
polynomials as ‘stellar’.

Think of each point as a star, with its celestial sphere which we identify
with the Riemann sphere. Stand at a star, call it the sun, and look at all
the other points. From our vantage view, the other stars will appear as dots
on our celestial sphere — these are the directions! Associate to our sun the
unique monic polynomial with these dots as its roots. Now, do this for each
star so that each of the n stars has its own degree n — 1 polynomial. Atiyah
then conjectured that these n polynomials are always linearly independent.
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Formally, the polynomials are defined in the following way. Label n dis-
tinct points for our point configuration in R?. Given x; € R3, for every point
x; with j # ¢ we have a direction a;; € CU {oo} from z; to z;.

Definition 1.1. Define the i*" Atiyah polynomial, arising from the point z;,
to be the degree n — 1 polynomial

410 = TJ(€ - ai. (1.12)

where ( — 0o does not contribute a factor, that is, we consider it to be 1.

Atiyah’s Conjecture. For any point configuration of n distinct points in
R3, the Atiyah polynomials A1(C), Az(C),. .., A.(C) are linearly independent.

Consider a simple example.

Example 1.1. Suppose the n points are located along the z-axis and we
label them in descending order. At any point, the direction to all points
north of it is 0 and the direction to all points south of it is co. Thus the
Atiyah polynomial for the point i is A;(¢) = ¢*. The Atiyah polynomials
A1(¢) = 1,A5(¢) = ¢, A3(¢) = ¢3,..., A,(¢) = ("1 are, of course, linearly
independent.

The conjecture for n > 4 is hard. In its current state, it has been proved
for up to n = 4 and also for specific point configurations. Numerical evidence
was gathered for n < 20 in [42]. Eastwood and Norbury proved the conjec-
ture for n = 4 [43] using a combination of extensive Maple calculations and
geometric arguments, with Khuzam and Johnson providing a lower bound
on the determinant of the matrix of coefficients for the Atiyah polynomials
in [44]. Dokovic proved the conjecture for the point configuration where [ of
the points lie on the vertices of a [-gon in the plane and the remaining n — [
points lie on a line perpendicular to the plane passing through the centroid of
the polygon [45]. Mazur and Petrenko [46] proved the conjecture for vertices
of regular n-gons, convex quadrilaterals, and inscribed quadrilaterals.

The conjecture arose from Atiyah’s answer [40] to a problem posed
by Berry and Robbins [47] in their study of the spin statistics theorem from
the point of view of quantum theory. Here, Berry and Robbins considered n
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distinct particles idealized as points. In the spirit of Roger Penrose’s twisto-
rial ideas, the Atiyah polynomials A;(¢),. .., A,(¢) may then be thought as
‘quantum states’ associated to the classical point states di,...,d,. Let us
describe the mathematical setting.

Consider two spaces, the configuration space C,(R?) of n distinct ordered
points in R? and the well-known flag manifold U(n)/T™, where T™ is the sub-
set of U(n) consisting of the diagonal matrices. The configuration space is an
open subset in R3", obtained by removing the linear subspaces of codimen-
sion 3 where any two points coincide. The flag manifold U(n)/T™ represents
collections of n orthonormal vectors, each ambiguous up to a phase, in C".
The permutation group S,, acts freely on both spaces. On the configuration
space, S, permutes the points. On U(n)/T", S, permutes the orthonormal
vectors.

Berry-Robbins Problem: Is there a continuous map
Co(R?) — U(n)/T" (1.13)
compatible with the action of the symmetric group S, ?

Atiyah confirmed this in [40] using an elementary construction but also
gave a more elegant answer relying on the linear independence of the Atiyah
polynomials. We describe how the Atiyah polynomials, if they are linearly
independent, provide a solution to the Berry Robbins problem (L.13).

A set of n linearly independent vectors in C" can be orthogonalized in
a way compatible with S, i.e. not to depend on an ordering of them, by
taking U = M P~! from M = UP of the polar decomposition of the matrix
M representing the vectors, with P = (M*M)"/? [40]. Thus, equation (T.13)
is equivalent to defining n points in CP"~! that do not lie in a proper linear
subspace. We may think of CP"! as the space of polynomials of degree
less than or equal to n — 1 in the projective variable ( € CP! = S? by
assigning to the element [ag : a; : --+ : a,_1] € CP"! the polynomial
ap+ aiC + -+ ap,_1¢" Y, so that the map

Co(R%) — CP™!
{(71, . ,an} — {A1<C)v ce ’An(g)}

solves the Berry Robbins problem (|1.13)) so long as the Atiyah polynomials
are linearly independent.

(1.14)
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There are generalizations to the Berry-Robbins problem (1.13)) in two
directions. One is to generalize the space R? so that the points become time-
like lines in the Minkowski space [41] and another is to generalize U(n) to an
arbitrary compact Lie group [4§].

In the Minkowski space generalization, denote by C,(M?3*!) the configu-
ration space of n non-intersecting straight world-lines &1, ..., &, of n moving
stars (or particles). The Berry-Robbins problem generalizes to

Generalization 1 of Berry-Robbins Problem: Is there a continuous map
Cp(M*Y — U(n)/T™ (1.15)
compatible with the action of the symmetric group S, ¢

A generalization of the stellar polynomials provides a solution, again on
the supposition that they are linearly independent. On each worldline &; at
the time t;, the observer standing there sees on his celestial sphere the light
of the n — 1 other stars. These positions on the sphere describe the light
rays from the other stars, emitted at some time in their past, which arrive
at star ¢ at time ¢;. These marked points on the celestial sphere again corre-
spond to a;; € P!, which varies as ¢; varies, and we obtain our polynomials
A1(Q), ..., An(C) along with the generalization of Atiyah’s conjecture.

Generalized Atiyah’s Conjecture. For any configuration of n straight
non-intersecting worldlines in M>** and times t,, ..., t,, the Atiyah polyno-
mials A1(C), A2(C), ..., An(C) are linearly independent.

The generalization reduces to the Euclidean space R® we previously con-
sidered when all the stars are static. Another case of interest reducing to the
hyperbolic space H? is when the stars all begin at a common origin, i.e. a ‘big
bang’, and move at uniform velocities (straight lines in Minkowski space). A
proof that the Atiyah polynomials are linearly independent in the Hyperbolic
case for n = 3 is found in [40].

In the Lie-theoretic generalization posed and solved in [48], U(n) is re-
placed with a compact Lie group G and S, with its Weyl group W. Let T
be a maximal torus with Lie algebra . The Weyl group acts on G/T" and on
h. Define h% := h ® R? and denote by A the singular subset of > under the
Weyl action. This set A is the union of the codimension 3 subspaces that are
the kernels of root homomorphisms a ® 1 : h*> — R3. Then W acts freely on
h? — A and this space is the appropriate generalization of the configuration
space C),(R3).
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Generalization 2 of Berry-Robbins Problem: Does there exist a map f
f:(6*=A)—G/T (1.16)
compatible with the action of the Weyl group W ¢

The authors of [48] then solve problem in the affirmative using a
construction derived from Nahm’s equations. We describe the case of G =
U(n). The point configuration corresponds to a regular triple 7 = (7, 72, 73)
in h> — A. The map f is accomplished in the following way. Fix a choice of
maximal irreducible representation o of su2. Given a regular triple (71, 72, 73),
let us consider Nahm’s equations over the interval (0, 00).

As shown in Chapter [2 we obtain an unique solution to Nahm’s equations
if we prescribe the following boundary conditions: T}(s), T»(s), T5(s) have a
pole at s = 0 given by the irreducible representation ¢ and as s — o0,
Ti(s), Ta(s), T5(s) decay to some regular triple lying in the adjoint orbit of
T = (71,72,73). Then Sli_}Igo(Tl(s),Tg(s),Tg(s)) = g(11,70,73)g" ! for some
g € U(n). Note, g is not unique since we may multiply it on the right
with any element of the maximal torus T stabilizing 7, however the coset
gT is unique. We have then obtained a map from h — A to U(n)/T, and
one may check this map is compatible with the action of S,, and solves the

Berry-Robbins problem ([1.13)).

1.3 Objectives for Nahm’s Equations

Our objective is to build high rank solutions to Nahm’s equations with the
boundary conditions

SIL%O(Tl(S)’T?(S)’T?’(S)) € ady(n) (iT1, 172, 173), £1_r>r(1) sT;(s) = 5
for a chosen irreducible representations o; of su(2) and a chosen regular
triplet (71, 72, 73) and to use the resulting picture of the ADHMN Transform
on the Nahm and monopole sides to investigate Atiyah’s Conjecture (1.2)) on
stellar polynomials ((1.12]).

We are now able to

1. give an algorithm for finding Nahm solutions (7, T}, T3, T3) for matrices
of arbitrary rank n,
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2. find L? zero modes of the multimonopole Dirac operator, and

3. carry out the Up and Down Transforms of ADHMN for arbitrary charge
n multimonopoles of the Dirac U(1) monopole.

This is new in the literature. Currently there are no algorithms for finding
exact solutions to Nahm’s equations or for carrying out the Nahm Transforms
for general gauge group G. This resolves many questions about the Nahm
Transform for the G = U(1) monopoles (with a drawback that we do not
know the necessary gauge to set To = 0).

Specifically, we achieve the following results. Let L° denote the linear
flow in the Jacobian of S of the eigenline bundles over the spectral curve S,
from the algebro-geometric approach to solving integrable systyems.

1. The bundles L*®Og(n—2) in the Jacobian of S have no nonzero global
sections for s € (0, 00).

2. We give algorithms relying only on linear algebra to find an orthonormal
basis of sections of L*® Og(n —1) such that the corresponding solution
to Nahm’s equations satisfies the boundary conditions at s = oco. How-
ever, Ty is not zero and the boundary behavior as s — 0 has a phase
ambiguity.

3. We give a method to write a perturbation expansion of an orthonormal
basis of sections to the eigenline bundle L* ® Og(n — 1).

4. Lamy-Poirier showed that a collection of polynomials satisfying a cer-
tain set of algebraic equations can be used to construct L? zero modes
of the monopole Dirac operator [49]. We linearized these equations and
showed they are sections of L* ® Og(n — 1), thereby proving the exis-
tence of n linearly independent such polynomials and their construction
is given using the algorithm in item 3. above.

In Chapter [2 we discuss Nahm’s equations with our boundary condi-
tions. We prove uniqueness of the solution by considering Nahm’s Real and
Complex equations. The solution to the Complex equation is well known, it
corresponds to the intersection of the Slodowy slice given by the boundary
conditions at s = 0 with the adjoint orbit given by boundary conditions at
s = 00, see [48] for our case or e.g. [36] for more general boundary conditions.
For the Real equation, we adapt analytical results from [2I] and [37] to show



CHAPTER 1. INTRODUCTION 22

that for every family of solutions to the Complex equation, there exists a
unique solution that also solves the Real equation.

We continue Chapter [2[ with the proof that the line bundle L(n — 2)
over the spectral curve S has no nonzero global sections by considering the
behavior of sections as s — oo. Hitchin proved this result for spectral curves
of the nonsingular monopoles of the gauge group G = SU(2) [26], but our
result is new for monopoles of the gauge group U(1), which are necessarily
singular.

In Chapter |3| we present the algorithm to build high rank solutions to
Nahm'’s equations using sections of Lg(n —1). We adapt Bielawski’s idea for
constructing an orthonormal basis of sections [50]. There, the basis is con-
structed via theta functions (which are polynomial functions for our spectral
curve) and finding zeros of such theta functions. In contrast, we present
a linear system for our basis. In particular, this method does not require
finding roots of polynomials of degree n — 1 (we do not however discover the
special gauge necessary to set Ty = 0).

We continue in Section to present a perturbation expansion for sec-
tions of Lg(n — 1) in terms of the exponentials of the transition function for
Li(n —1). We give a demonstration for the case n = 2 and n = 3.

In Chapter [, we introduce the Dirac monopole as well as the Down
Transform of the ADHMN construction. We discuss Lamy-Poirier’s ansatz
for the L? zero modes of the monopole Dirac operator [49]. We linearize the
system of algebraic conditions presented there and reinterpret his ansatz in
terms of a basis of H°(L§(n — 1)). We affirm in the positive Lamy-Poirier’s
conjecture that this method produces n zero modes by showing that this
statement is equivalent to the fact h°(L{(n — 1)) = n, proved in Corollary

3.4

1.4 Motivation: Siegel Modular Forms and
Black Holes

In this section, we discuss the motivation for the second part of the thesis,
and we adopt an informal style. The precise definitions are given in later
sections.

A weak Jacobi form is a holomorphic function ¢y (7,2) = H x C — C,



CHAPTER 1. INTRODUCTION 23

with H the upper half plane, satisfying the transformation rules

at +b z o a b
et +d’ c7'—|—d) (CT+d>k tCT+dgpkt<T 2), (c d)ESL(2’Z)

Pkt (7—7 z+ AT + H) = e_iQWt()\2T+2)\Z)90k,t (T7 Z)a ()‘7 :u) € ZZ

@kt(

(1.17)

and having a Fourier-Jacobi expansion of the form

> e gy, (1.18)
n,l€Z
4tn—12>—12

with ¢ := e*™™ and y := 2™,

The coefficient c(n,l) has a discriminant equal to 4tn — [2. The terms
c(n, 1)g™y" with 4tn — 2 < 0 are called polar terms.

In this thesis, we study weak Jacobi forms of weight £ = 0 and our chief

interests are the polar terms as well as the growth behavior of the sums

fap(n, 1) Zc nr + ar?, 1 — br) (1.19)

rez

of Fourier-Jacobi coefficients.

The growth behavior of the Fourier coefficients of an automorphic form is
a common theme in mathematics, and the work that our project undertakes
is naturally situated here. The most classical example of such mathematical
investigations is, perhaps, the asymptotics of the partition function p(n).
Indeed, the generating function P(q) = )  for the partition function is

n=0

given by P(q) = %, where 7)(7) is the Dedekind eta function, a modular
form of weight 1/2. Thus, the question of the asymptotic behavior of p(n)
is precisely the question of the growth behavior of the Fourier coefficients
of T) Of course, Hardy and Ramanujan famously proved in 1918 that

pn) ~ phz exp(my/2).

Our interest in the growth behavior of f,,(n,l) for a weak Jacobi form
©o,m comes from the fact that it determines the asymptotic growth of the
Fourier coefficients of a Siegel modular form lifted from ¢y ,,,. We will expand
on this later in the section.
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To consider the possible behaviors of f,;(n,[), we note that the asymp-
totic growth of the Fourier-Jacobi coefficient ¢(n,[) for large discriminant
is

Amin
c(n,l) ~ exp W\/%(thn —1?2), (1.20)

where Ay, is the maximal polarity of the weak Jacobi form [51 Equation
B.6]. Then roughly speaking, if there are not substantial cancellations inside
the sum of f,;(n,1), then f,,(n,l) will be dominated by the most polar term
in its sum and have exponential growth. However, in nongeneric cases, there
are significant cancellations between the coefficients in the sum of f,,(n,)
leading to subexponential growth in f,,(n, ).

Now, let us return to our interest in the sums f,p(n,l) of (L.19). As
mentioned, they determine the growth behavior of the Fourier coefficients
for a class of Siegel modular forms, which we now explain.

Let ®4(2) : Hy — C with Q = <7z_ Z) be a Siegel modular form of weight

k and degree 2, i.e. it is a holomorphic function satisfying the following
transformation law under the action of (& 7) € Sp(Z):

Dy, ((AQ+ B)(CY+ D)) = det(CQ + D) 0y (€2). (1.21)

®,, is, then, periodic in each variable 7, z, and p. Writing p = > and taking
its Fourier expansion

OL(Q) =D il 2)p', (1.22)

The weak Jacobi form g .(7, 2) admits a lift [52] to a Siegel modular form
(I)gp :Hy — (C,

D, () = Exp-Lift(p) (), (1.23)

which transforms as under the action of a subgroup of Sp,(Z), rather
than the full group. We summarize the details of this lift in Chapter 6.

The sums f,4(n, ) of indicate the growth behavior of the Fourier
coefficients d(m,n,[) with negative discriminant 4mn — [*> < 0 of the mero-
morphic Siegel modular form

1

Exp-Lift(p

1) = Zd(m,n, Dp"q"y', (1.24)

m,n,l
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where here we expand the Fourier coefficients in the region Im(p) > Im(7) >
Im(z) > 0.

For terms with very large negative discriminant, the possible behaviors
[53] [54] are

(i) log|d(m,n,l)| grows linearly, in which case d(m,n,1) is fast growing,

(i) log|d(m,n,l)| grows as a square root, in which case d(m,n,l) is slow
growing.

The growth of the coefficients d(m,n,l) with negative discriminant de-
pends on the underlying weak Jacobi form g, indeed they depend on the
sums f,5(n, ). Roughly speaking, slow growing f,,(n,[) leads to slow grow-
ing d(m,n,l) and fast growing f,,(n,!) leads to fast growing d(m,n,l). We
summarize more precisely this relationship in Chapter 6.

Now, we remark on the physical motivation behind our investigation into
these mathematical objects. However, we make a note that the findings of
our project are purely mathematical, and the following physical discussion
will not appear as part of our results.

The exponentially-lifted Siegel modular forms arise in the string-theory
of black holes, where their Fourier-coefficients d(m, n, ) count the dimension
of certain eigenspaces.

A classical example is the Igusa cusp form [55]

(I)l()(Q) = EXp-Lift<2¢071), (125)
where the Fourier coefficients (7, ) of

@101( = > (T, 2)p" (1.26)

m=—1

turn out to be the partition functions of degeneracy 1/4-BPS black holes in
four-dimensional N’ = 4 supergravity on a type II compactification on the
product of a K3 surface and an elliptic curve.

In general, a weak Jacobi form ¢g,(7, 2) appears as the elliptic genus of
a worldvolume theory of a propagating string in a Calabi-Yau manifold. If
©o, is the elliptic genus x of a conformal field theory on a manifold M, then
¢, = Exp-Lift(yo,) is the generating function for the elliptic genera of the
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symmetric orbifolds of that theory,

=Y p"x(7, 2 Sym” (M), (1.27)

r=0

and the Fourier coefficients of the reciprocal q)%a correspond to black hole
states. For a review of weak Jacobi forms and Siegel modular forms in string
theory, see [56] and [57].

The physical significance of the growth behavior of the coefficients d(m, n, [)
for 5~ is that it indicates whether the symmetric product orbifolds are can-
dldates for marginal deformation to a supergravity CET: ¢ lifts to a viable
candidate whenever d(m,n,[) is slow-growth [58].

1.5 Objectives for Jacobi Forms

Our objectives are to further explore the relationship between polar coeffi-
cients and the weak Jacobi form, and to investigate the space of weak Jacobi
forms with slow growing f,s(n,l). We are guided by the following questions.

Weight 0 weak Jacobi forms are uniquely determined by their polar terms.
However, this is an overdetermined system as for a fixed index m, the number
of polar terms exceed the dimension of weak Jacobi forms. This leads to the
question:

Question 1. Which polar terms determine a weak Jacobi form of weight 0
and index m?

In addition to this, we are also motivated by the following conjecture from

53).

Conjecture 1.1. For every indexr m, there exists a weak Jacobi form ¢g
that has slow growing fou(n,1) about its most polar term y°.

This leads us to consider the question:

Question 2. Given a,b € Z, what is the space of weak Jacobi forms that
have slow growing f,p(n,1)?

In pursuing these questions, we obtain the following results in this thesis.
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1. In Proposition [6.2] we gain an analytic bound on the number of polar
terms p(m): for any € > 0 there exists a computable C, such that the
total number of polar terms p(m) for index m satisfies the bound

(1.28)

2. In Proposition [6.3] we prove that the polar coefficients of polarity <
—m/6 uniquely determine the weak Jacobi form.

We define a largest value P(m) for index m such that the polar terms of
polarity < —P(m) uniquely determine the weak Jacobi form g .

3. We compute P(m) for 1 < m < 61, displayed in Figure [6.1}

4. We propose Conjecture [6.6, which if confirmed, implies
|P(m) — %| < Cm!/? (1.29)
for some constant C.

In our investigations of slow growing fo,(n, ), we discovered a large class
of slow growing forms from quotients of theta functions and we obtained the
following results.

5. We implement a fast algorithm for computing the table of polar coef-
ficients for a basis of Jy .

6. We produce an enlarged table in Table[7.1]for index 1 < m < 61, listing
the dimension of the space of weak Jacobi forms with most polar term
y" that have slow growing fo(n,[). This table expands Table 2 of [59)
pp-19], which contains data for index 1 < m < 18.

7. We give a simple criterion for slow growth of a theta quotient.

8. In Proposition we classify all single quotient theta functions that
are slow growing about its most polar term 7°.

9. In Lemma [7.8] we prove the conjecture in [60] that the class of weak
Jacobi forms from the M = 2 Kazama-Suzuiki models are slow growth.
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10. We produce Table[7.2] containing the dimensions of slow growing theta
quotients for quotients of size < 7.

Unlike for sums fo,(n, 1), the behavior of the sums f, ,(n,!) with a > 0 do
not appear in the literature. A big obstacle in their investigation is, unlike
fon(n,1), we are required to compute the Fourier-Jacobi expansion of ¢ to
very high order to be able to compute f,;(n,l). However, we were able to
make substantial computational progress and create new numerical findings,
in addition to some limited analytical results. We summarize our progress
below.

11. We are able to give a fast implementation for computing the Fourier-
Jacobi coefficients to very high order, partially based on a new formula
in Lemma for a generating function.

12. Based on our numerical findings, we propose Conjecture that the
behavior of f,(n,!) is the same as that for f;,(n,l). That is, fo(n,1)
grows either exponentially fast in n,[ or they attain only finitely many
distinct values.

Part II of this thesis is organized as follows.

In Chapter [0, we explore the interaction between the weak Jacobi form
and its polar part and we give the results of items 1-4. We compute P(m) for
1 <m <61, displayed in Figure as the difference between P(m) and the
dimension of Jy,,, displayed in Figure . The latter scatterplot shows that
for many m, the polar part of polarity < —P(m) does not overdetermine the
space of weak Jacobi forms so that every polar part of polarity < —P(m)
indeed has a corresponding weak Jacobi form.

We discuss an upper bound P*(m) for P(m), where P (m) is such that
the number of polar terms of polarity < ;¢ equals the dimension j(m)
of the space of weak Jacobi forms of weight 0 and index m. Based on the
computed data of P*(m) for 1 < m < 1000, we propose Conjecture
which bounds P*(m) from above by 2 + Cm!/2,

In Chapter [7, we further develop the exploration of weak Jacobi forms
with slow growing fo,(n,l). We expand Table 2 of [59, pp.19] to index
1 < m < 61, listing the dimension of the space of weak Jacobi forms with
most polar term y° that have slow growing fo,(n, ).

We discuss a class of weak Jacobi forms given by quotients of theta func-
tions. This class of functions is found to contain a large amount of slow
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growing weak Jacobi forms. In Proposition[7.7] we classify all single quotient
theta functions that are slow growing about its most polar term .

We find a simple criterion for a quotient of theta functions to be
slow growing about its y” term and we use this to produce a table of the
dimensions of slow growing theta quotients for quotients of size < 7. This
criterion is also used to prove the conjecture in [60] that the class of weak
Jacobi forms from the M = 2 Kazama-Suzuiki models are slow growth, and
as another application, we give a simplified proof of [60] that the weak Jacobi
forms from the minimal models of type A, D, E are slow growing.

In Chapter we discuss weak Jacobi forms with slow growing f, »(n, ) for
a > 0. The exploration of f,;(n,l) for a > 0 was suggested in [61] but was
previously inaccessible as computation of f,(n,l) requires Fourier-Jacobi
expansions of the weak Jacobi forms to order 1000 or more. For low index
1 < m < 12, we compute some values of f,;(n,l) for ¢®y® of relatively low
polarity and present a table of the dimensions of slow growing weak Jacobi
forms.

We find that the growth characteristics of f,;(n, () are precisely the same
as fop(n,1), that is, f,p(n,l) either grows exponentially fast or it attains only
finitely many values.

For fo4(n,1), this is explained by the fact found in [61] that the generating
functions for fy,(n,!) are modular forms of weight 0 and that these modular
forms are constant functions whenever fj,(n, () are slow growing. In this case,
fon(n, 1) attains only finitely many distinct values as fj,(n, 1) is nonzero only
when it is the constant coefficient of these generating functions.

For f,s(n,l) with a > 0, generating functions are not known but we
discover some special cases where the generating functions may be given in
terms of specializations of an Atkin-Lehner involution of the underlying weak
Jacobi form g .

In the Appendix, we present the essential Mathematica code we used
for obtaining our numerical results. We chose to use Gritsenko’s generating
functions ¢g 1, @02, P03 for the space of weak Jacobi forms of weight 0. We
present the code for fast computation of the matrix of polar coefficients of
a basis of the space of weak Jacobi forms of weight 0 and index k. This
extends the indexes m that are reasonable (less than two weeks) to compute
from m <20 to m < 71.

We present a novel formula in Lemma that allows for fast Fourier-
Jacobi expansion of the generating function ¢y 3. We then present the Math-
ematica code for fast Fourier-Jacobi expansion of all the generating functions
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for a basis of the space of weak Jacobi forms that allows for the computation
of fup(n,l) with a > 0.



Part 1

31



Chapter 2

Nahm’s Equations

2.1 Introduction

We want to solve Nahm’s equations on the real interval (0, oo) with specified
boundary conditions that correspond to the Dirac U(1) monopoles of charge
n [5]. The problem is to find antihermitian n x n matrix-valued functions
Ti(s), Tx(s), and T3(s) over the interval (0, c0) solving

dT;

d_Sl - [T27T3]7

dT:

d_82 = [T37T1]7 (21>
dT:

d_; = [T17T2]7

with the following boundary conditions at infinity and zero for j = 1,2, 3:

ZO']'

lim (7' (s), T5(s), T3(s)) € ady(n)(iT1, i2,i73), lir% sT;(s) = - (2.2)
S—r

S§—00
The triplet i0; is a chosen irreducible unitary rank n representation of su(2):
lioy,109] = —2i03 with o3 = diag(n—1,n—3,...,—n+1)and oy = %(01—1-2'02)
with (04);: = /j(n — 7)0(41):- The triplet i7; = diag(ipj,ip, ..., ip}) is
regular, i.e. the set of matrices that commute with all three is a maximal
torus T of U, here T is the set of all diagonal matrices.

We note that (121, 22 13} as well as (i, i72,473) are model solutions to

Nahm'’s equations. Analytically, we require the Nahm data to satisfy the

32
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conditions
w0 ~1
Tj(s) = 55 Ti97ig + bi(s), (2.3)
for some gy € U(n) and b;(s) € L?[0,00). Infact, given these conditions,

bi(s) € L*°[0,00) thanks to the two lemmas below from the literature.

Lemma 2.1 ([62]). Suppose the Nahm data (T1(s),T2(s), T5(s)) satisfies the
following condition.

10
sT; — 2—; € L?[0, ), (2.4)
for some € > 0. Then
ST — gﬂ e L([0,€]). (2.5)
s

The previous lemma deals with the behavior of the Nahm data near the
pole. Asymptotically as s — oo, the solutions (7}, T3, T3) approach their
limit exponentially fast with the precise statement given by the following
lemma.

Lemma 2.2. Let (T1,T3,T3) satisfy Nahm’s equations with the boundary
condition (2.2)) where ; is a regular triple and lim Tj(s) = goiT;g; "' for some
S§—00

go € U(n). Then away from s = 0, e.g. for s > 2, there exists a constant
n > 0 depending only on (11, 79, 73) such that |T; — Ad(go)iT;| < const x e .

