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Abstract

This thesis consists of two projects wherein we explore some mathematical
aspects of field theory.

In the first project, we address Nahm’s equations, which is an integrable
system with a Lax pair. We consider boundary conditions on Nahm’s equa-
tions that correspond to the Dirac multimonopole in Yang-Mills theory. The
algebro-geometric integration method is to construct solutions via a linear
flow in the Jacobian of the spectral curve associated to the Lax pair. We
construct a frame of sections of this linear flow, which allows us to obtain
exact solutions to Nahm’s equations for arbitrary rank n.

Nahm’s equations with our boundary conditions correspond to the Dirac
multimonopole via the ADHMN construction. The ADHMN construction
requires us to find normalizable zero modes of Dirac operators. We again use
the frame of sections of the linear flow on the Jacobian of the spectral curve
to construct these normalizable zero modes.

In the second project, we consider weak Jacobi forms of weight 0. The
polar coefficients of such weak Jacobi form are known to uniquely determine
the weak Jacobi form, and we improve on the number of polar coefficients
that determine the weight 0 form.

Weak Jacobi forms of weight 0 may be exponentially lifted to Siegel mod-
ular forms, which appear in the string-theory of black holes. In connection
to this, the growth of a certain sum about a term qayb in the Fourier-Jacobi
expansion of the underlying weak Jacobi form is of interest to us.

We discover that the weak Jacobi forms which are quotients of theta
functions give us a large class of forms that are slow growing about their
most polar term. Additionally, the characteristics of growth behavior for a
weak Jacobi form about a term yb are known, here we investigate growth
behavior about an arbitrary qayb term and find several analogues.
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Chapter 1

Introduction

Gauge theory is a powerful mathematical framework for studying a wide vari-
ety of physical phenomena. Its roots developed as early as the second half of
the 19th century with Maxwell’s equations describing electromagnetism, and
entered its golden period in the 1970s and 1980s, culminating with the estab-
lishment of the standard model of particle physics. However, the standard
model does not adequately explain some fundamental physical phenomena,
such as gravity. Attempts to go beyond the standard model have proved
quite challenging, given our available methods and computing power. In-
stead, we can look at simpler models in an attempt to better understand
the mathematical structures at hand. It is in this spirit that this thesis is
undertaken.

In this thesis, we describe two different projects, unified by the common
goal of understanding some mathematical aspect of simple field theories. In
the first, we consider Nahm’s equations, which arise from Yang-Mills gauge
theory. We construct exact solutions to those equations, subject to a simple
boundary condition. Chapters 2, 3, and 4 are dedicated to this project.
In the second, we consider weak Jacobi forms and the growth behavior of
a certain sum of their Fourier-Jacobi coefficients. This growth behavior is
of interest to us as it has connections to the holographic behavior of a 2D
conformal field theory. Chapters 6, 7, and 8 are dedicated to this project.

In the following sections of this chapter, we elaborate on the motivations
behind each project and summarize our findings.

8



CHAPTER 1. INTRODUCTION 9

1.1 Overview of Nahm’s Equations

Nahm’s equations for antihermitian matrix-valued functions T1(s), T2(s),
T3(s) with s in some interval in R are

dT1

ds
= T2T3 − T3T2,

dT2

ds
= T3T1 − T1T3,

dT3

ds
= T1T2 − T2T1.

(1.1)

Nahm’s equations are an integrable system, a system of nonlinear ordi-
nary differential equations with sufficiently many conserved quantities to be
solved by means of algebraic geometry. The starting point for this algebro-
geometric integration method is to discover a Lax representation with spec-
tral parameter ζ for matrix-valued functions L and M such that the system
is equivalent to

d

ds
L(s, ζ) = [L(s, ζ),M(s, ζ)]. (1.2)

This Lax equation implies the spectrum of L(s, ζ) is independent of the vari-
able s, indeed trLk are the conserved quantities of the system. For Nahm’s
equations, ζ ∈ P1 and we obtain an algebraic curve S in TP1

det(η1− L(s, ζ)) = 0, (1.3)

for η ∂
∂ζ
∈ TP1. One then defines for generic L(s, ζ) a line bundle F s over S

with fiber at (ζ, η) the η-eigenspace of L(s, ζ) and one obtains from the flow
of L(s, ζ) a linear flow F s in the Jacobian Jac(S) [1]. The method concludes
with writing a solution for the system in terms of an appropriate basis of
the linear flow. For some overviews on integrable systems from this point of
view, see [2] and [3].

One goal of this paper is to carry out the algebro-geometric method
of integration explicitly and obtain exact solutions to Nahm’s equations in
boundary conditions we specify. In general, exact solutions have proved dif-
ficult to construct but one classical solution is provided by the substitutions
Ti(s) = fi(s)ρi for ρi a constant matrix and fi(s) a scalar function, in which
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case the Nahm equations implies ρi must form a representation of su(2) and
the functions fi(s) must satisfy the Euler top system

ḟ1 = f2f3,

ḟ2 = f3f1,

ḟ3 = f1f2,

(1.4)

and exact solutions can then be given in terms of Jacobi elliptic functions
[4].

Nahm’s equations arose in the context of four-dimensional gauge theory
where Nahm in [5], [6], [7], [8], and [9] showed that solutions of the Nahm
equations are in 1-to-1 correspondence with monopoles, in the sense that
there is a sort of non-abelian Fourier transform, called the Nahm transform
or the ADHMN transform, that takes solutions of one system to the other.
We will later place this transform in its wider context when we discuss the
anti-self dual Yang-Mills equation.

We now introduce the monopole. The magnetic monopole was first pro-
posed by Dirac in [10], a pointlike magnetic charge with its charge at the
origin of R3 solving the Maxwell equations in electromagnetism, with a sin-
gularity at the origin. The monopole is a topological soliton and a major part
of its attraction for physicists is that its existence would complete the electro-
magnetic duality of Maxwell’s equations, putting electricity and magnetism
on equal footing, and provide an explanation for the observed quantization
of electric charge.

The monopole attracted considerably more attention after ‘t Hooft [11]
and Polyakov [12] demonstrated that non-abelian gauge theories admitted
magnetic monopoles as regular solutions on the whole R3 space to the Yang-
Mills equations of motion. For a comprehensive survey on monopoles, see
[13]. Exact solutions for the gauge group G = U(1) were given by Dirac in
[10]. For G = SU(2) Prasad and Sommerfield [14] discovered exact solutions
for the spherically symmetric monopole, and Prasad and Rossi [15] [16] dis-
covered exact solutions for the axially symmetric monopole. Exact solutions
in terms of elliptic functions are also known for monopoles having a Platonic
solid symmetry [17] [18] [19]. Later, Braden and Enolski constructed exact
solutions for any charge 2 SU(2) monopole [20].

In general, there is rich array of tools to construct monopole and Nahm
data such as rational maps [21] [22], Backlund transformations [23], and the
twistorial approach [24]. Exact solutions are in general difficult to obtain, see
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the book by Weinberg [25] for a more complete history of such solutions. In
[26], Hitchin proved that there is a spectral curve associated to each SU(2)
monopole solution and that this spectral curve is the same as the one ap-
pearing in its Nahm counterpart. In [27], Hurtubise classified the spectral
curves for charge 2 SU(2) monopoles and in [28], he and Murray extended
the spectral curve correspondence to monopoles for all compact Lie groups
G. Here we will follow the program established by Nahm [7] and Hitchin
[26], illustrated in the diagram below.

Spectral Curve

Monopole Nahm Data

Spectral MethodTwistors

Nahm Transform

To fully appreciate this story, we must give the context of Yang-Mills the-
ory in four-dimensions and situate the Nahm transform in this background.
In four-dimensional gauge theory, the anti-self dual Yang-Mills equation
(ASD) in a complex oriented Riemannian four-manifold is a completely inte-
grable system that arises naturally from Yang-Mills theory. Given a principal
G-bundle over the manifold and A a connection 1-form with FA = dA+A∧A
its curvature 2-form, the anti-self dual Yang-Mills equation is

∗FA = −FA, (1.5)

where ∗ is the Hodge star operation on differential forms. The anti-self dual
equation arises in Yang-Mills theory as the minimizer of the action SYM, with

SYM[A] =

∫
M

Tr(F ∧ ∗F ). (1.6)

The four-dimensional space of interest to us is R4. Over this space, Ward
[29] applied the twistorial methods of Penrose to provide a paradigm for
integrability of ASD, and shortly thereafter its solution was given by the now-
famous ADHM construction [30] of Atiyah, Drinfeld, Hitchin, and Manin.

The space R4 is in fact a hyperkahler manifold and in [31], the ASD equa-
tion is shown to be the hyperkahler moment map for the action of the gauge
group and the moduli space of solutions to ASD is then a formal hyperkahler
space. A hyperkahler manifold is a Riemannian manifold of dimension 4n
with holonomy in Sp(n) so that its tangent space is quaternionic. It has a
S2 family of complex structures and may be thought of as the quaternionic
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counterpart of complex Kahler manifolds. Penrose showed that an arbitrary
hyperkahler manifold X admits a twistor space Tw(X) over the space X

Tw(X)

X

with S2 fibers given by the complex structures.
Ward used this in [29] to establish a 1-1 correspondence

E ASD

Tw(X) X

Ward

between ASD connections and holomorphic bundles E satisfying some addi-
tional conditions over the twistor space Tw(X). Thus, the ASD equation
is equivalent to a problem in complex analysis and then finally to one of
algebraic geometry.

The remarkable connection of ASD to Penrose’s twistor paradigm above
begins by expressing the ASD equation as saying that two operators commute
for every choice of complex structure on R4. Let us use the coordinates
(x1, x2, x3, x4) on R4, with the Euclidean metric and volume form dx1∧dx2∧
dx3 ∧ dx4. In a chosen trivialization, the connection one-form A may be
written A = A1dx

1 + A2dx
2 + A3dx

3 + A4dx
4. With this, ASD may be

written in an equivalent system of two equations:
The Complex Equation,

[D1 − iD2, D3 + iD4] = 0,

and the Real Equation,

[D1 + iD2, (D1 + iD2)†] = [D3 − iD4, (D3 − iD4)†].

Here, Dµ = D ∂
∂xµ

is the covariant derivative, where DµΦ = ∂ ∂
∂xµ

Φ +

[Aµ,Φ].
One ought to think of this from the complexified point of view. Let

z = x1−ix2 and w = x3+ix4, then this particular choice of complex structure
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establishes an isomorphism between R4 and C2. For Dz = 1
2
(D1 + iD2),

Dw = 1
2
(D3 − iD4) the Complex Equation states [Dz̄, Dw̄] = 0.

But there is a S2 ∼= CP 1 family of complex structures on R4 and there is
nothing special about our given choice of complex structure. Let ζ ∈ CP 1 be
the north coordinate, then the Complex Equation for the choice of complex
structure parameterized by ζ gives

[Dz̄ −Dwζ,Dw̄ +Dzζ] = 0. (1.7)

Requiring the above commutation to hold for every choice ζ of complex struc-
ture is equivalent to the ASD equation! For a specific choice of ζ with cor-
responding complex coordinates zζ , wζ , solving the Complex Equation is not
sufficient to solve the ASD equation. We will use these operators extensively.

The ASD equation admits symmetry reductions by requiring the bun-
dle and its connection A to be invariant under some subgroup of the con-
formal group on R4, and one has a corresponding quotient manifold and
reduced twistor space. Many well-known integrable systems are obtained
through such symmetry reductions, including the KdV and the nonlinear
Schroedinger equations (NLS)! The latter two systems are obtained by start-
ing with gauge group SL(2,R) and the (2, 2) metric signature on R4. The
KdV and NLS then appear as the two possible cases from the symmetry
reduction of requiring the bundle and connection to be invariant under an
orthogonal timelike translation and a null translation. See the book [32] for
more details on these and other symmetry reductions.

The reduced form of (1.7) holds and the 1-1 correspondence between
solutions to the reduced ASD equation and holomorphic bundles over the
reduced twistor space survives but with additional conditions on the bundle
coming from boundary conditions, reality structures, etc. The symmetry
cases we consider will be the abelian subgroup of the conformal group on
R4 given by translations. Let Γ be a closed subgroup of R4 (the group of
translations) and Γ∨ = {f ∈ R4∗ | f(Γ) ∈ Z} be its dual group.

There is a stunning correspondence called the Nahm transform between
ASD solutions over the quotient space X = R4/Γ and ASD solutions over
the quotient space X∨ = R4∗/Γ∗ [33]. We loosely describe it here by drawing
analogues to the Fourier transform, but an explicit description of the Nahm
transform is given in Chapter 4.

Recall that in elementary Fourier analysis, one has a position space Rn

and a momentum space Rn. The Fourier transform begins with a function
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f(x) on the position space, and obtains a function on Rn×Rn by twisting f(x)
with the characters e−2πix·y, then by integrating the twisted function over
the position space, f(x) is transformed to a function f̂(y) on the momentum
space defined by f̂(y) =

∫
Rn f(x)e−2πix·ydx.

The Nahm transform proceeds in an analogous manner. We take a bundle
with ASD connection over the manifold X, twist the ASD connection with
trivial connections parametrized by the dual manifold X∗, and after finding
a certain object (the kernel of the Dirac operator coupled to the twisted
connection) on X ×X∗, we push the object down to X∗ by integrating over
X and obtain the transformed bundle and ASD connection over the dual
manifold X∗.

We emphasize here that the appropriate additional conditions on the
bundles E and E∨ are crucial and must be examined before establishing a
Nahm transform. They are highly nontrivial and much of the literature on
Nahm transforms is dedicated to this task, see the survey by Jardim [34] for
systems corresponding to different choices of Γ, such as calorons, Hitchin’s
equations, periodic monopoles, doubly periodic instantons, amongst others.
We then have a spectacularly rich interplay of analytical and geometrical
structures, illustrated in the diagram below.

E ASD ASD E∨

Tw(X) X X∨ = Tw(X∨)

Ward ADHMN Ward

The ASD reductions we consider are Γ = R3, invariance in three directions
of R4, which reduces ASD to Nahm’s equations on R4/R3 = R, and its dual
Γ∗ = R which reduces ASD to the Bogomolny equation on R4/R = R3.
These are the original spaces for which Nahm proposed his transform [5] [6].

The dimensional reduction of ASD on R4 to R is Nahm’s equations. The
convention is to set invariance in the x1, x2, x3 directions, relabel A4 = T0,
(A1, A2, A3) = (T1, T2, T3) and relabel x4 as simply s. Then ASD (1.5) be-
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comes Nahm’s equation,

dT1

ds
+ [T0, T1] = [T2, T3],

dT2

ds
+ [T0, T2] = [T3, T1],

dT3

ds
+ [T0, T3] = [T1, T2].

(1.8)

Traditionally, we also choose a specific gauge so that T0 = 0.
We will consider the case where the Nahm data (T1(s), T2(s), T3(s)) are

n×n matrix-valued functions over the interval (0,∞) of R and the boundary
conditions we consider are that the limits lim

s→∞
Tj(s), lim

s→0
sTj(s) exist and

furthermore,

lim
s→∞

(T1(s), T2(s), T3(s)) ∈ adU(n)(iτ1, iτ2, iτ3), lim
s→0

sTj(s) =
iσj
2
, (1.9)

for a chosen irreducible representation σj of dimension n of su(2), i.e. [σi, σj] =
2iεijkσk, and a chosen triplet (τ1, τ2, τ3) that is regular, in the sense that the
stabilizer of τ1, τ2, and τ3 form a maximal torus in U(n).

In general, Nahm’s equations might be over intervals (−∞, λ1)∪(λ1, λ2)∪
(λ2, λ3)∪· · ·∪(λk,∞) with varying ranks for (T1, T2, T3) on each interval and
conditions on the jump data between any two intervals, describing how the
Nahm data changes from one interval to the next. A very nice approach to vi-
sualizing these interval and jump conditions uses the D-brane approach, first
proposed in [35]. We recommend [36] for an overview from this perspective.

The boundary conditions on Nahm’s equations can vary, from choosing
an arbitrary representation (not necessarily irreducible) of su(2) for the poles
to choosing irregular triplets (τ1, τ2, τ3). The study of the moduli space of
solutions to Nahm’s equations was first undertaken by Donaldson [21] for
the interval (0, 2) with irreducible su(2) representation at the poles, which
corresponds to the SU(2) monopole. More general boundary conditions were
considered by [37] and [38], where it was clarified that the moduli space of
solutions to Nahm’s equations arises from intersections of the adjoint orbit
of τ1 + iτ2 with Slodowy slices in the Lie algebra. See [39] for an overview
from this perspective.

The dimensional reduction of ASD on R4 to R3 is Bogomolny’s equation.
The convention is to set invariance in the x4 direction and relabel A4 = −Φ.
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Then ASD becomes Bogomolny’s equation,

DΦ = ∗FA. (1.10)

Here, we write the reduced connection as A = A1dx
1 + A2dx

2 + A3dx
3 and

FA is the curvature of this connection with DΦ the differential. We consider
the Dirac monopole, which is the counterpart under the Nahm Transform
of Nahm’s equations with our boundary conditions (1.9). The bundle is the
pullback to R3\{0} of the Hopf bundle over S2 with gauge group U(1). Since
U(1) is abelian, we may take superpositions of Dirac monopoles positioned at
different points in R3 to form a Dirac multimonopole. The Nahm transform
from U(1) monopole (A,Φ) data to obtain Nahm data requires finding L2

solutions ψ to the Dirac equation:

D†sψ = 0, (1.11)

where D†s is a certain twisted Dirac operator coupled to the (A,Φ) data.
Linear superpositions in (A,Φ) do not lead to linear superpositions in the
corresponding D†s so (1.11) is difficult to solve for Dirac multimonopoles.
We reduce the problem to a linear system in Proposition 4.4 and present in
Chapter 3 several methods for construction of these solutions.

1.2 Atiyah’s Conjecture

We introduce Atiyah’s conjecture for ‘stellar’ polynomials. A major moti-
vation of the thesis is to examine the relationship between the conjecture
and Nahm’s equations, in the hope that this will lead to a proof of Atiyah’s
conjecture. In [40], [41] Atiyah constructed a set of n polynomials in C[ζ]
built from any collection of n distinct points in R3. These polynomials turn
out to play a prominent role in the solutions to Nahm’s equations. We de-
scribe informally his construction, which will account for our labeling of these
polynomials as ‘stellar’.

Think of each point as a star, with its celestial sphere which we identify
with the Riemann sphere. Stand at a star, call it the sun, and look at all
the other points. From our vantage view, the other stars will appear as dots
on our celestial sphere – these are the directions! Associate to our sun the
unique monic polynomial with these dots as its roots. Now, do this for each
star so that each of the n stars has its own degree n− 1 polynomial. Atiyah
then conjectured that these n polynomials are always linearly independent.
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Formally, the polynomials are defined in the following way. Label n dis-
tinct points for our point configuration in R3. Given xi ∈ R3, for every point
xj with j 6= i we have a direction aij ∈ C ∪ {∞} from xi to xj.

Definition 1.1. Define the ith Atiyah polynomial, arising from the point xi,
to be the degree n− 1 polynomial

Ai(ζ) =
n∏
j=1

j 6=i

(ζ − aij), (1.12)

where ζ −∞ does not contribute a factor, that is, we consider it to be 1.

Atiyah’s Conjecture. For any point configuration of n distinct points in
R3, the Atiyah polynomials A1(ζ), A2(ζ), . . . , An(ζ) are linearly independent.

Consider a simple example.

Example 1.1. Suppose the n points are located along the z-axis and we
label them in descending order. At any point, the direction to all points
north of it is 0 and the direction to all points south of it is ∞. Thus the
Atiyah polynomial for the point i is Ai(ζ) = ζ i. The Atiyah polynomials
A1(ζ) = 1, A2(ζ) = ζ, A3(ζ) = ζ2, . . . , An(ζ) = ζn−1 are, of course, linearly
independent.

The conjecture for n ≥ 4 is hard. In its current state, it has been proved
for up to n = 4 and also for specific point configurations. Numerical evidence
was gathered for n ≤ 20 in [42]. Eastwood and Norbury proved the conjec-
ture for n = 4 [43] using a combination of extensive Maple calculations and
geometric arguments, with Khuzam and Johnson providing a lower bound
on the determinant of the matrix of coefficients for the Atiyah polynomials
in [44]. Dokovic proved the conjecture for the point configuration where l of
the points lie on the vertices of a l-gon in the plane and the remaining n− l
points lie on a line perpendicular to the plane passing through the centroid of
the polygon [45]. Mazur and Petrenko [46] proved the conjecture for vertices
of regular n-gons, convex quadrilaterals, and inscribed quadrilaterals.

The conjecture (1.2) arose from Atiyah’s answer [40] to a problem posed
by Berry and Robbins [47] in their study of the spin statistics theorem from
the point of view of quantum theory. Here, Berry and Robbins considered n
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distinct particles idealized as points. In the spirit of Roger Penrose’s twisto-
rial ideas, the Atiyah polynomials A1(ζ), . . . , An(ζ) may then be thought as
‘quantum states’ associated to the classical point states ~a1, . . . ,~an. Let us
describe the mathematical setting.

Consider two spaces, the configuration space Cn(R3) of n distinct ordered
points in R3 and the well-known flag manifold U(n)/T n, where T n is the sub-
set of U(n) consisting of the diagonal matrices. The configuration space is an
open subset in R3n, obtained by removing the linear subspaces of codimen-
sion 3 where any two points coincide. The flag manifold U(n)/T n represents
collections of n orthonormal vectors, each ambiguous up to a phase, in Cn.
The permutation group Sn acts freely on both spaces. On the configuration
space, Sn permutes the points. On U(n)/T n, Sn permutes the orthonormal
vectors.

Berry-Robbins Problem: Is there a continuous map

Cn(R3) −→ U(n)/T n (1.13)

compatible with the action of the symmetric group Sn?

Atiyah confirmed this in [40] using an elementary construction but also
gave a more elegant answer relying on the linear independence of the Atiyah
polynomials. We describe how the Atiyah polynomials, if they are linearly
independent, provide a solution to the Berry Robbins problem (1.13).

A set of n linearly independent vectors in Cn can be orthogonalized in
a way compatible with Sn, i.e. not to depend on an ordering of them, by
taking U = MP−1 from M = UP of the polar decomposition of the matrix
M representing the vectors, with P = (M∗M)1/2 [40]. Thus, equation (1.13)
is equivalent to defining n points in CP n−1 that do not lie in a proper linear
subspace. We may think of CP n−1 as the space of polynomials of degree
less than or equal to n − 1 in the projective variable ζ ∈ CP 1 = S2 by
assigning to the element [a0 : a1 : · · · : an−1] ∈ CP n−1 the polynomial
a0 + a1ζ + · · ·+ an−1ζ

n−1, so that the map

Cn(R3)→ CP n−1

{~a1, . . . ,~an} 7→ {A1(ζ), . . . , An(ζ)} (1.14)

solves the Berry Robbins problem (1.13) so long as the Atiyah polynomials
are linearly independent.
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There are generalizations to the Berry-Robbins problem (1.13) in two
directions. One is to generalize the space R3 so that the points become time-
like lines in the Minkowski space [41] and another is to generalize U(n) to an
arbitrary compact Lie group [48].

In the Minkowski space generalization, denote by Cn(M3+1) the configu-
ration space of n non-intersecting straight world-lines ξ1, . . . , ξn of n moving
stars (or particles). The Berry-Robbins problem (1.13) generalizes to

Generalization 1 of Berry-Robbins Problem: Is there a continuous map

Cn(M3+1) −→ U(n)/T n (1.15)

compatible with the action of the symmetric group Sn?

A generalization of the stellar polynomials provides a solution, again on
the supposition that they are linearly independent. On each worldline ξi at
the time ti, the observer standing there sees on his celestial sphere the light
of the n − 1 other stars. These positions on the sphere describe the light
rays from the other stars, emitted at some time in their past, which arrive
at star i at time ti. These marked points on the celestial sphere again corre-
spond to aij ∈ P1, which varies as ti varies, and we obtain our polynomials
A1(ζ), . . . , An(ζ) along with the generalization of Atiyah’s conjecture.

Generalized Atiyah’s Conjecture. For any configuration of n straight
non-intersecting worldlines in M3+1 and times t1, . . . , tn, the Atiyah polyno-
mials A1(ζ), A2(ζ), . . . , An(ζ) are linearly independent.

The generalization reduces to the Euclidean space R3 we previously con-
sidered when all the stars are static. Another case of interest reducing to the
hyperbolic space H3 is when the stars all begin at a common origin, i.e. a ‘big
bang’, and move at uniform velocities (straight lines in Minkowski space). A
proof that the Atiyah polynomials are linearly independent in the Hyperbolic
case for n = 3 is found in [40].

In the Lie-theoretic generalization posed and solved in [48], U(n) is re-
placed with a compact Lie group G and Sn with its Weyl group W . Let T
be a maximal torus with Lie algebra h. The Weyl group acts on G/T and on
h. Define h3 := h⊗ R3 and denote by ∆ the singular subset of h3 under the
Weyl action. This set ∆ is the union of the codimension 3 subspaces that are
the kernels of root homomorphisms α⊗ 1 : h3 → R3. Then W acts freely on
h3 −∆ and this space is the appropriate generalization of the configuration
space Cn(R3).
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Generalization 2 of Berry-Robbins Problem: Does there exist a map f

f : (h3 −∆) −→ G/T (1.16)

compatible with the action of the Weyl group W?

The authors of [48] then solve problem (1.16) in the affirmative using a
construction derived from Nahm’s equations. We describe the case of G =
U(n). The point configuration corresponds to a regular triple τ = (τ1, τ2, τ3)
in h3 −∆. The map f is accomplished in the following way. Fix a choice of
maximal irreducible representation σ of su2. Given a regular triple (τ1, τ2, τ3),
let us consider Nahm’s equations over the interval (0,∞).

As shown in Chapter 2, we obtain an unique solution to Nahm’s equations
if we prescribe the following boundary conditions: T1(s), T2(s), T3(s) have a
pole at s = 0 given by the irreducible representation σ and as s → ∞,
T1(s), T2(s), T3(s) decay to some regular triple lying in the adjoint orbit of
τ = (τ1, τ2, τ3). Then lim

s→∞
(T1(s), T2(s), T3(s)) = g(τ1, τ2, τ3)g−1 for some

g ∈ U(n). Note, g is not unique since we may multiply it on the right
with any element of the maximal torus T stabilizing τ , however the coset
gT is unique. We have then obtained a map from h − ∆ to U(n)/T , and
one may check this map is compatible with the action of Sn and solves the
Berry-Robbins problem (1.13).

1.3 Objectives for Nahm’s Equations

Our objective is to build high rank solutions to Nahm’s equations with the
boundary conditions

lim
s→∞

(T1(s), T2(s), T3(s)) ∈ adU(n)(iτ1, iτ2, iτ3), lim
s→0

sTj(s) =
iσj
2
,

for a chosen irreducible representations σj of su(2) and a chosen regular
triplet (τ1, τ2, τ3) and to use the resulting picture of the ADHMN Transform
on the Nahm and monopole sides to investigate Atiyah’s Conjecture (1.2) on
stellar polynomials (1.12).

We are now able to

1. give an algorithm for finding Nahm solutions (T0, T1, T2, T3) for matrices
of arbitrary rank n,
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2. find L2 zero modes of the multimonopole Dirac operator, and

3. carry out the Up and Down Transforms of ADHMN for arbitrary charge
n multimonopoles of the Dirac U(1) monopole.

This is new in the literature. Currently there are no algorithms for finding
exact solutions to Nahm’s equations or for carrying out the Nahm Transforms
for general gauge group G. This resolves many questions about the Nahm
Transform for the G = U(1) monopoles (with a drawback that we do not
know the necessary gauge to set T0 = 0).

Specifically, we achieve the following results. Let Ls denote the linear
flow in the Jacobian of S of the eigenline bundles over the spectral curve S,
from the algebro-geometric approach to solving integrable systyems.

1. The bundles Ls⊗OS(n−2) in the Jacobian of S have no nonzero global
sections for s ∈ (0,∞).

2. We give algorithms relying only on linear algebra to find an orthonormal
basis of sections of Ls⊗OS(n−1) such that the corresponding solution
to Nahm’s equations satisfies the boundary conditions at s =∞. How-
ever, T0 is not zero and the boundary behavior as s → 0 has a phase
ambiguity.

3. We give a method to write a perturbation expansion of an orthonormal
basis of sections to the eigenline bundle Ls ⊗OS(n− 1).

4. Lamy-Poirier showed that a collection of polynomials satisfying a cer-
tain set of algebraic equations can be used to construct L2 zero modes
of the monopole Dirac operator [49]. We linearized these equations and
showed they are sections of Ls ⊗OS(n− 1), thereby proving the exis-
tence of n linearly independent such polynomials and their construction
is given using the algorithm in item 3. above.

In Chapter 2, we discuss Nahm’s equations with our boundary condi-
tions. We prove uniqueness of the solution by considering Nahm’s Real and
Complex equations. The solution to the Complex equation is well known, it
corresponds to the intersection of the Slodowy slice given by the boundary
conditions at s = 0 with the adjoint orbit given by boundary conditions at
s =∞, see [48] for our case or e.g. [36] for more general boundary conditions.
For the Real equation, we adapt analytical results from [21] and [37] to show
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that for every family of solutions to the Complex equation, there exists a
unique solution that also solves the Real equation.

We continue Chapter 2 with the proof that the line bundle LsS(n − 2)
over the spectral curve S has no nonzero global sections by considering the
behavior of sections as s→∞. Hitchin proved this result for spectral curves
of the nonsingular monopoles of the gauge group G = SU(2) [26], but our
result is new for monopoles of the gauge group U(1), which are necessarily
singular.

In Chapter 3 we present the algorithm to build high rank solutions to
Nahm’s equations using sections of LsS(n− 1). We adapt Bielawski’s idea for
constructing an orthonormal basis of sections [50]. There, the basis is con-
structed via theta functions (which are polynomial functions for our spectral
curve) and finding zeros of such theta functions. In contrast, we present
a linear system for our basis. In particular, this method does not require
finding roots of polynomials of degree n− 1 (we do not however discover the
special gauge necessary to set T0 = 0).

We continue in Section 3.4 to present a perturbation expansion for sec-
tions of LsS(n− 1) in terms of the exponentials of the transition function for
LsS(n− 1). We give a demonstration for the case n = 2 and n = 3.

In Chapter 4, we introduce the Dirac monopole as well as the Down
Transform of the ADHMN construction. We discuss Lamy-Poirier’s ansatz
for the L2 zero modes of the monopole Dirac operator [49]. We linearize the
system of algebraic conditions presented there and reinterpret his ansatz in
terms of a basis of H0(LsS(n− 1)). We affirm in the positive Lamy-Poirier’s
conjecture that this method produces n zero modes by showing that this
statement is equivalent to the fact h0(LsS(n − 1)) = n, proved in Corollary
3.4.

1.4 Motivation: Siegel Modular Forms and

Black Holes

In this section, we discuss the motivation for the second part of the thesis,
and we adopt an informal style. The precise definitions are given in later
sections.

A weak Jacobi form is a holomorphic function ϕk,t(τ, z) = H × C → C,
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with H the upper half plane, satisfying the transformation rules

ϕk,t
(aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)kei2πt

cz2

cτ+dϕk,t(τ, z),

(
a b
c d

)
∈ SL(2,Z)

ϕk,t(τ, z + λτ + µ) = e−i2πt(λ
2τ+2λz)ϕk,t(τ, z), (λ, µ) ∈ Z2

(1.17)

and having a Fourier-Jacobi expansion of the form∑
n,l∈Z

4tn−l2≥−t2

c(n, l)qnyl, (1.18)

with q := e2πiτ and y := e2πiz.
The coefficient c(n, l) has a discriminant equal to 4tn − l2. The terms

c(n, l)qnyl with 4tn− l2 < 0 are called polar terms.
In this thesis, we study weak Jacobi forms of weight k = 0 and our chief

interests are the polar terms as well as the growth behavior of the sums

fa,b(n, l) =
∑
r∈Z

c(nr + ar2, l − br) (1.19)

of Fourier-Jacobi coefficients.
The growth behavior of the Fourier coefficients of an automorphic form is

a common theme in mathematics, and the work that our project undertakes
is naturally situated here. The most classical example of such mathematical
investigations is, perhaps, the asymptotics of the partition function p(n).

Indeed, the generating function P (q) =
∞∑
n=0

for the partition function is

given by P (q) = q1/24

η(τ)
, where η(τ) is the Dedekind eta function, a modular

form of weight 1/2. Thus, the question of the asymptotic behavior of p(n)
is precisely the question of the growth behavior of the Fourier coefficients
of 1

η(τ)
. Of course, Hardy and Ramanujan famously proved in 1918 that

p(n) ∼ 1
4n
√

3
exp(π

√
2n
3

).

Our interest in the growth behavior of fa,b(n, l) for a weak Jacobi form
ϕ0,m comes from the fact that it determines the asymptotic growth of the
Fourier coefficients of a Siegel modular form lifted from ϕ0,m. We will expand
on this later in the section.
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To consider the possible behaviors of fa,b(n, l), we note that the asymp-
totic growth of the Fourier-Jacobi coefficient c(n, l) for large discriminant
is

c(n, l) ∼ exp π

√
|∆min|
t2

(4tn− l2), (1.20)

where ∆min is the maximal polarity of the weak Jacobi form [51, Equation
B.6]. Then roughly speaking, if there are not substantial cancellations inside
the sum of fa,b(n, l), then fa,b(n, l) will be dominated by the most polar term
in its sum and have exponential growth. However, in nongeneric cases, there
are significant cancellations between the coefficients in the sum of fa,b(n, l)
leading to subexponential growth in fa,b(n, l).

Now, let us return to our interest in the sums fa,b(n, l) of (1.19). As
mentioned, they determine the growth behavior of the Fourier coefficients
for a class of Siegel modular forms, which we now explain.

Let Φk(Ω) : H2 → C with Ω =

(
τ z
z ρ

)
be a Siegel modular form of weight

k and degree 2, i.e. it is a holomorphic function satisfying the following
transformation law under the action of

(
A B
C D

)
∈ Sp4(Z):

Φk

(
(AΩ +B)(CΩ +D)−1

)
= det(CΩ +D)kΦk(Ω). (1.21)

Φk is, then, periodic in each variable τ, z, and ρ. Writing p = e2πiρ and taking
its Fourier expansion

Φk(Ω) =
∞∑
t=0

ϕk,t(τ, z)pt, (1.22)

The weak Jacobi form ϕ0,t(τ, z) admits a lift [52] to a Siegel modular form
Φϕ : H2 → C,

Φϕ(Ω) = Exp-Lift(ϕ)(Ω), (1.23)

which transforms as (1.21) under the action of a subgroup of Sp4(Z), rather
than the full group. We summarize the details of this lift in Chapter 6.

The sums fa,b(n, l) of (1.19) indicate the growth behavior of the Fourier
coefficients d(m,n, l) with negative discriminant 4mn− l2 < 0 of the mero-
morphic Siegel modular form

1

Exp-Lift(ϕ)(Ω)
=
∑
m,n,l

d(m,n, l)pmqnyl, (1.24)
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where here we expand the Fourier coefficients in the region Im(ρ)� Im(τ)�
Im(z) > 0.

