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Abstract

We investigate the canonical BRST–quantisation and refined algebraic quantisation

within a family of classically equivalent constrained Hamiltonian systems that are related

to each other by rescaling constraints with nonconstant functions on the configuration

space. The quantum constraints are implemented by a rigging map that is motivated

by a BRST version of group averaging. Two systems are considered. In the first one we

avoid topological built–in complications by considering R4 as phase space, on which a

single constraint, linear in momentum is defined and rescaled. Here, the rigging map has

a resolution finer than what can be extracted from the formally divergent contributions

to the group averaging integral. Three cases emerge, depending on the asymptotics of the

scaling function: (i) quantisation is equivalent to that with identity scaling; (ii) quanti-

sation fails, owing to nonexistence of self–adjoint extensions of the constraint operator;

(iii) a quantisation ambiguity arises from the self–adjoint extension of the constraint

operator, and the resolution of this purely quantum mechanical ambiguity determines

the superselection structure of the physical Hilbert space. The second system we con-

sider is a generalisation of the aforementioned model, two constraints linear in momenta

are defined on the phase space R6 and their rescalings are analysed. With a suitable

choice of a parametric family of scaling functions, we turn the unscaled abelian gauge

algebra either into an algebra of constraints that (1) keeps the abelian property, or, (2)

has a nonunimodular behaviour with gauge invariant structure functions, or, (3) contains

structure functions depending on the full configuration space. For cases (1) and (2), we

show that the BRST version of group averaging defines a proper rigging map in refined

algebraic quantisation. In particular, quantisation case (2) becomes the first example

known to the author where structure functions in the algebra of constraints are success-

fully handled in refined algebraic quantisation. Prospects of generalising the analysis to

case (3) are discussed.

i



Acknowledgments

There have been many people who supported me from the moment I decided to travel

to Nottingham to work on this Ph.D. programme. I am going to use these paragraphs

to convey in words, though they will be insufficient at times, all my gratitude to them.

In the first place, the most genuine acknowledgement is for my parents; I could

never have come this far without their incomparable love, incessant support and endless

patience. This thesis is dedicated to them. Edgar and Roxana (alphabetically ordered),

my brother and sister, thank you for all your supporting words; they were very important

in these years. Special thanks to my brother for helping me to get some references I

needed, and quoted, in the final stages of the thesis writing process.

Distinctive appreciation to the person with whom I had the especially good chance

to discuss most of the topics touched in this dissertation, to my supervisor Dr Jorma

Louko. He not only always found the time to listening to me, but also questioned my

points of view in a very stimulating way. Thank you for emphasising to me the difference

between a formal solution and a strict solution to a problem. I am appreciative of all

the comments he did on the drafts preceding the final form of this dissertation, and I am

convinced they boost the readability of it. I am grateful for his motivation, his guidance,

his confidence in me, and for his dedicated administrative work related to my Ph.D.

programme. I also thank to Prof John Barrett and Dr Kirill Krasnov, members of the

quantum gravity group at Nottingham, for enlightening and useful discussion in various

topics, and for generating an academically thought–provoking and friendly atmosphere

within the group.

I will be forever indebted to Dr Alicia Lopez for many reasons. Thank you for reading

this thesis, from the beginning ‘R’ in the title page to the last ‘s’ in the last page. All

your comments really improved the way I expressed my ideas on these pages. Thank

you for all your love.

ii



Acknowledgments | iii

I feel the necessity to mention many good friends I met in Nottingham and in some

conference cities, in order of appearance they are: Hector Pacheco, Frank Hellman, Gus-

tavo Niz, Alejandro Satz, Richard Dowdall, Daphne Klotsa, Ryszard Kostecki, Benjamin

Bahr, Jamie Vicary, Elisa Manrique, Cecilia Flori, Isabeau Prémont-Schwarz, Kristina

Giesel, Mercedes Martin, Bernadette Martínez, John Robertson, Johannes Tambornino,

Roberto Pereira, Alan Secker, Henrique Gomes, Winston Fairbairn, Fernando Buitrago,

Gianluca Delfino, Carlos Scarinci and Sara Tavares. To all of you guys: thanks for being

there.

Special credit to my dear friend Dr Kathryn Taylor, not only for opening the doors

of her home to me, but also for proof–reading various sections of this thesis. Thanks to

her, many annoying commas were removed and long sentences cut down in the last draft

of this thesis. Thank you so much for making the correction process of this work such a

fun time.

Finally, and equally important, thanks to all the local communities of organic–coffee

producers situated on the mountainous regions of Oaxaca, Mexico. Without your prod-

uct, those short inspiring moments may have never come.

I have been supported by the funds of CONACYT (Mexico). I also want to thank the

Quantum Gravity Network, a research networking programme of the European Science

Foundation, and the University of Nottingham for their financial help to attend various

conferences inside and outside the United Kingdom.

City of Nottingham, UK. Eric Martínez–Pascual

March, 2012.



Contents

Abstract i

Acknowledgments ii

1 Introduction 1

1.1 Classical constrained systems: Historical perspective 1

1.2 Path integral quantisation and ghost fields 4

1.3 Extended space techniques and the BRST symmetry 6

1.4 Canonical quantisation of constraints and the physical inner product 8

1.5 Synopsis of the dissertation 12

2 Structure of the Classical Constrained Systems 16

2.1 Classical non–singular systems 17

2.1.1 The starting point: An action and the Lagrangian formalism 17

2.1.2 Canonical form of the Euler–Lagrange equations 19

2.1.3 Poisson brackets and Hamiltonian dynamics 21

2.1.4 Invariance properties of S: A first look at gauge symmetry 23

2.2 Classical singular systems 26

2.2.1 Gauge invariant systems and the failure of the non–singularity con-

dition 26

iv



Contents | v

2.2.2 Constrained dynamics: Lagrangian description 27

2.2.3 Constrained dynamics: Hamiltonian description 32

2.2.4 First– and second–class functions 39

2.2.5 First–class constraints and Hamiltonian gauge transformations 40

3 Foundations of the Classical BRST Formalism 45

3.1 Extended Hamiltonian and its gauge symmetries 46

3.2 Tensorial structures present in the formalism 49

3.3 The ladder of higher structure functions 50

3.4 The super phase space and the BRST generator 55

3.4.1 Ghost/Antighost notation and conventions 60

3.4.2 Abelian gauge algebra and the abelianisation theorem 61

3.4.3 Constraints that form a closed gauge algebra 63

3.5 Rescaling constraints and about the uniqueness of the BRST generator 64

3.6 BRST observables 65

4 Quantisation of Singular Systems 70

4.1 Refined algebraic quantisation 71

4.1.1 Algebraic quantisation 72

4.1.2 From algebraic to refined algebraic quantisation 74

4.1.3 Group averaging ansatz 80

4.1.4 Rescaling constraints and RAQ: A first discussion 85

4.2 Canonical BRST–quantisation 87

4.2.1 States and operators: Formal considerations 87

4.2.2 Physical inner product: Batalin–Marnelius–Shvedov proposal 93

5 Constraint Rescaling in Refined Algebraic Quantisation:

Momentum Constraint 97

5.1 Momentum constraint system 98

5.1.1 Canonical BRST analysis 99

5.1.2 Refined algebraic quantisation 103



Contents | vi

5.2 Rescaled momentum constraint 105

5.2.1 Canonical BRST analysis 107

5.3 Refined algebraic quantisation: Auxiliary structures 108

5.4 Self–adjointness of the constraint operator and types of scaling functions 110

5.5 Refined algebraic quantisation: Scaling functions of type I 112

5.6 Refined algebraic quantisation: Scaling functions of type III 113

5.6.1 Subfamily of classical rescalings and quantum boundary conditions 113

5.6.2 Test space, observables and rigging map candidates 115

5.6.3 Functions N and α smooth, α with integer–valued intervals 116

5.6.4 Functions N and α smooth and generic 117

6 Constraint Rescaling in Refined Algebraic Quantisation:

Two Momentum Constraints 122

6.1 Two momentum constraints system 123

6.1.1 Canonical BRST analysis 124

6.1.2 Refined algebraic quantisation 126

6.2 Rescaled momentum constraints 128

6.2.1 Rescaling two momentum constraints: A family of scaling functions 129

6.2.2 Canonical BRST analysis 130

6.2.3 Regularised inner product and gauge invariant structure functions 134

6.3 Refined algebraic quantisation: Artificial structure functions 136

6.3.1 Gauge invariant scaling functions 136

6.3.2 Gauge invariant structure functions 138

6.3.3 Structure functions on full configuration space: Comments 140

7 General Summary and Discussion 142

A Intertwining property of the rigging maps 146

B Representation of A
(?)
phys 149

C Lemmas on asymptotics 152



Contents | vii

D Calculation of exp
(
i[ Ω̂, %̂ ]

)
154

E The gauge group at x 157

References 159

Glossary of Symbols 175



CHAPTER 1

Introduction

In conclusion you see that there is no golden rule

for canonical quantization of constrained systems.

– Kurt Sundermeyer, 1982

There has been a great deal of active research during the last almost five decades

in the field of quantisation of constrained systems. Since the vastly influential 87 pages

written down by Paul Adrien Maurice Dirac in his ‘Lectures of quantum mechanics’ [1],

this subject has occupied a central position in the development of contemporary theo-

retical physics and the search for a consistent quantum version of the fundamental forces

in nature as known today.

1.1 Classical constrained systems: Historical perspective

We cannot purport to do justice to the history of our subject, either in the short space

that has been reserved for this introduction, or in the body of the thesis. Yet, brief

mention of a few landmarks in the early history is in order. In 1918, Amalie E. Noether [2]

revealed a deep connection between the invariance that some dynamical systems possess

under certain transformations and the off–shell vanishing of specific linear combinations

of their equations of motion; the occurrence of the former implies the existence of the

latter. This result is sometimes referred to as the second Noether theorem [3, 4].

1
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A typical example of the second Noether theorem is found in Maxwell’s theory on

flat spacetime. Once written in terms of the four–potential Aµ, it is manifestly invariant

underAµ 7→ Aµ+∂µΛ, with Λ an arbitrary function on spacetime. This invariance implies

the trivial identity ∂µ
(
∂νF

µν
)
≡ 0, where Fµν is the electromagnetic field tensor. An

extension of this trivial identity to a more complex one arises by considering free Yang–

Mills theory. In this case, the linear combination of equations of motion that vanishes is

Dµ

(
DνF

µν
a

)
≡ 0; these identities are consequence of the invariance of the theory under

the non–abelian transformation law Aaµ → Aaµ + (Dµθ)a/g, where g is a constant and

a denotes the internal index of a Lie group parameterised by θ = (θa). The covariant

derivative D (locally) acts on any Lie–valued p–form T aν...ρ as DµT
a
ν...ρ = ∂µT

a
ν...ρ −

gfabcT
b
ν...ρA

c
µ, with fabc the structure constants of the underlying Lie group. Another,

much less trivial, example is given by the existence of the Bianchi identities that are

implied by the invariance of general relativity under general coordinate transformations.

In this scenario, where the equations that convey the dynamics are not functionally

independent, the description of the dynamical system necessarily involves spurious de-

grees of freedom; these are the source of the obstacles encountered in passing from the

Lagrangian to the equivalent Hamiltonian description in these systems. The period of

time in which these difficulties were spotted and overcome, mostly as a byproduct in the

search for a Hamiltonian description of general relativity, covers from 1930 to 1964. The

main contributors during this lapse were León Rosenfeld [5], Peter G. Bergmann and

James L. Anderson [6, 7], and P. A. M. Dirac [8, 9, 10, 11]. P. A. M. Dirac’s succinct

treatise on the subject in 1964 [1] certainly set the stage, the tone, and much of the

terminology currently used to describe singular or constrained systems, as these kind of

systems are known nowadays. A historical account of these events can be found in a series

of papers by Donald C. Salisbury [12, 13, 14, 15] who remarks that P. G. Bergmann, his

Ph.D. supervisor, actually never used the appellation of Dirac–Bergmann algorithm to

term the series of steps one now follows to construct the Hamiltonian version of singular

Lagrangian systems.

In L. Rosenfeld’s pioneering work on the subject, it was realised (in a system of fields)

that momenta, defined as the partial derivative of the Lagrangian with respect to the

corresponding velocities, were not independent of each other and of the configuration

variables, but satisfied relations with no time derivatives. These relations are the so–

called (primary) constraints. According to P. G. Bergmann’s group in Syracuse, and to P.

A. M. Dirac, any physically allowed initial conditions must satisfy these constraints. This

implies a consistency condition: the constraints must be constant in time, that is, the

Poisson bracket of the primary constraints must vanish with the Hamiltonian. From this
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rule an iterative procedure arises, which ends after a finite number of steps provided that

the original Euler–Lagrange equations of motion are self–consistent. Constraints which

come into the analysis after the primary constraints were termed by P. G. Bergmann

secondary constraints. Constraints whose Poisson bracket with each other vanish modulo

the constraints themselves are first–class constraints, otherwise they are second–class

constraints in P. A. M. Dirac’s terminology.

In this account, the constraint surface is defined as the zero locus of all the constraints;

the restriction of the symplectic form to it is degenerate. In contrast to the second–

class constraints, the first–class constraints generate mappings, gauge transformations,

from this submanifold of the phase space on itself, so that the first–class constraints

of the theory form a Lie algebra on the constraint surface. The orbits of the gauge

transformation group that have at least one point on the constraint surface lie in that

hypersurface entirely, and form equivalence classes. They foliate the constraint surface.

Each point on the zero locus of the constraints belongs to exactly one equivalence class,

each of which represents one and only one physical situation; all points in the equivalence

class are physically the same. On the quotient space of the constraint surface by the

gauge orbits, a non–degenerate symplectic structure is recovered; this space is called

reduced phase space. Dynamical variables on the reduced phase space are automatically

constant over each equivalence class. Hence invariant under gauge transformations; that

is, commute with all first–class constraints. Such variables are called observables, in the

sense that their values depend on the actual physical situation, and not on the manner

in which we could choose to represent it.

For second–class constraints, P. A. M. Dirac modified the Poisson bracket adding

terms bilinear in them in a way that second–class constraints themselves can strictly

be considered zero either before, or after, evaluating the modified bracket. In terms

of Dirac brackets, as they are known, one can express the time evolution and gauge

transformations of arbitrary functions on the phase space.

This formulation of constrained systems in phase space terms is universal. The

non–trivial classical theoretical framework, quickly revisited in the paragraphs above,

permeates into various physical models; together known as gauge invariant systems.

These models encompass electrodynamics, Yang–Mills type theories, Einstein’s general

relativity, topological field theories, grand unified theories, superstring, branes and many

others manifestly Lorentz invariant dynamical systems. This enormous range of applica-

bility is what confirms that the study of singular systems is interesting in its own right.

Furthermore, considering the idea that an ultimate description of physical phenomena is

quantum in nature, undoubtedly the quantisation of constrained Hamiltonian dynamics
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becomes a task worthwhile to accomplish.

1.2 Path integral quantisation and ghost fields

The presence of spurious degrees of freedom in the description of a physical theory,

poses a quandary in the process of quantisation. Several proposals to obtain a consistent

quantisation that wish to embrace the most general form of constrained systems have

been explored. The most popular methods are based either on Hilbert space techniques,

where constraint operators play the role of physical state selectors [1]; or, on functional–

integral techniques, where the constraints are incorporated by changing the measure of

the path integral in order to formally consider only physical paths. The latter is in

practice valuable as it is closer to Feynman diagrams machinery [16, 17].

In 1948, based on his doctoral dissertation, Richard Feynman introduced the La-

grangian version of the path integral formalism for non–relativistic mechanical sys-

tems [18]. His ultimate goal was to control the infinities with which QED is plagued [19,

20, 21, 22], a task partly achieved later by Freeman Dyson [23, 24]. The sources of

divergences in QED include proper self–energy graphs and vertex functions. In addi-

tion, when computing the transition amplitude between two states of a gauge invariant

system, one faces the problem that the sum inescapably diverges; in phase space terms,

because of the existence of equivalence classes. There is not a unique prescription for

the propagator of gauge fields. The necessity of imposing conditions (known as gauge

conditions), to pick one and only one representative within each physical equivalence

class, is then imperative. Besides this difficulty, in 1963 R. Feynman emphasised the

lack of unitarity to 1–loop in the perturbation theory of the linearised gravity coupled

to a scalar field using a Lorentz gauge condition [25]. This complication, however, was

not exclusive to general relativity since Yang–Mills theory inherently also contains it1.

In order to ‘cure’ the amplitude, R. Feynman suggested the introduction of some ficti-

tious fields, later on known as ghost fields, by subtracting from the Lagrangian a term

which restores a unitary amplitude by cancelling out all unphysical contributions to the

intermediate (virtual) states.

The heuristic rules given by R. Feynman to reinstall 1–loop unitarity were derived

later by Ludwig D. Faddeev and Victor N. Popov from an action principle [26, 27].

The Lagrangian in the action should contain the original gauge invariant term, the
1In Feynman words ‘At the suggestion of Gell–Mann I looked at the theory of Yang–Mills with zero

mass, [...] and found exactly the same difficulty [...]. So at least there is one good thing: gravity isn’t

alone in this difficulty’ [25].
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gauge fixing term, and the new so–called Faddeev–Popov term. The latter, containing

the fermionic ghost variables, was seen as a mathematical convenience to express the

S–matrix of the theory in the form of an integral of exp
[
i

~
× action

]
. Ghost fields were

hence regarded as a ‘measure effect’.

Both, a deeper understanding and the systematic use of ghosts fields were provided

by L. D. Faddeev in his proposal for a Hamiltonian path integral in first–class constrained

systems [28]. The unconstrained Hamiltonian version of the path integral introduced by

R. Feynman [29] had been generalised. The measure in the L. D. Faddeev’s integral (also

known as BFV path integral) would include Dirac deltas with first–class constraints in

their argument, Dirac deltas of the gauge fixing conditions (which turn the constraints

into second–class type), and the determinant of the nonsingular matrix formed by the

Poisson brackets between the first–class constraints of the theory and the gauge fixing

functions. The last factor ensures the independence of the integral on the choice of gauge

conditions2. Performing the integration of momenta and using Grassmann integrals to

recast the nonvanishing determinant, installs the Faddeev–Popov ghost term in the ef-

fective action at the configuration space level. The possibility of deriving the Lagrangian

path integral from the Hamiltonian one is known in the literature as Matthews theorem;

see for example [31, 32, 33] and references quoted therein. The corresponding modified

path integral in phase space for systems with first– and second–class constraints was

derived by Pavao Senjanovic in 1976 [34].

Although the role of ghost fields in the description of gauge invariant theories was

already prominent with the advent of L. D. Faddeev and V. N. Popov’s results, they

were raised to a fundamental level when Carlo Becchi, Alain Rouet and Raymond Stora

(BRS) conceived of a global symmetry transformation in the context of the Higgs–Kibble

model [35, 36]: an abelian gauge invariant theory minimally coupled to scalar fields with

spontaneously symmetry breaking within a certain class of gauge functions. In this

symmetry transformation non–ghost fields are transformed by gauge transformations

with ghosts for parameters3. The global nature of this transformation precludes that

more degrees of freedom could be eliminated from the theory. The generalisation of

this rigid transformation to non–abelian gauge theories [38], together with the BRST–
2The invariance of the BFV path integral under the choice of gauge fixing conditions is commonly

known as the Fradkin–Vilkovisky theorem. Subtleties on the validity of this theorem are found in [30],

and references quoted therein.
3These transformations were subsequently called BRST transformations. The character ‘T’ in the

abbreviation refers to Igor V. Tyutin who discovered analogous transformations in the context of canon-

ical quantisation of gauge theories. This discovery was originally reported in what became one of the

most famous unpublished works in the field [37].
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invariance of the partition function, imply the so–called Slavnov–Taylor identities [39,

40, 41]. These have proved to be crucially instrumental in the renormalisation process,

unitarity and other aspects of gauge theories.

The origins of ghost variables are hence inherently quantum mechanical. It is at

this level where they decrease the number of degrees of freedom to its physical number

by cancelling out the spurious degrees of freedom that manifest themselves in virtual

intermediate processes. The occurrence of ghost variables within the effective action

encountered by L. D. Faddeev and V. N. Popov, and their profound relation with the

symmetry that remains of the original gauge invariance, suggests their inclusion in the

classical formalism from the very beginning. This observation gave rise to a new stand-

point in the study of constrained systems: extended space techniques.

1.3 Extended space techniques and the BRST symmetry

Motivated by R. Feynman [25], L. D. Faddeev [28], and the contemporaneous discovery of

BRST symmetry [35, 36, 38, 37], a prominent group of researchers settled in the Physical

Lebedev Institute achieved the task of introducing the ghost fields into the classical

scheme before going into the S–matrix of the theory. Developed during the late 70s and

early 80s, their BRST approach to gauge systems was addressed from two different, but

equivalent [42, 43, 44, 45, 46], points of view. Focused on phase space extensions, one

approach is the Hamiltonian BRST or BFV formalism, abbreviation in honour of Igor

Batalin, Efim S. Fradkin and Grigori A. Vilkovisky, authors of the original papers on the

subject [47, 48, 49, 50, 51]. Based on configuration space extensions, the other approach is

developed in the Lagrangian framework and is known as field–antifield or BV formalism,

the abbreviation due to its developers I. Batalin and G. A. Vilkovisky [52, 53, 54, 55],

whose work was based on previous ideas of Jean Zinn–Justin [56], Renata Kallosh [57],

and Bernard de Wit and Jan Willem van Holten [58].

In the field–antifield formalism [59, 60] one enlarges the original configuration space

in a two–step process. Firstly, among the original basic configuration variables a number

of ghosts is introduced. These ghost variables are equal in number to the parameters

in the gauge transformation4. In this formalism, the original and ghost variables are

collectively referred to as fields. In the second step, one antifield is introduced for each

field. The Grassmann parity of each antifield is opposite to its associated field. An
4In cases where there are relations among the gauge transformations (reducible gauge transforma-

tions), ghosts of ghosts are also necessary. There actually may exist a ladder of ghost if relations among

relations also exist.
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additive charge, called ghost number, is assigned to each of these fields and antifields.

Together field and antifields become the coordinates of an extended configuration space

of even dimension.

This super–space is equipped with a Poissonian structure: the antibracket, an odd

non–degenerate symplectic form. Concomitantly, phase space concepts such as canonical

transformations, can be installed in this super configuration space. The original classical

action is extended to a new action. The new action involves fields and antifields and is

required to satisfy the classical master equation, that is, to have a vanishing antibracket

with itself. The BRST transformation of any function on the super configuration space

is generated (with the antibracket) by the extended action. The BRST transformation

is hence nilpotent of order two. The extended action is by construction BRST invariant

and becomes defined up to canonical transformations. A gauge fixing procedure is still

needed when extending this theory to its quantum counterpart, usually involving the

introduction of more auxiliary fields.

It is the Hamiltonian BRST formalism which will concern us in this thesis [61, 62,

63, 64, 65]. In a similar fashion to the field–antifield formalism, the original number

of basic dynamic variables is increased. A number of ghost canonical pairs is added

to the original variables in phase space. When only irreducible first–class constraints

(independent constraints) are present, the number of ghosts canonical pairs is equal to

the number of first–class constraints. If the Lagrange multipliers are to be considered as

points in the phase space (nonminimal BRST formalism), the corresponding conjugate

momenta are defined as new constraints from the outset. These new constraints and

the original constraints form a set with an even number of first–class constraints. In the

nonminimal version of the Hamiltonian BRST formalism more ghost canonical pairs are

introduced accordingly, having one ghost canonical pair for each first–class constraint.

The Grassmann parity of each ghost canonical pair is opposite to the one associated with

its correlated constraint; in the case of pure bosonic constraints, only fermionic ghost

canonical pairs are defined. To each ghost (resp. ghost–momentum) one assigns a ghost

number +1 (−1).

The gauge algebra of the theory is determined by the Poisson brackets between

first–class constraints. These Poisson brackets render a linear combination of first–class

constraints. In Marc Henneaux’s terminology [61], if all the coefficients turn out to

be constant on the phase space, the gauge algebra is called closed, otherwise is called

open algebra. The gauge algebra (closed or open) and the Jacobi identity of the Pois-

son brackets ensure the existence of an odd, ghost number +1, real, and nilpotent (in

the Poisson bracket sense) function Ω on the extended space. This Ω, which generally
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contains multi–ghost terms higher than three, is defined up to canonical transformations

in the super phase space and generates the classical BRST transformation at first order

in ghost variables. Observables, or gauge invariant functions, are recognised in this for-

malism as ghost numbered zero functions which commute (in the Poisson bracket sense)

with the BRST generator Ω. The dynamics is generated by a BRST extension of the

original Hamiltonian.

One of the conceptual advantages of extended phase space over the original phase

space formalism is that it makes first–class constrained systems canonically covariant

under the operation of rescaling the constraints γa, that is, under

γa 7→ γ′a := Λ b
a γb ,

with Λ a pointwise invertible matrix on the phase space. To be more specific, while

this transformation does not induce changes in the characterisation of either classical

observables or the constraint surface [66, 67, 68], it cannot be recast as a canonical trans-

formation in the ordinary phase space. Nevertheless, the two different BRST charges

Ω and Ω′ associated to each equivalent set of constraints {γa} and {γ′a}, respectively,
are connected by a canonical transformation on the ghost extended phase space [61, 69].

The quantum consequences of this result have been explored for example in [70, 71, 72];

formally the quantum theories arising from each set of constraints should be unitarily

related in a canonical BRST–quantisation scheme.

1.4 Canonical quantisation of constraints and the physical inner product

The most succinct formalisms we have to understand gauge theories are based on ex-

tended space techniques. The rich structure of first–class constrained systems, either with

an open or closed gauge algebra, can be summarised into one object. In the Lagrangian

setting this is the extended action, and in the Hamiltonian setting this corresponds to the

BRST charge. Each of these objects generates BRST transformations in its respective

space. This point of view, in which ghosts are treated on the same footing as the basic

dynamical variables, gives a whole new set of tools to gauge theories and in general to

singular systems. Prima facie, to implement this standpoint at a quantum level, one

must effectively incorporate the ghosts into the quantisation scheme.

With exception of the reducible constraints case, which was fully developed in 1983

[51], by the year of 1978 most of the classical BRST Hamiltonian and its application

to path integral quantisation was already consolidated. About the same time, in 1979,

Taichiro Kugo and Izumi Ojima introduced the BRST operator quantisation method in
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the context of Yang–Mills theory [73]. In their approach to the problem of quark con-

finement in QCD, they proposed the physical states to be (usually zero ghost numbered)

states in the kernel of the so–called BRST operator, Ω̂. This operator must act on an

indefinite inner product space in order to be compatible with its nilpotency (Ω̂2 = 0)

and hermiticity (Ω̂ † = Ω̂) properties [74]. Within their formalism, physical observables

were regarded as hermitian BRST–invariant operators.

One distinctive aspect of the canonical BRST–quantisation over its classical coun-

terpart is that the existence of neither a BRST operator nor BRST observables, with

the properties given above, is guaranteed. Another obstacle found in the formalism is

that in practice when the inner product on the total BRST state space is restricted

to the BRST physical space, an ill–defined inner product results. Hence to supply the

physical space with an orthodox probabilistic interpretation, it is mandatory to imple-

ment a positive definite inner product by other means. The general resolution to this

issue is not a trivial task and several efforts have been made in this direction, they

include [65, 73, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90].

Notice that the nilpotency of Ω̂ introduces a new symmetry: BRST physical states

are defined up to a term in the image of the BRST operator. This ambiguity in the

definition of BRST physical states is called the BRST quantum gauge transformation

and all states related by it are BRST gauge–equivalent. The image of Ω̂ is contained in

its kernel. Therefore, one could seek a positive definite inner product on the quotient

space of the kernel of Ω̂ by the image of Ω̂. Alternatively, one could fix the BRST

gauge invariance and evaluate the indefinite inner product of the total space only on

suitable gauge–equivalent states. Robert Marnelius and his collaborators worked on the

latter [82, 84, 85, 86, 87, 89, 90]. Without altering the original inner product, they

singled out specifically chosen representatives in the BRST–invariant equivalence classes

which then have a well–defined inner product. Interesting clarifications on the possible

failures of R. Marnelius’ programme in the presence of Gribov ambiguities have been

emphasised in [91, 92].

The aforementioned problem of finding a physical inner product is not specific to

the extended space techniques; it is a common feature in all quantum descriptions of

first–class constrained systems. In the path integral quantisation, for example, this

problem is resolved by modifying the measure of the integral so that only physical paths

are considered. In Dirac’s approach to quantising constrained systems, the physical

space, that is, the set of states annihilated by all the first–class constraints, needs to

be turned into a pre–Hilbert space. Again, the restriction of the original inner product

–although in this case positive definite– to the physical space produces ill–defined norms.
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The implementation of a physical inner product within Dirac’s scheme is usually done

on a case–by–case basis. The physical inner product may be determined by specific

symmetries in the model such as the particular structure of background spacetime metric,

the existence of a global time–like Killing vector field, or the property that the quadratic

term in the Hamiltonian is projectable on non–degenerate metric on the reduced phase

space [66]. However, in a full general case, none of these options is necessarily accessible.

A sophisticated version of Dirac’s approach to the quantisation of constrained sys-

tems is the refined algebraic quantisation scheme. The developers of this scheme were

Abhay Ashtekar, Jerzy Lewandowski, Domenico Giulini, Donald Marolf and Thomas

Thiemann [93, 94, 95, 96, 97, 98]; they emphasised and suggested a resolution to the

ambiguities present in Dirac’s approach. Refined algebraic quantisation is based on pre-

vious ideas by Atsushi Higuchi [99, 100] and D. Marolf [101, 102]. Successful application

to different systems has been proved in [103, 104, 105, 106, 107, 108, 109].

Refined algebraic quantisation broadly comprises two sets of rules. In the first one,

the arena where constraint operators are going to act is defined. This first set of steps

is shared by an earlier version of the method, simply called algebraic quantisation [110,

111, 112]. The second set of steps in the process guides us to the implementation of

constraints as selectors of physical states. Besides the usual obstacles one encounters in

any canonical quantisation process [113, 114, 115, 116, 117, 118], in this method one has

to input some auxiliary structures such as a Hilbert space Haux and a test state space

Φ ⊂ Haux to give distributional sense to Dirac condition on physical states. The main

contribution of this scheme to Dirac’s approach is the inclusion of a map called rigging

map. To some extent, the introduction of this map is an axiomatic way to establish an

inner product in the set of physical states which corresponds to the image of the rigging

map itself. Instead of listing the axioms that define a rigging map, which will be done

in another chapter of this thesis, we mention that the construction of this map is closely

related to the group averaging technique [99, 100, 101, 102].