Proof. This result is [37, Lemma 3.4]. The reason is that Nahm’s equations
are the gradient-flow equations for the function

¢<T1,T2,T3) = <T17 [TQ,Tg]) = tI’Tl[TQ,Tg],

where (, ) is an Ad-invariant inner product. The critical set C' of this flow
consists of triples (71, Tz, T5) which commute and the condition of regularity
makes C' a smooth manifold in the neighborhood of Ad(go)(iTy,i72,i73), then
exponential decay holds in general for any gradient system in the neighbor-
hood of such a ‘hyperbolic’ critical set with non-degenerate Hessian. Any
1 smaller than the smallest positive eigenvalue of the Hessian of ¢ will do.
However, if we do not have a regular triplet then this behavior will not hold
in general. Simple counterexamples are in [37, pp.207]. O
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It is useful to extend the equations by introducing a fourth L?[0,c0)
antihermitian matrix 7y(s) and writing

dT;

—_— Ty, Ty| = |15, T:

P + [To, Th] = [13, T3]

dT:

_d32 + [T0, 1] = [T3,11] (2.6)
dTy

—_— Ty, Tyl = Ty, Ts|.

ds+[0’ 3] = [T1, T3]

These new equations and corresponding boundary conditions are invariant
under an action of the group G of g : [0,00) — U(n) with ¢g(0) = 1 and
lim g(s) — diagonal. The action of G on (Ty, 11,15, T3) is
S§—00

Ty — gTog™" — 997",

2.7
T, —gTig™", i=1,2,3. &7)

Analytically, we take the gauge group to be

G={g:[0,00) = U(n) | g(0) = 1,812209 = diagonal, g~ '(s)g(s) € L*[0,00)}.
(2.8)

2.2 Boundary Conditions

This section is devoted to the proof of the following theorem:

Theorem 2.3. There ezists a unique solution (T1,T5,T3) to Nahm’s equa-
tions with the boundary conditions
lim (T1(s), T5(s), T5(s)) € ady) (i1, 072, 973), lim sT;(s) = 95

S$—>00 s—0 2

with regular triplets iT; and chosen irreducible representations o; of su(2) as
in (22).

The theorem was proved in [48, Section 6]. We provide an explicit proof by
piecing together results found in the literature. In [2I], Donaldson considers
the interval (0, 2) with boundary conditions on both sides given by poles with
residues that are irreducible representations of su(2). In [37], Kronheimer
considers the interval [0,00) with boundary condition given by a regular
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triple at infinity but regular behavior at s = 0. Our case is the interval
(0,00) with an irreducible pole at s = 0 and a commuting triplet at infinity,
so we will adapt both to our situation. The standard method of proof is
to choose a complex structure, thereby losing the cyclic symmetry between
T1,T,, Ty in Nahm’s equations, and looking at a system equivalent to Nahm’s
equations of two equations called the Complex and Real equations. One then
shows that every solution to the Complex equation has a unique complexified
gauge transform that transforms the solution into one that satisfies both the
Complex and Real equations.

2.2.1 The Complex Equation

Set X = —iTy + 15 and A = Ty — iT3, which takes values in the complexified
Lie algebra M, (C) of u(n). Two of Nahm’s equations combine to a single
equation called the Nahm’s Complex equation,

X =[x, A. (2.9)

The action of the gauge group extends to the gauge group G¢ taking
values in the complexification G L(n, C) of U(n) which preserves the Complex
equation . The complexified gauge group acts on (X,.A) by g- (X, A) =
(gXg~ "' gAg™" —gg7").

The Complex equation is easily solved since it is locally trivial, indeed
the Lax equation for (X,.A) implies that the spectrum of X does not
evolve in time and the solution can be given locally as X (s) = g(s)X g !(s),
A(s) = —g(s)g~*(s) for some choice of constant matrix X and g(s) any
GL(n,C)-valued function. We will construct a solution (X, A) of the complex
equation with the properties:

(% + O(sY), 2+ O(s%)) as s —» 0

2.10
(11 + 12, 73) for 2 < s < 0. (2:10)

(&, A)(s) :{

The existence of such a solution follows from the local triviality of the complex
equation. We use the exposition as in Gaiotto-Witten [36].
Near s = 0, we have from the boundary conditions of Theorem
03

il_lg% sX(s) = oy, £1_r)1(1) sA(s) = 5 (2.11)
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We may use a complex gauge to transform .A(s) to only its pole part, i.e.
A(s) = 32. Indeed, this is equivalent to solving the linear ordinary differential
equation

- _ % 98 _ %3
g—g(.A 23) +928 257
with initial condition g(0) = 1. In particular, A(s) — 52 € L*([0,¢) so the

terms having a singular point at s = 0 are ¢3¢ and 2g. The limit il_r)ns"—z is

2s 2
clearly finite so s = 0 is a regular singular point, and the solution goexists
[63, Section 2].

The weights of %* under the action [-, %] on the set of n x n matrices are
-n+1,...,-1,0,1,...,n — 1. The matrix E,; = ((L-péjq) is a weight vector
of weight p — ¢ under this action. To aid in visualization, we write a n X n

matrix below and assign to its pq entry the weight of E,,.

0 -1 -2 ... —n+1

1 0 -1 ... —n+2

2 1 0 : ) (2.12)
n—1 n—2 ... 0

Take as basis V,, the matrices of definite weight

Vi, %] — v, V., (2.13)
where Vo € {—n+17_n+2)"'7_170717"'7n_ 1} Now with A(S) = %7

let us solve the Complex Nahm equation on the interval (0,1). We may write

X(S> = Zeavafo(S)a (2.14)

with arbitrary powers u, and complex coefficients €,. The Complex Nahm
equation then states

X(s) = [X(s), 5]
S eVufuls) = Y vaeavu e (2.15)

S

thus fo(s) = cas™.
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The Complex Nahm equation on the interval (0,1) then has the general
solution
03
X = aVas™, A= —. 2.16
Since X must have prescribed pole, we exclude the ineligible negative weights
and we have

0+ v, 03
x =2 Vst 73 2.1
S+Z€VS A (2.17)

25’
Vo >0

The form A = 2 is still preserved by remaining gauge transformations

generated by the infinitesimal gauge transformations ¢

6= faVas", (2.18)

Vo >0

with arbitrary coefficients f,. To see this, the gauge transformations pre-
serving 22 satisfy the equation

03 _1 .1 03
9%9 —499 = %5
- 03] (2.19)
g - g7 28 I

and the same argument as in applies.

¢ shifts X by [X,¢]. The matrix o, lowers E,, of weight p — ¢ to the
weight space p — g — 1. Since the weight space of the weight k£ has dimension
n— |k|, we may use such gauge transformations to remove everything from X
except the pole and subdiagonals with constant coefficients. Every solution
to the Complex Equation on the interval (0, 1) with the prescribed pole
at s = 0 given by is then gauge equivalent to the solutions

a st 0 0
bs a st 0
X(s)=| cs* bs a S, A= ?. (2.20)
s
o1
ds"1 es"? .. a

Next, we incorporate the prescribed boundary condition at infinity.
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Lemma 2.4. There is one and only one solution (X, A) to the Complex
Equation satisfying the conditions (2.10)), i.e.

(% +0(s), 2 +0(s)) as s — 0
(11 4 im0, 73) for2 < s < o0,

(X, A)(s) = {

modulo smooth complex gauge transformations g : [0,00) — GL(n,C) with
support in [0, 2].

Proof. Let X(s) be a solution to the Complex equation with the conditions
. We showed X'(s) can be gauged using complex gauge transformations
to the form on an interval (0,1 + €) with 0 < e < 1. We extended the
right endpoint of the interval to be slightly larger than 1. Since X'(s) satisfies
the Lax equation , its spectrum does not evolve in s.

The boundary condition at infinity gives the spectrum of X so the co-
efficients of its characteristic polynomial are determined. A formula for the
2" term of the characteristic equation det(z1 — A) = 0 for a matrix A is

trA k—1 0
trA? trA k-2
1
' trAF=1  trAk—2 . 1
trAF  trAkF-1 trA

Appying this formula to the matrix X' (1) of ([2.20]),

aq 1 0O 0 ... 0

a9 ay 1 0 N 0
as a9 aq 1 : (2 21)

0

a/n—l e al ]_

A, Ap—1 N g A1

the coefficient of "% in its characteristic polynomial has a;, as a linear term
along with terms a; for j < k. For example, the coefficient of 2"~ is —na;.
This implies that for a given spectrum of X'(s), the entries {ax | 1 < k < n}
of X(1) are uniquely determined.

Approaching s = 1 from infinity, X' (1) = g(7; +i72)g~! for some constant
complex gauge g. One may then take any smooth path g(s) in GL(n,C) with
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support in [1,2] from this fixed ¢ to the identity matrix 1, and any other
choice of smooth path is gauge equivalent. This path allows the Complex
solution over [2,00) to flow to the Complex solution over (0, 1], the resulting
solution then satisfies the Complex equation over the entire interval (0, 00).
We have shown both existence and uniqueness of the solution to the Complex
equation, up to complex gauge transformations. ]

Let us describe in broader terms the features in the proof of the above
lemma. Matrices of the form are known as the Slodowy slice S, . It
is transverse to the nilpotent orbit of o ; we give the formal definition of the
Slodowy slice as in [64], which will be slightly different than the matrices of
(2.21]).

Definition 2.1. Let p : su(2) — g be a Lie algebra homomorphism with
complexification p© : 5[(2,C) — g© and let the resulting triple be (e, h, f)
where

[h,e] =2e, [h, f]==2f Ile f]=nh. (2.22)
The Slodowy slice corresponding to p is
S(o) = 1 + Cle), (2.23)
where C(e) denotes the centralizer of e in g©.

The set of matrices in (2.21)) is precisely the Slodowy slice S(p) for the
regular nilpotent matrix

01 0 0
00 1 0
P+ = 0 0
1
00 0

This Slodowy slice is, of course, gauge equivalent under a complex gauge
transformation to the Slodowy slice S(o) for the nilpotent matrix o of the
irreducible unitary su(2) representation at the pole of our Nahm data.

The Slodowy slice transverse to a regular nilpotent matrix has the prop-
erty that it meets adjoint orbits at a single point, which we demonstrated in
the proof of the lemma. The boundary conditions at infinity fix the spectrum
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of X(s) so that X (s) resides in the adjoint orbit O, ;. The boundary con-
ditions at s = 0 state that, after applying complex gauge transformations,
X (1) belongs to the Slodowy slice S,,. Since Slodowy slices intersect ad-
joint orbits at a single point, X'(1) is uniquely determined. Indeed, functions
X (s) of the form are in one-to-one correspondence with points in the
Slodowy slice S,, via X'(1) € S, .

2.2.2 The Real Equation

Now we discuss the Real equation. As mentioned, the Complex equation
restates two of three of Nahm’s equation. The third of Nahm’s equations is
equivalent to the Real equation

P A) = di‘ls(A* +A) + A AT £ XX =0, (2.24)

Given a solution (Ay, Xp) of the Complex equation , we seek a com-
plex gauge transform g such that g(Ag, Xy) = (g Aog™' — g9, gX g ) solves
the Real equation (2.24). As in Donaldson [2I, Section 2], we will consider
F(g(X,A)) as a functional of GL(n,C)-valued maps g(s). F(g(X,A)) is
zero when g(X, A) satisfies the Real equation. The Real equation is invari-
ant under the group of real gauge transformations, i.e. U(n)-valued maps
g(s), thus the functional F(g(X, A)) depends only on the projection h = g*g
of g as a path in the complete Riemannian manifold H = G¢/G the set of
positive hermitian matrices.

Proposition 2.5. For the solution (X', A") to the Complex equation as in
(2.10), there is an unique bounded complezified gauge transformation g with
g(0) =1 such that g(X', A') satisfies the Real equation and g(A’) = gA'g~' —
g~ is hermitian.

Proof. First, we work on the interval [1/N, N] and write (X, A) = g(X", A").
As in Proposition 2.8 of [21], the equation F(g(X’, A’)) = 0 on the interval
[1/N, N] is the Euler-Lagrange equation for the functional F' of ¢ given by

I \
£x(o) = [ 190) + o) + 209 (2.25)
1/N
The Lagrangian integrand, when written in terms of h = g*g, is the standard
G L-invariant Riemannian metric | - |3, with a smooth nonnegative poten-
tial V(h) = tr(X’h~'X"™h) on the complete Riemannian manifold H. By
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the usual calculus of variations, there exists an extremizing path hy(s) on
[1/N, N] taking the value 1 at the end points that minimizes the Lagrangian.
Taking gy = (hy)Y?, the transformed gy (X", A’) then satisfies the Real
equation.

For h € H a positive n X n hermitian matrix with eigenvalues {\;}, define
®(s) = logmax(\;)1<i<n € R. Using the following differential inequality
found in Lemma 2.10 of [21] that depends only on h = g*g for a given fixed
(X', A):

d’ ; n Y
T2 2(h) = =2(|F (9(X), g(A) [ + [F(x", A))),
P A A (2.26)
3 2(h7) = =2 F (9(X), g(A) | + [ F (X", A))),
one obtains uniqueness of Ay and an uniform C° bound on gy so that hy =
gngn has a C limit ho, as N — oo by the following convexity argument.
Let gy be another gauge of the transformed solution also satisfying the real
condition with giy(1/N) =1,¢%\(N) = 1. Set by = g g As in Donaldson,

we can assume gh(s) = diag(ef*®), e2() . et () with t1(s) > to(s) > -+ >
tn(s). We then have t; = ®(h) and t,, = —®(h™!'). By (2.26), we have

d*t

d_21 Z 07

dé (2.27)

- <0.

ds? —
Note, t; = 0 and ¢, = 0 at both endpoints s = 1/N, N so t1(s) < 0 on
[1/N,N] and t,(s) > 0 on [I/N,N]. By definition, t; = t; = --- =

so that Ry is the identity. The uniqueness reflects the more general fact
that in any simply connected manifold with a complete Riemannian metric
of negative curvature and a positive convex potential function, there is a
unique stationary path for the corresponding Lagrangian between any two
points.

The gauge transformation g., = (he)'/? then yields a solution to the
Real equation over the whole interval (0, 00). While A, is unique, there may
be other gauges g with h,, = g*g. Every such gauge ¢ differs by an unitary
gauge transformation. The requirement that g(.A) is hermitian means Ty = 0
and this fixes the unique g. O

Remark 2.1. The above proposition is a proof of existence and uniqueness
for h(s), proved by Donaldson. We want to note that Theorem 5.1 of [65]
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has improved on this existence result of Donaldson, by giving an explicit
construction for the function h(s) for any spectral curve.

Lemma 2.6. The transformed solution (X, A) = g - (X', A") of the above
proposition provides (11,1, T3) solving the Nahm equations (2.1) and
satisfying the correct boundary conditions (2.2)) at s =0 and at infinity.

Proof. Taking the anithermitian and hermitian parts of (X,.A) gives the
Nahm solution (7g,7T1,75,7T3). Since A is hermitian, 7o = 0. The gauge
satisfies g(0) = 1 so the boundary conditions of T3, T5, T3 at s = 0 is satisfied.
The gauge g is bounded so away from s = 0, we know that this (77, Ts, T5)
is bounded. As observed in Lemma , (T, T3, T3) satisfy the gradient-flow
equations for the function (17, Ty, T3) = trT}[T5, T3] so any bounded solution
must have a limit point as s — oo and this must be a critical point of ¢, i.e. a
commuting triple. Thus, lim_, T;(s) = i; for some 7; a commuting triple.
The triple (i7y, i75,475) must lie in the same adjoint orbit as (i7y, i, i73), so
we have (i7],475,174) = go(iT1,i72,i73)gy * for some go € G = U(n) and our
(T, T, T3) have the correct limits at infinity as well. O

We are at last ready to prove Theorem [2.3|stated at the start of the sec-
tion. Suppose (T3, T, T3) and (77, Ty, T4) are two solutions satisfying Nahm’s
equations with the boundary conditions (2.2)). Let (X,.A) and (X’, A’) be
the corresponding solutions to the Complex equation. We may use com-
plex gauge transformations so that the transformed pairs satisfy conditions
(2-10). By Lemma[2.4] (X, A) and (X”, A) are then equivalent to each other
by a complex gauge transformation. Proposition shows that there is only
one (11,T,,T3) that can arise from this complex solution, thus (7}, T3, T3) =
(T}, 13, T}).
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Spectral Curve

There is an unique spectral curve corresponding to a Nahm solution modulo
gauge transformations. The tangent bundle TP! of the complex projective
space P! provides the setting for our spectral curve. The space TP! is referred
to as the minitwistor space, as Hitchin in [66] showed that the twistor space
O(1) ® O(1) of R* reduces to the minitwistor space TP! of R® under the
dimensional reduction of R* to R3.

We parametrize P! as the Riemann sphere, denoting ¢ € C as our North
coordinate and ¢ € C as our South coordinate with transition function ¢ =
¢~!. Points on the Riemann sphere correspond to directions in R?, which
may be thought of as unit vectors, under stereographic projection.

The tangent bundle TP! over the base space P! has coordinates ((,7)
for nd% e TP' and (C,7) for ﬁd%, where n and 7] are the coordinates of the

tangent fiber. Since ﬁd% = 776%, the transition function is given by ¢ = ¢,
7 = n/¢?. Observe that these transition functions identify TP! as the total
space of the bundle Op1(2): TP = Op:i(2).

Hitchin in [26] showed the spectral curve for the SU(2) monopole is an
algebraic curve S C TP, of the form

nn + al(C)Wn_l +eet an—r(C)nT +eet an—l(C)n + an(C) = 07 (3‘1>

with each a,.(¢) a polynomial in ¢ of maximum degree 2r satisfying the con-
ditions

A1. The spectral curve is invariant under the involution (1, ¢) — (=%, — 1),

1
C?

Y

43
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1.e.

a,(¢) = (=¢*)"a,(—=).

N =

A2. For L* the holomorphic line bundle on TP defined by transition func-
tion exp(—sn/(), the restriction of L? to S is trivial on S.

A3. L(n—1) is real, in the sense that the Hermitian inner product defined
on sections of L(n—1) as in Proposition |3.5|is real-valued and positive.

A4, H°(S,L*(n —2)) =0 for s € (0,2), i.e. L*(n —2) |s has no nontrivial
holomorphic sections.

The paper then established that the above spectral curve of the SU(2)
monopole is the same as the spectral curve of Nahm data (77 (s), Ta(s), T5(s))
over the interval (0,2) satisfying

Bl. T;(s) = —T;(2 — s),

B2. T, has a simple pole at s = 0 and s = 2, and for each pole, the residue
defines an irreducible representation of su(2).

The spectral curve correspondence was then generalized for monopoles
of arbitrary compact gauge groups G and various Nahm data in [28]. In
general, the spectral curve is not known other than for a few special cases,
such as charge 1 and 2 SU(2) monopoles [27] and, of course, the U(1) Dirac
monopole. For a list of all currently known spectral curves, the reader may
consult Table 1 of [67].

Both spectral curve data and monopole data for the Dirac multimonopole
are known. In this chapter, we explain the spectral correspondence and then
we use this to carry out the construction of Nahm solutions.

3.1 MiniTwistor Space

A line [ in R3 can be specified by its direction 5 and the normal vector 77 € R3
to the line, giving the displacement of that line from the origin.

In this way, the minitwistor space TP! is identified with the space of
oriented lines in R3,

{Cmerxr:id=1, C7=0}.
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The complex structure J of TP! inherited from P! as a complex manifold is
given by J(n) = in, it corresponds to the complex structure J(77) = ¢ x ifon
the space of oriented lines.

TP! also carries a real structure 7, i.e. an antiholomorphic involution,

(= =1/¢, me /¢ (3.2)

induced by reversing the orientation of each line.
The line [ can also be specified by giving a point # € R? that the line
passes through along with the direction (.

z

ST

I
J\fl

T

The minitwistor correspondence between points in R?® and sections of
the minitwistor space is accomplished in the following manner. A point
7 = (2, 2% 2%) € R?® corresponds to a section p(¢) : P! — TP! where we
take all lines that pass through ¥ and assign to every direction 5 the point n
in the tangent space corresponding to the displacement vector 77 of that line.

Let us write p(¢) explicitly. The line passing through x with direction 5
has displacement vector 7 = = — (x - 5 )5 The value of n € C is given by
n= %S*_ 1(77) where S; ! is the Jacobian of the inverse stereographic projection
S~1: C — P'. Through this, we obtain that the section (¢, p(¢)) in terms of
the North pole coordinates has description given by

p(¢) = (2! 4 i2?) — 22°¢ — (2 — i2?)C2 (3.3)
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The boundary conditions (2.2) of Nahm’s equations for n x n matrices as
s — o0 states
lim (Tl (S), TQ(S), Tg(S)) €

5—00

.1 -1 il
ipy pa “P3

ady(n) " N A"
Ciph "l il
and so this condition marks out n distinct points z; = (p},py,ps), i =1,...,n
in R3. The twistor section p;(¢) corresponding to point z; appears as the
factor in the spectral curve (3.9). Under stereographic projection S : P! — C,
one may verify that the two roots a;; and aj; of p;(() —p;(¢) = 0 are the two
directions @;; from z; to x; and @j; from z; and ;.

3.2 Spectral Curve of Nahm data

Nahm’s equations form an integrable system, as previously mentioned in the
introduction, with a Lax Pair (L, M). The Lax pair arises from the antiself-
dual commutator equation on R*. Indeed, if we modify (1.7) to

[DE - ch - (Dw + DZC)C? Dy + DzC] =0 (34>

and take the ASD reduction to R as in (L8], i.e. relabeling A, = (T, +iT3),
A, = %(ng —iT}y) and requiring that these functions depend only on s := x4,
we obtain the Lax pair (L, M)

d
—L=[LM] (3.5)

equivalent to Nahm’s equations. In North and South coordinates, (L, M) are
LN = —i(Ty 4 iTy) 4 20T5¢ + i(Ty — iT5)C%, MY =Ty — i(Ty + (T, — i13)C),
LS = i(Ty —iTy) + 2@,% —i(T) + z‘TQ)é, M?® =Ty +i(Ts — (Th + Z'Tg)%).

(3.6)

In particular, the spectrum of L(s, ¢) does not evolve in s and the spectral
curve S for Nahm solution is given as the spectrum,

det(n — L(s,¢)) = 0. (3.7)



CHAPTER 3. SPECTRAL CURVE 47

The boundary conditions of our Nahm solution state that

PO 00
0 ¢ .. 0
lim LY (s,¢) — ady(n) " ) , (3.8)
5—00 ..
0 0 . pal0)

where p;(() = xj+ix? —223( — (] —iz3)(? is the twistor section corresponding

to the point (mjl, mjz, m?) € R? from the boundary condition as s — co.

Therefore, we find that the spectral curve of Nahm solution is:

Lemma 3.1. The spectral curve S C TP! for Nahm’s equations with our
boundary conditions (2.2)) is

S = {(C,n) e TP : [[(n—pi(Q) = 0}7 (3.9)

j=1

for p;j(Q) = xj + x5 — 223¢ — (xj — ix5)C* the twistor section of the point
xj = (xj,23,2%) from the boundary conditions as s — oo.

This S is a degenerate n-branched covering of P!. For two distinct points
x; and z; with distance r;;, each branch (¢, p;(¢)) intersects another (¢, p;(¢))
at the double points ¢ = a;; and ¢ = aj where

3 — 2 +ry

7 J )
4 = , . 3.10
J xy —a} +i(e} — a?) (3.10)

Note, if x; and x; are vertically separated (i.e. x; = z; and z7 = z7) and,

say 3 > a:?, then a;; = 0o € P! and a;; =0 € P!

In the algebro-geometric integration method, the n-eigenspace of L(s, ()
gives us from the flow of L(s,() a linear flow F* in the Jacobian Jac(S),
from which we carry out the integration of the Lax pair. This was proved
by Griffiths in [I] for regular curves. Here we shall prove it for our spectral
curves, which are singular. A sketch of our spectral curve S with eigenline
bundle is
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To obtain the linear flow F* in Jac(S), consider solutions U; = (UN,U7)
to the Lax linear problem associated to (L, M)

(3.11)

That is, each U, is an eigenvector of L for the eigenvalue p;(¢) and evolves
in s as % = —-MU. Set U = (Uy,...,U,), we now look for the transition
function F(s, () of UN = U%F(s,(). To begin, we have

1 1
L = ?LN and M® = MY + ZLN. (3.12)

We have LY = (2L% so LY and L° have the same eigenspace and UY =
USF(s,() for a diagonal matrix F(s,¢). Now,

d
0= (— + MUV
(OlsjL )
d S 1 N S
:(%jLM —ZL )(USF)
d B dF—! 1
d dF n™
=[(—+ MSUS)F +US— —US=—-F
[(d8+ JUPIF +U s U c
d 7
S
—US(= - Hr
(ds C)
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Solving d%F = LI is easy, it gives F (¢,s) =g(C )es% for some s-independent
diagonal matrix ¢(¢). However g(() is still undetermined. We can set g(¢) =
¢"!, the justification for this is provided later in Corollary [3.40 This gives
us

F(s,0) = (" diag(e" 7). (3.14)

The spectral curve S is degenerate with double points at a;; of (3.10]).
To see what happens at the eigenspace of L(s, () at ( = a;;, we consider the
boundary conditions of Nahm’s equations ([2.2]). Note that

7037 =05+ 2(o_, €"0pe " =0 — (o3 — (Po_. (3.15)
Using (3.15)), the boundary conditions implies that near s = 0,
N o_ (0+ 0 —(o— d N o_ d 03 0 —(o_
LN =¢¢ (?—FO(S))eC , £+M = (E—Fg—FO(S))eC :
(3.16)

As in Section and analogous to (2.20]), we may use a complex gauge
transformation that is identity at s = 0 to gauge MY and L" to

a(¢) sst0 .0
b(¢)s a(¢) st 0
LN = c(¢)s? b(¢)s a , MN = %, (317)
SO
d(¢)s" 1t e(Q)s" 2 . a(¢)

where the coefficients of ;N above are determined by the spectral curve. The
rational canonical form L of L¥ is then a single companion matrix,

0 1 0 0
0 0 1 0 o

LV = : : MY =20 (318
N T A

s

—ao(¢)s" ™t —a1(¢)s" % —a2(¢)s" 3 ... —an—1(¢)

The solution to the Lax linear problem associated to the Lax pair (L, M)
is
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At ¢ = a;j, the eigenspaces of L remain one-dimensional and we may set the
Diag matrix to the identity matrix so that

Ui(ai;) = Uj(as;). (3.20)

We conclude that the rows (w1, we, ..., u;) for 1 <1 < n of U have the
transition functions from North to South patch and at ( = a;; given by

) Pl
(ulh U,y - - - ,Uzn)o = (Ulh U2,y - - - 7Uln>oocn_1d1ag<€s ¢ )7

(3.21)
uli(s, aij) = ulj (S, Ojij).

The transition functions above determine the eigenline bundle of the Nahm
spectral curve.

3.3 Eigenline Bundle over Spectral Curve

The spectral curve S C TP! is an n-branched covering of P! via 7 : S — P!
given as 7((,n) = ¢. Bach branch S; = {({,p;(¢)) € TP'}, i =1,...,n
is isomorphic to P!. The spectral curve S has genus g = (n — 1)? by the
adjunction formula [26, p.159].

Consider a line bundle Fs — S defined in the atlas using our branches
S; as a cover by specifying transition functions \;; € C\ {0} and Moo (¢, 7) :
Unorth N Usoutn, — C \ {0} such that for a section u € I'(S, Fs), u;(a;;) =
Aijuj(a;j) on the points of intersection a;; € S; NS; and up(¢) = Agoolloo(€)
on the overlap of the North and South patches.

Denote by Og(k) — S the pullback of Opi(k) — P! to S and by Fg(k)
the line bundle Fs ® Og(k).