For terms with very large negative discriminant, the possible behaviors
[53] [54] are

(i) log |d(m,n, l)| grows linearly, in which case d(m,n, l) is fast growing,

(ii) log |d(m,n, l)| grows as a square root, in which case d(m,n, l) is slow
growing.

The growth of the coefficients d(m,n, l) with negative discriminant de-
pends on the underlying weak Jacobi form ϕ0,t, indeed they depend on the
sums fa,b(n, l). Roughly speaking, slow growing fa,b(n, l) leads to slow grow-
ing d(m,n, l) and fast growing fa,b(n, l) leads to fast growing d(m,n, l). We
summarize more precisely this relationship in Chapter 6.

Now, we remark on the physical motivation behind our investigation into
these mathematical objects. However, we make a note that the findings of
our project are purely mathematical, and the following physical discussion
will not appear as part of our results.

The exponentially-lifted Siegel modular forms arise in the string-theory
of black holes, where their Fourier-coefficients d(m,n, l) count the dimension
of certain eigenspaces.

A classical example is the Igusa cusp form [55]

Φ10(Ω) = Exp-Lift(2φ0,1), (1.25)

where the Fourier coefficients ψm(τ, z) of

1

Φ10(Ω)
=

∞∑
m=−1

ψm(τ, z)pm (1.26)

turn out to be the partition functions of degeneracy 1/4-BPS black holes in
four-dimensional N = 4 supergravity on a type II compactification on the
product of a K3 surface and an elliptic curve.

In general, a weak Jacobi form ϕ0,t(τ, z) appears as the elliptic genus of
a worldvolume theory of a propagating string in a Calabi-Yau manifold. If
ϕ0,t is the elliptic genus χ of a conformal field theory on a manifold M , then
Φϕ = Exp-Lift(ϕ0,t) is the generating function for the elliptic genera of the
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symmetric orbifolds of that theory,

Φϕ =
∞∑
r=0

ptrχ(τ, z;Symr(M)), (1.27)

and the Fourier coefficients of the reciprocal 1
Φϕ

correspond to black hole

states. For a review of weak Jacobi forms and Siegel modular forms in string
theory, see [56] and [57].

The physical significance of the growth behavior of the coefficients d(m,n, l)
for 1

Φϕ
is that it indicates whether the symmetric product orbifolds are can-

didates for marginal deformation to a supergravity CFT: ϕ0,t lifts to a viable
candidate whenever d(m,n, l) is slow-growth [58].

1.5 Objectives for Jacobi Forms

Our objectives are to further explore the relationship between polar coeffi-
cients and the weak Jacobi form, and to investigate the space of weak Jacobi
forms with slow growing fa,b(n, l). We are guided by the following questions.

Weight 0 weak Jacobi forms are uniquely determined by their polar terms.
However, this is an overdetermined system as for a fixed index m, the number
of polar terms exceed the dimension of weak Jacobi forms. This leads to the
question:

Question 1. Which polar terms determine a weak Jacobi form of weight 0
and index m?

In addition to this, we are also motivated by the following conjecture from
[58].

Conjecture 1.1. For every index m, there exists a weak Jacobi form ϕ0,m

that has slow growing f0,b(n, l) about its most polar term yb.

This leads us to consider the question:

Question 2. Given a, b ∈ Z, what is the space of weak Jacobi forms that
have slow growing fa,b(n, l)?

In pursuing these questions, we obtain the following results in this thesis.
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1. In Proposition 6.2, we gain an analytic bound on the number of polar
terms p(m): for any ε > 0 there exists a computable Cε such that the
total number of polar terms p(m) for index m satisfies the bound

|p(m)− m2

12
− 5m

8
| ≤ Cεm

1/2+ε. (1.28)

2. In Proposition 6.3, we prove that the polar coefficients of polarity ≤
−m/6 uniquely determine the weak Jacobi form.

We define a largest value P (m) for index m such that the polar terms of
polarity ≤ −P (m) uniquely determine the weak Jacobi form ϕ0,m.

3. We compute P (m) for 1 ≤ m ≤ 61, displayed in Figure 6.1.

4. We propose Conjecture 6.6, which if confirmed, implies

|P (m)− m

2
| ≤ Cm1/2 (1.29)

for some constant C.

In our investigations of slow growing f0,b(n, l), we discovered a large class
of slow growing forms from quotients of theta functions and we obtained the
following results.

5. We implement a fast algorithm for computing the table of polar coef-
ficients for a basis of J0,m.

6. We produce an enlarged table in Table 7.1 for index 1 ≤ m ≤ 61, listing
the dimension of the space of weak Jacobi forms with most polar term
yb that have slow growing f0,b(n, l). This table expands Table 2 of [59,
pp.19], which contains data for index 1 ≤ m ≤ 18.

7. We give a simple criterion for slow growth of a theta quotient.

8. In Proposition 7.7, we classify all single quotient theta functions that
are slow growing about its most polar term yb.

9. In Lemma 7.8, we prove the conjecture in [60] that the class of weak
Jacobi forms from the M = 2 Kazama-Suzuiki models are slow growth.
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10. We produce Table 7.2, containing the dimensions of slow growing theta
quotients for quotients of size ≤ 7.

Unlike for sums f0,b(n, l), the behavior of the sums fa,b(n, l) with a > 0 do
not appear in the literature. A big obstacle in their investigation is, unlike
f0,b(n, l), we are required to compute the Fourier-Jacobi expansion of ϕ0,t to
very high order to be able to compute fa,b(n, l). However, we were able to
make substantial computational progress and create new numerical findings,
in addition to some limited analytical results. We summarize our progress
below.

11. We are able to give a fast implementation for computing the Fourier-
Jacobi coefficients to very high order, partially based on a new formula
in Lemma A.1 for a generating function.

12. Based on our numerical findings, we propose Conjecture 8.1 that the
behavior of fa,b(n, l) is the same as that for f0,b(n, l). That is, fa,b(n, l)
grows either exponentially fast in n, l or they attain only finitely many
distinct values.

Part II of this thesis is organized as follows.
In Chapter 6, we explore the interaction between the weak Jacobi form

and its polar part and we give the results of items 1-4. We compute P (m) for
1 ≤ m ≤ 61, displayed in Figure 6.1, as the difference between P (m) and the
dimension of J0,m, displayed in Figure 6.2. The latter scatterplot shows that
for many m, the polar part of polarity ≤ −P (m) does not overdetermine the
space of weak Jacobi forms so that every polar part of polarity ≤ −P (m)
indeed has a corresponding weak Jacobi form.

We discuss an upper bound P+(m) for P (m), where P+(m) is such that
the number of polar terms of polarity ≤ δj(m) equals the dimension j(m)
of the space of weak Jacobi forms of weight 0 and index m. Based on the
computed data of P+(m) for 1 ≤ m ≤ 1000, we propose Conjecture 6.6
which bounds P+(m) from above by m

2
+ Cm1/2.

In Chapter 7, we further develop the exploration of weak Jacobi forms
with slow growing f0,b(n, l). We expand Table 2 of [59, pp.19] to index
1 ≤ m ≤ 61, listing the dimension of the space of weak Jacobi forms with
most polar term yb that have slow growing f0,b(n, l).

We discuss a class of weak Jacobi forms given by quotients of theta func-
tions. This class of functions is found to contain a large amount of slow
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growing weak Jacobi forms. In Proposition 7.7, we classify all single quotient
theta functions that are slow growing about its most polar term yb.

We find a simple criterion (7.40) for a quotient of theta functions to be
slow growing about its yb term and we use this to produce a table of the
dimensions of slow growing theta quotients for quotients of size ≤ 7. This
criterion is also used to prove the conjecture in [60] that the class of weak
Jacobi forms from the M = 2 Kazama-Suzuiki models are slow growth, and
as another application, we give a simplified proof of [60] that the weak Jacobi
forms from the minimal models of type A,D,E are slow growing.

In Chapter 8, we discuss weak Jacobi forms with slow growing fa,b(n, l) for
a > 0. The exploration of fa,b(n, l) for a > 0 was suggested in [61] but was
previously inaccessible as computation of fa,b(n, l) requires Fourier-Jacobi
expansions of the weak Jacobi forms to order 1000 or more. For low index
1 ≤ m ≤ 12, we compute some values of fa,b(n, l) for qayb of relatively low
polarity and present a table of the dimensions of slow growing weak Jacobi
forms.

We find that the growth characteristics of fa,b(n, l) are precisely the same
as f0,b(n, l), that is, fa,b(n, l) either grows exponentially fast or it attains only
finitely many values.

For f0,b(n, l), this is explained by the fact found in [61] that the generating
functions for f0,b(n, l) are modular forms of weight 0 and that these modular
forms are constant functions whenever f0,b(n, l) are slow growing. In this case,
f0,b(n, l) attains only finitely many distinct values as f0,b(n, l) is nonzero only
when it is the constant coefficient of these generating functions.

For fa,b(n, l) with a > 0, generating functions are not known but we
discover some special cases where the generating functions may be given in
terms of specializations of an Atkin-Lehner involution of the underlying weak
Jacobi form ϕ0,m.

In the Appendix, we present the essential Mathematica code we used
for obtaining our numerical results. We chose to use Gritsenko’s generating
functions φ0,1, φ0,2, φ0,3 for the space of weak Jacobi forms of weight 0. We
present the code for fast computation of the matrix of polar coefficients of
a basis of the space of weak Jacobi forms of weight 0 and index k. This
extends the indexes m that are reasonable (less than two weeks) to compute
from m ≤ 20 to m ≤ 71.

We present a novel formula in Lemma A.1 that allows for fast Fourier-
Jacobi expansion of the generating function φ0,3. We then present the Math-
ematica code for fast Fourier-Jacobi expansion of all the generating functions
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for a basis of the space of weak Jacobi forms that allows for the computation
of fa,b(n, l) with a > 0.



Part I

31



Chapter 2

Nahm’s Equations

2.1 Introduction

We want to solve Nahm’s equations on the real interval (0,∞) with specified
boundary conditions that correspond to the Dirac U(1) monopoles of charge
n [5]. The problem is to find antihermitian n × n matrix-valued functions
T1(s), T2(s), and T3(s) over the interval (0,∞) solving

dT1

ds
= [T2, T3],

dT2

ds
= [T3, T1],

dT3

ds
= [T1, T2],

(2.1)

with the following boundary conditions at infinity and zero for j = 1, 2, 3:

lim
s→∞

(T1(s), T2(s), T3(s)) ∈ adU(n)(iτ1, iτ2, iτ3), lim
s→0

sTj(s) =
iσj
2
. (2.2)

The triplet iσj is a chosen irreducible unitary rank n representation of su(2):
[iσ1, iσ2] = −2iσ3 with σ3 = diag(n−1, n−3, . . . ,−n+1) and σ+ = 1

2
(σ1+iσ2)

with (σ+)j,i =
√
j(n− j)δ(j+1),i. The triplet iτj = diag(ip1

j , ip
2
j , . . . , ip

n
j ) is

regular, i.e. the set of matrices that commute with all three is a maximal
torus T of U , here T is the set of all diagonal matrices.

We note that ( iσ1
2s
, iσ2

2s
, iσ3

2s
) as well as (iτ1, iτ2, iτ3) are model solutions to

Nahm’s equations. Analytically, we require the Nahm data to satisfy the

32
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conditions

Tj(s) =
iσj
2s

+ ig0τjg
−1
0 + bj(s), (2.3)

for some g0 ∈ U(n) and bj(s) ∈ L2[0,∞). Infact, given these conditions,
bj(s) ∈ L∞[0,∞) thanks to the two lemmas below from the literature.

Lemma 2.1 ([62]). Suppose the Nahm data (T1(s), T2(s), T3(s)) satisfies the
following condition.

sTj −
iσj
2s
∈ L2[0, ε), (2.4)

for some ε > 0. Then

sTj −
iσj
2s
∈ L∞([0, ε]). (2.5)

The previous lemma deals with the behavior of the Nahm data near the
pole. Asymptotically as s → ∞, the solutions (T1, T2, T3) approach their
limit exponentially fast with the precise statement given by the following
lemma.

Lemma 2.2. Let (T1, T2, T3) satisfy Nahm’s equations with the boundary
condition (2.2) where τj is a regular triple and lim

s→∞
Tj(s) = g0iτjg

−1
0 for some

g0 ∈ U(n). Then away from s = 0, e.g. for s > 2, there exists a constant
η > 0 depending only on (τ1, τ2, τ3) such that |Tj −Ad(g0)iτj| ≤ const× e−ηs.

Proof. This result is [37, Lemma 3.4]. The reason is that Nahm’s equations
are the gradient-flow equations for the function

ψ(T1, T2, T3) = 〈T1, [T2, T3]〉 = trT1[T2, T3],

where 〈 , 〉 is an Ad-invariant inner product. The critical set C of this flow
consists of triples (T1, T2, T3) which commute and the condition of regularity
makes C a smooth manifold in the neighborhood of Ad(g0)(iτ1, iτ2, iτ3), then
exponential decay holds in general for any gradient system in the neighbor-
hood of such a ‘hyperbolic’ critical set with non-degenerate Hessian. Any
η smaller than the smallest positive eigenvalue of the Hessian of ψ will do.
However, if we do not have a regular triplet then this behavior will not hold
in general. Simple counterexamples are in [37, pp.207].



CHAPTER 2. NAHM’S EQUATIONS 34

It is useful to extend the equations by introducing a fourth L2[0,∞)
antihermitian matrix T0(s) and writing

dT1

ds
+ [T0, T1] = [T2, T3]

dT2

ds
+ [T0, T2] = [T3, T1]

dT3

ds
+ [T0, T3] = [T1, T2].

(2.6)

These new equations and corresponding boundary conditions are invariant
under an action of the group G of g : [0,∞) → U(n) with g(0) = 1 and
lim
s→∞

g(s)→ diagonal. The action of G on (T0, T1, T2, T3) is

T0 → gT0g
−1 − ġg−1,

Ti → gTig
−1, i = 1, 2, 3.

(2.7)

Analytically, we take the gauge group to be

G = {g : [0,∞)→ U(n) | g(0) = 1, lim
s→∞

g = diagonal, g−1(s)ġ(s) ∈ L2[0,∞)}.
(2.8)

2.2 Boundary Conditions

This section is devoted to the proof of the following theorem:

Theorem 2.3. There exists a unique solution (T1, T2, T3) to Nahm’s equa-
tions with the boundary conditions

lim
s→∞

(T1(s), T2(s), T3(s)) ∈ adU(n)(iτ1, iτ2, iτ3), lim
s→0

sTj(s) =
iσj
2

with regular triplets iτj and chosen irreducible representations σj of su(2) as
in (2.2).

The theorem was proved in [48, Section 6]. We provide an explicit proof by
piecing together results found in the literature. In [21], Donaldson considers
the interval (0, 2) with boundary conditions on both sides given by poles with
residues that are irreducible representations of su(2). In [37], Kronheimer
considers the interval [0,∞) with boundary condition given by a regular
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triple at infinity but regular behavior at s = 0. Our case is the interval
(0,∞) with an irreducible pole at s = 0 and a commuting triplet at infinity,
so we will adapt both to our situation. The standard method of proof is
to choose a complex structure, thereby losing the cyclic symmetry between
T1, T2, T3 in Nahm’s equations, and looking at a system equivalent to Nahm’s
equations of two equations called the Complex and Real equations. One then
shows that every solution to the Complex equation has a unique complexified
gauge transform that transforms the solution into one that satisfies both the
Complex and Real equations.

2.2.1 The Complex Equation

Set X = −iT1 +T2 and A = T0− iT3, which takes values in the complexified
Lie algebra Mn(C) of u(n). Two of Nahm’s equations combine to a single
equation called the Nahm’s Complex equation,

Ẋ = [X ,A]. (2.9)

The action of the gauge group extends to the gauge group Gc taking
values in the complexification GL(n,C) of U(n) which preserves the Complex
equation (2.9). The complexified gauge group acts on (X ,A) by g · (X ,A) =
(gX g−1, gAg−1 − ġg−1).

The Complex equation is easily solved since it is locally trivial, indeed
the Lax equation (2.9) for (X ,A) implies that the spectrum of X does not
evolve in time and the solution can be given locally as X (s) = g(s)Xg−1(s),
A(s) = −ġ(s)g−1(s) for some choice of constant matrix X and g(s) any
GL(n,C)-valued function. We will construct a solution (X ,A) of the complex
equation with the properties:

(X ,A)(s) =

{
(σ+
s

+O(s0), σ3
2s

+O(s0)) as s→ 0

(τ1 + iτ2, τ3) for 2 < s <∞. (2.10)

The existence of such a solution follows from the local triviality of the complex
equation. We use the exposition as in Gaiotto-Witten [36].

Near s = 0, we have from the boundary conditions of Theorem 2.3

lim
s→0

sX (s) = σ+, lim
s→0

sA(s) =
σ3

2
. (2.11)
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We may use a complex gauge to transform A(s) to only its pole part, i.e.
A(s) = σ3

2s
. Indeed, this is equivalent to solving the linear ordinary differential

equation

ġ = g
(
A− σ3

2s

)
+ g

σ3

2s
− σ3

2s
g,

with initial condition g(0) = 1. In particular, A(s) − σ3
2s
∈ L∞([0, ε) so the

terms having a singular point at s = 0 are g σ3
2s

and σ3
2s
g. The limit lim

s→0
sσ3

2s
is

clearly finite so s = 0 is a regular singular point, and the solution g exists
[63, Section 2].

The weights of σ3
2

under the action [·, σ3
2

] on the set of n×n matrices are
−n+ 1, . . . ,−1, 0, 1, . . . , n− 1. The matrix Epq =

(
δipδjq

)
is a weight vector

of weight p − q under this action. To aid in visualization, we write a n × n
matrix below and assign to its pq entry the weight of Epq.

0 −1 −2 . . . −n+ 1
1 0 −1 . . . −n+ 2

2 1 0
...

. . .

n− 1 n− 2 . . . 0

 . (2.12)

Take as basis Vα the matrices of definite weight

[Vα,
σ3

2
] = ναVα, (2.13)

where να ∈ {−n + 1,−n + 2, . . . ,−1, 0, 1, . . . , n − 1}. Now with A(s) = σ3
2s

,
let us solve the Complex Nahm equation on the interval (0, 1). We may write

X (s) =
∑

εαVαfα(s), (2.14)

with arbitrary powers µα and complex coefficients εα. The Complex Nahm
equation then states

Ẋ (s) = [X (s),
σ3

2s
]∑

εαVαḟα(s) =
∑

ναεαVα
fα(s)

s
,

(2.15)

thus fα(s) = cαs
να .
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The Complex Nahm equation on the interval (0, 1) then has the general
solution

X =
∑
α

εαVαs
να , A =

σ3

2s
. (2.16)

Since X must have prescribed pole, we exclude the ineligible negative weights
and we have

X =
σ+

s
+
∑
να≥0

εαVαs
να , A =

σ3

2s
. (2.17)

The form A = σ3
2s

is still preserved by remaining gauge transformations
generated by the infinitesimal gauge transformations φ

φ =
∑
vα>0

fαVαs
να , (2.18)

with arbitrary coefficients fα. To see this, the gauge transformations pre-
serving σ3

2s
satisfy the equation

g
σ3

2s
g−1 − ġg−1 =

σ3

2s

ġ = [g,
σ3

2s
],

(2.19)

and the same argument as in (2.15) applies.
φ shifts X by [X , φ]. The matrix σ+ lowers Epq of weight p − q to the

weight space p− q− 1. Since the weight space of the weight k has dimension
n−|k|, we may use such gauge transformations to remove everything from X
except the pole and subdiagonals with constant coefficients. Every solution
to the Complex Equation (2.9) on the interval (0, 1) with the prescribed pole
at s = 0 given by (2.11) is then gauge equivalent to the solutions

X (s) =


a s−1 0 . . . 0
bs a s−1 0

cs2 bs a
...

. . . s−1

dsn−1 esn−2 . . . a

 , A =
σ3

2s
. (2.20)

Next, we incorporate the prescribed boundary condition at infinity.
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Lemma 2.4. There is one and only one solution (X ,A) to the Complex
Equation satisfying the conditions (2.10), i.e.

(X ,A)(s) =

{
(σ+

2s
+O(s), σ3

2s
+O(s)) as s→ 0

(τ1 + iτ2, τ3) for 2 < s <∞,

modulo smooth complex gauge transformations g : [0,∞) → GL(n,C) with
support in [0, 2].

Proof. Let X (s) be a solution to the Complex equation with the conditions
(2.10). We showed X (s) can be gauged using complex gauge transformations
to the form (2.20) on an interval (0, 1 + ε) with 0 < ε < 1. We extended the
right endpoint of the interval to be slightly larger than 1. Since X (s) satisfies
the Lax equation (2.9), its spectrum does not evolve in s.

The boundary condition at infinity gives the spectrum of X so the co-
efficients of its characteristic polynomial are determined. A formula for the
xn−k term of the characteristic equation det(x1− A) = 0 for a matrix A is

1

k!
det

∣∣∣∣∣∣∣∣∣∣∣

trA k − 1 0 . . .
trA2 trA k − 2 . . .

...
...

. . .
...

trAk−1 trAk−2 . . . 1
trAk trAk−1 . . . trA

∣∣∣∣∣∣∣∣∣∣∣
.

Appying this formula to the matrix X (1) of (2.20),

a1 1 0 0 . . . 0
a2 a1 1 0 . . . 0

a3 a2 a1 1 . . .
...

. . . . . . 0
an−1 . . . a1 1
an an−1 . . . a2 a1


, (2.21)

the coefficient of xn−k in its characteristic polynomial has ak as a linear term
along with terms aj for j < k. For example, the coefficient of xn−1 is −na1.
This implies that for a given spectrum of X (s), the entries {ak | 1 ≤ k ≤ n}
of X (1) are uniquely determined.

Approaching s = 1 from infinity, X (1) = g(τ1 + iτ2)g−1 for some constant
complex gauge g. One may then take any smooth path g(s) in GL(n,C) with
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support in [1, 2] from this fixed g to the identity matrix 1, and any other
choice of smooth path is gauge equivalent. This path allows the Complex
solution over [2,∞) to flow to the Complex solution over (0, 1], the resulting
solution then satisfies the Complex equation over the entire interval (0,∞).
We have shown both existence and uniqueness of the solution to the Complex
equation, up to complex gauge transformations.

Let us describe in broader terms the features in the proof of the above
lemma. Matrices of the form (2.21) are known as the Slodowy slice Sσ+ . It
is transverse to the nilpotent orbit of σ+; we give the formal definition of the
Slodowy slice as in [64], which will be slightly different than the matrices of
(2.21).

Definition 2.1. Let ρ : su(2) → g be a Lie algebra homomorphism with
complexification ρC : sl(2,C) → gC and let the resulting triple be (e, h, f)
where

[h, e] = 2e, [h, f ] = −2f, [e, f ] = h. (2.22)

The Slodowy slice corresponding to ρ is

S(ρ) = f + C(e), (2.23)

where C(e) denotes the centralizer of e in gC.

The set of matrices in (2.21) is precisely the Slodowy slice S(ρ+) for the
regular nilpotent matrix

ρ+ =


0 1 0 . . . 0
0 0 1 0

0 0 0
...

. . . 1
0 0 . . . 0

 .

This Slodowy slice is, of course, gauge equivalent under a complex gauge
transformation to the Slodowy slice S(σ+) for the nilpotent matrix σ+ of the
irreducible unitary su(2) representation at the pole of our Nahm data.

The Slodowy slice transverse to a regular nilpotent matrix has the prop-
erty that it meets adjoint orbits at a single point, which we demonstrated in
the proof of the lemma. The boundary conditions at infinity fix the spectrum
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of X (s) so that X (s) resides in the adjoint orbit Oτ1+iτ2 . The boundary con-
ditions at s = 0 state that, after applying complex gauge transformations,
X (1) belongs to the Slodowy slice Sσ+ . Since Slodowy slices intersect ad-
joint orbits at a single point, X (1) is uniquely determined. Indeed, functions
X (s) of the form (2.20) are in one-to-one correspondence with points in the
Slodowy slice Sσ+ via X (1) ∈ Sσ+ .

2.2.2 The Real Equation

Now we discuss the Real equation. As mentioned, the Complex equation
restates two of three of Nahm’s equation. The third of Nahm’s equations is
equivalent to the Real equation

F̂ (X ,A) :=
d

ds
(A∗ +A) + [A,A∗] + [X ,X ∗] = 0. (2.24)

Given a solution (A0,X0) of the Complex equation (2.9), we seek a com-
plex gauge transform g such that g(A0,X0) = (gA0g

−1− ġg−1, gX g−1) solves
the Real equation (2.24). As in Donaldson [21, Section 2], we will consider
F̂ (g(X ,A)) as a functional of GL(n,C)-valued maps g(s). F̂ (g(X ,A)) is
zero when g(X ,A) satisfies the Real equation. The Real equation is invari-
ant under the group of real gauge transformations, i.e. U(n)-valued maps
g(s), thus the functional F̂ (g(X ,A)) depends only on the projection h = g∗g
of g as a path in the complete Riemannian manifold H = Gc/G the set of
positive hermitian matrices.

Proposition 2.5. For the solution (X ′,A′) to the Complex equation as in
(2.10), there is an unique bounded complexified gauge transformation g with
g(0) = 1 such that g(X ′,A′) satisfies the Real equation and g(A′) = gA′g−1−
ġg−1 is hermitian.

Proof. First, we work on the interval [1/N,N ] and write (X ,A) = g(X ′,A′).
As in Proposition 2.8 of [21], the equation F̂ (g(X ′,A′)) = 0 on the interval
[1/N,N ] is the Euler-Lagrange equation for the functional F̂ of g given by

LN(g) =
1

2

∫ N

1/N

|g(A′) + g(A′)∗|2 + 2|g(X ′)|2. (2.25)

The Lagrangian integrand, when written in terms of h = g∗g, is the standard
GL-invariant Riemannian metric | · |2H with a smooth nonnegative poten-
tial V (h) = tr(X ′h−1X ′∗h) on the complete Riemannian manifold H. By
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the usual calculus of variations, there exists an extremizing path hN(s) on
[1/N,N ] taking the value 1 at the end points that minimizes the Lagrangian.
Taking gN = (hN)1/2, the transformed gN(X ′,A′) then satisfies the Real
equation.

For h ∈ H a positive n×n hermitian matrix with eigenvalues {λi}, define
Φ(s) = log max(λi)1≤i≤n ∈ R. Using the following differential inequality
found in Lemma 2.10 of [21] that depends only on h = g∗g for a given fixed
(X ′,A′):

d2

ds2
Φ(h) ≥ −2(|F̂ (g(X ), g(A)) |+ |F̂ (X ′,A′)|),

d2

ds2
Φ(h−1) ≥ −2(|F̂ (g(X ), g(A)) |+ |F̂ (X ′,A′)|),

(2.26)

one obtains uniqueness of hN and an uniform C0 bound on gN so that hN =
g∗NgN has a C∞ limit h∞ as N → ∞ by the following convexity argument.
Let g′N be another gauge of the transformed solution also satisfying the real
condition with g′N(1/N) = 1, g′N(N) = 1. Set h′N = g′∗Ng

′
N . As in Donaldson,

we can assume g′N(s) = diag(et1(s), et2(s), . . . , etn(s)) with t1(s) > t2(s) > · · · >
tn(s). We then have t1 = Φ(h) and tn = −Φ(h−1). By (2.26), we have

d2t1
ds2
≥ 0,

d2tn
ds2
≤ 0.

(2.27)

Note, t1 = 0 and tn = 0 at both endpoints s = 1/N,N so t1(s) ≤ 0 on
[1/N,N ] and tn(s) ≥ 0 on [1/N,N ]. By definition, t1 = t2 = · · · = tk
so that h′N is the identity. The uniqueness reflects the more general fact
that in any simply connected manifold with a complete Riemannian metric
of negative curvature and a positive convex potential function, there is a
unique stationary path for the corresponding Lagrangian between any two
points.

The gauge transformation g∞ = (h∞)1/2 then yields a solution to the
Real equation over the whole interval (0,∞). While h∞ is unique, there may
be other gauges g with h∞ = g∗g. Every such gauge g differs by an unitary
gauge transformation. The requirement that g(A′) is hermitian means T0 = 0
and this fixes the unique g.

Remark 2.1. The above proposition is a proof of existence and uniqueness
for h(s), proved by Donaldson. We want to note that Theorem 5.1 of [65]
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has improved on this existence result of Donaldson, by giving an explicit
construction for the function h(s) for any spectral curve.

Lemma 2.6. The transformed solution (X ,A) = g · (X ′,A′) of the above
proposition 2.5 provides (T1, T2, T3) solving the Nahm equations (2.1) and
satisfying the correct boundary conditions (2.2) at s = 0 and at infinity.

Proof. Taking the anithermitian and hermitian parts of (X ,A) gives the
Nahm solution (T0, T1, T2, T3). Since A is hermitian, T0 = 0. The gauge
satisfies g(0) = 1 so the boundary conditions of T1, T2, T3 at s = 0 is satisfied.
The gauge g is bounded so away from s = 0, we know that this (T1, T2, T3)
is bounded. As observed in Lemma 2.2, (T1, T2, T3) satisfy the gradient-flow
equations for the function ψ(T1, T2, T3) = trT1[T2, T3] so any bounded solution
must have a limit point as s→∞ and this must be a critical point of ψ, i.e. a
commuting triple. Thus, lims→∞ Tj(s) = iτ ′j for some τ ′j a commuting triple.
The triple (iτ ′1, iτ

′
2, iτ

′
3) must lie in the same adjoint orbit as (iτ1, iτ2, iτ3), so

we have (iτ ′1, iτ
′
2, iτ

′
3) = g0(iτ1, iτ2, iτ3)g−1

0 for some g0 ∈ G = U(n) and our
(T1, T2, T3) have the correct limits at infinity as well.

We are at last ready to prove Theorem 2.3 stated at the start of the sec-
tion. Suppose (T1, T2, T3) and (T ′1, T

′
2, T

′
3) are two solutions satisfying Nahm’s

equations with the boundary conditions (2.2). Let (X ,A) and (X ′,A′) be
the corresponding solutions to the Complex equation. We may use com-
plex gauge transformations so that the transformed pairs satisfy conditions
(2.10). By Lemma 2.4, (X ,A) and (X ′,A′) are then equivalent to each other
by a complex gauge transformation. Proposition 2.5 shows that there is only
one (T1, T2, T3) that can arise from this complex solution, thus (T1, T2, T3) =
(T ′1, T

′
2, T

′
3).
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Spectral Curve

There is an unique spectral curve corresponding to a Nahm solution modulo
gauge transformations. The tangent bundle TP1 of the complex projective
space P1 provides the setting for our spectral curve. The space TP1 is referred
to as the minitwistor space, as Hitchin in [66] showed that the twistor space
O(1) ⊕ O(1) of R4 reduces to the minitwistor space TP1 of R3 under the
dimensional reduction of R4 to R3.

We parametrize P1 as the Riemann sphere, denoting ζ ∈ C as our North
coordinate and ζ̃ ∈ C as our South coordinate with transition function ζ̃ =
ζ−1. Points on the Riemann sphere correspond to directions in R3, which
may be thought of as unit vectors, under stereographic projection.

The tangent bundle TP1 over the base space P1 has coordinates (ζ, η)
for η d

dζ
∈ TP1 and (ζ̃ , η̃) for η̃ d

dζ̃
, where η and η̃ are the coordinates of the

tangent fiber. Since η̃ d
dζ̃

= η d
dζ

, the transition function is given by ζ̃ = ζ−1,

η̃ = η/ζ2. Observe that these transition functions identify TP1 as the total
space of the bundle OP1(2): TP1 ∼= OP1(2).

Hitchin in [26] showed the spectral curve for the SU(2) monopole is an
algebraic curve S ⊂ TP1 of the form

ηn + a1(ζ)ηn−1 + · · ·+ an−r(ζ)ηr + · · ·+ an−1(ζ)η + an(ζ) = 0, (3.1)

with each ar(ζ) a polynomial in ζ of maximum degree 2r satisfying the con-
ditions

A1. The spectral curve is invariant under the involution (η, ζ) 7→ (−1
ζ̄
,− η̄

ζ̄2
),

43
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i.e.

ar(ζ) = (−ζ2)rar(−
1

ζ̄
).

A2. For Ls the holomorphic line bundle on TP1 defined by transition func-
tion exp(−sη/ζ), the restriction of L2 to S is trivial on S.

A3. L(n− 1) is real, in the sense that the Hermitian inner product defined
on sections of L(n−1) as in Proposition 3.5 is real-valued and positive.

A4. H0(S, Ls(n − 2)) = 0 for s ∈ (0, 2), i.e. Ls(n − 2) |S has no nontrivial
holomorphic sections.

The paper then established that the above spectral curve of the SU(2)
monopole is the same as the spectral curve of Nahm data (T1(s), T2(s), T3(s))
over the interval (0, 2) satisfying

B1. Ti(s) = −T̄i(2− s),
B2. Ti has a simple pole at s = 0 and s = 2, and for each pole, the residue

defines an irreducible representation of su(2).

The spectral curve correspondence was then generalized for monopoles
of arbitrary compact gauge groups G and various Nahm data in [28]. In
general, the spectral curve is not known other than for a few special cases,
such as charge 1 and 2 SU(2) monopoles [27] and, of course, the U(1) Dirac
monopole. For a list of all currently known spectral curves, the reader may
consult Table 1 of [67].

Both spectral curve data and monopole data for the Dirac multimonopole
are known. In this chapter, we explain the spectral correspondence and then
we use this to carry out the construction of Nahm solutions.

3.1 MiniTwistor Space

A line l in R3 can be specified by its direction ~ζ and the normal vector ~η ∈ R3

to the line, giving the displacement of that line from the origin.
In this way, the minitwistor space TP1 is identified with the space of

oriented lines in R3,{(
~ζ, ~η
)
∈ R3 × R3 : |~ζ| = 1, ~ζ · ~η = 0

}
.
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The complex structure J of TP1 inherited from P1 as a complex manifold is
given by J(η) = iη, it corresponds to the complex structure J(~η) = ~ζ × ~η on
the space of oriented lines.

TP1 also carries a real structure τ , i.e. an antiholomorphic involution,

ζ 7→ −1/ζ̄, η 7→ −η̄/ζ̄2. (3.2)

induced by reversing the orientation of each line.
The line l can also be specified by giving a point x ∈ R3 that the line

passes through along with the direction ~ζ.

x

y

z

~η

l

~x

~ζ

The minitwistor correspondence between points in R3 and sections of
the minitwistor space is accomplished in the following manner. A point
~x = (x1, x2, x3) ∈ R3 corresponds to a section p(ζ) : P1 → TP1 where we

take all lines that pass through ~x and assign to every direction ~ζ the point η
in the tangent space corresponding to the displacement vector ~η of that line.