The group averaging technique is a method by which gauge invariant quantum states

are obtained by averaging non–invariant states over the gauge group. The proper applica-

tion of this method permits to define a rigging map, although this is not straightforward

for all type of gauge groups; particularly delicate is the sense in which the averaging

converges on Φ. For instance, although some control has been provided in [96] for non

compact Lie groups, in the physical inner product there may be negative squared norm

physical states as shown by Jorma Louko and Alberto Molgado in [105]. In addition to

these subtleties, a major obstacle is faced by group averaging techniques with the ap-

pearance of nonconstant structure functions at the level of the Poisson brackets between
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first–class constraints5.

As pointed out by D. Marolf in [98], one can move into an open algebra regime and

concurrently have a closed gauge algebra underlying the gauge theory, by first looking at

‘artificially constructed structure functions’. These functions are the result of rescaling

the first–class constraints γa. Indeed, with the right choice of the coefficients Λ b
a , in

γ′a := Λ b
a γb, one can make the Poisson brackets of the rescaled constraints close with

nonconstant structure functions. Supposing that at a quantum level we have successfully

turned the ‘original’ constraints γa into self–adjoint operators on Haux, in the construc-

tion of the operators associated to the rescaled constraint, new factor ordering problems

will be encountered which may prevent their self–adjointness. This is certainly harmful

for group averaging techniques because the rescaled constraint operators may not gen-

erate a unitary action of the group, and in general we do not know how much the action

(if any) will deviate from a unitary one. In addition, D. Giulini and D. Marolf showed

that for nonunimodular Lie gauge groups, one needs to proceed with non self–adjoint

constraints operators as physical state selectors. The selectors in this case generate an ac-

tion of the group which ceases to be unitary differing from it by an overall factor related

to the nonunimodular function [96]. Similar results have been obtained in geometric

quantisation [122, 123].

Comparison with other quantisation methods could provide some insight into the

action of a gauge group, on the auxiliary Hilbert space, when open algebras are present.

In particular, we mention the proposal by Oleg Yu Shvedov [124], which is based on

the canonical BRST–quantisation in the Marnelius’ physical inner product. His strategy

consists of identifying trivial BRST physical states with test states in Φ ⊂ Haux. The

regularised Marnelius’ physical inner product between two BRST trivial physical states

then resembles the group averaging ansatz which is interpreted as a ‘would–be’ rigging

map. To be precise, when the structure functions are constants of a nonunimodular Lie

group, Shvedov’s proposal duly reduces to the non–unitary action of the gauge group

and the averaging formula in the non–trivial measure adopted by D. Giulini and D.

Marolf [96]. Keeping the identification of trivial BRST physical states with elements in

Φ, a proposal is given for open gauge algebras by introducing the corresponding BRST

operator. Although some technical caveats are provided by O. Y. Shvedov, there is not a

complete proof that his would–be rigging map actually satisfies the axioms given in [93]

for a general constrained system.
5In such a case, self–adjoint constraint operators on Haux are incompatible with structure functions in

the gauge algebra if one wants to match the reduced space quantisation and Dirac quantisation [66, 67]. It

is not clear, however, to what extend reduced phase space quantisation and Dirac constraint quantisation

must match, there are several models in the literature in which this is not the case [119, 120, 121].
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It would be interesting to test O. Y. Shvedov’s proposal in constrained systems with

open algebra containing only artificially constructed structure functions. In such models

an equivalent set of constraints with closed gauge algebra is present and some control over

the group averaging is available. The importance of studying the quantisation of these

gauge algebras with artificial structure functions in O. Y. Shvedov’s framework is that the

relevant technical caveats in order to produce a rigging map can be identified. Related to

this, one may clarify at which level of Shvedov’s scheme the auxiliary structures of refined

algebraic quantisation must be supplemented. Further knowledge in the quantisation of

artificial–structure–functions models would also permit the effects of rescaling constraints

in the context of refined algebraic quantisation to be investigated. Finally, the lessons

learnt from this study may serve as a guide to tackle systems with authentic structure

functions in their gauge algebra. In this dissertation we begin to develop this plan in

a system of a single–constraint. Although rescaling in this case does not change the

gauge algebra, its study already contributes to unveil some of the issues present in more

complex systems. We also provide some enlightenment with the partial study of an open

algebra rescaled version of an abelian two–momentum system of constraints.

In this introduction we have mentioned some methods of quantising constrained

systems, this recollection is far from complete and other approaches exist. Exam-

ples include reduced phase space quantisation, the programme of geometric quanti-

sation [125], projection–operator method [126, 127, 128, 129], and the master con-

straint programme [130, 131]. There are interrelationships between them; for instance,

in [132, 133, 134] the connection between Dirac’s approach and path integrals is re-

marked. With the use of the abelianisation theorem (see for example Sect. 3.4.2 be-

low or [65, 135]), formal equivalence has been established between canonical BRST–

quantisation and Dirac’s programme, and between the latter and reduced space quanti-

sation [61, 64, 65]. The same theorem has been extensively exploited to show relations

between refined algebraic quantisation, the master constraint programme, and the path

integral formulation [136, 137].

1.5 Synopsis of the dissertation

We now turn to a chapter–by–chapter description of this dissertation. Although some

of the chapters contain standard information that can be found in the literature, they

have been added to make the thesis self–contained. In this way we could not avoid

faithful duplications of certain statements, but we add comments which might serve as

clarification of the points.
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Chapter 2. Classical singular systems

This chapter introduces the subject of this thesis, the study of classical constrained

system. To set notation, we first discuss non–singular systems and their conventional

description in configuration, as well as in phase space terms. Literature sources in-

clude [138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148]. The concepts of non–

singularity, reducibility, and regularity conditions are introduced. The relation between

local gauge invariance of the action and the failure of non–singularity is presented. A

detailed description of singular systems is given. The meaning of first– and second–class

constraints, Dirac observables and gauge transformations are described. The published

material used in this chapter includes [1, 4, 65, 149, 150, 151, 152, 153, 154].

Chapter 3. Foundations of the classical BRST formalism

We incorporate the concepts introduced in the preceding chapter into the extended

phase space. In this chapter the nonminimal Hamiltonian BRST formalism is developed

on classical grounds. The construction of the classical BRST symmetry generator, for

irreducible and regular first–class constraints, is addressed here; its existence is seen as

a corollary of both the gauge algebra and the Jacobi identity. In a similar fashion, the

construction of the BRST extended observables is achieved. Some of the sources used

in this part of the thesis are [61, 62, 63, 64, 65, 69, 73]. We remark upon the canonical

covariance of the theory under rescaling of constraints, and introduce the notation for

ghost/antighost variables.

Chapter 4. Quantisation of singular systems

In this chapter two widely accepted methods of quantisation for constrained systems

are introduced. The first one is the refined algebraic quantisation formalism [93, 94, 95,

96, 97, 98], widely used in the community of canonical quantum gravity [137, 155, 156].

We introduce the group averaging ansatz using a finite dimensional vector space and

a discrete group. The technique is presented also for nonunimodular Lie groups based

on [96, 97]. The second quantisation method introduced here is the canonical BRST–

quantisation [78, 79, 62, 64, 65, 83] supplemented with a summary of the extensive work

on a BRST physical inner product developed by R. Marnelius et al. [82, 84, 85, 86, 87,

89, 90]. We discuss the possibility of deriving the group averaging formula from the

canonical BRST–quantisation when a suitable anti–hermitian gauge fixing operator is

provided.
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Chapter 5. Constraint rescaling in refined algebraic quantisation:

Momentum constraint

In this chapter we turn to the new results in this thesis [157]. Based on the previous

chapters, here we address the canonical quantisation of a class of systems related by

rescaling a classical constraint. We focus on a system with a single constraint, so that

rescaling does not produce artificial structure functions. However, there are issues in the

construction of a self–adjoint rescaled constraint operator. To avoid built–in topologi-

cal complications in the classical theory, we take the unextended phase space to be R4

and the constraint to be linear in one of the momenta, but we allow this momentum

to be rescaled by a nowhere–vanishing function of the coordinates. From the canoni-

cal BRST quantum analysis, the group averaging formula is derived. Once the ghost

fermions, inherent to the BRST formalism, are removed, we clarify at which level of

the extended phase space quantisation the auxiliary structures must be provided. The

refined algebraic quantisation depends on the asymptotic nature of the scaling function.

Three cases arise: the quantisation is equivalent to that in which the scaling function is

the identity everywhere; quantisation fails; or a quantisation ambiguity arises and leads

to a superselection structure of the physical Hilbert space.

Chapter 6. Constraint rescaling in refined algebraic quantisation:

Two momentum constraints

In this chapter the first steps to generalise the analysis of Chap. 5 are discussed. We

consider a system with two momentum constraints, originally abelian, on the phase

space R6. We admit the rescaling of each constraint by a non–vanishing function of

the coordinates. Unless these functions depend on the true degree of freedom only, the

Poisson brackets of the rescaled constraints closes with nonvanishing artificial structure

functions. To have some control over the infinite number of possible algebras obtained

by this rescaling, we provide a specific parameterised family of real–valued scaling func-

tions. Depending on the values taken by the parameters, either the gauge algebra (1)

is maintained, or, (2) becomes an algebra of a nonunimodular group with gauge invari-

ant structure functions, or, (3) becomes a full open algebra. Using the group averaging

motivated by the regularised BRST inner product, the refined algebraic quantisation of

cases (1) and (2) are performed. In particular the second case becomes the first example

known to the author where an open algebra is handled in refined algebraic quantisation.

Prospects of generalising the two previous results to case (3) are discussed.
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Chapter 7. General summary and discussion

The final chapter is devoted to final remarks, conclusions and possible future lines of

investigation on the subject of this thesis.

In appendices A and B we write down some technical calculations connected with a

pair of theorems quoted in Chap. 5. In the same chapter there occur specific lemmas

on the asymptotics of averaging integrals; their proofs are presented in Appendix C.

In Appendix D, we derive a crucial formula to explicitly write down a group averaging

ansatz for a gauge algebra with gauge invariant structure functions. In Appendix E we

collect the basic properties of the gauge group whose open algebra is discussed in Chap. 6.

Subsequent to the appendices, we place the References. At the end, in an attempt to

improve the readability of the current work, we include a Glossary of Symbols which

lists the commonest mathematical characters used throughout the main chapters.

Finally some words on the conventions used in this dissertation are in order. In every

part of this thesis, the repeated index implicit Einstein summation is understood unless

the contrary is explicitly expressed. The superscript ∗ in front of a variable or function

stands for complex conjugation. However, it is also used in the notation for a cotangent

manifold T∗M of a manifoldM, and when it appears in front of the bracket {· , ·} helps
to denote the Dirac bracket {· , ·}∗. The words ‘(anti) self–adjoint’ and ‘(anti) hermitian’

are used indistinctly. Chapters, as well as sections and subsections, are numbered in

arabic numerals, and appendices in uppercase Latin letters. Equations are numbered

sequentially within a section or appendix and also contain the number of the chapter.

When we refer to the RHS (resp. LHS) of an equation we mean the right– (left–) hand

side of it. Footnotes are sequentially numbered within each chapter; when we refer to a

footnote we will also make reference to the page on which it is printed. At the end of

some sections there is a list of remarks. The ending of each list is announced with a solid

black triangle (N) at the very right of the page. In contrast, a solid black rectangle ( )

signifies the end of a proof. Within the References, following each item, a number/set

of numbers is written; it corresponds to the page/pages in the body of the thesis where

such item was mentioned.



CHAPTER 2

Structure of the Classical Constrained Systems

When one has put a classical theory into the Hamiltonian form, one is

well launched onto the path of getting an accurate quantum theory.

– P. A. M. Dirac, 1964

The principal goal of this chapter is to describe the classical foundations in the

Lagrangian and Hamiltonian formalisms in cases where the degrees of freedom are con-

strained in the Dirac sense [1]. The meaning of non–singularity, reducibility, and regu-

larity conditions will be established. The concepts of first– and second–class constraints,

Dirac observables and gauge transformations will be described.

Throughout this work systems with a finite number of discrete degrees of freedom are

considered. We assume that their dynamics can be derived from an action functional, S,

through the Hamilton’s variational principle. This assumption does not exclude physical

models like dissipative systems with second order non–Lagrangian equations of motion.

Such systems can either be described by the Euler–Lagrange equations when a suitable

multiplier matrix exists or be reformulated in an equivalent first–order form; see for

instance Dmtri Maximovich Gitman and Vladislav G. Kupriyanov [158, 159] and refer-

ences quoted therein. Lagrangian functions depending at most on first derivatives (up

to surface terms) are examined. More general considerations as higher derivatives in

the Lagrangian or continuum degrees of freedom (fields) are discussed in the excellent

monograph by D. M. Gitman and I. V. Tyutin [151]. For simplicity, in this chapter only

16
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systems with bosonic degrees of freedom are considered. The BRST symmetry, to be

introduced in the next chapter, will require the addition of fermionic variables into the

analysis.

2.1 Classical non–singular systems

In this section the Lagrangian and Hamiltonian formalisms for systems that fulfil the

non–singularity condition are introduced. There is a detailed account of these ideas in

many textbooks in a variety of styles, from the traditional ones such as [139, 141, 142,

144, 147, 148] to more contemporary ones like [140, 143, 145] where a more geometrical

point of view is taken.

2.1.1 The starting point: An action and the Lagrangian formalism

For a mechanical system with a finite number n of discrete degrees of freedom, Hamil-

ton’s variational principle, or principle of least action, corresponds to a fixed–end–point

variational problem for n functions stated as follows: The motion of a system of particles

during the time interval [t0, t1] is described by the functions qi(t), i = 1, . . . , n, for which

the action functional

S[q] :=
∫ t1

t0

dt L(t, q, q̇) , q ≡ (qi) (2.1.1)

is stationary, with L a Lagrangian of the system.

A necessary condition for the differentiable functional S[q] to have an extremum

at a trajectory
(
q i(t)

)
, among the set of trajectories {

(
qi(t)

)
} fulfilling the boundary

conditions qi(t0) ≡ qi0 and qi(t1) ≡ qi1, is that q i(t) satisfy the Euler–Lagrange equations

Li :=
d
dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0 , (2.1.2)

where Li is the Euler derivative of L with respect to qi.

The Euler–Lagrange equations can also be written as follows:

Wij(t, q, q̇) q̈j − Vi(t, q, q̇) = 0 , (2.1.3)

where the Hessian Wij and the inhomogeneous term Vi are respectively defined by

Wij :=
∂L

∂q̇i∂q̇j
and Vi :=

∂L

∂qi
− ∂2L

∂q̇i∂t
− ∂2L

∂q̇i∂qj
q̇j . (2.1.4)

The equations of motion (2.1.2) are all of second order and functionally independent if

the non–singularity condition on its Lagrangian,

det(Wij) = det
(

∂L

∂q̇i∂q̇j

)
6= 0 , (2.1.5)
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is fulfilled. A system with a Lagrangian of this type is a non–singular system.

On the configuration manifold Q the dynamical equations (2.1.2) are considered as n

second–order differential equations. Equivalently, on the tangent space TQ, also termed

velocity phase manifold, these equations form a set of 2n first–order differential equations.

Indeed, labelling points in TQ by (q, q̇) it follows that the Eqs. (2.1.3) can be viewed as

Wij(t, q, q̇)
dq̇j

dt
= Vi(t, q, q̇) , (2.1.6a)

dqi

dt
= q̇i . (2.1.6b)

In the non–singular case, given the 2n initial conditions (q0, q̇0) ≡
(
qi(0), q̇i(0)

)
the

motion trajectory is uniquely defined by the Eqs. (2.1.6). For non–singular Lagrangians

and in the compact notation where ξI denotes (qi, q̇i) the equations of motion (2.1.6) can

be rewritten in the form
dξI

dt
= f I(t, ξ), I = 1, . . . , 2n. The motion is found by solving

for ξ(t) with initial conditions ξ(0).

There is nothing special about the tangent space TQ, and similar equations to

Eqs. (2.1.6) can be written down for the cotangent space as will be shown in the next

subsection.

Remarks

1. In solving the Eqs. (2.1.2) one seeks a solution defined on a finite temporal region

satisfying the given boundary conditions. The question of whether or not a cer-

tain variational problem of this type possesses a solution, does not just reduce to

the usual existence theorems for differential equations (like Cauchy–Kowalewski’s).

These existence theorems consider a solution only defined in the neighbourhood of

some point [160], but Eqs. (2.1.2) require solutions ‘in the large’; in this regard the

existence and uniqueness theorem is due to Sergey Natanovich Bernstein, see for

example [146].

2. We have assumed that the extremals are functions1 C1 in the interval [t0, t1]. A

generalisation where piecewise C1 solutions are considered requires the introduction

of the so–called Weierstrass–Erdmann conditions which correspond to continuity

requirements at the point or points where the extremal contains a corner.

3. The equations of motion (2.1.2) are coordinate independent or covariant under co-

ordinate transformations q = q(q′, q̇′, t). For the primed Lagrangian L′(q′, q̇′, t) de-
1We say that the function qi(t) is Ck in an interval [t0, t1] if it is continuous, with continuous

derivatives up to
dkqi

dtk
, in that interval. We say that qi(t) is piecewise Ck in [t0, t1] if it is continuous,

with continuous derivatives up to
dkqi

dtk
, in that interval, except possibly at a finite number of points.
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fined as L(q(q′, q̇′, t), q̇(q′, q̇′, t), t), the equations of motion read as the Eqs. (2.1.2)

with primed coordinates replacing the unprimed ones. This property suggests the

possibility of writing down the equations of motion in a coordinate–free way us-

ing intrinsically geometric objects belonging to TQ; a description can be found in

Chapter 3 of [145].

4. A Lagrangian uniquely determines the equations of motion (2.1.2); however, the

equations of motion do not determine a unique Lagrangian. Two Lagrangians are

said to be equivalent if they lead to exactly the same equations of motion [145].

If two Lagrangians L1 and L2 differ by a constant factor or a total derivative of

a function then they are equivalent. However, the converse is not true, e.g. L1 =

q̇1q̇2 − q1q2 and L2 = 1
2

[
(q̇1)2 + (q̇2)2 − (q1)2 − (q2)2

]
yield the same equations of

motion, but L2 − L1 is neither a total derivative of a function nor a constant.

5. By definition, given a non–singular Lagrangian all its equivalent Lagrangians are

also non–singular.

6. The determinant and the rank of the Hessian (Wij) are coordinate independent.

Indeed, if qi → q′i is a coordinate transformation with J ij the nonsingular Jacobian

of the transformation, then W ′ij = WlmJ
l
iJ
m
j . N

2.1.2 Canonical form of the Euler–Lagrange equations

Considering the total differential of the Lagrangrian L

dL =
∂L

∂t
dt+

∂L

∂qi
dqi + d

(
∂L

∂q̇i
q̇i
)
− q̇id

(
∂L

∂q̇i

)
,

it follows that

d
(
∂L

∂q̇i
q̇i − L

)
= −∂L

∂t
dt− ∂L

∂qi
dqi + q̇id

(
∂L

∂q̇i

)
.

With the usual definitions of generalised momenta and canonical Hamiltonian function

pi :=
∂L

∂q̇i
(t, q, q̇) , (2.1.7)

H := q̇ipi − L , (2.1.8)

the total differential of the Lagrangian becomes

dH = −∂L
∂t

dt− ∂L

∂qi
dqi + q̇idpi . (2.1.9)

For non–singular Lagrangians, by the inverse function theorem [161], the Eqs. (2.1.7)

that define the generalised momenta in terms of (t, q, q̇) can (locally) be solved uniquely

for the velocities. Insertion of the velocities in terms of coordinates and momenta into
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the RHS of Eq. (2.1.8) ensures the functional dependence H = H(t, q, p). In comparing

dH(t, q, p) with Eq. (2.1.9) the following identity is found:(
q̇i − ∂H

∂pi

)
dpi −

(
∂L

∂qi
+
∂H

∂qi

)
dqi −

(
∂L

∂t
+
∂H

∂t

)
dt ≡ 0 . (2.1.10)

Using the independence of coordinates and momenta implied by the independence

of coordinates and velocities via the non–singular transformation (2.1.7), one has that

the identity (2.1.10) holds when each one of the coefficients in front of the differentials

vanishes itself. Therefore the relations

q̇i =
∂H

∂pi
, ṗi = −∂H

∂q̇i
, and

∂L

∂t
= −∂H

∂t
(2.1.11)

hold after the Euler–Lagrange equations in the form ṗi =
∂L

∂qi
are used. The Eqs. (2.1.11)

are nothing but the Euler–Lagrange equations written as 2n first–order differential equa-

tions for the so–called canonical variables (q, p). These variables serve as local coordi-

nates in the cotangent space manifold T∗Q named phase space manifold. The ranges

of each q and each p are determined by their physical meaning. The Eqs. (2.1.11) are

referred to as Hamilton equations of motion or canonical Euler equations. In the non–

singular case, solutions to the Eqs. (2.1.11) yield a local expression for the trajectory

(q(t), p(t)) in T∗Q. This trajectory is completely determined by the initial conditions

(q(0), p(0)).

The transformation from TQ and a Lagrangian function {(q, q̇), L} to the T∗Q and a

Hamiltonian function {(q, p), H} defined by the formulas (2.1.7) and (2.1.8) is an example

of what is called Legendre transformation. It becomes one–to–one in the non–singular

cases. If the Legendre transformation is applied to the pair {(q, p), H}, we get back to

the pair {(q, q̇), L}.

Hamilton equations of motion can also be derived from a least action principle

that corresponds to the following fixed–end–point variational problem: The motion of

a system of particles during the time interval [t0, t1] can be described by 2n functions(
qi(t), pi(t)

)
, for which the so–called canonical integral (Cornelius Lanczos [138])

S[q, p] :=
∫ t1

t0

dt
(
q̇ipi −H(t, q, p)

)
(2.1.12)

is stationary.

A necessary condition for the differentiable functional S[q, p] to have an extremum

at the trajectory
(
q i(t), pi(t)

)
, among the set of trajectories

{(
qi(t), pi(t)

)}
fulfilling

the boundary conditions qi(t0) ≡ qi0 and qi(t1) ≡ qi1, is that
(
q i(t), pi(t)

)
satisfy the

Hamilton equations.
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Remarks

1. A dynamical system is said to be a Hamiltonian dynamical system if a Hamilto-

nian function exists such that the dynamics can be expressed as the Eqs. (2.1.11).

Not every motion on T∗Q is a Hamiltonian dynamical system. Consider the

equations of motion q̇ = qp and ṗ = −qp. They possess the explicit solution

q(t) = q0 ce
ct/
(
p0 + q0e

ct
)
and p(t) = p0 c/

(
p0 + q0e

ct
)
with c being q0 + p0 a

constant of motion. This system does not allow a well behaved Hamiltonian [145].

2. Since Hamilton equations are derivable from a fixed–end–point variational prob-

lem, adding a total derivative to a Hamiltonian does not modify the dynamical

equations.

3. Hamilton’s principle for the action functional (2.1.12) required fixing only the po-

sitions at the endpoints of the trajectories. Alternatively, one can fix only the

momenta; to do this the q̇p term must be replaced by the term −qṗ in the expres-

sion (2.1.12). This last step simply corresponds to subtracting the surface term∫ d
dt

(qp) dt from the canonical integral (2.1.12).

4. With regard to the previous remark, an action that gives a more symmetric treat-

ment of the coordinates and momenta boundary data is [65]

S [q, p] := S[q, p]− 1
2

(pi(t0) + pi(t1))
∫ t1

t0

dqi

dt
dt

=
∫ t1

t0

dt
[

1
2
(
q̇ipi − qiṗi

)
−H

]
+

1
2
[
qi(t0)pi(t1)− qi(t1)pi(t0)

]
(2.1.13)

with S[q, p] that given in Eq. (2.1.12), and corresponding boundary data

qi(t0) + qi(t1) = 2Qi

pi(t0) + pi(t1) = 2Pi

 ⇔
δqi(t0) + δqi(t1) = 0

δpi(t0) + δpi(t1) = 0

 . (2.1.14)

N

2.1.3 Poisson brackets and Hamiltonian dynamics

For a system with only bosonic degrees of freedom, if f and g are functions defined on

the phase space, the Poisson bracket (PB) between f and g is defined as

{f, g} :=
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
. (2.1.15)
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More than a convenient abbreviation, the PB is a central object of analytical mechanics

from the geometric point of view. From its definition, the following properties are fulfilled

for any f, g and h functions on the phase space:

(i) Linearity: If a and b are constants {af + bg, h} = a {f, h}+ b {g, h}

(ii) Antisymmetry: {f, g} = −{g, f}

(iii) Leibniz rule: {fg, h} = f{g, h}+ {f, h}g

(iv) Jacobi identity: {{f, g}, h}+ {{h, f}, g}+ {{g, h}, f} = 0

The PBs between the basic canonical variables qi and pj become

{qi, qj} = 0, {qi, pj} = −{pj , qi} = δij , {pi, pj} = 0. (2.1.16)

The time evolution of a well behaved function f on R×T∗Q along the motion can

be written without solving the Hamilton equations as

ḟ = {f,H}+
∂f

∂t
. (2.1.17)

Hence the equations of motion themselves (2.1.11) take the more symmetric form

q̇i = {qi, H} , ṗi = {pi, H} ,
∂L

∂t
= −∂H

∂t
. (2.1.18)

Remarks

1. Properties (i), (ii) and (iv) of the PBs are the defining properties of a Lie algebra.

Therefore the space of functions on T∗Q has the algebraic structure of a Lie alge-

bra. In the most pedestrian canonical quantisation scheme, a subalgebra of these

functions is meant to be mapped to a subalgebra of symmetric operators on some

Hilbert space, with the commutator as Lie product.

2. A manifold M whose functions on it can be paired with a bracket satisfying (i)–(iv)

is called a Poisson manifold [143]. Therefore the phase space is a Poisson manifold.

3. A symplectic manifold is a pair (M, ω), where M is a manifold of even dimension

and ω is a nondegenerate (detω 6= 0) closed (dω = 0) 2–form defined on M [143].

A symplectic manifold (M, ω) is always a Poisson manifold (M, {·, ·}). Indeed, if

(xI) denotes local coordinates in the symplectic manifold M, the Poisson bracket

is defined using the components ωIJ of ω in the local basis of 2−forms dxI ∧ dxJ

as follows: {f, g} := (∂If)ωIJ(∂Jg), where ωIJ denotes the inverse of ωIJ . Using

Darboux’s theorem [143] simplifies the verification of the Jacobi identity.
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4. In the notation introduced in the previous remark, local coordinates for M = T∗Q
are (q, p) ≡ (xI), where I = 1 . . . , 2n, xi ≡ qi and xi+n ≡ pi. Locally, one can

introduce the symplectic 2–form with contravariant components

(ωIJ) =

(
O 1

−1 O

)
, (2.1.19)

which reduces {f, g} = (∂If)ωIJ(∂Jg) to the definition (2.1.15), and ẋI = ωIJ∂JH

to the Hamilton equations (2.1.11) except for ∂L/∂t = −∂H/∂t.

5. As mentioned before not every motion on T∗Q is a Hamiltonian dynamical system;

however, the system is Hamiltonian iff
∂

∂t
{f, g} = {ḟ , g}+ {f, ġ}. See [145] for a

proof. N

2.1.4 Invariance properties of S: A first look at gauge symmetry

A cornerstone in the formal structure of classical dynamics is the concept of invariance

of the action with respect to certain transformations. In specific cases the identification

of such invariance may lead to suitable coordinates in which the equations of motion

present a more tractable form. Invariance is translated to the concept of symmetry, and

this, in turn, to conservation laws or identities among the equations of motion.

Consider an action functional either in Lagrangian Eq. (2.1.1) or Hamiltonian terms

Eq. (2.1.12) or Eq. (2.1.13) and assume that neither of them contains explicit time

dependence. Since the following claims are independent of the particular form of the

action functional, yα will denote the variables involved, where α = 1, . . . , A, and the

action itself will read as

S[y] :=
∫ t1

t0

dtG(y, ẏ) . (2.1.20)

The ‘local general Lagrangian’ G(y, ẏ) represents the local L(q, q̇) when y = q, or q̇p −
H(q, p) when y = (q, p), depending on the action principle under consideration2. In

this common notation for the Lagrangian and Hamiltonian formalisms the equations of

motion read
δS

δyα(t)
≡ δG

δyα
(y(t)) = 0 , (2.1.21)

with δG/δyα the variational derivatives of G with respect to yα. The Euler derivatives

Gα coincide with δG/δyα since G depends at most on ẏ:

δG

δyα
≡ ∂G

∂yα
− d

dt

(
∂G

∂ẏα

)
. (2.1.22)

2In fact, the following results can be extended to integrands of the action functional depending on

higher derivatives ([65]: Chap. 3). However, for our purposes it is enough to include only first derivatives.
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The derivatives δS/δyα(t) are known as functional derivatives of the action; they are

defined as

δS =
∫

dt
δS

δyα(t)
δyα(t) (2.1.23)

when the variation of S is considered for arbitrary variations δyα(t) that vanish appro-

priately at the boundary.

We consider transformations parameterised3 by r arbitrary functions of time εa

δεy
α = Rα(0)aε

a +Rα(1)aε̇
a + . . .+Rα(s)a

dsεa

dts
, (2.1.24)

for some coefficients Rα(m)a dependent of y and ẏ. These transformations are called gauge

transformations if they (i) can be prescribed independently at each time t, and (ii) leave

invariant S[y]. The latter property explicitly means that for any choice of εa(t) one has

0 = δεS =
∫ t1

t0

dt
(
δG

δyα
δεy

α +
d
dt

(
∂G

∂ẏα
δεy

α

))
, (2.1.25)

or after some integration by parts

0 = δεS =
∫ t1

t0

dt
(

Naε
a +

dF
dt

)
, (2.1.26)

with Na given below and F :=
∑s

l=0 R(l)a
dlε
dtl

. The coefficients R(l)a in the definition of F

are functions whose dependence of y and derivatives of y is irrelevant for our discussion.

From this, if εa(t), ε̇a(t), . . .,
dsεa

dts
(t) vanish at t0 and t1, the expression (2.1.26) yields

the local relations

Na :=
s∑
l=0

(−1)l
dl

dtl

(
δG

δyα
Rα(l)a

)
≡ 0 (2.1.27)

known as Noether identities or generalised Bianchi identities.