The spectral curve S is invariant under the real structure 7 of Equation
on TP, so 7 : S — S induces an antiholomorphic involution o on the
set of line bundles Pic(S) given by o(Fs) = 74(F). There is a corresponding
map on sections:

For line bundles with transition functions \;; = 1 so that w;(a;;) = u;(a;;),
we may consider Fs as the pullback under the inclusion i : S < TP! of the
line bundle Frp: with same transition function Ao ((, 7). Sections of Fg in
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s

North patch may be written as [uo] € C[(,n]/(]](n — pi(¢))) with unique

=1

representative

uo(¢,m) = o™+ (O + -+ + cur (). (3.23)

Alternatively, a section u may be written in North patch as

uo(€) = (ur(€), u2(C); - - -, un(C)), (3.24)

where the " entry is the value of u on the branch S;. The two versions of

writing uo are related by, in North patch, evaluating n on S; and obtain-

ing u;(C) = co(Q)pi(Q)" ™" + cr(Q)pi(()" > + -+ + cn1(C). Conversely, given

uo(¢) = (u1(C€), ..., un(C)), its expression in (¢, n) is given by the Lagrangian
n wi(Q) I (n—p; (<)

interpolation uo(¢,n) = ZW and u;(¢) = uo (¢, n;(C))-

=1 %

As in (3.21]), we define the eigenline bundle L (n—1) of the Nahm spectral

curve to be the following line bundle.

Definition 3.1. Define the eigenline bundle L (n —1) for s € (0,00) over S
by the transition functions A\;; =1,4,57 =1,2,...,n and

() = ("Moo (Q)diag(e™ VS, e O, (3:25)

for u a section of Lg(n—1). Denote by H°(S, Li(n—1)) the space of sections
of Li(n —1).

The following lemma gives a wonderful way to think about a section of
Ly(n —1) as a row of polynomials satisfying matching conditions:

Lemma 3.2. There is a bijection between sections u € H°(S, Li(n—1)) and
degree n — 1 (or less) rows of polynomials (Q1(C), ..., Qn(C)) satisfying the
matching condition Q;(a;;) = e *"Q;(a;;), where r;;, as usual, denotes the
distance between the two points x;, x;.

Proof. Observe that 24 ’ Pt p’ 2p] (p] —ipJ)C in the transition functions

of - is invariant under the involution 7. Splitting it into the ¢ and 1/¢

part, PJ(C) +p] p] pj — (pj — ij)C = —hj(g) — h’j (Z) with
1 pL+ip?
h(C) =p) + (pj —ip5)¢, b (Z) = —% +pl, (3.26)
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define

60(¢) = uo(Q)diag(e™ ), guo(C) = un(¢)diag(e*" (1/9) (3.27)

then on the overlap of North and South patches we have

q0(C) = ¢" g0 (C)- (3.28)

This means ¢o(¢) = (Q1(¢),...,Qx(C)) is a row of polynomials of degree at
most n — 1. The matching conditions on ¢ follow from w;(a;;) = wu;(a;;).
Conversely, given such ¢ it is easy to obtain u via (3.27)). O]

The following proposition will be crucial,

Proposition 3.3. For s € (0,00), the dimension h°(L%(n—2)) of H(L%(n—
1)) is 0.

Proof. Sections of L{(n—2) correspond to degree n — 2 polynomial rows sat-
isfying matching conditions P;(a;;) = e~ P;(a;;) as in Lemma [3.2] Taking
the limit of s — oo of the matching condition Q;(a;;) = e~ Q;(a;;) shows
Qi(a;;) = 0. A polynomial that satisfies @;(a;;) = 0 is either a multiple of
the Atiyah polynomial A;(¢) = [[(¢ — aj;) or it is identically zero. Since
J#

A;(¢) has degree exceeding n — 2, Q; =0 as s — oo.

The matching conditions form a linear system on the unknown polynomial
coefficients. The s dependence enters the linear system via functions e™*".
We may write a perturbation expansion of the polynomials as

PiQ) = e gi(Q) + e Mgy () + e gl () + (3.:29)
with 0 < A; < Al < A’ < ... and s-independent polynomials g;(¢),q:(¢),
g’ (C), ... of degree n — 2.

The expansion of the matching conditions P;(a;;) = e™*" P;(a;;) at zero-
order is the system

gi(aij) = €_s(rij+Aj_Ai)gj<aij>, for 7 7& j (330)

If gi(ai;) # 0, then the s-independence of the perturbation polynomials im-
plies r;; + A; — A; = 0. However, we make the observation that for a fixed
pair of 7, j we cannot have both

Aj—i-n-j—Ai:OandAi—{—nj—Aj:O (331)
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as that implies r;; = 0. Therefore, if g;(a;;) # 0, we must have g;(a;;) = 0
to avoid this case. This gives n — 1 many points that g;(¢{) must be zero
at. However g;(() is degree at most n — 2 so the solution to zero-order is

By induction, subsequent orders are identical to the zero-order case. We
conclude from the perturbation expansion of our section that

(PL(C), ..., Py(¢) = (0,...,0).

Corollary 3.4 ([26]). For s € (0,00), h°(Lg(n — 1)) = n.

Proof. This is an elementary application of the Riemann-Roch formula [68]
p.472]. The argument that follows may be found in [26, pp.165-166]. We
state it for completeness. The degree of L (n —2) is (n —2)n and Li(n —1)
is (n — 1)n. Recall the genus of S is g = (n — 1)2.

By Serre duality we get dim H'(S, L§(n—2)) = dim H°(S, K ® (L%)Y (n—
2)). From the Riemann-Roch,

dim H(L%(n — 2)) —dim H'(Lg(n — 2)) = deg Li(n — 2) — g+ 1

o (3.32)

hence h%(L§(n —2)) = 0 implies H'(L§(n—2)) = 0. Fix (o € P! and let D¢,
be the zero divisor of (¢ — () on S, i.e. D¢y C S is the fiber above ¢ € P'.
Since S is an n-fold covering of P!, D¢, is a set of n points in S (counting
multiplicity). We have exact sequence of sheaves

0= Os(n—2) =3 Og(n—1) % Op, (n—1) =0, (3.33)

with the first map given by multiplication by ({ — ¢(y) and the second map
given by evaluation of the section at ;. Tensoring with Lg results in the
long exact sequence

0 0

0+ HO(Lsr=2)) — HO(Ly(n — 1)) — HO(Lp, (n— 1)) »H (Litr=2)) - ...

(3.34)

so H°(S, Li(n— 1)) = H(D,, LSD<O<TL —1)). Since Dy, is simply n distinct
points of the fiber above ¢y, H(Dy, L%Co(n — 1)) is isomorphic to C". O

The space of sections H%(L§(n — 1)) is an inner product space.



CHAPTER 3. SPECTRAL CURVE o4

Proposition 3.5. For the spectral curve S, given sections u,v of LE(n —1),
uo(v) is a section of Og(2n — 2) and can be written uniquely as

uo(v)g = o™+ (O A+ A+ e (€), (3.35)
for ¢;(C) degree 2i. Then
(u,v) == ¢y (3.36)
defines an Hermitian inner product [26], [50] on H°(S,Li(n —1)).

Hitchin in [26, pp.179-181] first discovered this inner product for the
eigenline bundle of the SU(2) and also contains the proof of definiteness.
Bielawski then demonstrated in [50, Prop 4.2] that the same is true for a
class of degenerate spectral curves, including the spectral curve of our Nahm
data and also has the proof of positivity.

In our case, the inner product (u,v) may be written in terms of the
corresponding row of polynomials (3.2). For p = (Pi((),...,P.(¢)) and

r= (RI(C)v ce 7RH(C))7

(u,v) = (p,r) = ()"~ 12 H 1/(0)) (3.37)

b i

3.4 Spectral Method for Nahm’s Equations

3.4.1 Solving Nahm’s Equations

For an orthonormal basis {U;(s,(),...,U,(s, ()} of sectiond!] of the eigenline
bundle Lf(n — 1), where s € (0, 00), with respect to the inner product (3.5)),
let

U= (3.38)

'Recall, U;(s, €) is a section of Lg(n—1), which in our case of the curve [] (n —p;(¢)) =
j=1
0 is given by the row of its values on each of the n sheets.
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be a n x n matrix where each row is a section. This matrix exists for all
s € (0,00) as Corollary [3.4] states h°(Lg(n — 1)) = n over this interval.

Define a Lax pair (L, M) of matrix-valued functions such that in North
patch

p1(¢)

0=V [ Y U (s,0)7Y,
" pa(Q) (3.39)
dU™ (s,
M5, €)=~ s o
and in South patch
p1(6)
¢ ©) 1
1 1 B2
LS(SaZ) = US(Sv_) ‘ US('Sv_)_lv
P72(2§)
1 dU%(s, ¢) 1
MS )= — ¢ S ~\—1
(5.0 =~ V(5. )7

with each p;(¢) = x} + iz} — 223¢ — (zj — ix5)¢* determined by the point
zj = (xj,23,2%) € R? from the desired boundary conditions as s — oo.

Here L is a linear operator acting on the n-dimensional space of sections
H°(L%(n—1)) for each value of s. And <L + M is a connection for a frame U
of HY(L%(n—1)). After a choice of frame U, L and M written in coordinates
are n X n matrices. We prove that (L, M) is the Lax pair of the Nahm’s
equations when choosing U orthonormal.

Under the real structure (3.2]), L and M satisfy the reality relationship
LN(=1/Q)f = =L7(¢),  MM(=1/Q)V = —=M>(¢). (3.40)

Lemma 3.6. The transition functions for L and M are

1 1
L = ?LN, MY = MY + ZLN. (3.41)

Proof. By Definition [3.1I} U has the transition function

UN(s,¢) = (" 'US(s,1/¢)e™¢
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as 1 = p;(¢) on the j-th branch of the spectral curve S.

L¥(5,¢) = UN (s, O)diag(pa(C), - . pa(O) U™ (5,0) "
:@U%&UO@*ﬁW&%§§~w%kﬂW?%UW&O*
=:C%JS@,Cﬁhwﬂg%,~-7§%)US(&CD‘1
= *L5(s,¢).

(3.42)

For M, differentiate the transition relation 4 (UY) = 4 ({"~1U%¢*1/¢) to get

{0 = S g, e

Substituting into MY = —UN(UN)~1, we obtain

MY = —(("tUSess + (”1Usdiag(%, ey Z%)es”/c)esn/c(US)l%
— _USUS)! - Usdiag(%, . %)(US)‘l
1
=M% — LV,
¢

]

Our next goal is identifying an orthonormal basis of H%(S, L (n — 1)) in
terms of the degree n — 1 polynomials rows (Q1(C), ..., @n(¢)) satisfying the
matching conditions Q;(a;;) = e~ Q);(a;;).

Denote the n x n polynomial matrix Q(s, ()

Q(s,¢) = UM (s,¢)diag(es (©). (3.43)

The columns of U fail to be linearly independent at the branch points
¢ = a;j because of the matching conditions that U satisfies, so the
inverse of U is meromorphic in ¢, rather than holomorphic. Explicitly, U is
orthonormal with respect to the inner product on H°(L{(n—1)), so Q(s,()™!
satisfies

1
11 (p1()—p;(€))
j=2

Qs, Q)7 = (=" Qls, —1/0)F,  (3.44)

n—1 s
I1 (pn () —p; ()
j=1
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where T denotes the complex conjugate transpose. Although U is meromor-
phic in ¢, we will prove that L and M are not.
Define the Vandermonde matrix
1 1 e 1
Vand(pr. ... py) = 2109 pz@) o palQ) ' (3.45)

PO O L palO)

We shall need the formula for the inverse of the Vandermonde matrix. For
variables {z1, ..., zy}, recall that the m-th elementary symmetric function is

€m ({mla-"axk}) - Z Lj1Tja * " L
1<51<ge<...jm <k

form=0,1,...,k. Then

[Vand(pl, . ’p”)il}ji _ <_1)n—ien_i(1;{p1(C); o pal(Q)F\ {py(é)}) (3.46)
l;ll(pj(é) — pm(C))
Lemma 3.7. LY (s,() defined in Equation s a quadratic polynomial
m C.

Proof. The uv-th entry of LY is given by

s=1 ll;[ (ps(o - pl(())

The possible poles of LY are at ( = a;; arising from the two terms

(_C)n_lQm( )Qm( 1/C) ) (_C)n_lQuJ( )Qv]( 1/C)
T A (T

I#i I#5

pi(C) (3.48)

We have p;(a;;) = p;(a;;), and as —1/a@;; = a;;, the matching conditions
make the numerators equal when ¢ = a;;, so we may factor (3.48) at ( = a;;
as

pilai)(ag)" " Quilai;) Quilayq) < !

e 11 (pjl— pz)) ‘gaij'

I£i I£j

(3.49)
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The latter factor appears as the only possible poles of ¢ = a;; in the sum
representing the first row of Vand(py, .. ., p,) multiplied with the last column
of Vand(py,...,p,) "

=0. (3.50)

Since this sum is equal to zero, there cannot be a pole at ¢ = a;; and L%
is holomorphic in ¢. Similarly, L is holomorphic in 1/¢. The transition
relation (3.41)) of L implies LY is a quadratic polynomial in ¢. ]

Lemma 3.8. M (s,() is a linear function in C.

Proof. The uv-th entry of M is given by

MY = Z _ : (3.51)
s=1 [1(ps(¢) — mu(C))

l#s

The possible poles of MY are at ¢ = a;;, arising from the two terms

(~QuilQ) + QO (©)) (=01 Qul=1/C)
[1(pi —p1)

I
(= Qui(€) + Qui(ORF () (=)' Qus(—1/0)
[1(p; —p1) '

I#5

+ (3.52)

We have r;; = h(a;) — hi (a;) as is easy to check, so the matching
conditions make the numerators equal when ¢ = a;;, and we may factor
(3-52) at ¢ = a;; as

( — Quilay) + Qm(aij)hf(aij)> (—ay)"™!

—_— 1 1
X Qm-(a @) ( -+ > ‘ .
PN —p) - T =) ) | za,y
I£i 1]
(3.53)
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Again, the latter factor appears as the only possible poles of ¢ = a;; in the
sum representing the first row of Vand(p,...,p,) multiplied with the last
column of Vand(py, ..., p,)~!. This sum equals zero identically, so the factor
cannot contain any poles at ¢ = a;;.

We conclude MY is holomorphic in ¢, and similarly M2 is holomorphic
in 1/¢. The transition function of M implies MY is a linear function
of . O]

Let us discuss the behavior of L(s, () as s approaches 0. At s = 0, the
matching conditions become

Qilai;) = Qj(aij), (3.54)

ie. ¢ = (Q1(0),Q2(0),...,Q,(C)) is a section of Og(n — 1), the pullback of
Op1(n—1) to the spectral curve S. That is, each sectionis7(¢) (1 1 ... 1)
for some polynomial ({) of degree < n—1. Note that such rows are multiples
in C[(] of the same row (1 1 ... 1) so that any n x n matrix with these
rows is not invertible.

Thus, at s = 0, the n X n polynomial matrix Q(s, () of fails to be
invertible and so L(s, () and M (s, () have a pole at s = 0. Nahm’s equations
then show this pole must give a representation of su(2). Hitchin in [26]
Eq.(5.17)] concludes that this representation must be the rank n maximal
representation of su(2).

Proposition 3.9. The set of orthonormal bases {Ui(s,(),...,U.(s,¢)} of

Li(n — 1) is in 1-1 correspondence with the set of solutions (Ty, Ty, T, T3)

to Nahm’s equations satisfying the boundary conditions lim (Ty, Ty, T3, T3) €
§—00

ady(ny (0,471,072, i73) and hII(l)(To,Tl,TQ,Tg) = (0, %, %2, %), with p some n
S—

dimensional irreducible representation of su(2).

Proof. Given an orthonormal basis {U;(s,(),...,Un(s, ()}, the correspond-

ing Lax pair (L, M) of (3.39) may be written, thanks to the reality (3.40)) of
(L, M), Lemmas , , as

LN = —i(Ty +iTy) + 2iT3¢ +i(Thy — iTy)¢?, MY =Ty — i(Ts + (T — iTy)C),
(3.55)

with (Ty, Ty, Ts, T3) solving the Nahm’s equations on the interval s € (0, 00).
Near s = 0, the residue of L at s = 0 gives us an n dimensional irreducible
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representation of su(2). By taking the decomposition of L into 7' using (3-55),
the residues of (Ty, T, Ts, T3) then form an irreducible representation of su(2)
by [26, Prop 5.24].

Conversely, given (Tg, T1, T3, T3) define the Lax pair (L, M) as in ([3.55))
and U = (UY,U%) is obtained as the solution of the Lax linear problem
associated to (L, M) as in (3.11). By , the rows of U are sections of
Ly(n — 1). We show now that these sections are indeed orthonormal with
respect to the inner product on L§(n — 1).

From the reality of (L, M), UN(s,¢) and (U°(s,—1/¢))~* solve
the same linear system so that DV (¢) := U%(s,—1/{)fU (s, () is diagonal
and s-independent. Similarly for D% := (—1)""'UN(-1/¢)tU5(¢). DV and
D? are well defined in the Northern and Southern patches, respectively. Since
UN(¢) = US(¢)¢"tes/¢ | we have

n(=1/¢ f
DS — (_1)n—1 (US(—%X—%)R_IGS(_U/;)) UN(C)%B—SWC
_ esn/{(%)n—lUS(_%)TUN(C)%6—877/( — %DN (356)

Thus, (DY, D) is a section of Og(2n — 2). From the matching condition
Ui(s, ai;) = Uj(s, ay;) the i-th component on the diagonal of DV vanishes at
ay; and ay; for all j # i, so that DY is proportional to [[j=1 (p:(¢) — p;(C))-

JFi
We may gauge this proportionality factor to 1, giving us

3

IT (p1(¢)—p;(<))
j=2

DN =U%(s,—1/0)'UN(s,¢) = (3.57)
éli[ll(pn(C)—pj )

or in terms of UY,
jli[Q(pl(C)—pj(C))
(¢S UN (5, ~1L/) U™ (s, ) =
T e(0-1,(0)
(3.58)

The equation (3.58)) above shows that U is orthonormal with respect to the
inner product on H(S, Lg(n — 1)) given in Proposition [3.5] O
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The gauge group G of maps [0, 00) — U(n) for Nahm’s equations relates
different choices of bases for H°(L%(n — 1)).

3.4.2 Basis Constructions

We discuss methods to construct bases of polynomial rows satisfying the
matching conditions

Qilaiz) = e7"Q;(ay;). (3.59)
It is here that the Atiyah polynomials of Definition [I.12] make their ap-
pearance. As in [49], fix values @);(ay;) for j # k, then Lagrangian interpo-

lation for the degree n — 1 polynomial Q(¢) using Qg(ax;) = e™*™*Q;(ax;)
for j # k gives the degree n — 1 Langrangian interpolation polynomial

Qi(¢) = CrAKQ) + Y e Qi(ary) [ | LT 1,....,n.  (3.60)

)
- Qs — Ak
j#k I£kg

The polynomial Ag(() is precisely the k-th Atiyah polynomial. The value
C}, is some constant independent of (, although we do not need to make it
independent of s.

We used the data Qp(ag;) = e *™*Q;(ax;) to interpolate Qx(¢), but
Qk(¢) must also satisfy the other half of the matching conditions Q(a;;) =
e*™ri();(aj,). We discuss the linear system obtained from this. We will write
the linear system in terms of only @;(ay;) for k < j, which is half of the total
n(n — 1) many Q;(ax;) values.

Lemma 3.10. If {Q;(ax;) : k < j} is known, then the whole set of values
{Qjlag;) :k#j,j=1,....,n,k=1,...,n} is known.
Proof. )1(¢) in (3.60)) is written in terms of @;(ay;) for 1 < j, which are

known by the assumption of the lemma, so Q1 (¢) is known. We use induction
for k =2,...,n. For Q((), the induction hypothesis is that ),;(¢) for j < k

is known. Then for Qx(¢) of (3.60),
Qu(Q) = CrAK) +D e Qslawy) 11

i<k known by induction hypothesisl;ék’J

+ Z e~ 5Tki Qj (akj) H (C - akl)

k>j 14k, (ary — am)

(¢ —an)
(arj — an)
(3.61)

known by assumption

Thus Qx(¢) is known completely. ]
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We describe the method to obtain the linear system of @ equations
for the unknowns Q,(ay,), v = 2,...,n with v < u. The Lagrangian in-
terpolation polynomials altogether utilize all n(n — 1) many Qx(a;i),
k= 1,...,n values with both 7 < k and 5 > k. We may evaluate the
interpolation polynomial for Q(¢) at aj; for j > k and use recursion to
write each Qx(ajx) for j > k in terms of Qu(ay,), v = 2,...,n with v < w.
This is the explicit form of Lemma [3.10} Now, the interpolation polynomials
{Qk(C) : k=1,...,n} are written in terms of only Q,(ay,), u = 2,...,n with
v < u. Evaluate Qi(¢) at aji, j < k to get the linear system in n(n — 1)/2
many unknowns ,(a,,) with v < u. Denote this linear system

Az =b. (3.62)
Let us illustrate this by an example.

Example 3.1. The n = 3 linear system Ax = b obtained by the procedure
above for x representing the unknowns <8§531§;> is

Qs (a23)
All A12 A13
A - AQI A22 A23 9
A31 A32 A33

az1 — ai3 aj2 — a3

A11 =1 + 6—257"12 5
G12 —a13 G21 — A23

_ a21 — a1z G12 — A23

_ s(riz2+ris

App=e ( ) )
@13 — a12 A21 — 423

Agg = emsras 12021

b
a23 — @21
Ay = o s(ris+riz) az1 — ai3 a13 — as2 + o 5(ras+2r12) a3z — a23 G21 — 413 A13 — 0317
G12 — a13 G31 — A32 a21 — A23 @12 — (13 A32 — 31
as1 — a1z 13 — Qs a3o — G923 A21 — G12 A13 — A
- _ 24114 @31 12 13 32 —s(rog+rio+T 32 23 421 12 413 31

Agg = —1+e 13 + ¢ s(raatriatris) ,

a13 — a12 31 — A32 a21 — G23 13 — G412 A32 — 31

— 2519y #32 — (21 @13 — 431

A23 =€ )
G23 — G21 A32 — G31

Ay = o—s(ris+ri2) a3 — 32 a31 — 413 4 e 5(r2s+2r12) a21 — 13 A23 — A31 A32 — A23
- )
a3l — az2 a1z — a3 12 — @13 G32 — 31 G21 — A23
Any — p—25T13 Q23 — A32 a31 — 412
32

o + 6_8(7'23"’“2“13) a21 — A12 G32 — G23 A23 — G31
- I
a31 — a32 A13 — A12 a3 — ai2 a1 — az3 az2 — a31

az2 — a1 a3 — a31

A33 = —1 —|— 62ST23 .
a23 — a21 G32 — A31

(3.63)
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and
by
b = b2 )
by
with
by = CyAs(ass) +e STIQCIAI(QH)Z;? ans

_ 13 — 432 _ @13 — 431

ST ST

bg = CgAg(alg) +e 1301A1 (agl)— +e 2302142(&32)—
a3y — a32 azz2 — 431

_ 32 — Q23 13 — A31
+e S(T23+T12)01A1((121)

)
Q21 — Q23 Q32 — A31

23 — 432 _ a23 — 431
bs C’3A3(a23) 1301141((131)— +e 5T2302A2(6L32)—
a3y — a32 aga2 — 431

n 6—5(7"23+7"12)C’1A1(a21)a23 — (31032 T (23 (3.64)

agza2 — (31 G21 — Q23

Proof. We follow the procedure. The Lagrangian interpolation polynomials

of are
Q1) = CLALQ) + e Qalars) 12 4 =m0y (ay) 12

012 — (13 ag — a2
_ —a
Q2(¢) = C242(C) + 6_8”2@1(@21)g + €_ST23Q3(a23)—C L
d21 — 023 Qg3 — 21
_ —a
Q3(¢) = C343(¢) + €7STI3Q1(G31)C—32 + e’s’”zf“’QQ(a:gQ)_C 31
@31 — 32 a3y — a31

One sees that all six values of Q,(a,,) for v < u and v > u are present in this
system of polynomials. The three values @, (a,,) for v > u may be written
in terms of the other three @, (a,,) for v < u by evaluating the interpolation
polynomial for Qx(¢) at aj; for j > k and using recursion.

as1 — @ G91 — @
Q1(ag) = C1A;(az) + 6_5741%22(@12)u +e Qs (CL13)u

a12 — a3 a13 — 12

as1 — a as1 — a
Q1(az1) = C1A;(as) + 6_5741%22(@12)u +e Qs (ali’»)u

a12 — a3 a13 — 12

A3g — @ A3g — @
(2(asz2) = CyAs(ase) + 6_5741%21(@21)u +e7B0Qs (CLZi’»)u
21 — Q23 Q23 — Q21
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Afterwards, the interpolation polynomials for Qx(¢), ¥ = 2,...,n, are in
terms of the three unknowns Qs (a12), @3(a13), Q3(azs) we want to solve for.

921 — Q923 Q12 — a3

Qa(C) = Caa(Q) + ™21 (01A1<a21) e Q) 22

91 — G —a
e Qy(a3) ——— 12) + 6_%3@3(@23)—C =
aiz — a2 Q23 — Q21

@3(¢) = C3A45(¢)

—a as —a asi —a
e = <ClA1(a31) + e Qg (ar12) ——— + e 13 Qg(a15) — 12)
aslr — asz aiz2 — a3 ai13 — a2

az2 — asi a21 — a23 ai2 — ais

4 5723 C — as1 <02A2(a32) 4 e 5T12 az2 — a23 <01A1(a21) + e—sthz(alz)an — a13

_ 21 — 12 — a32 — G21
+ e Qs (a13) 0 ) +e7 3 Q3(a3) ———— |.
a13 — Q12 a23 — G421

Now evaluate Q2(¢) at ¢ = a1z and Q3(¢) at ¢ = ay3,a23 to get the actual
linear system in the three unknowns Qs(ais), Q3(a13), Qs(aszs).

Qz (&12) = 02A2(1112)

ais — a — —
LTz 12 23 (C’lAl(agl) +67”12Q2(a12)a21 a3 +€75”3Q3(a13)a21 a12)

a21 — G423 a12 — a13 a13 — a2
_ a2 — azi

+e ST23Q3(G23)7.

a3 — ag1

Q3(a13) = C3As3(a13)

a3 —a — —
4+ 5T 13 32 (C1A1(a31) TLemsr2Q, (a12) aszy — ai3 4 emss Q3(a13) a3 a12)
a3zl — as2 a12 — a13 a13 — a2

ass —a -
e [ Cydg(agy) + e 22228 (C1A1(az1) +e°2Qs (mﬂw
a21 — a23 ai2 — a3

az1 — a2 )

+ e 3Q3(a13) +e B Q3(ag3

a1z — a2 23 — 421

)a32 — Q21 | 13 — Aasi
a32 — as1
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as; — as2 a2 — ais

G233 —a v as1 —a
Q3(ag3) = C3Asz(azs) + e <C1A1(a31) +e 622(6112)u

as; —a
+ 68T13Q3(6113)H)
a13 — a2

asze — a3y a21 — G23

i e—sr23w <02A2(a32) + e—smzw (C1A1 (as1)

Qa —a Qa —a a, —a
e 2Qy (a19) 2 4 e Qg (ar3) 2 12) + e Qg (ags) 22 ) .

ai2 — ais aiz — a2 a23 — a21
[
Lemma 3.11. The @ X @ matriz A of (3.62)) representing the linear
system in the unknowns Q(a;r), k =1,...,n with j < k is invertible when
s € (0, 00).

Proof. Set all C,, = 0 so that the Atiyah polynomials in the Lagrangian
interpolations are turned off and Q(¢) are only degree n — 2 polynomials
satisfying the matching conditions Q;(a;;) = e~*"Q;(a;;). This is the system
Axr = 0. A nontrivial solution to Ax = 0 then corresponds to a section
belonging to H(S, L (n—2)). But by Proposition[3.3} h°(S, Lg(n—2)) =0,

so that Az = 0 admits no nontrivial solutions and A is invertible. O

Proposition 3.12. There exists a basis of H°(S, Li(n — 1)) where the j-th

section corresponds to the row of polynomials ¢; = (Q1(¢), Q2(C), ..., Qn(())
with Q;(C) of degree exactly n — 1 and all other polynomials Q;x;(C) are of

degree smaller than n — 1.