Let us write p(ζ) explicitly. The line passing through x with direction ~ζ

has displacement vector ~η = x − (x · ~ζ)~ζ. The value of η ∈ C is given by
η = 1

2
S−1
∗ (~η) where S−1

∗ is the Jacobian of the inverse stereographic projection
S−1 : C→ P1. Through this, we obtain that the section (ζ, p(ζ)) in terms of
the North pole coordinates has description given by

p(ζ) = (x1 + ix2)− 2x3ζ − (x1 − ix2)ζ2. (3.3)
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The boundary conditions (2.2) of Nahm’s equations for n×n matrices as
s→∞ states

lim
s→∞

(T1(s), T2(s), T3(s)) ∈

adU(n)

 ip1
1

ip2
1

. . .
ipn1

 ,

 ip1
2

ip2
2

. . .
ipn2

 ,

 ip1
3

ip2
3

. . .
ipn3


and so this condition marks out n distinct points xi = (pi1, p

i
2, p

i
3), i = 1, . . . , n

in R3. The twistor section pi(ζ) corresponding to point xi appears as the
factor in the spectral curve (3.9). Under stereographic projection S : P1 7→ C,
one may verify that the two roots aij and aji of pi(ζ)− pj(ζ) = 0 are the two
directions ~aij from xi to xj and ~aji from xj and xi.

3.2 Spectral Curve of Nahm data

Nahm’s equations form an integrable system, as previously mentioned in the
introduction, with a Lax Pair (L,M). The Lax pair arises from the antiself-
dual commutator equation on R4. Indeed, if we modify (1.7) to

[Dz̄ −Dwζ − (Dw̄ +Dzζ)ζ,Dw̄ +Dzζ] = 0 (3.4)

and take the ASD reduction to R as in (1.8), i.e. relabeling Az = 1
2
(T1 + iT2),

Aw = 1
2
(T3− iT0) and requiring that these functions depend only on s := x4,

we obtain the Lax pair (L,M)

d

ds
L = [L,M ] (3.5)

equivalent to Nahm’s equations. In North and South coordinates, (L,M) are

LN = −i(T1 + iT2) + 2iT3ζ + i(T1 − iT2)ζ2, MN = T0 − i(T3 + (T1 − iT2)ζ),

LS = i(T1 − iT2) + 2iT3
1

ζ
− i(T1 + iT2)

1

ζ2
, MS = T0 + i(T3 − (T1 + iT2)

1

ζ
).

(3.6)

In particular, the spectrum of L(s, ζ) does not evolve in s and the spectral
curve S for Nahm solution is given as the spectrum,

det(η − L(s, ζ)) = 0. (3.7)
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The boundary conditions of our Nahm solution state that

lim
s→∞

LN(s, ζ)→ adU(n)

 p1(ζ) 0 ... 0
0 p2(ζ) ... 0

...
0 0 ... pn(ζ)

 , (3.8)

where pj(ζ) = x1
j+ix

2
j−2x3

jζ−(x1
j−ix2

j)ζ
2 is the twistor section corresponding

to the point (x1
j , x

2
j , x

3
j) ∈ R3 from the boundary condition as s→∞.

Therefore, we find that the spectral curve of Nahm solution is:

Lemma 3.1. The spectral curve S ⊂ TP1 for Nahm’s equations with our
boundary conditions (2.2) is

S =

{
(ζ, η) ∈ TP1 :

n∏
j=1

(η − pj(ζ)) = 0

}
, (3.9)

for pj(ζ) = x1
j + ix2

j − 2x3
jζ − (x1

j − ix2
j)ζ

2 the twistor section of the point
xj = (x1

j , x
2
j , x

3
j) from the boundary conditions as s→∞.

This S is a degenerate n-branched covering of P1. For two distinct points
xi and xj with distance rij, each branch (ζ, pi(ζ)) intersects another (ζ, pj(ζ))
at the double points ζ = aij and ζ = aji where

aij =
x3
i − x3

j + rij

x1
j − x1

i + i(x2
i − x2

j)
. (3.10)

Note, if xi and xj are vertically separated (i.e. x1
i = x1

j and x2
i = x2

j) and,
say x3

i > x3
j , then aij =∞ ∈ P1 and aji = 0 ∈ P1.

In the algebro-geometric integration method, the η-eigenspace of L(s, ζ)
gives us from the flow of L(s, ζ) a linear flow F s in the Jacobian Jac(S),
from which we carry out the integration of the Lax pair. This was proved
by Griffiths in [1] for regular curves. Here we shall prove it for our spectral
curves, which are singular. A sketch of our spectral curve S with eigenline
bundle is
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S S1

S2

S3

P1

To obtain the linear flow F s in Jac(S), consider solutions Uj = (UN
j , U

S
j )

to the Lax linear problem associated to (L,M){
( d
ds

+MN)UN
j = 0,

(LN − pj(ζ))UN
j = 0,{

( d
ds

+MS)US
j = 0,

(LS − pj(ζ)

ζ2
)US

j = 0.

(3.11)

That is, each Uj is an eigenvector of L for the eigenvalue pj(ζ) and evolves
in s as dU

ds
= −MU . Set U = (U1, . . . , Un), we now look for the transition

function F (s, ζ) of UN = USF (s, ζ). To begin, we have

LS =
1

ζ2
LN and MS = MN +

1

ζ
LN . (3.12)

We have LN = ζ2LS so LN and LS have the same eigenspace and UN =
USF (s, ζ) for a diagonal matrix F (s, ζ). Now,

0 = (
d

ds
+MN)UN

= (
d

ds
+MS − 1

ζ
LN)(USF )

= (
d

ds
US)F−1 + US dF

−1

ds
+MSUSF−1 − 1

ζ
LNUSF

= [(
d

ds
+MS)US]F + US dF

ds
− US η

N

ζ
F

= US(
d

ds
− η

ζ
)F.

(3.13)
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Solving d
ds
F = η

ζ
F is easy, it gives F (ζ, s) = g(ζ)es

η
ζ for some s-independent

diagonal matrix g(ζ). However g(ζ) is still undetermined. We can set g(ζ) =
ζn−1, the justification for this is provided later in Corollary 3.4. This gives
us

F (s, ζ) = ζn−1diag(es
pj
ζ ). (3.14)

The spectral curve S is degenerate with double points at aij of (3.10).
To see what happens at the eigenspace of L(s, ζ) at ζ = aij, we consider the
boundary conditions of Nahm’s equations (2.2). Note that

eζσ−σ3e
−ζσ− = σ3 + 2ζσ−, eζσ−σ+e

−ζσ− = σ − ζσ3 − ζ2σ−. (3.15)

Using (3.15), the boundary conditions implies that near s = 0,

LN = eζσ−
(σ+

s
+O(s0)

)
e−ζσ− ,

d

ds
+MN = eζσ−

( d
ds

+
σ3

2s
+O(s0)

)
e−ζσ− .

(3.16)

As in Section 2.2.1 and analogous to (2.20), we may use a complex gauge
transformation that is identity at s = 0 to gauge MN and LN to

LN =


a(ζ) s−1 0 ... 0

b(ζ)s a(ζ) s−1 0

c(ζ)s2 b(ζ)s a
...

... s−1

d(ζ)sn−1 e(ζ)sn−2 ... a(ζ)

 , MN =
σ3

2s
, (3.17)

where the coefficients of LN above are determined by the spectral curve. The
rational canonical form L̃N of LN is then a single companion matrix,

L̃N =


0 1

s
0 ... 0

0 0 1
s

... 0

...
...

0 0 0 ... 1
s

−a0(ζ)sn−1 −a1(ζ)sn−2 −a2(ζ)sn−3 ... −an−1(ζ)

 , M̃N =
σ3

2s
. (3.18)

The solution to the Lax linear problem associated to the Lax pair (L̃, M̃)
is

ŨN = s−σ3/2


1 1 . . . 1

p1(ζ) p2(ζ) . . . pn(ζ)
...

...
p1(ζ)n−1 p2(ζ)n−1 . . . pn(ζ)n−1

Diag. (3.19)
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At ζ = aij, the eigenspaces of L remain one-dimensional and we may set the
Diag matrix to the identity matrix so that

Ui(aij) = Uj(aij). (3.20)

We conclude that the rows (ul1, ul2, . . . , uln) for 1 ≤ l ≤ n of U have the
transition functions from North to South patch and at ζ = aij given by

(ul1, ul2, . . . , uln)0 = (ul1, ul2, . . . , uln)∞ζ
n−1diag(es

pk
ζ ),

uli(s, aij) = ulj(s, aij).
(3.21)

The transition functions above determine the eigenline bundle of the Nahm
spectral curve.

3.3 Eigenline Bundle over Spectral Curve

The spectral curve S ⊂ TP1 is an n-branched covering of P1 via π : S → P1

given as π(ζ, η) = ζ. Each branch Si = {(ζ, pi(ζ)) ∈ TP1}, i = 1, . . . , n
is isomorphic to P1. The spectral curve S has genus g = (n − 1)2 by the
adjunction formula [26, p.159].

Consider a line bundle FS → S defined in the atlas using our branches
Si as a cover by specifying transition functions λij ∈ C \ {0} and λ0∞(ζ, η) :
UNorth ∩ USouth → C \ {0} such that for a section u ∈ Γ(S, FS), ui(aij) =
λijuj(aij) on the points of intersection aij ∈ Si ∩ Sj and u0(ζ) = λ0∞u∞(ζ)
on the overlap of the North and South patches.

Denote by OS(k) → S the pullback of OP1(k) → P1 to S and by FS(k)
the line bundle FS ⊗OS(k).

The spectral curve S is invariant under the real structure τ of Equation
(3.2) on TP1, so τ : S → S induces an antiholomorphic involution σ on the
set of line bundles Pic(S) given by σ(FS) = τ ∗S(F ). There is a corresponding
map on sections:

σ(u(ζ, η)) = u(−1/ζ̄,−η̄/ζ̄2). (3.22)

For line bundles with transition functions λij = 1 so that ui(aij) = uj(aij),
we may consider FS as the pullback under the inclusion i : S ↪→ TP1 of the
line bundle FTP1 with same transition function λ0∞(ζ, η). Sections of FS in
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North patch may be written as [u0] ∈ C[ζ, η]/(
n∏
i=1

(η − pi(ζ))) with unique

representative

u0(ζ, η) = c0(ζ)ηn−1 + c1(ζ)ηn−2 + · · ·+ cn−1(ζ). (3.23)

Alternatively, a section u may be written in North patch as

u0(ζ) = (u1(ζ), u2(ζ), . . . , un(ζ)), (3.24)

where the ith entry is the value of u on the branch Si. The two versions of
writing u0 are related by, in North patch, evaluating η on Si and obtain-
ing ui(ζ) = c0(ζ)pi(ζ)n−1 + c1(ζ)pi(ζ)n−2 + · · · + cn−1(ζ). Conversely, given
u0(ζ) = (u1(ζ), . . . , un(ζ)), its expression in (ζ, η) is given by the Lagrangian

interpolation u0(ζ, η) =
n∑
i=1

ui(ζ)
∏
j 6=i

(η−pj(ζ))∏
j 6=i

(pi(ζ)−pj(ζ)) and uj(ζ) = u0 (ζ, ηj(ζ)).

As in (3.21), we define the eigenline bundle LsS(n−1) of the Nahm spectral
curve to be the following line bundle.

Definition 3.1. Define the eigenline bundle LsS(n− 1) for s ∈ (0,∞) over S
by the transition functions λij = 1, i, j = 1, 2, . . . , n and

u0(ζ) = ζn−1u∞(ζ)diag(esp1(ζ)/ζ , . . . , espn(ζ)/ζ), (3.25)

for u a section of LsS(n−1). Denote by H0(S, LsS(n−1)) the space of sections
of LsS(n− 1).

The following lemma gives a wonderful way to think about a section of
LsS(n− 1) as a row of polynomials satisfying matching conditions:

Lemma 3.2. There is a bijection between sections u ∈ H0(S, LsS(n−1)) and
degree n − 1 (or less) rows of polynomials (Q1(ζ), . . . , Qn(ζ)) satisfying the
matching condition Qi(aij) = e−srijQj(aij), where rij, as usual, denotes the
distance between the two points xi, xj.

Proof. Observe that
pj(ζ)

ζ
=

p1j+ip
2
j

ζ
−2p3

j−(p1
j−ip2

j)ζ in the transition functions

of (3.25) is invariant under the involution τ . Splitting it into the ζ and 1/ζ

part,
pj(ζ)

ζ
=

p1j+ip
2
j

ζ
− p3

j − p3
j − (p1

j − ip2
j)ζ = −h+

j (ζ)− h−j (1
ζ
) with

h+
j (ζ) = p3

j + (p1
j − ip2

j)ζ, h−j (
1

ζ
) = −p

1
j + ip2

j

ζ
+ p3

j , (3.26)
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define

q0(ζ) = u0(ζ)diag(esh
+
j (ζ)), q∞(ζ) = u∞(ζ)diag(e−sh

−
j (1/ζ)) (3.27)

then on the overlap of North and South patches we have

q0(ζ) = ζnq∞(ζ). (3.28)

This means q0(ζ) = (Q1(ζ), . . . , Qn(ζ)) is a row of polynomials of degree at
most n − 1. The matching conditions on q follow from ui(aij) = uj(aij).
Conversely, given such q it is easy to obtain u via (3.27).

The following proposition will be crucial,

Proposition 3.3. For s ∈ (0,∞), the dimension h0(LsS(n−2)) of H0(LsS(n−
1)) is 0.

Proof. Sections of LsS(n−2) correspond to degree n−2 polynomial rows sat-
isfying matching conditions Pi(aij) = e−srijPj(aij) as in Lemma 3.2. Taking
the limit of s → ∞ of the matching condition Qi(aij) = e−srijQj(aij) shows
Qi(aij) = 0. A polynomial that satisfies Qi(aij) = 0 is either a multiple of
the Atiyah polynomial Ai(ζ) =

∏
j 6=i

(ζ − aij) or it is identically zero. Since

Ai(ζ) has degree exceeding n− 2, Qi ≡ 0 as s→∞.
The matching conditions form a linear system on the unknown polynomial

coefficients. The s dependence enters the linear system via functions e−srij .
We may write a perturbation expansion of the polynomials as

Pi(ζ) = e−s∆igi(ζ) + e−s∆
′
ig′i(ζ) + e−s∆

′′
i g′′i (ζ) + . . . (3.29)

with 0 < ∆i < ∆′i < ∆′′i < . . . and s-independent polynomials gi(ζ),g′i(ζ),
g′′i (ζ), . . . of degree n− 2.

The expansion of the matching conditions Pi(aij) = e−srijPj(aij) at zero-
order is the system

gi(aij) = e−s(rij+∆j−∆i)gj(aij), for i 6= j. (3.30)

If gi(aij) 6= 0, then the s-independence of the perturbation polynomials im-
plies rij + ∆j −∆i = 0. However, we make the observation that for a fixed
pair of i, j we cannot have both

∆j + rij −∆i = 0 and ∆i + rij −∆j = 0 (3.31)
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as that implies rij = 0. Therefore, if gi(aij) 6= 0, we must have gi(aji) = 0
to avoid this case. This gives n − 1 many points that gi(ζ) must be zero
at. However gi(ζ) is degree at most n − 2 so the solution to zero-order is
gi(ζ) ≡ 0.

By induction, subsequent orders are identical to the zero-order case. We
conclude from the perturbation expansion of our section that

(P1(ζ), . . . , Pn(ζ)) ≡ (0, . . . , 0).

Corollary 3.4 ([26]). For s ∈ (0,∞), h0(LsS(n− 1)) = n.

Proof. This is an elementary application of the Riemann-Roch formula [68,
p.472]. The argument that follows may be found in [26, pp.165-166]. We
state it for completeness. The degree of LsS(n− 2) is (n− 2)n and LsS(n− 1)
is (n− 1)n. Recall the genus of S is g = (n− 1)2.

By Serre duality we get dimH1(S, LsS(n−2)) = dimH0(S,K⊗(LsS)∨(n−
2)). From the Riemann-Roch,

dimH0(LsS(n− 2))− dimH1(LsS(n− 2)) = degLsS(n− 2)− g + 1

= 0,
(3.32)

hence h0(LsS(n− 2)) = 0 implies H1(LsS(n− 2)) = 0. Fix ζ0 ∈ P1 and let Dζ0

be the zero divisor of (ζ − ζ0) on S, i.e. Dζ0 ⊂ S is the fiber above ζ ∈ P1.
Since S is an n-fold covering of P1, Dζ0 is a set of n points in S (counting
multiplicity). We have exact sequence of sheaves

0→ OS(n− 2)
ζ−ζ0−→ OS(n− 1)

evζ0−→ ODζ0 (n− 1)→ 0, (3.33)

with the first map given by multiplication by (ζ − ζ0) and the second map
given by evaluation of the section at ζ0. Tensoring with LsS results in the
long exact sequence

0→
��

���
���:0

H0(Ls
S(n− 2))→ H0(Ls

S(n− 1))→ H0(Ls
Dζ0

(n− 1))→
��

���
���:0

H1(Ls
S(n− 2))→ . . .

(3.34)

so H0(S, LsS(n− 1)) ∼= H0(Dζ0 , L
s
Dζ0

(n− 1)). Since Dζ0 is simply n distinct

points of the fiber above ζ0, H0(Dζ , L
s
Dζ0

(n− 1)) is isomorphic to Cn.

The space of sections H0(LsS(n− 1)) is an inner product space.
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Proposition 3.5. For the spectral curve S, given sections u, v of LsS(n− 1),
uσ(v) is a section of OS(2n− 2) and can be written uniquely as

uσ(v)0 = c0η
n−1 + c1(ζ)ηn−2 + · · ·+ cn−1(ζ), (3.35)

for ci(ζ) degree 2i. Then

〈u, v〉 := c0 (3.36)

defines an Hermitian inner product [26], [50] on H0(S, LsS(n− 1)).

Hitchin in [26, pp.179-181] first discovered this inner product for the
eigenline bundle of the SU(2) and also contains the proof of definiteness.
Bielawski then demonstrated in [50, Prop 4.2] that the same is true for a
class of degenerate spectral curves, including the spectral curve of our Nahm
data and also has the proof of positivity.

In our case, the inner product 〈u, v〉 may be written in terms of the
corresponding row of polynomials (3.2). For p = (P1(ζ), . . . , Pn(ζ)) and
r = (R1(ζ), . . . , Rn(ζ)),

〈u, v〉 = 〈p, r〉 = (−ζ)n−1

n∑
i=1

Pi(ζ)Ri(−1/ζ̄)∏
i 6=j

(pi(ζ)− pj(ζ))
. (3.37)

3.4 Spectral Method for Nahm’s Equations

3.4.1 Solving Nahm’s Equations

For an orthonormal basis {U1(s, ζ), . . . , Un(s, ζ)} of sections1 of the eigenline
bundle LsS(n− 1), where s ∈ (0,∞), with respect to the inner product (3.5),
let

U(s, ζ) =


U1(s, ζ)
U2(s, ζ)

...
Un(s, ζ)

 (3.38)

1Recall, Uj(s, ζ) is a section of Ls
S(n−1), which in our case of the curve

n∏
j=1

(η − pj(ζ)) =

0 is given by the row of its values on each of the n sheets.
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be a n × n matrix where each row is a section. This matrix exists for all
s ∈ (0,∞) as Corollary 3.4 states h0(LsS(n− 1)) = n over this interval.

Define a Lax pair (L,M) of matrix-valued functions such that in North
patch

LN(s, ζ) := UN(s, ζ)

 p1(ζ)
p2(ζ)

...
pn(ζ)

UN(s, ζ)−1,

MN(s, ζ) := −dU
N(s, ζ)

ds
UN(s, ζ)−1,

(3.39)

and in South patch

LS(s,
1

ζ
) := US(s,

1

ζ
)


p1(ζ)

ζ2

p2(ζ)

ζ2

...
pn(ζ)

ζ2

US(s,
1

ζ
)−1,

MS(s,
1

ζ
) := −

dUS(s, 1
ζ
)

ds
US(s,

1

ζ
)−1,

with each pj(ζ) = x1
j + ix2

j − 2x3
jζ − (x1

j − ix2
j)ζ

2 determined by the point
xj = (x1

j , x
2
j , x

3
j) ∈ R3 from the desired boundary conditions as s→∞.

Here L is a linear operator acting on the n-dimensional space of sections
H0(LsS(n− 1)) for each value of s. And d

ds
+M is a connection for a frame U

of H0(LsS(n−1)). After a choice of frame U , L and M written in coordinates
are n × n matrices. We prove that (L,M) is the Lax pair of the Nahm’s
equations when choosing U orthonormal.

Under the real structure (3.2), L and M satisfy the reality relationship

LN(−1/ζ̄)† = −LS(ζ), MN(−1/ζ̄)† = −MS(ζ). (3.40)

Lemma 3.6. The transition functions for L and M are

LS =
1

ζ2
LN , MS = MN +

1

ζ
LN . (3.41)

Proof. By Definition 3.1, U has the transition function

UN(s, ζ) = ζn−1US(s, 1/ζ)esη/ζ
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as η = pj(ζ) on the j-th branch of the spectral curve S.

LN(s, ζ) = UN(s, ζ)diag(p1(ζ), . . . , pn(ζ))UN(s, ζ)−1

= ζ2US(s, 1/ζ)ζn−1esη/ζdiag(
p1

ζ2
, . . . ,

pn
ζ2

)e−sη/ζ
1

ζn−1
US(s, ζ)−1

= ζ2US(s, ζ)diag(
p1

ζ2
, . . . ,

pn
ζ2

)US(s, ζ)−1

= ζ2LS(s, ζ).

(3.42)

For M , differentiate the transition relation d
ds

(UN) = d
ds

(ζn−1USesη/ζ) to get

U̇N = ζn−1U̇Sesη/ζ + ζn−1USdiag(
p1

ζ
, . . . ,

pn
ζ

)esη/ζ .

Substituting into MN = −U̇N(UN)−1, we obtain

MN = −(ζn−1U̇Sesη/ζ + ζn−1USdiag(
p1

ζ
, . . . ,

pn
ζ

)esη/ζ)e−sη/ζ(US)−1 1

ζn−1

= −U̇S(US)−1 − USdiag(
p1

ζ
, . . . ,

pn
ζ

)(US)−1

= MS − 1

ζ
LN .

Our next goal is identifying an orthonormal basis of H0(S, LsS(n− 1)) in
terms of the degree n− 1 polynomials rows (Q1(ζ), . . . , Qn(ζ)) satisfying the
matching conditions Qi(aij) = e−srijQj(aij).

Denote the n× n polynomial matrix Q(s, ζ)

Q(s, ζ) = UN(s, ζ)diag(esh
+
j (ζ)). (3.43)

The columns of U fail to be linearly independent at the branch points
ζ = aij because of the matching conditions (3.20) that U satisfies, so the
inverse of U is meromorphic in ζ, rather than holomorphic. Explicitly, U is
orthonormal with respect to the inner product on H0(LsS(n−1)), so Q(s, ζ)−1

satisfies

Q(s, ζ)−1 = (−ζ)n−1


1

n∏
j=2

(p1(ζ)−pj(ζ))

. . .
1

n−1∏
j=1

(pn(ζ)−pj(ζ))

Q(s,−1/ζ̄)†, (3.44)
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where † denotes the complex conjugate transpose. Although U is meromor-
phic in ζ, we will prove that L and M are not.

Define the Vandermonde matrix

Vand(p1, . . . , pn) =


1 1 . . . 1

p1(ζ) p2(ζ) . . . pn(ζ)
...

p1(ζ)n−1 p2(ζ)n−1 . . . pn(ζ)n−1

 . (3.45)

We shall need the formula for the inverse of the Vandermonde matrix. For
variables {x1, . . . , xk}, recall that the m-th elementary symmetric function is

em ({x1, . . . , xk}) =
∑

1≤j1<j2<...jm≤k

xj1xj2 · · ·xjm ,

for m = 0, 1, . . . , k. Then[
Vand(p1, . . . , pn)−1

]
ji

=
(−1)n−ien−i({p1(ζ), . . . , pn(ζ)} \ {pj(ζ)})

n∏
m 6=j

(pj(ζ)− pm(ζ))
. (3.46)

Lemma 3.7. LN(s, ζ) defined in Equation (3.39) is a quadratic polynomial
in ζ.

Proof. The uv-th entry of LN is given by

LNuv =
n∑
s=1

ps(ζ)
(−ζ)n−1Qus(ζ)Qvs(−1/ζ̄)

n∏
l 6=s

(ps(ζ)− pl(ζ))
. (3.47)

The possible poles of LNuv are at ζ = aij arising from the two terms

pi(ζ)
(−ζ)n−1Qui(ζ)Qvi(−1/ζ̄)∏

l 6=i
(pi − pl)

+ pj(ζ)
(−ζ)n−1Quj(ζ)Qvj(−1/ζ̄)∏

l 6=j
(pj − pl)

. (3.48)

We have pi(aij) = pj(aij), and as −1/aij = aji, the matching conditions
make the numerators equal when ζ = aij, so we may factor (3.48) at ζ = aij
as

pi(aij)(aij)
n−1Qui(aij)Qvi(aji)

(
1∏

l 6=i
(pi − pl)

+
1∏

l 6=j
(pj − pl)

)∣∣∣∣
ζ=aij

. (3.49)
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The latter factor appears as the only possible poles of ζ = aij in the sum
representing the first row of Vand(p1, . . . , pn) multiplied with the last column
of Vand(p1, . . . , pn)−1:

n∑
i=1

1∏
j 6=i

(pi(ζ)− pj(ζ))
= 0. (3.50)

Since this sum is equal to zero, there cannot be a pole at ζ = aij and LNuv
is holomorphic in ζ. Similarly, LSuv is holomorphic in 1/ζ. The transition
relation (3.41) of L implies LNuv is a quadratic polynomial in ζ.

Lemma 3.8. MN(s, ζ) is a linear function in ζ.

Proof. The uv-th entry of MN is given by

MN
uv =

n∑
s=1

(
− Q̇us(ζ) +Qus(ζ)h+

s (ζ)

)
(−ζ)n−1Qvs(−1/ζ)

n∏
l 6=s

(ps(ζ)− pl(ζ))
. (3.51)

The possible poles of MN
uv are at ζ = aij, arising from the two terms(

−Q̇ui(ζ) +Qui(ζ)h+
i (ζ)

)
(−ζ)n−1Qvi(−1/ζ)∏

l 6=i
(pi − pl)

+

(
− Q̇uj(ζ) +Quj(ζ)h+

j (ζ)
)
(−ζ)n−1Qvj(−1/ζ)∏

l 6=j
(pj − pl)

. (3.52)

We have rij = h+
j (aij) − h+

i (aij) as is easy to check, so the matching
conditions make the numerators equal when ζ = aij, and we may factor
(3.52) at ζ = aij as(

− Q̇ui(aij) +Qui(aij)h
+
i (aij)

)
(−aij)n−1

×Qvi(aji)

(
1∏

l 6=i
(pi − pl)

+
1∏

l 6=j
(pj − pl)

)∣∣∣∣
ζ=aij

.

(3.53)
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Again, the latter factor appears as the only possible poles of ζ = aij in the
sum representing the first row of Vand(p1, . . . , pn) multiplied with the last
column of Vand(p1, . . . , pn)−1. This sum equals zero identically, so the factor
cannot contain any poles at ζ = aij.

We conclude MN
uv is holomorphic in ζ, and similarly MS

uv is holomorphic
in 1/ζ. The transition function (3.41) of M implies MN

uv is a linear function
of ζ.

Let us discuss the behavior of L(s, ζ) as s approaches 0. At s = 0, the
matching conditions become

Qi(aij) = Qj(aij), (3.54)

i.e. q = (Q1(ζ), Q2(ζ), . . . , Qn(ζ)) is a section of OS(n − 1), the pullback of
OP1(n−1) to the spectral curve S. That is, each section is r(ζ)

(
1 1 . . . 1

)
for some polynomial r(ζ) of degree ≤ n−1. Note that such rows are multiples
in C[ζ] of the same row

(
1 1 . . . 1

)
so that any n× n matrix with these

rows is not invertible.
Thus, at s = 0, the n× n polynomial matrix Q(s, ζ) of (3.43) fails to be

invertible and so L(s, ζ) and M(s, ζ) have a pole at s = 0. Nahm’s equations
then show this pole must give a representation of su(2). Hitchin in [26,
Eq.(5.17)] concludes that this representation must be the rank n maximal
representation of su(2).

Proposition 3.9. The set of orthonormal bases {U1(s, ζ), . . . , Un(s, ζ)} of
LsS(n − 1) is in 1-1 correspondence with the set of solutions (T0, T1, T2, T3)
to Nahm’s equations satisfying the boundary conditions lim

s→∞
(T0, T1, T2, T3) ∈

adU(n)(0, iτ1, iτ2, iτ3) and lim
s→0

(T0, T1, T2, T3) = (0, iρ1
2s
, iρ2

2s
, iρ3

2s
), with ~ρ some n

dimensional irreducible representation of su(2).

Proof. Given an orthonormal basis {U1(s, ζ), . . . , Un(s, ζ)}, the correspond-
ing Lax pair (L,M) of (3.39) may be written, thanks to the reality (3.40) of
(L,M), Lemmas 3.7, 3.8, as

LN = −i(T1 + iT2) + 2iT3ζ + i(T1 − iT2)ζ2, MN = T0 − i(T3 + (T1 − iT2)ζ),
(3.55)

with (T0, T1, T2, T3) solving the Nahm’s equations on the interval s ∈ (0,∞).
Near s = 0, the residue of L at s = 0 gives us an n dimensional irreducible
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representation of su(2). By taking the decomposition of L into ~T using (3.55),
the residues of (T0, T1, T2, T3) then form an irreducible representation of su(2)
by [26, Prop 5.24].

Conversely, given (T0, T1, T2, T3) define the Lax pair (L,M) as in (3.55)
and U = (UN , US) is obtained as the solution of the Lax linear problem
associated to (L,M) as in (3.11). By (3.21), the rows of U are sections of
LsS(n − 1). We show now that these sections are indeed orthonormal with
respect to the inner product on LsS(n− 1).

From the reality (3.40) of (L,M), UN(s, ζ) and (US(s,−1/ζ̄)†)−1 solve
the same linear system so that DN(ζ) := US(s,−1/ζ)†UN(s, ζ) is diagonal
and s-independent. Similarly for DS := (−1)n−1UN(−1/ζ)†US(ζ). DN and
DS are well defined in the Northern and Southern patches, respectively. Since
UN(ζ) = US(ζ)ζn−1esη/ζ , we have

DS = (−1)n−1

(
US(−1

ζ
)(−1

ζ
)n−1e

s
η(−1/ζ)

−1/ζ

)†
UN(ζ)

1

ζn−1
e−sη/ζ

= esη/ζ(
1

ζ
)n−1US(−1

ζ
)†UN(ζ)

1

ζn−1
e−sη/ζ =

1

ζ2n−2
DN . (3.56)

Thus, (DN , DS) is a section of OS(2n − 2). From the matching condition
Ui(s, αij) = Uj(s, αij) the i-th component on the diagonal of DN vanishes at
αij and αji for all j 6= i, so that DN is proportional to

∏
j=1
j 6=i

(pi(ζ)− pj(ζ)).

We may gauge this proportionality factor to 1, giving us

DN = US(s,−1/ζ)†UN(s, ζ) =


n∏
j=2

(p1(ζ)−pj(ζ))

...
n−1∏
j=1

(pn(ζ)−pj(ζ))

 (3.57)

or in terms of UN ,

(−ζ)n−1e−sη/ζUN(s,−1/ζ)†UN(s, ζ) =


n∏
j=2

(p1(ζ)−pj(ζ))

...
n−1∏
j=1

(pn(ζ)−pj(ζ))


(3.58)

The equation (3.58) above shows that U is orthonormal with respect to the
inner product on H0(S, LsS(n− 1)) given in Proposition 3.5.
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The gauge group G of maps [0,∞)→ U(n) for Nahm’s equations relates
different choices of bases for H0(LsS(n− 1)).

3.4.2 Basis Constructions

We discuss methods to construct bases of polynomial rows satisfying the
matching conditions

Qi(aij) = e−srijQj(aij). (3.59)

It is here that the Atiyah polynomials of Definition 1.12 make their ap-
pearance. As in [49], fix values Qj(akj) for j 6= k, then Lagrangian interpo-
lation for the degree n − 1 polynomial Qk(ζ) using Qk(akj) = e−srkjQj(akj)
for j 6= k gives the degree n− 1 Langrangian interpolation polynomial

Qk(ζ) = CkAk(ζ) +
∑
j 6=k

e−srkjQj(akj)
∏
l 6=k,j

ζ − akl
akj − akl

, k = 1, . . . , n. (3.60)

The polynomial Ak(ζ) is precisely the k-th Atiyah polynomial. The value
Ck is some constant independent of ζ, although we do not need to make it
independent of s.

We used the data Qk(akj) = e−srkjQj(akj) to interpolate Qk(ζ), but
Qk(ζ) must also satisfy the other half of the matching conditions Qk(ajk) =
esrkjQj(ajk). We discuss the linear system obtained from this. We will write
the linear system in terms of only Qj(akj) for k < j, which is half of the total
n(n− 1) many Qj(akj) values.

Lemma 3.10. If {Qj(akj) : k < j} is known, then the whole set of values
{Qj(akj) : k 6= j, j = 1, . . . , n, k = 1, . . . , n} is known.

Proof. Q1(ζ) in (3.60) is written in terms of Qj(a1j) for 1 < j, which are
known by the assumption of the lemma, so Q1(ζ) is known. We use induction
for k = 2, . . . , n. For Qk(ζ), the induction hypothesis is that Qj(ζ) for j < k
is known. Then for Qk(ζ) of (3.60),

Qk(ζ) = CkAk(ζ) +
∑
j<k

e−srkj Qj(akj)︸ ︷︷ ︸
known by induction hypothesis

∏
l 6=k,j

(ζ − akl)
(akj − akl)

+
∑
k>j

e−srkj Qj(akj)︸ ︷︷ ︸
known by assumption

∏
l 6=k,j

(ζ − akl)
(akj − akl)

.

(3.61)

Thus Qk(ζ) is known completely.
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We describe the method to obtain the linear system of n(n−1)
2

equations
for the unknowns Qu(avu), u = 2, . . . , n with v < u. The Lagrangian in-
terpolation polynomials (3.60) altogether utilize all n(n− 1) many Qk(ajk),
k = 1, . . . , n values with both j < k and j > k. We may evaluate the
interpolation polynomial for Qk(ζ) at ajk for j > k and use recursion to
write each Qk(ajk) for j > k in terms of Qu(avu), u = 2, . . . , n with v < u.
This is the explicit form of Lemma 3.10. Now, the interpolation polynomials
{Qk(ζ) : k = 1, . . . , n} are written in terms of only Qu(avu), u = 2, . . . , n with
v < u. Evaluate Qk(ζ) at ajk, j < k to get the linear system in n(n − 1)/2
many unknowns Qu(avu) with v < u. Denote this linear system

Ax = b. (3.62)

Let us illustrate this by an example.