The Noether identities correspond to r local relations among the equations of motion.

It is important to stress that Eqs. (2.1.21) comprise A differential equations of motion
δG

δyα
= 0, for A unknown quantities yα which one expects to be uniquely determined,

provided the initial conditions are given. However, when a gauge symmetry is present

yα are not uniquely determined. Although algebraically independent, the A equations

of motion will be related by the r Noether identities (2.1.27). Thus there are not A

functionally independent equations of motion, but only A − r, leaving r self–governed

degrees of freedom. These degrees of freedom correspond to the fact that if yα(t) is a

solution to the Eqs. (2.1.21), then so is y′α(t) = yα(t)+δεyα, where in order to determine
3Here it is assumed for simplicity that each parameter is commuting (i.e. Grassmann number zero)

which leads to ordinary symmetry, in contrast to anti–commuting (i.e. Grassmann number one) param-

eters which lead to a supersymmetry. See for instance the seminal report by Joaquim Gomis et al. [59]

where a complete analysis of the gauge transformations at the Lagrangian level is performed.
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y′α(t) from yα(t), precisely r arbitrary functions εa need to be specified. Then functions

yα(t) are not completely determined once initial conditions are given.

Consequences of the existence of invariance under gauge transformations within the

Hamiltonian formalism will be discussed in the next section.

Remarks

1. A particular case of the Euler–Lagrange equations (2.1.21) is when the Hamiltonian

form of the action Eq. (2.1.13) is in use. Hence, G = q̇i
(
pi − 1

2(pi(t0) + pi(t1))
)
−

H(q, p, t), and the Eqs. (2.1.21) are indeed reduced to the Hamilton equations

∂G

∂qi
− d

dt

(
∂G

∂q̇i

)
= −∂H

∂qi
− d

dt

(
pi −

1
2

(pi(t0) + pi(t1))
)

= −∂H
∂qi
− ṗi = 0 ,

∂G

∂pi
− d

dt

(
∂G

∂ṗi

)
= q̇i − ∂H

∂pi
= 0 .

2. In the particular case where none of the r arbitrary gauge parameters depends on

time, the invariance of the action (2.1.25) reduces to

δG

δyα
Rα(0)a +

d
dt

(
∂G

∂ẏα
Rα(0)a

)
= 0 .

Hence, on–shell, Q :=
∂G

∂ẏα
Rα(0)a is a conserved quantity known as Noether charge.

3. If δηyα = Tα(0)aη
a + Tα(1)aη̇

a + . . . + Tα(s)a
dsηa

dts
and δεy

α Eq. (2.1.24) are gauge

transformations, then κδεyα + δηy
α and [δε, δη]yα := δε(δηyα)− δη(δεyα) (with κ ∈

R) leave the action invariant. Moreover, the product [· , ·] is linear, antisymmetric

and satisfies the Jacobi identity (cf. Sect. 2.1.3), therefore the infinitesimal gauge

transformations form a Lie algebra.

4. Transformations of the form δµy
α = µαβ

δG

δyβ
, with µαβ = −µβα arbitrary functions

of y and their time derivatives up to some finite order, leave the action invari-

ant provided µαβ(t0) = µαβ(t1) = 0, i.e. δµS =
∫

dt
[
δG

δyα
µαβ

δG

δyβ

]
= 0. These

transformations are called trivial gauge transformations. Note that a trivial gauge

transformation does not imply a degeneracy of the equations of motion. The LHS

of δµS = 0 identically vanishes due to the antisymmetry of µαβ .

5. Let δεyα be a gauge transformation of the form (2.1.24). A rescaling of the gauge

parameters by some matrix depending on the ys, ε′a = Λab(y)εb, redefines the

gauge transformation into δε′y
α = R′α(0)aε

′a + . . . + R′α(s)a
dsε′a

dts
. From the point

of view of Lie algebras, the transformed δε′ is linearly independent of δε. Each

R′α(m)a is not a linear combination of Rα(m)a with coefficients that are real numbers.
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However, the Noether identities associated to the rescaled transformation are not

independent of those coming from the symmetry δεyα. Hence, at a classical level,

no new information is contained in the invariance of S under the rescaled gauge

transformations. N

2.2 Classical singular systems

In the previous section the structure of systems for which the non–singularity condition

is satisfied was broadly analysed. In this section, the structure of systems which fail

to fulfil Eq. (2.1.5) is exposed. A major emphasis is put on the Hamiltonian formalism

based on methods proposed by P. A. M. Dirac [1] and P. G. Bergmann [6, 7]. Modern

sources in the analysis of these systems are for example [4, 64, 65, 149, 150, 151, 153].

The point of view that will be adopted within the Sects. 2.2.2 and 2.2.3 is that a

sufficiently good understanding in the treatment of constrained systems is obtained by

considering only explicitly time–independent Lagrangians L = L(q, q̇). The treatment of

explicitly time–dependent constraints, either coming from a time–dependent Lagrangian

or time–dependent gauge fixing functions, has been reviewed for instance by D. M.

Gitman and I. V. Tyutin [151], and S. P. Gavrilov and D. M. Gitman [162].

2.2.1 Gauge invariant systems and the failure of the non–singularity condition

In Sect. 2.1.4 the arbitrariness in the solutions to the equations of motion and its relation

with gauge transformations was emphasised. In the current subsection the connection

between the existence of Noether identities and the failure of the corresponding La-

grangian to satisfy the non–singularity condition (2.1.5) is described. The fulfilment of

the condition (2.1.5) in a Lagrangian system guarantees that the equations of motion will

be functionally independent. On the other hand, gauge invariant systems show relations

among the equations of motion. Hence gauge invariant systems cannot be non–singular;

they are rather a kind of singular systems.

Consider the action functional (2.1.1) of a system with gauge invariance. In this case

the Noether identities (2.1.27) take the form

Na :=
s∑
l=0

(−1)l
dl

dtl

(
δL

δqi
Ri(l)a

)
≡ 0 , (2.2.1)

with L = L(t, q, q̇) a Lagrangian for the system and
δL

δqi
= 0 the equations of motion.

Using the expression (2.1.3) of the dynamical equations and expanding the LHS of the
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identity in (2.2.1), one can easily identify the terms with the highest number of time

derivatives of the generalised coordinates. These terms are

(−1)sWijR
i
(s)a(q, q̇)

ds+2 qj

dts+2
,

whose coefficients must vanish, thereforeWijR
i
(s)a(q, q̇) = 0. Since not all the coefficients

Ri(s)a in the gauge transformation are identically zero, s is the largest integer for which

Ri(s)a 6= 0 in Eq. (2.1.24), then these are the components of null eigenvectors of the

Hessian Wij ; in this way the non–singular condition is not fulfilled for gauge invariant

systems

det(Wij) = det
(

∂L

∂q̇i∂q̇j

)
= 0 . (2.2.2)

So the important result that a Lagrangian which is invariant under local gauge trans-

formations is necessarily singular has been obtained. It is worth noting that the converse

of the previous statement is not true; there are singular Lagrangians which do not pos-

sess a local gauge invariance. In the terminology that will be introduced later on, those

systems contain second–class constraints only.

2.2.2 Constrained dynamics: Lagrangian description

The Euler–Lagrange equations for singular Lagrangians will now be examined in more

detail . Let the rank of the Hessian be a constant R1 ≤ n throughout the velocity phase

manifold TQ with n the number of degrees of freedom. Then there exist n − R1 null

eigenvectors ua(q, q̇) of the Hessian

Wiju
j
a = 0, a = 1, . . . , n−R1 , (2.2.3)

where some of the null eigenvectors might be encoded in a certain gauge transformation

as described before. Contracting ua with the Euler–Lagrange equations (2.1.3), n− R1

relations which do not contain accelerations are obtained

Vi(q, q̇)uia(q, q̇) = 0 . (2.2.4)

These relations between coordinates and velocities, and all other which may occur in the

analysis by consistency of (2.2.4), are called Lagrange constraints. From the other R1

equations, which involve accelerations, only those which are independent will be referred

to as equations of motion.

One possible situation in the examination of Eqs. (2.2.4) is to have a Lagrangian such

that these relations are identically satisfied. Then there are no Lagrange constraints at

all. In that case all the Eqs. (2.2.4) are 0 = 0 for each value of a, and no more equations
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beyond Eqs. (2.1.2) to determine the physical trajectory exist. Hence, without loss of

generality, the Eqs. (2.1.3) can be used to express the first R1 accelerations q̈1, . . . , q̈R1

in the form

q̈ i
′

= f i
′ (
q1, . . . , qR1 , q̇1, . . . , q̇R1 | qR1+1, . . . , qn, q̇R1+1, . . . , q̇n, q̈R1+1 . . . , q̈ n

)
(2.2.5)

with i′ = 1, . . . , R1. The solutions to the equations of motion are uniquely determined af-

ter fixing the n−R1 functions of time qR1+1(t), . . . , qn(t) and giving the initial conditions

(qi
′
(0), q̇i

′
(0)). Different choices for the arbitrary functions lead to different solutions.

The occurrence of these arbitrary functions of time in the general solution to the equa-

tions of motion is a common feature of the dynamics of constrained systems as will be

verified.

A more involved situation happens when the LHS of Eqs. (2.2.4) do not identically

vanish, determining in this way a number of relations among the qs and q̇s. In such a

case the following iterative stages have to be taken into account [149]:

Stage 1. [Initial Lagrange constraints] Generally speaking not all of the n − R1

relations (2.2.4) are functionally independent. Let K1 ≤ n−R1 be the number of

functionally independent relations. Denote these relations by

Ca1(q, q̇) = 0, a1 = 1, . . . ,K1 (2.2.6)

which define a 2n − K1 dimensional surface Σ1 in TQ to which the motion is

constrained. In what follows, at every step, the regular condition on the Lagrange

constraints is required [149], namely

rank
(
∂Ca1

∂qi
,
∂Ca1

∂q̇i

)∣∣∣∣
Σ1

= K1 . (2.2.7)

The Lagrange constraints Ca1 are regular if and only if the rank of the Jacobian

matrix formed by partial derivatives of the constraints with respect to coordinates

and velocities is maximal on the Lagrange constraint surface4 Σ1.

Using the correlations among qs and q̇s (2.2.6) the rank R1 of Wij , originally

calculated all over TQ, can at most decrease to R2 ≤ R1. Therefore more null

eigenvectors of Wij might be found, and these in turn introduce more independent

constraints than only (2.2.6). Extracting the regular and functionally independent

constraints one has altogether at this stage

Ca2(q, q̇) = 0 , a2 = 1, . . . ,K2 ≥ K1 , (2.2.8)

4This has the consequence that if Ca1 obeys (2.2.7) then C2
a1 or C1/2

a1 , say, will not.
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as Lagrange constraints. Relations (2.2.8) define a hypersurface Σ2 ⊂ TQ of lower

dimensionality than that of Σ1. The motion is now restricted to Σ2. Using the

Lagrangian constraints (2.2.8), the rank of Wij must be reconsidered, giving R3 on

Σ2 with R3 ≤ R2 ≤ R1, then more null eigenvectors of Wij might be found which

give rise to more constraints which restrict further the motion. We keep doing this

series of operations until the following circumstances are reached: (a) We have the

equations of motion (2.1.3) with the motion restricted to some Lagrange constraint

surface Σ ⊂ TQ of dimensionality 2n −K defined by K regular and functionally

independent relations, which we refer to as initial Lagrange constraints,

Ca(q, q̇) = 0 , a = 1, . . . ,K ≥ . . . ≥ K2 ≥ K1 . (2.2.9)

(b) The rank of Wij reduces on Σ to R with R ≤ . . . ≤ R2 ≤ R1. (c) More

importantly, given any null eigenvector u ofWij on Σ the equation Vi(q, q̇)ui(q, q̇) =

0 is identically satisfied when the constraints are used, that is, no more Lagrange

constraints in this way arise.

Stage 2. [Consistency condition] Among the initial Lagrange constraints, in the

terminology of [149], a constraint is of ‘type–A’ if it depends on positions only,

Aα(q) = 0, and of ‘type–B’ if it also depends on velocities, Bβ(q, q̇) = 0. One

separates by algebraic manipulations the maximal number of type–A and type–B

constraints such that relations (2.2.9) take the form

Aα(q) = 0, α = 1, . . . , A, (2.2.10a)

Bβ(q, q̇) = 0, β = 1, . . . , B, (2.2.10b)

with K = A + B. Then the time derivative of the type–A constraints on Σ (now

defined by the Eqs. (2.2.10)) is considered. The result is either zero, that is,

Ȧα = aαα′Aα′ + bαβBβ or it leads to new constraints which increase the number

of regular and functionally independent type–A and/or type–B constraints. In the

case where new constraints arise, these constraints together with relations (2.2.10),

restrict further the motion on a hypersurface of lower dimensionality than that of

Σ. If at this stage a new type–A constraint arises, one takes its time derivative

evaluated at the new hypersurface, and so on. This procedure ends when the time

derivatives of all type–A constraints vanish on the latest hypersurface defined by

the Lagrange constraints, that is, one ends with a set of Lagrange constraints

Aα′(q) = 0 , α′ = 1, . . . , A′ ≥ A , (2.2.11a)

Bβ′(q, q̇) = 0 , β′ = 1, . . . , B′ ≥ B , (2.2.11b)
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where the equations Ȧα′ = 0 are obeyed identically on the hypersurface Σ′ defined

by (2.2.11).

One adds to the analysis the second time derivative of (2.2.11a) and the first time

derivative of (2.2.11b)

Äα′(q) =
∂2Aα′

∂qi∂qj
q̇iq̇j +

∂Aα′

∂qi
q̈ i = 0 , α′ = 1, . . . , A′ ≥ A , (2.2.12a)

Ḃβ′(q, q̇) =
∂Bβ′

∂qi
q̇i +

∂Bβ′

∂q̇i
q̈ i = 0 , β′ = 1, . . . , B′ ≥ B . (2.2.12b)

After using the equations of motion and the constraints (2.2.11), more independent

equations of motion than the initial ones and/or more constraints of any of the two

types described above may appear. To those new type–A and –B constraints, if

any, the same treatment of differentiation needs to be applied. This will possibly

generate new equations of motion and/or more constraints.

Stage 3. [End of the process] For a system with a finite number of degrees of freedom,

for which consistent equations of motion are possible (see the remarks below), this

iterative process ends after a finite number of steps. At the end one will have: (a)

A finite number of equations for the accelerations

n∑
j=1

Wij(q, q̇) q̈j = Vi(q, q̇) , i = 1, . . . ,R ≤ n . (2.2.13)

(b) A set of type–A and type–B Lagrange constraints

Aµ(q) = 0 , µ = 1, . . . ,A ≥ . . . ≥ A , (2.2.14a)

Bν(q, q̇) = 0 , ν = 1, . . . ,B ≥ . . . ≥ B , (2.2.14b)

which define the hypersurface Σ in TQ on which the motion is restricted to. (c)

All the consistency conditions on this set of constraints are satisfied identically on

Σ.

Stage 3 implies that the first time derivative of type–A constraints (2.2.14a), that is,(
∂Aµ/∂q

i
)
q̇i = 0, must be contained in the type–B constraints (2.2.14b) that involve q̇.

Hence implying B ≥ A . The second time derivative of type–A constraints (2.2.14a) as

well as the first time derivative of type–B constraints (2.2.14b) must be contained in the

equations of motion (2.2.13). Hence R ≥ B ≥ A . In conclusion the constraints (2.2.14)

become an invariant system of the differential equations (2.2.13).

Finally, the nature of the solutions to the system of equations (2.2.13) and (2.2.14) will

be analysed. Among the R equations of motion (2.2.13), B equations are consequence of
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the consistency conditions on the Lagrange constraints (2.2.14). By construction, the set

of constraints (2.2.14b) can be split into the first A , Bµ = ˙Aµ = 0, and the remaining

B − A ones, denoted by B′ρ with ρ = A + 1, . . . ,B. Since this set of constraints is

regular and functionally independent, the Jacobian

(
∂Bν

∂qi
,
∂Bν

∂q̇i

)
=


∂Bµ

∂qi
∂Bµ

∂q̇i

∂B′ρ
∂qi

∂B′ρ
∂q̇i

 =


∂Bµ

∂qi
∂Aµ

∂qi

∂B′ρ
∂qi

∂B′ρ
∂q̇i


is of maximal rank, namely B. One may arrange the first B equations of motion (2.2.13)

read as the first time derivative of Bν

Ḃµ ≡ Äµ =
∂2Aµ

∂qi∂qj
q̇iq̇j +

∂Aµ

∂qi
q̈ i = 0 , µ = 1, . . . ,A , (2.2.15a)

Ḃρ ≡ Ḃ′ρ =
∂B′ρ
∂qi

q̇i +
∂B′ρ
∂q̇i

q̈ i = 0 , ρ = A + 1, . . . ,B . (2.2.15b)

The remaining equations of motion are denoted by

n∑
j=1

W ′
i′j(q, q̇)q̈

j = V ′i′(q, q̇) , i′ = B + 1, . . . ,R . (2.2.15c)

The dynamical content encoded in the Eqs. (2.2.13) and Eqs. (2.2.14) has been trans-

lated, after the usage of consistency conditions, into the system of equations (2.2.15)

and (2.2.14). These equations make explicit that B of the R equations of motion (2.2.13)

are a consequence of the consistency condition. The type–A constraints (2.2.14a) can

be used to solve, say, the first A coordinates, qµ = qµ(qm), m = A + 1, . . . , n, in terms

of the other n − A . Note that ˙Aµ = Äµ = 0 are automatically satisfied when these

relations among the coordinates are employed. Substitute qµ(qm) into B′ρ(q, q̇) = 0 to

obtain B′′ρ(qm, q̇m) = 0 and the R −A equations of motion

n∑
m=A +1

∂B′′ρ
∂qm

q̇m +
∂B′′ρ
∂q̇m

q̈m = 0 , ρ = A + 1, . . . ,B , (2.2.16a)

n∑
m=A +1

W ′′
i′mq̈

m − V ′′i′ = 0 , i′ = B + 1, . . . ,R . (2.2.16b)

The last set of equations corresponds to (2.2.15c) after the substitution of qµ(qm). So

one has (B − A ) + (R −B) = R − A equations for the n − A unknowns qm, with

R −A ≤ n−A . Then solving for the first R −A unknowns

q̈m
′

= gm
′
(
qm
′
, q̇m

′ | qm′′ , q̇m′′ , q̈m′′
)
, m′ = A + 1, . . . ,R , (2.2.17)

where m′′ = R + 1, . . . , n. Equations (2.2.16) show that if the type–B constraints

B′′ρ(qm, q̇m) = 0 are satisfied at time t = 0, they will be satisfied at any later time. The
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solutions to (2.2.17) depend on the n − R (which could be zero) number of arbitrary

functions qm′′(t). Fixing the arbitrary functions qm′′(t) and giving the initial values

(qm(0), q̇m(0)) consistently with the type–B constraints B′′ρ(qm, q̇m) = 0, the trajectory

(qm(t), q̇m(t)) will be uniquely defined. Substitution of qm(t) into qµ(qm(t)) = qµ(t)

defines the physical motion of the system qi(t) = (qµ(t), qm(t)) in Q.

Remarks

1. At every stage in the analysis of the subsection 2.2.2, singular Lagrangians that

do not lead to inconsistencies have been assumed. Excluded singular Lagrangians

are for instance L = q̇ − q, which yields 1 = 0 as Euler–Lagrange equation, or,

L = 1
2 q

1
(
(q̇2)2 + 1

)
+ q2q3 which yields (q1q̇2)˙− q3 = 0, (q̇2)2 + 1 = 0 and q2 = 0.

These two particular examples show that the corresponding action functionals do

not have a stationary point.

2. It was also assumed at various stages that some algebraic manipulations can be

carried out, for instance, several equations were written to expose some variables

as explicit functions of the others. Although this is possible in principle, it might

be difficult and disadvantageous at times. In any case the ‘algorithm’ described

above tells us what to expect to happen in a general case although the equations

may vary.

3. A set of gauge transformations is known as complete [163] when the number of in-

dependent arbitrary functions in the gauge transformations (2.1.24) is equal to the

number of arbitrary functions in the general solution of the Lagrangian equations

of motion. N

2.2.3 Constrained dynamics: Hamiltonian description

The transition from the Lagrangian to the Hamiltonian formulation of classical me-

chanics is carried out by means of a Legendre transformation over the velocities. In

constrained dynamics, the failure of the non–singularity condition (2.1.5) is translated

in the noninvertibility of the velocities as functions of coordinates and momenta from

the equations

pi =
∂L

∂q̇i
(q, q̇) , i = 1, . . . , n . (2.2.18)

Instead, from the definition of momenta, relations among qs and ps emerge. These

relations suggest a similar iterative process as the one applied to the initial Lagrange

constraints. In the Hamiltonian setting, the corresponding set of steps is known as

Dirac–Bergmann algorithm; this will be described below.
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Stage 1. [Primary constraints] Let the rank of the matrix
(
∂pi
∂q̇j

)
=
(

∂2L

∂q̇j∂q̇i

)
be

n −M ′. This number not only determines that from (2.2.18) n −M ′ velocities
are expressible in terms of qs, ps and the remaining M ′ velocities; but also that

there exist M ′ relations among qs and ps. These M ′ relations are called primary

constraints, a term coined by P. G. Bergmann [7]. The word ‘primary’ refers to

the fact that the equations of motion are not used to obtain them, but they arise

directly from the definition of momenta. Primary constraints restrict the motion

to a surface Γ1 of dimension 2n−M ′ in the phase space T∗Q. In principle, directly

from (2.2.18)M > M ′ (redundant) relations may arise; they are denoted as follows:

φm(q, p) = 0 , m = 1, . . . ,M > M ′ . (2.2.19)

The separation of the primary constraints (2.2.19) into M ′ essential constraints,

which are those that completely define Γ1, and M − M ′ dependent constraints,

which hold as consequences of the first ones, might not be achievable.

In what follows, it will be assumed that the relations (2.2.19), as well as and any

other set of constraints that can occur through consistency conditions of these ones,

can be separated into essential and dependent constraints. In other words, it will be

assumed that the relations (2.2.19) satisfy the so–called regularity condition. Strictly

speaking, the regularity condition corresponds to the following requirement [65]: The

(2n −M ′)−dimensional constraint surface Γ1 (redundantly) defined by φm = 0 should

be coverable by open regions, on each of which the constraint functions φm can be split

into M ′ essential constraints φm′ , m′ = 1, . . . ,M ′, determined by

rank
(
∂φm′

∂qi
,
∂φm′

∂pi

)∣∣∣∣
Γ1

= M ′, (2.2.20)

and M −M ′ dependent constraints φm′′ , m′′ = M ′ + 1, . . . ,M , which hold as a conse-

quence of the others, that is, φm′ = 0 ⇒ φm′′ = 0.

A set of constraints {φm} that fulfils the regularity condition satisfies the following

two theorems. The corresponding proofs can be found in [65].

Theorem 2.2.1 If a (smooth) phase space function G vanishes on the surface φm = 0,

then G = gmφm for some functions gm.

Theorem 2.2.2 If λiδqi + µiδpi = 0 for arbitrary variations of δqi, δpi tangent to the

constraint surface then, on the constraint surface,

λi = um
∂φm
∂qi

(2.2.21a)

µi = um
∂φm
∂pi

(2.2.21b)
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for some um. In the presence of redundant constraints, like φm′′ = 0, the functions um

exist but are not unique.

In the Lagrangian formalism, the Lagrange constraints were required to be an invari-

ant system of the equations of motion. In order to bring the equations of motion into

the Hamiltonian setting of constrained systems, a closer examination of the canonical

Hamiltonian (2.1.8) is necessary. By direct calculation one can see that the variation on

the constraint surface Γ1 of H = q̇ipi − L, induced by arbitrary independent variations

of positions and velocities, leads to the conclusion that H is only a function of qs and ps.

In other words, the canonical Hamiltonian (2.1.8) is only well defined on Γ1. The most

general extension of H to the whole phase space comes from adding to it an arbitrary

function that vanishes on the constraint surface. In view of the Theorem 2.2.1, such a

function must be a linear combination of constraints. Adding this specific combination

to the Hamiltonian (2.1.8) gives rise to the primary Hamiltonian or total Hamiltonian

H(1) := H + um φm , m = 1, . . . ,M . (2.2.22)

From the comparison between the total variations (valid only on Γ1) dH =
∂H

∂qi
dqi+

∂H

∂pi
dpi and dH = q̇idpi −

∂L

∂qi
dqi, one obtains

(
∂H

∂qi
+
∂L

∂qi

)
dqi +

(
∂H

∂pi
− q̇i

)
dpi = 0 . (2.2.23)

The Theorem 2.2.2 implies that on the primary constraint surface Γ1 the following equa-

tions hold:

q̇i =
∂H

∂pn
+ um

∂φm
∂pi

, (2.2.24a)

ṗi = −∂H
∂qi
− um∂φm

∂qi
. (2.2.24b)

In combination, the equations (2.2.19) and (2.2.24) are equivalent to the Euler–Lagrange

equations (2.1.2) when the determinant of the Hessian vanishes. The Eqs. (2.2.24) are

referred to as the Hamilton equations of motion for constrained systems.

A more symmetric way of writing the Eqs. (2.2.24) is by using the PBs defined

in (2.1.15):

q̇i = {qi, H}+ um{qi, φm} ≈ {qi, H(1)} , (2.2.25a)

ṗi = {pi, H}+ um{pi, φm} ≈ {pi, H(1)} , (2.2.25b)

where the symbol ‘≈’ (which is read as ‘weakly zero’) means that the function on its

LHS is equal to the function on its RHS on the constraint surface only. Hence φm ≈ 0,
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that is, the quantity φm is numerically restricted to be zero but it does not identically

vanish throughout the phase space.

The time evolution along the motion of an arbitrary function F (q, p) on T∗Q can be

written as

Ḟ = {F,H}+ um{F, φm} ≈ {F,H(1)} . (2.2.26)

Stage 2. [Consistency condition] The consistency condition, as presented in the La-

grangian setting, meant that the time evolution of the constraints is bound to

vanish on the constraint surface. In the Hamiltonian formalism this is achieved

using the Eq. (2.2.26) for each of the φm and one should have φ̇m ≈ 0. This condi-

tion gives the following set of M algebraic inhomogeneous equations on Γ1 for the

M unknown us:

{φm, H}+ un{φm, φn} = 0 , m, n = 1, . . . ,M . (2.2.27)

Without loss of generality the following two cases are distinguishable:

Case 1. The determinant of the matrix formed by the primary constraints is

nonzero on Γ1

det ({φm, φn})|Γ1
6= 0 . (2.2.28)

In this case, from Eqs. (2.2.27), all the us can be explicitly known as functions

of coordinates and momenta on the constraint surface Γ1. The primary Hamilto-

nian (2.2.22) then becomes

H(1) = H − φm{φ, φ}−1
mn{φn, H} , (2.2.29)

where {φ, φ}−1
mn stands for the inverse matrix of ({φm, φn}). The solution to

the equations of motion (2.2.25) is well defined, that is, given the initial values

(qi(0), pi(0)), consistent with the primary constraints (2.2.19), the motion trajec-

tory (qi(t), pi(t)) has no arbitrariness.

Case 2. The determinant of the matrix formed by the primary constraints vanishes

on Γ1. In this case the matrix ({φm, φn}) is assumed to have a constant rank r1

on the constraint surface Γ1

rank ({φm, φn})|Γ1
= r1 < M . (2.2.30)

From the Eqs. (2.2.27) one has that M − r1 us remain undetermined. There are

va(q, p) independent null eigenvectors of the matrix ({φm, φn}),

vna {φn, φm}|Γ1
= 0 , a = 1, . . . ,M − r1 .
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Contracting vna from the left with Eq. (2.2.27) originates the following relations:

vna{φn, H}|Γ1 = 0 ; (2.2.31)

these equations may or may not be identically obeyed on Γ1. If they are not, then

more constraints have appeared. Among these new constraints, one selects those

which are independent of φm ≈ 0. Let these be M1 in number. By assumption,

these new constraints (together with the primary constraints (2.2.19)) satisfy the

regularity condition. They are denoted by

φM+m1(q, p) = 0 m1 = 1 , . . . ,M1 . (2.2.32)

On the constraint surface defined by both φm = 0 and φM+m1 = 0 fewer variables

are independent. On this surface the rank of the matrix ({φm, φn}) can at most

decrease giving rise to more independent null eigenvectors. Such eigenvectors bring

more constraints of the form (2.2.31). This particular process of generating more

constraints at this level ends when the following situation is reached: (a) The

motion is restricted to the constraint surface Γ2 defined by

φµ1 = 0 , µ1 = 1, . . . ,M,M + 1, . . . ,M +K1 ≡ J1 , (2.2.33)

with K1 ≥ M1. The matrix ({φn, φm}) is assumed to have a constant rank %1 on

Γ2. (b) Any null eigenvector w of the matrix ({φn, φm}) makes wn{φn, H} = 0

to be identically satisfied on Γ2. The K1 relations are called second–stage con-

straints [151].

For consistency one has to require that the K1 second–stage constraints are pre-

served in time. Using the equations of motion (2.2.26) the following is obtained:

{φM+k1 , H}+um{φM+k1 , φm} = 0 , (m = 1, . . . ,M ; k1 = 1, . . . ,K1) , (2.2.34)

a condition to be fulfilled on Γ2 for each k1. Analysing (2.2.34) in the same way in

which (2.2.27) was analysed, some of the us left undetermined at the previous step

may be specified and/or more functionally independent constraints be obtained.

These new constraints restrict further the motion to the constraint surface defined

by

φµ2 = 0 , µ2 = 1, . . . ,M +K1 +K2 = J2 , (2.2.35)

with M primary constraints, K1 second–stage constraints, and K2 so–called third–

stage constraints. Requiring the consistency condition on the third–stage con-

straints, again, more equations for the unknown us operating at this point may

appear and a fourth–generation of constraints may arise. One keeps doing this

process until the stage described below is reached.
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Stage 3. [End of the process] This process of getting new equations for the us and

new independent constraints among qs and ps ends after a finite number of steps.