Proof. The j-th row of polynomials corresponds to the choice
(0120,...7Cj7é0,...,0n20)

in (3.60). The matrix A is invertible by Lemma so we need to show b is
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nonzero. The vector b is of the form

CyAs(ar2) + Zd}giciAi(aki)
k>i
i<>2

03A3(CL13) —+ zd%ZCzAz(akz)
k>i
i<>3

CsAs(ass) + > d3,CiAi(ag)
k>
i<3

b= : , (3.65)
C;A (a) + > diiCiAi(ar;)

k>i
1<j

CoAn(an_1) + AP 205 A (ag:)
k>i
i<n

where the collection of d, are coefficients we do not specify. For the j-th

section with j > 1, C; is nonzero and every other C; = 0, 7 # j. Looking at
(3.65)), the entry of b with C;A;(ax;) + > dkiCiAi(ak;) reduces to C;A;(ax;),

k>i
i<j
which is nonzero. Thus b is nonzero for this section. The only case remaining
is the first section with (C} # 0,Cy = 0,...,C,, = 0). Here we explicitly write

the first entry of b, which is CoAs(az) + e *2C 1 A1 (ag) [ 2222, When
k=2

a21—a2k
Cy =0 and C} # 0, this entry of b is nonzero.

The polynomial rows are linearly independent since the j-th polynomial
row corresponding to (C; = 0,...,C; # 0,...,C,, = 0) has in the j-th
position a degree n — 1 polynomial but the other polynomial rows have a
degree n — 2 polynomial in this position. O

To obtain an orthonormal basis of sections, one may use the Gram-
Schmidt process. But as in [50, Proposition 2.2], there is a prescription
to create an orthonormal basis based on the following observation. Fix two
distinct sheets S}, Si of the spectral curve with 1 < j # k£ < n and a pair of
antipodal points (y, —1/(y that are not double points on the curve S. If the
row of polynomials p = (Pi(¢),...,P.(¢)) and r = (R1((),..., R.(¢)) has
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the following vanishing conditions at the antipodal points

Pi(Go) =0fori <j, Pi(=1/¢) =0 fori>j (3.66)

Rl(go) =0fori< ]{7, Rl(—1/§0> =0 for ¢ > ]{Z, ’
then using (3.37)), the polynomial rows are easily seen to be orthogonal to
one another, that is, (p,r) = 0.

The vanishing conditions on a row of polynomials v states that the cor-
responding ¢ vanishes at the points on sheets above a fixed point (, for all
sheets before some chosen \S; sheet, then after S; all sheets have ¢ vanishing
above the antipodal point of (y, i.e.

W(mi(¢o), Go) = 0 for i < j, w(m(——i),——l) =0 for i > j. (3.67)
G Co

As in [50, Section 2], we shall take (o = 0 and —1/(, = oo.

Proposition 3.13. The orthogonal basis {11, ..., ¢¥n} of Li(n —1) for s €
(0,00), with v; = (P1(€), (), ..., Pu(C)) for P;(¢) a monic polynomial of
mazximal degree n — 1 and satisfying the vanishing conditions P;(co) = 0 for
i < j and P;(0) = 0 fori > j, is constructible from the linear system (13.62)
of the Lagrangian interpolation polynomials.

Proof. We refer to the Lagrangian interpolation polynomial . The poly-
nomial row has C1, ..., C, as free parameters. The condition that P;(¢) is a
monic polynomial of maximal degree n — 1 is C; = 1. Rotating the spectral
curve if necessary so that the spectral curve does not have double points
above ( = 0 and ¢ = oo, the condition P;(0) = 0 imposes C; = 0 and the
condition P;(0c0) = 0 also fixes C;.

Each row of polynomials is the solution to the linear system ([3.62]) with
b determined by the above conditions on the polynomial row. We may write
the overall system on the n rows of the polynomials as

AX = B, (3.68)

with n columns of X for the n many polynomial rows, with the corresponding
n columns of B determined by the vanishing conditions. The orthogonal basis
of sections of Li(n — 1) is given by X = A™'B. O
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There is a more pedestrian approach to the linear system of polynomi-
als satisfying the matching conditions, building on the notes of Braden and
Cherkis [69]. For a row of polynomials (Pi,...,P,) we can simply take as
unknowns all the coefficients

{pij: i:O,...,n—l,j:1,...,n}
of

Pi(¢) = por + pui¢ + -+ +p(n—1)1<n717

Pn(C) = Pon +p1n§ + e +p(n—1)n(n_17

and subject {p;;} to the matching conditions Pj(a;) = ™" Py ().
This forms the linear system

=p =0, (3.69)

where p = (po1,Po2; - - - Pon - - - 1y D(n—1)1; P(n—1)n; - - - 7p(n—1)n)T and the ¢jth
row of = corresponds to the matching condition P;(a;;) = e *"% P;(a;;), that
is

=1 ay ... oY) @ (/% — el (3.70)
Proposition 3.14. The orthogonal basis {pi,...,pn} of Lx(n —1) for s €
(0,00), with p; = (P1(C), P2(C),- .., Pu.(C)) for P;(¢) a monic polynomial of
mazximal degree n — 1 and satisfying the vanishing conditions P;(co) = 0 for
i < j and P;(0) = 0 for i > j, is constructible from the pedestrian linear
system (|3.69)).

Proof. Let P,24, be the matrix of unknowns where all of the coefficients in
p; = (PJ(Q),..., Pi(C)) are placed in column j. The vanishing condition
P/ (00) = 0, i.e. P/(¢) has degree n—2, for i < j and monic condition makes
the bottom n rows of P a lower triangular matrix with 1’s along the diagonal.
The vanishing condition Pl-j (0) = 0 for 7« > j makes the top n rows of P an

upper triangular matrix. The linear system =P = 0 of (3.69)) becomes

(a B ¢ = 0. (3.71)

0 G
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It can be solved the following way,

(a B) (g) L= (3.72)
()= B

Take UL decomposition [70] of the top n rows of — (a B)_1 ¢ to solve for

the unknowns U and L. Apply L to the remaining rows of — (a B)f1 c
to solve for P.

The matrix (a B) is invertible as this block of = encodes the matching
conditions for Lg(n —2) and so det (o B) # 0 is equivalent to h%(S, L (n —
2)) = 0, which is proved in Proposition [3.3] The UL decomposition of
— (a B ) ~! ¢ exists since the existence of such a basis is proven in Proposition

B.13 O

Lemma 3.15. The Nahm data (Ty, 11,15, T3) constructed from normalizing

the basis of Propositions and and using the Laz pair of (3.39), is
such that

p1
ImTys)= | ™ ] (3.73)
pz;
Proof. We have
p1(¢)

o=Vl Y U (s, Q)7
pn(Q)

M (s, =~ g

We must then show that lim Q™ (s, () is diagonal so that L™ (s, () has a
S5—00

diagonal matrix as its limit as s — 0o. As in the proof of [50, Proposition
4.2], we take the limit of s — oo in the matching conditions for the row of
polynomials

Qilay) = e Q) (ai;).
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This shows that the limit of s — oo for the row of polynomials is generated
by st = (P(C),..., Pu(C)), 1 <1 < n, with B(¢) = A;(¢) the I-th Atiyah
polynomial and P;(¢) = 0 for j # [. The vanishing conditions that ¢, =
(P1(Q),- .., Pu(Q)) of our basis satisfies implies its limit at infinity must be
exactly

11m¢l = (0,...,0,141((),0,...,0).

S§—00

Thus our choice of basis gives a diagonal matrix Q¥ at infinity. m

3.4.3 Perturbation Expansion

We seek an orthogonal basis in the space of n-tuplets

(Ql(C)v QQ(C)? te 7Qn(<>>

of degree < mn — 1 polynomials satisfying
Qi(ai;) = e~ Q;(ai;) (3.74)

with respect to the inner product (3.37)

(P, R) )y IZ H 1/(0)) (3.75)

Even though ¢ appears in the right hand side of the inner product, this inner
product is independent of {, by Proposition
One such choice of basis is (3.62)), which requires that the jth element of

the basis ¢; = (Q1(¢), Q2(C), ..., Qn(¢)) has

Qi(00) =0,ie.deg@i(() <n—1fori<j and Q;(0)=0, fori> j,
(3.76)

with @;(¢) a monic polynomial of maximal degree n — 1.
We obtained exact solutions to this problem in terms of a linear system
in Propositions and We also know from Lemma that

limg; = (0,...,0,A4;(¢),0,...,0). (3.77)

5—00
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However, we would still like to understand the behavior for large s better.

In this section, we construct an approximate solution to the choice of basis
above for large s in terms of a formal series in the small parameters e™*"i.
The higher-order terms in the series become successively smaller and we give
a method for constructing the approximate solution to arbitrary order.

Let us now consider the first element of the basis (the story is analogous
for other elements). We describe again how to obtain the zeroth order of our
expansion given in . The limit as s — oo of the matching conditions

Qj(aj) = e~1Qy(ay;) is
ng) (Clji) =0.

The vanishing conditions on the first basis element, in addition to the equa-
tion above, states that Qggzl(C ) vanishes at 0 and n — 1 many other points

ajk. Since le(( ) is a polynomial of degree at most n — 1, we must have

Q§321(C) = 0. ng)(g“) vanishes at aj; and is a monic polynomial, thus

n

Q) = Ai(¢) = T1(¢ — aw)

We are seeking an expansion, which we name the perturbation expansion
for large s, with

Q1(¢) = A1(Q) + e M q () + e Mg () + ... (3.78)
Qir1(Q) = e Cq;(Q) + e Cq;(¢) + - (3.79)
with 0 < Ay < AL < A} < .... The polynomials gx(¢) are degree less or

equal to n — 2 in  and independent of s.

We give a method to find the perturbation expansion to arbitrary order.
The zeroth order is Q1 = A1((), Qj«1(¢) = 0. By induction, given the expan-
sion at n-th order, the (n + 1)-st order of @); is the Lagrangian interpolation
polynomial for the points (ali,e*Sme*SAgn)qgn)(au)) for 1 < ¢ < n, where
6_5A5n>q~§n)(<’) is the n-th order of Q;(¢). That is, the n + 1-st order of @) is
given by

n

Ze—s(Agn)Hﬂ)@(n)(a”) H o (3.80)

ay — aip
i=2 k£l 10T Tk

The n+ 1-st order of ();; is similar, except each term has an extra factor
to account for the vanishing conditions on the basis. Explicitly, the n + 1-st
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order is

ZQ_S(AE7L)+Tij)Q~z(n)(aﬁ>£ H ﬂ‘ (3.81)
i Ui g @31 Gk

The points for the Lagrangian interpolation for the n 4 1 order of @);
comes from the matching conditions

Qj(aj) = e 1Q;(aj). (3.82)

In general, for the [-th basis element, the factor ai is either kept or

Ji
eliminated according to the vanishing conditions.
We present the n = 2 case as a simple example.

Example 3.2. The first section is (Q1(¢), Q2(¢)) = (Q1(¢), QL(¢)) with

Order Zeroth | First Second
QMO =[C—an |0 T (0 — a0) 2
Q3(¢) =10 e 12 (an — arz) o | 0
1 _ —82r12 a2 —s4dria a2 2
Qi(Q)=C—az+e (ag) —a)— +e (a1 — ar2)(—)" +
21 a1

Cl12(@21 - @12)

=(— a2+
¢ a2 — apy’

(3.83)

2

a a

%(C) = e M2 (a21 - alg)i + e 3812 (CL21 — a12)7122< + e~Psm2 (a21 — a12) 132< + ...
az1 az; asy
C(am - CL12)
- 9165712 — 75121 :

(3.84)

The second section is (Q1(¢), Q2(¢)) = (Q%(¢), Q3(¢)) with

Order Zeroth | First Second
QRI¢)=10 e "2 (a1 —ag) | 0
Q5(¢)=[¢—an |0 e 212 (a9 — agy)
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Q1) = e (a13 — ag1) + e 2 (a3 — agy) + . ..

_ 12 — G21 (3'85)
esT12 _ o—ST12 ’
Q3(¢) = C —agy + e 2(ayy — ag1) + e 2 (a19 — agy) + . ..
a1z — Q21 (3.86)
=(—axn+ casra _ [

We present the n = 3 case up to second order for the first section to
illustrate the method. For the remaining sections, we limit our formulas to
first order.

Example 3.3. The first section (Q1(¢), @2(C), @5(¢)) = (Q1(¢), @3(C), Q3(¢))

18

Order | Zeroth| First Second

Q= | 4]0 e Ay (ay ) ppzm e
e M Ay (ag)) g e T

Q=10 [emefo)oy iy | T (o)l it e

Qi= 0  [ermAiag)qy it [ e Ay (ap) g pnmin e

The second section (Q1(¢),Q2(¢), Q3(¢)) = (Q*(¢), Q3(¢), Q3(C)) to first or-

der is

Qi(¢) = 6_8”2142(@12)ﬂ7
Q5(¢) = A2(¢), (3.87)
QUQ) = 75 Ay(azg) =1

a3z 32 — 031

The third section (Q1(¢), Q2(¢), @s(¢)) = (QF(¢), @3(¢), Q5(C)) to first order

18

(3.88)

Q3(¢) = A3(¢).-
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3.5 Nahm Solutions

In this section, we illustrate the procedure of Section 3.4 for obtaining rank n
Nahm solutions by giving the examples of an exact Nahm solution for n = 2
and a perturbative Nahm solution for n = 3.

Recall that by Proposition , an orthonormal basis {U;(s, (), ..., U,(s,()}
of sections of the eigenline bundle Lg(n—1), where s € (0, 00), over the spec-
tral curve S may be used to obtain Nahm solutions. To summarize, we set

Ul (57 <)
U(s. () = UQ(?’ ) (3.89)
Un(s,¢)
and our Lax pair (L, M) in North patch is
p1(¢)
N =0%s0 7Y Yo
Q) (3.90)
N
M¥(s,¢) = ~ T v

ds

with each p;(¢) = xg + iz — 223¢ — (2} — ix5)¢* determined by the point
T = (le, x?, x?) € R’ from the desired boundary conditions as s — oo.
From the proof of Proposition , we see we may evaluate LY and MY

at ( = 0 and obtain
Ti(s) = 5(L"(s,0) + LV (s,0)").

Ty(s) = 5 (LN (s,0) ~ £V(5,0)"),
Z. (3.91)
Ty(s) = £ (M (5,0) + M (5,0)1),

To(s) = %(MN(S,O) — MY (s,0)1).

We obtained bases of the eigenline bundle in terms of (), consisting of
rows of polynomials of degree < n — 1, for n = 2 in Example [3.2 and for
n = 3 in Example |3.3l For each example, we now find the corresponding
Nahm solution, using [3.91]
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3.5.1 n=2 Exact Solution

The exact solution to Nahm’s equations for n = 2 is known to be given
by T; = fi(s)oi, for fi(s) the hyperbolic functions satisfying the Euler top

system of ([1.4)).
For example, taking the boundary conditions in ([1.9) to be

. e . 10;
SILIEO(T1(8),T2(S),T3(S)) € ady(n) (0,0,z ( 62 73/2>) , llil’(l) sTy(s) = 7],
(3.92)

the unique solution to Nahm’s equations is
01 c
T, =1 —
1= (1 0) 2sinh(es)’
0 —1 c
=1 . —_— 3.93
2= (z 0 ) 2sinh(es)’ (3.93)

=il ")—C
7 "\0 —1) 2tanh(cs)’

However, as an illustration, we shall rederive the Nahm solution in terms
of the basis in Example (3.2
The matrix @) of Example [3.2]is

C — Qo + a12(az1—a12) ¢(az1—a12)
Q — 12 a21325T12—a12 a21e"12 —a12e 5712 . (394)
__@12—az C_ ao1 + a12—021
eST12 —_e—5T12 21 e2sT12 —1

The rows of () must be normalized with respect to the norm of (3.37)). Let
zj i= x; 4125 and zj, 1= z; — 2. The norm of the row (s, ¢) = (Qj1, @j2)
for 1 <j<2is

i =

M 2(ag) — agemiz)’ (3.95)
o] ? = 2L Oz |

2 p—

—Z12019a91 (1 — e=25m12)
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The resulting Nahm solution from (3.91)) is

I’l _ ri2
. 1 2sinh(sri2)
Tl =1 _ 712 xl )
2sinh(sr12) 2
$2 ir12
. 1 2sinh(sri2)
TQ =1 —ir12 I‘Q 3
2sinh(sri2) 2

. 3.0
Ty =1 (xo1 x%) +

acz;’2r12 sinh(srqg) cosh(sr12)—(x{’2)2 sinh2(sr12)—'r%2 —7r12212
sinh(srlg)(xifz sinh(sry9)—7r19 cosh(srlz)) 1?2 sinh(sryg)—rig cosh(srig)
—7r19%13 1?2 sin}12(sr12)7w:1327"12 sinh(sryg) cosh(sr12)+r%2 ’
1:132 sinh(sryg)—rig cosh(srig) sinh(sr1g) (1‘132 sinh(sry12)—7r19 Cosh(s'rlz))
0 e 5712 T‘%Q (1?2 cosh(sri2)—r12 sinh(srlg))
To . 2279 (x?2 sinh(sri2)—r12 cosh(srlg))
—eST12 r%z (mi’Q cosh(srlg)fT‘m SiIlh(S?”u)) 0

2212 (z?2 sinh(sr12)—r12 cosh(sr12)>

(3.96)

When taking the same points (0,0, ¢/2) and (0,0, —c/2) of R? as the bound-
ary conditions ((1.9) for s — oo, the above solution is

01 —c
T =1 - -
L= <1 0> 2sinh(cs)’
0 —2 —c
To =131 . _ 3.97
2= <Z 0) 2sinh(es)’ (3:97)

n=i(l ")—S
7 7\0 =1/ 2tanh(es)’

Note this fails to satisfy the boundary conditions at s = 0, indeed
the procedure described in the thesis is only guaranteed to construct a solu-
tion that is some gauge transform of the unique solution to the prescribed
boundary conditions. Here, the gauge taking our solution to the one in ([3.93))

is simply g = (§ 9 ).

3.5.2 Perturbative Expansion of the n=3 Solution

We give the perturbative solution for large s to Nahm’s equations for n = 3,
up to the first order. In Example [3.3] we found the perturbative basis of
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Li(n — 1), up to the first order, in terms of rows of polynomials of degree
2.

The perturbation expansion for large s of a Nahm solution is an expansion
with the form

IN

7}(5) — T(O) + efsAjjvj(l) + e—sA;.jvj@) + ... (398)

J

with 0 < A; < A} < A7 < .... The matrices Tj(k) are independent of s.
We will use the following notation. For the point Z; = (ZL‘}, m?, xi’) € R3,
we write

ol 2 .3
zj.—xj+mj, Tji=x

jr Rk = Zj T Zk

and

The perturbation expansion for large s of ) to the first order is

Qu Qi2 (s
Q(s,0) = Qa1 Qa2 Q2 |,
Q31 Q32 @s3
with
Qu = (¢ — a12)(¢ — a13),
—a
Q12 = e (a1 — a12) (a1 — CL13)£Q,
Q21 A21 — A23
—a
Q13 = e " (az; — ar12)(as — a13)£¥,
31 az1 — az2
—a
Q21 = e " (a12 — a2 )(a12 — a23)g,
(12 — 13
Q22 = (¢ — a21)(¢ — ass), (3.99)
—a
Qa3 = € 7 (aze — ag )(ass — a23)ig,
32 A32 — 31
¢ —a

Qs = e (a3 — asy) (a3 — az2) ;
@13 — Q12

¢ —an

Q32 = € (a3 — as1)(ass — asz) ;
Q23 — Q21

Q33 = (C - 6131)(C - 0632)-
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We must normalize ) so that each row has norm 1 with respect to the

norm (3.37). The norm of the row ¢;(s,() = (Qj1,Qj2, @j3) for 1 < j < 3,
to the first order, is

1

B D
V 212421213031
1

V—Z12012Z23032
1
Hd}SH =T
V £13@13223023
The Lax pair (L, M) obtained from the normalized @ via ([3.90]), evaluated
at ¢ = 0, is the following:

[l =

|[¢2]] = (3.100)

Li; O 0
LN(S, 0)= Lo Ly 0 |,
L31 L3y Lag
with
L1y = 2,

Loy = e "2/ —Z12a21 213031 212012 223432
<Z12236113a31(a21 - a12)(012 - 023) . 22213023032(%1 - a12)(€112 - a31)>
b

Z12213%23031 (@12 — G13) Z12213%23031(a12 — a32)

Loy = 23,

Z1a12(a13 — a31)(a13 — 032)
2’12213(012 - G13)
_ z3agsazz(a1s — asi)(aiz — am))
213223021(1113 - a23) ’

—sri3 /= = = =
L31 =€ 18 \/Zl2a21213a13213a31z23a23(

— pST23 /_ > 2 =, >, a23—a32
L32 =e€ \/ 212012213413223023223032 212213223012 (013 —G23 ) (G23—021)
L33 = Z3.

M1 0 0
M(S,O) = M21 M22 O 5
Mz Mz Mss

Moy = €72/ —Z19a12212a21 213031 223032 (@12 — A21)
<$2213a32a23(al2 - a31)(a12 - 6113) - (7”12 + €E1)223a13a31(a12 - a23)(a12 - a32)>
212213223031 (@12 — a13) (@12 — a32) ’
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Moy = o,

(@1 + 7r13) 223012021 (a13 — a32)
2122132’23@21((112 - als)
. x3212a23a32(a13 - 021) >

Z12213%23021 (a13 — G23)

—S8Tr = = = =
M3z = e "3 \/212a21213a13213a31223(123(

M3y = €728 \/—Z12a12213013 223023 223032 (23 — a32)
<$3212a13a31(a12 - azs)(am - 023) + (7“23 + m2)213a12a21(a13 - a23)(023 - (131)>
212213223012 (A21 — @23)(a23 — a13) ’

M33 = X3.

(3.101)

From LY (s,0) = Ty — T} and M (s,0) = Ty — iT3, we obtain the following
Nahm solutions:

z21+ Z Ly L3

i =
Ti(s) = B Loty 29+2y L3 +0 (e_as) ;
L3 L3y 23+ 23
1 (A~ zi —Loy —231
Ty(s) = 5 Lyyv  2m—2 —Lsgp | +0 (670‘5) )
L3 L3y 23— 23 (3.102)
. 214 Mm M31 .
G \ —as
Tg(S) = 5 M21 21’2 Mgg + O (6 ) s
Mz M3y 23
1 (0 — My, —]\:431
To(s) = 3 My 0 =Mz | +0(e™),

Mz, Msy 0

where « is the minimum of the values 2rq5, 2r3, and 2ra;3.



Chapter 4

Dirac Monopole and ADHMN

4.1 Introduction

We address the Nahm transform for the Dirac multimonopole in this chapter.
The Nahm transform may be thought of as a nonabelian generalization of
the Fourier transform sending a (reduced) self-dual pair (£, A), consisting of
a Hermitian bundle £ — X over a manifold X = R*/A with a connection A
on it, to a (reduced) self-dual pair (E, A) over a dual space X* = R*/A* [21]
[71]. The four-dimensional space for the self-duality equations that concerns
us is R?, and the reductions to SD are from imposing invariance under some
abelian subgroup A C R%. We then have X = R*/A and X* = R*/A*. For a
more general setting of the transform, see [34].

The first major result in this area was the ADHM construction of instan-
tons on R* [30]. In that setting, the ADHM construction may be thought
of as the case A = {0}, in which case A* = R*. Monopoles and Nahm’s
equations arise from the choices A = R and A* = R3, giving the following
picture.

Nahm Transf .
Monopole < o e Nahm Solution.

The Nahm transform starts with a self-dual connection A on a Hermitian
bundle £ — X. Let S be the spin bundle over X, we have Dirac operators
DL* for a family of connections of A twisted by * € X*. The resulting family
of spaces of L? zero modes of D;* over the parameters of X* form a vector
bundle £ — X* forming a subbundle in L*(X,S ® E), the trivial infinite

rank bundle with fiber the vector space of L? sections of S ® E. Projecting

30
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the trivial connection of L2(X, S ® E) on E gives the self-dual connection A
[72], Section 4].

The crucial ingredient of the transform is then index theory, namely the
index of Dl*. In our case, there are no normalizable zero modes of D,- and
so the number of zero modes of Dl* equals the Dirac index. To perform the
Nahm transform, it is required to compute the zero modes.

Only a few explicit results for zero modes are known for single monopoles
[73] and double monopoles [74]. For generic n point configurations of the
Dirac multimonopole, Lamy-Poirier in [49] presented a general formula for
the zero modes in terms of a finite set of algebraic equations. We prove
that this system is equivalent to a set of matching conditions on n many
polynomials of degree n — 1 and we present its solution. In doing so, we
complete the programme of finding exact solutions for the zero modes of the
generic Dirac multimonopole.

4.2 Multimonopole Configuration

For a compact Lie group G and its Lie algebra g = Lie(G), a monopole is
a principal G-bundle E over a 3-dimensional Riemannian manifold M and
a pair (A, ®) of a g-valued connection A and a g-valued section ® of the
associated Lie algebra bundle ad(FE) satisfying Bogomolny’s equation

D = +F, (4.1)

where Fy = dA + A N A is the curvature form of the connection form A,
D® = dd + [A, ] is the differential, and * is the Hodge star.

For the Dirac monople with a singularity at the origin of charge m, the
principal G-bundle is £ = P*H™ the pullback of the Hopf bundle H™ of

degree m over the sphere S? under the projection R?\ {0} = S? x R, 5 os2,
Then the Dirac multimonopole over R? with singularities at @, and respective
charges my, for k = 1,...,n has base manifold R3\ {d@. | k = 1,...,n} and

the principal G-bundle is E' = ) (io P); H™* with (io P): H™* the pullback
k=1
of the Hopf bundle of degree m, under the map
R3\ {@, [k=1,...,n} > R*\ G =~ S2 xR, 5 52

The gauge group G = U(1) is abelian, so the Bogomolny equation is lin-
ear, and a multimonopole (A, ®) is a superposition of single monopoles. We
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use the coordinates 2z := x; +izs and z := 23 for R? = C x R with the volume
form da' A da? A da® = dz A dz A dz. For a multimonopole configuration of
n point monopoles of unit charge and distinct locations @, k= 1,...,n in
R3 the pair (A, ®) can be written as [73]

n . n

7 deZ_k — z‘kdzk
Or) =S = Adr) = S 2L T AR 4.2
(z) 21 (z) ; Ary(ry + xx) (4.2)
where for the vector T, = T — a@) we set 1y = |Tx|, 21 := z} + iz}, and

3
To avoid pathologies in the gauge, we rotate the monopole configuration
in R3, if necessary, so that no two monopoles are separated by a translation
in the 2% direction.

4.3 Dirac Operators

4.3.1 Dirac Operators Coupled to a Monopole

Let S be the spin bundle over R? with chiral decomposition S = S+ @& S~.
With respect to this decomposition, the monopole Dirac operator P : I'(S ®
E) - T'(S® FE) coupled to the gauge connection A and Higgs field ® for the

bundle F has the form
0 D

with

3 3
DT:_ZO-j@Dj—]l@iCI), DZZUj@Dj—ﬂ®iq)7 (4?))

Jj=1 J=1

where o; are the Pauli sigma matrice and D; = %%—Aj are the components
of the covariant derivative D.

We consider the L? kernel of D' in the L? subspace of functions from
ST E—STRE.

IThe Pauli matrices are

(01 (0 (1 0
01*10302*2' 0 ,O’3*0_1,

and satisfies [01, 03] = 2i03, [02, 03] = 2i01, and [03,01] = 2i0s.
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Definition 4.1. Define the normalizable zero mode (’f)) of the monopole

Dirac operators to consist of spinors ¢ € L*(S™ @ E) and ¢ € L*(ST ® E)
satisfying
Dy =0, D¢ =0. (4.4)

The operator DD is

3
ﬁD=1®<4V—§)ﬁ>+wwNM@Dﬂ+wh@H—

i09 ® ([D_l, Ds] + [Dy, ®]) + io3 @ ([Do, D1 + [Ds3, ®]). (4.5)

Vanishing of the pure quaternion part of DD is equivalent to (A, ®) satis-
fying the Bogomolny equation (4.1)). For a monopole (A, ®), the operator
3

DID = 1® (—®*— Y. D3) is a positive operator since
j=1
3
(DD, x) = 12X + Y _IID;xll. (4.6)
j=1

so there are no normalizable zero modes of D.