Example 3.1. The n = 3 linear system Ax = b obtained by the procedure

above for x representing the unknowns
(
Q2(a12)
Q3(a13)
Q3(a23)

)
is

A =

A11 A12 A13

A21 A22 A23

A31 A32 A33

 ,

with

A11 = −1 + e−2sr12
a21 − a13
a12 − a13

a12 − a23
a21 − a23

,

A12 = e−s(r12+r13)
a21 − a12
a13 − a12

a12 − a23
a21 − a23

,

A13 = e−sr23
a12 − a21
a23 − a21

,

A21 = e−s(r13+r12)
a31 − a13
a12 − a13

a13 − a32
a31 − a32

+ e−s(r23+2r12)
a32 − a23
a21 − a23

a21 − a13
a12 − a13

a13 − a31
a32 − a31

,

A22 = −1 + e−2sr13
a31 − a12
a13 − a12

a13 − a32
a31 − a32

+ e−s(r23+r12+r13)
a32 − a23
a21 − a23

a21 − a12
a13 − a12

a13 − a31
a32 − a31

,

A23 = e−2sr23
a32 − a21
a23 − a21

a13 − a31
a32 − a31

,

A31 = e−s(r13+r12)
a23 − a32
a31 − a32

a31 − a13
a12 − a13

+ e−s(r23+2r12)
a21 − a13
a12 − a13

a23 − a31
a32 − a31

a32 − a23
a21 − a23

,

A32 = e−2sr13
a23 − a32
a31 − a32

a31 − a12
a13 − a12

+ e−s(r23+r12+r13)
a21 − a12
a13 − a12

a32 − a23
a21 − a23

a23 − a31
a32 − a31

,

A33 = −1 + e2sr23
a32 − a21
a23 − a21

a23 − a31
a32 − a31

.

(3.63)
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and

b =

b1

b2

b2

 ,

with
b1 = C2A2(a12) + e−sr12C1A1(a21)a12−a23

a21−a23 ,

b2 = C3A3(a13) + e−sr13C1A1(a31)
a13 − a32

a31 − a32

+ e−sr23C2A2(a32)
a13 − a31

a32 − a31

+ e−s(r23+r12)C1A1(a21)
a32 − a23

a21 − a23

a13 − a31

a32 − a31

,

b3 = C3A3(a23) + e−sr13C1A1(a31)
a23 − a32

a31 − a32

+ e−sr23C2A2(a32)
a23 − a31

a32 − a31

+ e−s(r23+r12)C1A1(a21)
a23 − a31

a32 − a31

a32 − a23

a21 − a23

. (3.64)

Proof. We follow the procedure. The Lagrangian interpolation polynomials
of (3.60) are

Q1(ζ) = C1A1(ζ) + e−sr12Q2(a12)
ζ − a13

a12 − a13

+ e−sr13Q3(a13)
ζ − a12

a13 − a12

,

Q2(ζ) = C2A2(ζ) + e−sr12Q1(a21)
ζ − a23

a21 − a23

+ e−sr23Q3(a23)
ζ − a21

a23 − a21

,

Q3(ζ) = C3A3(ζ) + e−sr13Q1(a31)
ζ − a32

a31 − a32

+ e−sr23Q2(a32)
ζ − a31

a32 − a31

.

One sees that all six values of Qu(avu) for v < u and v > u are present in this
system of polynomials. The three values Qu(avu) for v > u may be written
in terms of the other three Qu(avu) for v < u by evaluating the interpolation
polynomial for Qk(ζ) at ajk for j > k and using recursion.

Q1(a21) = C1A1(a21) + e−sr12Q2(a12)
a21 − a13

a12 − a13

+ e−sr13Q3(a13)
a21 − a12

a13 − a12

,

Q1(a31) = C1A1(a31) + e−sr12Q2(a12)
a31 − a13

a12 − a13

+ e−sr13Q3(a13)
a31 − a12

a13 − a12

,

Q2(a32) = C2A2(a32) + e−sr12Q1(a21)
a32 − a23

a21 − a23

+ e−sr23Q3(a23)
a32 − a21

a23 − a21

.
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Afterwards, the interpolation polynomials for Qk(ζ), k = 2, . . . , n, are in
terms of the three unknowns Q2(a12), Q3(a13), Q3(a23) we want to solve for.

Q2(ζ) = C2A2(ζ) + e−sr12
ζ − a23

a21 − a23

(
C1A1(a21) + e−sr12Q2(a12)

a21 − a13

a12 − a13

+ e−sr13Q3(a13)
a21 − a12

a13 − a12

)
+ e−sr23Q3(a23)

ζ − a21

a23 − a21

.

Q3(ζ) = C3A3(ζ)

+ e−sr13
ζ − a32
a31 − a32

(
C1A1(a31) + e−sr12Q2(a12)

a31 − a13
a12 − a13

+ e−sr13Q3(a13)
a31 − a12
a13 − a12

)
+ e−sr23

ζ − a31
a32 − a31

(
C2A2(a32) + e−sr12

a32 − a23
a21 − a23

(
C1A1(a21) + e−sr12Q2(a12)

a21 − a13
a12 − a13

+ e−sr13Q3(a13)
a21 − a12
a13 − a12

)
+ e−sr23Q3(a23)

a32 − a21
a23 − a21

)
.

Now evaluate Q2(ζ) at ζ = a12 and Q3(ζ) at ζ = a13, a23 to get the actual
linear system in the three unknowns Q2(a12), Q3(a13), Q3(a23).

Q2(a12) = C2A2(a12)

+ e−sr12
a12 − a23
a21 − a23

(
C1A1(a21) + e−sr12Q2(a12)

a21 − a13
a12 − a13

+ e−sr13Q3(a13)
a21 − a12
a13 − a12

)
+ e−sr23Q3(a23)

a12 − a21
a23 − a21

.

Q3(a13) = C3A3(a13)

+ e−sr13
a13 − a32
a31 − a32

(
C1A1(a31) + e−sr12Q2(a12)

a31 − a13
a12 − a13

+ e−sr13Q3(a13)
a31 − a12
a13 − a12

)
+ e−sr23

(
C2A2(a32) + e−sr12

a32 − a23
a21 − a23

(
C1A1(a21) + e−sr12Q2(a12)

a21 − a13
a12 − a13

+ e−sr13Q3(a13)
a21 − a12
a13 − a12

)
+ e−sr23Q3(a23)

a32 − a21
a23 − a21

)
a13 − a31
a32 − a31

.
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Q3(a23) = C3A3(a23) + e−sr13
a23 − a32
a31 − a32

(
C1A1(a31) + e−sr12Q2(a12)

a31 − a13
a12 − a13

+ e−sr13Q3(a13)
a31 − a12
a13 − a12

)
+ e−sr23

a23 − a31
a32 − a31

(
C2A2(a32) + e−sr12

a32 − a23
a21 − a23

(
C1A1(a21)

+ e−sr12Q2(a12)
a21 − a13
a12 − a13

+ e−sr13Q3(a13)
a21 − a12
a13 − a12

)
+ e−sr23Q3(a23)

a32 − a21
a23 − a21

)
.

Lemma 3.11. The n(n−1)
2
× n(n−1)

2
matrix A of (3.62) representing the linear

system in the unknowns Qk(ajk), k = 1, . . . , n with j < k is invertible when
s ∈ (0,∞).

Proof. Set all Ck = 0 so that the Atiyah polynomials in the Lagrangian
interpolations are turned off and Qk(ζ) are only degree n − 2 polynomials
satisfying the matching conditions Qi(aij) = e−srijQj(aij). This is the system
Ax = 0. A nontrivial solution to Ax = 0 then corresponds to a section
belonging to H0(S, LsS(n−2)). But by Proposition 3.3, h0(S, LsS(n−2)) = 0,
so that Ax = 0 admits no nontrivial solutions and A is invertible.

Proposition 3.12. There exists a basis of H0(S, LsS(n− 1)) where the j-th
section corresponds to the row of polynomials qj = (Q1(ζ), Q2(ζ), . . . , Qn(ζ))
with Qj(ζ) of degree exactly n − 1 and all other polynomials Qi 6=j(ζ) are of
degree smaller than n− 1.

Proof. The j-th row of polynomials corresponds to the choice

(C1 = 0, . . . , Cj 6= 0, . . . , Cn = 0)

in (3.60). The matrix A is invertible by Lemma 3.11 so we need to show b is
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nonzero. The vector b is of the form

b =



C2A2(a12) +
∑
k>i
i<2

d1
kiCiAi(aki)

C3A3(a13) +
∑
k>i
i<3

d2
kiCiAi(aki)

C3A3(a23) +
∑
k>i
i<3

d3
kiCiAi(aki)

...
CjAj(alj) +

∑
k>i
i<j

dkiCiAi(aki)

...

CnAn(an−1) +
∑
k>i
i<n

d
n(n−1)/2
ki CiAi(aki)



, (3.65)

where the collection of dlki are coefficients we do not specify. For the j-th
section with j > 1, Cj is nonzero and every other Ci = 0, i 6= j. Looking at
(3.65), the entry of b with CjAj(akj) +

∑
k>i
i<j

dkiCiAi(aki) reduces to CjAj(akj),

which is nonzero. Thus b is nonzero for this section. The only case remaining
is the first section with (C1 6= 0, C2 = 0, . . . , Cn = 0). Here we explicitly write

the first entry of b, which is C2A2(a12) + e−sr12C1A1(a21)
n∏
k=2

a12−a2k
a21−a2k

. When

C2 = 0 and C1 6= 0, this entry of b is nonzero.
The polynomial rows are linearly independent since the j-th polynomial

row corresponding to (C1 = 0, . . . , Cj 6= 0, . . . , Cn = 0) has in the j-th
position a degree n − 1 polynomial but the other polynomial rows have a
degree n− 2 polynomial in this position.

To obtain an orthonormal basis of sections, one may use the Gram-
Schmidt process. But as in [50, Proposition 2.2], there is a prescription
to create an orthonormal basis based on the following observation. Fix two
distinct sheets Sj, Sk of the spectral curve with 1 ≤ j 6= k ≤ n and a pair of
antipodal points ζ0,−1/ζ̄0 that are not double points on the curve S. If the
row of polynomials p = (P1(ζ), . . . , Pn(ζ)) and r = (R1(ζ), . . . , Rn(ζ)) has
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the following vanishing conditions at the antipodal points

Pi(ζ0) = 0 for i < j, Pi(−1/ζ̄0) = 0 for i > j,

Ri(ζ0) = 0 for i < k, Ri(−1/ζ̄0) = 0 for i > k,
(3.66)

then using (3.37), the polynomial rows are easily seen to be orthogonal to
one another, that is, 〈p, r〉 = 0.

The vanishing conditions on a row of polynomials ψ states that the cor-
responding ψ vanishes at the points on sheets above a fixed point ζ0 for all
sheets before some chosen Sj sheet, then after Sj all sheets have ψ vanishing
above the antipodal point of ζ0, i.e.

ψ
(
ηi(ζ0), ζ0

)
= 0 for i < j, ψ

(
ηi(−

1

ζ̄0

),− 1

ζ̄0

)
= 0 for i > j. (3.67)

As in [50, Section 2], we shall take ζ0 = 0 and −1/ζ̄0 =∞.

Proposition 3.13. The orthogonal basis {ψ1, . . . , ψn} of LsS(n− 1) for s ∈
(0,∞), with ψj = (P1(ζ), P2(ζ), . . . , Pn(ζ)) for Pj(ζ) a monic polynomial of
maximal degree n− 1 and satisfying the vanishing conditions Pi(∞) = 0 for
i < j and Pi(0) = 0 for i > j, is constructible from the linear system (3.62)
of the Lagrangian interpolation polynomials.

Proof. We refer to the Lagrangian interpolation polynomial (3.60). The poly-
nomial row has C1, . . . , Cn as free parameters. The condition that Pj(ζ) is a
monic polynomial of maximal degree n− 1 is Cj = 1. Rotating the spectral
curve if necessary so that the spectral curve does not have double points
above ζ = 0 and ζ = ∞, the condition Pi(0) = 0 imposes Ci = 0 and the
condition Pi(∞) = 0 also fixes Ci.

Each row of polynomials is the solution to the linear system (3.62) with
b determined by the above conditions on the polynomial row. We may write
the overall system on the n rows of the polynomials as

AX = B, (3.68)

with n columns of X for the n many polynomial rows, with the corresponding
n columns of B determined by the vanishing conditions. The orthogonal basis
of sections of LsS(n− 1) is given by X = A−1B.
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There is a more pedestrian approach to the linear system of polynomi-
als satisfying the matching conditions, building on the notes of Braden and
Cherkis [69]. For a row of polynomials (P1, . . . , Pn) we can simply take as
unknowns all the coefficients

{pij : i = 0, . . . , n− 1, j = 1, . . . , n}

of

P1(ζ) = p01 + p11ζ + · · ·+ p(n−1)1ζ
n−1,

...

Pn(ζ) = p0n + p1nζ + · · ·+ p(n−1)nζ
n−1,

and subject {pij} to the matching conditions Pl(alk) = e−srlkPk(alk).
This forms the linear system

Ξp = 0, (3.69)

where p = (p01, p02, . . . , p0n, . . . , p(n−1)1, p(n−1)n, . . . , p(n−1)n)T and the ijth
row of Ξ corresponds to the matching condition Pi(aij) = e−srijPj(aij), that
is

Ξij =
(
1 αij . . . αn−1

ij

)
⊗ (esrij/2êi − e−srij/2êj). (3.70)

Proposition 3.14. The orthogonal basis {p1, . . . , pn} of LsS(n − 1) for s ∈
(0,∞), with pj = (P1(ζ), P2(ζ), . . . , Pn(ζ)) for Pj(ζ) a monic polynomial of
maximal degree n− 1 and satisfying the vanishing conditions Pi(∞) = 0 for
i < j and Pi(0) = 0 for i > j, is constructible from the pedestrian linear
system (3.69).

Proof. Let Pn2×n be the matrix of unknowns where all of the coefficients in
pj = (P j

1 (ζ), . . . , P j
n(ζ)) are placed in column j. The vanishing condition

P j
i (∞) = 0, i.e. P j

i (ζ) has degree n−2, for i < j and monic condition makes
the bottom n rows of P a lower triangular matrix with 1’s along the diagonal.
The vanishing condition P j

i (0) = 0 for i > j makes the top n rows of P an
upper triangular matrix. The linear system ΞP = 0 of (3.69) becomes

(
a B c

)UP̃
L̂

 = 0. (3.71)
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It can be solved the following way,(
a B

)(U
P̃

)
= −cL̂,

(
a B

)(U
P̃

)
L̂−1 = −c,(

UL̂−1

P̃ L̂−1

)
= −

(
a B

)−1
c.

(3.72)

Take UL decomposition [70] of the top n rows of −
(
a B

)−1
c to solve for

the unknowns U and L̂−1. Apply L̂ to the remaining rows of −
(
a B

)−1
c

to solve for P̃ .
The matrix

(
a B

)
is invertible as this block of Ξ encodes the matching

conditions for LsS(n− 2) and so det
(
a B

)
6= 0 is equivalent to h0(S, LsS(n−

2)) = 0, which is proved in Proposition 3.3. The UL decomposition of

−
(
a B

)−1
c exists since the existence of such a basis is proven in Proposition

3.13.

Lemma 3.15. The Nahm data (T0, T1, T2, T3) constructed from normalizing
the basis of Propositions 3.13 and 3.14, and using the Lax pair of (3.39), is
such that

lim
s→∞

Tj(s) =

 pj1
pj2

...
pjn

 . (3.73)

Proof. We have

LN(s, ζ) = UN(s, ζ)

 p1(ζ)
p2(ζ)

...
pn(ζ)

UN(s, ζ)−1,

MN(s, ζ) = −dU
N(s, ζ)

ds
UN(s, ζ)−1.

We must then show that lim
s→∞

QN(s, ζ) is diagonal so that LN(s, ζ) has a

diagonal matrix as its limit as s → ∞. As in the proof of [50, Proposition
4.2], we take the limit of s → ∞ in the matching conditions for the row of
polynomials

Qi(aij) = e−srijQj(aij).
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This shows that the limit of s→∞ for the row of polynomials is generated
by sl = (P1(ζ), . . . , Pn(ζ)), 1 ≤ l ≤ n, with Pl(ζ) = Al(ζ) the l-th Atiyah
polynomial and Pj(ζ) ≡ 0 for j 6= l. The vanishing conditions that ψl =
(P1(ζ), . . . , Pn(ζ)) of our basis satisfies implies its limit at infinity must be
exactly

lim
s→∞

ψl = (0, . . . , 0, Al(ζ), 0, . . . , 0).

Thus our choice of basis gives a diagonal matrix QN at infinity.

3.4.3 Perturbation Expansion

We seek an orthogonal basis in the space of n-tuplets

(Q1(ζ), Q2(ζ), . . . , Qn(ζ))

of degree ≤ n− 1 polynomials satisfying

Qi(aij) = e−srijQj(aij) (3.74)

with respect to the inner product (3.37)

〈P,R〉 = (−ζ)n−1

n∑
i=1

Pi(ζ)Ri(−1/ζ̄)∏
i 6=j

(pi(ζ)− pj(ζ))
. (3.75)

Even though ζ appears in the right hand side of the inner product, this inner
product is independent of ζ, by Proposition 3.5.

One such choice of basis is (3.62), which requires that the jth element of
the basis qj = (Q1(ζ), Q2(ζ), . . . , Qn(ζ)) has

Qi(∞) = 0, i.e. degQi(ζ) < n− 1 for i < j and Qi(0) = 0, for i > j,
(3.76)

with Qj(ζ) a monic polynomial of maximal degree n− 1.
We obtained exact solutions to this problem in terms of a linear system

in Propositions 3.13 and 3.14. We also know from Lemma 3.15 that

lim
s→∞

qj = (0, . . . , 0, Aj(ζ), 0, . . . , 0). (3.77)
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However, we would still like to understand the behavior for large s better.
In this section, we construct an approximate solution to the choice of basis

above for large s in terms of a formal series in the small parameters e−srij .
The higher-order terms in the series become successively smaller and we give
a method for constructing the approximate solution to arbitrary order.

Let us now consider the first element of the basis (the story is analogous
for other elements). We describe again how to obtain the zeroth order of our
expansion given in (3.77). The limit as s → ∞ of the matching conditions
Qj(aji) = e−srijQi(aji) is

Q
(0)
j (aji) = 0.

The vanishing conditions on the first basis element, in addition to the equa-
tion above, states that Q

(0)
j 6=1(ζ) vanishes at 0 and n − 1 many other points

ajk. Since Q
(0)
j 6=1(ζ) is a polynomial of degree at most n − 1, we must have

Q
(0)
j 6=1(ζ) ≡ 0. Q

(0)
1 (ζ) vanishes at a1k and is a monic polynomial, thus

Q
(0)
1 (ζ) = A1(ζ) =

n∏
k=2

(ζ − a1k).

We are seeking an expansion, which we name the perturbation expansion
for large s, with

Q1(ζ) = A1(ζ) + e−s∆1q1(ζ) + e−s∆
′
1q′1(ζ) + . . . (3.78)

Qj 6=1(ζ) = e−s∆jζqj(ζ) + e−s∆
′
jζq′j(ζ) + . . . (3.79)

with 0 < ∆k < ∆′k < ∆′′k < . . . . The polynomials qk(ζ) are degree less or
equal to n− 2 in ζ and independent of s.

We give a method to find the perturbation expansion to arbitrary order.
The zeroth order is Q1 = A1(ζ), Qj 6=1(ζ) = 0. By induction, given the expan-
sion at n-th order, the (n+ 1)-st order of Q1 is the Lagrangian interpolation

polynomial for the points (a1i, e
−sr1ie−s∆

(n)
i q̃

(n)
i (a1i)) for 1 < i ≤ n, where

e−s∆
(n)
i q̃

(n)
i (ζ) is the n-th order of Qi(ζ). That is, the n+ 1-st order of Q1 is

given by

n∑
i=2

e−s(∆
(n)
i +ri1)q̃

(n)
i (a1i)

∏
k 6=1,i

ζ − a1k

a1i − a1k

. (3.80)

The n+1-st order of Qj 6=1 is similar, except each term has an extra factor
to account for the vanishing conditions on the basis. Explicitly, the n+ 1-st
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order is

n∑
i 6=j

e−s(∆
(n)
i +rij)q̃

(n)
i (aji)

ζ

aji

∏
k 6=j,i

ζ − ajk
aji − ajk

. (3.81)

The points for the Lagrangian interpolation for the n + 1 order of Qj

comes from the matching conditions

Qj(aji) = e−srijQi(aji). (3.82)

In general, for the l-th basis element, the factor ζ
aji

is either kept or

eliminated according to the vanishing conditions.
We present the n = 2 case as a simple example.

Example 3.2. The first section is (Q1(ζ), Q2(ζ)) = (Q1
1(ζ), Q1

2(ζ)) with

Order Zeroth First Second . . .
Q1

1(ζ) = ζ − a12 0 e−s2r12(a21 − a12)a12
a21

. . .

Q1
2(ζ) = 0 e−sr12(a21 − a12) ζ

a21
0 . . .

Q1
1(ζ) = ζ − a12 + e−s2r12(a21 − a12)

a12

a21

+ e−s4r12(a21 − a12)(
a12

a21

)2 + . . .

= ζ − a12 +
a12(a21 − a12)

a21e2sr12 − a12

,

(3.83)

Q1
2(ζ) = e−sr12(a21 − a12)

ζ

a21
+ e−3sr12(a21 − a12)

a12ζ

a221
+ e−5sr12(a21 − a12)

a212ζ

a321
+ . . .

=
ζ(a21 − a12)

a21esr12 − e−sr12a12
.

(3.84)

The second section is (Q1(ζ), Q2(ζ)) = (Q2
1(ζ), Q2

2(ζ)) with

Order Zeroth First Second . . .
Q2

1(ζ) = 0 e−sr12(a12 − a21) 0 . . .
Q2

2(ζ) = ζ − a21 0 e−s2r12(a12 − a21) . . .



CHAPTER 3. SPECTRAL CURVE 73

Q2
1(ζ) = e−sr12(a12 − a21) + e−s3r12(a12 − a21) + . . .

=
a12 − a21

esr12 − e−sr12 ,
(3.85)

Q2
2(ζ) = ζ − a21 + e−s2r12(a12 − a21) + e−s4r12(a12 − a21) + . . .

= ζ − a21 +
a12 − a21

e2sr12 − 1
.

(3.86)

We present the n = 3 case up to second order for the first section to
illustrate the method. For the remaining sections, we limit our formulas to
first order.

Example 3.3. The first section (Q1(ζ), Q2(ζ), Q3(ζ)) = (Q1
1(ζ), Q1

2(ζ), Q1
3(ζ))

is

Order Zeroth First Second

Q1
1 = A1(ζ) 0 e−2sr12A1(a21)a12

a21

a12−a23
a21−a23

ζ−a13
a12−a13 +

e−2sr13A1(a31)a13
a31

a13−a32
a31−a32

ζ−a12
a13−a12

Q1
2 = 0 e−sr12A1(a21) ζ

a21

ζ−a23
a21−a23 e−s(r12+r13)A1(a31)a23

a31

a23−a32
a31−a32

ζ
a23

ζ−a21
a23−a21

Q1
3 = 0 e−sr13A1(a31) ζ

a31

ζ−a32
a31−a32 e−s(r12+r13)A1(a21)a32

a21

a32−a23
a21−a23

ζ
a32

ζ−a31
a32−a31

The second section (Q1(ζ), Q2(ζ), Q3(ζ)) = (Q2
1(ζ), Q2

2(ζ), Q2
3(ζ)) to first or-

der is

Q2
1(ζ) = e−sr12A2(a12)

ζ − a13

a12 − a13

,

Q2
2(ζ) = A2(ζ),

Q2
3(ζ) = e−sr23A2(a32)

ζ

a32

ζ − a31

a32 − a31

.

(3.87)

The third section (Q1(ζ), Q2(ζ), Q3(ζ)) = (Q3
1(ζ), Q3

2(ζ), Q3
3(ζ)) to first order

is

Q3
1(ζ) = e−sr13A3(a13)

ζ − a12

a13 − a12

,

Q3
2(ζ) = e−sr23A3(a23)

ζ − a21

a23 − a21

,

Q3
3(ζ) = A3(ζ).

(3.88)
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3.5 Nahm Solutions

In this section, we illustrate the procedure of Section 3.4 for obtaining rank n
Nahm solutions by giving the examples of an exact Nahm solution for n = 2
and a perturbative Nahm solution for n = 3.

Recall that by Proposition 3.9, an orthonormal basis {U1(s, ζ), . . . , Un(s, ζ)}
of sections of the eigenline bundle LsS(n−1), where s ∈ (0,∞), over the spec-
tral curve S may be used to obtain Nahm solutions. To summarize, we set

U(s, ζ) =


U1(s, ζ)
U2(s, ζ)

...
Un(s, ζ)

 (3.89)

and our Lax pair (L,M) in North patch is

LN(s, ζ) = UN(s, ζ)

 p1(ζ)
p2(ζ)

...
pn(ζ)

UN(s, ζ)−1,

MN(s, ζ) = −dU
N(s, ζ)

ds
UN(s, ζ)−1,

(3.90)

with each pj(ζ) = x1
j + ix2

j − 2x3
jζ − (x1

j − ix2
j)ζ

2 determined by the point
~xj = (x1

j , x
2
j , x

3
j) ∈ R3 from the desired boundary conditions as s→∞.

From the proof of Proposition 3.9, we see we may evaluate LN and MN

at ζ = 0 and obtain

T1(s) =
i

2
(LN(s, 0) + LN(s, 0)†),

T2(s) =
1

2
(LN(s, 0)− LN(s, 0)†),

T3(s) =
i

2
(MN(s, 0) +MN(s, 0)†),

T0(s) =
1

2
(MN(s, 0)−MN(s, 0)†).

(3.91)

We obtained bases of the eigenline bundle in terms of Q, consisting of
rows of polynomials of degree ≤ n − 1, for n = 2 in Example 3.2 and for
n = 3 in Example 3.3. For each example, we now find the corresponding
Nahm solution, using 3.91.
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3.5.1 n=2 Exact Solution

The exact solution to Nahm’s equations for n = 2 is known to be given
by Ti = fi(s)σi, for fi(s) the hyperbolic functions satisfying the Euler top
system of (1.4).

For example, taking the boundary conditions in (1.9) to be

lim
s→∞

(T1(s), T2(s), T3(s)) ∈ adU(n)

(
0, 0, i

(
c/2 0
0 −c/2

))
, lim

s→0
sTj(s) =

iσj
2
,

(3.92)

the unique solution to Nahm’s equations is

T1 = i

(
0 1
1 0

)
c

2 sinh(cs)
,

T2 = i

(
0 −i
i 0

)
c

2 sinh(cs)
,

T3 = i

(
1 0
0 −1

)
c

2 tanh(cs)
.

(3.93)

However, as an illustration, we shall rederive the Nahm solution in terms
of the basis in Example 3.2.

The matrix Q of Example 3.2 is

Q =

(
ζ − a12 + a12(a21−a12)

a21e2sr12−a12
ζ(a21−a12)

a21esr12−a12e−sr12
a12−a21

esr12−e−sr12 ζ − a21 + a12−a21
e2sr12−1

)
. (3.94)

The rows of Q must be normalized with respect to the norm of (3.37). Let
zj := x1

j + ix2
j and zjk := zj − zk. The norm of the row ψj(s, ζ) = (Qj1, Qj2)

for 1 ≤ j ≤ 2 is

||ψ1||2 =
−1 + e−2sr12

−z̄12(a21 − a12e−2sr12)
,

||ψ2||2 =
a21 − a12e

−2sr12

−z̄12a12a21(1− e−2sr12)
.

(3.95)
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The resulting Nahm solution from (3.91) is

T1 = i

(
x1

1 − r12
2 sinh(sr12)

− r12
2 sinh(sr12)

x1
2

)
,

T2 = i

(
x2

1
ir12

2 sinh(sr12)
−ir12

2 sinh(sr12)
x2

2

)
,

T3 = i

(
x31 0
0 x32

)
+ x312r12 sinh(sr12) cosh(sr12)−(x312)

2 sinh2(sr12)−r
2
12

sinh(sr12)(x312 sinh(sr12)−r12 cosh(sr12))
−r12z12

x312 sinh(sr12)−r12 cosh(sr12)

−r12z12
x312 sinh(sr12)−r12 cosh(sr12)

x312 sinh2(sr12)−x
3
12r12 sinh(sr12) cosh(sr12)+r

2
12

sinh(sr12)(x312 sinh(sr12)−r12 cosh(sr12))

 ,

T0 =

 0
e−sr12r212(x312 cosh(sr12)−r12 sinh(sr12))

2 ¯z12(x312 sinh(sr12)−r12 cosh(sr12))
−e−sr12r212(x312 cosh(sr12)−r12 sinh(sr12))

2z12(x312 sinh(sr12)−r12 cosh(sr12))
0

 .

(3.96)

When taking the same points (0, 0, c/2) and (0, 0,−c/2) of R3 as the bound-
ary conditions (1.9) for s→∞, the above solution is

T1 = i

(
0 1
1 0

) −c
2 sinh(cs)

,

T2 = i

(
0 −i
i 0

) −c
2 sinh(cs)

,

T3 = i

(
1 0
0 −1

)
c

2 tanh(cs)
.

(3.97)

Note this fails to satisfy the boundary conditions (3.92) at s = 0, indeed
the procedure described in the thesis is only guaranteed to construct a solu-
tion that is some gauge transform of the unique solution to the prescribed
boundary conditions. Here, the gauge taking our solution to the one in (3.93)
is simply g = ( 1 0

0 −1 ).

3.5.2 Perturbative Expansion of the n=3 Solution

We give the perturbative solution for large s to Nahm’s equations for n = 3,
up to the first order. In Example 3.3, we found the perturbative basis of
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LsS(n − 1), up to the first order, in terms of rows of polynomials of degree
≤ 2.

The perturbation expansion for large s of a Nahm solution is an expansion
with the form

Tj(s) = T
(0)
j + e−s∆jT

(1)
j + e−s∆

′
jT

(2)
j + . . . (3.98)

with 0 < ∆j < ∆′j < ∆′′j < . . . . The matrices T
(k)
j are independent of s.

We will use the following notation. For the point ~xj = (x1
j , x

2
j , x

3
j) ∈ R3,

we write

zj := x1
j + ix2

j , xj := x3
j , zjk := zj − zk,

and

rjk := ||~xj − ~xk||, ajk :=
x3
j − x3

k + rjk

−z̄jk
.

The perturbation expansion for large s of Q to the first order is

Q(s, ζ) =

Q11 Q12 Q13

Q21 Q22 Q23

Q31 Q32 Q33

 ,

with

Q11 = (ζ − a12)(ζ − a13),

Q12 = e−sr12(a21 − a12)(a21 − a13)
ζ

a21

ζ − a23

a21 − a23

,

Q13 = e−sr13(a31 − a12)(a31 − a13)
ζ

a31

ζ − a32

a31 − a32

,

Q21 = e−sr12(a12 − a21)(a12 − a23)
ζ − a13

a12 − a13

,

Q22 = (ζ − a21)(ζ − a23),

Q23 = e−sr23(a32 − a21)(a32 − a23)
ζ

a32

ζ − a31

a32 − a31

,

Q31 = e−sr13(a13 − a31)(a13 − a32)
ζ − a12

a13 − a12

,

Q32 = e−sr23(a23 − a31)(a23 − a32)
ζ − a21

a23 − a21

,

Q33 = (ζ − a31)(ζ − a32).

(3.99)
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We must normalize Q so that each row has norm 1 with respect to the
norm (3.37). The norm of the row ψj(s, ζ) = (Qj1, Qj2, Qj3) for 1 ≤ j ≤ 3,
to the first order, is

||ψ1|| =
1√

z̄12a21z̄13a31

,

||ψ2|| =
1√−z̄12a12z̄23a32

,

||ψ3|| =
1√

z̄13a13z̄23a23

.

(3.100)

The Lax pair (L,M) obtained from the normalized Q via (3.90), evaluated
at ζ = 0, is the following:

LN(s, 0) =

L11 0 0
L21 L22 0
L31 L32 L33

 ,

with

L11 = z1,

L21 = e−sr12
√−z̄12a21z̄13a31z̄12a12z̄23a32(
z1z23a13a31(a21 − a12)(a12 − a23)

z12z13z23a31(a12 − a13)
− z2z13a23a32(a21 − a12)(a12 − a31)

z12z13z23a31(a12 − a32)

)
,

L22 = z2,

L31 = e−sr13
√
z̄12a21z̄13a13z̄13a31z̄23a23

(
z1a12(a13 − a31)(a13 − a32)

z12z13(a12 − a13)

− z3a23a32(a13 − a31)(a13 − a21)

z13z23a21(a13 − a23)

)
,

L32 = e−sr23
√−z̄12a12z̄13a13z̄23a23z̄23a32 a23−a32

z12z13z23a12(a13−a23)(a23−a21)
,

L33 = z3.

M(s, 0) =

M11 0 0
M21 M22 0
M31 M32 M33

 ,

with
M11 = x1,

M21 = e−sr12
√−z̄12a12z̄12a21z̄13a31z̄23a32(a12 − a21)(

x2z13a32a23(a12 − a31)(a12 − a13)− (r12 + x1)z23a13a31(a12 − a23)(a12 − a32)

z12z13z23a31(a12 − a13)(a12 − a32)

)
,
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M22 = x2,

M31 = e−sr13
√
z̄12a21z̄13a13z̄13a31z̄23a23

(
(x1 + r13)z23a12a21(a13 − a32)

z12z13z23a21(a12 − a13)

− x3z12a23a32(a13 − a21)

z12z13z23a21(a13 − a23)

)
,

M32 = e−sr23
√−z̄12a12z̄13a13z̄23a23z̄23a32(a23 − a32)(

x3z12a13a31(a12 − a23)(a21 − a23) + (r23 + x2)z13a12a21(a13 − a23)(a23 − a31)

z12z13z23a12(a21 − a23)(a23 − a13)

)
,

M33 = x3.

(3.101)

From LN(s, 0) = T2 − iT1 and MN(s, 0) = T0 − iT3, we obtain the following
Nahm solutions:

T1(s) =
i

2

z1 + z̄1 L̄21 L̄31

L21 z2 + z̄2 L̄32

L31 L32 z3 + z̄3

+O
(
e−αs

)
,

T2(s) =
1

2

z1 − z̄1 −L̄21 −L̄31

L21 z2 − z̄2 −L̄32

L31 L32 z3 − z̄3

+O
(
e−αs

)
,

T3(s) =
i

2

2x1 M̄21 M̄31

M21 2x2 M̄32

M31 M32 2x3

+O
(
e−αs

)
,

T0(s) =
1

2

 0 −M̄21 −M̄31

M21 0 −M̄32

M31 M32 0

+O
(
e−αs

)
,

(3.102)

where α is the minimum of the values 2r12, 2r13, and 2r23.



Chapter 4

Dirac Monopole and ADHMN

4.1 Introduction

We address the Nahm transform for the Dirac multimonopole in this chapter.
The Nahm transform may be thought of as a nonabelian generalization of
the Fourier transform sending a (reduced) self-dual pair (E,A), consisting of
a Hermitian bundle E → X over a manifold X = R4/Λ with a connection A
on it, to a (reduced) self-dual pair (Ê, Â) over a dual space X∗ = R4/Λ∗ [21]
[71]. The four-dimensional space for the self-duality equations that concerns
us is R4, and the reductions to SD are from imposing invariance under some
abelian subgroup Λ ⊂ R4. We then have X = R4/Λ and X∗ = R4/Λ∗. For a
more general setting of the transform, see [34].