At the end, the situation should be the following: (a) There are M primary con-

straints and a total of K secondary constraints, as second– third– etc. stage con-

straints are known. All the constraints collectively denoted by

φµ(q, p) ≈ 0 , µ = 1, . . . ,M,M + 1, . . . ,M +K = J . (2.2.36)

The system of constraints (2.2.36) defines the constraint surface Γ with respect

to which the symbol ≈ is taken. The consistency condition on any of the con-

straints (2.2.36) becomes

{φµ, H}+ um{φµ, φm} ≈ 0 , m = 1, . . . ,M . (2.2.37)

(b) Any null eigenvector w of the rectangular matrix ({φµ, φm}) on Γ makes

wµ{φµ, H}|Γ = 0

to be identically satisfied.

Stage 3 is the point where the set of constraints (2.2.36) becomes an invariant system

for the Hamilton equations of motion (2.2.25). At this stage some or all of the us may

be known as functions of coordinates and momenta on Γ; in the case where some of the

us remains unknown, there exists arbitrariness in the equations of motion (2.2.25). Only

after fixing these unknown us, the motion becomes uniquely defined on the constraint

surface Γ given the compatible initial conditions.

Remarks

1. As a curiosity one may mention that although the term ‘constraints’ for the re-

lations (2.2.36) is the most common in the literature, one may also find the term

‘links’ [28].

2. According to Olivera Misčović and Jorge Zanelli [154], a set of constraints ϕn ≈ 0,

n = 1, . . . , r, which defines the surface Γ ∈ T∗Q, is a regular set if and only if

the Jacobian matrix of the derivatives of the constraints with respect to the phase

space variables is of maximal rank r on Γ (cf. Eq. (2.2.20)). With this definition

and the one given in this thesis –paradoxically– a set of constraints that satisfies

the regularity condition can or cannot be a regular set of constraints in the sense

of J. Zanelli. For instance, in a two dimensional phase space T∗Q = {(q, p)} the

constraint φ = p = 0 satisfies the regularity condition and is also a regular set
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of constraints, Eq. (2.2.20) is satisfied; however, the set of constraints formed by

φ1 = p = 0 and φ2 = p2 = 0 satisfies the regularity condition (φ1 is an essential

constraint and φ2 a dependent one), but it is not a regular set of constraints in J.

Zanelli’s sense. The corresponding Jacobian matrix has rank one on the constraint

surface. A set of constraints which only contains essential constraints and satisfies

the regularity condition is regular in J. Zanelli’s sense.

3. Given the constraints that fulfil the regularity condition, their explicit separation

into essential and dependent constraints is not necessary in the analysis. All that

is required is to choose the constraints in such a way that the split is in principle

achievable.

4. The Hamilton equations (2.2.24) and the primary constraints (2.2.19) can be de-

rived from a fixed–end–point variational problem where coordinates, momenta and

us are independently varied. An action functional is

S[q, p, u] :=
∫ t1

t0

dt
(
q̇ipi −H − umφm

)
(2.2.38)

where the sum is solely made over the primary constraints. The boundary data

restriction for this action is δqi(t0) = δqi(t1) = 0. Alternatively, a more symmetric

treatment of the boundary data can be given if one considers instead of (2.2.38)

the action (cf. Eq. (2.1.13))

S [q, p, u] := S[q, p, u]− 1
2

(pi(t0) + pi(t1))
∫ t1

t0

dqi

dt
dt

=
∫ t1

t0

dt
[

1
2
(
q̇ipi − qiṗi

)
−H − umφm

]
+

1
2
[
qi(t0)pi(t1)− qi(t1)pi(t0)

]
, (2.2.39)

then the corresponding boundary data is (2.1.14).

5. The variational principle based on the Lagrangian (2.1.1) is equivalent to the vari-

ational principle based on any of the Hamiltonian actions (2.2.38) or (2.2.39).

Solving the equations δS/δpi = 0 and δS/δum = 0 for pi and um from (2.2.38)

or (2.2.39) one recovers the Lagrangian action (2.1.1).

6. There is a relation between the Lagrange and the Hamilton constraints. An account

of this can be found in [4] under the assumption that the set of constraints satisfies

the regularity condition and consists of only essential constraints.

N
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2.2.4 First– and second–class functions

The notation used to designate all the constraints (2.2.36) suggests that the importance of

their classification into primary and secondary is of minor importance in the theory. The

classification of constraints into first–class and second–class due to P. A. M. Dirac [1],

which applies to all functions on the phase space, has proved to play a central role in

the theory of constrained systems.

In Dirac’s terminology, a function F on T∗Q is said to be first–class if its Poisson

bracket with every constraint vanishes on the constraint surface defined by (2.2.36), that

is,

{F, φµ} ≈ 0 , µ = 1, . . . , J . (2.2.40)

A function on T∗Q that is not first–class is called second–class. A property of the first–

class functions is that they are preserved under the PB, that is, the PB between two

first–class functions is first–class.

Let {va} be a set of linearly independent solutions to the homogeneous system of

equations associated to (2.2.37),

{φµ, φm}vma ≈ 0 . (2.2.41)

The most general solution to the Eqs. (2.2.37) is hence of the form um = Um + λavma ,

with Um a particular solution of the Eqs. (2.2.37). In the extreme case where none of the

us could be specified as a function of coordinates and momenta, one has that um = λavma

is the most general solution to the system of equations (2.2.37) with λa totally arbitrary

coefficients. After the substitution of the most general solution to the Eqs. (2.2.37) into

the primary Hamiltonian, one has

H(1) = H + Umφm + λaφa , (2.2.42)

with

φa := vma φm . (2.2.43)

In the expression (2.2.42) there is an explicit separation of the part of um that remains

unknown, λavma , from the part that is fixed by the consistency conditions, Um. The

Lagrange multipliers λa indicate the arbitrariness in the solution to the equations of

motion.

The equations (2.2.37) and (2.2.41) imply that H(1) (2.2.22) and φa (2.2.43) both are

first–class functions. From these observations we can also draw the important conclusion

that there are as many undetermined combinations of um as there are first–class primary

constraints. Moreover, {φa} is a complete set of first–class primary constraints in the
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sense that any first–class primary constraint is a linear combination of the φa. Indeed,

λavma is the most general solution of the homogeneous system of equations associated

to (2.2.37) on Γ.

Remarks

1. The distinction between first– and second–class constraints is defined without am-

biguities when the regularity condition is fulfilled. When this condition has not

been satisfied, one can turn any second–class constraint into a first–class one. In-

deed, let the relations χα= 0 form a set of essential second–class constraints, that

is, det({χα, χβ}) 6≈ 0. Replacing χα by χα := χ2
α, it follows that {χα, χβ} ≈ 0.

The functions χα hence form a set of first–class constraints. However, the set {χα}
does not fulfil the condition (2.2.20). N

2.2.5 First–class constraints and Hamiltonian gauge transformations

A physical state at a certain time is uniquely defined once the canonical pairs are speci-

fied; however, this is not a one–to–one relation as it is clearly shown in the cases where

a certain symmetry underlies the theory.

In the presence of first–class primary constraints the equations of motion contain

arbitrary functions of time λa; nevertheless, on classical grounds given a physical state

at time t = t0 the equations of motion should fully determine the physical state at any

other time. Thus any ambiguity in the value of the canonical pairs at t 6= t0 should be

physically irrelevant. The presence of first–class constraints allows, for example, that

two different trajectories fulfilling the equations of motion evolve from one given initial

state; each trajectory corresponding to a definite choice of the arbitrary functions of time

λa. However, these two trajectories must be physically equivalent. The transformation

that mediates between such histories is called Hamiltonian gauge transformation.

Using the primary Hamiltonian (2.2.42) and the Hamilton equations (2.2.26), the

difference between the values of a dynamical variable F (q, p) at a time t = t0 + δt,

corresponding to two different choices λa and λ̃a, can be written down. At order δt this

difference takes the form

δεF = εa{F, φa} ≈ {F, εaφa} , (2.2.44)

with εa := (λa(t0) − λ̃a(t0)) δt. The values Fλ and Feλ are infinitesimally related by

the Eq. (2.2.44). The generators that occur in the transformation (2.2.44) are all the

independent first–class primary constraints φa. However, these are not the only gauge
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generators. For instance, it can be seen [4] that also φ̇a generates Hamiltonian gauge

transformations if we go to the next order (δt)2 in the change δεF . In addition, both the

PB between any two first–class primary constraints and the PB of any first–class primary

constraint with H + Umφm generate a gauge transformation [65]. These results suggest

that some first–class secondary constraints may also be regarded as a gauge generator.

Although from the above considerations it cannot be inferred that all first–class

secondary constraints are gauge generators, in physical applications each first–class (pri-

mary or secondary) constraint is found to be a gauge generator. In what follows it will

be posited that all first–class constraints generate gauge transformations or equivalently

that the so–called Dirac conjecture is satisfied. Under this assumption, the generator

of all the Hamiltonian gauge transformations is G := εaγa, with γa all the first class

constraints of the theory.

Not all the functions on the constraint surface Γ are classical observables. Only those

functions whose time evolution is not affected by the arbitrariness in the choice of λa

must be regarded as classical observables. Equivalently, a classical observable can be

described as a phase space function that has weakly vanishing PB with all the first–class

constraints

{A, γa} = A b
a (q, p)γb . (2.2.45)

A classical observable is hence a function on the constraint surface that is gauge invariant.

The concept of independent gauge transformations can be inferred from the concept

of independent first–class constraints. Besides the regularity condition on a set of con-

straints, which involves the possibility of separating the constraints into those which are

essential to describe the surface Γ ⊂ T∗Q and those which are dependent of the first ones,

one can speak of the reducibility condition [61, 65, 152]. Reducibility makes reference

to linear dependence among the constraints. One says that the first– and second–class

constraints (γa) and (χα) obey the reducibility condition if they satisfy the following two

requirements:

(i) There exists a set of functions of the phase space different from zero on the con-

straint surface, Zaa 6≈ 0 and Zαα 6≈ 0, such that

Zaa γa = 0 , (a = 1, . . . , A; a = 1, . . . , A) , (2.2.46a)

Zαα χα = 0 , (α = 1, . . . , B; α = 1, . . . B) . (2.2.46b)

(ii) The matrix ({χα, χβ}) is of maximal rank B −B on the constraint surface,

rank ({χα, χβ})|Γ = B −B . (2.2.46c)
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The condition (ii) has been included to shorten the discussion on the second–class con-

straint sector; this implies that there are exactly B − B independent second–class con-

straints. Indeed, if (2.2.46c) is satisfied, there is a subset of the constraints χα, name

them χA, A = 1, . . . , B −B, such that det ({χA, χA′}) 6≈ 0 which are independent (oth-

erwise, the matrix ({χA, χA′}) would possess a null eigenvector). An equivalent way to

state (ii) is by saying that rank (Zαα ) = B < B. Similarly, if the relations (2.2.46a) are

all independent, one has exactly A−A independent gauge generators.

In the situation where there is no dependence of the type (2.2.46a) and (2.2.46b)

among the constraints, it is said that {φm} is an irreducible set of constraints. From

this definition, the gauge transformations are linearly independent if and only if the

constraints that generate them are irreducible.

Remarks

1. Given a complete set of gauge transformations at a Lagrangian level (see the Re-

marks of Sect. 2.2.2), there are very precise relations with the corresponding Hamil-

tonian gauge transformations. If regular and irreducible first–class constraints are

present in a system that fulfils the Dirac conjecture, the following claims can be

proved [4, 7, 65, 164, 163]: (i) The number of independent Lagrangian gauge

symmetries (2.1.24) is equal to the number of independent first–class primary con-

straints; (ii) the number of constraint–stages at the end of the Dirac algorithm

(primary, second–stage, third–stage, etc.) is equal to the order of the highest time

derivative of the gauge parameter in (2.1.24) plus one; (iii) if one counts indepen-

dently gauge parameters and their time derivatives in (2.1.24), the final number is

equal to the total number of first–class constraints. In general, the specific relations

between the gauge parameters in the Lagrangian gauge transformations (2.1.24)

and the corresponding ones in the generator G := εaγa of the Hamiltonian setting

are model dependent.

2. Second–class constraints cannot be interpreted as gauge generators, or in general,

generators of any transformation of physical relevance. The reason is that, by

definition, second–class constraints do not preserve all the constraints φµ and thus

permits dependence on the Lagrange multipliers in the transformation.

3. Dirac Bracket. Using the advantage that PBs between independent second–class

constraints form an invertible matrix (∆αβ) := ({χα, χβ}), the Dirac bracket is

defined as

{F,G}∗ := {F,G}+ {F, χα}∆αβ{χβ, G} (2.2.47)
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where ∆αγ∆γβ = δαβ . The Dirac bracket obeys the properties satisfied by the PB

(cf. Sect. 2.1.3). In addition it also fulfils

{χα, F}∗ = 0 for any F ∈ C∞(T∗Q), (2.2.48a)

{F,G}∗ ≈ {F,G} for first–class G and arbitrary F , (2.2.48b)

{R, {F,G}∗}∗ ≈ {R, {F,G}} for first–class F and G and arbitrary R.

(2.2.48c)

From (2.2.48a) the second–class constraints can strictly be set to zero either be-

fore or after evaluating the Dirac bracket. Since H(1) is a first–class function,

from (2.2.48b) the Dirac bracket can be used to express the time evolution of an

arbitrary function F in the Eq. (2.2.26). Similarly, using the Eq. (2.2.48b) the

Hamiltonian gauge transformations can be expressed using the Dirac bracket.

4. In the reducible case, one could encounter that not all the linear combinations of

first–class constraints (2.2.46a) are independent. It may happen that the coeffi-

cients Zaa ≡ Zaa1
, with a1 taking the same values as a, are also correlated. In fact

there may exist a tower of reducibility relations of the following type:

Za1
a2
Zaa1

∣∣
Γ

= 0, Za2
a3
Za1
a2

∣∣
Γ

= 0, . . . , ZaL−2
aL−1Z

aL
aL−1

∣∣∣
Γ

= 0, (2.2.49)

where as = 1, . . . , As, for any s = 1 . . . , L, and Zasas−1
6≈ 0. If this is the case the

set of constraints {φµ = (γa, χα)} is said to be L−stage reducible in the first–class

constraints. This situation is met in models like p−form gauge theories [165] or

superstring theory [152, 166].

5. In practice it is sometimes desirable to explicitly eliminate the arbitrariness in-

troduced by the independent first–class constraints such that the correspondence

between values of canonical pairs and physical states becomes one–to–one. In or-

der to have equations of the form (2.2.37) that impose restrictions on the arbitrary

Lagrange multipliers, some ad–hoc supplementary conditions must be introduced.

These supplementary conditions are called gauge fixing constraints or simply gauge

conditions [11]. For an irreducible set of constraints, the number of independent

gauge conditions must be equal to the number of first–class constraints such that

all together form a set of second–class constraints. Thus after the gauge fixing

procedure has been done there are not first–class constraints left; hence no more

arbitrariness in the equations of motion does exist and one can pass to the con-

struction of the Dirac bracket. The gauge fixing procedure is very interesting in

its own right [167] and its application to Feynman path integral [26, 28, 34, 168]

is conventional in particle physics phenomenology.
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6. When only m′ second–class constraints are present in the theory, no arbitrariness

exists in the Hamiltonian. Given the initial conditions compatible with the con-

straints permits the equations of motion (2.2.26) to uniquely determine the motion

trajectory. A set of canonical variables that satisfies the constraints determines

one and only one physical state. Therefore the number of physical or true degrees

of freedom corresponds to the number of independent canonical variables divided

by two, that is, (2n−m′)/2 . If the m′ second–class constraints come from a gauge

fixing procedure of m irreducible first–class constraints, after the implementation

of m gauge fixing conditions, one has (n − m) true degrees of freedom. Hence,

in the case of a system with m and m′ irreducible first– and second–class con-

straints, respectively, one has that (2n− 2m−m′)/2 is the number of true degrees

of freedom. N



CHAPTER 3

Foundations of the Classical BRST Formalism

BRST symmetry could have been discovered within a strictly classical

context by mathematicians dealing with the geometry of phase space,

had they only been willing to extend their analysis to Grassmann variables.

– Marc Henneaux, 1988

A valuable notion in gauge theories is BRST symmetry. In the path integral for-

malism this is what is left of gauge invariance after a gauge–fixing procedure has been

implemented. However, its analysis is not limited to the quantum regime; classically, it

corresponds to a symmetry in a certain enlarged phase space. This enlarged manifold

includes Grassmann variables besides the canonical pairs that label points in T∗Q which

are first–class constrained by γa ≈ 0.

In this chapter the construction of the classical BRST–symmetry generator, or sim-

ply BRST generator, is addressed. Within the Hamiltonian formalism, two equivalent

ways to build and show the existence of the BRST generator are available. One of them

strongly relies on the abstract graded algebraic structures implemented by the introduc-

tion of Grassmann variables (ghosts) in the phase space T∗Q [63, 169, 170, 171, 172].

This method is based upon the following fact [65]: Whenever there is a co–isotropic

surface Γ embedded in a manifold T∗Q, it is possible to construct a nilpotent derivation

s, the BRST differential. This differential acts on an appropriate graded algebra con-

taining C∞(T∗Q) and is such that the classical cohomolgy of s at ghost number zero,

45
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H0(s), corresponds to functions of C∞(Γ) constant along the gauge orbits (classical

observables). By co–isotropic surface Γ is meant the first–class constraint surface and

tangent vector fields, associated to the constraint functions, which close on Γ defining

gauge orbits. The other method to build the BRST generator has been described in

the excellent works [61, 62]. This one relies on the symplectic structure of the ghost

extended phase space and the iterative use of the Jacobi identity applied to PBs of the

first–class constraints. Since this method can be implemented using the notation and

concepts already introduced in the previous chapter, it will be summarised here. For our

purposes this approach will be advantageous from the computational viewpoint.

To be definite, in this chapter and the rest of this work the following assumptions on

the constrained systems are made: (i) The constrained phase space T∗Q, which is also

referred to as big phase space or original phase space, only contains bosonic variables,

hence only bosonic constraints will be present; (ii) only first–class constrained systems

will be considered; (iii) Dirac conjecture applies on the systems; (iv) the regularity

condition is satisfied by the constraints with only essential constraints locally present;

(v) only irreducible constraints are adopted. If second–class constraints occurred, it

is assumed that they were consistently set to zero via the Dirac brackets to the point

where the remaining variables form canonical pairs, and the first–class constraints satisfy

(i)−(v). Therefore in what follows the Poisson brackets can be considered Dirac brackets

if necessary.

3.1 Extended Hamiltonian and its gauge symmetries

In first–class constrained systems where the Dirac conjecture applies is useful to introduce

the so–called extended Hamiltonian

HE := H + λaγa , a = 1, . . . ,m . (3.1.1)

The function HE is obtained from adding to the canonical Hamiltonian (2.1.8) all first–

class constraints. Therefore HE contains all the information concerning gauge trans-

formations. For gauge–invariant dynamical variables, the evolution predicted by the

canonical H, the primary H(1), or the extended HE Hamiltonian coincide on the con-

straint surface.

The extended action functional

SE [q, p, λ] :=
∫ t1

t0

dt
(
q̇ipi −HE

)
=
∫ t1

t0

dt
(
q̇ipi −H − λaγa

)
(3.1.2)
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induces the equations of motion

Ḟ = {F,H}+ λa{F, γa} ≈ {F,HE} , (3.1.3a)

γa(q, p) ≈ 0 . (3.1.3b)

When F is substituted by each one of the canonical variables, the expressions (3.1.3)

are not equivalent to the equations of motion (2.2.25) produced by the action func-

tional (2.2.38). In other words, the Eqs. (3.1.3) are not equivalent to the original Euler–

Lagrange equations. Although the introduction of HE changes the equations of motion,

it does not alter the time evolution of gauge–invariant functions. Therefore, the ex-

tended formalism describes the same physical system. It simply contains additional

pure gauge variables, new Lagrange multipliers, and consequently, also additional gauge

invariance [163].

The action (3.1.2) is invariant (up to a boundary term) under

δεq
i = εa{qi, γa} , (3.1.4a)

δεpi = εa{pi, γa} , (3.1.4b)

δελ
a = ε̇a − λbεc f a

bc − εbH a
b . (3.1.4c)

The so–called structure functions f c
ab (q, p) and H b

a (q, p) respectively come from the

first–class property of the constraints and the consistency condition on the first–class

constraints,

{γa, γb} = f c
ab γc , (3.1.5)

{H, γa} = H b
a γb . (3.1.6)

The PB (3.1.5) between any two first–class constraints is a linear combination of the

first–class constraints. In contrast, when the structure functions f c
ab explicitly involve

phase space variables the commutator between two infinitesimal transformations gener-

ated by γa, δεF = {F, εaγa} and δηF = {F, ηaγa}, is not necessarily another infinitesimal

transformation of the same kind. The commutator does not close on T∗Q. Indeed

δεδηF − δηδεF = εbηaf c
ab {F, γc}+ εbηa{F, f c

ab }γc , (3.1.7)

from which an extra term proportional to the constraints appears. Henceforth, when the

gauge algebra (3.1.5) closes with structure constants (resp. functions) the corresponding

algebra of constraints shall be called closed (open) gauge algebra. It only is on the

constraint surface Γ that the algebra of transformations δεF = {F, εaγa} always closes

and generates an m−dimensional submanifold.
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In what follows a pair of extensions of the original phase space T∗Q, first–class

constrained by γa = 0, will be done. The first of them concerns with the introduction

of the m arbitrary Lagrange multipliers λa as coordinates and πa as their conjugate

momenta. The symplectic structure of T∗Q becomes trivially enlarged by the inclusion

of

{λa, λb} = 0 , {λa, πb} = δab , {πa, πb} = 0 . (3.1.8)

For simplicity all canonical pairs in the original phase space have been assumed to be

bosonic. Therefore the corresponding first–class constraints also obey this statistics, and

in order to have a bosonic action functional (3.1.2), the associated Lagrange multipliers

must also be variables with even Grassmann number (bosons).

In order not to affect the dynamical content of theory, the following constraints need

to be imposed:

πa = 0 , a = 1, . . . ,m . (3.1.9)

The constraints (3.1.9) generate on the Lagrange multipliers the following transforma-

tion:

δλa = εb{λa, πb} = εa ⇔ λ′a = λa + εa , (3.1.10)

this expresses the arbitrariness in choosing λa. Note that the ad–hoc introduced con-

straints πa ≈ 0 neither generate the gauge transformation (3.1.4c) nor change the first–

class constraint structure of γa = 0. There are no Lagrange multipliers in the original

constraints. Collectively γa ≈ 0 and πa ≈ 0 form a set of first–class constraints in the

Lagrange–multiplier enlarged phase space T∗λQ. The relations (3.1.5) and (3.1.6) are

trivially extended to

{Gα, Gβ} = f γ
αβ Gγ , (3.1.11)

{H,Gα} = H β
α Gβ , α, β, γ = 1, . . . , 2m , (3.1.12)

in the 2(n+m)–dimensional space T∗λQ. The functions Gα correspond to the 2m first–

class constraints (γa, πa). The structure functions f
γ

αβ and H β
α correspond to f c

ab and

H b
a when all the indices are associated to the original constraints γa ≈ 0 and are set to

zero otherwise.

The formalism in which the constraints πa ≈ 0 are introduced is known as the non–

minimal BRST formalism.

Remarks

1. The action (3.1.2) is invariant up a term which identically vanishes if the arbitrary

parameters εa(t) vanish at the boundaries: εa(t0) = εa(t1) = 0.
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2. Gauge transformations (3.1.4) also leave invariant the extended action functional

SE [q, p, λ] := SE [q, p, λ]− 1
2

(pi(t0) + pi(t1))
∫ t1

t0

dqi

dt
dt

=
∫ t1

t0

dt
[

1
2
(
q̇ipi − qiṗi

)
−H − λaγa

]
+

1
2
[
qi(t0)pi(t1)− qi(t1)pi(t0)

]
. (3.1.13)

A fixed–end–point variational problem which uses this action and the boundary

data (2.1.14) gives the equations of motion (3.1.3) N

3.2 Tensorial structures present in the formalism

In the construction of the BRST generator, one encounters totally antisymmetric quan-

tities1 of the form Fα1...αp for some p ∈ N. The action of contracting any of these

quantities with the constraints Gα defines the following operator:

δ : Fα1...αp 7−→ (δF )α1...αp−1 := Fα1...αp−1αpGαp , (3.2.1)

and immediately, by the bosonic nature of the constraints and the antisymmetry of

Fα1...αp in their indices, it follows that δ2Fα1...αp = Fα1...αp−1αpGαpGαp−1 ≡ 0. The

following theorem establishes the converse [61]:

Theorem 3.2.1 Let F be an antisymmetric tensor of rank p. If δF = 0, then there

exists an antisymmetric tensor K of rank p+ 1 such that F = δK.

This theorem is a prelude of the cohomological structure of the theory, similar to the

De Rham cohomology of forms on a differentiable manifold. The theorem is compatible

with the irreducibility condition imposed at the beginning. Indeed, δF = 0 is a linear

combination F ...αGα of first–class constraints required to vanish, then (by irreducibility)

no coefficient functions different from zero on the constraint surface exist that satisfy the

equality, the Theorem 3.2.1 ensures the existence of coefficients which do vanish on the

constraint surface, namely F ...α = K ...αβGβ . So, the Theorem 3.2.1 is complementary

to the irreducibility condition in the following sense: For a set of irreducible constraints

Gα ≈ 0, in the linear combination ZαGα = 0 the existence of Zα 6≈ 0 is avoided, but

Zα = Y [αβ]Gβ ≈ 0 2.
1In the case where also odd variables are considered in the first–class constrained manifold T∗Q,

there are quantities which do not have a definite symmetry in their indices.
2The square brackets at the indices level denote total antisymmetrisation. Here the conven-

tion of the factor of 1/p! inside the definition of antisymmetrised indices is taken, e.g. F [αβγ] :=
1

3!

`
Fαβγ + F γαβ + F βγα − Fαγβ − F γβα − F βαγ

´
.
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Besides the homogeneous equations δF = 0 some inhomogeneous equations δE = B

are also found in the BRST formalism. The following result proves to be useful in their

analysis [61] :

Theorem 3.2.2 A necessary and sufficient condition for the existence of solutions to

the inhomogeneous equations

δE = B , (3.2.2)

in the unknown E, is that δB = 0.

The above theorem says that the tensorial equation E[α1...αp−1αp]Gαp = B[α1...αp−1], has

solutions if and only if B[α1...αp−1]Gαp−1 = 0. More about the solutions to the Eq. (3.2.2)

is indicated in the following theorem [61]:

Theorem 3.2.3 When δB = 0 holds, i.e. when the Eq. (3.2.2) has a particular solution,

the general solution to δE = B is given by

E = E0 + δK (3.2.3)

where E0 is a particular solution to the Eq. (3.2.2) and K is an arbitrary tensor of

appropriate rank.

The above three theorems are the fundamental building blocks in the construction

of the BRST generator, their proofs can be found in [61]. They are based on the irre-

ducibility and regularity conditions assumed for the first–class constraints Gα –not to

mention the smoothness of each component of the tensors involved.

3.3 The ladder of higher structure functions

In this section, applying the Jacobi identity (see Sect. 2.1.3) to the Eq. (3.1.11) and the

results presented in the previous section, the so–called higher structure functions will be

iteratively built.

In order to make the construction look more natural a new notation is necessary. It

is conventional to denote
(0)

Uα(q, p) := Gα(q, p) , (3.3.1)
(1)

U γ
αβ (q, p) := − 1

2
f γ
αβ (q, p) , (3.3.2)

and call them zeroth– and first–order structure functions, respectively. With these new

symbols one has that the PBs (3.1.11) read

{
(0)

Uα,
(0)

Uβ} = −2
(1)

U γ
αβ

(0)

Uγ , (3.3.3)
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with
(1)

U γ
αβ =

(1)

U γ
[αβ] totally antisymmetric in the covariant indices.

From the Jacobi identity one has

{{
(0)

U[α1
,

(0)

Uα2},
(0)

Uα3]} =
1
3

∑
cyclic perm

{{
(0)

Uα1 ,
(0)

Uα2},
(0)

Uα3} = 0 , (3.3.4)

where the antisymmetry in the indices (α1, α2) is understood. Using the gauge alge-

bra (3.3.3) one gets from this expression

(1)

D
β1

[α1α2α3]

(0)

Uβ1 = 0 , (3.3.5)

where
(1)

D
β1

[α1α2α3] :=
{(1)

U
β1

[α1α2
,

(0)

Uα3]

}
+ 2

(1)

U
α

[α1α2

(1)

U
β1

α3]α . (3.3.6)

Note that the Eq. (3.3.5) has the structure of the homogeneous equation δ
(1)

D = 0, then

by the Theorem 3.2.1 there exists an antisymmetric tensor K := 2
(2)

U such that
(1)

D =

δK = 2δ
(2)

U . In local coordinates this is

(1)

D
β1

[α1α2α3] = 2
(2)

U
[β1β2]

[α1α2α3]

(0)

Uβ2
. (3.3.7)

This expression defines the so–called second–order structure functions
(2)

U
[β1β2]

[α1α2α3] .

Note, however, that by the Theorem 3.2.3, these functions are only defined up to a

tensor of the form
(2)

M
[β1β2β3]

[α1α2α3]

(0)

Uβ3
. Indeed,

(2)

U would denote a particular solution to

2 δ
(2)

U =
(1)

D and
(2)

U + δ
(2)

M the most general solution to the Eq. (3.3.7). From now on, this

ambiguity –and all others of this kind that appear later– will be removed by choosing

a vanishing exact term3 δ
(2)

M ≡ 0. In general, the second–order structure functions

are functions only on the original phase space T∗Q since the sector that includes the

Lagrange multipliers belongs to the abelian sector within the gauge algebra (3.1.11).

The first–order structure functions
(1)

U
β1

[α1α2] identically vanish when the indices take the

values corresponding to the abelian constraints πa = 0.

The existence of the second–order structure functions
(2)

U is a consequence of the Jacobi

identity and the use of the Theorem 3.2.1. This suggests an iterative process. In the same

fashion as the equation that defines
(1)

U was treated, namely (3.3.4), the antisymmetrised

PB between the equation that defines
(2)

U and the constraints
(0)

U is considered

{(1)

D
β1

[α1α2α3
,−

(0)

Uα4]

}
= 2
{(2)

U
[β1β2]

[α1α2α3

(0)

Uβ2
,−

(0)

Uα4]

}
. (3.3.8)

3In the case where fermionic and bosonic variables coexist in the original phase space T∗Q, this

ambiguity helps to adjust the second–order structure functions to have ghost number zero (see below

this concept).
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The minus sign in front of
(0)

Uα4 has been inserted for convenience. The RHS of this

equation, where the antisymmetrisation in the lower indices concerns only the αi, clearly

corresponds to a linear combination of the constraints, explicitly

2
{(2)

U
[β1β2]

[α1α2α3

(0)

Uβ2 ,−
(0)

Uα4]

}
= −2

({(2)

U
[β1β2]

[α1α2α3
,

(0)

Uα4]

}
+ 2

(2)

U
[β1β]

[α1α2α3

(1)

U
β2

α4]β

)
(0)

Uβ2 .