4.3.2 Dirac Operator Coupled to a Nahm Solution

The Nahm Dirac operator ® : [(S ® E) — (S E) coupled to the Nahm
data (Tp,T1, T, T3) for the hermitian bundle E of rank n over the interval

(0,00) has the form
0

with © : L2(S- ® E) = H (ST @ E) and ©® : H(ST @ F) — L*(S- ® E).
Here,
d : d &
@T:i%ﬂ'TO—Zoj@Tj, ©:i£+iTO+Zaj®Tj. (4.7)
j=1 j=1
Definition 4.2. The normalizable zero mode of the Nahm Dirac operator is
(%) with spinors ¢ € L*(S™ ® F) and ¢ € L*(ST ® E) satisfying

Dy =0, D¢p=0. (4.8)
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4.3.3 Zero Modes of Dirac Operators

We use an observation of Nahm [8] that the commuting pair of operators in
(1.7) may be used to discover zero modes of the Dirac operators. Here, we
follow the presentation of Braden and Enolski [65].

The Bogomolny pair (£, M) of in our self-dual conventions for
monopoles becomes

LY = Dy +iDy — (D3 +i®)C, MY = D3 —i® + (D; — iDs)C,
1 1

£S = —(Dl - ZDQ) + (—Dg + Z@)E, MS - —D3 - Zq) + (Dl + ZDQ)Z7

4.9)

—~

and Bogomolny’s equation is equivalent to [£, M] = 0 for all {, as in Equation

ED.

Definition 4.3. The spinor y is parallel for the pair (£, M) if it satisfies
the associated equation

Lx =0, My=0. (4.10)
Note that £° = —MTN and M*° = %, so any spinor parallel for (LY, MY)
is also parallel for (£°, M?) and vice versa.

Example 4.1. The parallel spinor x = (x, x°) for the trivial monopole
(A, ®) = (0,is) is

N = @) S = esleml), (4.11)
Proof. In North patch, x solves
0=LY\" = (2Dz — (D3 +1®)¢) x™,
0 =M = (D3 —i® +2D.¢) V.

If we assume 'V is independent of z then x*V is holomorphic in ¢. Indeed in
this case,

(LY + M) =0,
azXN _

_S<7
XN
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so that ¥ = C(x3,()e **. Then

MNXN — 07
dax ™ _
XN ’
leading to YV = C(¢)e™**3+¢%)  Assuming x* is independent of Z leads to
x* being holomorphic in % and a similar computation applies. O

The monopole Dirac operator D is related to (£, M) via the following
formula:

(L )2 ()=(2) )2 ()= (%) wn

One might think this relationship is not so useful since it is stated for
the Dirac operator D with no normalizable zero modes, rather than for the
desired Df. However, Nahm observed the following fact.

Lemma 4.1 (Nahm [8]). Let x be a parallel section of the Bogomolny pair
(L, M) of commuting holomorphic operators, then the spinors

(é) x(@:5,0), G) x(z, 5,C) (4.13)

are (non-normalizable) zero modes of D and the spinors

D (o) 150 2 (})xws o (4.14)

are (perhaps, mon-normalizable) zero modes of D. Here, we may use ™
and x° interchangeably for x.

NN
Proof. We have L OYp(t @ xN = MN X, ) = 0. The matrix
—C 1 ¢ L7X

(_1< (1)) is invertible so D (é) Mz, s,¢) = 0.

This implies

T XN($,8,<)> —
PP (CXN(x,s,C) -0
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However, (A, ®) solves the Bogomolny equation so that DD is a diagonal
3
operator, i.e. DID = 1®(—®*— " D?). We conclude that V*Vx" (z,s,() =
j=1

: : : .. 1 )
0 so xV(z,s,¢) is a harmonic function, giving that DD (0) Nz, s,¢) is
zero. A similar argument applies to the remaining spinors. O

The story for the zero modes of the Nahm Dirac operators is similar to
the monopole Dirac operators, with some differences. In fact, the basis of
sections of Lg(n — 1) may be used to give zero modes to both ® and DT in
a straight-forward manner.

The Nahm Dirac operator ® is related to the Nahm Lax pair (L, M) of
(3-55) via the same formula:

1 0 1\ (MY -1 1/¢ 1/¢\ [ L?
ool =) (0 5)= () = () o
We also have D10 = — (£ 4+T;)% — 25:1 T? so 1D is a positive operator

with no normalizable solutions to Dy = 0.

Lemma 4.2 (Nahm [8]). Let U;(s, () be a solution to the Lax linear problem
associated to (L, M) for the eigenvalue p;(¢) of LY. Let ajo and ag; be the
two roots of pj(¢). Then the spinors

1 N 1 N
(ajo) U5 (s, ajo), (a()j) ® U (s, ao;)

are (non-normalizable) zero modes of ©.

Proof. We have

(e D)oo e = (k) = Gucen)

Evaluating this at ¢ = ajp and ( = ag; gives zero. The matrix (_1< (1)) is
invertible for all values of ( so this proves the lemma.

Lemma 4.3 (Nahm [8]). Given a basis U of H°(S, Li(n—1)). The 2n x 2n
fundamental matrices W and V' of solutions to

DWW =0, DV =0,
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N . N
are given by W the collection of spinors < Y, ](Vs’ajo) >, (QOUU(S(;(ZO ) for
¥ J

(ljon (S, aj())

1<j<n,andbyV =WT)-1

87

Proof. Lemma[£.2) gives the stated form of W. V is easy to see, but we state

the proof for completeness. ®W = 0 states

AW &
Z%‘{'ZT()W—FZU]@T’]W:O

=1

Take the transpose of the above equation to obtain

3
—W 00T =0.

Jj=1

Conjugating both sides of the equation by W1 ' gives

.'. 1dW .I. 3 .i.—l
—iW 7 + 7 ToW Z o; T W =0.
j=1
—1
Since d(Wd—L) = Wi %er, the above equation states ®TW T~

the proof is complete.

4.3.4 Down Transform
The Down Transform of the ADHMN is the map

Down Transform

Monopole > Nahm Solution.

"= 0and

]

The Bogomolny equation for R* = R*/R is the dimensional reduction of
ASD by imposing invariance under the subgroup R of shifts of R*. The pa-
rameter s of R parametrize the trivial solutions (A4, ®) = (0,is) to the Bogo-
molny equation for the trivial line bundle L over R3. The Down Trans-
form of the ADHMN construction is carried out by twisting the monopole
Dirac operators with this parameter s to obtain DI : H}(S"@E®L) —
L*(ST@E®L)and D, : [*(STQ EF® L) — H(S™ ® E® L) as follows:

3 3
Df = Z ®@D;—i®+s, Dy=)» 0;®D;—ib+s.

s
J=1

(4.16)
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After choosing an orthonormal basis ¥(z, s) of L? zero modes to D], the
matrix-valued functions

ﬂ(s):—i/ Bz’ i=1,2,3, To(s):/ ot Ly (4.17)
R3 R3 ds

form a solution to Nahm'’s equations (2.6|) [7, pp.7].

Recall from Section that parallel spinors for the Bogomolny pair
(£, M) may be used to give zero modes of D and D'. In the case of the Dirac
monopole, the gauge group U(1) is abelian and because of this, superposi-
tions of solutions (A, @) lead to superpositions in (£, M). To be precise, the
Bogomolny pair (£, M) in North patch for a superposition (A! + A2, ®! 4 d?)
is

0 0 0
LN=%+A%+A3+1'8$2+z’A§+z‘A§+<—axS—A§—A§—z‘<1>1—z'¢>2>g,
MN—i+A1+A2—z'q> —i®y + i+A1+A2—ii—iA1—iA2 ¢

_a.’ﬂg 3 3 ! 2 8%1 ! ! 8LE2 2 2 '

Thus, parallel x of a superposition of {(£;, M;) | i =1,...,n} is simply the
product of parallel y; of its constituents,

X = Hx (4.18)

We need to twist the operators for the ADHMN construction. The twisted
pair (Ls, My) of (£, M) corresponding to the twisted Bogomolny equation
is the superposition (A, ® — is) of (A, ®) with the trivial solution (0, —is),

Li=L, Mg=M+s. (4.19)

The parallel spinor for the trivial solution is (¢5® 1<) == g0 for parallel

(xX™, x%) of (£, M), the parallel spinor for the twisted operators (L, M,) is
then the product

O A O (4.20)

These, however, are not normalizable. We will discuss in Section the

construction of the normalizable zero modes of DI necessary for the Down
Transform.
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4.3.5 Up Transform
The Up Transform of the ADHMN is the map

Up Transform .
Monopole < Nahm Solution.

Nahm'’s equations over R = R*/R3 is the dimensional reduction of ASD by
imposing invariance under the subgroup R? of R*. The parameter (xy, x5, x3)
of R? parametrize the trivial solutions (77, Ty, T3) = (iz1,ixs,ix3) to Nahm’s
equation ((2.1)) with the trivial bundle I over the interval (0, c0).

The Up Transform of the ADHMN construction is carried out by twisting
the Nahm Dirac operators with this parameter (z1,xs,r3) to obtain
LIS @E®I) - HY(STQE®I) and D7 : HY(ST@ E® 1) —
L2(S~ ® E ® I) where

d . < | d |
@;:Z£+ZTO—ZUj®(7}_Z$j)7 @le%+lTo+ZUj®(Tj_mj)

j=1 j=1

(4.21)

After choosing an orthonormal basis v of L? zero modes to @I}», the func-
tions

O(z) = i/ds solo,  Ai(z) = /dst'ﬁaa o, (4.22)
T

form a monopole solution [6].

In Section[3.4.2] we constructed a basis of sections of H(L§(n—1)). Now,
the zero modes of the twisted Dirac operators can be obtained from a basis
U(s,¢) of H{LE(n—1)) in the following way. The corresponding twisted Lax
pair (Lz, Mz) is Ly = L — p,(¢) and Mz = M — h,(C), for p,({) the twistor
line section corresponding to # and h,(¢) = = + (z. Note the eigenvalues of
Lz are now p;(¢) — p.(¢), with roots ¢ = a;, and ¢ = a,;.

The basis of solutions to the twisted Lax linear problem in the North
patch is then e*=(OUN(s,¢). From Lemma , the fundamental matrix

et (@I UN (s,a5,) )
)

W of zero modes to Dz is the collection of spinors (ajxeshx(aﬂ)Ung(S’ a;0)

Shw(axj) N .
( € Uy (s az;) ) for 1 < j < mn,and V = (W)~ is the fundamental

azje’= (= UN (s, a55)

matrix of zero modes to @;
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4.4 Spectral Curve of Monopole Data

In this section, we discuss the spectral curve of the multimonopole data for
the gauge group U(1). We will follow the U(1) analogue of the description
of the singular U(2) monopole in [75]. For any straight line

define
= {Z|Z=Ct+17,t > R},
T {q‘ ¢ " ) (4.23)
V- ={Z| &= (t+17,t <R},

where R is a positive number far greater than the absolute value of the
location of any singularity |d@|. Define two complex line bundles L™ and L~
over TP!:

Lt ={seTl(y,E)| Dys—i®s = 0},

L™ ={sel(y_,E)| Dys —ids = 0}. (4.24)

Bogomolny’s equations imply these bundles are holomorphic, as in [66].

Let us find the solutions s of the scattering equations in for the
Dirac multimonopole. Let f be the unit direction of the line v so that D, =
5- D. In terms of the North patch for P!, 5: 1+}g\2 (C+Ci(C—O),1—¢P)
so that

s 5 C+¢ (=9, 1=
D-=(-D= D, + Dy + D
TP IET T TR e
is the covariant derivative along the line v in the direction 5 Observe that
;(1 5)2)(1) =Dz—i® (4.25)
L+ [¢]? ¢ ¢ '

From Lemma , we see that the parallel spinor x = (x, x°) gives us the
solution to the scattering equations, where Y™ belongs to v, and x* belongs
to v_. For the unit charge Dirac monopole

1 defk — ikdzk

B(o) = 50 Al) = (4.26)
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one finds that

(Tk + :L‘k)l/2

_ Z]C—(Tk+l'k)<
Tk+$k+2kc.

(T’k -+ ZL’k)l/Q

XN (z,¢) , X, () = (4.27)

By , the parallel spinor y for the Dirac multimonopole is the product
of the above spinors of its constituent monopoles.

Denote the total space of the twistor section corresponding to a point
7 € R® by Pz := {((,p.(Q)) | ¢ € P'}. Let S be the union in TP! of all the
twistor sections P, corresponding to the singularities. This is, of course, the
spectral curve of the monopole data in the specific case of U(1), but this is
not how the authors of [75] defined the spectral curve for the singular U(2)
monopole and we will find it useful to continue the analogy.

If v does not pass through any singularity @, then any solution s can be

continued from ~, to 7_ and this defines an isomorphism
h: L+|TIP’1\S — L7|TIP’1\S- (428)

The Ward correspondence for the U(1) monopole is then the analogue of
[75, pp.5]: there is a bijection between U(1) multimonopoles modulo gauge
transformations and triplets (L%, L™, h) of holomorphic bundles over TTP!
satisfying the following conditions.

(a) For any ¥ # @, there is a splitting P, = P,”U P, such that E, is trivial.

(b) In the vicinity of each point of S, there exist trivializations of L™ and
L~ such that h takes the form

h:
k

(7 = pr(Q))- (4.29)

1

n

(c) The real structure 7 on TP! lifts to an antilinear antiholomorphic map
o:(L*)— (L)

As we have the solutions to the scattering equations given by (4.27)), we
can verify item (b). For the Dirac monopole with singularity at @, we can
rewrite the parallel spinors as

r+x)/?
XN(Z.’ 5,()=—(r+ :c)l/2(<‘ — Qog), XS<:L’,S,C) = ( +2 ) C _1%0),
(4.30)
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where a,q is the direction from ¥ to 0 and ag, is the direction from 0 to 7,
with explicit formula in (3.10)). From this, we have

XN = (pa(C) — ()X (4.31)

For the Dirac multimonopole, we then have

XN =TT (=(0) = () X°, (4.32)

n

so that h = [[(n — pr(€)). In [75, pp.6], the spectral curve S of the U(2)
k=1

singular monopole was defined as the zero level of the map from L™ to L~.

In our case of the U(1) monopole, this map is given by h and we obtain the

following spectral curve of the Dirac multimonopole.

Definition 4.4. The spectral curve S C TP! for the Dirac multimonopole
with n singularities at the points @, ..., d, € R? is

S= {(C,n) € TP" : H(n—pj(C)) = 0} : (4.33)

for p;(¢) = aj +1ia? — 2a3¢ — (aj — ia5)¢* the twistor section of the singular

- _ (1.2 3 3
point a; = (aj,a},aj) € R°.

In [75], pp.6], the behaviors as ¢t — +o0o of the solutions y to the scattering
equations along the line v were examined. Let us do the same here. Again,
recall that y for the Dirac multimonopole with n singularities at dy,...,d,
is the product of y; for the Dirac monopole at @ so we need only consider
the case of the single monopole located at the origin of R®. The scattering
equation for a line v parametrized by 515, belonging to the spectral curve, is
simply

1

D,—i® =0+ ——
TSy

(4.34)

with solutions

XNty =v—t, xX°(t) = %

In general for the Dirac multimonopole, the solutions x belonging to the
line bundle LT is such that x(¢) — oo when ¢ — —oo and the solutions y
belonging to L~ is such that x(t) — 0 as t — 0.

(4.35)
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4.5 Dirac Zero Modes from Rows of Polyno-
mials

Recall from Section that zero modes of the Nahm operator @; may be
constructed from an orthonormal basis of rows of polynomials. One may then
ask if the zero modes of the monopole Dirac operator D} may be written in
terms of these rows, i.e. in terms of a basis of HY(L%(n — 1)). Tt turns
out that the answer is yes. In this section, we present the construction of
normalizable zero modes of DI.

The relationship between the zero modes of the monopole operators DY
and D is more ambiguous than the zero modes of the Nahm operators Df
and ©. Recall from Lemma that the 2n x 2n fundamental matrix V'
of zero modes to D and W to D, we have V = (WT)~1. However, on the
monopole side the relation between the zero modes ¢ and ¢ takes the form
of the differential equation V - (¢o¢) = 0 as in equation (46) of [§]. We will
not try to solve for the normalizable zero modes using that approach, but
rather, we will follow an ansatz of Lamy-Poirier in [49].

We begin with the zero modes of the Dirac operator DI for the single unit
charge monopole as an example. We then give the general formulation for the
zero modes in terms of the rows of polynomials from Lemma [3.2] satisfying
the matching conditions Q;(a;;) = e Q) (a;;).

Recall the unit charge Dirac monopole located at @, € R3 is the pullback
E = P*H of the Hopf bundle H — S? under the map P : R\ {a,} — S?
with (A, ®) given in North chart by

i de?fk — dezk
) = A(g) =" TR 4.
(1) =g, Alw)= G (4:36)

For the parallel section of the associated operators (£, M), we shall use

(Tk + xk)1/2

S
z,() = -
X7 (z,¢) R

F(C), (4.37)
with any function F'(¢) of .

Recall the twistor line corresponding to ¢ in R? is p,(¢) = (y' + iy?) —
2y3¢ — (y* — iy*)¢? and the root of the polynomial p,(¢) = p.(¢) — pr(¢)
corresponding to the direction from the vector Z to the monopole located at

3 3
- . 3 - T°—ay+rzk
ar in R? is az, = s e e B
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By Lemma D, (é) F(C)eis(x’“f%)% is a zero mode of DI.

However, we want to get a normalizable zero mode. The unique normalized
zero mode of D] for the single monopole case is known [73] and given by

U(z,s) = D, ((1)) <_e—k (4.38)

i+ o)/

The factor ﬁ of the normalizable zero mode above is not a parallel
section of (Ls, M), so a natural question to ask is, can we still recover this
from the family of non-normalizable zero modes of DI in Lemma , which
are given by application of the operator D; to parallel sections of (L, M)?

Lamy-Porirer observed in [49] that the normalized zero mode is
obtained by taking the residue around ¢ = a, of the parallel section (4.37)
with choice F/(¢) = % With this choice of F(¢), we may rewrite the parallel

section as

1 - —a 1

S _ —sh_, () zk
x’ —e xk _— s 439
X (, ) C % C — aun ( )

where h_, (¢) = x —2x/( is the component of the splitting MT(O =—h5(()—
h,,.(C). The residue of x* at ¢ = a,y is then

L oL d Lo (R 1 ™

21 ap :% axkc Ek (—amk_ (T’k—i-l’k)l/Q.

(4.40)

k

Lamy-Poirier discovered that this residue formula generalizes to arbitrary
monopole configurations [49]. In the single monopole case, the residue for-
mula must be applied to a specific choice of function F(¢) for the parallel
section x° in to recover the appropriate harmonic function. The n-
multimonopole configuration is a superposition of monopoles so its paral-
lel sections are a product of n many parallel sections from the constituent
monopoles. In the general case, we then have a choice of some sum of these
parallel sections xi,...,x; along with choices for Fi(¢),..., F;(¢) to apply
the residue formula to.

In the same paper [49], Lamy-Poirier wrote an ansatz to produce n nor-
malizable zero modes by choosing a superposition of n parallel sections with

choices Fi(¢) = QIT(C),...,Fn(C) = Q"T(O of polynomials Q(¢) of degree
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(at most) n — 1 satisfying a set of algebraic equations. The questions of
whether this set of algebraic conditions produces n many linearly indepen-
dent rows (Q1((),...,Qn(¢)) as well as the method of constructing such
(Q1(),...,Qn(C)) were left open in that paper.

We describe the ansatz and answer the remaining open questions. For a
polynomial row (Q1(¢),...,Qx(()), we take the parallel section to be

S _ - Ql(g) —s(z;—2L) . ﬂ
X (SaC) - ; C € ¢ g Zh

T (4.41)

where we have a sum of parallel sections for the general multimonopole with

choices F;(¢) = QT(C) To see that each term is a parallel section of the

multimonopole, observe that the factor following Q’T(O in (4.41)) is the product
of parallel sections of the constituent monopoles of the configuration.

Given a polynomial row (Q1((),...,Qn({)), define the residue operation
for the parallel section (4.41)) to be

Res[(Q1(C)s- -, Qu(O] =D 5

Proposition 4.4. Let ) be a matriz of polynomials whose rows form a basis
of the rows of polynomials (Q1(C),...,Qn(C)) satisfying the matching con-
ditions Q;(a;;) = € Q;(a;;) for all double points a;j,i # j of the spectral
curve S. Then the n normalizable zero modes of the Dirac operator DI are

given by taking for each row (Q1(C),...,Qn(C)) of @ the spinor

V@ @ =D, () RSIQUO). - @O (413
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The components of 1 are given by

P1[(Q1,...,Qn)] = H(@)l/z y

zZ
1 k

—a —a
i=1 fk) i f) zj oy

n e—sw,a;ilQi(aa;i) 83(Qi(am)) B 83(%7_% 1o ‘Zi
2 [Hk;éi(azi ( Qi(azi) Z a +Z vy Otz — (m +1)>] ;

¢2[(Q17"'7Qn H —Aak 1/2 X

1

= _S”a_le(aam) 6(Qz(am)) . = 5(azci_a'wj) = a_lia . —Si
> {H#l(am ( Q) 2wy 2" ) 2)]

=1 axk)

In particular, constructions for QQ are given in Propositions|3.15 and |3.1/)

of Chapter|3 of this thesis.

Proof. 1t (Q1(C), ..., Q,(C)) satisfies the matching conditions, then by unique-
ness of Lagrangian interpolation each Qx(¢) admits the form and thus
satisfies Lamy-Poirier’s system of algebraic equations. The proof that such
a solution gives rise to a normalizable zero mode is found in [49, Appendix
A] and [49, A.5]. By Proposition [3.3] we get h°(S, L*(n — 1)) = n so that we
obtain n zero modes by this method. O]

Let us consider how the zero modes may behave for a specific choice of
basis that singles out the Atiyah polynomials. Consider the basis where the
diagonal entries are degree n — 1 polynomials and the off-diagonal entries are
degree n — 2 polynomials. Recall that we gave a method to construct a per-
turbation expansion for each basis element of an orthogonal basis of
polynomial rows (Q1(¢),...,Q,(¢)). In this basis, the zero order of the per-
turbation expansion for the ith row is Q; = A;({) the Atiyah polynomial at a;
and Q;£1(¢) = 0. The zero order of the harmonic function Res[(Q1, ..., Qy)]
for this basis element is then given by the term

ﬁ ok 1/2¢_ T, L Ai(ar) (4.45)
k=1 k H(am aa}k)
k#i

ki
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If we approach the monopole located at a;, i.e. r; — 0, then the zero order
of the harmonic function approaches

1/2
k(g ) (4.46)

= xe )
Zik Zi

k=1

ki
which is precisely the harmonic function found in for the single monopole
configuration at location @;. The zero mode coming from the ith element of
this basis then approaches near a@; the zero mode for the single monopole
with charge centered at a;.



Chapter 5

Conclusions for Part I

We construct solutions to Nahm’s equations with our prescribed boundary
conditions via the algebro-geometric integration method for Lax pairs. In our
case, the explicit formulation for our spectral curve is well-known, obtained
from the boundary conditions. For other boundary conditions, the spectral
curve is generally not explicitly known. As mentioned in Chapter [3| the
reader may consult Table 1 of [67] for a list of all currently known spectral
curves.

We then give two different linear systems for explicitly constructing an
orthonormal basis of sections to the eigenline bundle over our spectral curve,
which come from the associated linear problem to the Lax pair. We also give
an algorithm for constructing a perturbation expansion of the sections for
large s, to any order desired.

We solve Nahm'’s equations in terms of the orthonormal basis of eigenline
sections. The perturbation expansion of the sections are also used to give a
perturbative solution to Nahm’s equations for large s, to any order. We illus-
trate this with the example of rank 3 Nahm matrices. Our Nahm solutions
approach a diagonal limit at infinity and generally do not have Ty = 0.

We fill in the gap of Lamy-Poirier’s ansatz [49] for the explicit construction
of the L? zero modes of the monopole-side Dirac operators. We show that the
polynomials coming from a section of the eigenline bundle over the spectral
curve satisfy his criteria [49][Equation (5.8)] for obtaining a L? zero mode.
These polynomials are constructed explicitly from either one of our two linear
systems.

Our results and algorithms do not depend on the truth or falsity of
Atiyah’s conjecture on the linear independence of stellar polynomials. Atiyah’s

98



CHAPTER 5. CONCLUSIONS FOR PART I 99

polynomials appear in one of the linear systems for the construction of an
orthonormal basis of eigenline sections. They also appear in the perturba-
tion expansion of these sections. Note, for a Nahm solution of rank n, the
dimension of eigenline sections is n, the dimension of L? zero modes is n,
and there are exactly n stellar polynomials. We do not think these are co-
incidences, however, our present results do not immediately imply a proof
of Atiyah’s conjecture. It would be interesting to further examine whether
Atiyah’s stellar conjecture may be proven from the perspective of Nahm’s
equations.



Part 11
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Chapter 6

Polar Terms of Weak Jacobi
Forms

6.1 Polar Part of Weak Jacobi Forms

A Jacobi form is an automorphic form for the Jacobi group, so we begin with
the definition of the Jacobi group.

Definition 6.1. The Jacobi group TV is SLy(Z)? = SLy(Z) x Z*, with action
defined as

(M, X)- (M, X")= (MM XM+ X"), (6.1)
for M € SLy(Z) and X € Z2.
Now, we give the definition of a classical Jacobi form.

Definition 6.2. A Jacobi form of weight k and index t is a holomorphic
function ¢y (7, 2) : H x C — C, with H the upper-half plane, transforming
the action of ((¢ 5),(» »)) € SLy(Z)” as

at +b z
ct+d et +d
Opt(T, 2+ AT +p) =e

cz

) 2
) = (e + d)kezzmcﬁd o7, 2),

2 (6.2)

—i2mt(A\3T z
AT+ )Sok,t(Tv Z)7
and has the Fourier-Jacobi expansion
Z C(n, 1)627r7§n7'627rilz. (63)

n,lEZ
4tn—12>0

101
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For the Fourier-Jacobi expansion, we adopt the conventional notations
q:=e*" and y:=e¢
However, we will need to work with a larger class of functions, the weak

Jacobi forms.

2miz

Definition 6.3. A weak Jacobi form of weight k and index m is a holo-
morphic function ¢y, (7, 2) : H x C — C satisfying the transformation laws
(6.2)), and its Fourier-Jacobi expansion satisfies the weaker conditions

Pkm (T, 2) ZZ (n,l)q (6.4)

n>0 IEZ

The transformation laws infact bounds the sum over [ so that 4mn — [*> >
—m?. We denote the space of weak Jacobi forms by J .

Definition 6.4. Define j(m) to be the dimension of the space of weak Jacobi
forms of weight 0 and index m,

J(m) = dim Jy . (6.5)
We have the following formula for j(m) from [76, Section 9],

T—;+m—|—1 m = 0 mod 6

. —+ +5/12 m=1,5mod 6

j(m) = / (6.6)
12+2+2/3 m = 2,4 mod 6

T—22+%+3/4 m = 3 mod 6.