The first major result in this area was the ADHM construction of instan-
tons on R4 [30]. In that setting, the ADHM construction may be thought
of as the case Λ = {0}, in which case Λ∗ = R4. Monopoles and Nahm’s
equations arise from the choices Λ = R and Λ∗ = R3, giving the following
picture.

Monopole Nahm Solution.Nahm Transform

The Nahm transform starts with a self-dual connection A on a Hermitian
bundle E → X. Let S be the spin bundle over X, we have Dirac operators
D†x∗ for a family of connections of A twisted by x∗ ∈ X∗. The resulting family
of spaces of L2 zero modes of D†x∗ over the parameters of X∗ form a vector
bundle Ê → X∗ forming a subbundle in L2(X,S ⊗ E), the trivial infinite

rank bundle with fiber the vector space of L2 sections of S ⊗ E. Projecting

80
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the trivial connection of L2(X,S ⊗ E) on Ê gives the self-dual connection Â
[72, Section 4].

The crucial ingredient of the transform is then index theory, namely the
index of D†x∗ . In our case, there are no normalizable zero modes of Dx∗ and
so the number of zero modes of D†x∗ equals the Dirac index. To perform the
Nahm transform, it is required to compute the zero modes.

Only a few explicit results for zero modes are known for single monopoles
[73] and double monopoles [74]. For generic n point configurations of the
Dirac multimonopole, Lamy-Poirier in [49] presented a general formula for
the zero modes in terms of a finite set of algebraic equations. We prove
that this system is equivalent to a set of matching conditions on n many
polynomials of degree n − 1 and we present its solution. In doing so, we
complete the programme of finding exact solutions for the zero modes of the
generic Dirac multimonopole.

4.2 Multimonopole Configuration

For a compact Lie group G and its Lie algebra g = Lie(G), a monopole is
a principal G-bundle E over a 3-dimensional Riemannian manifold M and
a pair (A,Φ) of a g-valued connection A and a g-valued section Φ of the
associated Lie algebra bundle ad(E) satisfying Bogomolny’s equation

DΦ = ∗FA, (4.1)

where FA = dA + A ∧ A is the curvature form of the connection form A,
DΦ = dΦ + [A,Φ] is the differential, and ∗ is the Hodge star.

For the Dirac monople with a singularity at the origin of charge m, the
principal G-bundle is E = P ∗Hm the pullback of the Hopf bundle Hm of

degree m over the sphere S2 under the projection R3 \ {0} ∼= S2×R+
P→ S2.

Then the Dirac multimonopole over R3 with singularities at ~ak and respective
charges mk for k = 1, . . . , n has base manifold R3 \ {~ak | k = 1, . . . , n} and

the principal G-bundle is E =
n⊗
k=1

(i◦P )∗~akH
mk with (i◦P )∗~akH

mk the pullback

of the Hopf bundle of degree mk under the map

R3 \ {~ak | k = 1, . . . , n} i
↪→ R3 \ ~ak ∼= S2 × R+

P→ S2.

The gauge group G = U(1) is abelian, so the Bogomolny equation is lin-
ear, and a multimonopole (A,Φ) is a superposition of single monopoles. We
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use the coordinates z := x1 +ix2 and x := x3 for R3 ∼= C×R with the volume
form dx1 ∧ dx2 ∧ dx3 = i

2
dz ∧ dz̄ ∧ dx. For a multimonopole configuration of

n point monopoles of unit charge and distinct locations ~ak, k = 1, . . . , n in
R3 the pair (A,Φ) can be written as [73]

Φ(x) =
n∑
1

i

2rk
, A(x) =

n∑
k=1

zkdz̄k − z̄kdzk
4rk(rk + xk)

, (4.2)

where for the vector ~xk = ~x − ~ak we set rk := |~xk|, zk := x1
k + ix2

k, and
xk := x3

k.
To avoid pathologies in the gauge, we rotate the monopole configuration

in R3, if necessary, so that no two monopoles are separated by a translation
in the x3 direction.

4.3 Dirac Operators

4.3.1 Dirac Operators Coupled to a Monopole

Let S be the spin bundle over R3 with chiral decomposition S = S+ ⊕ S−.
With respect to this decomposition, the monopole Dirac operator /D : Γ(S ⊗
E)→ Γ(S⊗E) coupled to the gauge connection A and Higgs field Φ for the
bundle E has the form

/D =

(
0 D
D† 0

)
,

with

D† = −
3∑
j=1

σj ⊗Dj − 1⊗ iΦ, D =
3∑
j=1

σj ⊗Dj − 1⊗ iΦ, (4.3)

where σj are the Pauli sigma matrices1 and Dj = ∂
∂xj

+Aj are the components
of the covariant derivative D.

We consider the L2 kernel of D† in the L2 subspace of functions from
S− ⊗ E → S+ ⊗ E.

1The Pauli matrices are

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
,

and satisfies [σ1, σ2] = 2iσ3, [σ2, σ3] = 2iσ1, and [σ3, σ1] = 2iσ2.
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Definition 4.1. Define the normalizable zero mode
(
ψ
φ

)
of the monopole

Dirac operators to consist of spinors ψ ∈ L2(S− ⊗ E) and φ ∈ L2(S+ ⊗ E)
satisfying

D†ψ = 0, Dφ = 0. (4.4)

The operator D†D is

D†D = 1⊗
(
−Φ2 −

3∑
j=1

D2
j

)
+ iσ1 ⊗ ([D3, D2] + [D1,Φ]) +

iσ2 ⊗ ([D1, D3] + [D2,Φ]) + iσ3 ⊗ ([D2, D1] + [D3,Φ]) . (4.5)

Vanishing of the pure quaternion part of D†D is equivalent to (A,Φ) satis-
fying the Bogomolny equation (4.1). For a monopole (A,Φ), the operator

D†D = 1⊗ (−Φ2 −
3∑
j=1

D2
j ) is a positive operator since

〈D†Dχ, χ〉 = ||Φχ||2 +
3∑
j=1

||Djχ||, (4.6)

so there are no normalizable zero modes of D.

4.3.2 Dirac Operator Coupled to a Nahm Solution

The Nahm Dirac operator /D : Γ(S ⊗ Ê) → Γ(S ⊗ Ê) coupled to the Nahm
data (T0, T1, T2, T3) for the hermitian bundle Ê of rank n over the interval
(0,∞) has the form

/D =

(
0 D
D† 0

)
,

with D† : L2(S−⊗ Ê)→ H−1(S+⊗ Ê) and D : H1(S+⊗ Ê)→ L2(S−⊗ Ê).
Here,

D† = i
d

ds
+ iT0 −

3∑
j=1

σj ⊗ Tj, D = i
d

ds
+ iT0 +

3∑
j=1

σj ⊗ Tj. (4.7)

Definition 4.2. The normalizable zero mode of the Nahm Dirac operator is(
ψ
φ

)
with spinors ψ ∈ L2(S− ⊗ Ê) and φ ∈ L2(S+ ⊗ Ê) satisfying

D†ψ = 0, Dφ = 0. (4.8)
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4.3.3 Zero Modes of Dirac Operators

We use an observation of Nahm [8] that the commuting pair of operators in
(1.7) may be used to discover zero modes of the Dirac operators. Here, we
follow the presentation of Braden and Enolski [65].

The Bogomolny pair (L,M) of (1.7) in our self-dual conventions for
monopoles becomes

LN = D1 + iD2 − (D3 + iΦ)ζ, MN = D3 − iΦ + (D1 − iD2)ζ,

LS = −(D1 − iD2) + (−D3 + iΦ)
1

ζ
, MS = −D3 − iΦ + (D1 + iD2)

1

ζ
,

(4.9)

and Bogomolny’s equation is equivalent to [L,M] = 0 for all ζ, as in Equation
(1.7).

Definition 4.3. The spinor χ is parallel for the pair (L,M) if it satisfies
the associated equation

Lχ = 0, Mχ = 0. (4.10)

Note that LS = −MN

ζ
andMS = LN

ζ
, so any spinor parallel for (LN ,MN)

is also parallel for (LS,MS) and vice versa.

Example 4.1. The parallel spinor χ = (χN , χS) for the trivial monopole
(A,Φ) = (0, is) is

χN = e−s(x+ζz̄), χS = es(x−
z
ζ

). (4.11)

Proof. In North patch, χ solves

0 =LNχN = (2Dz̄ − (D3 + iΦ)ζ)χN ,

0 =MNχN = (D3 − iΦ + 2Dzζ)χN .

If we assume χN is independent of z then χN is holomorphic in ζ. Indeed in
this case,

(LN + ζMN)χN = 0,

∂z̄χ
N

χN
= −sζ,
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so that χN = C(x3, ζ)e−sζz̄. Then

MNχN = 0,

∂3χ
N

χN
= −s,

leading to χN = C(ζ)e−s(x3+ζz̄). Assuming χS is independent of z̄ leads to
χS being holomorphic in 1

ζ
and a similar computation applies.

The monopole Dirac operator D is related to (L,M) via the following
formula:(

1 0
−ζ 1

)
D
(

1
ζ

)
=

(
MN

LN
)
,

(
−1 1/ζ
0 1

)
D
(

1/ζ
1

)
=

(
LS
MS

)
. (4.12)

One might think this relationship is not so useful since it is stated for
the Dirac operator D with no normalizable zero modes, rather than for the
desired D†. However, Nahm observed the following fact.

Lemma 4.1 (Nahm [8]). Let χ be a parallel section of the Bogomolny pair
(L,M) of commuting holomorphic operators, then the spinors(

1
ζ

)
χ(x, s, ζ),

(
1
ζ

1

)
χ(x, s, ζ) (4.13)

are (non-normalizable) zero modes of D and the spinors

D
(

1
0

)
χ(x, s, ζ), D

(
0
1

)
χ(x, s, ζ), (4.14)

are (perhaps, non-normalizable) zero modes of D†. Here, we may use χN

and χS interchangeably for χ.

Proof. We have

(
1 0
−ζ 1

)
D
(

1
ζ

)
⊗ χN =

(
MNχN

LNχN
)

= 0. The matrix(
1 0
−ζ 1

)
is invertible so D

(
1
ζ

)
χN(x, s, ζ) = 0.

This implies

D†D
(
χN(x, s, ζ)
ζχN(x, s, ζ)

)
= 0.
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However, (A,Φ) solves the Bogomolny equation so that D†D is a diagonal

operator, i.e. D†D = 1⊗(−Φ2−
3∑
j=1

D2
j ). We conclude that ∇∗∇χN(x, s, ζ) =

0 so χN(x, s, ζ) is a harmonic function, giving that D†D
(

1
0

)
χN(x, s, ζ) is

zero. A similar argument applies to the remaining spinors.

The story for the zero modes of the Nahm Dirac operators is similar to
the monopole Dirac operators, with some differences. In fact, the basis of
sections of LsS(n − 1) may be used to give zero modes to both D and D† in
a straight-forward manner.

The Nahm Dirac operator D is related to the Nahm Lax pair (L,M) of
(3.55) via the same formula:(

1 0
−ζ 1

)
D

(
1
ζ

)
=

(
MN

LN

)
,

(
−1 1/ζ
0 1

)
D

(
1/ζ
1

)
=

(
LS

MS

)
. (4.15)

We also have D†D = −( d
ds

+T0)2−∑3
j=1 T

2
j so D†D is a positive operator

with no normalizable solutions to Dχ = 0.

Lemma 4.2 (Nahm [8]). Let Uj(s, ζ) be a solution to the Lax linear problem
associated to (L,M) for the eigenvalue pj(ζ) of LN . Let aj0 and a0j be the
two roots of pj(ζ). Then the spinors(

1
aj0

)
⊗ UN

j (s, aj0),

(
1
a0j

)
⊗ UN

j (s, a0j)

are (non-normalizable) zero modes of D.

Proof. We have(
1 0
−ζ 1

)
D

(
1
ζ

)
⊗ UN

j =

(
MNUN

j

LNUN
j

)
=

(
0

pj(ζ)UN
j

)
.

Evaluating this at ζ = aj0 and ζ = a0j gives zero. The matrix

(
1 0
−ζ 1

)
is

invertible for all values of ζ so this proves the lemma.

Lemma 4.3 (Nahm [8]). Given a basis U of H0(S, LsS(n− 1)). The 2n× 2n
fundamental matrices W and V of solutions to

DW = 0, D†V = 0,



CHAPTER 4. DIRAC MONOPOLE AND ADHMN 87

are given by W the collection of spinors

(
UN
j (s, aj0)

aj0U
N
j (s, aj0)

)
,

(
UN
j (s, a0j)

a0jU
N
j (s, a0j)

)
for

1 ≤ j ≤ n, and by V = (W †)−1.

Proof. Lemma 4.2 gives the stated form of W . V is easy to see, but we state
the proof for completeness. DW = 0 states

i
dW

ds
+ iT0W +

3∑
j=1

σj ⊗ TjW = 0.

Take the transpose of the above equation to obtain

−idW
†

ds
+ iW †T0 −W †

3∑
j=1

σj ⊗ Tj = 0.

Conjugating both sides of the equation by W †−1
gives

−iW †−1 dW †

ds
W †−1

+ iT0W
†−1 −

3∑
j=1

σj ⊗ TjW †−1

= 0.

Since d(W †
−1

)
ds

= −W †−1 dW †

ds
W †−1

, the above equation states D†W †−1
= 0 and

the proof is complete.

4.3.4 Down Transform

The Down Transform of the ADHMN is the map

Monopole Nahm Solution.Down Transform

The Bogomolny equation for R3 = R4/R is the dimensional reduction of
ASD by imposing invariance under the subgroup R of shifts of R4. The pa-
rameter s of R parametrize the trivial solutions (A,Φ) = (0, is) to the Bogo-
molny equation (4.1) for the trivial line bundle L over R3. The Down Trans-
form of the ADHMN construction is carried out by twisting the monopole
Dirac operators (4.3) with this parameter s to obtainD†s : H−1(S−⊗E⊗L)→
L2(S+ ⊗ E ⊗ L) and Ds : L2(S+ ⊗ E ⊗ L)→ H1(S− ⊗ E ⊗ L) as follows:

D†s = −
3∑
j=1

σj ⊗Dj − iΦ + s, Ds =
3∑
j=1

σj ⊗Dj − iΦ + s. (4.16)
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After choosing an orthonormal basis Ψ(x, s) of L2 zero modes to D†s, the
matrix-valued functions

Ti(s) = −i
∫
R3

d3xΨ†xiΨ, i = 1, 2, 3 , T0(s) =

∫
R3

dx3Ψ†
∂

∂s
Ψ (4.17)

form a solution to Nahm’s equations (2.6) [7, pp.7].
Recall from Section 4.3 that parallel spinors for the Bogomolny pair

(L,M) may be used to give zero modes of D and D†. In the case of the Dirac
monopole, the gauge group U(1) is abelian and because of this, superposi-
tions of solutions (A,Φ) lead to superpositions in (L,M). To be precise, the
Bogomolny pair (L,M) in North patch for a superposition (A1 +A2,Φ1 +Φ2)
is

LN =
∂

∂x1
+A1

1 +A2
1 + i

∂

∂x2
+ iA1

2 + iA2
2 +

(
− ∂

∂x3
−A1

3 −A2
3 − iΦ1 − iΦ2

)
ζ,

MN =
∂

∂x3
+A1

3 +A2
3 − iΦ1 − iΦ2 +

(
∂

∂x1
+A1

1 +A2
1 − i

∂

∂x2
− iA1

2 − iA2
2

)
ζ.

Thus, parallel χ of a superposition of {(Li,Mi) | i = 1, . . . , n} is simply the
product of parallel χi of its constituents,

χ =
n∏
i=1

χi. (4.18)

We need to twist the operators for the ADHMN construction. The twisted
pair (Ls,Ms) of (L,M) corresponding to the twisted Bogomolny equation
is the superposition (A,Φ− is) of (A,Φ) with the trivial solution (0,−is),

Ls = L, Ms =M+ s. (4.19)

The parallel spinor for the trivial solution is (es(x+ζz̄), e−s(x−
z
ζ

)) so for parallel
(χN , χS) of (L,M), the parallel spinor for the twisted operators (Ls,Ms) is
then the product

χNs = es(x+ζz̄)χN , χSs = e−s(x−
z
ζ

)χS. (4.20)

These, however, are not normalizable. We will discuss in Section 4.5 the
construction of the normalizable zero modes of D†s necessary for the Down
Transform.
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4.3.5 Up Transform

The Up Transform of the ADHMN is the map

Monopole Nahm Solution.
Up Transform

Nahm’s equations over R = R4/R3 is the dimensional reduction of ASD by
imposing invariance under the subgroup R3 of R4. The parameter (x1, x2, x3)
of R3 parametrize the trivial solutions (T1, T2, T3) = (ix1, ix2, ix3) to Nahm’s
equation (2.1) with the trivial bundle I over the interval (0,∞).

The Up Transform of the ADHMN construction is carried out by twisting
the Nahm Dirac operators (4.7) with this parameter (x1, x2, x3) to obtain
D†~x : L2(S− ⊗ Ê ⊗ I) → H−1(S+ ⊗ Ê ⊗ I) and D~x : H1(S+ ⊗ Ê ⊗ I) →
L2(S− ⊗ Ê ⊗ I) where

D†~x = i
d

ds
+ iT0 −

3∑
j=1

σj ⊗ (Tj − ixj), D~x = i
d

ds
+ iT0 +

3∑
j=1

σj ⊗ (Tj − ixj)

(4.21)

After choosing an orthonormal basis v of L2 zero modes to D†~x, the func-
tions

Φ(x) = i

∫
ds sv†v, Ai(x) =

∫
dsv†

∂

∂xi
v, (4.22)

form a monopole solution [6].
In Section 3.4.2, we constructed a basis of sections of H0(LsS(n−1)). Now,

the zero modes of the twisted Dirac operators can be obtained from a basis
U(s, ζ) of H(LsS(n−1)) in the following way. The corresponding twisted Lax
pair (L~x,M~x) is L~x = L− px(ζ) and M~x = M − hx(ζ), for px(ζ) the twistor
line section corresponding to ~x and hx(ζ) = x + ζz̄. Note the eigenvalues of
L~x are now pj(ζ)− px(ζ), with roots ζ = ajx and ζ = axj.

The basis of solutions to the twisted Lax linear problem in the North
patch is then eshx(ζ)UN(s, ζ). From Lemma 4.3, the fundamental matrix

W of zero modes to D~x is the collection of spinors

(
eshx(ajx)UN

j (s, ajx)

ajxe
shx(ajx)UN

j (s, ajx)

)
,(

eshx(axj)UN
j (s, axj)

axje
shx(axj)UN

j (s, axj)

)
for 1 ≤ j ≤ n, and V = (W †)−1 is the fundamental

matrix of zero modes to D†~x.
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4.4 Spectral Curve of Monopole Data

In this section, we discuss the spectral curve of the multimonopole data for
the gauge group U(1). We will follow the U(1) analogue of the description
of the singular U(2) monopole in [75]. For any straight line

γ = {~x | ~x = ~ζt+ ~η, ~ζ · ~ζ = 1, ~ζ · ~η = 0},

define

γ+ = {~x | ~x = ~ζt+ ~η, t > R},
γ− = {~x | ~x = ~ζt+ ~η, t < R},

(4.23)

where R is a positive number far greater than the absolute value of the
location of any singularity |~a|. Define two complex line bundles L+ and L−

over TP1:

L+ = {s ∈ Γ(γ+, E) | Dγs− iΦs = 0},
L− = {s ∈ Γ(γ−, E) | Dγs− iΦs = 0}. (4.24)

Bogomolny’s equations imply these bundles are holomorphic, as in [66].
Let us find the solutions s of the scattering equations in (4.24) for the

Dirac multimonopole. Let ~ζ be the unit direction of the line γ so that Dγ =
~ζ · ~D. In terms of the North patch for P1, ~ζ = 1

1+|ζ|2 (ζ + ζ̄ , i(ζ̄ − ζ), 1− |ζ|2)
so that

D~ζ = ~ζ · ~D =
ζ + ζ̄

1 + |ζ|2D1 +
i(ζ̄ − ζ)

1 + |ζ|2 D2 +
1− |ζ|2
1 + |ζ|2D3

is the covariant derivative along the line γ in the direction ~ζ. Observe that

1

1 + |ζ|2
(
1 ζ̄

)
D
(

1
ζ

)
= D~ζ − iΦ. (4.25)

From Lemma 4.1, we see that the parallel spinor χ = (χN , χS) gives us the
solution to the scattering equations, where χN belongs to γ+ and χS belongs
to γ−. For the unit charge Dirac monopole

Φ(x) =
i

2rk
, A(x) =

zkdz̄k − z̄kdzk
4rk(rk + xk)

, (4.26)
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one finds that

χN(x, ζ) =
zk − (rk + xk)ζ

(rk + xk)1/2
, χS(x, ζ) =

(rk + xk)
1/2

rk + xk + z̄kζ
. (4.27)

By (4.18), the parallel spinor χ for the Dirac multimonopole is the product
of the above spinors of its constituent monopoles.

Denote the total space of the twistor section corresponding to a point
~x ∈ R3 by P~x := {(ζ, px(ζ)) | ζ ∈ P1}. Let S be the union in TP1 of all the
twistor sections Pa corresponding to the singularities. This is, of course, the
spectral curve of the monopole data in the specific case of U(1), but this is
not how the authors of [75] defined the spectral curve for the singular U(2)
monopole and we will find it useful to continue the analogy.

If γ does not pass through any singularity ~a, then any solution s can be
continued from γ+ to γ− and this defines an isomorphism

h : L+|TP1\S
∼−→ L−|TP1\S. (4.28)

The Ward correspondence for the U(1) monopole is then the analogue of
[75, pp.5]: there is a bijection between U(1) multimonopoles modulo gauge
transformations and triplets (L+, L−, h) of holomorphic bundles over TP1

satisfying the following conditions.

(a) For any ~x 6= ~a, there is a splitting Px = P+
x ∪P−x such that Ex is trivial.

(b) In the vicinity of each point of S, there exist trivializations of L+ and
L− such that h takes the form

h =
n∏
k=1

(η − pk(ζ)). (4.29)

(c) The real structure τ on TP1 lifts to an antilinear antiholomorphic map
σ : (L+)→ (L−)∗.

As we have the solutions to the scattering equations given by (4.27), we
can verify item (b). For the Dirac monopole with singularity at ~ak, we can
rewrite the parallel spinors as

χN(x, s, ζ) = −(r + x)1/2(ζ − a0x), χS(x, s, ζ) =
(r + x)1/2

z̄

1

(ζ − ax0)
,

(4.30)
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where ax0 is the direction from ~x to 0 and a0x is the direction from 0 to ~x,
with explicit formula in (3.10). From this, we have

χN = (px(ζ)− pk(ζ))χS. (4.31)

For the Dirac multimonopole, we then have

χN =
n∏
k=1

(px(ζ)− pk(ζ))χS, (4.32)

so that h =
n∏
k=1

(η − pk(ζ)). In [75, pp.6], the spectral curve S of the U(2)

singular monopole was defined as the zero level of the map from L+ to L−.
In our case of the U(1) monopole, this map is given by h and we obtain the
following spectral curve of the Dirac multimonopole.

Definition 4.4. The spectral curve S ⊂ TP1 for the Dirac multimonopole
with n singularities at the points ~a1, . . . ,~an ∈ R3 is

S =

{
(ζ, η) ∈ TP1 :

n∏
j=1

(η − pj(ζ)) = 0

}
, (4.33)

for pj(ζ) = a1
j + ia2

j − 2a3
jζ − (a1

j − ia2
j)ζ

2 the twistor section of the singular
point aj = (a1

j , a
2
j , a

3
j) ∈ R3.

In [75, pp.6], the behaviors as t→ ±∞ of the solutions χ to the scattering
equations along the line γ were examined. Let us do the same here. Again,
recall that χ for the Dirac multimonopole with n singularities at ~a1, . . . ,~an
is the product of χk for the Dirac monopole at ~ak so we need only consider
the case of the single monopole located at the origin of R3. The scattering
equation for a line γ parametrized by ~ζt, belonging to the spectral curve, is
simply

Dγ − iΦ = ∂t +
1

2|t| , (4.34)

with solutions

χN(t) =
√
−t, χS(t) =

1√
t
. (4.35)

In general for the Dirac multimonopole, the solutions χ belonging to the
line bundle L+ is such that χ(t) → ∞ when t → −∞ and the solutions χ
belonging to L− is such that χ(t)→ 0 as t→∞.
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4.5 Dirac Zero Modes from Rows of Polyno-

mials

Recall from Section 4.3 that zero modes of the Nahm operator D†~x may be
constructed from an orthonormal basis of rows of polynomials. One may then
ask if the zero modes of the monopole Dirac operator D†s may be written in
terms of these rows, i.e. in terms of a basis of H0(LsS(n − 1)). It turns
out that the answer is yes. In this section, we present the construction of
normalizable zero modes of D†s.

The relationship between the zero modes of the monopole operators D†
and D is more ambiguous than the zero modes of the Nahm operators D†

and D. Recall from Lemma 4.3 that the 2n × 2n fundamental matrix V
of zero modes to D† and W to D, we have V = (W †)−1. However, on the
monopole side the relation between the zero modes ψ and φ takes the form
of the differential equation ∇ · (ψσφ) = 0 as in equation (46) of [8]. We will
not try to solve for the normalizable zero modes using that approach, but
rather, we will follow an ansatz of Lamy-Poirier in [49].

We begin with the zero modes of the Dirac operator D†s for the single unit
charge monopole as an example. We then give the general formulation for the
zero modes in terms of the rows of polynomials from Lemma 3.2 satisfying
the matching conditions Qi(aij) = e−srijQj(aij).

Recall the unit charge Dirac monopole located at ~ak ∈ R3 is the pullback
E = P ∗H of the Hopf bundle H → S2 under the map P : R3 \ {~ak} → S2

with (A,Φ) given in North chart by

Φ(x) =
i

2rk
, A(x) =

zkdz̄k − z̄kdzk
4rk(rk + xk)

. (4.36)

For the parallel section of the associated operators (L,M), we shall use

χS(x, ζ) =
(rk + xk)

1/2

rk + xk + z̄kζ
F (ζ), (4.37)

with any function F (ζ) of ζ.
Recall the twistor line corresponding to ~y in R3 is py(ζ) = (y1 + iy2) −

2y3ζ − (y1 − iy2)ζ2 and the root of the polynomial pxk(ζ) = px(ζ) − pk(ζ)
corresponding to the direction from the vector ~x to the monopole located at

~ak in R3 is axk =
x3−a3k+rxk

a1k−x1+i(x2−a2k)
.
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By Lemma 4.1, Ds
(

1
0

)
F (ζ)e−s(xk−

zk
ζ

) (rk+xk)1/2

rk+xk+z̄kζ
is a zero mode of D†s.

However, we want to get a normalizable zero mode. The unique normalized
zero mode of D†s for the single monopole case is known [73] and given by

ψ(x, s) = Ds
(

1
0

) −e−srk
(rk + xk)1/2

. (4.38)

The factor −e−srk
(rk+xk)1/2

of the normalizable zero mode above is not a parallel

section of (Ls,Ms), so a natural question to ask is, can we still recover this
from the family of non-normalizable zero modes of D†s in Lemma 4.1, which
are given by application of the operator Ds to parallel sections of (Ls,Ms)?

Lamy-Porirer observed in [49] that the normalized zero mode (4.38) is
obtained by taking the residue around ζ = axk of the parallel section (4.37)
with choice F (ζ) = 1

ζ
. With this choice of F (ζ), we may rewrite the parallel

section as

χS(x, ζ) =
1

ζ
e−sh

−
xk(ζ)

√
−axk
z̄k

1

ζ − axk
, (4.39)

where h−xk(ζ) = xk−zk/ζ is the component of the splitting pxk(ζ)
ζ

= −h+
xk(ζ)−

h−xk(ζ). The residue of χS at ζ = axk is then

1

2πi

∮
axk

χS(x, ζ) =
1

2πi

∮
axk

1

ζ
e−sh

−
xk(ζ)

√
−axk
z̄k

1

ζ − axk
= − e−srk

(rk + xk)1/2
.

(4.40)

Lamy-Poirier discovered that this residue formula generalizes to arbitrary
monopole configurations [49]. In the single monopole case, the residue for-
mula must be applied to a specific choice of function F (ζ) for the parallel
section χS in (4.39) to recover the appropriate harmonic function. The n-
multimonopole configuration is a superposition of monopoles so its paral-
lel sections are a product of n many parallel sections from the constituent
monopoles. In the general case, we then have a choice of some sum of these
parallel sections χ1, . . . , χj along with choices for F1(ζ), . . . , Fj(ζ) to apply
the residue formula to.

In the same paper [49], Lamy-Poirier wrote an ansatz to produce n nor-
malizable zero modes by choosing a superposition of n parallel sections with
choices F1(ζ) = Q1(ζ)

ζ
, . . . , Fn(ζ) = Qn(ζ)

ζ
of polynomials Qk(ζ) of degree
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(at most) n − 1 satisfying a set of algebraic equations. The questions of
whether this set of algebraic conditions produces n many linearly indepen-
dent rows (Q1(ζ), . . . , Qn(ζ)) as well as the method of constructing such
(Q1(ζ), . . . , Qn(ζ)) were left open in that paper.

We describe the ansatz and answer the remaining open questions. For a
polynomial row (Q1(ζ), . . . , Qn(ζ)), we take the parallel section to be

χS(s, ζ) =
n∑
i=1

Qi(ζ)

ζ
e−s(xi−

zi
ζ

)
n∏
k=1

√
−axk
z̄k

1

ζ − axk
, (4.41)

where we have a sum of parallel sections for the general multimonopole with
choices Fi(ζ) = Qi(ζ)

ζ
. To see that each term is a parallel section of the

multimonopole, observe that the factor following Qi(ζ)
ζ

in (4.41) is the product
of parallel sections of the constituent monopoles of the configuration.

Given a polynomial row (Q1(ζ), . . . , Qn(ζ)), define the residue operation
for the parallel section (4.41) to be

Res[(Q1(ζ), . . . , Qn(ζ))] :=
n∑
i=1

1

2πi

∮
axi

Qi(ζ)

ζ
e−s(xi−

zi
ζ

)
n∏
k=1

√
−axk
z̄k

1

ζ − axk
.

(4.42)

Proposition 4.4. Let Q be a matrix of polynomials whose rows form a basis
of the rows of polynomials (Q1(ζ), . . . , Qn(ζ)) satisfying the matching con-
ditions Qi(aij) = esrijQj(aij) for all double points aij, i 6= j of the spectral
curve S. Then the n normalizable zero modes of the Dirac operator D†s are
given by taking for each row (Q1(ζ), . . . , Qn(ζ)) of Q the spinor

ψ[(Q1, . . . , Qn)] = Ds
(

1
0

)
Res[(Q1(ζ), . . . , Qn(ζ))]. (4.43)
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The components of ψ are given by

ψ1[(Q1, . . . , Qn)] =

n∏
1

(
−axk
z̄k

)1/2 ×

n∑
i=1

 e−sria−1xi Qi(axi)∏
k 6=i(axi − axk)

∂3(Qi(axi))

Qi(axi)
−

n∑
j 6=i

∂3(axi − axj)
axi − axj

+

n∑
j 6=i

a−1xj ∂3axj − s(
x3i
ri

+ 1)

 ,
ψ2[(Q1, . . . , Qn)] = 2

n∏
1

(
−axk
z̄k

)1/2 ×

n∑
i=1

 e−sria−1xi Qi(axi)∏
k 6=i(axi − axk)

 ∂̄(Qi(axi))

Qi(axi)
−

n∑
j 6=i

∂̄(axi − axj)
axi − axj

+

n∑
j 6=i

a−1xj ∂̄(axj)− s
zi
2ri

 .
(4.44)

In particular, constructions for Q are given in Propositions 3.13 and 3.14
of Chapter 3 of this thesis.

Proof. If (Q1(ζ), . . . , Qn(ζ)) satisfies the matching conditions, then by unique-
ness of Lagrangian interpolation each Qk(ζ) admits the form (3.60) and thus
satisfies Lamy-Poirier’s system of algebraic equations. The proof that such
a solution gives rise to a normalizable zero mode is found in [49, Appendix
A] and [49, A.5]. By Proposition 3.3, we get h0(S, Ls(n− 1)) = n so that we
obtain n zero modes by this method.

Let us consider how the zero modes may behave for a specific choice of
basis that singles out the Atiyah polynomials. Consider the basis where the
diagonal entries are degree n−1 polynomials and the off-diagonal entries are
degree n− 2 polynomials. Recall that we gave a method to construct a per-
turbation expansion (3.78) for each basis element of an orthogonal basis of
polynomial rows (Q1(ζ), . . . , Qn(ζ)). In this basis, the zero order of the per-
turbation expansion for the ith row is Qi = Ai(ζ) the Atiyah polynomial at ~ai
and Qj 6=1(ζ) = 0. The zero order of the harmonic function Res[(Q1, . . . , Qn)]
for this basis element is then given by the term

( n∏
k=1

−axk
z̄k

)1/2 e−sria
−1
xi Ai(axi)

n∏
k 6=i
k 6=i

(axi − axk)
. (4.45)
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If we approach the monopole located at ~ai, i.e. ri → 0, then the zero order
of the harmonic function approaches n∏

k=1
k 6=i

−aik
z̄ik


1/2

(
−axi
z̄i

)1/2a−1
xi , (4.46)

which is precisely the harmonic function found in (4.38) for the single monopole
configuration at location ~ai. The zero mode coming from the ith element of
this basis then approaches near ~ai the zero mode for the single monopole
with charge centered at ~ai.



Chapter 5

Conclusions for Part I

We construct solutions to Nahm’s equations with our prescribed boundary
conditions via the algebro-geometric integration method for Lax pairs. In our
case, the explicit formulation for our spectral curve is well-known, obtained
from the boundary conditions. For other boundary conditions, the spectral
curve is generally not explicitly known. As mentioned in Chapter 3, the
reader may consult Table 1 of [67] for a list of all currently known spectral
curves.

We then give two different linear systems for explicitly constructing an
orthonormal basis of sections to the eigenline bundle over our spectral curve,
which come from the associated linear problem to the Lax pair. We also give
an algorithm for constructing a perturbation expansion of the sections for
large s, to any order desired.

We solve Nahm’s equations in terms of the orthonormal basis of eigenline
sections. The perturbation expansion of the sections are also used to give a
perturbative solution to Nahm’s equations for large s, to any order. We illus-
trate this with the example of rank 3 Nahm matrices. Our Nahm solutions
approach a diagonal limit at infinity and generally do not have T0 = 0.

We fill in the gap of Lamy-Poirier’s ansatz [49] for the explicit construction
of the L2 zero modes of the monopole-side Dirac operators. We show that the
polynomials coming from a section of the eigenline bundle over the spectral
curve satisfy his criteria [49][Equation (5.8)] for obtaining a L2 zero mode.
These polynomials are constructed explicitly from either one of our two linear
systems.