(3.3.9)

Note the lack of antisymmetrisation in the indices (β1, β2) in the second term of the RHS

in this expression, this will be recovered when the LHS of (3.3.8) is considered. The LHS

of the Eq. (3.3.8) has the following structure in the lower indices:

X[α1α2α3α4] = X[[α1α2α3]α4]

=
1
4
(
X[α1α2α3]α4

+X[α1α3α4]α2
+X[α1α4α2]α3

+X[α2α4α3]α1

)
(3.3.10)

with

X[α1α2α3]α4
:=
{(1)

D
β1

[α1α2α3] ,−
(0)

Uα4

}
. (3.3.11)

Substitution of the explicit expression for
(1)

D, cf. Eq. (3.3.6), into the Eq. (3.3.11) gives

an explicit formula for the RHS of the Eq. (3.3.10) in terms of (symbolically) {
(1)

U,
(0)

U}
(1)

U

and the nested PBs {{
(1)

U,
(0)

U},
(0)

U}. The introduction of the identity{{(1)

U β
α1α2

,
(0)

Uα3

}
,−

(0)

Uα4

}
+
{{(1)

U β
α2α1

,
(0)

Uα4

}
,−

(0)

Uα3

}
=

2
({(1)

U β
α1α2

,
(1)

U γ
α3α4

}(0)

Uγ +
(1)

U γ
α3α4

{(1)

U β
α1α2

,
(0)

Uγ
})

, (3.3.12)

makes the LHS of the Eq. (3.3.8) acquire the unexpected form of a linear combination

of first–class constraints, namely{(1)

D
β1

[α1α2α3
,−

(0)

Uα4]

}
=
{(1)

U β1

[α1α2
,

(1)

U β2

α2α4]

}(0)

U
β2

+ 6
(1)

U
β

[α1α2

(2)

U
[β1β2]

α3α4]β

(0)

U
β2

− 4
(2)

U
[β2β]

[α1α2α3

(1)

U
β1

α4]β

(0)

Uβ2
. (3.3.13)

The expression (3.3.12) is implied by the Jacobi identity and the gauge algebra (3.3.3).

The RHS of the Eq. (3.3.13) contains, besides the antisymmetrisation in the αi, anti-

symmetrisations in the indices (α3, α4, β) in the second term and in the lower indices

(α4, β) of the third term.

The substitution of Eq. (3.3.9) and Eq. (3.3.13) into the RHS and LHS of the

Eq. (3.3.8), respectively, gives

0 =
{(1)

U β1

[α1α2
,

(1)

U β2

α2α4]

}(0)

U
β2

+ 6
(1)

U
β

[α1α2

(2)

U
[β1β2]

α3α4]β

(0)

U
β2
− 4

(2)

U
[β2β]

[α1α2α3

(1)

U
β1

α4]β

(0)

Uβ2
+

+ 2
{(2)

U
[β1β2]

[α1α2α3
,

(0)

Uα4]

}(0)

Uβ2 + 4
(2)

U
[β1β]

[α1α2α3

(1)

U
β2

α4]β

(0)

Uβ2
. (3.3.14)
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A final manipulation of indices to get all (β1, β2) antisymmetrised, together with the

factorisation of
(0)

Uβ2 , render the remarkable expression
(2)

D
[β1β2]

[α1α2α3α4]

(0)

Uβ2
= 0 , (3.3.15)

with
(2)

D
[β1β2]

[α1α2α3α4] := −
{(2)

U
[β1β2]

[α1α2α3
,

(0)

Uα4]

}
− 1

2
{(1)

U
[β1

[α1α2
,

(1)

U
β2]

α3α4]

}
−

− 3
(1)

U
β

[α1α2

(2)

U
[β1β2]

α3α4]β + 4
(2)

U
β[β1

[α1α2α3

(1)

U
β2]

α4]β . (3.3.16)

In this expression an extra antisymmetrisation takes place in the indices (α3, α4, β) within

the third term of the RHS.

The rich structure of open gauge algebras starts to be revealed with the non–trivial

identity (3.3.15) which has the form δ
(2)

D = 0, with
(2)

D a sixth rank antisymmetric tensor.

Similarly to (3.3.5) the expression (3.3.15) implies, by the Theorem 3.2.1, the existence

of a seventh rank antisymmetric tensor K := 3
(3)

U such that
(2)

D = δK = 3δ
(3)

U . In local

coordinates
(2)

D
[β1β2]

[α1α2α3α4] = 3
(3)

U
[β1β2β3]

[α1α2α3α4]

(0)

Uβ3
. (3.3.17)

This equation defines the so–called third–order structure functions
(3)

U
[β1β2β3]

[α1α2α3α4] ,

again, functions on the original phase space T∗Q.

What is remarkable from this point is that one can repeat the above construction, step

by step, generating in this way higher structure functions. Let us sketch the following

step and, at the same time, give the corresponding explicit equations. Each step starts

commuting –in the PB sense– the equation that defined the latest structure function, in

this case (3.3.17), with the constraints and antisymmetrising it:{(2)

D
[β1β2]

[α1α2α3α4
,

(0)

Uα5]

}
= 3

{(3)

U
[β1β2β3]

[α1α2α3α4

(0)

Uβ3
,

(0)

Uα5]

}
. (3.3.18)

The RHS is obviously a linear combination of the first–class constraints. A more difficult

task is to show that this is also the case for the LHS of the equation; with the use of the

Jacobi identity, the gauge algebra (3.3.3) and some manipulation of the indices, one can

show that (3.3.18) is equivalent to
(3)

D
[β1β2β3]

[α1α2α3α4α5]

(0)

Uβ3
= 0 , (3.3.19)

with
(3)

D
[β1β2β3]

[α1α2α3α4α5] :=
{(3)

U
[β1β2β3]

[α1α2α3α4
,

(0)

Uα5]

}
−
{(2)

U
[β1β2

[α1α2α3
,

(1)

U
β3]

α4α5]

}
+ 4

(1)

U
β

[α1α2

(3)

U
[β1β2β3]

α3α4α5]β + 6
(2)

U
β[β1

[α1α2α3

(2)

U
β2β3]

α4α5]β +

+ 6
(3)

U
β[β1β2

[α1α2α3α4

(1)

U
β3]

α5]β . (3.3.20)
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In this expression an additional antisymmetrisation is implied in the lower indices (α3, α4,

α5, β), (α4, α5, β) and (α5, β) within the third, fourth and fifth terms, respectively.

Equation (3.3.19) can be treated in a similar fashion to equations (3.3.5) and (3.3.15).

The existence of the fourth–order structure functions
(4)

U is inferred from the Eq. (3.3.19);

the structure functions
(4)

U are defined up to a tensor of the form δ
(4)

M which is set to

vanish. Locally the Eq. (3.3.19) implies

(3)

D
[β1β2β3]

[α1α2α3α4α5] = 4
(4)

U
[β1β2β3β4]

[α1α2α3α4α5]

(0)

Uβ4
. (3.3.21)

For a system with a finite number of constraints, say 2m, necessarily there is a

point from which all the structure functions identically vanish. Indeed, since each
(k)

U

is antisymmetric in all its (k + 1) lower indices, and they in turn also labelled the

constraints themselves, one has that
(k)

U =
(k+1)

U = . . . = 0 for k ≥ 2m, just like (p + 1)–

forms on a differential manifold of dimension 2m identically vanish when p ≥ 2m. For

k ∈ {1, . . . , 2m− 2} one finds by induction [62] the equation

(k)

D
[β1...βk]

[α1...αk+2]

(0)

Uβk = 0 . (3.3.22)

This relation ensures the existence of the next–order structure functions which should

be obtained from the equation
(k)

D = (k + 1) δ
(k+1)

U , or equivalently

(k)

D
[β1...βk]

[α1...αk+2] = (k + 1)
(k+1)

U
[β1...βkβk+1]

[α1...αk+2]

(0)

Uβk+1
, (3.3.23)

with

(k)

D[α1...αk+2]
[β1...βk] =

1
2

k∑
p=0

(−)(kp+1)
{(p)

U
[β1...βp

[α1...αp+1
,

(k−p)
U

βp+1...βk]

αp+2...αk+2]

}
−
k−1∑
p=0

(−)k(p+1)(p+ 1)(k − p+ 1)
(p+1)

U
[β1...βpβ

[α1...αp+2

(k−p)
U

βp+1...βk]

αp+3...αk+2]β .

(3.3.24)

In the RHS of this expression additional antisymmetrisations in the indices (αp+3, . . . ,

αk+2, β) within the terms of the second summation are implied. In addition, within

these terms the antisymmetrisation in the upper indices concerns only the βi, that is,

the upper index β plays no role in the antisymmetrisation. Note that
(k)

D can always

be calculated from structure functions of order lower than k + 1, which are supposed

to be obtained in a previous step. In this way the ladder of structure functions can

be iteratively constructed from three purely classical equations: the Jacobi identity, the

gauge algebra and the remarkable identity (3.3.22).
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3.4 The super phase space and the BRST generator

The very rich structure, shared by all gauge theories, presented in the previous section

completely emerges from two fundamental equations: the gauge algebra and the Jacobi

identity. Moreover, in contrast to this simplicity, it turns out that the emergent struc-

ture functions are at the heart of the BRST symmetry. The identities already found are

the essence in the proof of the existence of a BRST generator. The BRST generator

corresponds to a real–valued function that is nilpotent (with respect to some symplectic

structure), of odd Grassmann parity and +1 ghost numbered. A BRST charge gener-

ates a transformation which resembles the gauge one with the bosonic gauge parame-

ters replaced by fermionic variables. These fermions were systematically introduced by

L. D. Faddeev and N. V. Popov within their review of path integral formalism for gauge

theories [26, 28]; since then, these variables are called Faddeev–Popov ghosts, or simply

ghosts. In the present context, they will help to condense the identities found in the

previous section to build the BRST symmetry generator.

Within Sect. 3.2 it was mentioned that the original phase space T∗Q was going

to suffer a couple of enlargements. The first one was the passage from T∗Q to T∗λQ
by adding the m Lagrange multipliers (corresponding to the m first–class constraints)

and their conjugate momenta. The second extension to T∗Q is a bit more radical, it

corresponds to an enlargement with the fermionic variables ηα (α = 1, . . . , 2m) and

their associate conjugate momenta Pα. These fermionic canonical pairs supplement the

symplectic structure of T∗λQ with the symmetric PBs

{ηα, ηβ} = 0 , {ηα,Pβ} = {Pβ, ηα} = −δαβ , {Pα,Pβ} = 0 . (3.4.1)

Notice the minus sign in front of the Kronecker delta. The fermionic nature of these

degrees of freedom is expressed by saying that their Grassmann number is 1, in symbols

ε(ηα) := 1 , ε(Pα) := 1 , (3.4.2)

or equivalently, that they are anticommuting c−numbers

[ηα, ηβ]+ = [ηα,Pβ]+ = [Pα,Pβ]+ = 0 , (3.4.3)

with [A,B]+ := AB +BA; while for the rest of canonical variables one has

ε(qi) = ε(pi) := 0 , ε(λa) = ε(πa) := 0 , (3.4.4)

that is, they are commuting c−numbers.

A consistent symplectic structure is given to the whole ghost–extended phase space

or super phase space –as it is sometimes called– by means of the generalised PB. This
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bracket is reduced to the fermionic sector (3.4.1) when only ghosts and their conjugate

momenta are considered, and to the bosonic sector (2.1.16) and (3.1.8) when the rest of

the canonical pairs are taken into account. For two functions f and g on the super phase

space, with εf the parity of f , the generalised PB reads as

{f, g} :=
(
∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
+

∂f

∂λa
∂g

∂πa
− ∂f

∂πa

∂g

∂λa

)
+ (−)εf

(
∂ `f

∂ηα
∂ `g

∂Pα
+
∂ `f

∂Pα

∂ `g

∂ηα

)
. (3.4.5)

We have decided to use the same symbol for the extended PB as the one used for the PB

in T∗λQ since we think no confusion arises. The terms in the first parenthesis on the RHS

of (3.4.5) correspond to the bosonic sector of the generalised PB, and the terms in the

second parenthesis to the fermionic sector. The symbols ∂`/∂ηα and ∂`/∂Pα denote left

partial derivatives with respect to ηα and Pα, respectively. On a function f of the super

phase space, the left derivative acts as ‘coming from the left’ and each time it ‘jumps’ a

factor, a minus sign might appear depending on the parity of that factor. If f and g are

any two functions on the super phase space and at least f has a well defined parity, one

has4
∂ `(fg)
∂ηα

=
∂ `f

∂ηα
g + (−)εf f

∂ `g

∂ηα
. (3.4.6)

In general, the parity of a function f is not necessarily well defined but f can always

be decomposed into the sum of a commuting (or even) part and an anticommuting (or

odd) part: f = fE + fO. Indeed, this is evident when f is expanded in powers of

fermionic variables, the even (odd) component only contains the even (odd) powers of

the fermionic variables in the expansion.

The generalised PB (3.4.5) obeys generalised versions of the properties listed in

Sect. 2.1.3 for the ordinary PB. For f , g and h functions on the super phase space

with well defined Grassmann numbers εf , εg and εh, respectively one has

(i) Linearity: If a and b are constants {af + bg, h} = a {f, h}+ b {g, h},

(ii) Antisymmetry: {f, g} = −(−)εf εg{g, f},

(iii) Leibniz rule: {f, gh} = {f, g}h+ (−)εf εgg{f, h},

4In a similar fashion one can define right partial derivatives
∂ r

∂ηα
and

∂ r

∂Pα
which act as ‘coming from

the right’. The relation between the left and right derivatives is

∂ rf

∂ηα
= (−)(εf +1) ∂

`f

∂ηα
.

In the case where the derivative is taken with respect to any bosonic degree of freedom there is no

difference between these two kind of derivatives.
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(iv) Jacobi identity: {{f, g}, h}+ (−)εh(εf+εg){{h, f}, g}+ (−)εf (εg+εh){{g, h}, f} = 0.

In addition, the concept of parity in the functions introduces two more properties:

(v) Parity of the super–PB: ε({f, g}) = εf + εg,

(vi) Complex conjugation of super–PB:
(
{f, g}

)∗ = −{g∗, f∗}.

The last property comes from the complex conjugation conventions

(qi)∗ = qi , p∗i = pi , (λa)∗ = λa , π∗a = πa , (ηα)∗ = ηα , P∗α = −Pα , (3.4.7)

which, in particular, are consistent with the pure fermionic PBs (3.4.1). Moreover, from

this convention one has for example that monomials ηαηβ and PαPβ are both imaginary;

in general

(ηα1 . . . ηαn)∗ = (−)n(n−1)/2(ηα1 . . . ηαn) , (3.4.8a)

(Pα1 . . .Pαn)∗ = (−)n(n+1)/2(Pα1 . . .Pαn) . (3.4.8b)

So a monomial that mixes ghosts and ghost–momenta in which the number of ghost–

momenta is equal to the number of either ghost or ghosts plus one, is real.

In addition to this extended symplectic structure and complex conjugation (involu-

tion) operation, the super phase space is also equipped with the notion of ghost numbers.

In the BRST formalism the ghost number on each ghost and ghost–momentum is defined

as follows:

gh(ηα) := 1 and gh(Pα) := −1 , (3.4.9a)

whereas zero ghost number is attached to the basic even conjugate pairs

gh(qi) = gh(pi) := 0 and gh(λa) = gh(πa) := 0 . (3.4.9b)

This numbering is generalised to any monomial in the super phase space by the rule

gh(AB) = gh(A)+ gh(B) and only the sum of monomials with the same ghost number

does specify polynomials of definite ghost number. Therefore, a monomial that mixes

ghosts and ghost–momenta which contains one more ghost than the number of ghost–

momenta, has ghost number +1.

In order to lift the higher structure functions to the super phase space, the following

definitions are useful:

(k)

U [β1...βk] := ηαk+1 . . . ηα1
(k)

U
[β1...βk]

α1...αk+1 , (3.4.10a)
(k)

D[β1...βk] := ηαk+2 . . . ηα1
(k)

U
[β1...βk]

α1...αk+2 . (3.4.10b)
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In these equations, the antisymmetry in the lower indices of
(k)

U and
(k)

D is automatically

taken into account due to the anticommuting nature of the ghosts. Moreover, these

definitions make the general identity (3.3.23) look like

(k)

D[β1...βk] = (k + 1)
(k+1)

U [β1...βkβk+1]
(0)

Uβk+1
. (3.4.11)

These conventions make the explicit expression for
(k)

D, cf. Eq. (3.3.24), look like

(k)

D[β1...βk] =
1
2

k∑
p=0

(−)(k−p){(p)

U [β1...βp ,
(k−p)
U βp+1...βk]

}
−

−
k−1∑
p=0

(−)(k−p)(p+ 1)
(p+1)

U [β1...βpβ ∂
`
(k−p)
U βp+1...βk]

∂ηβ
, (3.4.12)

where the antisymmetrisation in the terms of the second summation in the RHS excludes

β, and the PBs in the first summation refer to the generalised ones.

With all these preparations, one can now pass to the main theorem of this chapter.

The following theorem describes the way in which the gauge invariance is merged in the

super phase space [63].

Theorem 3.4.1 [Existence of the BRST generator] To any first–class constrained

system, one can associate an odd Grassmann parity BRST generator function Ω charac-

terised by

gh(Ω) = 1 , (3.4.13a)

Ω = ηα
(0)

Uα + terms that vanish with the ghost–momenta, (3.4.13b)

{Ω,Ω} = 0 , (3.4.13c)

Ω∗ = Ω . (3.4.13d)

The solution to the conditions (3.4.13) corresponds to the finite sum:

Ω :=
∑
k=0

(k)

Uβ1...βk Pα1 . . .Pαk

= ηα
(0)

Uα + ηα2ηα1
(1)

U β1
α1α2

Pβ1 + ηα3ηα2ηα1
(2)

U β1β2
α1α2α3

Pβ2Pα1 + . . . , (3.4.14)

where for consistency one sets
(0)

U := ηα
(0)

Uα as the first term in the summation.

The odd Grassmann parity condition on the function Ω is automatically fulfilled

by (3.4.14) since each of the monomials in the sum is anticommuting. Moreover, since

each of the monomials in (3.4.14) contains one extra ghost compared with the number

of ghosts–momenta, one concludes that Ω itself is ghost numbered +1. By construction,
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all the terms in Ω vanish when the ghost–momenta are set to zero, except for the first

one, which has the form required by (3.4.13b). The nilpotency of Ω with respect to the

super–PB (3.4.13c) is a non–trivial condition due to the odd Grassmann nature of Ω.

By direct calculation one has that

{Ω,Ω} =
{(0)

U,
(0)

U}+ 2{
(0)

U,
(1)

Uβ1Pβ1

}
+ 2
{(0)

U,
(2)

Uβ1β2Pβ1Pβ2

}
+ 2
{(0)

U,
(3)

Uβ1β2β3Pβ3Pβ2Pβ1

}
+

. . .+
{(1)

Uβ1Pβ1 ,
(1)

Uγ1Pγ1

}
+ 2
{(1)

Uβ1Pβ1 ,
(2)

Uγ1γ2Pγ1Pγ2

}
+ . . . . (3.4.15)

The RHS of this expression is a polynomial in powers of ghost–momenta which vanishes

as it will be proved.

After some algebra, at order zero one obtains the coefficients

{(0)

U,
(0)

U
}
− 2

(1)

Uβ
∂ `

(0)

U

∂ηβ
= ηα2ηα1

(
−2

(1)

U β1
α1α2

(0)

Uβ1
− 2

(1)

U β1
α2α1

(0)

Uβ1

)
≡ 0 . (3.4.16)

The coefficients at order zero in ghost–momenta vanish.

At first order in ghost–momenta one finds the corresponding coefficients to be

2
{(0)

U,
(1)

Uβ1
}
−2

(1)

Uβ
∂ `

(1)

Uβ1

∂ηβ
+ 4

(2)

Uβ1β ∂
`
(0)

U

∂ηβ
=

2ηα3ηα2ηα1

({(1)

U
β1

[α1α2
,

(0)

Uα3]

}
+ 2

(1)

U
β

[α1α2

(1)

U
β1

α3]β −2
(2)

U
β1β

[α1α2α3]

(0)

Uβ

)
,

(3.4.17)

where the term in parenthesis on the RHS of this equation is nothing but
(1)

D − 2 δ
(2)

U ,

cf. Eq. (3.3.6), which by virtue of the Eq. (3.3.7) vanishes. Therefore the coefficients at

zeroth and first power of ghost–momenta vanish on the RHS of (3.4.15).

Going to next order the corresponding coefficients are

2
{(0)

U,
(2)

Uβ1β2
}
−
{(1)

Uβ1 ,
(1)

Uβ2
}
− 2

(1)

Uβ
∂ `

(2)

Uβ1β2

∂ηβ
+ 4

(2)

Uβ1β ∂
`
(1)

Uβ2

∂ηβ
− 6

(3)

Uβ1β2β ∂
`
(0)

U

∂ηβ
=

2ηα4ηα3ηα2ηα1

({(0)

U[α4
,

(2)

U
[β1β2]

α1α2α3]

}
− 1

2
{(1)

U
[β1

[α1α2
,

(1)

U
β2]

α2α4]

}
−

−3
(1)

U
β

[α1α2

(2)

U
[β1β2]

α3α4]β + 4
(2)

U
β[β1

[α1α2α3

(1)

U
β2]

α4]β − 3
(3)

U
β1β2β

[α1α2α3α4]

(0)

Uβ

)
, (3.4.18)

where the term in parenthesis on the RHS is nothing but
(2)

D−3 δ
(3)

U = 0, cf. Eqs. (3.3.17)

and (3.3.16).

By induction one can prove that the coefficient of the kth power in ghost–momenta

on the RHS of (3.4.15) corresponds to a multiple of
(k)

D − (k + 1)δ
(k+1)

U which by virtue of

equation (3.3.23) vanishes identically. Therefore {Ω,Ω} = 0.
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Finally, Ω given in (3.4.14) is a real function on the super phase space. Indeed, by

construction the higher structure functions
(n)

U ...
... are all real and it has been mentioned

that the precise combination of ghost and ghost–momenta that is contracted with these

functions is real (see paragraph after Eq. (3.4.8)), hence Ω∗ = Ω. In conclusion Ω

in (3.4.14) is the BRST generator cited in the Theorem 3.4.1.

Remarks

1. The BRST generator can also be viewed as the ‘generating function’ of the equa-

tions that define the high order structure functions of the theory. These functions

appear as coefficients in the expansion (3.4.14). Postulating nilpotency with re-

spect to the generalised–PB, the equations (3.3.23) are found at each order in the

ghost–momenta.

2. The BRST generator only depends on the gauge algebra and not on the dynamics

of the theory, i.e. Ω is independent of the form of the Hamiltonian. N

3.4.1 Ghost/Antighost notation and conventions

Before going into specific examples of BRST charges, in this section some notation

included in the standard literature is introduced. The super phase space contains the

original variables (qi, pi), the Lagrange multipliers and their conjugate momenta (λa, πa),

as well as ghost conjugate pairs (ηα,Pα). The number of fermionic conjugate pairs

doubles the number of the original constraints γa ≈ 0 (a = 1, . . . ,m). It can be inferred

from the gauge algebra (3.1.11) on the super phase space that the ghosts associated to

the ad hoc introduced constraints πa ≈ 0, chosen to be ηm+a, only appear linearly in the

BRST charge (3.4.14); see also Eqs. (3.4.24) and Eq. (3.4.28) below.

Following [61, 65], the variables iηm+a and −iPm+a will be denoted by ρa and C̄a,

respectively. The variables C̄a (resp. ρa) are known as antighosts (antighost–momenta).

In this notation from the PBs (3.4.1) one has

{ηm+a,Pm+b} = −δab = {ρa, C̄b} ; iηm+a ≡ ρa, −iPm+a ≡ C̄a . (3.4.19a)

From (3.4.7) one can read the reality conditions

(C̄a)∗ = C̄a , (ρa)∗ = −ρa . (3.4.19b)

The corresponding ghost numbers are

gh(C̄a) ≡ −1 , gh(ρa) ≡ 1 . (3.4.19c)



3.4 The super phase space and the BRST generator | 61

Ghosts canonical pairs associated to the original m first–class constraints retain their

name within these conventions; however, in order to avoid any confusion with the set

of all ghosts and ghost–momenta a different notation for them will be introduced. The

variables ηa and Pa will be denoted by Ca and ρ̄a, respectively. Their PBs are hence

{ηa,Pb} = −δab = {Ca, ρ̄b} ; ηa ≡ Ca, Pa ≡ ρ̄a , (3.4.20a)

having vanishing super PBs with any other basic variable. The reality conditions for Ca
and ρ̄a are

(Ca)∗ = Ca , (ρ̄a)∗ = −ρ̄a , (3.4.20b)

and the corresponding ghost numbers are

gh(Ca) ≡ 1 , gh(ρ̄a) ≡ −1 . (3.4.20c)

In a few words, all fermionic momenta (ρ̄, ρ) are imaginary and their conjugate pairs

(C, C̄) real. The ghost number of ρ and C (resp. ρ̄ and C̄) is 1 (−1).

In this notation, a general BRST charge (3.4.14) is given by

Ω = Ωmin − iρaπa . (3.4.21)

This is the explicit split of the nonminimal BRST charge Ω into the sector corresponding

to the phase space T∗Q × {(Ca, ρ̄a)}, Ω min = Ω min(q, p, C, ρ̄), also called minimal

sector, and the sector corresponding to the Lagrange multipliers −iρaπa, also called

non–minimal sector.

3.4.2 Abelian gauge algebra and the abelianisation theorem

The simplest possible gauge algebra is the abelian one

{Gα, Gβ} = 0 . (3.4.22)

This case will be encountered whenever the gauge symmetry (at the Hamiltonian level)

consists of a single parameter.

The gauge algebra (3.4.22) is relevant because it locally covers the most general

situation (3.1.11). In the gauge algebra (3.1.11) half of the constraints is already abelian,

namely the m constraints πa ≈ 0; the rest of the constraints γa ≈ 0 in general obeys

the non–abelian algebra (3.1.5). According to the abelianisation theorem [65, 135, 173],

given a set of first–class constraints {γa} on T∗Q it is always possible to locally find m

new equivalent set of constraints {Υa} that defines the same constraint surface so that

they are abelian, that is, {Υa,Υb} = 0 all over T∗Q.
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A direct way to abelianise the set of constraints {γa} is via the constraint resolution.

Under the assumption of irreducibility and regularity, one can always (locally) resolve

the m constraints γa(q, p) ≈ 0 for m ps, that is,

pa = ga(p, q) , a = 1, . . . ,m ,

where p denotes the remaining ps. By construction, the constraints

Υa := pa − ga(p, q) (3.4.23)

define the same surface that γa ≈ 0 define. Two aspects of the new constraints Υa are

important. First, by direct calculation one can see that the PBs {Υa,Υb} are independent
of pa. Second, on the constraints surface, that is, when pa = ga(p, q) is used, {Υa,Υb} = 0

(this is the first–class property). Since each function ga is assumed to be well defined all

over the values taken by (p, q), then {Υa,Υb} must identically vanish on all T∗Q.

In order to construct a BRST generator associated to the gauge algebra (3.4.22), one

recognises
(1)

U γ
αβ ≡ 0, then

(1)

D
β

[α1α2α3] automatically vanish (cf. Eq. (3.3.6)) and δ
(1)

D = 0

is trivial. No equations that could imply the existence of higher structure functions arise.

Therefore, in the case of an abelian set of constraints (or locally in any gauge algebra)

the BRST generator reads as

Ω = ηαGα = ηaγa + ηm+aπa , a = 1, . . . ,m , (3.4.24)

or using the conventions (3.4.19) and (3.4.20)

Ω = Caγa − iρaπa , a = 1, . . . ,m . (3.4.25)

Observe that to obtain this result some ambiguity at the level of the gauge algebra was

removed beforehand. In general, the PBs (3.3.3) are invariant under the redefinition of

structure functions
(1)

U β1
α1α2 →

(1)

U β1
α1α2 +

(1)

M
[β1β2]

α1α2

(0)

Uβ2
. In the abelian case, the gauge

algebra implies
(1)

U β1
α1α2 = 0, but it does not fix the arbitrariness induced by

(1)

M
[β1β2]

α1α2 .

Such arbitrariness could have been fixed with nonzero functions on the super phase

space. In such a situation higher structure functions can actually exist in the BRST

generator of abelian constraints. However, this vagueness is removed by setting
(1)

M ≡ 0

in all cases. This ambiguity is not exclusive of the first–order structure functions, similar

arbitrariness arises at higher levels in the structure–functions ladder as it was pointed

out just after writing equation (3.3.7).