Gritsenko in [77] gives us a basis for the space of all weak Jacobi forms of
weight 0, freely generated by the weak Jacobi forms ¢g 1, ¢o,2, ¢o,3 as defined
below. A basis of .Jy ,, is, then, given by the set {¢871¢872¢873 | a+2b+3c = m}.
The generating functions can be written in terms of the following Jacobi theta
functions. For

Ooo(q, y) = Zq”/Q”

n=—oo
o0

Oor(q, ) = Y (—1)"¢"*y", (6.7)

n=—oo

910(61 y _ q1/8y1/2 Z qn (n+1) /2 n

n=—oo



CHAPTER 6. POLAR TERMS OF WEAK JACOBI FORMS 103

Ooo (1,2 010(7,2) 6o1(T,2
define Goo := ogg(f 0)» C10 = 912(T 5)> and Gor 1= egigrn%'
Then [77, Equation (2.7)] (with the coefficient of ¢ 3 adjusted to 4, rather

than 16) states

bo,1(T,2) = 4¢3 + Cho + ),
$02(7, 2) = 2((Co0¢10)* + (Co0o1)* + (C10Con)?), (6.8)
¢0,3(7'7 z) = 4<§0C120C§1'

In the Appendix, we discuss an implementation of ¢g 1, ¢¢ 2, ¢o 3 in Mathe-
matica that allows for a fast computation of their Fourier-Jacobi expansions,
up to order 10,000 in q. We used this code for our numerical computations in
Chapter [8, which require Fourier-Jacobi expansions to order approximately
1000 (if not more) in ¢ to properly investigate.

Definition 6.5. The polar terms of a weak Jacobi form of index m are the
terms c(n, [)q™y" in its Fourier-Jacobi expansion such that 4mn—1% < 0, with
n>0and 0 <[ < mﬂ We denote by p(m) the total number of polar terms
q™y' with n > 0,0 <1 < m for index m. Let pp(m) be the number of pairs
(n,1) with n > 0,0 <1 < m such that 4mn — > < —P.

It is known that the polar parts of a weight zero index m weak Jacobi
form uniquely determine the form when m > 0. To describe this requires
introducing the theta decomposition of a weak Jacobi form, which involves
modular forms of fractional weights for congruence subgroups with multiplier
systems and so we give their definitions here.

Definition 6.6. The principal congruence subgroup of level N for an integer
N > 1 is the subgroup

T(N) = { (‘CL 2) € SL(2,2) | (‘C‘ Z) - (é ‘i) mod N}. (6.9)

We take I'(1) to be SL(2,Z), but shall abbreviate it to simply T

When extending modular forms from integral weights to fractional weights
k, the factor J((& %), 7) := (c7 + d)¥ is no longer an automorphy factor. To
correct this, we need multiplier systems.

!This definition may differ from part of the literature. In general, the restriction n >
0 and 0 < I < m may not be insisted upon. In this case, our definition will be the
‘fundamental domain’ of all polar terms, i.e. there exists an element of I'V taking a
general polar term to one with n > 0, 0 <[ < m so there is no loss of generality.
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Definition 6.7. A multiplier system v is a map v : ['(N) — C* satisfying
'U(MlMQ)J(MlMQ, 7') = ’U(Ml)U(MQ)J(Ml, MQT)J(MQ, 7'), (610)
for J((¢ 5),7) = (cT +d)*.

Note, multiplier systems are not necessarily characters of I'(V).
Now, we are able to define modular forms for a congruence subgroup
I'(N) with fractional weights k.

Definition 6.8. A function ¢, : H — C is called a modular form of weight
k with multiplier system v for T'(N) if ¢, is holomorphic on H and satisfies
the transformation property

at +b
ct+d

(M) = 0( L) = w(M)(er + d)for(r), M ET(N),  (611)
and ¢y, is holomorphic at all cusps r € QU {oo}. When £ is fractional, we
will take the principal branch cut of the root when defining (cm + d)*. If
¢y 1s, instead, meromorphic at the cusps r € Q U {00}, then ¢y is called a
meromorphic modular form.

We illustrate this with the important example of the Dedekind eta func-
tion, a meromorphic modular form of weight 1/2 with a nontrivial multiplier
system. This function will play a role in some of our later proofs.

Example 6.1. Let (5) be the Kronecker symbol, which generalizes the Leg-
endre symbol to all integers d. Define (5). to be the Kronecker symbol,
except at (%), := —1. Define (£)* := (Ffl‘) The Dedekind eta function

n(r) =¢">]](1 -, (6.12)

is a meromorphic modular form of weight 1/2 for SL(2,Z) with the multiplier
system v, defined as

*e% ((a+d)c—bd(02_1)_36> ¢ odd

~—

(6.13)

d
c
(g)*e% ((a+d)c—bd(c2—1)+3d—3—30d) C everl.

The above is a nontrivial fact, for its proof we refer the reader to [78, Theorem
1.7].
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With all the necessary definitions in place, we may now introduce the
following lemma.

Lemma 6.1. [79, Section 3] For index m > 0, the polar part of a weight
zero weak Jacobi form uniquely determines the weak Jacobi form.

Proof. Consider the theta decomposition [76, Equation (5.5)] of a weak Ja-
cobi form.

Pom (T, 2) = > ()l 2), (6.14)

w mod 2meZ/2mZ

o0

with the vector-valued modular forms h,(7) = > (N, u)gV/*m.
N=-—m?2

The proof is accomplished by showing that if ¢ ,, has no polar part, it
must be identically zero. Now, all the polar terms of ¢y, appear in the
negative g-power part of the Fourier expansions of {h,(7) : p € Z/2mZ}.

The forms h,(7) are scalar modular forms of weight —1/2 for I'(4m)
with multiplier system (£). Since ¢q,, has no polar part, each h,(7) is
a holomorphic modular form. However, there are no non-zero holomorphic
modular forms of weight —1/2 for the subgroup I'(4m) with multiplier system

(§), so that h,(7) = 0. O

While the polar terms determine the weak Jacobi form when the index
is greater than 0, we also have that for m > 5, the number of polar terms
p(m) exceeds the dimension j(m) of weak Jacobi forms of weight zero and
index m. The polar terms then form an overdetermined system for Jy,,, in
the sense that given an arbitrary list of polar coefficients, there may not be
a corresponding weak Jacobi form with polar part having these coefficients.

The number of polar terms p(m) for index m is, by [80, Equation (2.31)],

p(m) = — 4+ — +a(m), (6.15)

)+ —, (6.16)
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where h'(—3) = 1/3, h/(—4) = 1/2, and otherwise h'(—d) is the class number
of the positive definite binary quadratic form of discriminant d, b is the largest
integer such that b* | m, and ((%)) is the sawtooth functionﬂ.

A heuristic argument appears in [80, Section 2.2] for the claim that,
asymptotically, a(m) ~ m!'/2. We prove here an explicit analytical bound
for a(m).

Proposition 6.2. For any € > 0, there exists a constant C, such that
la(m)| < C.m!/?*e. (6.17)

Proof. We put bounds on each term defining the quantity a(m) in (6.16|). The
term ((2)) is bounded between —1/2 and 1/2. While we have 1| 1(-2—)1/2] <

P1Pn -
112 < im!/2 where py,...,p, are the prime divisors of m, we will trivially
underestimate 1| 2| by setting it to zero. We now overestimate the remainin
. 202 & g
/
term, ; > h'(—d).
dldam

We have from [81, p.290] that
1
W(—d) < =Vdlogd, (6.18)
T
and the total number of divisors of 4m, denoted oy(4m), satisfies [82, p.229]

0_0(4m) S <4m)1.537910g2/10g10g4m‘ (619)

We overestimate the sum of class numbers by overestimating the largest term
W(—4m) with 1v/4mlog4m using (6.18), and then replacing each term in
our sum with this largest term. Overestimating the total number of terms in

the sum with (6.19)), we have

1 1 1
_Zh/(_d) < _(4m)1.537910g2/10g10g4m_ /Am, log 4m. (620)
4 4 ™

]

((z)) :xl((:c]+tzj){0 €L

a—% z=n+a0<a<l

That is, the sawtooth returns a zero for an integral argument, and otherwise returns the
decimal part subtracted by 1/2.
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In [80, Figure 2|, numerical analysis of the growth of a(m) for indexes
m to order several thousands shows that the difference (p(m) — j(m) — %)
grows approximately as m'/2.

We would like to eliminate the extraneous polar terms, and we achieve
the following analytical result: we improve on Lemma by proving that
the polar terms of polarity less than or equal to —m /6 determine the corre-
sponding weak Jacobi form.

Proposition 6.3. For m > 0, the polar terms c(n,l) of polarity 4mn — > <
—m/6 uniquely determine the weak Jacobi form g .

Proof. As in Lemma , we consider the theta decomposition of the
weak Jacobi form. The polar terms of ¢, appear in the negative g-power
part of the Fourier expansions of {h,(7) : p € Z/2mZ}.

We will show that the product n(7)h,(7) with the Dedekind eta function
is a scalar modular form of weight zero for the group F(lcm(24, 4m)). This
implies that the product must be a constant.

By Example the Dedekind eta function n(7) = ¢/ [] (1 — ¢™) is
m>0

a scalar modular form of weight 1/2 for I'(24) with multiplier system ().

The forms h,(7) are scalar modular forms of weight —1/2 for I'(4m) with

the same multiplier system ().

Since (5) squares to the identity, the product 7n(7)h,(7) is a scalar mod-
ular form for I'(lem(24, 4m)) with trivial multiplier system.

Given a weak Jacobi form with no polar terms of polarity less than or
equal to —m /6, we show this form must be identically zero. Let N be the
most polar term of this weak Jacobi form, this term shall also be the most
polar term of h,(7) for its theta decomposition. The Fourier expansion of
n(7)h,(7) then begins at ¢(N, 1)q~ 421 We have N > —& by assumption,
SO

1
N/4 — >0 6.21
which implies that n(7)h,(7) € My (I'(lem(24,4m))). However, the only
modular forms of My (I'(lem(24,4m))) are constants, whose Fourier expan-
sion consists of only the ¢° term. This implies that n(7)h,(7) is zero. O

Continuing the same spirit of eliminating extraneous polar terms that
over-determine the system of weak Jacobi forms, consider as in [80] the po-
larity value P(m), where P(m) is the largest number such that the polar
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terms c¢(n, ) of polarity 4mn — [*> < —P(m) uniquely determine the weak
Jacobi form g .
The formal definition of P(m) is as follows.

Definition 6.9. Let J(fm = {@om € Jom | c(n,l) =0 for 4mn — > < —P}.
Define the positive integer P(m) to be such that J(fr(nm) =0 and J(fr(nm)ﬂ # 0.

We have computed the values P(m) for small index m, using Gritsenko’s
basis for Jy,,. We plot the results in Figure below.

T
°
30 B
®e o
o® %
2 20f ® % i
A
10 - *
G @O ©O  © ®
oaddbe o
) »e |
| | | | | | |

0 10 20 30 40 50 60

Index m

Figure 6.1: Scatterplot of P(m), the largest polar value such that the polar
terms of polarity less than or equal to —P(m) uniquely determine the weak
Jacobi form.

The polar terms of polarity less than or equal to —P(m), then, form a
linear system for the space of weak Jacobi forms that is not as overdetermined
as the linear system coming from the entire collection of polar terms.

Let pp(n) be the total number of polar terms with polarity less than or
equal to —P(m). For small index m, we plot the difference pp(,) — j(m) in
Figure [6.2] and this quantity represents how many extraneous polar terms
we continue to have.
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Figure 6.2: Scatterplot of the difference between the dimension of .Jy,, and
the number of polar terms of polarity < —P(m). This difference measures
the extent to which these polar terms form an overdetermined system for

Jo.m-

We see from the scatter plot of Figure[6.2] that frequently, the polar terms
with polarity less than or equal to —P(m) are sufficient to uniquely determine
the weak Jacobi form.

Computing P(m) for large m quickly becomes computer-intensive because
of the requirement to extract Fourier-Jacobi coefficients from the polar part
of each basis element, in order to form the linear system. We have managed
to compute P(m) up to m = 61 in Mathematica. We present the code for
computing the polar coefficients of a basis of Jy,, in the Appendix. Instead
of continuing this computer-intensive task for higher m, we now discuss lower
and upper bounds for P(m).

In [80], a heuristic was given for approximating P(m) but our goal is to
obtain some analytic bounds on P(m). To begin with, we already have a
lower bound offered by Lemma [6.1]
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6.1.1 A Lower Bound for P(m)

Corollary 6.4. A lower bound for P(m) is P_(m) := [%]. P(m) attains

this lower bound at m if and only if there are constants C,, such that

Ch
Pom = > %ew(r, 2) (6.22)

w mod 2meZ/2mZ
1s a weak Jacobi form that is not identically zero.

Proof. The statement of Lemma 6.1/ implies [%] is a lower bound for P(m)
and its proof shows that whenever P(m) = [% ], there exists a weak Jacobi
form in Jp ,,, having the above theta decomposition. Such weak Jacobi forms
do exist, e.g. at m = 6 we have P(m) = 1 with the Jacobi form —4¢f, —
¢372 + ¢0,1¢0,2¢0,3 having a theta decomposition of this type and lowest polar
discriminant —1. O

6.1.2 An Upper Bound for P(m)

Counting the number of polar terms of polarity less than or equal to a fixed
—P for P € Z, will be important to us, as we will use this counting number
to obtain an upper bound on P(m) as in the following lemma.

Lemma 6.5. For ps(m) = z\:ﬁ [lz;mﬂ counting the number of polar terms
I=[VP]
with polarity less than or equal to —P, we have

P(m) < P, (6.23)

for any P satisfying the inequality pp(m) < j(m) < ppii1(m). Denote by
Pt (m) the smallest such P.

Proof. The polar terms for a given index m form a linear system for the
space of weak Jacobi forms of index m. We order the polar terms according
to their polarity. We may use the j(m) basis elements to set (j(m) — 1) of
the most polar terms to zero, so that P(m) is bounded above by the value
of P such that pp(m) < j(m) < ppy1(m). O

P*(m), the upper bound for P(m), is easy to compute, we present a
scatter plot of its value for 1 < m < 1000 in Figure [6.3] Comparing this
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with the scatter plot for P(m) for 1 < m < 61 in Figure [6.1] we find that
P(m) = P*(m) except at m = 39,51, 54, and 58. A particularly wide gap is
found at m = 54, where P(m) =9 but P™(m) = 25.

We expect that for generic m, P(m) will be very close to P (m). Equality
between P(m) and PT(m) holds whenever the linear system of polar coef-
ficients with polarity less than or equal to —P*(m) has maximal rank. We
expect the matrix of these polar coefficients to behave like a random matrix,
and such matrices generically have maximal rank. In contrast, we expect
P~(m) to be a weak lower bound.

Numerically, we find that

m
|PT(m) — e 2.1016m!/2. (6.24)

500 - .
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E
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Figure 6.3: Scatterplot of the upper bound P*(m) for P(m), where P*(m)
is the polarity such that the number of polar terms of polarity < —P*(m)

equals j(m).

We discuss a heuristic approximation of the upper bound P*(m) for
P(m), building on [80]. Our approximation has one analytical gap, which is
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the assumption that Z(( 7)) for any P has the 'same’ behavior as a func-
i=

tion in m as Z((i—m)) If this assumption holds, then it implies the following

conjecture.

Conjecture 6.6. P*(m) has the following upper bound
+ m 1/2
P*(m) < 5+ Cm'”. (6.25)

Numerically for m < 1000, we have obtained C' ~ 1.35695. We now
describe this rough approximation of P*(m).

Argument. We fix m and try to solve the following equation

Pp+(m) = j(m) (6.26)

for P*(m) in terms of m. That is, we want to find the polarity P*(m) such
that the number of polar terms of polarity < —P*(m) equals j(m). From
numerical data, we see Pt(m) grows like am for a approximately equal to
1/2, and we shall later use this ansatz.

Equation (6.26]) is
.  [12— Pt(m)
iom =2 [TW

l=lp

_212 P*+(m i(( Pt(m >>) (6.27)

([ - =2)
for Iy = [/P*(m)].

For any P < 4m, define pu(m,P) to be the number of integers | with
0 <1 < m solving I? = P mod 4m. Asymptotically, u(m,P) is dominated by
m*2. To see this, take the prime factorization 4m = 28p5'ps? - - - p3. There
are at most 4 - 2" solutions to 2 = P mod 4m over the ring Z/4mZ, as may
be seen in any standard book on classical number theory, e.g. [83, Section

~
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5.1]. By [84, Theorem 12], the number of distinct prime factors of an integer
m > 2 is bounded above by 3% + O( 2 ) so we have

(Inl

Inm
+0 ((lnln m)2 ) .

p(m,P) < 4. 2mm (6.28)

The latter is rapidly dominated by m'/? as m — ooc.
Now, we have

(R R )

I=lp
(6.29)

Let us use the anstaz P (m) = am for some o < 1. Then ([6.26) becomes

m o« 20%/2 — 6al/? | = 12— Pt (m)

moo T 0 ol P () —
s 4" + 17 m ;(( m ) — p(m, PT(m)) = x(m),
=lo

for 0 < x(m) < 2. Explicitly,

%_f—i—'—gfml/z m = 0 mod 6

%—{_294_‘_2:11;/12/2 m = 1,5 mod 6
x(m)=¢8 2 24

§+24+24m1/2 m:2,4 mod 6

5T ;471 + 22;/12/2 m = 3 mod 6.

Let us assume that the behavior of > ((12_{:;(7”) )) is similar to Z((%)),
1=l 1=0
by which we mean that for any € > 0 there exists a C, such that

S < it

l=lg

Then we see ((6.30]) is of the form
D S+ oml*e) =0, (6.31)
which forces

(6.32)

For any € > 0, we then have P*(m) < %m T CLml/2te, —
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12—P*(m) ))

m
Again, the above argument is based on the assumption that » ((—

I=lp

behaves similarly to Z((%)), i.e. for any € > 0, there is a C. such that
=0

Z((%)) < Com!/?te, (6.33)

We now discuss the difficulty of giving an analytical proof of the assump-
tion that the inequality (6.33]) holds.

We begin by reviewing how this bound for Z((%)) is proved. One writes
i=0

o2 n

—)) = — 1 6.34
Sin= X (5 Yo (631

=0 n mod 4m 1e{0,...,m}

12=n mod 4m
and we see the sum, then, is about counting the number of solutions to
12 = n mod 4m. This is, of course, connected to quadratic reciprocity and
the class number h(—d) of the positive definite binary quadratic form of

discriminant d. Indeed, this term equals };Z K (—d) by [10, pp.124], for
d|dm

which we can use the upper bound (6.20)).

Let us attempt the same thing for ) [li;m?] We have
I=lo

SED) =S EED) - EED), e

For 0 <1 <ly— 1, = is a negative number between —1 and 0 so that for

such 1, (522)) = 522 + 1. Then

() B (i (ii;f n g) RRNCED

I=lo l

The sawtooth function is periodic with period 1 so ((F;m?)) has a period of

1
2m. This gives us

e ) P (i S w5 SR

1=0 ! mod 2m
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Again, from periodicity, we clearly have

> o=ty (B (639

4m
[ mod 2m [ mod 4m

Now,

DI (Gs) P S TR B S

! mod 4m n mod 4m [ mod 4m

gf:n—&—? mod 4m (639)
n JR—
S (=N S

n mod 4m [ mod 4m

12=n mod 4m

We can then write the latter expression as

ORG-S N SIS T S A S

4dm

n mod 4m [ mod 4m n mod 4m [ mod 4m
12=n mod 4m 12=n mod 4m
DI EDSREEID D ND D
2 2
0<n<? [ mod 4m P<n<dm [ mod 4m
12=n mod 4m 12=n mod 4m
n
-+ Y LY
4m
n mod 4m [ mod 4m

[2=n mod 4m

+Z% > 1—2% > oL

0<n<? [ mod 4m P<n<dm [ mod 4m
12=n mod 4m 12=n mod 4m
(6.40)
The second term is exactly 1 > h/(—d) so we get
dlam
n—>P 1
> (=) X 1==P+ ) H(=d)
4m 4
n mod 4m I mod 4m d|4m
12=n mod 4m
1 1
PO DEREED DI S DR
0<n<? [ mod 4m P<n<dm [ mod 4m

[2=n mod 4m 12=n mod 4m

(6.41)
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The issue is, we do not know how to analytically impose an upper bound on
the remaining two terms on the right side of the equation above. A heuristic
argument is that the quadratic residues are randomly distributed so that the
latter two sums behaves like a random walk and are bounded by m!/?. If
we are able to analytically impose a bound of m'/?*¢ it would imply the

inequality (6.33)) and thus prove Conjecture [6.6]



Chapter 7

Slow Growth around yb

In this chapter, we consider the weak Jacobi forms with some y° as their
most polar term in their Fourier-Jacobi expansion (as opposed to the
general case, where the most polar term is an arbitrary ¢%y® term, addressed
in Chapter . Before we begin, we want to fulfill our promise of filling in
the details behind the motivation outlined in the introduction on why we are
interested in the growth behaviors of the sums f,;(n,1) in (1.19).

As mentioned in the introduction, a weak Jacobi form of weight 0 admits
an exponential lift to a Siegel modular form, and the growth of f, ,(n, ) about
its most polar term ¢%y indicates the growth of the Fourier coefficients of
the lifted Siegel modular form. For completeness, we describe this lift and
the emergence of the sums f, 5(n, 1), but we will not need it for the remainder
of the thesis.

The exponential lift is described in [52, Theorem 2.1], which we summa-
rize here. Given a weak Jacobi form ¢, of weight 0 with Fourier-Jacobi
expansion

Prem(T2) =D > e(n, g™y

n>0 [EZ

117
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The function ¢ (7, 2) admits a lift to a Siegel modular form @, : H, — C,

®,(9) = Exp-Lift(¢) () = ¢ prCH
n>0
> H(l - c(0,l) > H qnylptr c(nr,l) (72)
1<0 r>0

for the paramodular group

7 7
Z t'Z
2 | NS4 (7.3)
t7 t7 t7 7

7z
7
Ft = Z

NN N

We are interested in growth behavior of the Fourier coefficients d(m,n, )
with negative discriminant 4mn — [ < 0 of the meromorphic Siegel modular
form

Zd m,n, )p™q"y", (7.4)

m,n,l

Exp- Llft

where here we expand the Fourier coefficients in the region I'm(p) > Im(7) >
Im(z) > 0.

Sen in [85] shows we may compute d(m,n,l) by making a contour inte-
gration so that

1 T
d(m, n, l) = Z%Res(Tapi% (75)

i

where p, are the poles inside the contour.

To know which residues to take for a contour, we need to know the poles
of Exp-Lift(go,). Following [52 Section 1.3], the divisors of Exp-Lift(pq )
are the Humbert surfaces for D := 4ta — b* with D < 0 defined by

Hp(b) =T;-{Q € H, | ar +bz+tp =0}, (7.6)
il.e. the orbit of the level set of

ar +bz+tp=0 (7.7)



CHAPTER 7. SLOW GROWTH AROUND YB 119

under the action of the paramodular group I';.

The Humbert surfaces depend on D and b mod 2t, and each polar term
q®y® of negative discriminant D = 4ta—b? in the Fourier-Jacobi coefficients of
©o,+ has an associated Humbert surface Hp ;. The lifts of weak Jacobi forms
of the same index ¢ then have the same divisors Hp(b), but with differing
multiplicity.

The multiplicity of mp of Hp(b) is given by

mpp = Zc(nZa, nb). (7.8)

n>0

Since ¢%y® is polar, ¢(n%a, nb) are polar coefficients as well and the multiplicity
of the Humbert surface Hp is determined by the polar terms of ¢ ;.

We may evaluate the residue at the representative of the Humbert
surface, i.e. at

p,:p = gy’ (7.9)

For simple poles mp; = 1, by [58, (3.21)] one obtains

" "y" _Arac, b .
Res(—— o——,p;) = (-1)*q iy O [(1 = o)

® 1>0
< ] =g =D, (7.10)

nJl€Z

(n,1)#(0,0)
where
fr(n, 1) = Zc(nr +ar®, 1 —br). (7.11)
r=0

Here is how f,;(n,l) arises. From (7.10), the growth behavior of the
residue, and thus of d(m,n, ), is determined by the sums fg(n,l). Because
of the bound 4tn — > < —t* = ¢(n,l) = 0, fr(n,!) differs from f,;(n,1)
by only finitely many terms. The latter sum is preferred to work with as [5§]
discovered generating functions for f,,(n,[) in the case of a = 0, discussed
in Proposition of the next section.
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Let us interpret the two possible behaviors of d(m, n, ) in terms of f, ,(n,[)
in this simplified regime. The asymptotic growth of ¢(n, () for large discrim-
inant is

c(n,l) ~ exp W\/|Atn;n| (4tn — 12), (7.12)
where A, is the maximal polarity of the weak Jacobi form. If there are
not substantial cancellations inside the sum of f,;(n,(), then f,,(n,{) will be
dominated by the most polar term in its sum and have exponential growth.
This leads to fast growth for d(m,n,l). However, in nongeneric cases, there
are significant cancellations between the coefficients in the sum of f,;(n, (),
leading to subexponential growth in f,;(n,{). This gives us slow growth for
d(m,n,l).

Now that we’ve established the importance of the sums f,;(n,1) for the
lifted Siegel modular form, we illustrate the dramatic difference between the
two possible growth behaviors of f,(n,l) with a simple example.

Example 7.1. The weak Jacobi form ¢g; has y' as its most polar term and
its sums fo1(n,!) are slow growing. The table below presents a selection of
their values.

(TL, l) ‘ foJ(TL, l)

(0,0) 12
(7,10) 0
(14,20) 0

In contrast, the weak Jacobi form ¢f, has y* as its most polar term and
its sums fp2(n,!) are fast growing. The table below of a few selected values
clearly demonstrates this.

(n, l) ‘ fo,g(n, l)

(0,0) 104

(3,2) 2390434947

(7,10) | 8074095060829281900923310709

The reader may wonder why there is such a dramatic difference in the
growth behaviors. As shown in [58], there are generating functions for
fop(n,1) in terms of modular forms. We will give a summary of these gen-
erating functions in the next section, but for now, in the case of ¢¢;, there
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is a single generating function for fy,(n,[) and it is a holomorphic modular
form of weight 0, i.e. it is a constant. So, in fact, fo1(n,l) may only attain
the values 12 or 0. In the case of ¢f |, the generating functions for fy2(n,1)
are nonholomorphic modular forms of weight 0, and therefore f2(n,1) grows
exponentially in n, [.

The remainder of this chapter is devoted to our findings on weak Jacobi
forms with slow growing fy,(n, 1), where y° is their most polar term.

7.1 Slow Growth Forms

For a weak Jacobi form ¢ ,, of weight 0 and index m, define a sum of its
Fourier-Jacobi coefficients,

fos(n,l) = Zc(rn, [ —br), (7.13)

re’l

where c(rn, [ — br) is the Fourier-Jacobi coefficient of ¢"4'~*". This sum is a
finite sum as c(n,l) = 0 whenever 4mn — [* < —m?.
In [61], the behavior of f;,(n, ) was classified, summarized in the theorem

below.

Theorem 7.1. [61] The functions fo,(n,l) have two types of asymptotic
behavior, as a function of n and l. In the slow growth case, fop(n,l) takes
on only finitely many distinct values as n and | range over Z. In the fast
growth case, fop(n,l) is unbounded and grows exponentially with n and l. In
this case, its growth is roughly of the form

fon(n, 1) ~ exp 2m\/4y(tn2/b2 + nl/b), (7.14)
for some v < 1.
From Theorem [7.1], we establish the following definition.

Definition 7.1. A weak Jacobi form ¢y, has slow growth at y° if fo,(n, 1)
exhibits subexponential growth.

Theorem [7.1], of course, gives us a stronger conclusion about the possi-
ble growth cases of fy,(n,l) beyond simply subexponential or exponential
growth. It states that if fy,(n,) has subexponential growth, then fo,(n,()
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has only finitely many distinct values, which is surprising. To prove this, the
authors of [61] found generating functions for the coefficients fy ,(n, 1) for ¢ m
in terms of a sum of specializations ¢™*/* g . (1, (r74s) /b), ;s = 0, ..., b—1
of the underlying weak Jacobi form. They concluded that the weak Jacobi
form ¢, is slow growth if and only if these specializations are holomorphic
modular forms, in which case, the specializations are constant functions and
there are only finitely many nonzero fo,(n, (). Before giving our findings, we
review their results regarding these generating functions.