Our results and algorithms do not depend on the truth or falsity of
Atiyah’s conjecture on the linear independence of stellar polynomials. Atiyah’s

98
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polynomials appear in one of the linear systems for the construction of an
orthonormal basis of eigenline sections. They also appear in the perturba-
tion expansion of these sections. Note, for a Nahm solution of rank n, the
dimension of eigenline sections is n, the dimension of L2 zero modes is n,
and there are exactly n stellar polynomials. We do not think these are co-
incidences, however, our present results do not immediately imply a proof
of Atiyah’s conjecture. It would be interesting to further examine whether
Atiyah’s stellar conjecture may be proven from the perspective of Nahm’s
equations.



Part II
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Chapter 6

Polar Terms of Weak Jacobi
Forms

6.1 Polar Part of Weak Jacobi Forms

A Jacobi form is an automorphic form for the Jacobi group, so we begin with
the definition of the Jacobi group.

Definition 6.1. The Jacobi group ΓJ is SL2(Z)J = SL2(Z)nZ2, with action
defined as

(M,X) · (M ′, X ′) = (MM ′, XM ′ +X ′), (6.1)

for M ∈ SL2(Z) and X ∈ Z2.

Now, we give the definition of a classical Jacobi form.

Definition 6.2. A Jacobi form of weight k and index t is a holomorphic
function ϕk,t(τ, z) : H × C → C, with H the upper-half plane, transforming
the action of

((
a b
c d

)
, (λ µ)

)
∈ SL2(Z)J as

ϕk,t
(aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)kei2πt

cz2

cτ+dϕk,t(τ, z),

ϕk,t(τ, z + λτ + µ) = e−i2πt(λ
2τ+2λz)ϕk,t(τ, z),

(6.2)

and has the Fourier-Jacobi expansion∑
n,l∈Z

4tn−l2≥0

c(n, l)e2πinτe2πilz. (6.3)

101
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For the Fourier-Jacobi expansion, we adopt the conventional notations
q := e2πiτ and y := e2πiz.

However, we will need to work with a larger class of functions, the weak
Jacobi forms.

Definition 6.3. A weak Jacobi form of weight k and index m is a holo-
morphic function ϕk,m(τ, z) : H× C→ C satisfying the transformation laws
(6.2), and its Fourier-Jacobi expansion satisfies the weaker conditions

ϕ̃k,m(τ, z) =
∑
n≥0

∑
l∈Z

c(n, l)qnyl. (6.4)

The transformation laws infact bounds the sum over l so that 4mn − l2 ≥
−m2. We denote the space of weak Jacobi forms by Jk,m.

Definition 6.4. Define j(m) to be the dimension of the space of weak Jacobi
forms of weight 0 and index m,

j(m) := dim J0,m. (6.5)

We have the following formula for j(m) from [76, Section 9],

j(m) =


m2

12
+ m

2
+ 1 m = 0 mod 6

m2

12
+ m

2
+ 5/12 m = 1, 5 mod 6

m2

12
+ m

2
+ 2/3 m = 2, 4 mod 6

m2

12
+ m

2
+ 3/4 m = 3 mod 6.

(6.6)

Gritsenko in [77] gives us a basis for the space of all weak Jacobi forms of
weight 0, freely generated by the weak Jacobi forms φ0,1, φ0,2, φ0,3 as defined
below. A basis of J0,m is, then, given by the set {φa0,1φb0,2φc0,3 | a+2b+3c = m}.
The generating functions can be written in terms of the following Jacobi theta
functions. For

θ00(q, y) =
∞∑

n=−∞

qn
2/2yn,

θ01(q, y) =
∞∑

n=−∞

(−1)nqn
2/2yn,

θ10(q, y) = q1/8y1/2

∞∑
n=−∞

qn(n+1)/2yn,

(6.7)
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define ζ00 := θ00(τ,z)
θ00(τ,0)

, ζ10 := θ10(τ,z)
θ10(τ,0)

, and ζ01 := θ01(τ,z)
θ01(τ,0)

.

Then [77, Equation (2.7)] (with the coefficient of φ0,3 adjusted to 4, rather
than 16) states

φ0,1(τ, z) = 4(ζ2
00 + ζ2

10 + ζ2
01),

φ0,2(τ, z) = 2
(
(ζ00ζ10)2 + (ζ00ζ01)2 + (ζ10ζ01)2

)
,

φ0,3(τ, z) = 4ζ2
00ζ

2
10ζ

2
01.

(6.8)

In the Appendix, we discuss an implementation of φ0,1, φ0,2, φ0,3 in Mathe-
matica that allows for a fast computation of their Fourier-Jacobi expansions,
up to order 10,000 in q. We used this code for our numerical computations in
Chapter 8, which require Fourier-Jacobi expansions to order approximately
1000 (if not more) in q to properly investigate.

Definition 6.5. The polar terms of a weak Jacobi form of index m are the
terms c(n, l)qnyl in its Fourier-Jacobi expansion such that 4mn− l2 < 0, with
n ≥ 0 and 0 ≤ l ≤ m1. We denote by p(m) the total number of polar terms
qnyl with n ≥ 0, 0 ≤ l ≤ m for index m. Let pP(m) be the number of pairs
(n, l) with n ≥ 0, 0 ≤ l ≤ m such that 4mn− l2 ≤ −P.

It is known that the polar parts of a weight zero index m weak Jacobi
form uniquely determine the form when m > 0. To describe this requires
introducing the theta decomposition of a weak Jacobi form, which involves
modular forms of fractional weights for congruence subgroups with multiplier
systems and so we give their definitions here.

Definition 6.6. The principal congruence subgroup of level N for an integer
N > 1 is the subgroup

Γ(N) =

{(
a b
c d

)
∈ SL(2,Z) |

(
a b
c d

)
≡
(

1 0
0 1

)
mod N

}
. (6.9)

We take Γ(1) to be SL(2,Z), but shall abbreviate it to simply Γ.

When extending modular forms from integral weights to fractional weights
k, the factor J(

(
a b
c d

)
, τ) := (cτ + d)k is no longer an automorphy factor. To

correct this, we need multiplier systems.

1This definition may differ from part of the literature. In general, the restriction n ≥
0 and 0 ≤ l ≤ m may not be insisted upon. In this case, our definition will be the
‘fundamental domain’ of all polar terms, i.e. there exists an element of ΓJ taking a
general polar term to one with n ≥ 0, 0 ≤ l ≤ m so there is no loss of generality.
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Definition 6.7. A multiplier system v is a map v : Γ(N)→ C∗ satisfying

v(M1M2)J(M1M2, τ) = v(M1)v(M2)J(M1,M2τ)J(M2, τ), (6.10)

for J(
(
a b
c d

)
, τ) := (cτ + d)k.

Note, multiplier systems are not necessarily characters of Γ(N).
Now, we are able to define modular forms for a congruence subgroup

Γ(N) with fractional weights k.

Definition 6.8. A function φk : H → C is called a modular form of weight
k with multiplier system v for Γ(N) if φk is holomorphic on H and satisfies
the transformation property

φk(Mτ) = φk(
aτ + b

cτ + d
) = v(M)(cτ + d)kφk(τ), M ∈ Γ(N), (6.11)

and φk is holomorphic at all cusps r ∈ Q ∪ {∞}. When k is fractional, we
will take the principal branch cut of the root when defining (cτ + d)k. If
φk is, instead, meromorphic at the cusps r ∈ Q ∪ {∞}, then φk is called a
meromorphic modular form.

We illustrate this with the important example of the Dedekind eta func-
tion, a meromorphic modular form of weight 1/2 with a nontrivial multiplier
system. This function will play a role in some of our later proofs.

Example 6.1. Let ( c
d
) be the Kronecker symbol, which generalizes the Leg-

endre symbol to all integers d. Define ( c
d
)∗ to be the Kronecker symbol,

except at ( 0
−1

)∗ := −1. Define ( c
d
)∗ := ( c

|d|). The Dedekind eta function

η(τ) = q1/24

∞∏
n=1

(1− qn), (6.12)

is a meromorphic modular form of weight 1/2 for SL(2,Z) with the multiplier
system νη defined as

vη(M) =

(d
c
)∗e

2πi
24

(
(a+d)c−bd(c2−1)−3c

)
c odd

( c
d
)∗e

2πi
24

(
(a+d)c−bd(c2−1)+3d−3−3cd

)
c even.

(6.13)

The above is a nontrivial fact, for its proof we refer the reader to [78, Theorem
1.7].
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With all the necessary definitions in place, we may now introduce the
following lemma.

Lemma 6.1. [79, Section 3] For index m > 0, the polar part of a weight
zero weak Jacobi form uniquely determines the weak Jacobi form.

Proof. Consider the theta decomposition [76, Equation (5.5)] of a weak Ja-
cobi form.

ϕ0,m(τ, z) =
∑

µ mod 2m∈Z/2mZ

hµ(τ)θm,µ(τ, z), (6.14)

with the vector-valued modular forms hµ(τ) =
∞∑

N=−m2

c(N,µ)qN/4m.

The proof is accomplished by showing that if ϕ0,m has no polar part, it
must be identically zero. Now, all the polar terms of ϕ0,m appear in the
negative q-power part of the Fourier expansions of {hµ(τ) : µ ∈ Z/2mZ}.

The forms hµ(τ) are scalar modular forms of weight −1/2 for Γ(4m)
with multiplier system ( c

d
). Since ϕ0,m has no polar part, each hµ(τ) is

a holomorphic modular form. However, there are no non-zero holomorphic
modular forms of weight −1/2 for the subgroup Γ(4m) with multiplier system
( c
d
), so that hµ(τ) ≡ 0.

While the polar terms determine the weak Jacobi form when the index
is greater than 0, we also have that for m ≥ 5, the number of polar terms
p(m) exceeds the dimension j(m) of weak Jacobi forms of weight zero and
index m. The polar terms then form an overdetermined system for J0,m, in
the sense that given an arbitrary list of polar coefficients, there may not be
a corresponding weak Jacobi form with polar part having these coefficients.

The number of polar terms p(m) for index m is, by [80, Equation (2.31)],

p(m) =
m2

12
+

5m

8
+ a(m), (6.15)

for a(m) defined as

a(m) =
1

4

∑
d|4m

h′(−d)− 1

2
b b

2
c − 1

2
((
m

4
)) +

1

24
, (6.16)
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where h′(−3) = 1/3, h′(−4) = 1/2, and otherwise h′(−d) is the class number
of the positive definite binary quadratic form of discriminant d, b is the largest
integer such that b2 | m, and ((m

4
)) is the sawtooth function2.

A heuristic argument appears in [80, Section 2.2] for the claim that,
asymptotically, a(m) ∼ m1/2. We prove here an explicit analytical bound
for a(m).

Proposition 6.2. For any ε > 0, there exists a constant Cε such that

|a(m)| < Cεm
1/2+ε. (6.17)

Proof. We put bounds on each term defining the quantity a(m) in (6.16). The
term ((m

4
)) is bounded between−1/2 and 1/2. While we have 1

2
b1

2
( m
p1···pn )1/2c ≤

1
2
b b

2
c ≤ 1

4
m1/2, where p1, . . . , pn are the prime divisors of m, we will trivially

underestimate 1
2
b b

2
c by setting it to zero. We now overestimate the remaining

term, 1
4

∑
d|4m

h′(−d).

We have from [81, p.290] that

h′(−d) <
1

π

√
d log d, (6.18)

and the total number of divisors of 4m, denoted σ0(4m), satisfies [82, p.229]

σ0(4m) ≤ (4m)1.5379 log 2/ log log 4m. (6.19)

We overestimate the sum of class numbers by overestimating the largest term
h′(−4m) with 1

π

√
4m log 4m using (6.18), and then replacing each term in

our sum with this largest term. Overestimating the total number of terms in
the sum with (6.19), we have

1

4

∑
d|4m

h′(−d) <
1

4
(4m)1.5379 log 2/ log log 4m 1

π

√
4m log 4m. (6.20)

2The sawtooth function is defined as

((x)) := x− 1

2
(dxe+ bxc) =

{
0 x ∈ Z
α− 1

2 x = n+ a, 0 < a < 1.

That is, the sawtooth returns a zero for an integral argument, and otherwise returns the
decimal part subtracted by 1/2.
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In [80, Figure 2], numerical analysis of the growth of a(m) for indexes
m to order several thousands shows that the difference (p(m) − j(m) − m

8
)

grows approximately as m1/2.
We would like to eliminate the extraneous polar terms, and we achieve

the following analytical result: we improve on Lemma 6.1 by proving that
the polar terms of polarity less than or equal to −m/6 determine the corre-
sponding weak Jacobi form.

Proposition 6.3. For m > 0, the polar terms c(n, l) of polarity 4mn− l2 ≤
−m/6 uniquely determine the weak Jacobi form ϕ0,m.

Proof. As in Lemma 6.1, we consider the theta decomposition (6.14) of the
weak Jacobi form. The polar terms of ϕ0,m appear in the negative q-power
part of the Fourier expansions of {hµ(τ) : µ ∈ Z/2mZ}.

We will show that the product η(τ)hµ(τ) with the Dedekind eta function
is a scalar modular form of weight zero for the group Γ

(
lcm(24, 4m)

)
. This

implies that the product must be a constant.
By Example 6.1, the Dedekind eta function η(τ) = q1/24

∏
m>0

(1 − qm) is

a scalar modular form of weight 1/2 for Γ(24) with multiplier system ( c
d
).

The forms hµ(τ) are scalar modular forms of weight −1/2 for Γ(4m) with
the same multiplier system ( c

d
).

Since ( c
d
) squares to the identity, the product η(τ)hµ(τ) is a scalar mod-

ular form for Γ
(
lcm(24, 4m)

)
with trivial multiplier system.

Given a weak Jacobi form with no polar terms of polarity less than or
equal to −m/6, we show this form must be identically zero. Let N be the
most polar term of this weak Jacobi form, this term shall also be the most
polar term of hµ(τ) for its theta decomposition. The Fourier expansion of

η(τ)hµ(τ) then begins at c(N,µ)qN/4m+ 1
24 . We have N > −m

6
by assumption,

so

N/4m+
1

24
> 0, (6.21)

which implies that η(τ)hµ(τ) ∈ M0

(
Γ
(
lcm(24, 4m)

))
. However, the only

modular forms of M0

(
Γ
(
lcm(24, 4m)

))
are constants, whose Fourier expan-

sion consists of only the q0 term. This implies that η(τ)hµ(τ) is zero.

Continuing the same spirit of eliminating extraneous polar terms that
over-determine the system of weak Jacobi forms, consider as in [80] the po-
larity value P (m), where P (m) is the largest number such that the polar
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terms c(n, l) of polarity 4mn − l2 ≤ −P (m) uniquely determine the weak
Jacobi form ϕ0,m.

The formal definition of P (m) is as follows.

Definition 6.9. Let JP0,m := {ϕ0,m ∈ J0,m | c(n, l) = 0 for 4mn− l2 < −P}.
Define the positive integer P (m) to be such that J

P (m)
0,m = 0 and J

P (m)+1
0,m 6= 0.

We have computed the values P (m) for small index m, using Gritsenko’s
basis (6.8) for J0,m. We plot the results in Figure 6.1 below.

0 10 20 30 40 50 60

0

10

20

30

Index m

P
(m

)

Figure 6.1: Scatterplot of P (m), the largest polar value such that the polar
terms of polarity less than or equal to −P (m) uniquely determine the weak
Jacobi form.

The polar terms of polarity less than or equal to −P (m), then, form a
linear system for the space of weak Jacobi forms that is not as overdetermined
as the linear system coming from the entire collection of polar terms.

Let pP (m) be the total number of polar terms with polarity less than or
equal to −P (m). For small index m, we plot the difference pP (m) − j(m) in
Figure 6.2, and this quantity represents how many extraneous polar terms
we continue to have.
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j(
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Figure 6.2: Scatterplot of the difference between the dimension of J0,m and
the number of polar terms of polarity ≤ −P (m). This difference measures
the extent to which these polar terms form an overdetermined system for
J0,m.

We see from the scatter plot of Figure 6.2 that frequently, the polar terms
with polarity less than or equal to −P (m) are sufficient to uniquely determine
the weak Jacobi form.

Computing P (m) for largem quickly becomes computer-intensive because
of the requirement to extract Fourier-Jacobi coefficients from the polar part
of each basis element, in order to form the linear system. We have managed
to compute P (m) up to m = 61 in Mathematica. We present the code for
computing the polar coefficients of a basis of J0,m in the Appendix. Instead
of continuing this computer-intensive task for higher m, we now discuss lower
and upper bounds for P (m).

In [80], a heuristic was given for approximating P (m) but our goal is to
obtain some analytic bounds on P (m). To begin with, we already have a
lower bound offered by Lemma 6.1.
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6.1.1 A Lower Bound for P (m)

Corollary 6.4. A lower bound for P (m) is P−(m) := dm
6
e. P (m) attains

this lower bound at m if and only if there are constants Cµ such that

ϕ0,m =
∑

µ mod 2m∈Z/2mZ

Cµ
η(τ)

θm,µ(τ, z) (6.22)

is a weak Jacobi form that is not identically zero.

Proof. The statement of Lemma 6.1 implies dm
6
e is a lower bound for P (m)

and its proof shows that whenever P (m) = dm
6
e, there exists a weak Jacobi

form in J0,m having the above theta decomposition. Such weak Jacobi forms
do exist, e.g. at m = 6 we have P (m) = 1 with the Jacobi form −4φ2

0,3 −
φ3

0,2 +φ0,1φ0,2φ0,3 having a theta decomposition of this type and lowest polar
discriminant −1.

6.1.2 An Upper Bound for P (m)

Counting the number of polar terms of polarity less than or equal to a fixed
−P for P ∈ Z+ will be important to us, as we will use this counting number
to obtain an upper bound on P (m) as in the following lemma.

Lemma 6.5. For pP(m) =
m∑

l=d
√
Pe
d l2−P

4m
e counting the number of polar terms

with polarity less than or equal to −P, we have

P (m) ≤ P, (6.23)

for any P satisfying the inequality pP(m) ≤ j(m) < pP+1(m). Denote by
P+(m) the smallest such P.

Proof. The polar terms for a given index m form a linear system for the
space of weak Jacobi forms of index m. We order the polar terms according
to their polarity. We may use the j(m) basis elements to set (j(m) − 1) of
the most polar terms to zero, so that P (m) is bounded above by the value
of P such that pP(m) ≤ j(m) < pP+1(m).

P+(m), the upper bound for P (m), is easy to compute, we present a
scatter plot of its value for 1 ≤ m ≤ 1000 in Figure 6.3. Comparing this
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with the scatter plot for P (m) for 1 ≤ m ≤ 61 in Figure 6.1, we find that
P (m) = P+(m) except at m = 39, 51, 54, and 58. A particularly wide gap is
found at m = 54, where P (m) = 9 but P+(m) = 25.

We expect that for generic m, P (m) will be very close to P+(m). Equality
between P (m) and P+(m) holds whenever the linear system of polar coef-
ficients with polarity less than or equal to −P+(m) has maximal rank. We
expect the matrix of these polar coefficients to behave like a random matrix,
and such matrices generically have maximal rank. In contrast, we expect
P−(m) to be a weak lower bound.

Numerically, we find that

|P+(m)− m

2
| ≤ 2.1016m1/2. (6.24)
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Figure 6.3: Scatterplot of the upper bound P+(m) for P (m), where P+(m)
is the polarity such that the number of polar terms of polarity ≤ −P+(m)
equals j(m).

We discuss a heuristic approximation of the upper bound P+(m) for
P (m), building on [80]. Our approximation has one analytical gap, which is
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the assumption that
m∑
l=1

(( l
2−P
4m

)) for any P has the ’same’ behavior as a func-

tion in m as
m∑
l=1

(( l2

4m
)). If this assumption holds, then it implies the following

conjecture.

Conjecture 6.6. P+(m) has the following upper bound

P+(m) ≤ m

2
+ Cm1/2. (6.25)

Numerically for m ≤ 1000, we have obtained C ∼ 1.35695. We now
describe this rough approximation of P+(m).

Argument. We fix m and try to solve the following equation

pP+(m) = j(m) (6.26)

for P+(m) in terms of m. That is, we want to find the polarity P+(m) such
that the number of polar terms of polarity ≤ −P+(m) equals j(m). From
numerical data, we see P+(m) grows like αm for α approximately equal to
1/2, and we shall later use this ansatz.

Equation (6.26) is

j(m) =
m∑
l=l0

⌈
l2 − P+(m)

4m

⌉

=
m∑
l=l0

l2 − P+(m)

4m
−

m∑
l=l0

((
l2 − P+(m)

4m

))

+
1

2

m∑
l=l0

(⌈
l2 − P+(m)

4m

⌉
−
⌊
l2 − P+(m)

4m

⌋)
,

(6.27)

for l0 = d
√
P+(m)e.

For any P < 4m, define µ(m,P) to be the number of integers l with
0 ≤ l ≤ m solving l2 = P mod 4m. Asymptotically, µ(m,P) is dominated by
m1/2. To see this, take the prime factorization 4m = 2kps11 p

s2
2 · · · psrr . There

are at most 4 · 2r solutions to x2 = P mod 4m over the ring Z/4mZ, as may
be seen in any standard book on classical number theory, e.g. [83, Section
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5.1]. By [84, Theorem 12], the number of distinct prime factors of an integer
m > 2 is bounded above by lnm

ln lnm
+O( lnm

(ln lnm)2
) so we have

µ(m,P) ≤ 4 · 2
lnm

ln lnm
+O( lnm

(ln lnm)2
)
. (6.28)

The latter is rapidly dominated by m1/2 as m→∞.
Now, we have

1

2

m∑
l=l0

(⌈
l2 − P+(m)

4m

⌉
−
⌊
l2 − P+(m)

4m

⌋)
= m+ 1− l0 − µ(m,P+(m)).

(6.29)

Let us use the anstaz P+(m) = αm for some α < 1. Then (6.26) becomes

m

8
− α

4
m+

2α3/2 − 6α1/2

12
m1/2 −

m∑
l=l0

((
l2 − P+(m)

4m
))− µ(m,P+(m)) = χ(m),

(6.30)

for 0 ≤ χ(m) ≤ 2. Explicitly,

χ(m) =


α
8

+ 23
24

+ α1/2

24m1/2 m = 0 mod 6
α
8

+ 9
24

+ α1/2

24m1/2 m = 1, 5 mod 6
α
8

+ 15
24

+ α1/2

24m1/2 m = 2, 4 mod 6
α
8

+ 17
24

+ α1/2

24m1/2 m = 3 mod 6.

Let us assume that the behavior of
m∑
l=l0

(( l
2−P+(m)

4m
)) is similar to

m∑
l=0

(( l2

4m
)),

by which we mean that for any ε > 0 there exists a Cε such that

|
m∑
l=l0

((
l2 − P+(m)

4m
))| ≤ Cεm

1/2+ε.

Then we see (6.30) is of the form

m

8
− α

4
m+O(m1/2+ε) = 0, (6.31)

which forces

α =
1

2
. (6.32)

For any ε > 0, we then have P+(m) ≤ 1
2
m+ Cεm

1/2+ε.
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Again, the above argument is based on the assumption that
m∑
l=l0

(( l
2−P+(m)

4m
))

behaves similarly to
m∑
l=0

(( l2

4m
)), i.e. for any ε > 0, there is a Cε such that

m∑
l=l0

((
l2 − P+(m)

4m
)) ≤ Cεm

1/2+ε. (6.33)

We now discuss the difficulty of giving an analytical proof of the assump-
tion that the inequality (6.33) holds.

We begin by reviewing how this bound for
m∑
l=0

(( l2

4m
)) is proved. One writes

m∑
l=0

((
l2

4m
)) =

∑
n mod 4m

((
n

4m
))

∑
l∈{0,...,m}

l2=n mod 4m

1, (6.34)

and we see the sum, then, is about counting the number of solutions to
l2 = n mod 4m. This is, of course, connected to quadratic reciprocity and
the class number h(−d) of the positive definite binary quadratic form of
discriminant d. Indeed, this term equals 1

4

∑
d|4m

h′(−d) by [76, pp.124], for

which we can use the upper bound (6.20).

Let us attempt the same thing for
m∑
l=l0

d l2−P
4m
e. We have

m∑
l=l0

((
l2 − P

4m
)) =

m∑
l=0

((
l2 − P

4m
))−

l0−1∑
l=0

((
l2 − P

4m
)). (6.35)

For 0 ≤ l ≤ l0 − 1, l2−P
4m

is a negative number between −1 and 0 so that for

such l, (( l
2−P
4m

)) = l2−P
4m

+ 1
2
. Then

m∑
l=l0

((
l2 − P

4m
)) =

m∑
l=0

((
l2 − P

4m
))−

(
l0−1∑
l=0

l2 − P

4m
+

1

2

)
. (6.36)

The sawtooth function is periodic with period 1 so (( l
2−P
4m

)) has a period of
2m. This gives us

m∑
l=0

((
l2 − P

4m
)) =

1

2
((
−P
4m

)) +
1

2
((
m2 − P

4m
)) +

1

2

∑
l mod 2m

((
l2 − P

4m
)). (6.37)
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Again, from periodicity, we clearly have∑
l mod 2m

((
l2 − P

4m
)) =

1

2

∑
l mod 4m

((
l2 − P

4m
)). (6.38)

Now, ∑
l mod 4m

((
l2 − P

4m
)) =

∑
n mod 4m

((
n

4m
))

∑
l mod 4m

l2=n+P mod 4m

1

=
∑

n mod 4m

((
n− P

4m
))

∑
l mod 4m

l2=n mod 4m

1

(6.39)

We can then write the latter expression as∑
n mod 4m

((
n− P

4m
))

∑
l mod 4m

l2=n mod 4m

1 =
∑

n mod 4m

n− P

4m

∑
l mod 4m

l2=n mod 4m

1

+
∑

0≤n<P

1

2

∑
l mod 4m

l2=n mod 4m

1−
∑

P<n<4m

1

2

∑
l mod 4m

l2=n mod 4m

1

= −P +
∑

n mod 4m

n

4m

∑
l mod 4m

l2=n mod 4m

1

+
∑

0≤n<P

1

2

∑
l mod 4m

l2=n mod 4m

1−
∑

P<n<4m

1

2

∑
l mod 4m

l2=n mod 4m

1.

(6.40)

The second term is exactly 1
4

∑
d|4m

h′(−d) so we get

∑
n mod 4m

((
n− P

4m
))

∑
l mod 4m

l2=n mod 4m

1 =− P +
1

4

∑
d|4m

h′(−d)

+
∑

0≤n<P

1

2

∑
l mod 4m

l2=n mod 4m

1−
∑

P<n<4m

1

2

∑
l mod 4m

l2=n mod 4m

1.

(6.41)
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The issue is, we do not know how to analytically impose an upper bound on
the remaining two terms on the right side of the equation above. A heuristic
argument is that the quadratic residues are randomly distributed so that the
latter two sums behaves like a random walk and are bounded by m1/2. If
we are able to analytically impose a bound of m1/2+ε, it would imply the
inequality (6.33) and thus prove Conjecture 6.6.



Chapter 7

Slow Growth around yb

In this chapter, we consider the weak Jacobi forms with some yb as their
most polar term in their Fourier-Jacobi expansion (6.4) (as opposed to the
general case, where the most polar term is an arbitrary qayb term, addressed
in Chapter 8). Before we begin, we want to fulfill our promise of filling in
the details behind the motivation outlined in the introduction on why we are
interested in the growth behaviors of the sums fa,b(n, l) in (1.19).

As mentioned in the introduction, a weak Jacobi form of weight 0 admits
an exponential lift to a Siegel modular form, and the growth of fa,b(n, l) about
its most polar term qayb indicates the growth of the Fourier coefficients of
the lifted Siegel modular form. For completeness, we describe this lift and
the emergence of the sums fa,b(n, l), but we will not need it for the remainder
of the thesis.

The exponential lift is described in [52, Theorem 2.1], which we summa-
rize here. Given a weak Jacobi form ϕ0,t of weight 0 with Fourier-Jacobi
expansion

ϕk,m(τ, z) =
∑
n≥0

∑
l∈Z

c(n, l)qnyl.

Define

A =
1

24

∑
l∈Z

c(0, l), B =
1

2

∑
l>0

lc(0, l), C =
1

4

∑
l∈Z

l2c(0, l). (7.1)

117
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The function ϕ0,t(τ, z) admits a lift to a Siegel modular form Φϕ : H2 → C,

Φϕ(Ω) = Exp-Lift(ϕ)(Ω) = qAyBpC
∏
n>0

(1− qnyl)c(0,l)

×
∏
l<0

(1− yl)c(0,l) ×
∏
r>0

(1− qnylptr)c(nr,l) (7.2)

for the paramodular group

Γt :=


Z tZ Z Z
Z Z Z t−1Z
Z tZ Z Z
tZ tZ tZ Z

 ∩ Sp(4,Q). (7.3)

We are interested in growth behavior of the Fourier coefficients d(m,n, l)
with negative discriminant 4mn− l2 < 0 of the meromorphic Siegel modular
form

1

Exp-Lift(ϕ)(Ω)
=
∑
m,n,l

d(m,n, l)pmqnyl, (7.4)

where here we expand the Fourier coefficients in the region Im(ρ)� Im(τ)�
Im(z) > 0.

Sen in [85] shows we may compute d(m,n, l) by making a contour inte-
gration so that

d(m,n, l) =
∑
pi

1

2πi
Res(

q−np−my−l

Φ
,pi), (7.5)

where pi are the poles inside the contour.
To know which residues to take for a contour, we need to know the poles

of Exp-Lift(ϕ0,t). Following [52, Section 1.3], the divisors of Exp-Lift(ϕ0,t)
are the Humbert surfaces for D := 4ta− b2 with D < 0 defined by

HD(b) = Γt · {Ω ∈ H2 | aτ + bz + tρ = 0}, (7.6)

i.e. the orbit of the level set of

aτ + bz + tρ = 0 (7.7)
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under the action of the paramodular group Γt.
The Humbert surfaces depend on D and b mod 2t, and each polar term

qayb of negative discriminant D = 4ta−b2 in the Fourier-Jacobi coefficients of
ϕ0,t has an associated Humbert surface HD,b. The lifts of weak Jacobi forms
of the same index t then have the same divisors HD(b), but with differing
multiplicity.

The multiplicity of mD,b of HD(b) is given by

mD,b =
∑
n>0

c(n2a, nb). (7.8)

Since qayb is polar, c(n2a, nb) are polar coefficients as well and the multiplicity
of the Humbert surface HD,b is determined by the polar terms of ϕ0,t.

We may evaluate the residue at the representative (7.7) of the Humbert
surface, i.e. at

pi : pt = qayb. (7.9)

For simple poles mD,b = 1, by [58, (3.21)] one obtains

Res(
q−np−my−p

Φϕ

,pi) = (−1)2Bq−A+a
t
CyB+ b

t
C
∏
l>0

(1− yl)−c(0,l)

×
∏
n,l∈Z

(n,l)6=(0,0)

(1− qnyl)−fR(n,l), (7.10)

where

fR(n, l) =
∞∑
r=0

c(nr + ar2, l − br). (7.11)

Here is how fa,b(n, l) arises. From (7.10), the growth behavior of the
residue, and thus of d(m,n, l), is determined by the sums fR(n, l). Because
of the bound 4tn − l2 < −t2 =⇒ c(n, l) = 0, fR(n, l) differs from fa,b(n, l)
by only finitely many terms. The latter sum is preferred to work with as [58]
discovered generating functions for fa,b(n, l) in the case of a = 0, discussed
in Proposition 7.3 of the next section.
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Let us interpret the two possible behaviors of d(m,n, l) in terms of fa,b(n, l)
in this simplified regime. The asymptotic growth of c(n, l) for large discrim-
inant is

c(n, l) ∼ exp π

√
|∆min|
t2

(4tn− l2), (7.12)

where ∆min is the maximal polarity of the weak Jacobi form. If there are
not substantial cancellations inside the sum of fa,b(n, l), then fa,b(n, l) will be
dominated by the most polar term in its sum and have exponential growth.
This leads to fast growth for d(m,n, l). However, in nongeneric cases, there
are significant cancellations between the coefficients in the sum of fa,b(n, l),
leading to subexponential growth in fa,b(n, l). This gives us slow growth for
d(m,n, l).

Now that we’ve established the importance of the sums fa,b(n, l) for the
lifted Siegel modular form, we illustrate the dramatic difference between the
two possible growth behaviors of fa,b(n, l) with a simple example.

Example 7.1. The weak Jacobi form φ0,1 has y1 as its most polar term and
its sums f0,1(n, l) are slow growing. The table below presents a selection of
their values.

(n, l) f0,1(n, l)
(0,0) 12
(7,10) 0
(14,20) 0

In contrast, the weak Jacobi form φ2
0,1 has y2 as its most polar term and

its sums f0,2(n, l) are fast growing. The table below of a few selected values
clearly demonstrates this.

(n, l) f0,2(n, l)
(0,0) 104
(3,2) 2390434947
(7,10) 8074095060829281900923310709

The reader may wonder why there is such a dramatic difference in the
growth behaviors. As shown in [58], there are generating functions for
f0,b(n, l) in terms of modular forms. We will give a summary of these gen-
erating functions in the next section, but for now, in the case of φ0,1, there
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is a single generating function for f0,1(n, l) and it is a holomorphic modular
form of weight 0, i.e. it is a constant. So, in fact, f0,1(n, l) may only attain
the values 12 or 0. In the case of φ2

0,1, the generating functions for f0,2(n, l)
are nonholomorphic modular forms of weight 0, and therefore f0,2(n, l) grows
exponentially in n, l.

The remainder of this chapter is devoted to our findings on weak Jacobi
forms with slow growing f0,b(n, l), where yb is their most polar term.

7.1 Slow Growth Forms

For a weak Jacobi form φ0,m of weight 0 and index m, define a sum of its
Fourier-Jacobi coefficients,

f0,b(n, l) =
∑
r∈Z

c(rn, l − br), (7.13)

where c(rn, l− br) is the Fourier-Jacobi coefficient of qrnyl−br. This sum is a
finite sum as c(n, l) = 0 whenever 4mn− l2 < −m2.

In [61], the behavior of f0,b(n, l) was classified, summarized in the theorem
below.

Theorem 7.1. [61] The functions f0,b(n, l) have two types of asymptotic
behavior, as a function of n and l. In the slow growth case, f0,b(n, l) takes
on only finitely many distinct values as n and l range over Z. In the fast
growth case, f0,b(n, l) is unbounded and grows exponentially with n and l. In
this case, its growth is roughly of the form

f0,b(n, l) ∼ exp 2π
√

4γ(tn2/b2 + nl/b), (7.14)

for some γ ≤ 1.

From Theorem 7.1, we establish the following definition.

Definition 7.1. A weak Jacobi form ϕ0,m has slow growth at yb if f0,b(n, l)
exhibits subexponential growth.