Remarks

1. Although the abelianisation theorem is useful in proving local properties of con-

strained systems, it may not be practically easy to find an equivalent abelian
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constraints Υa to the non–abelian first–class γa. The passage from γa to Υa might

spoil manifest symmetries involved in the theory. N

3.4.3 Constraints that form a closed gauge algebra

Originally the BRST symmetry was discovered in first–class constrained systems whose

gauge algebra forms a closed gauge algebra [35, 36, 37, 38]. When this is the case, one

can set the first–order structure functions to be the constants
(1)

U β1
α1α2 and

(1)

M ≡ 0, hence

the Jacobi identity of the PBs requires

0 =
(1)

D
β1

[α1α2α3]

(0)

Uβ1
= 2

(1)

U
α

[α1α2

(1)

U
β1

α3]α

(0)

Uβ1
(3.4.26)

to be valid, cf. Eq. (3.3.6). In the rightmost expression one has, for given values of

(α1, α2, α3), a linear combination (with constant coefficients) of the constraints Zβ1
(0)

Uβ1

required to vanish. Therefore by irreducibility and the Theorem 3.2.1 one knows that

Zβ1 = Y [β1β2]
(0)

Uβ2 over the whole super phase space and in particular on the constraint

surface
(0)

Uβ2 = 0, hence the constants Zβ1 must vanish, implying for the structure con-

stants
(1)

U
α

[α1α2

(1)

U β1

α3]α = 0 or

(1)

U α
α1α2

(1)

U β1
α3α +

(1)

U α
α3α1

(1)

U β1
α2α +

(1)

U α
α2α3

(1)

U β1
α1α = 0 . (3.4.27)

In other words, irreducibility implies in this case
(1)

D
β1

[α1α2α3] ≡ 0. Therefore δ
(1)

D = 0

becomes trivial again. No equation that could imply the existence of higher structure

functions arises. Even if one insists on the equation
(1)

D = 2δ
(2)

U , it reduces to 0 = δ
(2)

U

from which
(2)

U is at most δ
(2)

M , but such solutions have already been discarded by setting
(2)

M = 0. In conclusion the BRST charge for a gauge algebra with structure constants
(1)

U β1
α1α2 can be taken to be of the form

Ω = ηα
(0)

Uα + ηα2ηα1
(1)

U β1
α1α2

Pβ1 , (3.4.28a)

= ηaγa +
1
2
ηaηb f c

ab Pc + ηm+aπa , (3.4.28b)

where (3.3.2) has been used and f c
ab correspond to the structure constants of the original

gauge algebra (3.1.5). Using the conventions (3.4.19) and (3.4.20) one alternatively has

Ω = Caγa +
1
2
CaCb f c

ab ρ̄c − iρaπa , (a = 1, . . . ,m) . (3.4.29)

From here it becomes evident the abelian role that the constraints πa = 0 play.

Remarks

1. One says that a set of constraints and of associated structure functions is of rank s

if all structure functions of order strictly greater than s vanish
(p)

Uβ1...βp ≡ 0 p > s.
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In this sense an abelian set of constraints can be chosen to be of rank 0, while a

set of constraints forming a closed gauge algebra can be chosen to be of rank 1.

2. By simple inspection of the explicit formula for
(k)

D, cf. Eq. (3.3.24), one realises

that if all the structure functions of order k are zero, with s < k ≤ (2s+ 1), then
(2s+1)

D vanishes, implying that one can choose
(2s+2)

U = 0. This in turn implies that
(2s+2)

D also vanishes, so
(2s+3)

U = 0 can be taken, and so on. Since by hypothesis
(s+1)

U = . . . =
(2s+1)

U = 0, one concludes that in these cases the rank can be taken to

be s.

3. In the general case of nonconstant structure functions in the gauge algebra, the

sum of the first two terms in the expansion of Ω as in (3.4.28) may not be enough to

establish the nilpotency property. Higher order structure functions may be needed

in Ω. N

3.5 Rescaling constraints and about the uniqueness of the BRST gener-

ator

The gauge algebra and the consequences of the Jacobi identity determine the form of

the BRST generator. However, the gauge algebra does not determine the constraint

surface on which the motion takes place. The constraint surface is given by the zero

locus of the constraints, Gα = 0. Since two different sets of constraints can define the

same constraint surface, it results immediate that the form of the BRST generator is not

intrinsic to the constraint surface.

A constraint surface defined by Gα = 0, can alternatively be described in terms of

G′α = 0 with

G′α = Λ β
α (q, p, λ, π)Gβ , (3.5.1)

where the rescaling matrix Λ β
α is invertible at each point on the phase space and may

vary from point to point on it. The transformations (3.5.1) are not canonical ones in

the phase space T∗λQ. The PBs of the new constraints G′α may drastically vary from the

one associated to the original constraints Gα; for instance, one can have Gα forming an

abelian gauge algebra and –on the other hand– G′α obeying an open gauge algebra. A

complete understanding of the equivalence between these two sets of constraints is found

beyond the structures in T∗λQ. Although in the previous section the ghost–extension was

introduced as a mere convenience –all structure functions were gathered into a single

object– this procedure is not only mathematically advantageous, but the insertion of
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ghosts and ghost–momenta implements (3.5.1) as an (even) canonical transformation in

the super phase space. This is established in the following theorem [61, 63, 69, 70, 71, 72].

Theorem 3.5.1 Let Ω and Ω′ be two BRST generators associated with the same con-

straint surface. Then, Ω and Ω′ are related by a canonical transformation in the super

phase space.

The proof of this theorem for infinitesimal rescaling is discussed in [61]. Its validity

for invertible linear transformations (3.5.1) which are in the connected component of the

identity (positive determinant) is then proved. The general case with both positive and

negative determinants of Λ β
α is considered in [63]. An application of this theorem to the

case of constraints linear in momenta is reported in [69, 71], where an explicit generating

functional of the canonical transformation is presented.

This theorem ensures that the ambiguity in the structure functions is harmless in

the classical theory. Two BRST generators corresponding to two different elections in

the description of the same constraint surface are canonically related in the super phase

space. The introduction of ghosts at a classical level makes manifest the canonical

covariance of the structure of co–isotropic surfaces.

3.6 BRST observables

So far the implications of the Jacobi identity on the PBs (3.1.12) that involve the Hamil-

tonian have not been explored. It will result that treating these PBs in the same fashion

as the PBs between constraints, introduces the notion of BRST observables.

Theorem 3.6.1 [Existence of BRST observables] Given a Dirac observable A0 on

T∗Q, there is a BRST extension or BRST associated observable defined as an even Grass-

mann parity function A on the super phase space that satisfies the following conditions:

gh(A) = 0 = gh(A0), (3.6.1a)

A = A0 when ηα = 0 = Pα, (3.6.1b)

{A,Ω} = 0, (3.6.1c)

A∗ = A. (3.6.1d)

Let A0 be a Dirac observable on T∗Q. It trivially can be lifted to T∗λQ as follows:

{A0, Gα} = A β
α (q, p)Gβ , (3.6.2)
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where A β
α corresponds to A b

a (q, p) given in (2.2.45) when both indices are associated

to the first–class constraints γa and zero otherwise. The following ansatz will be used to

define the BRST extension of a Dirac observable:

A :=
∑
k=0

(k)

A β1...βk Pβk . . .Pβ1 (3.6.3a)

≡
(0)

A + ηα1
(1)

A β1
α1

Pβ1 + ηα2ηα1
(2)

A β1β2
α1α2

Pβ2Pβ1 + . . . , (3.6.3b)

with
(0)

A (q, p) being the Dirac observable A0(q, p), and the coefficients
(k)

A β...
α... functions

to be determined on phase space.

As desired, each term in the finite sum (3.6.3) is of ghost number zero. Indeed, first

gh(
(k)

A
[β1...βk]

[α1...αk] ) = 0,

and, second, the ghost number of any monomial that mixes ghost and ghost–momenta

in equal number vanishes. Therefore (3.6.1a) is fulfilled. By construction (3.6.1b) is

automatically satisfied. The function A is of even Grassmann parity and satisfies (3.6.1d)

since any monomial with the same number of ghost and ghost–momenta is real and has

even Grassmann parity, just as it happens to be with each coefficient
(k)

A ...
... (q, p). Finally,

the existence of the coefficients of higher powers of ghost–momenta in A such that (3.6.1c)

is fulfilled will be shown.

By direct calculation one can see that the coefficients corresponding to zeroth order

in ghost–momenta on the LHS of (3.6.1c) are

{(0)

A ,
(0)

U
}
−

(1)

A β ∂
`
(0)

U

∂ηβ
= ηα1

(
A β1
α1
−

(1)

A β1
α1

)
(0)

Uβ1
(3.6.4)

which suggests the definition
(1)

A β
α := A β

α in order to make the term in parenthesis

vanish. With this identification the Eq. (3.6.2) is rewritten as{(0)

A ,
(0)

Uα1

}
=

(1)

A β1
α1

(0)

Uβ1 . (3.6.5)

Up to a term
(1)

B
[β1β2]

α1

(0)

Uβ2 , which is to set to be zero, the Eq. (3.6.5) defines the coeffi-

cients of the terms with linear ghost–momenta in the sum (3.6.3).

The coefficients of the first order in ghost–momenta within {A,Ω} are

{(0)

A ,
(1)

Uβ1
}
−
{(1)

A β1 ,
(0)

U
}

+
(1)

Uβ
∂ `

(1)

A β1

∂ηβ
−

(1)

A β ∂
`
(1)

Uβ1

∂ηβ
+ 2

(2)

A β1β ∂
`
(0)

U

∂ηβ
= ηα2ηα1

(
2

(2)

A
β1β

[α1α2]

(0)

Uβ

+
{(0)

A ,
(1)

U
β1

[α1α2]

}
+
{(1)

A
β1

[α1
,

(0)

Uα2]

}
+

(1)

U
β

[α1α2]

(1)

A
β1

β + 2
(1)

A
β

[α1

(1)

U
β1

α2]β

)
. (3.6.6)
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The BRST invariance of A (3.6.1c) requires that the term in parenthesis vanishes. Defin-

ing

(1)

C
β1

[α1α2] := −
({(0)

A ,
(1)

U
β1

[α1α2]

}
+
{(1)

A
β1

[α1
,

(0)

Uα2]

}
+

(1)

U
β

[α1α2]

(1)

A
β1

β + 2
(1)

A
β

[α1

(1)

U
β1

α2]β

)
,

(3.6.7)

the term in parenthesis on the RHS of (3.6.6) can be rewritten as 2 δ
(2)

A −
(1)

C. This

combination vanishes if
(1)

C = 2 δ
(2)

A . In order to guarantee that such
(2)

A actually exists,

one needs to prove (see Theorem 3.2.2) that δ
(1)

C = 0. This can be done by considering

the antisymmetrised PB of (3.6.5) with minus the constraints
(0)

Uα2 and using the Jacobi

identity. In the same way that the existence of second–order structure functions
(2)

U was

proved, a direct calculation shows in this case that

0 =
{{(0)

A ,
(0)

Uα1

}
,−

(0)

Uα2

}
+
{{
−

(0)

Uα2 ,
(0)

A
}
,

(0)

Uα1

}
+
{{(0)

Uα1 ,−
(0)

Uα2

}
,

(0)

A
}

≡
({{(0)

A ,
(0)

Uα1

}
,−

(0)

Uα2

})
A

= 2
(1)

C
β1

[α1α2]

(0)

Uβ1
, (3.6.8)

which corresponds to the relation δ
(1)

C = 0. Therefore there exists K := 2
(2)

A such that
(1)

C = 2 δ
(2)

A , that is,
(1)

C
β1

[α1α2] = 2
(2)

A
[β1β2]

[α1α2]

(0)

Uβ2
. (3.6.9)

This relation defines
(2)

A
[β1β2]

[α1α2] up to a term
(2)

B
[β1β2β3]

[α1α2]

(0)

Uβ3
which is set to be zero.

Simultaneously it makes the linear terms in the ghost–momenta within {A,Ω} vanish.

The coefficients of the terms with quadratic ghost–momenta within {A,Ω} are

{(0)

A ,
(2)

Uβ1β2
}
−
{(1)

A β1 ,
(1)

Uβ2
}

+
{(2)

A β1β2 ,
(0)

U
}

+
(1)

Uβ
∂ `

(2)

A β1β2

∂ηβ
+ 2

(2)

Uβ1β ∂
`
(1)

A β2

∂ηβ
−

(1)

A β ∂
`
(2)

Uβ1β2

∂ηβ

+ 2
(2)

A β1β ∂
`
(1)

Uβ2

∂ηβ
− 3

(3)

A β1β2β ∂
`
(0)

U

∂ηβ
= ηα3ηα2ηα1

(
(2)

C
β1β2

[α1α2α3] − 3
(3)

A
β1β2β

[α1α2α3]

(0)

Uβ

)
,

(3.6.10)

where antisymmetrisation occurs in the indices (β1, β2) and (β1, β2, β) in the first and

second terms inside the parenthesis. In Eq. (3.6.10) the following tensor has been defined:

(2)

C
[β1β2]

[α1α2α3] :=
{(0)

A ,
(2)

U
[β1β2]

[α1α2α3]

}
−
{(1)

A
[β1

[α1
,

(1)

U
β2]

α2α3]

}
+
{(2)

A
[β1β2]

[α1α2
,

(0)

Uα3]

}
+

+ 2
(1)

U
β

[α1α2

(2)

A
[β1β2]

α3]β − 2
(2)

U
β[β1

[α1α2α3]

(1)

A
β2]

α3] −

− 3
(1)

A
β

[α1

(2)

U
[β1β2]

α2α3]β − 4
(2)

A
β[β1

[α1α2

(1)

U
β2]

α3]β , (3.6.11)

where an additional antisymmetrisation is present in (α3, β) within the fourth and last

terms as well as in (α2, α3, β) in the sixth term. The expression in parenthesis in (3.6.10)

has the form
(2)

C − 3 δ
(3)

A which vanishes if there exists the appropriate tensor
(3)

A such that
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(2)

C = 3 δ
(3)

A . This is equivalent to show that δ
(2)

C = 0. As expected this condition is proved

when one considers the antisymmetrised PB of the equation that define
(2)

A (3.6.9) with

the constraints
(0)

U using the explicit form of
(1)

C.

By induction one can show that the coefficients of the kth power in ghost–momenta

within {A,Ω} correspond to
(k)

C − (k + 1)δ
(k+1)

A , in local coordinates they are

ηα1 . . . ηαkηαk+1

(
(k)

C
β1...βk

[α1...αkαk+1] − (k + 1)
(k+1)

A
β1...βkβ

[α1...αkαk+1]

(0)

Uβ

)
. (3.6.12)

Indeed the terms in parenthesis vanish since δ
(k)

C = 0 as a consequence of the Jacobi

identity, the equation that defines
(k)

A , namely
(k−1)

C = k δ
(k)

A , and the explicit form of
(k)

C

which corresponds to

ηαk+1 . . . ηα1
(k)

C
β1...βk

α1...αk+1 =
k∑
p=0

(−)k−p
{(p)

A β1...βp ,
(k−p)
U βp+1...βk

}
+

k∑
p=0

(−)k(p+ 1)
(p+1)

U β1...βpβ ∂
`

(k−p)
A βp+1...βk

∂ηβ

−
k−1∑
p=0

(−)k−p(p+ 1)
(p+1)

A β1...βpβ ∂
`

(k−p)
U βp+1...βk

∂ηβ
. (3.6.13)

This process to construct a BRST observable from a gauge invariant function can be

applied to the Hamiltonian of the system. Denoting the structure functions H β
α on the

RHS of (3.1.12) as
(1)

H β
α , the corresponding BRST extended Hamiltonian reads

HBRST =
(0)

H + ηα1
(1)

H β1
α1

Pβ1 + ηα2ηα1
(2)

H β1β2
α1α2

Pβ2Pβ1 + . . . . (3.6.14)

The function
(0)

H corresponds to the Hamiltonian function H on the original phase space,

cf. Eq. (2.1.8), and the higher structure functions
(k)

H are iteratively obtained from the

equations
(k)

C = (k + 1) δ
(k+1)

H . Each
(k)

C is obtained from higher structure functions of the

gauge algebra
(k)

U and higher coefficients of the Hamiltonian
(k)

H up to kth order. Since
(0)

H

does not depend on the Lagrange multipliers, in the ghost/antighost notation of Sect.

3.4.1, the BRST extended Hamiltonian is expressed as follows:

HBRST =
(0)

H + Ca1
(1)

H b1
a1

ρ̄b1 + Ca2Ca1
(2)

H b1b2
a1a2

ρ̄b2 ρ̄b1 + . . . . (3.6.15)

Remarks

1. Given a functionK defined on the super phase space satisfying ε(K) = 1, gh(K) =

−1, and K∗ = −K, the new function

A′ := A+ {Ω,K} (3.6.16)
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is a BRST observable provided A is so. The ghost number zero component of A′

corresponds to A′0 = A0 +Kα(q, λ; p, π)Gα, i.e. at the lowest order of ghosts, one

recovers the equivalence between two Dirac observables A0 and A′0.

2. If A and B are, respectively, BRST invariant extensions of the gauge invariant

functions A0 and B0 on the original phase space, the functions AB and {A,B}
are, respectively, BRST invariant extensions of A0B0 and {A0, B0}.

3. Note that each first–class constraint Gα is gauge invariant. One possible choice for

its BRST extension is

GBRSTα := {−Pα,Ω} = Gα + 2 ηβ
(1)

U γ
αβ Pγ + . . . (3.6.17)

which explicitly shows that GBRSTα is BRST invariant {GBRSTα ,Ω} = 0.

4. Both the BRST invariant extension HBRST of the Hamiltonian and the Hamilto-

nian H0 produce the same equations of motion on the constraint surface. N



CHAPTER 4

Quantisation of Singular Systems

Quantization is by no means unique and should be regarded

as a theoretical way to guess the true theory.

– Sergei V. Shabanov, 2000

There is no golden rule to quantise constrained systems. Historically, the first method

to quantise unconstrained systems was the so–called canonical quantisation. This ap-

proach consists of a series of ansatz to fundamentally describe a system with the use

of Hilbert–space methods [174]. The mathematical side of the programme consists on

the following: Find a ‘suitable’ Lie homomorphism from a ‘suitable’ Lie subalgebra

F ⊂ C∞(T∗Q) to the Lie algebra of self–adjoint operators –with some common dense

domain D– acting on a Hilbert space H [118]. The Lie algebra structure on the classical

side is given by the PB, whereas on the quantum side by the usual commutator. A some-

what general obstruction is however encountered in this process and is emphasised in

Groenewold’s theorem [113, 117]: It is not possible to consistently quantise the Poisson

algebra of all polynomials in the canonical variables (qi, pi) of T∗Q = R2n as symmetric

operators on H under the condition that (q̂ i, p̂ i) are irreducibly represented1. When the

last condition is relaxed2, the Lie algebra pre–quantisation of all C∞−functions on R2n

exists (see [118]: Theorem 1).
1However, the quantisation of the Poisson algebra of the torus in which a suitable irreducible require-

ment is imposed can be achieved [115, 116].
2Quantisation without the irreducibility representation postulate is called pre–quantisation.

70
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Besides the intrinsic problems already present in the canonical quantisation of uncon-

strained systems, the existence of gauge transformations make the process more intricate.

The classically allowed states lie on the constraint surface Γ in a redundant fashion: one

physical state of the classical system is labelled by many points on Γ, all of them con-

nected by a gauge transformation, all of them lying on the same gauge orbit. Basically

two paths can be taken to tackle the quantisation of these systems, the fundamental

difference between the two paths depends on the order in which the implementation

of constraints takes place. The constraints are implemented either after or before the

quantisation. P. A. M. Dirac put into practice the first option [1] translating the whole

problem of finding physical states into the linear spaces regime. The second option faces

the endeavour to explicitly extract the true degrees of freedom to quantise by first con-

structing the reduced phase space. In general, there is not an equivalence between these

two procedures as exemplified in [121]. However, in some cases the insistence on the

compatibility between the two approaches is used to construct one of the quantisations

when the other is known [66, 67, 68].

In the present chapter, two widely accepted methods which follow Dirac’s strategy to

quantise constrained systems are exhibited. Firstly, refined algebraic quantisation (RAQ)

is reviewed [93, 94, 95, 96, 97, 98]. This is a widely used method in the community of

quantum gravity [155]. Secondly, the canonical BRST–quantisation is revisited [61, 65,

73, 78, 79, 83] . This corresponds to a widely accepted quantisation method among the

string theorists’ community. We supplement the canonical BRST–quantisation with the

Batalin–Marnelius–Shvedov (BMS) proposal for a physical inner product [82, 84, 85, 86,

87, 89, 90, 124], so that, the contact between RAQ under certain circumstances and

BRST–quantisation is made. Both quantisation methods will become our main tools to

give some light on the quantisation of rescaled constraints in the subsequent chapters.

4.1 Refined algebraic quantisation

In Dirac’s method to quantise constrained systems one realises all dynamical variables

(gauge invariant and non–invariant ones) as operators on some linear space of states.

The physical states are selected by means of subsidiary conditions involving the quan-

tum constraints. RAQ is a precise formulation of Dirac’s programme and its subtleties.

In RAQ one establishes a Hilbert space –the auxiliary Hilbert space Haux– on which

the constraints will act as operators. The observables and physical state condition are

interpreted in terms of distributions on some dense subspace Φ ⊂ Haux. Within this

scheme, the concept of a rigging map (η) is axiomatically introduced to establish an
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inner product between physical states. The physical Hilbert space Hphys is constructed

by completion. The rigging map is closely related to the ‘group averaging’ technique

[99, 100, 98, 108]. The axiomatic prescription to construct a physical inner product in

this way is the most significant contribution from RAQ to tighten one of the loose ends

in Dirac’s strategy. In this section these procedures will be detailed.

The RAQ scheme corresponds to an improved version of what is known as algebraic

quantisation [110, 112], which is briefly described in the following subsection.

4.1.1 Algebraic quantisation

The principle to find a physical inner product in algebraic quantisation is to represent

a relevant set of real classical observables by self–adjoint operators acting on the kernel

of the quantum constraints, that is, on the physical state space. Consider a classical

system with phase space T∗Q constrained by m first–class constraints γa ≈ 0. The main

steps in algebraic quantisation [110, 112] can be broadly divided into two parts: In the

first one, steps (1) to (4), the arena where the constraint operators are going to act is

established; this set of steps is independent of the constraints. The second part, steps

(5) to (7), regards with the implementation of the quantum constraints and the search

of a physical inner product compatible with the real/self–adjoint conditions of relevant

observables. As a list one has

(1) Select a subspace S of the vector space of all smooth, complex–valued functions

on T∗Q subject to the following conditions:

(i) S is large enough so that any sufficiently regular functions on the phase

space can be obtained as (possibly a suitable limit of) a sum of products of

elements3 f (i) in S . The unit function ‘1’ should also be included in S .

(ii) S is closed under the Poisson bracket.

(iii) S is closed under complex conjugation.

(iv) Each element in S , called elementary classical variable, is to have an unam-

biguous quantum analogue4

(2) Associate with each element f (i) in S an abstract operator f̂ (i). Construct the

free associative algebra ([175]: Chap. 20) generated by these elementary quantum
3 One says that S is (locally) complete if and only if the gradients of the functions f (i) in S span

the cotangent space of T∗Q at each point.
4For our proposes the set of all complex–valued functions on T∗Q which are either independent

of momenta or linear in them are adequate as elementary variables [110]. An algebraic definition of

variables with unambiguous quantum analogue can be found in [114, 175].
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operators. Impose on it the canonical relations [f̂ (i), f̂ (j)] = i~ ̂{f (i), f (j)}, and, if
necessary, also a set of (anti–commutation) relations that captures the algebraic

identities by the elementary classical variables (for details see [112]: Sec. II).

Denote the resulting algebra by Aaux.

(3) Introduce an involution operation5 ? on Aaux by requiring that if two elementary

classical variables f (i) and f (j) are related by f (i)∗ = f (j), then f̂ (i) ? = f̂ (j) in

Aaux. Denote the resulting ?−algebra by A
(?)
aux.

(4) Ignoring the ?−relations, construct a linear representation of the abstract algebra

Aaux via linear operators on some complex vector space V.

Representing the associative free algebra Aaux on a complex vector space V is not in

conflict with the no–go theorem by Groenewold. The linear representation does not

correspond to a homomorphism of Lie algebras.

In the second part of the programme one enables the implementation of constraints

as selectors of physical states. A requirement that reflects the gauge generator status of

the constraints.

(5) Obtain explicit operators γ̂a on V representing the quantum constraints. In general,

a choice of factor ordering has to be made at this stage. Physical states lie in the

kernel Vphys of these operators

γ̂a|ψ〉 = 0 . (4.1.1)

(6) Extract the physical subalgebra, Aphys, of operators that leave Vphys invariant.

Not all operators in Aaux are of this kind. An operator Â in Aaux will leave Vphys

invariant if and only if Â weakly commutes with the constraints, that is,

[Â, γ̂a] = Â b
a γ̂b . (4.1.2)

Operators that satisfy this condition are the Dirac quantum observables. Introduce

an involution operation on the physical algebra Aphys. At this level the ?−relation
in A

(?)
aux can be used to induce a ?−relation in Aphys. Denote the resulting ?−algebra

of physical operators by A
(?)
phys.

(7) Induce on Vphys a Hermitian inner product so that the ?−relations on A
(?)
phys are

represented as adjoint relations on the resulting Hilbert space. In other words,

whenever f̂ (i) ? = f̂ (j) in A
(?)
phys, then the inner product on physical states should

5Remember, an involution operation on Aaux is a map ? : Aaux → Aaux that satisfies three conditions:

(i) (F + αG)? = F ? + α∗G?, α ∈ C; (ii) (FG)? = G?F ?; and (iii) (F ?)? = F .
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be chosen such that the corresponding explicit operators in the representation

satisfy f̂ (i) † = f̂ (j), where † is the Hermitian adjoint with respect to the physical

inner product.

The last step is the requirement that real classical observables become symmetric quan-

tum operators with respect to the physical inner product. Although at first sight this

sounds rather elementary, it is subtle and of large scope. In general, there is no a priori

guarantee that the physical vector space would admit an inner product satisfying the

required reality conditions. If it does not, the vector space V can always be reconsidered

and the process be restarted. The successful application of the broad guidelines listed

above has been reported in various examples [104, 105, 107, 111, 112, 176].

In order to arrive at RAQ, the list of ansatz above requires a fine–tuning at the level

of the implementation of reality conditions. In both scenarios, algebraic quantisation

and its refined version, the compatibility between the reality and hermitian conditions

with respect to the physical inner product is required.

4.1.2 From algebraic to refined algebraic quantisation

In this section refined algebraic quantisation programme is introduced. This is done

based on [93] and the complementary material by D. Giulini, A. Gomberoff, J. Louko,

D. Marolf, A. Molgado, I. A. Morrison and C. Rovelli [89, 96, 97, 98, 103, 104, 105, 106,

107, 108, 109].

One applies RAQ to quantise a classical system with phase space T∗Q first–class

constrained by γa ≈ 0. This scheme deviates from the algebraic quantisation after the

third step (see above). In step (4) rather than ignoring the ?−relations in the linear

representation of A
(?)
aux, these are realised as adjoint relations on a Hilbert space. Step

(4) now reads as follows:

(4) Construct a linear ?−representation R of the abstract algebra A
(?)
aux via linear

operators on an auxiliary Hilbert space Haux, that is,

R(Â?) = R(Â )† , ∀ Â ∈ A(?)
aux , (4.1.3)

where † denote Hermitian conjugation with respect to the inner product (· , ·)aux

defined in Haux.

It should be recalled at this point that only for densely defined operators6, T̂ , on a

6A linear operator bT on H is said to be densely defined if its domain is dense, i.e. D(bT ) = H where

the overline in this case denotes closure. Any bounded operator is densely defined.
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Hilbert space Haux, a precise definition of its adjoint T̂ † can be assigned ([177]: Chap.

VIII). Therefore for each abstract operator Â ∈ A
(?)
aux , R(Â ) must be densely defined in

Haux.

In the refined version of algebraic quantisation, Haux is a space on which the quan-

tum constraints act. The remaining steps address the implementation of these constraints

as physical state selectors, this includes an exhaustively mathematical reconsideration

of (4.1.1) via generalised vectors. In general, the space of physical states will not neces-

sarily be a subspace of Haux. The next step establishes the debatable adjoint properties

that the constraint operators should satisfy7. The explicit form of the constraint opera-

tors is also essential in the definition of observables later on.

(5a) Represent the constraints γa as self–adjoint operators γ̂a (or their exponentiated

action, representing the finite gauge transformations, as unitary operators Û(g))

on Haux.

Regarding Dirac condition (4.1.1) as an eigenvalue equation, with γ̂a self–adjoint

constraint operators on Haux, it may happen that too few solutions on Haux exist to

construct any reasonable Hilbert space from them. Even more, when zero lies in the

continuum part of the spectrum of one or more of the constraint operators γ̂a, the

solutions to (4.1.1) are not normalisable in the (· , ·)aux [178]. Hence, the belief that

restricting the auxiliary inner product (· , ·)aux to some subspace to obtain a physical

scalar product may result hopeless. One then looks for solutions of the Dirac condition

in the algebraic dual Φ′ of some dense subspace Φ⊂ Haux. The space Φ′ ⊃ Haux is

the space to which the generalised vectors belong, they turn out to be none other than

linear functionals defined on the linear dense subspace Φ whose elements are called test

states. The inclusion of a dense subspace Φ into the process is not an exclusive practice

in quantisation of constrained systems, in fact, the most rigorous way to make sense

of the bra–ket Dirac notation in quantum mechanics is through the triplet structure

Φ ⊂ Haux ⊂ Φ′; for a complete exposition see for instance [179, 180, 181].

For the case in which the exponentiation of all constraints γ̂a defines a unitary action

Û(g) of the gauge group on Haux, the condition (4.1.1) for gauge invariance, can be

rephrased as

Û |ψ〉 = |ψ〉 , (4.1.4)
7Under the hypothesis that all physical predictions obtained from Dirac quantisation should coincide

with reduced phase space quantisation, and that the whole quantisation process should be invariant under

rescaling constraints transformations of the kind (4.1.23) in T∗Q, in a series of papers by K. V. Kuchar

and P. Hájíček [66, 67, 68] there has been debated that there is no physical motivation to require

self–adjoint constraint operators at a kinematical level.
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that is, Û acts trivially on the physical states8. If Û(g) is accessible, seeking physical

states prevents one dealing with unbounded operators such as γ̂a.

As a general rule, and as a consequence of the fact that zero may be part of the

continuum spectrum of constraints, the discrete spectrum of Û(g) need not contain one.

This forces one to reconsider (4.1.4) on the algebraic dual Φ̃′ of some linear dense subspace

Φ̃ ⊂ Haux of test states. Some comments on this dense subspace will be addressed below.

Basic invariance conditions on Φ, an important piece in this construction, are stated

in the next step.

(5b) Choose a ‘suitable’ dense subspace Φ ⊂ Haux which is left invariant by the con-

straints γ̂a,

γ̂a Φ ⊂ Φ (4.1.5a)

and let A
(?)
phys be the ?−algebra of operators on Haux which commute with the

constraints γ̂a and such that, for Â ∈ A
(?)
phys, both Â and Â † are defined on Φ and

map Φ to itself

ÂΦ ⊂ Φ , Â †Φ ⊂ Φ . (4.1.5b)

The ?−operation in A
(?)
phys is that induced by the adjoint operation † for operators

on Haux.