The specialization X,.s(7) = ¢ /" g.m (7, (rT+5)/b) is indeed a modular
form, per the following theorem of Eichler and Zagier.

Theorem 7.2. [76, Theorem 1.3] Let ¢p (T, 2) be a Jacobi form on I' of
weight k and index m. Let o and 8 be rational numbers. The specialization
f(r) = e g, (r,ar + B) is a modular form of weight k on some
subgroup I of finite index depending only on ', a, 5.

The generating functions of Belin et al. are given by the following propo-
sition:

Proposition 7.3. [58, (4.16)] The generating functions for fop(n,l) are
given by

b—1
1 o
Foy (1) = EZan,j(T)e”“'”/b, (7.15)
=0

forny=0,...,b—1andk=0,...,0—1. Here, xp, ;(T) = ¢ (T, (neT +
J)/b) are specializations of the weak Jacobi form.

Proof. This proof is a rephrasing of the same argument in [58, Section 4.3].
We do so because we will later show that it is not possible to make a similar
argument for f,,(n,l) with a # 0. The goal of this proof is to be able to use
Theorem That is, the specialization

TitalT a? n la 2
2T h(r ar + B) = ¢ ZZc(n, 1)q"q"e* P (7.16)
neZ lel

is a modular form of weight 0.
To be able to use this, we must change the form of the sum

fos(n,l) = Zc(rn,l —br)

rez
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to match the form of the first sum of ([7.16)), i.e.

fop(n, 1) = e(__ ).

MEZL

This will allow fy(n, 1) to arise from specializations of weak Jacobi forms.
The Fourier-Jacobi coefficient ¢(n,l) depends only on its discriminant
4tn — I? and on the value [ mod 2¢, which we encode as

c(n,l) = c(n+IN+tX\ 1+ 2tA\), A€ Z. (7.17)
We apply this to ¢(rn,l — br). Set k := 1+ 2t\ and we obtain

fop(n, 1) = "c(rn + (1= br)A + X%, 1 — br + 2t))

rel

= > c(2tn\/b+nl/b+m(—n/b+ \) — A, 1)
mebZ+k

= > "c(2tn\/b+nl/b+1(—n/b+ X) — tAZ, )85,
MEZ

b—1
1 2 J .5 k.
= >N (2t b+l b in(=n b+ ) = A ) b2,

J=01heZ
(7.18)
where we used the b-periodic Kronecker delta function
s _ 1 bzie?“(m—k)j o _ {1 if 1 € bZ + k (719
kT = 0 otherwise. '

The factor €275™ in m imposes the constraint
8= j/b.
We must make one comment. Observe that
M :=2tn\/b+nl/b+m(—n/b+ \) — tA\

is integral when m € bZ+ k. When the index m is changed to run over Z, the
coefficient ¢(2tn\/b+nl/b+1m(—n/b+ X) —tA? m) is no longer well-defined
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for m ¢ bZ + k. Instead, we understand we may place any number here
without changing the value of the sum because of the presence of the
Kronecker delta function .
To free up subscripts, let us write f(n,l) := fos(n,l). Looking at the
form (7.16)), a generating function F(7) = > f(n,)¢™ suggests the following
M

(nonsensical) equation

> fm g =D fln, gttt
M

MezZ

= %bzi (Z ZC(M’ m)qM+ma+ta262mgm) o-2miks

(7.20)

Note is currently nonsensical since there is no relationship between
n,l and M. The index set for M is also unspecified. However, the require-
ment to have a single index M already imposes a constraint on «. From the
first equality of (7-20), M +1ha +ta? must reduce to a single variable. Since
1n appears in M as the term (—n/b+ A)1, we see that we must have

a=n/b— A

Now, let us accomplish a sensible form of . This means k£ must be
fixed. Also, in order to get finitely many specializations, « = n/b — X must
reduce to a finite set of values. So a single generating function (|7.20)) cannot
have every fo,(n,l) as coefficients, but only a subset thereof. In fact, the
desired equation clearly tells us that we must reduce the variables n,[ to a
single variable M.

Write n, =n mod b € {0,1,...,b—1}. Then n = bs + n, for some s. In
terms of a fixed ny, a = ny/b+ s — A. Clearly, we must take A\ = s, i.e.

A= (n—mny)/b.

Thus, for fixed n, and k, we may write such f(n,[) as f,, x(s) with one single
variable s € Z. Then M = M + ra + ta? = —ts® + sk + kny /b + tn? /b and
we may use instead the variables f,, x(M).

We now write a generating function F),, x(7) for f,, (M) with M € Z +
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b—1 .

1 n2t/b? WyT + )\ _oniki

D B O L (e
MeZAnyk/b+n2t/b? =0

1 b—1
- EZan,j (T)e*%ikj/b’
7=0

(7.21)

where we define the specializations
Xrs(T) == q”z/ngo(T, (rr+s)/b), 71,s=0,...,b—1. (7.22)
O

The remaining results of [58, Section 4.4] follows as a corollary of Propo-
sition [7.3] which we summarize below.

Corollary 7.4. fo,(n,l) is slow growing if and only if the specializations
Xrs(T) are holomorphic functions, in which case s are constant functions.

For o 4(7, 2) with slow growing fou(n,1), the values of fop(n,l) are given
by [58, Equation (4.24)]

b—1
% Oan,jeﬂm'kj/b tn+bl=00rn=0

fop(n, 1) =4 7;

0 . else,

(7.23)

where ny = n mod b with n, € {0,1,...,0 — 1} and k = 2(n — ny)t/b + L.
Here, X, ; are constants.
In terms of the Fourier-Jacobi coefficients of o +(T, 2),

c(—nym/b—n2t/b*,m) tn+bl=0o0rn=0
fon(n, 1) = { mebz—i—nyt/b
0 . else.

(7.24)

Given a weak Jacobi form, we can check slow growth of fy,(n,!) using
Corollary [7.4f We follow [58][Section 5.1] here. The specialization x,.(7) is



CHAPTER 7. SLOW GROWTH AROUND YB 126

holomorphic if it has no ¢” term with 8 < 0. The term ¢"y~' in ¢ leads to
¢% in Xr.s With

B =tr?/b* +n—Ir/b,
so by taking « to be the max of —f over all the specializations, i.e.

a:= max [—f], (7.25)

r=0,...,b—1

we see ¢ has slow growth if and only if none of the terms ¢y’ with a > 0
appear in the Fourier-Jacobi expansion of ¢. Note, a nonopolar term ¢"y'
automatically has a < 0 so we only need to consider the polar terms of .

We have computed the following dimensions of the space of weak Jacobi
forms that are slow growth about its maximal polar term 3°, for m < 61.
The code for fast extraction of polar coefficients for a basis of Jy,, is given
in the Appendix. The table expands Table 2 of [59], which ends at m = 18.
We also computed m = 71, which we include here. The table gives further
experimental evidence for Conjecture[L.I]that there exists a weak Jacobi form
of slow growth for each index m.

However, we find at m = 61 an exception to the observation in [59] that
there exists a weak Jacobi form with slow growth for every m,b = |/m]. At
m = 61, b = [/61] there are no slow growing weak Jacobi forms.

Note, the table has finitely many b for each m. Terms y°* with b > [\/m]
have o > 0 so we need not consider weak Jacobi forms with these terms in
their Fourier-Jacobi expansions.



CHAPTER 7. SLOW GROWTH AROUND YB

N IEN B e N G R U N

O R N RN RFRNR R~

dim

— O N = = O N e

— =
o0 © © O w o

10
11
11
11

W N WNHFE WND DN =T

e
=

_— OO N O WRFEOoONO

12
12
12
13
13
13
14
14
14
15
15
15

WO W — WK —= WM~ T

dim

N — O = OO OO WO

16
16
16
16
17
17
17
17
18
18
18
18
19
19
19

AW R W R R WNR R WD~ T

dim

— = O W WOoOOoONOOOH=NFO

127



CHAPTER 7. SLOW GROWTH AROUND YB

20
20
20
21
21
21
22
22
22
23
23
23
24
24
24
25
25
25
26
26
26
27
27
27

U QO UL W UL W W WD R W WND W o

dim

N R NN R ORI P OONFEONREFEOKRFEO

28
28
28
29
29
29
30
30
30
31
31
31
32
32
32
33
33
33
34
34
34
35
35
35
36
36
36
36

Oy UL W UL W U W U WOt WUt WOtk WOk WOtk wo

dim

NN W WO O P OFNONWORFRF OOk NDNRFRRFRREFEONWHH

37
37
37
37
38
38
38
38
39
39
39
39
40
40
40
40
41
41
41
41
42
42
42
42
43
43
43
43

O UL WO Ul WO Ul WO Ul WO Tl WO Uk WO Ok o

dim

WO OO NP O OO WNOODHERE PP ODODWRHFR OO WwWwo oo

128



CHAPTER 7. SLOW GROWTH AROUND YB 129

m b dm|m b dim| m b dim
44 3 0 |50 6 2 |56 6 2
44 4 0 |50 7 3 |56 T 5
44 5 2 |51 3 0 [57 4 O
449 6 3 |51 4 0 [57 5 0
45 3 0 |51 5 1 |57 6 2
45 4 1 |51 6 3 |[H7T 7T 2
45 5 2 |51 7 3 [H8 4 0
45 6 4 |52 3 0 (58 5 0
46 3 0 |52 4 0 [58 6 3
46 4 0 |52 5 1 |58 7 2
46 5 1 |52 6 3 [H9 4 O
46 6 3 |52 7 2 (59 5 0
47 3 0 |53 3 0 (59 6 O
47 4 0 |53 4 0 |59 7 1
47 5 0 [53 5 0 |60 4 1
47 6 1 |53 6 0 (60 5 3
48 3 0 [bB3 7 2 |60 6 5
48 4 2 |54 3 1 (60 7 3
48 5 2 |54 4 0 (61 4 O
48 6 6 |54 5 1 (61 5 3
49 3 0 |54 6 6 |61 6 1
49 4 0 |54 7 2 (61 7 O
49 5 0 |55 4 0 (71 4 O
49 6 2 |55 5 1 (71 5 0
49 7 5 |55 6 2 (71 6 O
50 3 0 b5 7 1 |71 7 1
50 4 0 |56 4 0

50 5 4 |56 5 0

Table 7.1: Dimension of the Space of Weak Jacobi Forms of Weight 0 and
Index m that are Slow Growing About Their Most Polar * Term

We introduce a lower bound on the dimension of the space of weak Jacobi
forms that have slow growth about their most polar term v°, derived from
linear algebra.

Proposition 7.5. For index m and integer b, let p(m,b) be the number of
polar terms q™y' with 4mn—1% > —b? and w(m, b) be the number of such polar
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terms with o > 0. The dimension of weak Jacobi forms with slow growth
about their most polar term y° is bounded below by j(m) — p(m,b) — w(m, b).

Proof. The requirement that a weak Jacobi form has Fourier expansion be-
ginning at ° can be encoded as the solution to a linear system, with respect
to a basis of Jy,, and the polar terms for index m of polarity > —b?, along
with the polar term ¢ itself. Indeed, given a basis of Jy,, let A be the matrix
where the j-th row is the polar coefficients c(n,l) for —b* < 4mn — I*> < 0,
along with ¢(0,b), of the j-th basis element. The linear system is

0

Az — | 7.26
= (7.26)

1

Of course, if the linear system has any solution 2/, then all the solutions are
given by x = 2’ + ker A. The dimension of the space of weak Jacobi forms
with most polar term y~° is then either 0 (no solution) or 1+ null(A) (when
there exists a solution).

The matrix A is onto if rank A = 1 + p(m,b), in which case the linear
system clearly has a solution. The nullspace of A is bounded below by
j(m)—(14p(m,b)). When there exists a solution, the dimension of the space
of such weak Jacobi forms is bounded below by j(m) — p(m,b). We expect
that generically, this lower bound is optimal for b such that 1+ p(m,b) <
j(m).

Now, let us address slow growth. Recall that for fixed b, each polar term
¢"y' has a value o such that ¢"y! leads to fast growth in ¢ if o > 0. We
can encode as a linear system the condition for a weak Jacobi form to have
none of these terms, in which case the weak Jacobi form has slow growth.

Given a basis of weak Jacobi forms whose most polar term is given by y°,
the space of weak Jacobi forms that have slow growth about 1 is the space
of solutions to the linear system

By =0, (7.27)

where each row of B is given by the coefficients ¢(n, ), with a > 0, of a basis
element.

The nullspace of B is bounded below by 1+ (A) — w(m,b). We expect
equality to happen for generic m,b when 1+ (A) > w(m,b).
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We conclude that whenever there exists a weak Jacobi form with 3° as its
most polar term, the dimension of slow growth weak Jacobi forms is bounded
below by j(m) — p(m,b) —w(m,b). This lower bound is optimal whenever A
and B have maximal rank, which occurs for generic matrices. O]

Comparing to the actual dimensions in Table [7.1] this lower bound is
nearly always optimal. The indices m and values of b for which the lower
bound fails to be equal to the actual dimension are (m = 41,b = 6), (m =
47,b =6), (m =55,b=7T7), (m =59,b=7), (m =61,b=6), (m ="71,b =
7), and (m = 71,b = 8). For all of these, the lower bound is zero but the
actual dimension is one. These preliminary results suggest this lower bound
is optimal for generic m, b, however we suspect this is deceptive. The lower
bound is easy to compute, so we present several scatter plots of its value for
large m.

We check whether this lower bound gives us a slow growing weak Jacobi
form for every m,b = |[\/(m)]. Under the assumption that there always

exists a weak Jacobi form with most polar term V™ we have the following
scatter plot of the lower bound for index m, b = [y/(m)]. We find the lower
bound is frequently zero for large indices m.
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Figure 7.1: Scatterplot of the lower bound for the dimension of weak Jacobi
forms that are slow growth about its most polar term y® with b = |[/m].

More generally, let us address Conjecture Under the assumption that
there exists a weak Jacobi form with most polar term y® for (] <b< [Vm],
we have the following scatter plot of the lower bound for the dimension of
slow growing weak Jacobi forms of index m.
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Figure 7.2: Scatterplot of the lower bound for the dimension of weak Jacobi
forms that are slow growth about its most polar term g°, for any b.

These scatter plots show that for large m, the lower bound for the di-
mension is frequently zero, i.e. there are no slow growing weak Jacobi forms
for those indices. This suggests that Conjecture [1.1| may be false, but we
will next discuss the discovery of a large class of slow growing weak Jacobi
forms, given by theta quotients. Because of this discovery, we suspect the
lower bound fails to be optimal for most m as m becomes large.

7.2 Theta Quotients

We introduce the theta function

o0

0r(7,2) = =Py P11 =" )1 ="y ). (7.28)

n=1

We will find that quotients of such functions give rise to a large amount of
slow growth Jacobi forms.

The theta function 0;(7, z) of is not a classical integral weight and
index weak Jacobi form as it has weight 1/2 and index 1/2, so we must
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introduce a more general definition of weak Jacobi forms. In order for the
transformation laws to give a proper action when we have half integral
weights and indices, we must make a central extension of Z? by Z and we
obtain the integral Heisenberg group H(Z),

0—>2Z—H(Z)—ZxZ—D0. (7.29)
Definition 7.2. The Heisenberg group H(Z) is the group
H(Z) ={[A\p:&] | A\ p, K € L}

with action [\, p: k] - [N, p : K] =N+ N, u+p' : 6+ K + A’ — Np|. The
subgroup C7 = {[0,0 : |,k € Z} is the center of H(Z) and H(Z)/Cy = Z*.

Definition 7.3. We define the extended Jacobi group I'’ (Z) to be the semidi-
rect product SL(2,Z) x H(Z), with SL(2,Z) acting on H(Z) via

(28) [z,y: k] =[dz —cy, —bz +ay : K].

Earlier on, we introduced multiplier systems for half integral modular
forms. We must now do the same for Jacobi forms.

Definition 7.4. A multiplier system of T'/(Z) is a character v : T/ (Z) — C*.
Characters v of T'/(Z) of finite order are of the form v((M,[z,y : k])) =
vy (M) xvi([z,y : &]) [86], where v, is the multiplier system of the Dedekind
eta function, D is some integral power 0 < D < 24, vy([z,y : K]) =

(—1)**tvt=v+s is the unique binary character of H(Z), and t =0 or 1.

Note that while multiplier systems of the form v’ (M) x vi;([z,y : k]) are
characters of the extended Jacobi group I'/(Z), they are not guaranteed to
descend to characters of the base Jacobi group I'’.

Definition 7.5. A holomorphic function ¢y ,,(7,2) : Hx C — C for k € %Z,
m € %Z is a weakly holomorphic Jacobi form of weight k and index m with
a multiplier system v : T'/(Z) — C* of finite order if ¢y, satisfies

ar +b z B
cr+d er+d
Ckm(Ty 2+ AT+ p) =v(\p:k

: cz?
Ok v(M)(er + d)ke’%mmgok,m(ﬁ z2),

(7.30)

])6—i27rm(>\27'+2)\z) Ok (7_7 Z),
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for (¢%) € SL(2,Z) and [\, p : k] € H(Z), and has a Fourier-Jacobi expan-
sion of the form

(Pk,m(Ta Z) = Z f(n7 l)qnyl- (7'31>

n>ng, mod Z

n*ﬂ
lesZ

Here, ng € Z is a constant and v(M) = v (M) with 0 < D < 24. Denote by

jo,m the space of weakly holomorphic Jacobi forms of weight 0 and index m
with trivial multiplier system.

If the Fourier-Jacobi expansion of ¢y, begins at ng > 0, then ¢y, is a
weak Jacobi form with multiplier system v. When k and m are integral and
v is trivial, this definition agrees with the original definition of weak Jacobi
forms in Definition [6.3]

Our theta function 6, (7, z) is a weak Jacobi form of weight § and index 3

with multiplier system V;’ X vg. The quotient of weak Jacobi forms %

is a meromorphic Jacobi form of weight k& — k' and index o?m — 3?m/. To
get a theta quotient of weight 0, we then require the same number of theta
functions in the numerator as in the denominator, and this cancels out the
multiplier system of the theta function.

Lemma 7.6. Given N > 0, there are P(N) types of holomorphic weight 0
theta quotients

H 01(1,m12)01(T,n22) - - - O1(T, NN 2)
91 (1,m12)01(T,maz2) -+ 01 (T, myz)’

where P(N) is the partition function. The partition N = ri + -+ + 15 cor-
responds to a holomorphic quotient with ry many coprime scalers in the de-
nominator that divide ny, ro many coprime scalers in the denominator that
divide ng, and so on.

Proof. The divisors of 6,(7,2) are the zeros z = A + nu, (A, u) € Z*. This

implies for positive integers k, &k’ that a quotient #:,Z)) is holomorphic so

long as {z =t (AT +p) | A peZyC{z=1A+p) |\ peZ}ie K |k
This argument easily generalizes to the case of multiple theta quotients. [J
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To illustrate the necessity of coprimality among the partitioned myq, ..., m,
dividing n, consider the nonholomorphic theta quotient

61 (T, 82)91 (T, Z)
01(1,42)0,(7,22)

(7.32)

Here m; = 4 and my = 2 divide n = 8 but are not coprime. We have a
simple zero at {z = L(A7 + p) | p odd, A € Z} from the numerator 6, (7, 82)
but a double pole at the same points {z = (A7 4 ) | p odd, X € Z} from
the denominators 0;(7,4z) and 6, (7, 2z2).

We give some examples that should clarify the above prescription:

holomorphic ; not holomorphic
01(7,62)01(7,52) 01(7,162)01(7,82)  61(7,42)0,(7, 52)
01(1,22)01(7,32)" 01(7,42)01(7,22) = 61(7,22)04(7,22)

The denominator scaling factors must divide some numerator scaler, which
occurs in all the examples above. In the first example, the theta quotient is
of partition type 2 = 240, where 2, 3 are coprime and divide 6. In the second
example, the theta quotient is of partition type 2 = 1 + 1 where 4 divides 16
and 2 divides 8 (we could also say 4 divides 8 and 2 divides 16). However,
in the third example, 2,2 divide 4 but are not coprime so the quotient fails
to be holomorphic.

We are interested in weight 0 weak Jacobi forms with trivial multiplier
systems that are theta quotients of scaled versions 6; (7, az) of , with «
a positive integer. We want to know which theta quotients have slow growth.

7.3 Slow growth of single theta quotient

We examine what conditions on the scaling factors a and g will result in slow
1 . . .
growth about the most polar term y” = yz(®~#) in the single theta quotient

01 (T7 O{Z)
1 2 2 y - . 733
300,5(04 —B )(T Z) 01(7_7 BZ) ( )
We prove that the pairs of scaling factors («, ) that produce a holomorphic
slow growing theta quotient of weight zero and integral index are given by
the set {((k+1)3,8) | k even or 3 even}.
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From [58], we know slow growth about 3 is equivalent to regularity at
7 — i0o of the collection of modular forms y, s(7), 0 < r,s < b —1 coming
from specializations of the weak Jacobi form ¢ 1(42_g2).

The specializations x,s(7) of for 0 < r,s < b—1 of the quotient

(7.33) are

XT,S(T) = T 52,2

H (1 _ qn)(l _ qnflqa%(g?m'a%)(l _ qnq—aﬁe—%rioa%)

(1—g")(1 = g"1¢?5e™P0) (1 — grg Pie?mf1)
(7.34)

Regularity of the specialized theta quotient as T — 100 is equivalent
to it having only nonnegative powers of ¢ in its Fourier expansion. Thus, we
only need compare the lowest powers of ¢ in the numerator and denominator:
the lowest power of ¢ in the numerator of x, s(7) is greater than or equal to
the power of ¢ in the denominator if and only if x, (7) is regular at ico.
Note for xos(7), this approach does not work as naive computation leads to
an undefined 0/0 quotient. However, this is easily fixed as the Fourier-Jacobi
expansion of the form ¢ 1(42_42) (7, 2) is nonnegative in ¢ and for xo,s(7), its
variable y is specialized to €™+ which does not modify the powers of ¢. So
Xo,s(T, 2) is always regular at 7oco.

n=1

K2 T2
The term with the lowest power of ¢ in ¢z @0y (7,k(37 + 7)) is given
by multiplying out all ¢"*% with negative n — k% in the third factor of the
product formula ([7.28)). The lowest power of ¢ in the specialization ([7.34]) is

then

(127‘2 1 ar LQ%J r
q77+§—55+n=1”—%

1AL
2.2
Tt L on-pf
q n=1

2 52,2 o g, lZI(aZl4) BEIUBEIHD) o vt ariar
R el S e -t —aglagl+By185] (7.35)

:q 2 b2 2
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The condition for the theta quotient ((7.33]) to have slow growing fo,(n, 1),
for b= (o — ), is then
o'~ o Br lajl(ajl+1) 1510851+

2 b2 2 7{) . 702 . 2 (7.36)
—a-|a~ 18~ > 1<r<b-1.

Proposition 7.7. The single theta quotients that have slow growing fo,(n, 1)
about their most polar term vy° are given by quotients of the form

O1(7, (k+1)82)
91(7—7 62) ’

for k even or B even. For such a quotient, the most polar term is y*/? and
2
the index s W.

(7.37)

Proof. For the quotient - ) to be holomorphic on H x C, we must have
B | @ so we may write « = (k+1)5. To obtain an integral weight t = M,
we must have that § is even or k is even.

Slow growth is equivalent to the condition ([7.36]). We have b = % and

the left side of ((7.36) may be written as

ok t2. LE+DFILE+DTFI+D)  FIE]+D)
k 2 2 (7.38)

2r 2r 2r kg
—k+1)Z i
(k+)k[(k ) J+kLkJ 0<r<—
Using |2H2r| = |2r + 22| = 2r + | 22|, (7.38) reduces to 0 for each value of
r. Thus, we have slow growth. O

7.4 Slow growth of multiple theta quotients

Having classified the slow growing single theta quotients in the previous
section, we now consider the general case with multiple theta quotients.

The same regularity argument preceding shows that the condition
for the theta quotient

(7.39)

H 01(1,m12)01(T,n22) - - - 01 (T, NN 2)
91 (1,m12)01(T,ma2) -+ - 01 (T, my2)
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N
b (> nj—my)
to be slow growth about y* =y 7= is

N|=

N r r r T
i 32— m; 7“2 oy —myr gl £1) 0 [mygl(lmys] +1)
—+ _
2 b 2 2
7=1
r r r T

(7.40)

Note that unlike the case of single theta quotients, the most polar term is
not guaranteed to be 3, indeed some ¢%y® for @ > 00 may be the most polar
term.

We computed all theta quotients up to N = 7 quotients for index 1 <
m < 61 and checked them for slow growth about y® using the condition

N
(7.40). For each index m and b = 3 (Zn] - mj), we found the dimension
j=1

of the space of theta quotients that have slow growth at y°. We present our
results in the following table, and we include the corresponding dimension
of weak Jacobi forms that are slow growing about their most polar term 7°.
Note that the two dimensions presented are not directly comparable, since a
theta quotient may not have 3 as its most polar term.
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Table 7.2: The dimension of slow growing theta quotients compared to the
dimension of slow growing weak Jacobi forms, about a fixed y® and index m.

In [60, Section 3.2], the class of weak Jacobi forms from the A, D and
E minimal models were proved to be slow growing about their most polar

term. We now give a simplified proof, as another application of ([7.40)).
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Example 7.2. The following weak Jacobi forms from the A, D, and E min-
imal models have slow growth about y°.

spAkH(T, z) = W7 b= ; t = k(k; 2) A-series, k even,
sDA;CH(T, z) = W, b=k t=k(k+2): A-series, k odd,
@Prr2t2 (7, 2) = 912:&323;5?(32), = % t= k(kg_ 2) :D-series, k = 0 mod 4,
PP (7, 2) = Zig Z;Zig 23 b=5,t=60: Eg,

o (1, 2) = Zigi 22331513 ;§ b—d,t =36 By,
SB5 (7, 2) = 01(7,122)01(7,102) =7 t=105: e,

91 (’T, 52)91 (7', 32’) ’

Proof. The A-type weak Jacobi forms are slow growth by Proposition[7.7/and
the E-type weak Jacobi forms can easily be computationally checked using
the criterion for slow growth. For the D-type weak Jacobi forms, the
formula is equal to zero for all 1 < r < b — 1, after inputting the
respective scaling factors and simplifying. ]

It was conjectured in [60] that the weak Jacobi forms for the Ay, Kazama-
Suzuiki model with M = 2 have slow growth about their most polar y° term.
This was tested numerically up to £ = 10. We now prove this conjecture.

Lemma 7.8. The weak Jacobi form corresponding to the M = 2 Ay
Kazama-Suzuiki model defined as

_ O1(7, (k+ 1)2) 01(7, (k + 2)z2)

keZ A1
01(T, 2) 01(7,22) € £>0 (7:41)

has slow growth about the polar term y*.

Proof. We use our criterion ([7.40). ©>* has slow growth about y* if and only
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if for all 1 <r < k—1, the following expression is greater than or equal to 0:

(k+1)2 —1r? (k+1)—1z+(k+2)2—22r2 k+2-2r

L(kfl)rJ(f(QkJr D %r 1) kUJ(L’"J +21) e
+ I e e U IRV Rkl
A DPA 2L+ ) PICEAD o7 )T T
(7.42)
To simplify the expression, we have 0 < £ < 1 for cach 7 so that
(k+D) =7 (k+2)7) =r+[27): (7.43)
This reduces (7-42) to
k%;%;_z_g k2;4k]:_z_g r(r;—l) —(k;+1)§
MOREE 1R R A TR AL )
(7.44)

Now, a simple matter of cancellations gives us that the above expression
equals 0 for each value of r. O]



Chapter 8

Slow Growth around qayb

We consider the general case of growth behavior for a weight 0 weak Jacobi
form with maximal polarity at the term ¢®y® in this chapter. From now on,
it is understood that a > 0, as we discussed the case a = 0 in the previous
chapter.