Theorem 7.1, of course, gives us a stronger conclusion about the possi-
ble growth cases of f0,b(n, l) beyond simply subexponential or exponential
growth. It states that if f0,b(n, l) has subexponential growth, then f0,b(n, l)
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has only finitely many distinct values, which is surprising. To prove this, the
authors of [61] found generating functions for the coefficients f0,b(n, l) for ϕ0,m

in terms of a sum of specializations qmr
2/b2ϕ0,m(τ, (rτ+s)/b), r, s = 0, . . . , b−1

of the underlying weak Jacobi form. They concluded that the weak Jacobi
form ϕ0,m is slow growth if and only if these specializations are holomorphic
modular forms, in which case, the specializations are constant functions and
there are only finitely many nonzero f0,b(n, l). Before giving our findings, we
review their results regarding these generating functions.

The specialization χr,s(τ) = qmr
2/b2ϕ0,m(τ, (rτ+s)/b) is indeed a modular

form, per the following theorem of Eichler and Zagier.

Theorem 7.2. [76, Theorem 1.3] Let φk,m(τ, z) be a Jacobi form on Γ of
weight k and index m. Let α and β be rational numbers. The specialization
f(τ) = e2πim(α2τ)φk,m(τ, ατ + β) is a modular form of weight k on some
subgroup Γ′ of finite index depending only on Γ, α, β.

The generating functions of Belin et al. are given by the following propo-
sition:

Proposition 7.3. [58, (4.16)] The generating functions for f0,b(n, l) are
given by

Fnb,k(τ) =
1

b

b−1∑
j=0

χnb,j(τ)e−2πikj/b, (7.15)

for nb = 0, . . . , b− 1 and k = 0, . . . , b− 1. Here, χnb,j(τ) = qtn
2
b/b

2
ϕ(τ, (nbτ +

j)/b) are specializations of the weak Jacobi form.

Proof. This proof is a rephrasing of the same argument in [58, Section 4.3].
We do so because we will later show that it is not possible to make a similar
argument for fa,b(n, l) with a 6= 0. The goal of this proof is to be able to use
Theorem 7.2. That is, the specialization

e2πitα2τφ(τ, ατ + β) = qtα
2
∑
n∈Z

∑
l∈Z

c(n, l)qnqlαe2πilβ (7.16)

is a modular form of weight 0.
To be able to use this, we must change the form of the sum

f0,b(n, l) =
∑
r∈Z

c(rn, l − br)
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to match the form of the first sum of (7.16), i.e.

f0,b(n, l) =
∑
m̂∈Z

c( , m̂).

This will allow f0,b(n, l) to arise from specializations of weak Jacobi forms.
The Fourier-Jacobi coefficient c(n, l) depends only on its discriminant

4tn− l2 and on the value l mod 2t, which we encode as

c(n, l) = c(n+ lλ+ tλ2, l + 2tλ), λ ∈ Z. (7.17)

We apply this to c(rn, l − br). Set k := l + 2tλ and we obtain

f0,b(n, l) =
∑
r∈Z

c(rn+ (l − br)λ+ tλ2, l − br + 2tλ)

=
∑

m̂∈bZ+k

c(2tnλ/b+ nl/b+ m̂(−n/b+ λ)− tλ2, m̂)

=
∑
m̂∈Z

c(2tnλ/b+ nl/b+ m̂(−n/b+ λ)− tλ2, m̂)δ
(b)
m̂,k

=
1

b

b−1∑
j=0

∑
m̂∈Z

c(2tnλ/b+ nl/b+ m̂(−n/b+ λ)− tλ2, m̂)e2πi j
b
m̂e−2πi k

b
j,

(7.18)

where we used the b-periodic Kronecker delta function

δ
(b)
m̂,k =

1

b

b−1∑
j=0

e2πi(m̂−k)j/b =

{
1 if m̂ ∈ bZ + k

0 otherwise.
(7.19)

The factor e2πi j
b
m̂ in 7.18 imposes the constraint

β = j/b.

We must make one comment. Observe that

M̃ := 2tnλ/b+ nl/b+ m̂(−n/b+ λ)− tλ2

is integral when m̂ ∈ bZ+k. When the index m̂ is changed to run over Z, the
coefficient c(2tnλ/b+nl/b+ m̂(−n/b+ λ)− tλ2, m̂) is no longer well-defined
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for m̂ /∈ bZ + k. Instead, we understand we may place any number here
without changing the value of the sum (7.18) because of the presence of the
Kronecker delta function (7.19).

To free up subscripts, let us write f(n, l) := f0,b(n, l). Looking at the
form (7.16), a generating function F (τ) =

∑
M

f(n, l)qM suggests the following

(nonsensical) equation∑
M

f(n, l)qM =
∑
M̃∈Z

f(n, l)qM̃+m̂α+tα2

=
1

b

b−1∑
j=0

(∑
M̃∈Z

∑
m̂∈Z

c(M̃, m̂)qM̃+m̂α+tα2

e2πi j
b
m̂

)
e−2πi k

b
j.

(7.20)

Note (7.20) is currently nonsensical since there is no relationship between
n, l and M̃ . The index set for M is also unspecified. However, the require-
ment to have a single index M already imposes a constraint on α. From the
first equality of (7.20), M̃ + m̂α+ tα2 must reduce to a single variable. Since
m̂ appears in M̃ as the term (−n/b+ λ)m̂, we see that we must have

α = n/b− λ.

Now, let us accomplish a sensible form of (7.20). This means k must be
fixed. Also, in order to get finitely many specializations, α = n/b − λ must
reduce to a finite set of values. So a single generating function (7.20) cannot
have every f0,b(n, l) as coefficients, but only a subset thereof. In fact, the
desired equation clearly tells us that we must reduce the variables n, l to a
single variable M̂ .

Write nb = n mod b ∈ {0, 1, . . . , b− 1}. Then n = bs+ nb for some s. In
terms of a fixed nb, α = nb/b+ s− λ. Clearly, we must take λ = s, i.e.

λ = (n− nb)/b.

Thus, for fixed nb and k, we may write such f(n, l) as fnb,k(s) with one single
variable s ∈ Z. Then M = M̃ + m̂α + tα2 = −ts2 + sk + knb/b+ tn2

b/b and
we may use instead the variables fnb,k(M).

We now write a generating function Fnb,k(τ) for fnb,k(M) with M ∈ Z +
knb/b+ tn2

b/b.
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Fnb,k(τ) =
∑

M∈Z+nbk/b+n
2
bt/b

2

fnb,k(M)qM =
1

b

b−1∑
j=0

qn
2
bt/b

2

ϕ0,t(τ,
nbτ + j

b
)e−2πikj/b

=
1

b

b−1∑
j=0

χnb,j(τ)e−2πikj/b,

(7.21)

where we define the specializations

χr,s(τ) := qtr
2/b2ϕ(τ, (rτ + s)/b), r, s = 0, . . . , b− 1. (7.22)

The remaining results of [58, Section 4.4] follows as a corollary of Propo-
sition 7.3, which we summarize below.

Corollary 7.4. f0,b(n, l) is slow growing if and only if the specializations
χr,s(τ) are holomorphic functions, in which case χr,s are constant functions.

For ϕ0,t(τ, z) with slow growing f0,b(n, l), the values of f0,b(n, l) are given
by [58, Equation (4.24)]

f0,b(n, l) =


1
b

b−1∑
j=0

χnb,je
−2πikj/b : tn+ bl = 0 or n = 0

0 : else,

(7.23)

where nb = n mod b with nb ∈ {0, 1, . . . , b − 1} and k = 2(n − nb)t/b + l.
Here, χnb,j are constants.

In terms of the Fourier-Jacobi coefficients of ϕ0,t(τ, z),

f0,b(n, l) =


∑

m̂∈bZ−l−nbt/b
c(−nbm̂/b− n2

bt/b
2, m̂) : tn+ bl = 0 or n = 0

0 : else.

(7.24)

Given a weak Jacobi form, we can check slow growth of f0,b(n, l) using
Corollary 7.4. We follow [58][Section 5.1] here. The specialization χr,s(τ) is
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holomorphic if it has no qβ term with β < 0. The term qny−l in ϕ leads to
qβ in χr,s with

β = tr2/b2 + n− lr/b,

so by taking α to be the max of −β over all the specializations, i.e.

α := max
r=0,...,b−1

[−β], (7.25)

we see ϕ has slow growth if and only if none of the terms qnyl with α > 0
appear in the Fourier-Jacobi expansion of ϕ. Note, a nonopolar term qnyl

automatically has α ≤ 0 so we only need to consider the polar terms of ϕ.
We have computed the following dimensions of the space of weak Jacobi

forms that are slow growth about its maximal polar term yb, for m ≤ 61.
The code for fast extraction of polar coefficients for a basis of J0,m is given
in the Appendix. The table expands Table 2 of [59], which ends at m = 18.
We also computed m = 71, which we include here. The table gives further
experimental evidence for Conjecture 1.1 that there exists a weak Jacobi form
of slow growth for each index m.

However, we find at m = 61 an exception to the observation in [59] that
there exists a weak Jacobi form with slow growth for every m, b = b√mc. At
m = 61, b = b

√
61c there are no slow growing weak Jacobi forms.

Note, the table has finitely many b for each m. Terms yb with b > b√mc
have α > 0 so we need not consider weak Jacobi forms with these terms in
their Fourier-Jacobi expansions.
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m b dim m b dim m b dim m b dim
1 1 1 8 1 0 12 1 0 16 1 0
2 1 1 8 2 2 12 2 2 16 2 1
3 1 1 9 1 0 12 3 3 16 3 2
4 1 1 9 2 1 13 1 0 16 4 4
4 2 2 9 3 3 13 2 0 17 1 0
5 1 0 10 1 0 13 3 1 17 2 0
5 2 1 10 2 1 14 1 0 17 3 0
6 1 1 10 3 2 14 2 0 17 4 2
6 2 2 11 1 0 14 3 1 18 1 0
7 1 0 11 2 0 15 1 0 18 2 0
7 2 1 11 3 1 15 2 1 18 3 3

15 3 2 18 4 3
19 2 0
19 3 1
19 4 1
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m b dim m b dim m b dim
20 2 0 28 3 1 37 3 0
20 3 1 28 4 3 37 4 0
20 4 4 28 5 2 37 5 0
21 2 0 29 3 0 37 6 3
21 3 1 29 4 1 38 3 0
21 4 2 29 5 1 38 4 0
22 2 0 30 3 1 38 5 1
22 3 1 30 4 2 38 6 3
22 4 2 30 5 4 39 3 0
23 2 0 31 3 0 39 4 0
23 3 0 31 4 0 39 5 1
23 4 1 31 5 1 39 6 4
24 2 1 32 3 0 40 3 0
24 3 2 32 4 3 40 4 2
24 4 4 32 5 2 40 5 3
25 3 0 33 3 0 40 6 4
25 4 1 33 4 2 41 3 0
25 5 4 33 5 1 41 4 0
26 3 0 34 3 0 41 5 0
26 4 2 34 4 1 41 6 1
26 5 2 34 5 1 42 3 0
27 3 1 35 3 0 42 4 1
27 4 1 35 4 0 42 5 2
27 5 2 35 5 3 42 6 6

36 3 1 43 3 0
36 4 3 43 4 0
36 5 2 43 5 0
36 6 7 43 6 3
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m b dim m b dim m b dim
44 3 0 50 6 2 56 6 2
44 4 0 50 7 3 56 7 5
44 5 2 51 3 0 57 4 0
44 6 3 51 4 0 57 5 0
45 3 0 51 5 1 57 6 2
45 4 1 51 6 3 57 7 2
45 5 2 51 7 3 58 4 0
45 6 4 52 3 0 58 5 0
46 3 0 52 4 0 58 6 3
46 4 0 52 5 1 58 7 2
46 5 1 52 6 3 59 4 0
46 6 3 52 7 2 59 5 0
47 3 0 53 3 0 59 6 0
47 4 0 53 4 0 59 7 1
47 5 0 53 5 0 60 4 1
47 6 1 53 6 0 60 5 3
48 3 0 53 7 2 60 6 5
48 4 2 54 3 1 60 7 3
48 5 2 54 4 0 61 4 0
48 6 6 54 5 1 61 5 3
49 3 0 54 6 6 61 6 1
49 4 0 54 7 2 61 7 0
49 5 0 55 4 0 71 4 0
49 6 2 55 5 1 71 5 0
49 7 5 55 6 2 71 6 0
50 3 0 55 7 1 71 7 1
50 4 0 56 4 0
50 5 4 56 5 0

Table 7.1: Dimension of the Space of Weak Jacobi Forms of Weight 0 and
Index m that are Slow Growing About Their Most Polar yb Term

We introduce a lower bound on the dimension of the space of weak Jacobi
forms that have slow growth about their most polar term yb, derived from
linear algebra.

Proposition 7.5. For index m and integer b, let ρ(m, b) be the number of
polar terms qnyl with 4mn−l2 ≥ −b2 and ω(m, b) be the number of such polar
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terms with α > 0. The dimension of weak Jacobi forms with slow growth
about their most polar term yb is bounded below by j(m)− ρ(m, b)−ω(m, b).

Proof. The requirement that a weak Jacobi form has Fourier expansion be-
ginning at yb can be encoded as the solution to a linear system, with respect
to a basis of J0,m and the polar terms for index m of polarity > −b2, along
with the polar term yb itself. Indeed, given a basis of J0,m, let A be the matrix
where the j-th row is the polar coefficients c(n, l) for −b2 < 4mn − l2 < 0,
along with c(0, b), of the j-th basis element. The linear system is

Ax =


0
...
0
1

 (7.26)

Of course, if the linear system has any solution x′, then all the solutions are
given by x = x′ + kerA. The dimension of the space of weak Jacobi forms
with most polar term y−b is then either 0 (no solution) or 1 + null(A) (when
there exists a solution).

The matrix A is onto if rank A = 1 + ρ(m, b), in which case the linear
system clearly has a solution. The nullspace of A is bounded below by
j(m)−(1+ρ(m, b)). When there exists a solution, the dimension of the space
of such weak Jacobi forms is bounded below by j(m) − ρ(m, b). We expect
that generically, this lower bound is optimal for b such that 1 + ρ(m, b) ≤
j(m).

Now, let us address slow growth. Recall that for fixed b, each polar term
qnyl has a value α (7.25) such that qnyl leads to fast growth in ϕ if α > 0. We
can encode as a linear system the condition for a weak Jacobi form to have
none of these terms, in which case the weak Jacobi form has slow growth.

Given a basis of weak Jacobi forms whose most polar term is given by yb,
the space of weak Jacobi forms that have slow growth about yb is the space
of solutions to the linear system

By = 0, (7.27)

where each row of B is given by the coefficients c(n, l), with α > 0, of a basis
element.

The nullspace of B is bounded below by 1 + (A) − ω(m, b). We expect
equality to happen for generic m, b when 1 + (A) > ω(m, b).
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We conclude that whenever there exists a weak Jacobi form with yb as its
most polar term, the dimension of slow growth weak Jacobi forms is bounded
below by j(m)− ρ(m, b)−ω(m, b). This lower bound is optimal whenever A
and B have maximal rank, which occurs for generic matrices.

Comparing to the actual dimensions in Table 7.1, this lower bound is
nearly always optimal. The indices m and values of b for which the lower
bound fails to be equal to the actual dimension are (m = 41, b = 6), (m =
47, b = 6), (m = 55, b = 7), (m = 59, b = 7), (m = 61, b = 6), (m = 71, b =
7), and (m = 71, b = 8). For all of these, the lower bound is zero but the
actual dimension is one. These preliminary results suggest this lower bound
is optimal for generic m, b, however we suspect this is deceptive. The lower
bound is easy to compute, so we present several scatter plots of its value for
large m.

We check whether this lower bound gives us a slow growing weak Jacobi
form for every m, b = b

√
(m)c. Under the assumption that there always

exists a weak Jacobi form with most polar term yb
√

(m)c, we have the following
scatter plot of the lower bound for index m, b = b

√
(m)c. We find the lower

bound is frequently zero for large indices m.
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Figure 7.1: Scatterplot of the lower bound for the dimension of weak Jacobi
forms that are slow growth about its most polar term yb with b = b√mc.

More generally, let us address Conjecture 1.1. Under the assumption that
there exists a weak Jacobi form with most polar term yb for dm

6
e ≤ b ≤ b√mc,

we have the following scatter plot of the lower bound for the dimension of
slow growing weak Jacobi forms of index m.
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Figure 7.2: Scatterplot of the lower bound for the dimension of weak Jacobi
forms that are slow growth about its most polar term yb, for any b.

These scatter plots show that for large m, the lower bound for the di-
mension is frequently zero, i.e. there are no slow growing weak Jacobi forms
for those indices. This suggests that Conjecture 1.1 may be false, but we
will next discuss the discovery of a large class of slow growing weak Jacobi
forms, given by theta quotients. Because of this discovery, we suspect the
lower bound fails to be optimal for most m as m becomes large.

7.2 Theta Quotients

We introduce the theta function

θ1(τ, z) = −q1/8y−1/2

∞∏
n=1

(1− qn)(1− qn−1y)(1− qny−1). (7.28)

We will find that quotients of such functions give rise to a large amount of
slow growth Jacobi forms.

The theta function θ1(τ, z) of (7.28) is not a classical integral weight and
index weak Jacobi form as it has weight 1/2 and index 1/2, so we must
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introduce a more general definition of weak Jacobi forms. In order for the
transformation laws (6.2) to give a proper action when we have half integral
weights and indices, we must make a central extension of Z2 by Z and we
obtain the integral Heisenberg group H(Z),

0→ Z→ H(Z)→ Z× Z→ 0. (7.29)

Definition 7.2. The Heisenberg group H(Z) is the group

H(Z) = {[λ, µ : κ] | λ, µ, κ ∈ Z}

with action [λ, µ : κ] · [λ′, µ′ : κ′] = [λ + λ′, µ + µ′ : κ + κ′ + λµ′ − λ′µ]. The
subgroup CZ = {[0, 0 : κ], κ ∈ Z} is the center of H(Z) and H(Z)/CZ ∼= Z2.

Definition 7.3. We define the extended Jacobi group ΓJ(Z) to be the semidi-
rect product SL(2,Z) nH(Z), with SL(2,Z) acting on H(Z) via

( a bc d ) · [x, y : κ] = [dx− cy,−bx+ ay : κ].

Earlier on, we introduced multiplier systems for half integral modular
forms. We must now do the same for Jacobi forms.

Definition 7.4. A multiplier system of ΓJ(Z) is a character ν : ΓJ(Z)→ C∗.
Characters ν of ΓJ(Z) of finite order are of the form ν((M, [x, y : κ])) =
νDη (M)×νtH([x, y : κ]) [86], where νη is the multiplier system of the Dedekind
eta function, D is some integral power 0 ≤ D < 24, vH([x, y : κ]) :=
(−1)x+y+xy+κ is the unique binary character of H(Z), and t = 0 or 1.

Note that while multiplier systems of the form νDη (M)× νtH([x, y : κ]) are
characters of the extended Jacobi group ΓJ(Z), they are not guaranteed to
descend to characters of the base Jacobi group ΓJ .

Definition 7.5. A holomorphic function ϕk,m(τ, z) : H×C→ C for k ∈ 1
2
Z,

m ∈ 1
2
Z is a weakly holomorphic Jacobi form of weight k and index m with

a multiplier system ν : ΓJ(Z)→ C∗ of finite order if ϕk,m satisfies

ϕk,m(
aτ + b

cτ + d
,

z

cτ + d
) = ν(M)(cτ + d)kei2πm

cz2

cτ+dϕk,m(τ, z),

ϕk,m(τ, z + λτ + µ) = ν([λ, µ : κ])e−i2πm(λ2τ+2λz)ϕk,m(τ, z),

(7.30)
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for ( a bc d ) ∈ SL(2,Z) and [λ, µ : κ] ∈ H(Z), and has a Fourier-Jacobi expan-
sion of the form

ϕk,m(τ, z) =
∑

n≥n0,n≡D
24

mod Z

l∈ 1
2
Z

f(n, l)qnyl. (7.31)

Here, n0 ∈ Z is a constant and ν(M) = νDη (M) with 0 ≤ D < 24. Denote by

J̃0,m the space of weakly holomorphic Jacobi forms of weight 0 and index m
with trivial multiplier system.

If the Fourier-Jacobi expansion of ϕk,m begins at n0 ≥ 0, then ϕk,m is a
weak Jacobi form with multiplier system ν. When k and m are integral and
ν is trivial, this definition agrees with the original definition of weak Jacobi
forms in Definition 6.3.

Our theta function θ1(τ, z) is a weak Jacobi form of weight 1
2

and index 1
2

with multiplier system ν3
η×νH . The quotient of weak Jacobi forms

ϕk,m(τ,αz)

ϕk′,m′ (τ,βz)

is a meromorphic Jacobi form of weight k − k′ and index α2m − β2m′. To
get a theta quotient of weight 0, we then require the same number of theta
functions in the numerator as in the denominator, and this cancels out the
multiplier system of the theta function.

Lemma 7.6. Given N > 0, there are P (N) types of holomorphic weight 0
theta quotients

N∏
j=1

θ1(τ, n1z)θ1(τ, n2z) · · · θ1(τ, nNz)

θ1(τ,m1z)θ1(τ,m2z) · · · θ1(τ,mNz)
,

where P (N) is the partition function. The partition N = r1 + · · · + rs cor-
responds to a holomorphic quotient with r1 many coprime scalers in the de-
nominator that divide n1, r2 many coprime scalers in the denominator that
divide n2, and so on.

Proof. The divisors of θ1(τ, z) are the zeros z = λ + nµ, (λ, µ) ∈ Z2. This

implies for positive integers k, k′ that a quotient θ1(τ,kz)
θ1(τ,k′z)

is holomorphic so

long as {z = 1
k′

(λτ + µ) | λ, µ ∈ Z} ⊂ {z = 1
k
(λτ + µ) | λ, µ ∈ Z} i.e. k′ | k.

This argument easily generalizes to the case of multiple theta quotients.
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To illustrate the necessity of coprimality among the partitionedm1, . . . ,mr

dividing n, consider the nonholomorphic theta quotient

θ1(τ, 8z)θ1(τ, z)

θ1(τ, 4z)θ1(τ, 2z)
. (7.32)

Here m1 = 4 and m2 = 2 divide n = 8 but are not coprime. We have a
simple zero at {z = 1

2
(λτ + µ) | µ odd, λ ∈ Z} from the numerator θ1(τ, 8z)

but a double pole at the same points {z = 1
2
(λτ + µ) | µ odd, λ ∈ Z} from

the denominators θ1(τ, 4z) and θ1(τ, 2z).
We give some examples that should clarify the above prescription:

holomorphic ; not holomorphic

θ1(τ, 6z)θ1(τ, 5z)

θ1(τ, 2z)θ1(τ, 3z)
,
θ1(τ, 16z)θ1(τ, 8z)

θ1(τ, 4z)θ1(τ, 2z)
;

θ1(τ, 4z)θ1(τ, 5z)

θ1(τ, 2z)θ1(τ, 2z)
.

The denominator scaling factors must divide some numerator scaler, which
occurs in all the examples above. In the first example, the theta quotient is
of partition type 2 = 2+0, where 2, 3 are coprime and divide 6. In the second
example, the theta quotient is of partition type 2 = 1 + 1 where 4 divides 16
and 2 divides 8 (we could also say 4 divides 8 and 2 divides 16). However,
in the third example, 2, 2 divide 4 but are not coprime so the quotient fails
to be holomorphic.

We are interested in weight 0 weak Jacobi forms with trivial multiplier
systems that are theta quotients of scaled versions θ1(τ, αz) of (7.28), with α
a positive integer. We want to know which theta quotients have slow growth.

7.3 Slow growth of single theta quotient

We examine what conditions on the scaling factors α and β will result in slow
growth about the most polar term yb = y

1
2

(α−β) in the single theta quotient

ϕ0, 1
2

(α2−β2)(τ, z) =
θ1(τ, αz)

θ1(τ, βz)
. (7.33)

We prove that the pairs of scaling factors (α, β) that produce a holomorphic
slow growing theta quotient of weight zero and integral index are given by
the set {

(
(k + 1)β, β

)
| k even or β even}.
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From [58], we know slow growth about yb is equivalent to regularity at
τ → i∞ of the collection of modular forms χr,s(τ), 0 ≤ r, s ≤ b − 1 coming
from specializations of the weak Jacobi form ϕ0, 1

2
(α2−β2).

The specializations χr,s(τ) of (7.22) for 0 ≤ r, s ≤ b − 1 of the quotient
(7.33) are

χr,s(τ) =
q
α2

2
r2

b2 θ1(τ, α( r
b
τ + s

b
))

q
β2

2
r2

b2 θ1(τ, β( r
b
τ + s

b
))

=
−q α

2

2
r2

b2 q1/8q−
α
2
r
b e−2πiα

2
s
b

−q β
2

2
r2

b2 q1/8q−
β
2
r
b e−2πiβ

2
s
b

×

∞∏
n=1

(1− qn)(1− qn−1qα
r
b e2πiα s

b )(1− qnq−α rb e−2πiα s
b )

∞∏
n=1

(1− qn)(1− qn−1qβ
r
b e2πiβ s

b )(1− qnq−β rb e−2πiβ s
b )
.

(7.34)

Regularity of the specialized theta quotient (7.34) as τ → i∞ is equivalent
to it having only nonnegative powers of q in its Fourier expansion. Thus, we
only need compare the lowest powers of q in the numerator and denominator:
the lowest power of q in the numerator of χr,s(τ) is greater than or equal to
the power of q in the denominator if and only if χr,s(τ) is regular at i∞.
Note for χ0,s(τ), this approach does not work as naive computation leads to
an undefined 0/0 quotient. However, this is easily fixed as the Fourier-Jacobi
expansion of the form ϕ0, 1

2
(α2−β2)(τ, z) is nonnegative in q and for χ0,s(τ), its

variable y is specialized to e2πi s
b which does not modify the powers of q. So

χ0,s(τ, z) is always regular at i∞.

The term with the lowest power of q in q
κ2

2
r2

b2 θ1(τ, κ( r
b
τ + s

b
)) is given

by multiplying out all qn−κ
r
b with negative n− κ r

b
in the third factor of the

product formula (7.28). The lowest power of q in the specialization (7.34) is
then

q
α2

2
r2

b2
+ 1

8
−α

2
r
b
+
bαr
b
c∑

n=1
n−α r

b

q
β2

2
r2

b2
+ 1

8
−β

2
r
b
+
bβ r
b
c∑

n=1
n−β r

b

= q
α2−β2

2
r2

b2
−α−β

2
r
b
+
bαr
b
c(bαr

b
c+1)

2
−
bβ r
b
c(bβ r

b
c+1)

2
−α r

b
bα r

b
c+β r

b
bβ r

b
c. (7.35)
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The condition for the theta quotient (7.33) to have slow growing f0,b(n, l),
for b = 1

2
(α− β), is then

α2 − β2

2

r2

b2
− α− β

2

r

b
+
bα r

b
c(bα r

b
c+ 1)

2
− bβ

r
b
c(bβ r

b
c+ 1)

2

−αr
b
bαr
b
c+ β

r

b
bβ r
b
c ≥ 0, 1 ≤ r ≤ b− 1.

(7.36)

Proposition 7.7. The single theta quotients that have slow growing f0,b(n, l)
about their most polar term yb are given by quotients of the form

θ1(τ, (k + 1)βz)

θ1(τ, βz)
, (7.37)

for k even or β even. For such a quotient, the most polar term is ykβ/2 and

the index is β2k(k+2)
2

.

Proof. For the quotient (7.33) to be holomorphic on H × C, we must have

β | α so we may write α = (k+1)β. To obtain an integral weight t = β2(k2+2k)
2

,
we must have that β is even or k is even.

Slow growth is equivalent to the condition (7.36). We have b = kβ
2

and
the left side of (7.36) may be written as

2
k + 2

k
r2 − r +

b(k + 1)2r
k
c(b(k + 1)2r

k
c+ 1)

2
− b

2r
k
c(b2r

k
c+ 1)

2

−(k + 1)
2r

k
b(k + 1)

2r

k
c+

2r

k
b2r
k
c, 0 < r <

kβ

2
.

(7.38)

Using bk+1
k

2rc = b2r + 2r
k
c = 2r + b2r

k
c, (7.38) reduces to 0 for each value of

r. Thus, we have slow growth.

7.4 Slow growth of multiple theta quotients

Having classified the slow growing single theta quotients in the previous
section, we now consider the general case with multiple theta quotients.

The same regularity argument preceding (7.35) shows that the condition
for the theta quotient

N∏
j=1

θ1(τ, n1z)θ1(τ, n2z) · · · θ1(τ, nNz)

θ1(τ,m1z)θ1(τ,m2z) · · · θ1(τ,mNz)
(7.39)
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to be slow growth about yb = y
1
2

(
N∑
j=1

nj−mj)
is

N∑
j=1

n2
j −m2

j

2

r2

b2
− nj −mj

2

r

b
+
bnj rbc(bnj rbc+ 1)

2
− bmj

r
b
c(bmj

r
b
c+ 1)

2

−nj
r

b
bnj

r

b
c+mj

r

b
bmj

r

b
c ≥ 0, 1 ≤ r ≤ b− 1.

(7.40)

Note that unlike the case of single theta quotients, the most polar term is
not guaranteed to be yb, indeed some qayb for a > 00 may be the most polar
term.

We computed all theta quotients up to N = 7 quotients for index 1 ≤
m ≤ 61 and checked them for slow growth about yb using the condition

(7.40). For each index m and b = 1
2

(
N∑
j=1

nj −mj

)
, we found the dimension

of the space of theta quotients that have slow growth at yb. We present our
results in the following table, and we include the corresponding dimension
of weak Jacobi forms that are slow growing about their most polar term yb.
Note that the two dimensions presented are not directly comparable, since a
theta quotient may not have yb as its most polar term.
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m b slow dim θ dim m b slow dim θ dim
3 1 1 1 22 3 1 1
4 1 1 1 22 4 2 2
6 1 1 1 24 2 1 2
6 2 2 1 24 3 2 3
7 2 1 1 24 4 4 4
8 2 2 1 25 4 1 1
9 2 1 1 25 5 4 2
9 3 3 1 26 4 2 1
10 2 1 1 26 5 2 1
10 3 2 1 27 3 1 2
11 3 1 1 27 4 1 1
12 2 2 2 27 5 2 2
12 3 3 2 28 3 1 2
13 3 1 1 28 4 3 3
14 3 1 1 30 3 1 2
15 2 1 1 30 4 2 3
15 3 2 2 30 5 4 4
16 2 1 1 31 5 1 1
16 3 2 2 32 4 3 2
16 4 4 2 32 5 2 1
17 4 2 1 33 4 2 2
18 2 0 1 33 5 1 1
18 3 3 3 34 4 1 2
18 4 3 2 34 5 1 1
19 3 1 1 35 5 3 1
19 4 1 1 36 3 1 3
20 3 1 1 36 4 3 4
20 4 4 2 37 6 3 3
21 3 1 1 38 6 3 3
21 4 2 2 39 3 0 1

Table 7.2: The dimension of slow growing theta quotients compared to the
dimension of slow growing weak Jacobi forms, about a fixed yb and index m.

In [60, Section 3.2], the class of weak Jacobi forms from the A,D and
E minimal models were proved to be slow growing about their most polar
term. We now give a simplified proof, as another application of (7.40).
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Example 7.2. The following weak Jacobi forms from the A,D, and E min-
imal models have slow growth about yb.

ϕAk+1(τ, z) =
θ1(τ, (k + 1)z)

θ1(τ, z)
, b =

k

2
, t =

k(k + 2)

2
: A-series, k even,

ϕAk+1(τ, z) =
θ1(τ, 2(k + 1)z)

θ1(τ, 2z)
, b = k, t = k(k + 2) : A-series, k odd,

ϕDk/2+2(τ, z) =
θ1(τ, k2 z)θ1(τ, k+4

4 z)

θ1(τ, k4 z)θ1(τ, z)
,b =

k

4
, t =

k(k + 2)

8
:D-series, k ≡ 0 mod 4,

ϕDk/2+2(τ, z) =
θ1(τ, kz)θ1(τ, k+4

2 z)

θ1(τ, k2 z)θ1(τ, 2z)
, b =

k

2
, t =

k(k + 2)

2
:D-series, k ≡ 2 mod 4,

ϕE6(τ, z) =
θ1(τ, 8z)θ1(τ, 9z)

θ1(τ, 4z)θ1(τ, 3z)
, b = 5, t = 60 : E6,

ϕE7(τ, z) =
θ1(τ, 6z)θ1(τ, 7z)

θ1(τ, 5z)θ1(τ, 3z)
, b = 4, t = 36 : E7,

ϕE8(τ, z) =
θ1(τ, 12z)θ1(τ, 10z)

θ1(τ, 5z)θ1(τ, 3z)
, b = 7, t = 105 : E8.

Proof. The A-type weak Jacobi forms are slow growth by Proposition 7.7 and
the E-type weak Jacobi forms can easily be computationally checked using
the criterion (7.40) for slow growth. For the D-type weak Jacobi forms, the
formula (7.40) is equal to zero for all 1 ≤ r ≤ b − 1, after inputting the
respective scaling factors and simplifying.

It was conjectured in [60] that the weak Jacobi forms for theAk+1 Kazama-
Suzuiki model with M = 2 have slow growth about their most polar yb term.
This was tested numerically up to k = 10. We now prove this conjecture.

Lemma 7.8. The weak Jacobi form corresponding to the M = 2 Ak+1

Kazama-Suzuiki model defined as

ϕ2,k(τ, z) =
θ1(τ, (k + 1)z)

θ1(τ, z)

θ1(τ, (k + 2)z)

θ1(τ, 2z)
, k ∈ Z>0 (7.41)

has slow growth about the polar term yk.

Proof. We use our criterion (7.40). ϕ2,k has slow growth about yk if and only
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if for all 1 ≤ r ≤ k− 1, the following expression is greater than or equal to 0:

(k + 1)2 − 1

2

r2

k2
− (k + 1)− 1

2

r

k
+

(k + 2)2 − 22

2

r2

k2
− k + 2− 2

2

r

k

+
b(k + 1) r

k
c(b(k + 1) r

k
c+ 1)

2
− b

r
k
c(b r

k
c+ 1)

2
− (k + 1)

r

k
b(k + 1)

r

k
c+

r

k
b r
k
c

+
b(k + 2) r

k
c(b(k + 2) r

k
c+ 1)

2
−b2

r
k
c(b2 r

k
c+ 1)

2
−(k+2)

r

k
b(k+2)

r

k
c+2

r

k
b2 r
k
c.

(7.42)

To simplify the expression, we have 0 < r
k
< 1 for each r so that

b(k + 1)
r

k
c = r, b(k + 2)

r

k
c = r + b2 r

k
c. (7.43)

This reduces (7.42) to

k2 + 2k

2

r2

k2
− r

2
+
k2 + 4k

2

r2

k2
− r

2
+
r(r + 1)

2
− (k + 1)

r2

k

+
(r + b2 r

k
c)(r + b2 r

k
c+ 1)

2
−b2

r
k
c(b2 r

k
c+ 1)

2
−(k+2)

r

k
(r+b2 r

k
c)+2

r

k
b2 r
k
c.

(7.44)

Now, a simple matter of cancellations gives us that the above expression
equals 0 for each value of r.



Chapter 8

Slow Growth around qayb

We consider the general case of growth behavior for a weight 0 weak Jacobi
form with maximal polarity at the term qayb in this chapter. From now on,
it is understood that a > 0, as we discussed the case a = 0 in the previous
chapter.