This step in the quantisation programme is crucial. The dense subspace Φ becomes an

essential component in this strategy of quantisation. Exactly what linear dense subspace

Φ is ‘suitable’ depends on the theory under discussion. Its invariance properties (4.1.5)

are precisely under the physically relevant operators: constraints and observables; then,

some physical input is generally required in the choice of Φ. For instance, the subspace

Φ should be large so that A
(?)
phys contains ‘enough’ physically interesting operators while

it must also be sufficiently small that its algebraic dual Φ′ contains enough physical

states. The choice of Φ has an effect on the set of observables, they must leave invariant

Φ. It is important to emphasise that the selection of Φ affects the rest of the process,

its impact even permeates the definition of physical inner product which is established

almost at the end of the procedure. The states in Φ must ensure the convergence of

the physical inner product. Finally, the existence of superselection rules on the physical

Hilbert space, to be constructed, can strongly depend on the choice of the dense linear

subspace Φ as shown in [94].
8This condition is valid at least for gauge groups with unimodular Lie group structure. When the

gauge group corresponds to a nonunimodular one (f b
ab 6= 0 in the gauge algebra), the condition (4.1.1)

varies according to bγa|ψ〉 = − i
2
f b
ab |ψ〉 which makes the RHS of (4.1.4) to be recast in the form

∆1/2(g)bU |ψ〉 = |ψ〉 (see [96] and section 4.1.3 below).
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In the presence of a unitary action Û of the gauge group on Haux one can formulate a

similar condition to (4.1.5a) for Φ̃. A ‘suitable’ linear dense subspace Φ̃ must be invariant

under the action of Û

Û Φ̃ ⊂ Φ̃ . (4.1.6)

The algebra A
(?)
phys corresponds to the ?−algebra of operators on Haux that commute

with Û such that for Â ∈ A
(?)
phys, both Â and Â † are defined on Φ̃ and map Φ̃ to itself.

In cases where both formulations (4.1.1) and (4.1.4) of gauge invariance are available,

it may be found that Φ 6= Φ̃. It may well happen that there is a dense subspace Φ ⊂ Haux

invariant under the action of constraints, cf. Eq. (4.1.5a), but Û Φ 6⊂ Φ. Therefore, the

set of physical observables A
(?)
phys when one considers Û to select physical states needs

not to coincide with the one obtained when γ̂a are the physical–state selectors. A
(?)
phys in

the former consideration has to leave invariant Φ̃ and not Φ.

In the next step, a key ingredient that ultimately will define a physical inner product

and simultaneously solve the constraints is introduced. This is the rigging map.

(5c) Find an anti–linear map η : Φ→ Φ′ that satisfies the following requirements:

(i) For every ψ ∈ Φ, η(ψ) is a solution of the constraints9

γ̂aη(ψ)[χ] ≡ η(ψ)[γ̂a(χ)] = 0 ∀χ ∈ Φ . (4.1.7a)

(ii) The map η is real and positive in the sense that, for all ψ, χ ∈ Φ,

η(ψ)[χ] = (η(χ)[ψ])∗ , (4.1.7b)

η(ψ)[ψ] > 0 . (4.1.7c)

(iii) The map η commutes with the action of any Â ∈ A
(?)
phys, that is η(Â(ψ)) =

Âη(ψ) for all ψ ∈ Φ, or, equivalently that for all ψ ∈ Φ

η
(
Â(ψ)

)
[χ] = η(ψ)[Â †(χ)] ∀χ ∈ Φ . (4.1.7d)

9An operator bT densely defined on Φ, such that together with its adjoint leave invariant Φ, has a

natural extension to Φ′. Given a generalised vector F ∈ Φ′, one has (with abusing of notation) thatbT (F ) ≡ bTF is another functional in Φ′ such that bTF : Φ→ C. The new functional bTF on elements in

Φ is defined as follows:

( bTF )[ψ] := F [ bT †(ψ)] ∀ψ ∈ Φ .

Let bT be self–adjoint with domain D( bT ) = D( bT †) ⊃ Φ, then bT † Φ ⊂ Φ and for every ψ ∈ Φ one hasbT †(ψ) = bT (ψ). In this case

( bTF )[ψ] = F [ bT †(ψ)] ≡ F [ bT (ψ)] ∀ψ ∈ Φ .
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It is due to the adjoint on the RHS of this expression that the image of

η, Im(η) ⊂ Φ′, will carry an anti–linear representation of A
(?)
phys, and at the

same time, it will be an invariant domain of physical observables.

The topology of Φ is that induced by the inclusion in Haux. Whereas, the topology

of Φ′ is that of pointwise convergence, that is, a sequence {Fn} ∈ Φ′ converges to F ∈ Φ′

if and only if Fn[ψ] → F [ψ] for all ψ ∈ Φ. So that one can identify Haux ⊂ Φ′ since

vectors in Haux define linear functionals on the subset Φ by taking inner products.

Once again, having the unitary action Û of (a unimodular) group on Haux, the

requirement (4.1.7a) on a rigging map can be reformulated as follows: Each generalised

vector, image of η, must be invariant under the unitary action Ûη(ψ) = η(ψ) ∀ψ ∈ Φ̃,

or

Ûη(ψ)[χ] = η(ψ)[χ] ∀ψ, χ ∈ Φ̃ . (4.1.8)

When the gauge group is nonunimodular the corresponding square root of its modular

function should enter multiplying the LHS of this expression (see footnote 8 in page 76).

By construction the generalised vectors η(ψ), with ψ ∈ Φ or ψ ∈ Φ̃ depending on the

formulation, span the space of solutions of the constraints. In the next step of RAQ an

inner product in such a space is introduced.

(5d) Define an inner product on the vector space span{η(ψ)} through

(η(χ), η(ψ))raq := η(ψ)[χ] . (4.1.9)

Note that the positions of χ and ψ must be opposite on the two sides of (4.1.9) due

to the anti–linear nature of η. The requirements (4.1.7b) and (4.1.7c) guarantee

that (· , ·)raq is a Hermitian and positive definite inner product. The physical

Hilbert space Hphys is defined by the Cauchy completion of the image of η in this

inner product; therefore, Im(η) is by construction an invariant common dense

subspace of Hphys for the (strong) physical observables in A
(?)
phys (see eq. (4.1.7d)).

One could think that Hphys, the closure of Im(η), may have elements which rigorously

are not solutions of the Dirac condition (4.1.1) in the RAQ sense. However, one can

verify that this is not the case: Hphys is a subspace of Φ′ [97]. Consider the mapping

σ : Hphys → Φ′ : F 7→ σF defined by

(σF )[ψ] := (F, η(ψ))raq ,

we have that σF vanishes only if (σF )[ψ] = 0, ∀ψ ∈ Φ, or equivalently, only if F is

orthogonal to Im(η) . But the space Im(η) is by construction a dense subspace in

Hphys. Then F = 0, that is, σ is an embedding of linear spaces.
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The convergence of the physical inner product (4.1.9) on Φ (or Φ̃) in this context

means that η(ψ)[χ] is actually an element in C for all ψ, χ ∈ Φ (∈ Φ̃). The fulfilment of

such requirement is subtle. It often happens that η(ψ)[χ] diverges on some interesting

domain and, when this is so in a ‘tractable’ fashion, one can construct a renormalised

version of rigging map. This technique was effectively used in [93] within the context

of loop approach to quantum gravity to construct a Hilbert space of states invariant

under the group of diffeomorphisms of a spacelike surface Σ; this was not pathological or

exclusive of that theory, one can find more examples of successful application of a renor-

malised rigging map. For instance, when the gauge group is SOc(n, 1), n > 1, acting on

square–integrable functions on n+1 dimensional Minkowski space L2(Mn,1,dnx), whose

support extends outside the light cone, A. Gomberoff and D. Marolf [103] showed the

existence of a rigging map whose divergence could be factorised out allowing a renor-

malised redefinition of rigging map. In a similar style, using a simplified version of the

single constrained Ashtekar–Horowitz model [119] by D. G. Boulware [182], it was shown

by J. Louko and A. Molgado [107] that for a class of special potentials in the constraint

function, the rigging map they propose ‘nicely’ diverges in a way that a renormalised

version can be introduced. Later on in this thesis, we will show another example (based

on a single rescaled constraint) where some renormalisation process is required to obtain

a convergent rigging map. In all these examples the rigging map is obtained using the

group averaging technique as an ansatz, this will be the topic in the following section.

In summary, algebraic quantisation and its refined version are based on an abstract

free associative ?−algebra of operators A
(?)
aux generated by the quantum analogue of

elementary classical variables, where the basic canonical commutation relations have

been imposed. In contrast to algebraic quantisation, where one seeks the kernel of

the constraint operators on a linear space V lacking of inner product, in the refined

version, one represents constraints as self–adjoint operators on an auxiliary Hilbert space

Haux. The physical space Hphys is written in terms of generalised vectors. In addition,

whereas in algebraic quantisation one searches for a Hermitian inner product in Vphys that

translates ?−adjoint into †−Hermitian relations for the physical observables in A
(?)
phys, in

the refined version these relations will descend from Haux to the physical Hilbert space

through the rigging map and its properties. The final result after applying RAQ is highly

sensitive on three main inputs: the choice of Haux, the realisation of the constraints as

operators on it, and the choice of the dense linear subspace Φ ⊂ Haux whose algebraic

dual hosts Dirac physical states. The success of the programme depends on the three

inputs mentioned above and any slight variation in one or more of these ingredients

might result in a complete different Hphys (if any).
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4.1.3 Group averaging ansatz

In order to discuss quantities of physical relevance such as probabilities, expectation

values and transition amplitudes, the physical space must be endowed with an inner

product. Nevertheless, none of the Dirac’s principles guides us how to obtain such an

inner product. This is where the rigging map, when it exists, plays a central role and

complements Dirac’s approach.

A possible path one can follow to construct a rigging map when the gauge group

corresponds to a Lie group, is prescribed by the so–called group averaging technique.

In short, this method consists in the construction of gauge invariant quantum states,

η(ψ), by averaging non–invariant states over the gauge group [99, 100]. In the following

paragraphs this idea is developed for a variety of representative groups.

A. Finite Group

The main idea of this method can be seen in the following situation: Let G ≡
{g1, . . . , gn} be a finite group and ρ a unitary representation of it on an inner product

(complex) linear vector space (V, (· , ·)aux) of finite dimension. Each ρ(gk) has a natural

action on elements in the dual space V ∗, namely, for α ∈ V ∗ one has ρ(gk)α : V → C

with (ρ(gk)α)[v] := α[ρ(g−1
k )v], where g−1 is the inverse of g under the group product.

By Reisz theorem, all linear functionals act as α[v] = (u, v)aux for all v ∈ V and u a fixed

vector in V ; this is the well known isomorphism between V and V ∗. In this construction,

one can always build the following linear functionals:

η(u)[v] :=
1
n

n∑
j=1

(ρ(gj)u, v)aux ∀ v ∈ V . (4.1.10)

Due to the factor 1/n if the vector u ∈ V is invariant under the group action, then

η(u) ∈ V ∗ is the functional associated to the vector u ∈ V prescribed by Reisz theorem.

The mapping η : V → V ∗ is anti–linear due to the anti–linearity of (· , ·)aux in the first

slot.

Functionals defined in (4.1.10) have various desirable properties. First, they are

G−invariant

(ρ(gk)η(u))[v] = η(u)[ρ(g−1
k )v] =

1
n

n∑
j=1

(
ρ(gj)u, ρ(g−1

k )v
)
aux =

1
n

n∑
j=1

(ρ(gkgj)u, v)aux

=
1
n

n∑
j′=1

(
ρ(gj′)u, v

)
aux = η(u)[v] , ∀ v ∈ V ,
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where the summation in the second line was performed effectively again over the whole

group, so that one only gets η(u)[v]. Therefore the invariance of η(u) in the dual space is

accomplished by averaging non–invariant vectors (ρ(gj)u) over the group. The arithmetic

mean of scalar products with the arguments being elements in the orbit10 of u in one

slot and v in the other is performed. Second, using the unitarity of the representation

and the fact that it results irrelevant which group elements happen to be at each term in

the sum (4.1.10), either gj or its inverse, one has η(u)[v] = (η(v)[u])∗. Third, η satisfies

positivity in the sense of η(u)[u] ≥ 0. Indeed, note that P :=
1
n

∑
j ρ(gj) is a projection

operator,

P 2 =
1
n2

∑
jk

ρ(gjgk) =
1
n2

(∑
k

ρ(g1gk) + · · ·+
∑
k

ρ(gngk)
)

=
1
n

∑
k′

ρ(gk′) = P ,

so in this case the averaging yields a projection to an invariant subspace of V , Vphys :=

{Pu : u ∈ V }. For any v ∈ Vphys one has ρ(g)v = v, then 1 is contained in the discrete

spectrum of ρ(g), and Vphys ⊂ V . Therefore, η(u)[u] = (Pu, u)aux =
(
P 2u, u

)
aux =

(Pu, Pu)aux ≥ 0 after using P † = P and the positivity of the auxiliary inner product.

B. Unimodular and nonunimodular Lie groups

The above observation opens the possibility to construct gauge invariant generalised

vectors in the algebraic dual Φ̃′ by averaging non–invariant test states belonging to Φ̃

when a unitary representation of a Lie gauge group Û(g) is accessible. For a continuous

(Lie) gauge group G one should replace the sum (4.1.10) by an integral. For the integral,

a volume form is needed; however, an infinite number of them exists in this case11.

Let dLg be a left–invariant measure on G, that is, a measure that under the integra-

tion symbol obeys

dL(hg) = dLg (4.1.11)

for all fixed h ∈ G. In analogy to (4.1.10) one defines the antilinear mapping η : Φ̃→ Φ̃′

by its action on test states as follows:

η(ψ)[χ] :=
∫
G

dLg
(
Û(g)ψ, χ

)
aux

, ∀ψ, χ ∈ Φ̃ . (4.1.12)

10The orbit of u consists of the images of u under the action of G, O = {ρ(gk)u : k = 1, . . . , n} ⊂ V
11Every Lie group is orientable. Every Lie group has a left–invariant volume form that is uniquely

defined up to a positive constant which is the source of an infinite number of volume forms. It is only

in the compact case that one can use a volume normalisation to single out a unique top form. For a

compact Lie group, the unique left–invariant volume form with the property
R
G

dg ≡ 1 is called Haar

measure on G. It turns out that the Haar measure is also right–invariant. The map f 7→
R
G

dg f is

called Haar integral. For details see for instance [183, 184, 185, 186].
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Here, instead of the fraction 1/n on the RHS of (4.1.10), the 1/
∫
G dLg should be placed;

however, in general G need not to be compact and such a factor may vanish, so (4.1.12)

dispenses with this pre–factor. Although it is not indicated, in the Schrödinger repre-

sentation, within (4.1.12) one has integrals coming from inside the definition of (· , ·)aux

and they explicitly involve the domain Φ̃ since ψ, χ ∈ Φ̃. Assuming for the moment

the delicate point that (4.1.12) converges in absolute value for all ψ, χ ∈ Φ̃, one wish to

prove that it solves the constraints, is hermitian and positive definite as it was done for

the finite group case.

The action of Û(h) on any linear functional η(ψ) gives

(Û(h)η(ψ))[χ] = η(ψ)[Û(h−1)χ] =
∫
G

dLg
(
Û(g)ψ, Û(h−1)χ

)
aux

=
∫
G

dLg
(
Û(hg)ψ, χ

)
aux

∫
LhG≡G

dL(h−1k)
(
Û(k)ψ, χ

)
aux

=
∫
G

dL(h−1k)
(
Û(k)ψ, χ

)
aux

= η(ψ)[χ] , (4.1.13)

where the left–invariance of dLg became crucial in the second line. One can anticipate

from the analysis on (4.1.10) that to prove the reality condition (4.1.7b), the invariance

of dLg with respect to g 7→ g−1 needs to be guaranteed. However, dLg is not necessarily

invariant under this change, neither is its coequal right–invariant (dR(gh) = dR(g))

measure dRg. The relation between these two measures being

dLg = ∆−1(g) dRg , (4.1.14)

where ∆(g) is the so–called modular function [96]. This function corresponds to a ho-

momorphism ∆ from the group G to the positive real numbers. For finite dimensional

Lie groups the modular function is ∆(g) := det(Adg), where Ad denotes the adjoint

representation. The changes induced on dLg and dRg by g 7→ g−1 inside group integrals

respectively are

dLg 7→ dL(g−1) = ∆(g) dLg , (4.1.15a)

dRg 7→ dR(g−1) = ∆−1(g) dRg , (4.1.15b)

So, defining [96]

d0g := ∆1/2(g)dLg = ∆−1/2(g)dRg (4.1.16)

one obtains an invariant measure under the desired change, d0g = d0(g−1). This measure

is called the symmetric measure. However, under left and right translation this symmetric

measure behaves as

d0(hg) := ∆1/2(h) d0g , (4.1.17a)

d0(gh) := ∆−1/2(h) d0g . (4.1.17b)
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It seems then natural to separately deal with two different cases:

B.1. Unimodular case. This case is encountered when the identity ∆(g) ≡ 1, for all

g ∈ G, is fulfilled. Left– and right–invariant measures collapse into the symmetric

measure (4.1.16)

dLg = dRg = d0g

and the group averaging formula (4.1.12) becomes

η(ψ)[χ] :=
∫
G

d0g
(
Û(g)ψ, χ

)
aux

, (4.1.18a)

the RHS being invariant under g 7→ g−1. This invariance and the unitarity of Û

make of

η(ψ)[χ] =
∫
G

d0g
(
ψ, Û(g)χ

)
aux

(4.1.18b)

an equivalent definition for η (see [96]: Eq. (2.3), or [104]: Eq. (4.3)).

By the calculation (4.1.13), the left–invariance of d0g implies that (4.1.18a) sat-

isfies the constraints in the sense of (4.1.8). Unitarity of Û and invariance of

d0g under g 7→ g−1 (Eqs. (4.1.15) with ∆ ≡ 1) ensure the reality condition

η(ψ)[χ] = (η(χ)[ψ])∗. In contrast to the discrete group averaging (4.1.10), η(ψ)[ψ]

need not to be positive definite as it is exemplified by J. Louko and A. Molgado [105]

when the non–compact group SL(2,R) in the (1, 1) oscillator representation is

considered. If, however, property (4.1.7c) turned out to be satisfied, being η not

identically vanishing, the group averaging formula (4.1.18a) produces a rigging map

when η commutes with the observables. These conclusions do not change if one

instead uses the mapping given by (4.1.18b).

B.2. Nonunimodular case. For nonunimodular groups, defined by ∆(g) 6≡ 1, the

Eq. (4.1.16) relates dLg and dRg to the measure d0g. Using this more symmetric

measure into the group averaging formula (4.1.12) one has

η̃(ψ)[χ] :=
∫
G

d0g
(
Û(g)ψ, χ

)
aux

, (4.1.19a)

or equivalently (see [96]: Eq. (2.6), or [106]: Eq. (5.2))

η̃(ψ)[χ] =
∫
G

d0g
(
ψ, Û(g)χ

)
aux

. (4.1.19b)

Performing a similar calculation to (4.1.13), functionals of the form (4.1.19a) are

quasi–invariant under the unitary action of G

(Û(h)η̃(ψ))[χ] = ∆−1/2(h) η̃(ψ)[χ] , (4.1.20)
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where the equalities d0(h−1g) = ∆1/2(h−1)d0g = ∆−1/2(h)d0g were used on the

way. From the unitarity of Û and the invariance of d0g under the change g 7→ g−1,

one has that η̃ satisfies the reality condition (4.1.7b). Again, η̃(ψ)[ψ] need not to be

positive definite. If, however, by other means (4.1.7c) is shown to be fulfilled, and

η̃ is not identically vanishing, one has that η̃ satisfies the rigging map axioms with

the G−quasi–invariance (4.1.20). These conclusions do not change if one instead

uses the mapping given by (4.1.19b). The typical extra factor ∆−1/2(h) in the

quasi–invariance (4.1.20) (see for instance [106]: Eq. (5.4)) arises after using the

equality (4.1.17b) in a calculation similar to (4.1.13). As explained in [187, 188]

such factor comes after insisting on regaining the correspondence between Dirac’s

and reduced phase space quantisations.

Remarks

1. From (4.1.8) and the action of operators on the dual Φ̃′ (footonote 9 in page 77),

by gauge invariance we mean [106]

η(ψ)[Û(g−1)χ] = η(ψ)[χ], ∀ψ, χ ∈ Φ̃ (4.1.21)

In contrast in Ref. [96], where Eq. (4.1.19b) is used as group averaging formula, by

gauge invariance is meant

η(ψ)[Û(g)χ] = η(ψ)[χ] .

Note the change in the argument of Û on the LHS with respect to our for-

mula (4.1.21). In [96] for nonunimodular gauge groups the gauge quasi–invariance

reads

η̃(ψ)[Û(g)χ] = ∆+1/2(g) η̃(ψ)[χ]

instead of our (4.1.20), the reason being the use of g instead of g−1 in the formulas.

See also footnote 1 within Ref. [106].

2. Compact Lie groups are unimodular [184, 189]. The symbol dg has been reserved

for its (unique) normalisable left– and right–invariant volume form. Hence the

expression (4.1.18) can be used as an ansatz of a rigging map in this case. In fact

P :=
∫
G

dg Û(g) (4.1.22)

converges as an operator on Haux, projecting onto just the set of states that solve

the constraints as in the finite group case; that is, P projects onto states in the

trivial representation of G, so 1 is contained in the discrete part of the spectrum
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of P . These results implies that for a compact gauge groups, positivity is always

guaranteed.

3. After non–compact Lie gauge groups the next level of difficulty in the construction

of a rigging map comes by considering first–class constraints which not even form a

‘genuine’ Lie algebra, i.e. constrained systems with nonconstant structure functions

on their gauge algebra. N

4.1.4 Rescaling constraints and RAQ: A first discussion

It has been emphasised that in any constrained system the constraint surface, on which

the classical motion takes place, can be defined by two different sets of equivalent con-

straints {γa} and {γ′a}. The explicit functional form of the constraints in each set is

not relevant, but the surface they define by their zero locus. For instance, the surface

Γ ⊂ T∗Q defined by {γa} is also the one defined by the anholonomic basis [66]

γ′a(q, p) = Λ b
a (q, p)γb (4.1.23)

whenever the rescaling matrix Λ is invertible at each point on the phase space. Under

this transformation, the structure functions undergo an inhomogeneous transformation

f
′ c
ab =

(
Λ d

[a Λ f
b] f

e
df − 2 Λ d

[a Λ e
b],d + {Λ d

a ,Λ
e
b }γd

) (
Λ−1

) c
e
. (4.1.24)

Here ·,a ≡ {· , γa} is the directional derivative along the constraint field, and the square

brackets means total antisymmetrisation in the indices (see footnote 2 in page 49). By

the abelianisation theorem, at least locally, one can always use a transformation (4.1.23)

to reduce the corresponding structure functions to zero [135]. Or the other way around,

given an abelian set of constraints, f c
ab ≡ 0, a transformation (4.1.23) might induce

drastic changes in the gauge algebra. These changes include turning an abelian gauge

algebra into an algebra which closes with structure functions defined on the phase space.

Although these rescalings at the constraints level may imply changes in the classifi-

cation of the gauge algebra, from a closed to an open one, the classical observables of the

theory remain invariant under such redefinitions. In other words, to rescale constraints

must be viewed as a change of basis at the level of the gauge generators under which

the physical theory is invariant. The nature of these rescalings is well understood at a

classical level. In general, a transformation (4.1.23) is not a canonical one in the phase

space T∗Q, but it is in a ghost–extended phase space (see Sect. 3.5).

At a quantum level the effects of a general constraint rescaling transformation is

much more involved. Formally, one would expect that in a canonical quantisation of the
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ghost–extended phase space the quantum theories emerging from one and the other set of

constraints are connected by a unitary transformation ([174]: Chap. 26). Interpretation

of Dirac quantisation in the RAQ–sense may make this unitarity be lost since there

is not a canonical relation between the corresponding classical theories on the original

phase space. At the time this thesis was written and to the knowledge of the author, an

ultimate comprehension of this issue is far from clear in the most general case.

The RAQ is complete once a rigging map has been successfully implemented. A some-

what general expression for η is only available when the gauge group has the structure

of a (non) unimodular Lie group with a unitary representation on an auxiliary Hilbert

space. In terms of the constraint algebra, this is translated into the cases where structure

constants, rather than functions, are present. In cases where the gauge group forms an

open algebra, a rigging map must be constructed from scratch, even the necessity of

reconsidering what is meant by gauge invariant states might be a requisite12. Hence, if

one does not even have a tentative formula for the rigging map in the general case, or,

the abstract axioms that define it, it results too premature for the RAQ scheme to give

a complete answer about the implications of a general rescaling constraint transforma-

tion (4.1.23). The relation between the quantised theory using, on one side, the ‘original’

constraints and, on the other, the rescaled version of them is hence not clear.

In order to gain some insight into the open–constraint–algebra territory, one may still

investigate the situation suggested by Marolf [98]: Consider a system with an underlying

genuine Lie gauge group G generated by {γa}, that is, generated by a closed gauge

algebra. Perform a RAQ on it with special emphasis on the rigging map, then using this

result as a guide, try to construct the corresponding RAQ of the rescaled–constraints

version. Two comments take place here. First, if the original quantum constraints were

self–adjoint, the scaled constraints will in general not be so. Second, if Φ is some dense

subspace for which the RAQ was successfully applied in the original constraint setting,

having in particular γ̂aΦ ⊂ Φ, the dense subspace Φ in general will fail to be invariant

under the rescaled constraints version: γ̂′aΦ 6⊂ Φ. This indicates that the whole RAQ for

the rescaled constraints will render in general a different Hphys. The task would then be

to prove a unitarity relation between the two different physical Hilbert spaces.

In a modest model, in the next chapter, we will discuss the issues related to self–

adjointness of rescaled constraints. It will be found that the self–adjointness of the

rescaled constraint operator is conditioned by the nature of the scaling functions, the
12The first step towards this redefinition can be read from the nonunimodular Lie gauge group

cases, where instead of full invariance of states (bγa|ψ〉 = 0) a quasi–invariance is needed (bγa|ψ〉 =

(−i/2) tr(ada)|ψ〉).
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consequences at the level of the rigging map will be analysed. When the scaling functions

do not affect the self–adjointness of the rescaled constraints, in Chap. 6 using tractable

examples, we will show that the rescaled constraint quantum theory can be mapped to

that in which the scaling functions are the identity.

Another route one can follow in the investigation of the quantum effects introduced

by (4.1.23), is using the fact that such transformation is canonical in the super phase

space. At a formal level, hence, there should be a unitary connection between both

quantum theories: that based on γa and the other based on γ′a. However, as it will be seen

in the next section, the canonical quantisation of the super phase space must be achieved

on an indefinite inner product space13 Vbrst. One cannot attach an authentic Hilbert

space structure to Vbrst, and the unitary transformation that connects the two quantum

descriptions of the system must then be taken with a grain of salt. This unitarity is with

respect to an inner product which is not the physical one. Nevertheless, the research

about the quantum effects induced by (4.1.23) using BRST methods has been performed

for certain constrained systems [69, 70, 71, 72]. Canonical BRST–quantisation of the

super phase space will be the central topic in the following section.

4.2 Canonical BRST–quantisation

There is no unique way of setting up a canonical BRST–quantisation of a super phase

space, just as there is no unique quantisation of the original phase space. In this section

the canonical BRST–quantisation developed is the one outlined in [61, 64, 65, 83], sup-

plemented with a summary of the extensive work by R. Marnelius et al. [78, 79, 82, 84,

85, 89, 90]. The connection between BRST methods and RAQ is based on the proposal

by O. Y. Shvedov [124] and exemplified in the subsequent chapters.

4.2.1 States and operators: Formal considerations

Canonical BRST–quantisation as presented in [61, 64, 65, 83] aims to preserve as much as

possible the classical super–Lie algebra structure of functions on the super phase space.
13Let (V, (· , ·)) be an inner product space, for each v ∈ V either (v, v) > 0, or (v, v) < 0, or (v, v) = 0.

Correspondingly v is said to be positive, negative or neutral. It is clear that the zero vector is neutral.

If V contains positive as well as negative elements, one says that V is an indefinite inner product space.

Every indefinite inner product space contains non–zero neutral vectors. The inner product is said to

be semi–definite on V , if it is not indefinite; a semi–definite inner product may be either positive inner

product when (v, v) ≥ 0 ∀v ∈ V , or negative inner product when (v, v) ≤ 0 ∀v ∈ V . An inner product is

said to be definite, if (v, v) = 0 implies v = 0. Every definite inner product is semi–definite. Hence, a

definite inner product is positive (resp. negative) when (v, v) ≥ 0 ((v, v) ≤ 0) ∀ v ∈ V and the equality

only holds when v = 0 [74].
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The quantum parallels to these functions are meant to be operators acting on some

vector space, the set of operators endowed with a generalised or graded commutator [·, ·].
For f̂ , ĝ operators corresponding to classical variables functions f and g, with definite

Grassmann parities εf and εg, respectively, the graded commutator is defined as

[f̂ , ĝ ] := f̂ ĝ − (−)εf εg ĝ f̂ . (4.2.1)

This bracket is equal to the standard commutator [f̂ , ĝ ] = f̂ ĝ− ĝ f̂ unless the operators

f̂ and ĝ are both odd in which case it is equal to the anticommutator [f̂ , ĝ ]+ = f̂ ĝ+ ĝ f̂ .

This process will obviously find the same Groenewold’s obstructions that any canon-

ical quantisation method faces. The author suggests that this initial stage in the canoni-

cal BRST–quantisation can be rephrased in steps similar to (1)–(3) of (refined) algebraic

quantisation (cf. Sect. 4.1.1) but applied to the super phase space. One possible linear

subspace Sbrst of all the smooth complex–valued functions on the super phase space,

is that spanned by the basic canonical variables {q, λ, η; p, π,P} and 1. The Lagrange

multipliers λa and their conjugate momenta being included. The set Sbrst is closed

under the super PB, cf. Eqs. (2.1.16), (3.1.8) and (3.4.1). It is also closed under complex

conjugation, cf. Eqs. (3.4.7). In this point of view, Baux will denote the free associa-

tive algebra generated by the elementary abstract quantum operators {1̂, q̂, λ̂, η̂; p̂, π̂, P̂}
where the (graded) commutation relations

[q̂ i, q̂ j ] = 0 , [q̂ i, p̂j ] = −[p̂j , q̂ i] = i~ δij , [p̂i, p̂j ] = 0 , (4.2.2a)

[λ̂a, λ̂b] = 0 , [λ̂a, π̂b] = −[π̂b, λ̂a] = i~ δab , [π̂a, π̂b] = 0 , (4.2.2b)

[η̂ α, η̂ β] = 0 , [η̂ α, P̂β] = [P̂β, η̂ α] = −i~ δαβ , [P̂α, P̂β] = 0 , (4.2.2c)

together with others that capture algebraic identities satisfied by the elementary classical

variables (if any), have been input. An involution ?−operation on Baux is introduced

based on the reality conditions (3.4.7), hence

(q̂ i)? = q̂ i , (p̂i)? = p̂i , (λ̂a)? = λ̂a , (π̂a)? = π̂a , (η̂ α)? = η̂ α , (P̂α)? = −P̂α ,

(4.2.3)

so that B
(?)
aux is constructed.