8.1 Overview and Results

For a weight 0 weak Jacobi form ¢q,, (7, 2), define the sum of its Fourier-
Jacobi coefficients

fap(n,1) = ZC(TTL +ar?, 1 —br)

reZ

lry ] (8.1)
= Z c(nr + ar?, 1 — br),
r=[r_]

where the finite sum comes from the polarity constraint of ¢%y=. Set —A, =
4dma — b% so /\y is positive. The constraint is

dm(rn 4+ ar?) — (I —br)* < —A,. (8.2)

Here, ro = (2mn + bl £ /(2mn + bl)2 + Ag(Ag — 12))/Ao.

The authors of [59] classified the asymptotic behavior of the sums f,(n, ()
as functions of n,l but left open the question of the possible behavior of
fan(n, 1) as it presents some analytical and numerical challenges.

143
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In this chapter, we present some analytical and numerical results of
fap(n, 1) for low index m and with varying values of a, b.

As in [51, Appendix B], the asymptotic growth of ¢(n,l) for large dis-
criminant is

Amin
c(n,l) ~ exp 7T\/| 2 |(4tn —12), (8.3)
where A, is the maximal polarity of the weak Jacobi form. Proceeding
as in [58, Section 4.2], if there is not sufficient cancellation in the sum of
fap(n, 1) then f,4(n,l) behaves the same as the largest term in f,,(n,() is

c(nr + ar?, 1 — br) of maximal discriminant, occurring when ., = gﬁﬁﬂs
We then expect generic f,,(n,[) to grow as
Fan(m, 1) ~ c(MTmax + ar2,00 1 — brmax)
(8.4)

|Amin’
~ 2my [ ———— 2+ al?2+ bnl).
exp W\/m(bz _4ma)(mn + al? + bnl)
Just as for fj(n, 1), we discover that cancellation may occur. Let us continue
to adopt the same definition for slow growth of f,;(n,1).

Definition 8.1. A weak Jacobi form ¢y, has slow growth about ¢y~ if
fap(n, 1) has subexponential growth.

The conditions for slow growing f;,(n, ) are well-understood [58, Section
5.1]. For f,s(n,l), the general case is not currently known. We discover
some surprising results in this direction. When f,;(n,!) is slow growth, we
numerically find for indexes 5 < m < 9 that they exhibit the same behavior
as in the case of slow growth fo,(n,l). That is,

(1) Numerically, we find f, (n, ) assumes only finitely many distinct values
when it is slow growth.

(2) We numerically find a nonvanishing constraint on f,(n,[) analogous

to (7.24) for fo,(n,1). Specifically, for f,,(n,[) that are slow growing,
we have numerically found integers e, f, g, h € Z such that

nonzero :en+ fl=0or gn+hl =0

0 . else.

fa,b<n7 l) = {
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Index | (term,polarity) | dim wJf | dim slow growth
5 (¢'y>,5) 2 1
6 (q'y5.1) 1 1
7 (q'y°.8) 2 1
8 (q'y°,4) 2 2
9 (¢*y°,9) 3 2
10 (¢'y",9) 3 2
11 (¢'y".5) 1 1
11 (¢®y'°,12) 3 2
12 (¢*y'0 .4) 2 2
12 (q'y®,16) 5 2

Table 8.1: Weak Jacobi Forms Slow Growth About Its Most Polar ¢%y® Term

Conjecture 8.1. We conjecture that the behavior discovered in (2) holds
true for all weak Jacobi forms that are slow growing at fqp(n,l).

Despite our 'fast’ algorithm, the runtimes for computing the values f, (1, ()
is still lengthy when n,[ are large or when the underlying weak Jacobi form
has large index m. Nevertheless, because of the features (1) and (2) that
fap(n, 1) are found to exhibit, it is easy to detect its growth behavior numer-
ically even from data with only small n and [.

For a few select indexes m and polar terms ¢%® term with polarity 4ma —
b?, we numerically found the dimension of the space of weak Jacobi forms that
were slow growth about its most polar term ¢%y®. We put our findings in the
table below. In the table, we also record in the third column the dimension
of the space of weak Jacobi forms with most polar term ¢%y°, regardless of
its growth behavior.

We may compare the growth behaviors of a weak Jacobi form about terms
q%y® and 1° of the same polarity by referring to Table above and to Table
[7.Il We have found weak Jacobi forms that exhibit slow growth about one
term yet fast growth about another term of the same polarity. This can
occur in both directions. We found index 9 has a weak Jacobi form with
slow growth at y® but fast growth at ¢?y°. In the other direction, index 12
has a weak Jacobi form with slow growth at ¢'y® but fast growth at y*.

We summarize how the non-vanishing constraints for slow growing fy ,(n, )
of wom(7, 2) arise. The generating functions for fj,(n,[) are given as sums
of weight 0 modular forms x,(7) as in (7.23)). fo,(n,!) is slow growth if and
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only if all x, s(7) are holomorphic, in which case each x, s(7) is constant so
that only the ¢" terms of the generating functions F,, () are nonvanishing.
From (7.21)), one may verify that fy,(n,l) appears as the constant term of
some F,, ; if and only if n = 0 or mn + bl = 0, giving the nonvanishing
condition

fon(n, 1) # 0 only if n =0 or mn + bl = 0. (8.5)

We take these findings as evidence for Conjecture [8.1 Furthermore, our
results suggest that an analogue for f,,(n,[) of for fo4(n, ) may hold.
That is, there exist generating functions for f,,(n,[l) in terms of modular
functions and f, 4(n,!) is slow growing if and only if these modular functions
are holomorphic.

Currently, no generating functions for general f,(n,[) are known in the
case a # 0. The generating function for f,;(n,l) cannot be given purely in
terms of specializations 2™ " (1, ar + ) of the underlying weak Ja-
cobi form. As seen in , the arguments of the Fourier-Jacobi coefficients
in these specializations are linear over its summation indices, i.e. we have

the appearance of » > ¢(n,l) in its formula. For
n€Zier

Jop = Zc(nr,l — br),

reZ

the arguments of the Fourier-Jacobi coefficients are linear in its summation
index 7 so there existed a A that allowed us to rewrite

c(nr,l —br) = c(n + X +mA% [+ 2m))

to the form we desired.
However, for

fap(n,1) = e(rn+ar®, 1 br),

reZ

the arguments of the Fourier-Jacobi coefficients are quadratic in its summa-
tion index r and there is no choice of A that linearizes the arguments, as
required in the specialization e2™™* )y (7, a1 + f).

That being said, surprisingly, for the indexes 6 and 8, we have analyt-
ically discovered generating functions for f,,(n,l) of ¢o (T, 2) in terms of
specializations of W,/ (o), where W, is an Atkin-Lehner involution.
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8.2 Analytical Results

8.2.1 Atkin-Lehner Involution
We present the definition of the Atkin-Lehner involutions [56) (4.39)].

Definition 8.2. For every m; such Ehat m = mimg with mq, ms coprime,
the Atkin-Lehner involution Wy, @ Jgm — Jgm is defined in terms of the
theta decomposition of Jacobi forms as the map

Wit Y (m)0a(m.2) = > By (7) 0 (7, 2), (8.6)

! mod 2m [ mod 2m

(or equivalently in terms of their Fourier-Jacobi coefficients, by c¢(A,l)
c(A,1*) ) where the involution [ + [* on Z/2mZ is defined by

I* = —I( mod 2my), 1" =+I( mod 2my). (8.7)

In general, the operator W,,,, may not preserve the space of weak Jacobi forms
as it may send a weak Jacobi form to only a weakly holomorphic Jacobi form.

We will also need a generalization of the Atkin-Lehner involution. An
Atkin-Lehner involution is essentially a permutation 6; — 6;« of theta func-
tions in the theta decomposition of ¢y, ,,. We may generalize the involution by
allowing ourselves to consider any permutation of the theta decomposition.

8.2.2 Index 6

For index 6, the ¢%y® term with smallest polarity is ¢'y® of polarity 1. This
has the same polarity as the term y'. The next least polar ¢%y’ term is
q'y® with large polarity 12. Because of the large polarity of ¢'4/®, we restrict
ourselves to considering growth behavior about the term ¢'y°.

For a weak Jacobi form g6, we are able to relate f;5(n,l) to fo1(n',l')
through an Atkin-Lerner involution W3 and to write a generating function
for fi5(n,!) using specializations of W3(¢p¢). In doing so, we show that the
growth behavior of (g ¢ about y' is equivalent to its growth behavior about

q'y’.
Proposition 8.2. For a weak Jacobi form pgg, the growth behavior at y* is
equivalent to the growth behavior at ¢v°.
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Proof. Recall

fis(n,l) = Zc(nr + 72,1 — 5r). (8.8)

reZ

The key observation is that the coefficient c(nr + r%,1 — 5r) has the same
polarity as ¢ ((2n +1)(r + 3n +21),—9n — 5l — (r + 3n + 21)). Moreover,

Zc((?n + 1) (r+3n+2l),—9n — 50 — (r +3n+21))

= e(@n+1)F,—9n—51—7) (8.9)

TEZL

and the latter sum appears as

foa(2n+1,=9n —51) = > “¢((2n + 1)F, —9n — 51 — 7). (8.10)

ez
However, we cannot say c(nr + r?, 1 — 5r) is equal to
c((2n+0(r+3n+20),—9n —50— (r+3n+21l))

since the second arguments in these Fourier-Jacobi coefficients do not have
the same modulo 12 value. But perhaps surprisingly, the second argument
modulo 12 of the former is five times the latter, i.e. 5(l — 5r) mod 12 =
—12n — ™n — r mod 12.

Consider the theta decomposition

Pom(T,2) = > ()l 2). (8.11)

© mod 2meZ/2mZ

The second arguments mod 12 tells us that for
c((2n+0(r+3n+20),—9n — 50— (r+3n+21l))

appearing in h,06 ,, c(nr +r? 1 — 5r) instead appears in hs,0 .

We now establish the relationship between f; 5(n, 1) and fo1(n',1"). We see
that f15(n,!l) is related to fo1(2n + 1, —9n — 5l) as follows. The generating
function for fy1(n',l') is given by the specialization ¢g6(7,0) as in ([7.23)).
From the discussion above, we see that for fj;(2n+1, —9n —5l) appearing as
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the coefficient of some ¢* of g (7,0), fi5(n,l) appears as the coefficient of
the same ¢* of (W3po6)(7,0) for the Atkin-Lehner involution Ws. This also
means that the generating function for fi 5(n,() is given by (Wspo6)(T,0).

We recall that the Atkin-Lehner involution does not preserve the space
of weak Jacobi forms as it may send a weak Jacobi form to only a weakly
holomorphic Jacobi form. To see Wi(ppg) remains a weak Jacobi form,
we must verify that the numerators in the powers of the terms g(2k+1?/24
2R+ /24 of the respective theta functions 6 ,,, 0.~ span the same modulo
24 set. This ensures that h,-0s, does not have any fractional powers of g, so
that W5(po¢) remains a weak Jacobi form.

Here, W3 simply sends p to 5u and we have (12k + u)?> = 1 mod 24 as
well as (12k +54)*> =1 mod 24. Thus Wj takes weak Jacobi forms to weak
Jacobi forms.

From this, we may conclude that (Ws3p06)(7,0) is holomorphic if and
only if g 6(7,0) is holomorphic. Since these specializations are the generating
functions for fi 5(n,l) and fo1(n',l), respectively, and fi 5(n, ) and fo1(n',l')
are slow growing if and only if their generating functions are holomorphic,
this proves the proposition. O

The proof accomplishes more than the statement of the proposition. We
have also given the generating function of f;5(n,1), which we repeat in the
following corollary.

Corollary 8.3. The generating function for fi5(n,l) is (Wspoe)(7,0). Mor-
ever, the space of weak Jacobi forms with mazximal polarity 1 that are slow

growth at ¢*y° is one-dimensional, spanned by Zig:;g with its f15(n,l) given
by ’

-2 2n+1l=0o0r3n+1=0

8.12
0 else . ( )

f1,5(n, l) = {

Proof. The proof of Proposition [8.2] establishes that the generating function
for f15(n,1) is (Wspo6)(7,0). Moreover, the proof also shows that fi 5(n,[) is
the coefficient of ¢° in its generating function if and only if fo 1(2n+1, —9n—>51)
is the coefficient of ¢° in its generating function. We have that fo(n/,l') is
the coefficient of ¢° whenever n’ = 0 or 6n’ +1' = 0 by (7.24)), under the shift
n' =2n+1,1' = —9n — 5[ this becomes 2n +1 =0 or 3n + [ = 0.

Referring to Table [7.1] the space of weak Jacobi forms with maximal
polarity -1 is one-dimensional. After computing a basis of Jyg, one may
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see this space is spanned by 01(:—32. A quick calculation of the ¢° term of
(VT@,%)(T7 0) gives us the values of f5(n,1). O

8.2.3 Index 8

For index 8, the ¢%’ term with the smallest polarity is ¢'y% of polarity 4.
This has the same polarity as the term y?. The space of weak Jacobi forms
with least polar term given by ¢'y® is two-dimensional, spanned by

—4¢0205 5 — Poa + 0195 .2%03,
60¢0,2¢3,3 + 19(/53,2 — 23%,1(253,2(250,3 + 4¢§,1¢3,3-

Both are slow growing at y? and numerically, we found they were also slow
growing at ¢'y°. We also discovered analytically a generating function for
fi6(n,2l), which is half of the total f;¢(n,[) values.

Here, we need the generalized version of the Atkin-Lehner involution to
obtain the generating function. Indeed, for index 8 = 2% there are no Atkin-
Lehner involutions. Recall that an Atkin-Lehner involution is a permutation
0; — 0~ of theta functions in the theta decomposition of ¢y ,,,. We allow
ourselves to consider any permutation, in particular the permutation ¢ =
(2 6)(10 14).

Definition 8.3. For the permutation o = (2 6)(10 14), define

(bO 8\T, Z ( Z h > 98,# + hg(T)@&(; + h6(7’)98,2

u#2,6,10,14

(8.13)

+ h1o(7)0s 14 + h14(T)0s 10

In other words, we modify ¢ s by permuting 05 with ¢ and 6o with 614,
keeping the other theta functions fixed.
The generating functions for f; ¢(n,2l) are given in terms of specializa-

tions of the permutation > g (7)0s (7, 2) of the theta decomposition
© mod 16
of its underlying index 8 weak Jacobi form ¢gg. These generating functions

are surprisingly similar to the ones for fy2(n,!) and we now describe them.
Lemma 8.4. For a weak Jacobi form ¢og(T,2), we have the following gen-

erating functions for f(n,2l):

%(XO,O(T) + X0,1(7)) = %(%,8(77 0) + ¢os(7,1/2))
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generates foo(2n,2l0) and

1

5 0tao() + x0(n) = 5(86(7, 7/2) + o(r, -+ 1)/2)

generates foo(2n + 1,20).

(&(7,0) + ¢(r,1/2))

l\DIH

%(XO,O(T) + X0,.1(7)) =

generates fi(2n,2l) and

1

2 Qao(r) +x00(7)) = (@07, 7/2) + o, (r + 1)/2)

generates f1¢(2n + 1,20).

Proof. The generating functions for fo(n, ) are given by (7.23). For fi4(n, 1),
the key observation is that the coefficient c¢(nr+r?,1—6r) has the same polar-
ity as ¢ ((2n +1)(r + n+ 31), —6n — 21 — 2(r + n + 21)) and the rest follows
as in the proof of Proposition [8.2] O

For the weak Jacobi forms that have slow growing fi6(n,l), we may
analytically compute f; (n,2l) from Lemma . For the remaining values
of f16(n, 1), we computed f ¢(n, ) for these forms at following values of (n, ):

n=0,-10 <1< 10),

(

(mn=1,-14<l<—4and —2<1[<8),
(n=2,-17<I<—-8and —4<[<5),
(n=3-20< —12and —6 < —2),
(n=4,-23<[<—-16and —8<1<—1),
(n=5-16<l<—-20and —10<[—4),
(n=6,-29<[<-24and —12<1< —7), and
(

n= 3<i<—28and —14<[—-9).



CHAPTER 8. SLOW GROWTH AROUND Q“Y® 152

For these data points, we have a nonvanishing condition as in the case of
fon(n,1). Indeed, for slow growing fi ¢(n,!) to be nonzero, we found we must
have 2n +1 = 0 or 4n + [ = 0. Again, for f;(n,2l), these values follow
analytically from the generating functions.

For —4¢o 205 5 — G + G010 2003, we found

192 2n+1l=0o0r4n+1=0
0 otherwise .
For 60¢0.205 3 + 1905 2 — 2300105 20,3 + 405,195 3, we found
fl,G(n, l) = 0 (815)

8.3 Numerical Results

Up until now, our results have been analytical. In this section, we present our
numerical results for small index m. As mentioned previously, it is easy in
practice to check whether a weak Jacobi form is slow growth or fast growth,
even from small values of n, (.

For index 5, the ¢y’ term with smallest polarity is ¢'y°. The space of
weak Jacobi forms with ¢'y® as the most polar term is spanned by

G0,1055 — Do.1%03,
¢0,1¢%,2 - ¢g,1¢0,3 + 4002003

Only the latter form is slow growth.
For the slow growing ¢o,1¢5 5 — gbalgbo?g + 4¢o 200 3, we computed fi5(n, 1)
for the following values of (n,1):

(n=10,-16 <1< 0),

n=1-19<1<14),

3

=2,-21<1<-7),

(
(
(n=3,-24<1<-11),
(n =
(n =

3
I/\
IN
N’
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(n=6,-8<1<-2)
(n=17,-35<1<—26).

In every instance, we found for the slow growing Jacobi form that

f1,5(n, l) = 0

Index 7 has an interesting slow growth Jacobi form. The ¢%® term with
smallest polarity is q'y® of polarity 8, which exceeds the index 7. In [61]
(5.5)], it was proven that all weak Jacobi forms are fast growth about terms
y® with polarity exceeding the index. We might then expect there to always
be fast growth about any term ¢y® of polarity exceeding the index, but we
find this not to be true.

The space of weak Jacobi forms with most polar term ¢'y° is two-dimensional,
spanned by

4B 2P0 + G014 — Do 1P02003,
4¢0,1¢3,3 + ¢0,1¢3,2 - ¢3,1¢0,2¢0,3-

Only 4¢105 3 + G010 2 — 951¢0,2003 is found to be slow growth at ¢'y°.
We computed the values of f;¢(n,1) for the following (n,{):

n=-28<1<28),

n=-1,4<1<26),

At each data point, we always found for the slow growing Jacobi form that

fre(n,1) = 0. (8.16)

We are able to compute f,(n,l) only for small values of (n,l) at the
indexes 9,10, 11, 12. We describe the results we found.
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For index 9, the term ¢y’ of least polarity is ¢?y” of polarity 9 with the
same polarity as y*. Numerically, we found that for slow growing fs9(n, 1)
that

nonzero :3n+l=0or3n+2[=0

0 : else .

fao(n,l) = { (8.17)

We found that there were weak Jacobi forms, e.g. the form ¢071¢§72 —
205 198 2%0,3 + 951953, that had slow growth at y* but not at ¢%y°.

For index 10, we examined the term ¢'y” of polarity 9. Again, we found
that slow growth at y® does not guarantee slow growth at ¢'y”. An example
is given by 4¢5 2085 + 9.2 — Po,105 2¢0,3 Which is slow growth at y* but fast
growth at ¢'y”. Numerically, we found for slow growing forms that

nonzero :2n+l=0orbdn-+1{=0 (8.18)
0 : else.

fl,7(n7 l) = {
For index 11, we examined the term ¢'y” of polarity 5 and found for all
data points (n,[) of our slow growing form that

fiz(n, 1) =0. (8.19)

For index 12, we found that the space of weak Jacobi forms with slow
growth about its most polar term ¢'y® has dimension two. This is surprising
because the polarity of ¢'4®, 16, is quite higher than the index 12. This
might also be surprising since these weak Jacobi forms are fast growth about
the term y*, which has the same polarity as ¢'y®.



Appendix A

CODE FOR
IMPLEMENTATION

In the appendix, we present the important parts of the Mathematica code
used for the numerical computations of Part II. We include the code for
implementing in Mathematica the Gritsenko generating functions for a basis
of Jom, the space of weak Jacobi forms of index m, as well as the code for
computing the matrix of polar coefficients for this basis.

There are several generating functions for the space Jy,,, of weak Jacobi
forms of weight 0 and index m, as well as several ways of implementing
them. One choice of generating functions uses the Eisenstein series Fjy 1,
Fg 1, and certain modular functions as in [76]. Another choice, which we find
runs faster, is the generating functions ¢q 1, ¢o.2, ¢os of [77]. These functions
admit several equivalent formulations.

The following Mathematica code gives an acceptably fast implementation
for computing the Fourier-Jacobi expansion of ¢ 1, ¢o2 and ¢g3, the gen-
erators of the Gritsenko basis for Jy,,. This code uses the formulas for the
generators, given in [77, Equation (2.7)].

Loo[N_] := Series[Sum[g” (n*2/2) y*n, {n, -Floor[Sqrt[2N]], Floor[Sqrt[2N]]}]/ (1 +Sum[2g”* (n"*2/2),
{n, 1, Floor[Sqrt[2N]]}]), {g, O, N}, {y, O, Floor[Sqrt[4mN +m~2]]}]
Zo1[N_] := Series[Sum[(-1) “ng* (n~2/2) y*n, {n, -Floor[Sqrt[2N]], Floor[Sqrt[2N]]}]/ (1+Sum[(-1) ~n2g* (n~2/2),
{n, 1, Floor[Sqrt[2N]]}]), {g, O, N}, {y, O, Floor[Sqrt[4mN +m~2]]}]
£10[N_] := Series[Sum[g” ((nA2+n) /2) y~(n+1/2), {n, Floor[(-1-Sqrt[l+8N]) /2], Ceiling[ (-1 +Sqrt[l+8N])/2]}]1/
(2+Sum[2g~ ((n*2+n)/2), {n, 1, Floor[(-1+Sqrt[1+8N])/2]}1), {a, 0, N}, {y, O, Floor[Sqrt[4mN +m~2]]}]
$0,1[N_] :=4 (800 [N] *2+ 810 [N] 2+ o1 [N] " 2)
$0,2[N_] :=2 ((Zoo [N] 810 [N]) *2+ (Loo [N] Lo1 [N]) *2 + (810 [N] Lo1 [N]) " 2)

Mo, 3151 := 4 (€00 171 210137 Eox [8]) ~2

155
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The Mathematica code to compute the list of polar coefficients for the
Gritsenko basis of Jy,, is given below for the example of 1 < m < 30.

Do[

PowerList = {x, y, z} /. Solve[x+2y + 3z ==m && x 20 && y 20 && z20, {x, y, z}, Integers];

nlInit={n, 1} /. Solve[4nm - 12 < 0 && n 20 & 02 1 2 -m, {n, 1}, Integers] ;
nlInitPolarity = MapThread[Append, {nlInit, 4mnlInit[[All, 1]] - Thread[nlInit[[All, 2]]~2]}];
nlList = nlInitPolarity[[Ordering[nlInitPolarity[[All, Length[nlInitPolarity[[1]1]11]1]11]1];
nMax = Max[nlList[[All, 1]]];
Print[AbsoluteTiming[PolarList, = Table[SeriesCoefficient[
Expand[¢o,1 [nMax] * PowerList[[i, 1]] ¢o,2 [nMax] * PowerList[[i, 2]] ¢o,3 [nMax] ~ PowerList[[i, 3]]]
/1. {x_}»x, {q, 0, nlList[[j, 111}, {y, O, nlList[[j, 2]]1}],
{i, Length[PowerList]}, {j, Length[nlList]}]][[1]]]
, {m, 1, 30}]

For computing Fourier-Jacobi expansions of ¢ 1, ¢o2, ¢o3 to the high
orders in ¢ necessary for computing the values f, (1, 1), we need a faster im-
plementation of these functions. With the implementations above, all series
expansion are slow in comparison to the implementation we will give, with
¢o,1 the fastest and ¢ 3 slowest. The main goal of the code is to avoid prod-
ucts as much as possible, preferring an implementation that emphasizes sums
and minimizes the number of products. As is well known, the computational
cost of multiplication of series is considerably more expensive than addition
of series.

It turns out that partition functions may be used to give much faster
implementations of ¢g 2 and ¢g 3, in conjunction with the formulas below [77,
Equation (1.8)].

1

tuatn) = 0™ 3 Gm-mCHEHNE,

¢0,3(7', Z) = ¢0,3/2(T; 2)2,

where
91 (Ta QZ)
¢o,3/2(7'> Z) = o, (7_, z)
=y PI[O+ ¢ A+ "y A — )= ¢ ly ).
n>1

(A.2)
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The generating function for the Fourier expansion of n(7)~ is given by
the partitions of four kinds function.

We also discover that the theta decomposition of ¢ 3/2 may be written
using the partition function P(q) = Y - ,p(n)q", where p(n) is the number
of partitions of n, which allows us a fast implementation.

Lemma A.1.

2 12041 2 5 121—1
$o,3/2 = P(q) (ZQGZ e Zqﬁl Ly ™5
I€Z l€Z. (A.3)

612+451+1, 12Lt5 612—51+1, 12L=5
—§ q Yy 2 —E q Yy 2 .

lEZ leZ

Proof. We will prove that the weak Jacobi form g6 = ¢g3/2(7,22) of index
6 has the theta decomposition

1 1 1 1
w06 = ——061(7,2) + ——=06 1(7,2) = ——=065(7,2) — ——=06_5(, 2)
n(7) n(7) n(7) n(7)
1 p 1 )
_ /24,1 12/24, 1
=g 2 Y s D Ay
n(r) 12241 n(r) 1221
1 12/24 1 1 12/24, 1
Sy LSy,
n(r) 122+5 n(r) 1225
(A.4)
The partition function appears because P(q) = > p(n)q" = %. To prove
n=0

the lemma, we may use Gritsenko’s definition of ¢g3/2(7, 2) to compute the
finitely many polar parts of h,(7) for u € Z/127Z of the theta decomposition
of pog. Taking the product n(7)h,(7), we then see its Fourier expansion
begins at ¢°. As in the proof of Proposition [6.3] for every p, n(7)h,(7) is
therefore a modular form of M, (F (lcm(24, 4m)) ), and so must be a constant.
A quick computation then yields that for every pu, the constant is 1, i.e.

h,(T) = ﬁ O

With our novel implementation of ¢g 3/, based on its theta decomposition,
¢o,3 1s the fastest to expand with ¢ 5 the next fastest. This leaves ¢ ; as the
slowest one to expand. The Mathematica code for implementing ¢o 1, ¢o.2,
¢o,3 in this faster formulation is given below.
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(*First, obtain a list of values for Partitions of 4 Kinds from e.g. integer e A023003

from OEIS and store it under the variable name Paritions4Kin Th

en run the code.*)
DenomEtad [N_] := Expand[q” (-1/6) FromDigits[Reverse [Partitions4KindsValues], ql] /. q%k_/; k>N:=> 0
$o0,2[N_] :=
Expand [
1/2DenomEtad [N] Sum[Sum[ (3m - n) JacobiSymbol[-4, m] JacobiSymbol[12, n] g~ ((3m*2+n"2) /24)y~ ((m+n)/2),
{n, -Floor[Sqrt[24 N - m*2]], Floor[Sqrt[24 N - m~2]]}], {m, -Floor[Sqrt[8N]], Floor[Sqrt[8N]]}]]
$0,3/2 [N_] := Sum[PartitionsP[j] q”*], {j, O, N}] (Sum[q” (63"2+3) y"((12] +1)/2)+q~(67"2-3)y"((127-1)/2) -
q*(63%2+5j+1)y~((123+5)/2)-q~(63%2-5]j+1)y"((127-5)/2),
{j, Ceiling[(-5-Sqrt[l+24 N]) /12], Floor[(5+Sqrt[l+24 N]) /12]}])
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