8.1 Overview and Results

For a weight 0 weak Jacobi form ϕ0,m(τ, z), define the sum of its Fourier-
Jacobi coefficients

fa,b(n, l) =
∑
r∈Z

c(rn+ ar2, l − br)

=

br+c∑
r=dr−e

c(nr + ar2, l − br),
(8.1)

where the finite sum comes from the polarity constraint of qay−b. Set −∆0 =
4ma− b2 so ∆0 is positive. The constraint is

4m(rn+ ar2)− (l − br)2 ≤ −∆0. (8.2)

Here, r± = (2mn+ bl ±
√

(2mn+ bl)2 + ∆0(∆0 − l2))/∆0.
The authors of [59] classified the asymptotic behavior of the sums f0,b(n, l)

as functions of n, l but left open the question of the possible behavior of
fa,b(n, l) as it presents some analytical and numerical challenges.

143
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In this chapter, we present some analytical and numerical results of
fa,b(n, l) for low index m and with varying values of a, b.

As in [51, Appendix B], the asymptotic growth of c(n, l) for large dis-
criminant is

c(n, l) ∼ exp π

√
|∆min|
t2

(4tn− l2), (8.3)

where ∆min is the maximal polarity of the weak Jacobi form. Proceeding
as in [58, Section 4.2], if there is not sufficient cancellation in the sum of
fa,b(n, l) then fa,b(n, l) behaves the same as the largest term in fa,b(n, l) is
c(nr + ar2, l − br) of maximal discriminant, occurring when rmax = 2tn+lb

b2−4ta
.

We then expect generic fa,b(n, l) to grow as

fa,b(n, l) ∼ c(nrmax + ar2
max, l − brmax)

∼ exp 2π

√
|∆min|

m(b2 − 4ma)
(mn2 + al2 + bnl).

(8.4)

Just as for f0,b(n, l), we discover that cancellation may occur. Let us continue
to adopt the same definition for slow growth of fa,b(n, l).

Definition 8.1. A weak Jacobi form ϕ0,m has slow growth about qay−b if
fa,b(n, l) has subexponential growth.

The conditions for slow growing f0,b(n, l) are well-understood [58, Section
5.1]. For fa,b(n, l), the general case is not currently known. We discover
some surprising results in this direction. When fa,b(n, l) is slow growth, we
numerically find for indexes 5 ≤ m ≤ 9 that they exhibit the same behavior
as in the case of slow growth f0,b(n, l). That is,

(1) Numerically, we find fa,b(n, l) assumes only finitely many distinct values
when it is slow growth.

(2) We numerically find a nonvanishing constraint on fa,b(n, l) analogous
to (7.24) for f0,b(n, l). Specifically, for fa,b(n, l) that are slow growing,
we have numerically found integers e, f, g, h ∈ Z such that

fa,b(n, l) =

{
nonzero : en+ fl = 0 or gn+ hl = 0

0 : else.
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Index (term,polarity) dim wJf dim slow growth
5 (q1y5,5) 2 1
6 (q1y5,1) 1 1
7 (q1y6,8) 2 1
8 (q1y6,4) 2 2
9 (q2y9,9) 3 2
10 (q1y7,9) 3 2
11 (q1y7,5) 1 1
11 (q2y10,12) 3 2
12 (q2y10,4) 2 2
12 (q1y8,16) 5 2

Table 8.1: Weak Jacobi Forms Slow Growth About Its Most Polar qayb Term

Conjecture 8.1. We conjecture that the behavior discovered in (2) holds
true for all weak Jacobi forms that are slow growing at fa,b(n, l).

Despite our ’fast’ algorithm, the runtimes for computing the values fa,b(n, l)
is still lengthy when n, l are large or when the underlying weak Jacobi form
has large index m. Nevertheless, because of the features (1) and (2) that
fa,b(n, l) are found to exhibit, it is easy to detect its growth behavior numer-
ically even from data with only small n and l.

For a few select indexes m and polar terms qayb term with polarity 4ma−
b2, we numerically found the dimension of the space of weak Jacobi forms that
were slow growth about its most polar term qayb. We put our findings in the
table below. In the table, we also record in the third column the dimension
of the space of weak Jacobi forms with most polar term qayb, regardless of
its growth behavior.

We may compare the growth behaviors of a weak Jacobi form about terms
qayb and yb of the same polarity by referring to Table 8.1 above and to Table
7.1. We have found weak Jacobi forms that exhibit slow growth about one
term yet fast growth about another term of the same polarity. This can
occur in both directions. We found index 9 has a weak Jacobi form with
slow growth at y3 but fast growth at q2y9. In the other direction, index 12
has a weak Jacobi form with slow growth at q1y8 but fast growth at y4.

We summarize how the non-vanishing constraints for slow growing f0,b(n, l)
of ϕ0,m(τ, z) arise. The generating functions for f0,b(n, l) are given as sums
of weight 0 modular forms χr,s(τ) as in (7.23). f0,b(n, l) is slow growth if and
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only if all χr,s(τ) are holomorphic, in which case each χr,s(τ) is constant so
that only the q0 terms of the generating functions Fnb,k(τ) are nonvanishing.
From (7.21), one may verify that f0,b(n, l) appears as the constant term of
some Fnb,k if and only if n = 0 or mn + bl = 0, giving the nonvanishing
condition

f0,b(n, l) 6= 0 only if n = 0 or mn+ bl = 0. (8.5)

We take these findings as evidence for Conjecture 8.1. Furthermore, our
results suggest that an analogue for fa,b(n, l) of (7.23) for f0,b(n, l) may hold.
That is, there exist generating functions for fa,b(n, l) in terms of modular
functions and fa,b(n, l) is slow growing if and only if these modular functions
are holomorphic.

Currently, no generating functions for general fa,b(n, l) are known in the
case a 6= 0. The generating function for fa,b(n, l) cannot be given purely in
terms of specializations e2πim(α2τ)ϕ0,m(τ, ατ + β) of the underlying weak Ja-
cobi form. As seen in (7.16), the arguments of the Fourier-Jacobi coefficients
in these specializations are linear over its summation indices, i.e. we have
the appearance of

∑
n∈Z

∑
l∈Z
c(n, l) in its formula. For

f0,b =
∑
r∈Z

c(nr, l − br),

the arguments of the Fourier-Jacobi coefficients are linear in its summation
index r so there existed a λ that allowed us to rewrite

c(nr, l − br) = c(n+ lλ+mλ2, l + 2mλ)

to the form we desired.
However, for

fa,b(n, l) =
∑
r∈Z

c(rn+ ar2, l − br),

the arguments of the Fourier-Jacobi coefficients are quadratic in its summa-
tion index r and there is no choice of λ that linearizes the arguments, as
required in the specialization e2πim(α2τ)ϕ0,m(τ, ατ + β).

That being said, surprisingly, for the indexes 6 and 8, we have analyt-
ically discovered generating functions for fa,b(n, l) of ϕ0,m(τ, z) in terms of
specializations of Wm′(ϕ0,m), where Wm′ is an Atkin-Lehner involution.



CHAPTER 8. SLOW GROWTH AROUND QAY B 147

8.2 Analytical Results

8.2.1 Atkin-Lehner Involution

We present the definition of the Atkin-Lehner involutions [56, (4.39)].

Definition 8.2. For every m1 such that m = m1m2 with m1,m2 coprime,
the Atkin-Lehner involution Wm1 : J̃k,m → J̃k,m is defined in terms of the
theta decomposition of Jacobi forms as the map

Wm1 :
∑

l mod 2m

hl(τ)θm,l(τ, z) 7→
∑

l mod 2m

hl∗(τ)θm,l(τ, z), (8.6)

(or equivalently in terms of their Fourier-Jacobi coefficients, by c(∆, l) 7→
c(∆, l∗) ) where the involution l 7→ l∗ on Z/2mZ is defined by

l∗ ≡ −l( mod 2m1), l∗ ≡ +l( mod 2m2). (8.7)

In general, the operator Wm1 may not preserve the space of weak Jacobi forms
as it may send a weak Jacobi form to only a weakly holomorphic Jacobi form.

We will also need a generalization of the Atkin-Lehner involution. An
Atkin-Lehner involution is essentially a permutation θl 7→ θl∗ of theta func-
tions in the theta decomposition of φk,m. We may generalize the involution by
allowing ourselves to consider any permutation of the theta decomposition.

8.2.2 Index 6

For index 6, the qayb term with smallest polarity is q1y5 of polarity 1. This
has the same polarity as the term y1. The next least polar qayb term is
q1y6 with large polarity 12. Because of the large polarity of q1y6, we restrict
ourselves to considering growth behavior about the term q1y5.

For a weak Jacobi form ϕ0,6, we are able to relate f1,5(n, l) to f0,1(n′, l′)
through an Atkin-Lerner involution W3 and to write a generating function
for f1,5(n, l) using specializations of W3(ϕ0,6). In doing so, we show that the
growth behavior of ϕ0,6 about y1 is equivalent to its growth behavior about
q1y5.

Proposition 8.2. For a weak Jacobi form ϕ0,6, the growth behavior at y1 is
equivalent to the growth behavior at q1y5.
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Proof. Recall

f1,5(n, l) =
∑
r∈Z

c(nr + r2, l − 5r). (8.8)

The key observation is that the coefficient c(nr + r2, l − 5r) has the same
polarity as c ((2n+ l)(r + 3n+ 2l),−9n− 5l − (r + 3n+ 2l)). Moreover,∑

r∈Z

c ((2n+ l)(r + 3n+ 2l),−9n− 5l − (r + 3n+ 2l))

=
∑
r̂∈Z

c((2n+ l)r̂,−9n− 5l − r̂) (8.9)

and the latter sum appears as

f0,1(2n+ l,−9n− 5l) =
∑
r̂∈Z

c((2n+ l)r̂,−9n− 5l − r̂). (8.10)

However, we cannot say c(nr + r2, l − 5r) is equal to

c ((2n+ l)(r + 3n+ 2l),−9n− 5l − (r + 3n+ 2l))

since the second arguments in these Fourier-Jacobi coefficients do not have
the same modulo 12 value. But perhaps surprisingly, the second argument
modulo 12 of the former is five times the latter, i.e. 5(l − 5r) mod 12 ≡
−12n− 7n− r mod 12.

Consider the theta decomposition

ϕ0,m(τ, z) =
∑

µ mod 2m∈Z/2mZ

hµ(τ)θm,µ(τ, z). (8.11)

The second arguments mod 12 tells us that for

c ((2n+ l)(r + 3n+ 2l),−9n− 5l − (r + 3n+ 2l))

appearing in hµθ6,µ, c(nr + r2, l − 5r) instead appears in h5µθ6,µ.
We now establish the relationship between f1,5(n, l) and f0,1(n′, l′). We see

that f1,5(n, l) is related to f0,1(2n + l,−9n − 5l) as follows. The generating
function for f0,1(n′, l′) is given by the specialization ϕ0,6(τ, 0) as in (7.23).
From the discussion above, we see that for f0,1(2n+ l,−9n−5l) appearing as
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the coefficient of some qk of ϕ0,6(τ, 0), f1,5(n, l) appears as the coefficient of
the same qk of (W3ϕ0,6)(τ, 0) for the Atkin-Lehner involution W3. This also
means that the generating function for f1,5(n, l) is given by (W3ϕ0,6)(τ, 0).

We recall that the Atkin-Lehner involution does not preserve the space
of weak Jacobi forms as it may send a weak Jacobi form to only a weakly
holomorphic Jacobi form. To see W3(ϕ0,6) remains a weak Jacobi form,
we must verify that the numerators in the powers of the terms q(12k+µ)2/24,
q(12k+µ∗)2/24 of the respective theta functions θ6,µ, θ6,µ∗ span the same modulo
24 set. This ensures that hµ∗θ6,µ does not have any fractional powers of q, so
that W3(ϕ0,6) remains a weak Jacobi form.

Here, W3 simply sends µ to 5µ and we have (12k + µ)2 ≡ 1 mod 24 as
well as (12k+ 5µ)2 ≡ 1 mod 24. Thus W3 takes weak Jacobi forms to weak
Jacobi forms.

From this, we may conclude that (W3ϕ0,6)(τ, 0) is holomorphic if and
only if ϕ0,6(τ, 0) is holomorphic. Since these specializations are the generating
functions for f1,5(n, l) and f0,1(n′, l′), respectively, and f1,5(n, l) and f0,1(n′, l′)
are slow growing if and only if their generating functions are holomorphic,
this proves the proposition.

The proof accomplishes more than the statement of the proposition. We
have also given the generating function of f1,5(n, l), which we repeat in the
following corollary.

Corollary 8.3. The generating function for f1,5(n, l) is (W3ϕ0,6)(τ, 0). Mor-
ever, the space of weak Jacobi forms with maximal polarity 1 that are slow
growth at q1y5 is one-dimensional, spanned by θ1(τ,4z)

θ1(τ,2z)
with its f1,5(n, l) given

by

f1,5(n, l) =

{
−2 2n+ l = 0 or 3n+ l = 0

0 else .
(8.12)

Proof. The proof of Proposition 8.2 establishes that the generating function
for f1,5(n, l) is (W3ϕ0,6)(τ, 0). Moreover, the proof also shows that f1,5(n, l) is
the coefficient of q0 in its generating function if and only if f0,1(2n+l,−9n−5l)
is the coefficient of q0 in its generating function. We have that f0,1(n′, l′) is
the coefficient of q0 whenever n′ = 0 or 6n′+ l′ = 0 by (7.24), under the shift
n′ = 2n+ l, l′ = −9n− 5l this becomes 2n+ l = 0 or 3n+ l = 0.

Referring to Table 7.1, the space of weak Jacobi forms with maximal
polarity -1 is one-dimensional. After computing a basis of J0,6, one may
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see this space is spanned by θ1(τ,4z)
θ1(τ,2z)

. A quick calculation of the q0 term of

(W3
θ1(τ,4z)
θ1(τ,2z)

)(τ, 0) gives us the values of f1,5(n, l).

8.2.3 Index 8

For index 8, the qayb term with the smallest polarity is q1y6 of polarity 4.
This has the same polarity as the term y2. The space of weak Jacobi forms
with least polar term given by q1y6 is two-dimensional, spanned by

−4φ0,2φ
2
0,3 − φ4

0,2 + φ0,1φ
2
0,2φ0,3,

60φ0,2φ
2
0,3 + 19φ4

0,2 − 23φ0,1φ
2
0,2φ0,3 + 4φ2

0,1φ
2
0,3.

Both are slow growing at y2 and numerically, we found they were also slow
growing at q1y6. We also discovered analytically a generating function for
f1,6(n, 2l), which is half of the total f1,6(n, l) values.

Here, we need the generalized version of the Atkin-Lehner involution to
obtain the generating function. Indeed, for index 8 = 23 there are no Atkin-
Lehner involutions. Recall that an Atkin-Lehner involution is a permutation
θl 7→ θl∗ of theta functions in the theta decomposition of φk,m. We allow
ourselves to consider any permutation, in particular the permutation σ =
(2 6)(10 14).

Definition 8.3. For the permutation σ = (2 6)(10 14), define

φ̂0,8(τ, z) =

( ∑
µ6=2,6,10,14

hµ(τ)

)
θ8,µ + h2(τ)θ8,6 + h6(τ)θ8,2

+ h10(τ)θ8,14 + h14(τ)θ8,10.

(8.13)

In other words, we modify φ0,8 by permuting θ2 with θ6 and θ10 with θ14,
keeping the other theta functions fixed.

The generating functions for f1,6(n, 2l) are given in terms of specializa-
tions of the permutation

∑
µ mod 16

hσ(µ)(τ)θ8,µ(τ, z) of the theta decomposition

of its underlying index 8 weak Jacobi form ϕ0,8. These generating functions
are surprisingly similar to the ones for f0,2(n, l) and we now describe them.

Lemma 8.4. For a weak Jacobi form φ0,8(τ, z), we have the following gen-
erating functions for f(n, 2l):

1

2
(χ0,0(τ) + χ0,1(τ)) =

1

2
(φ0,8(τ, 0) + φ0,8(τ, 1/2))
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generates f0,2(2n, 2l) and

1

2
(χ1,0(τ) + χ1,1(τ)) =

1

2
(q2φ(τ, τ/2) + q2φ(τ, (τ + 1)/2))

generates f0,2(2n+ 1, 2l).

1

2
(χ0,0(τ) + χ0,1(τ)) =

1

2
(φ̂(τ, 0) + φ̂(τ, 1/2))

generates f1,6(2n, 2l) and

1

2
(χ1,0(τ) + χ1,1(τ)) =

1

2
(q2φ̂(τ, τ/2) + q2φ̂(τ, (τ + 1)/2))

generates f1,6(2n+ 1, 2l).

Proof. The generating functions for f0,2(n, l) are given by (7.23). For f1,6(n, l),
the key observation is that the coefficient c(nr+r2, l−6r) has the same polar-
ity as c

(
(2n+ l)(r + n+ 3

4
l),−6n− 7

2
l − 2(r + n+ 3

4
l)
)

and the rest follows
as in the proof of Proposition 8.2.

For the weak Jacobi forms that have slow growing f1,6(n, l), we may
analytically compute f1,6(n, 2l) from Lemma 8.4. For the remaining values
of f1,6(n, l), we computed f1,6(n, l) for these forms at following values of (n, l):

(n = 0,−10 ≤ l ≤ 10),

(n = 1,−14 ≤ l ≤ −4 and − 2 ≤ l ≤ 8),

(n = 2,−17 ≤ l ≤ −8 and − 4 ≤ l ≤ 5),

(n = 3,−20 ≤ −12 and − 6 ≤ −2),

(n = 4,−23 ≤ l ≤ −16 and − 8 ≤ l ≤ −1),

(n = 5,−16 ≤ l ≤ −20 and − 10 ≤ l − 4),

(n = 6,−29 ≤ l ≤ −24 and − 12 ≤ l ≤ −7), and

(n = 7,−33 ≤ l ≤ −28 and − 14 ≤ l − 9).
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For these data points, we have a nonvanishing condition as in the case of
f0,b(n, l). Indeed, for slow growing f1,6(n, l) to be nonzero, we found we must
have 2n + l = 0 or 4n + l = 0. Again, for f1,6(n, 2l), these values follow
analytically from the generating functions.

For −4φ0,2φ
2
0,3 − φ4

0,2 + φ0,1φ
2
0,2φ0,3, we found

f1,6(n, l) =

{
192 2n+ l = 0 or 4n+ l = 0

0 otherwise .
(8.14)

For 60φ0,2φ
2
0,3 + 19φ4

0,2 − 23φ0,1φ
2
0,2φ0,3 + 4φ2

0,1φ
2
0,3, we found

f1,6(n, l) = 0. (8.15)

8.3 Numerical Results

Up until now, our results have been analytical. In this section, we present our
numerical results for small index m. As mentioned previously, it is easy in
practice to check whether a weak Jacobi form is slow growth or fast growth,
even from small values of n, l.

For index 5, the qayb term with smallest polarity is q1y5. The space of
weak Jacobi forms with q1y5 as the most polar term is spanned by

φ0,1φ
2
0,2 − φ2

0,1φ0,3,

φ0,1φ
2
0,2 − φ2

0,1φ0,3 + 4φ0,2φ0,3.

Only the latter form is slow growth.
For the slow growing φ0,1φ

2
0,2−φ2

0,1φ0,3 + 4φ0,2φ0,3, we computed f1,5(n, l)
for the following values of (n, l):

(n = 0,−16 ≤ l ≤ 0),

(n = 1,−19 ≤ l ≤ 14),

(n = 2,−21 ≤ l ≤ −7),

(n = 3,−24 ≤ l ≤ −11),

(n = 4,−27 ≤ l ≤ −15),

(n = 5,−7 ≤ l ≤ 5),
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(n = 6,−8 ≤ l ≤ −2),

(n = 7,−35 ≤ l ≤ −26).

In every instance, we found for the slow growing Jacobi form that

f1,5(n, l) = 0.

Index 7 has an interesting slow growth Jacobi form. The qayb term with
smallest polarity is q1y6 of polarity 8, which exceeds the index 7. In [61,
(5.5)], it was proven that all weak Jacobi forms are fast growth about terms
yb with polarity exceeding the index. We might then expect there to always
be fast growth about any term qayb of polarity exceeding the index, but we
find this not to be true.

The space of weak Jacobi forms with most polar term q1y6 is two-dimensional,
spanned by

4φ2
0,2φ0,3 + φ0,1φ

3
0,2 − φ2

0,1φ0,2φ0,3,

4φ0,1φ
2
0,3 + φ0,1φ

3
0,2 − φ2

0,1φ0,2φ0,3.

Only 4φ0,1φ
2
0,3 + φ0,1φ

3
0,2 − φ2

0,1φ0,2φ0,3 is found to be slow growth at q1y6.
We computed the values of f1,6(n, l) for the following (n, l):

(n = −2, 8 ≤ l ≤ 28),

(n = −1, 4 ≤ l ≤ 26),

(n = 0, 0 ≤ l ≤ 22),

(n = 1, 0 ≤ l ≤ 20),

(n = 2,−4 ≤ l ≤ 16),

(n = 3,−5 ≤ l ≤ 13).

At each data point, we always found for the slow growing Jacobi form that

f1,6(n, l) = 0. (8.16)

We are able to compute fa,b(n, l) only for small values of (n, l) at the
indexes 9, 10, 11, 12. We describe the results we found.



CHAPTER 8. SLOW GROWTH AROUND QAY B 154

For index 9, the term qayb of least polarity is q2y9 of polarity 9 with the
same polarity as y3. Numerically, we found that for slow growing f2,9(n, l)
that

f2,9(n, l) =

{
nonzero : 3n+ l = 0 or 3n+ 2l = 0

0 : else .
(8.17)

We found that there were weak Jacobi forms, e.g. the form φ0,1φ
4
0,2 −

2φ2
0,1φ

2
0,2φ0,3 + φ3

0,1φ
2
0,3, that had slow growth at y3 but not at q2y9.

For index 10, we examined the term q1y7 of polarity 9. Again, we found
that slow growth at y3 does not guarantee slow growth at q1y7. An example
is given by 4φ2

0,2φ
2
0,3 + φ5

0,2 − φ0,1φ
3
0,2φ0,3 which is slow growth at y3 but fast

growth at q1y7. Numerically, we found for slow growing forms that

f1,7(n, l) =

{
nonzero : 2n+ l = 0 or 5n+ l = 0

0 : else.
(8.18)

For index 11, we examined the term q1y7 of polarity 5 and found for all
data points (n, l) of our slow growing form that

f1,7(n, l) = 0. (8.19)

For index 12, we found that the space of weak Jacobi forms with slow
growth about its most polar term q1y8 has dimension two. This is surprising
because the polarity of q1y8, 16, is quite higher than the index 12. This
might also be surprising since these weak Jacobi forms are fast growth about
the term y4, which has the same polarity as q1y8.



Appendix A

CODE FOR
IMPLEMENTATION

In the appendix, we present the important parts of the Mathematica code
used for the numerical computations of Part II. We include the code for
implementing in Mathematica the Gritsenko generating functions for a basis
of J0,m, the space of weak Jacobi forms of index m, as well as the code for
computing the matrix of polar coefficients for this basis.

There are several generating functions for the space J0,m of weak Jacobi
forms of weight 0 and index m, as well as several ways of implementing
them. One choice of generating functions uses the Eisenstein series E4,1,
E6,1, and certain modular functions as in [76]. Another choice, which we find
runs faster, is the generating functions φ0,1, φ0,2, φ0,3 of [77]. These functions
admit several equivalent formulations.

The following Mathematica code gives an acceptably fast implementation
for computing the Fourier-Jacobi expansion of φ0,1, φ0,2 and φ0,3, the gen-
erators of the Gritsenko basis for J0,m. This code uses the formulas for the
generators, given in [77, Equation (2.7)].

M

(*This code defines the generating functions ϕ0,1, ϕ0,2, ϕ0,3.

We take the expansion of y all the way to the polarity bound 4mn-l^2 <

-m^2. This is necessary because a smaller series expansion of y will return O(y^small) for some relevant terms.*)

ζ00[N_] := Series[Sum[q^(n^2/2) y^n, {n, -Floor[Sqrt[2 N]], Floor[Sqrt[2 N]]}]/(1 + Sum[2 q^(n^2/2),

{n, 1, Floor[Sqrt[2 N]]}]), {q, 0, N}, {y, 0, Floor[Sqrt[4 m N + m^2]]}]

ζ01[N_] := Series[Sum[(-1)^n q^(n^2/2) y^n, {n, -Floor[Sqrt[2 N]], Floor[Sqrt[2 N]]}]/(1 + Sum[(-1)^n 2 q^(n^2/2),

{n, 1, Floor[Sqrt[2 N]]}]), {q, 0, N}, {y, 0, Floor[Sqrt[4 m N + m^2]]}]

ζ10[N_] := Series[Sum[q^((n^2 + n)/2) y^(n + 1/2), {n, Floor[(-1 - Sqrt[1 + 8 N])/2], Ceiling[(-1 + Sqrt[1 + 8 N])/2]}]/

(2 + Sum[2 q^((n^2 + n)/2), {n, 1, Floor[(-1 + Sqrt[1 + 8 N])/2]}]), {q, 0, N}, {y, 0, Floor[Sqrt[4 m N + m^2]]}]

ϕ0,1[N_] := 4 (ζ00[N]^2 + ζ10[N]^2 + ζ01[N]^2)

ϕ0,2[N_] := 2 ((ζ00[N] ζ10[N])^2 + (ζ00[N] ζ01[N])^2 + (ζ10[N] ζ01[N])^2)

ϕ0,3[N_] := 4 (ζ00[N] ζ10[N] ζ01[N])^2

155
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The Mathematica code to compute the list of polar coefficients for the
Gritsenko basis of J0,m is given below for the example of 1 ≤ m ≤ 30.

(*The Do loop generates the polar list PolarListm for the specified indices m. Input is to the Do loop

range:{m, smallest index you want to compute, largest index you want to compute}*)

Do[

(*Output is the basis of J0,m in terms of ϕ0,1
aϕ0,2

bϕ0,3
c.*)

PowerList = {x, y, z} /. Solve[x + 2 y + 3 z == m && x ≥ 0 && y ≥ 0 && z ≥ 0, {x, y, z}, Integers];

(*Output of this evaluation is all (n,l) such that (n,l) is polar for J0,m. It is ordered from

most negative polar part to least.

*)

nlInit = {n, l} /. Solve[4 n m - l^2 < 0 && n ≥ 0 && 0 ≥ l ≥ -m, {n, l}, Integers] ;

nlInitPolarity = MapThread[Append, {nlInit, 4 m nlInit[[All, 1]] - Thread[nlInit[[All, 2]]^2]}];

nlList = nlInitPolarity[[Ordering[nlInitPolarity[[All, Length[nlInitPolarity[[1]]]]]]]];

nMax = Max[nlList[[All, 1]]];

Print[AbsoluteTiming[PolarListm = Table[SeriesCoefficient[

Expand[ϕ0,1[nMax]^PowerList[[i, 1]] ϕ0,2[nMax]^PowerList[[i, 2]] ϕ0,3[nMax]^PowerList[[i, 3]]]

//. {x_} ⧴ x, {q, 0, nlList[[j, 1]]}, {y, 0, nlList[[j, 2]]}] ,

{i, Length[PowerList]}, {j, Length[nlList]}]][[1]]]

, {m, 1, 30}]

For computing Fourier-Jacobi expansions of φ0,1, φ0,2, φ0,3 to the high
orders in q necessary for computing the values fa,b(n, l), we need a faster im-
plementation of these functions. With the implementations above, all series
expansion are slow in comparison to the implementation we will give, with
φ0,1 the fastest and φ0,3 slowest. The main goal of the code is to avoid prod-
ucts as much as possible, preferring an implementation that emphasizes sums
and minimizes the number of products. As is well known, the computational
cost of multiplication of series is considerably more expensive than addition
of series.

It turns out that partition functions may be used to give much faster
implementations of φ0,2 and φ0,3, in conjunction with the formulas below [77,
Equation (1.8)].

φ0,2(τ, z) =
1

2
η(τ)−4

∑
m,n∈Z

(3m− n)(
−4

m
)(

12

n
)q

3m2+n2

24 y
m+n

2 ,

φ0,3(τ, z) = φ0,3/2(τ, z)2,

(A.1)

where

φ0,3/2(τ, z) =
θ1(τ, 2z)

θ1(τ, z)

= y−1/2
∏
n≥1

(1 + qn−1y)(1 + qny−1)(1− q2n−1y2)(1− q2n−1y−2).

(A.2)
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The generating function for the Fourier expansion of η(τ)−4 is given by
the partitions of four kinds function.

We also discover that the theta decomposition of φ0,3/2 may be written
using the partition function P (q) =

∑∞
n=0 p(n)qn, where p(n) is the number

of partitions of n, which allows us a fast implementation.

Lemma A.1.

φ0,3/2 = P (q)

(∑
l∈Z

q6l2+ly
12l+1

2 +
∑
l∈Z

q6l2−ly
12l−1

2

−
∑
l∈Z

q6l2+5l+1y
12l+5

2 −
∑
l∈Z

q6l2−5l+1y
12l−5

2

)
.

(A.3)

Proof. We will prove that the weak Jacobi form ϕ0,6 = φ0,3/2(τ, 2z) of index
6 has the theta decomposition

ϕ0,6 =
1

η(τ)
θ6,1(τ, z) +

1

η(τ)
θ6,−1(τ, z)− 1

η(τ)
θ6,5(τ, z)− 1

η(τ)
θ6,−5(τ, z)

=
1

η(τ)

∑
12Z+1

ql
2/24yl +

1

η(τ)

∑
12Z−1

ql
2/24yl

− 1

η(τ)

∑
12Z+5

ql
2/24yl − 1

η(τ)

∑
12Z−5

ql
2/24yl.

(A.4)

The partition function appears because P (q) =
∞∑
n=0

p(n)qn = q1/24

η(τ)
. To prove

the lemma, we may use Gritsenko’s definition of φ0,3/2(τ, z) to compute the
finitely many polar parts of hµ(τ) for µ ∈ Z/12Z of the theta decomposition
of ϕ0,6. Taking the product η(τ)hµ(τ), we then see its Fourier expansion
begins at q0. As in the proof of Proposition 6.3, for every µ, η(τ)hµ(τ) is
therefore a modular form of M0

(
Γ
(
lcm(24, 4m)

))
, and so must be a constant.

A quick computation then yields that for every µ, the constant is 1, i.e.
hµ(τ) = 1

η(τ)
.

With our novel implementation of φ0,3/2 based on its theta decomposition,
φ0,3 is the fastest to expand with φ0,2 the next fastest. This leaves φ0,1 as the
slowest one to expand. The Mathematica code for implementing φ0,1, φ0,2,
φ0,3 in this faster formulation is given below.



APPENDIX A. CODE FOR IMPLEMENTATION 158

(*First, obtain a list of values for Partitions of 4 Kinds from e.g. integer sequence A023003

from OEIS and store it under the variable name Paritions4KindsValues. Then run the code.*)

DenomEta4[N_] := Expand[q^(-1/6) FromDigits[Reverse[Partitions4KindsValues], q]] /. q^k_ /; k > N ⧴ 0

ϕ0,2[N_] :=

Expand[

1/2 DenomEta4[N] Sum[Sum[ (3 m - n) JacobiSymbol[-4, m] JacobiSymbol[12, n] q^((3 m^2 + n^2)/24) y^((m + n)/2),

{n, -Floor[Sqrt[24 N - m^2]], Floor[Sqrt[24 N - m^2]]}], {m, -Floor[Sqrt[8 N]], Floor[Sqrt[8 N]]}]]

ϕ0,3/2[N_] := Sum[PartitionsP[j] q^j, {j, 0, N}] (Sum[q^(6 j^2 + j) y^((12 j + 1)/2) + q^(6 j^2 - j) y^((12 j - 1)/2) -

q^(6 j^2 + 5 j + 1) y^((12 j + 5)/2) - q^(6 j^2 - 5 j + 1) y^((12 j - 5)/2),

{j, Ceiling[(-5 - Sqrt[1 + 24 N])/12], Floor[(5 + Sqrt[1 + 24 N])/12]}])



References

[1] P. A. Griffiths, “Linearizing Flows and a Cohomological Interpretation
of Lax Equations,” American Journal of Mathematics, vol. 107, no. 6,
pp. 1445–1484, 1985. Publisher: Johns Hopkins University Press.

[2] M. R. Adams, J. Harnad, and J. Hurtubise, “Isospectral Hamiltonian
flows in finite and infinite dimensions. II. Integration of flows,” Commu-
nications in Mathematical Physics, vol. 134, no. 3, pp. 555–585, 1990.
Publisher: Springer-Verlag.

[3] O. Babelon, D. Bernard, and M. Talon, Introduction to Classical In-
tegrable Systems. Cambridge Monographs on Mathematical Physics,
Cambridge: Cambridge University Press, 2003.

[4] S. A. Brown, H. Panagopoulos, and M. K. Prasad, “Two separated
SU(2) Yang-Mills-Higgs monopoles in the Atiyah-Drinfeld-Hitchin-
Manin-Nahm construction,” Physical Review D, vol. 26, pp. 854–863,
Aug. 1982. Publisher: American Physical Society.

[5] W. Nahm, “On Abelian self-dual multimonopoles,” Physics Letters B,
vol. 93, pp. 42–46, June 1980.

[6] W. Nahm, “A simple formalism for the BPS monopole,” Physics Letters
B, vol. 90, pp. 413–414, Mar. 1980.

[7] W. Nahm, “The construction of all self-dual multimonopoles by the
ADHM method,” Tech. Rep. IC–82/16, International Centre for Theo-
retical Physics, 1982.

[8] W. Nahm, “The algebraic geometry of multimonopoles,” in Group The-
oretical Methods in Physics (M. Serdaroğlu and E. Ínönü, eds.), vol. 180,
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K̊ahler metrics and supersymmetry,” Communications in Mathematical
Physics, vol. 108, no. 4, pp. 535–589, 1987. Publisher: Springer-Verlag.

[32] N. Lionel J. Mason, L. Mason, N. Woodhouse, and W. Mason, Integra-
bility, Self-duality, and Twistor Theory. London Mathematical Society
monographs, Clarendon Press, 1996.

[33] S. Donaldson, S. Donaldson, and P. Kronheimer, The Geometry of Four-
manifolds. Oxford mathematical monographs, Clarendon Press, 1990.

[34] M. Jardim, “A survey on Nahm transform,” Journal of Geometry and
Physics, vol. 52, pp. 313–327, Nov. 2004. arXiv: math/0309305.

[35] D.-E. Diaconescu, “D-branes, Monopoles and Nahm Equations,” Nu-
clear Physics B, vol. 503, pp. 220–238, Oct. 1997. arXiv: hep-
th/9608163.

[36] D. Gaiotto and E. Witten, “Supersymmetric Boundary Conditions in
N=4 Super Yang-Mills Theory,” Journal of Statistical Physics, vol. 135,
pp. 789–855, June 2009. arXiv: 0804.2902.

[37] P. B. Kronheimer, “A Hyper-KÄhlerian Structure on Coadjoint
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