In B
(?)
aux the abstract ghost number operator

Ĝ :=
i

2

2m∑
α=1

(
η̂ αP̂α − P̂αη̂

α
)
, Ĝ† = −Ĝ , (4.2.4)

is found. This is an anti–hermitian operator that satisfies (under ~ ≡ 1)

[Ĝ, η̂ α] = η̂ α , [Ĝ, P̂α] = −P̂α , [Ĝ, ẑ ] = 0 , with ẑ = q̂, λ̂, p̂, or π̂ , (4.2.5)
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The BRST operator Ω̂ is also included in B
(?)
aux. The graded commutation between

Ω̂ and Ĝ is required to be

[Ĝ, Ω̂ ] = Ω̂ , (4.2.6)

which reflects the classical nature of Ω of being a +1 ghost numbered function. In addi-

tion Ω is nilpotent in PB sense (cf. Eq. (3.4.13c)) and real (cf. Eq. (3.4.13d)); accordingly,

the operator Ω̂ is required to satisfy the conditions

[Ω̂, Ω̂ ] = 2 Ω̂2 = 0 , (4.2.7a)

Ω̂? = Ω̂ . (4.2.7b)

The next step in this quantisation process is to construct a linear ?−representation
of the abstract B

(?)
aux via linear operators on some vector space Vbrst with inner product

(· , ·)brst such that the ?−relations become †−relations.

Unlike the situation in the classical case, where the existence of a function Ω that

satisfies (3.4.13) is guaranteed by the Theorem 3.4.1, the existence of an operator Ω̂

acting on a vector space Vbrst with the properties (4.2.6) and (4.2.7) is more subtle.

The question of ordering of factors becomes crucial. In what follows it will be assumed

that a BRST operator Ω̂ satisfying these properties can be represented as linear operator

on Vbrst.

The first fundamental difference in a canonical BRST–quantisation with respect to

a ghost–free quantisation is that the operators in B
(?)
aux cannot be represented on a def-

inite inner product space, neither positive nor negative (cf. footnote 13 in page 87 for

definitions), specially if one requires a non–trivial representation of the BRST operator.

Indeed, the characteristic properties of nilpotency (4.2.7a) and symmetry (4.2.7b) imply(
Ω̂Ψ, Ω̂Υ

)
brst

=
(

Ψ, Ω̂ †Ω̂Υ
)

brst
=
(

Ψ, Ω̂2Υ
)

brst
≡ 0 ∀Ψ,Υ ∈ Vbrst .

Doing Ψ = Υ, the leftmost expression would imply Ω̂Ψ = 0 for all Ψ in the domain of Ω̂

whenever a definite inner product (· , ·)brst is used.

As a consequence of the observation above, it is sometimes (wrongly) claimed that the

vector space Vbrst is then indefinite. However, from an inner product space which is not

definite one can only say that (v, v) = 0 does not imply v = 0; nevertheless, this does not

mean that positive as well as negative vectors exist in such a space. Another ingredient

is needed to ensure that Vbrst is indefinite (or equivalently, not semi–definite): the

nondegeneracy of the inner product14.
14An arbitrary inner product space V is said to be nondegenerate inner product space iff the zero

vector is the only perpendicular vector to all elements in V . [74]
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Let Vbrst be a nondegenerate and not definite inner product space. For a general

inner product space V , a subspaceW may have non–zero intersection with its orthogonal

companion15 W⊥. The subspace W ∩ W⊥ ≡ W 0 is called the isotropic part of W .

The isotropic part of the whole space is V ∩ V ⊥ = V ⊥ = V 0. By definition, for a

nondegenerate V = Vbrst one has that V⊥brst = {0} = V0
brst, that is, the isotropic

part of Vbrst consists of only the zero vector, which is obviously a neutral vector. There

are more neutral vectors in Vbrst, namely all elements in the image of Ω̂, Im(Ω̂), which

are not in the isotropic part of Vbrst. Not all neutral elements of Vbrst are in V0
brst.

On the other hand, the contrapositive version of the Lemma 4.4 by J. Bognár [74] reads

Lemma 4.1 If the isotropic part V 0 of V does not consist of all neutral elements in V ,

V is a not semi–definite inner product space .

Therefore, one has that Vbrst is not semi–definite, that is, it is indefinite.

In conclusion, the following theorem has been proved:

Theorem 4.2.1 To non–trivially represent a BRST operator Ω̂, an inner product space

Vbrst with a non–definite inner product (· , ·)brst is required. If the inner product

is nondegenerate, hence the BRST state space Vbrst is necessarily an indefinite inner

product space. Elements of Vbrst are named BRST states and accordingly they are

either positive, or negative, or neutral.

An immediate consequence of this theorem is that it prohibits the BRST state space

Vbrst from having a genuine Hilbert space structure. On purely operational grounds,

densely defined operators acting on Vbrst are meaningless, unless some topology is

input from the outset. Hence, operators will be treated formally in the BRST quantum

analysis.

In what follows it will be assumed that the vector space Vbrst splits as a sum of

eigenspaces of the ghost number operator Ĝ with definite real ghost number p

Vbrst =
⊕
p

Vp , ĜΨp = pΨp , (∀Ψp ∈ Vp) . (4.2.8)

This property holds in particular for the Schrödinger representation as will be shown in

the models we consider in the following chapters. Although it may sound strange that

the anti–hermitian ghost number operator (4.2.4) has pure real eigenvalues, this is fully
15 The orthogonal companion of any subset U ⊂ V is the subspace U⊥ := {v ∈ V : (v, u) = 0 ∀u ∈ U}.

The vector space V is a degenerate inner product space when is not nondegenerate [74]. The vector

space V is a nondegenerate inner product space iff its orthogonal companion only consists of the zero

vector.
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consistent in the presence of an indefinite metric: it holds for any system with bosonic

and/or fermionic constraints when the corresponding ghosts are quantised in the Fock

representation [65].

Any operator Â ∈ B
(?)
aux, which abstractly corresponds to a polynomial in ghost

and ghost–momentum operators with zero ghost numbered operator coefficients, has the

decomposition

Â =
∑
g

Âg , [Ĝ, Âg ] = gÂg , g ∈ Z (4.2.9)

with g an integer by virtue of (4.2.5).

Based on the nondegenerate nature of (· , ·)brst and the ghost decomposition (4.2.9)

the following theorem, fully proved in [65], holds:

Theorem 4.2.2

(a) The scalar product of two states Ψp and Ψp′ with respective ghost number p and p′

vanishes if p+ p′ 6= 0 (
Ψp,Ψp′

)
brst = 0, p+ p′ 6= 0 . (4.2.10)

(b) The ghost number of states Ψp is either integer or half integer.

If the system consists of an even number of constraints, as in the non–minimal BRST

formalism, there is no fractionalisation of the ghost number, only integers are present [65].

BRST states with non–vanishing ghost number are neutral in Vbrst.

As in Dirac’s strategy a prescription to extract physical states out of the BRST

states in Vbrst must be implemented. Following the original proposal by T. Kugo and

I. Ojima [73], Ω̂ becomes the BRST physical state selector

Ω̂Ψphys = 0 (4.2.11a)

which is complemented with a zero ghost number condition on physical states

ĜΨphys = 0 . (4.2.11b)

The quantum BRST observables are defined by ghost number zero, BRST invariance,

and hermiticity,

[Ĝ, Â ] = 0 , (4.2.12a)

[Â, Ω̂ ] = 0 , (4.2.12b)

Â? = Â . (4.2.12c)
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Due to the nilpotency of Ω̂, solutions to the Eq. (4.2.11a) need further identification.

Any state of the form Ω̂X obeys (4.2.11a), these are termed BRST–exact states. These

states have the following properties: (i) They have zero norm; (ii) they have vanishing

inner product with any physical state; and, (iii) the ‘expectation value’ of any BRST

quantum observable between a BRST–exact state and a physical state vanishes. These

characteristics suggest that two physical states differing by a BRST–exact state must be

identified. The transformation

Ψ → Ψ′ := Ψ + Ω̂X (4.2.13)

is sometimes called quantum BRST gauge transformation [124], and states related by a

BRST gauge transformation are called BRST gauge–equivalent.

Remarks

1. One can infer directly from the condition (4.2.12b) that BRST observables map

physical states onto physical states.

2. The formulation of the statement that {K,Ω} is classically a trivial BRST observ-

able (see Eq. (3.6.16)) finds its quantum counterpart. Given an odd operator K̂

of ghost number minus one, [Ĝ, K̂] = −K̂, and anti–hermitian, K̂† = −K̂, the

operator

Â′ := Â+ i[ Ω̂, K̂ ] (4.2.14)

constructed from the BRST quantum observable Â is also a quantum observable.

Â′ is BRST closed, [Â′, Ω̂] = 0, has ghost number zero, [Ĝ, Â′] = 0, and is self–

adjoint, Â† = Â.

3. It is not difficult to see that the trivial observables [ Ω̂, K̂ ] have vanishing matrix

elements between physical states(
Ψ(1)

phys, [ Ω̂, K̂ ]Ψ(2)
phys

)
brst

≡ 0

as a consequence of the self–adjointness of Ω̂.

4. If one considers the formal expressions of the quantum counterpart of the BRST

extensions to the constraints Gα, equation (3.6.17)

ĜBRSTα := i[P̂α, Ω̂] , (4.2.15)

then ĜBRSTα Ψphys ≡ 0 modulo a BRST–exact state. Hence, the BRST quantum

constraints act trivially on the space of equivalence classes of physical states.
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5. The condition (4.2.11b) seems to be satisfactory in the non–minimal BRST for-

malism. The inclusion of Lagrange multipliers and their conjugate momenta, dou-

bles the number of original first class constraints of the theory from m to 2m.

Hence, no fractionalisation of ghost number is present. Moreover, this condition

will become important to us in order to make a connection between the canonical

BRST–quantisation and RAQ. N

4.2.2 Physical inner product: Batalin–Marnelius–Shvedov proposal

One could say that the physical condition (4.2.11a) in the BRST formalism needs a

similar treatment as the one applied to the Dirac condition (4.1.1) in RAQ. However,

an interpretation of the BRST condition (4.2.11a) in terms of generalised vectors does

not seem directly achievable. First, unlike the space of states Haux present in RAQ,

the vector space Vbrst neither is a pre–Hilbert space nor some topology to it has been

attached, so there is no direct notion of distance between BRST states, which in turns

does not permit a proper definition of a dense test state space Φbrst ⊂ Vbrst where Ω̂

could act on. Second, Ω̂ itself has not been densely defined, the self–adjointness property

of Ω̂ was only done at a formal level. Third, a Gelfand triple structure out of Vbrst and

a dense subset of the domain of Ω̂ looks then by no means straightforward.

Instead of pursuing the interesting challenge that would signify to give a consistent

distributional interpretation to the BRST physical condition and then seek an inner

product which pairs BRST physical states, here it has been opted for following Batalin–

Marnelius and Shvedov ideas on the issue [82, 84, 85, 89, 90, 124]. In practice, physical

states Ψphys do not have a well defined norm (neither positive, or negative) in the BRST

inner product (· , ·)brst. The physical conditions (4.2.11) forbid vector states, typically

wave functions on (super) configuration space, to depend on all configuration variables

(ghost among them), therefore BRST physical states have ill–defined square norm. To

be precise, in a Schrödinger representation, the inner product (· , ·)brst involves an

integration over all ghosts and configuration variables. Hence, for BRST physical states,

norms proportional to the meaningless ∞ · 0 are usual. The infinity coming from an

integration over the bosonic Lagrange multipliers, when they are assumed to take values

all over the real line, while zero results from integration over the fermionic ghosts. If

by any reason the integration of Lagrange multipliers is performed over a compact set,

BRST physical states are neutral vectors whose probabilistic interpretation is empty.

In order to define a positive definite inner product in the physical subspace, Batalin–

Marnelius–Shvedov’s strategy uses the room that is left by the arbitrariness in the phys-

ical states due to the existence of BRST–exact states (4.2.13). A gauge fixing procedure
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within the BRST formalism is introduced. A gauge transformed physical state might

contain ghosts and other non–physical configuration variables. The main idea is to eval-

uate the inner product (· , ·)brst between two physical states and obtain a regularised

result by selecting specifically chosen gauge–equivalent physical states which have a well–

defined inner product. In the process of choosing those representatives is where the gauge

fixing plays a central role. This ansatz of constructing a positive definite inner product

on the space of physical states from (· , ·)brst by only choosing suitable gauge–equivalent

physical states, as one may suspect, might exhibit Gribov obstructions due to possible

non–trivial topology of the gauge orbits in the configuration space; these have already

been pointed out by N. Düchting, F. G. Scholz, S. V. Shabanov, and T. Strobl in [92, 91].

Batalin–Marnelius–Shvedov’s ansatz to construct a positive definite inner product on

the physical state space relies on the following observation [82]: Given a physical state,

Ψ0
phys, the transformed states

Ψphys := e[bΩ, bK] Ψ0
phys , (4.2.16)

with K̂ an operator with properties to be specified, yield (at least up to global issues)

the whole class of gauge equivalent states to Ψ0
phys. Indeed, formally, for a general K̂

the exp [ Ω̂, K̂ ] differs from the identity by a BRST–exact operator

exp [Ω̂, K̂] = 1+ [L̂, Ω̂] , (4.2.17)

where

L̂ := (−)εK+1

(∑
k=0

1
(k + 1)!

[Ω̂, K̂]k
)
K̂ ≡ (−)εK+1

(
exp([Ω̂, K̂])− 1

[Ω̂, K̂]

)
K̂ .

Hence, Ψphys on the LHS of (4.2.16) is BRST gauge–equivalent to Ψ0
phys

Ψphys := Ψ0
phys + Ω̂X , (4.2.18)

where X := L̂Ψ0
phys.

In Batalin–Marnelius–Shvedov’s proposal it is supposed that the gauge fixing fermion

K̂ is an odd hermitian operator of ghost number −1 [85, 87, 86, 89, 90, 124]. As a

consequence, V̂ := exp [Ω̂, K̂] becomes (formally) self–adjoint, so that the inner product

between two physical states (4.2.16), or equivalently (4.2.18), becomes(
Ψphys,Ψ′phys

)
bm :=

(
Ψ0

phys, e
2[bΩ, bK] Ψ′ 0phys

)
brst

. (4.2.19)

In the scheme provided in [90], the space of states to which Ψ0
phys belongs to is charac-

terised either to be the set of physical states obtained in the Dirac approach, or, to corre-

spond to states with no dependence on Lagrange multipliers and ghosts (these states are
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also called trivial ghost fixed solutions or trivial BRST invariant states). Since BRST–

exact states have vanishing inner product with physical states,
(

Ψ0
phys, Ω̂Y

)
brst

=

0, formally the RHS of the Eq. (4.2.19) corresponds to the ill–defined inner product(
Ψ0

phys,Ψ
′ 0
phys

)
brst

. Nevertheless, the inclusion of e2[bΩ, bK] is chosen to bring back ghosts

and Lagrange multipliers that may turn
(

Ψphys,Ψ′phys

)
bm

into a well defined inner prod-

uct. Hence, the reason for introducing the intermediate states Ψ0
phys is twofold: First,

these states are much simpler than the states Ψphys, and, second, the introduction of

e[ bK,bΩ] will supply extra terms in the measure involved in the definition of (· , ·)brst that

will act as a regulator to make the inner product between the states Ψphys and Ψ′phys

well defined.

A consequence of the hermitian nature of e[bΩ, bK] is that the inner product (4.2.19)

has the seemingly desirable property(
Ψphys,Ψ′phys

)
bm =

(
Ψ′phys,Ψphys

)∗
bm , (4.2.20)

a relation that originated the choice of a hermitian gauge fixing fermion in Marnelius’

work, however, it brings issues over the Lagrange multipliers which were drawn by specific

examples ([84]: Sect. 9).

An additional imaginary factor in the exponential argument on the RHS of (4.2.19),

say inserted through K̂ = i%̂/2 with %̂ = %̂ †, would formally spoil (4.2.20). This was

already noted in the original proposal by R. Marnelius and M. Ögren ([82]: Eq. (3.2)),

where (
Ψ0

phys,Ψ
′ 0
phys

)%
brst :=

(
Ψ0

phys, e
i[bΩ,b% ] Ψ′ 0phys

)
brst

(4.2.21)

was defined as an ansatz for a physical inner product, with i%̂ an odd anti–hermitian

gauge fixing fermion of ghost number −1. An additional phase factor was therefore

added in that reference in order to recover the hermitian property (4.2.20) of the inner

product (4.2.21).

The RHS of (4.2.21) also corresponds to the ill–defined inner product between Ψ0
phys

and Ψ′ 0phys, the (formal) anti–hermiticity and odd parity the gauge fixing fermion i%̂ do

not play any role in this respect. In the subsequent chapters we argue, through some

examples, that this anti–hermitian choice for the gauge fixing fermion is good enough

in order to derive the group averaging formula from the canonical BRST–quantisation.

When the ghost variables are integrated out from (4.2.21), we will recover the hermiticity

property at the level of the physical inner product in the RAQ context.

Remarks

1. To define the notion of convergence in a BRST state space, it has been proposed



4.2 Canonical BRST–quantisation | 96

to merge Vbrst into some genuine Hilbert space (H, (· , ·)) such that the BRST

indefinite inner product is defined through (Ψ,Υ)brst := (Ψ, JΥ), where J is a

self–adjoint operator, with the property J2 = 1. In this point of view, the BRST

state space is said to be a Krein space [74, 80]. Topology in a Krein space is defined

with the help of the norm generated by the positive definite inner product in the

Hilbert space H. N



CHAPTER 5

Constraint Rescaling in Refined Algebraic Quantisation:

Momentum Constraint

The infinity would be due to the volume of the gauge group,

and a finite inner product would be obtained by dividing

the infinite inner product by the volume of the gauge group.

– Atsushi Higuchi, 1991

In this chapter the quantisation of a system with a single constraint will be discussed.

We address the specific question of rescaling a classical constraint by somewhat general

functions on the configuration space. Using an anti–hermitian gauge fixing fermion, the

hybrid BRST–RAQ point of view developed in [124] is employed to quantise the system.

We recognise and provide the additional auxiliary structures to make technically rigorous

statements on the physical quantum sector. The chapter is divided into two parts.

In the first part, Sect. 5.1, the unscaled–constrained system is described. It consists

of two degrees of freedom (θ, x) and an innocuous constraint γ := pθ ≈ 0. The machinery

of canonical BRST–quantisation as developed in the previous chapter is applied to this

system. The analysis is relevant for the following reasons: First, in this model we show

that is possible to obtain a tentative group averaging formula using BRST methods. A

suitable choice of the gauge fixing operator and the use of trivial BRST physical states re-

move the fermionic variables form the Batalin–Marnelius’ physical inner product (4.2.21).

Second, given this group averaging formula motivated by BRST–quantisation, we clarify

97
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at which level of the process one must provide the auxiliary additional structures to

perform the RAQ. An auxiliary Hilbert space Haux and a test states space Φ ⊂ Haux

are specified. Third, the methodology used in this simple example will serve as a guide

to tackle the rescaled–constrained system.

In the second part, Sects. 5.2 to 5.6, the system with the two degrees of freedom

(θ, x) constrained by the rescaled constraint φ := M(θ, x) pθ ≈ 0 is considered. Using

as a guide the analysis of the unscaled–constrained system, a BRST motivated group

averaging formula is obtained after a specific choice of the gauge fixing fermion. This

sesquilinear from is supplemented with the corresponding auxiliary structures to perform

the RAQ. Three cases arise depending on the asymptotic nature of the scaling function,

these are: (i) Refined algebraic quantisation is equivalent to that developed in Sect. 5.1;

(ii) refined algebraic quantisation fails, mainly due to the nonexistence of self–adjoint

extensions of the constraint operator; (iii) a quantisation ambiguity arises from the

choice of a self–adjoint extension to the constraint operator, its resolution determines a

superselection structure of the physical Hilbert space.

5.1 Momentum constraint system

This section has a methodological character. Here we review the system with configu-

ration space Q ≡ R2 = {(θ, x)} and phase space T∗Q = T∗R2 = {(θ, x, pθ, px)} ' R4

subject to the trivial constraint

γ := pθ ≈ 0 . (5.1.1)

The constraint γ generates a translational gauge symmetry along the θ–direction. The

constraint surface is hence Γ := {(θ, x, 0, px)} ' R3. The gauge orbits are straight lines

parallel to the θ–axis. The vector field associated to the constraint (5.1.1), Y := ∂θ, is

complete on the phase space. In particular, on the configuration space R2, any curve

ς(p)(t) = (t + a, b), well defined for all t ∈ R, is an integral curve of Y with generic

starting point ς(0) = p = (a, b). Accordingly, Y defines a global flow (one–parameter

group action) on R2, that is, a smooth left action of th group (R,+) on R2 denoted by

ς : R×R2 → R2 : (t, p) 7→ ς(t, p) such that

ς(t, ς(s, p)) = ς(t+ s, p) , (5.1.2a)

ς(0, p) = p , (5.1.2b)

for all s, t ∈ R and p ∈ R2. For a fixed p = (a, b) ∈ R2, ς is defined via the integral

curve ς(p) as ς : R × {p} → R2 : (t, p) 7→ ς(t, p) := ς(p)(t). For each t ∈ R ς is

defined via the diffeomorphism ς t : R2 → R2 : (θ, x) 7→ ς t((θ, x)) := (t + θ, x) as



5.1 Momentum constraint system | 99

ς : {t}×R2 → R2 : (t, p) 7→ ς(t, p) := ς t(p). Having a constraint that defines a complete

vector field on the configuration space becomes utterly important at a quantum level in

the Schrödinger representation.

We assume that there is no true Hamiltonian, although its inclusion would be straight-

forward: any H independent of θ preserves the translational symmetry.

5.1.1 Canonical BRST analysis

Using the ghost/antighost notation and conventions established in Sect. 3.4.1, the su-

per phase space is T∗λQ × {(η,P)} = {(θ, x, λ, pθ, px, π)} × {(C, C̄, ρ̄, ρ)}. The reality

conditions on the canonical pairs are

θ∗ = θ , x∗ = x , λ∗ = λ , C∗ = C , C̄
∗ = C̄

∗
, (5.1.3a)

p∗θ = pθ , p∗x = px , π∗ = π , ρ̄ ∗ = −ρ̄ , ρ ∗ = − ρ , (5.1.3b)

The non–trivial part of the canonical symplectic structure on T∗λQ× {(η,P)} reads

{θ, pθ} = 1 , {x, px} = 1 , {λ, π} = 1 , (bosonic) , (5.1.4a)

{C, ρ̄} = −1 , {C̄, ρ} = −1 , (fermionic) . (5.1.4b)

In addition, T∗λQ× {(η,P)} acquires the extra constraint π ≈ 0. Both γ and π form an

abelian first–class constraint set.

In view of the results provided in Sect. 3.4.2, cf. Eq. (3.4.25), the nonminimal BRST

generator and the ghost number function in this system read

Ω = pθC − iρ π , (5.1.5)

G = i(Cρ̄+ ρ C̄) . (5.1.6)

These key functions on the super phase space can be built from θ, x, λ, C, C̄ and their

conjugate pairs, then we let all these ten variables to span the subspace Sbrst. Each

element in Sbrst is an elementary classical variable.

The abstract (free associative) algebra of quantum operators Baux is constructed

from the basic operators once the graded commutation relations

[θ̂, p̂θ] = [x̂, p̂x] = [λ̂, π̂ ] = i , (5.1.7a)

[Ĉ, ̂̄ρ ] = [ ̂̄C, ρ̂ ] = −i , (5.1.7b)

have been input; these relations are in correspondence with i times the basic super–

PBs (5.1.4). Based on the reality conditions of the super manifold T∗λQ×{(η,P)} (5.1.3),
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B
(?)
aux is built from the inclusion of the ?–relations

θ̂ ? = θ̂ , x̂ ? = x̂ , λ̂? = λ̂ , Ĉ ? = Ĉ , ̂̄C ?= ̂̄C , (5.1.8a)

p̂ ?θ = p̂θ , p̂ ?x = p̂x , π̂ ? = π̂ , ̂̄ρ ? = −̂̄ρ , ρ̂ ? = − ρ̂ . (5.1.8b)

The Schrödinger representation in which the wave functions depend on the bosonic

coordinates (θ, x, λ) and the fermionic momenta (ρ̄, ρ) is chosen. Due to the anticommu-

tative nature of the Grassmann variables (ρ̄, ρ), in this representation any BRST wave

function can be expanded as

Ψ(θ, x, λ, ρ̄, ρ) = ψ(θ, x, λ) + Ψ1(θ, x, λ)ρ̄+ Ψ1(θ, x, λ)ρ+ Ψ1
1(θ, x, λ)ρ̄ρ , (5.1.9)

where ψ, Ψ1, Ψ1 and Ψ1
1 are complex–valued functions. The action of the fundamental

operators on the BRST states (5.1.9) reads

θ̂Ψ := θΨ , p̂θ Ψ := −i∂Ψ
∂θ

, (5.1.10a)

x̂Ψ := xΨ , p̂x Ψ := −i∂Ψ
∂x

, (5.1.10b)

λ̂Ψ := λΨ , π̂Ψ := −i∂Ψ
∂λ

, (5.1.10c)

Ĉ Ψ := −i∂
`Ψ
∂ρ̄

, ̂̄ρΨ := ρ̄Ψ , (5.1.10d)

̂̄C Ψ := −i∂
`Ψ
∂ρ

, ρ̂Ψ := ρΨ , (5.1.10e)

where the superscript ` on the fermionic derivative stands for left derivative, see Sect. 3.4.

This choice is compatible with the graded commutation relations (5.1.7).

In order to promote the ?−relations (5.1.8) into hermitian conditions, a sesquilinear

form must be introduced. Typically for two BRST states Ψ and Υ, one pairs them as

follows [75]:

(Ψ,Υ)cbrst := c

∫
dλdθ dx dρ̄dρ Ψ∗(θ, x, λ, ρ̄, ρ)Υ(θ, x, λ, ρ̄, ρ) , (5.1.11)

where c is a nonzero constant that may a priori take complex values. As usual the

integral over fermionic variables has the properties∫
dρ̄dρ =

∫
dρ̄dρ ρ̄ =

∫
dρ̄dρ ρ = 0 ,

∫
dρ̄ dρ ρρ̄ = 1 . (5.1.12)

The sesquilinear form (5.1.11) has remarkable properties independently of the value

taken by c. First, (· , ·)cbrst is compatible with the ?–relations (5.1.8), in the sense that

fermionic momenta operators ̂̄ρ and ρ̂ are anti–hermitian and all the other fundamental
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operators in (5.1.10) are hermitian. Second, the nilpotent BRST operator and the ghost

number operator

Ω̂ := p̂θ Ĉ − iρ̂ π̂ , (5.1.13)

Ĝ := i(ρ̂ ̂̄C − ̂̄ρ Ĉ) , (5.1.14)

whose action on BRST wave functions can be directly inferred from (5.1.10), are re-

spectively and in reference to (· , ·)cbrst, hermitian and anti–hermitian. Third, from the

hermiticity of Ω̂ it follows that the product (· , ·)cbrst between physical states depends

on the states only through their gauge–equivalence class (4.2.13).

We emphasise here that the domain of each operator remains unspecified throughout

the BRST analysis, hence all (anti) hermiticity considerations are left formal until we

have access to a genuine Hilbert space.

When c is chosen to be an imaginary number, c = iα with α ∈ R, the sesquilinear

form (5.1.11) fulfils1

(Ψ,Υ)iαbrst = (Υ,Ψ)iαbrst
∗ , α ∈ R . (5.1.15)

Hence (·, ·)iαbrst is a hermitian inner product on the BRST state space

Vbrst := {Ψ = ψ + Ψ1ρ̄+ Ψ1ρ+ Ψ1
1ρ̄ρ} . (5.1.16)

In the inner product (· , ·)iαbrst natural definitions of positive and negative vectors

arise; see footnote 13 in page 87. The vector space (Vbrst, (· , ·)iαbrst) becomes an infinite

dimensional and indefinite inner product space containing positive as well as negative

vectors.

In contrast, when c is real, c = α ∈ R, the sesquilinear form (5.1.11) satisfies

(Ψ,Υ)αbrst = − (Υ,Ψ)αbrst
∗ , α ∈ R , (5.1.17)

defining a skew–hermitian inner product in Vbrst. Replacing each value of the inner

product (5.1.17) by (Ψ,Υ)αbrst
′ := i (Ψ,Υ)αbrst, a hermitian inner product space is

recovered. Hence, the definitions of positive and negative vector become available. It

is obvious that any operator which is self–adjoint in the space (Vbrst, (· , ·)αbrst), so is

in the vector space (Vbrst, (· , ·)αbrst
′). Therefore, if one opts for c = α in (5.1.11),

1For two general BRST states of the form (5.1.9), using (5.1.12), it is easy to see thatZ
dρ̄ dρΨ∗Υ = −

„Z
dρ̄ dρΥ∗Ψ

«∗
.
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a nilpotent and self–adjoint BRST operator Ω̂ defined on (Vbrst, (· , ·)αbrst) will auto-

matically be defined (with the same properties) on the hermitian inner product space

(Vbrst, (· , ·)αbrst
′), which in turn must be an indefinite inner product space.

To sum up: In the momentum constraint model, independently of which of the two

choices c = iα or c = α is done, Ω̂ can always be represented on an indefinite inner

product state space (cf. Theorem 4.2.1). Later on, it will be recognised that the choice

c = α ≡ 1 is more suitable in deriving the group averaging formula for the system of a

single momentum constraint.

Now, the hermitian and nilpotent BRST operator (5.1.13) together with the ghost

number operator (5.1.14), both written in a (ρ̄C, ρC̄)–order, trivially annihilate ghost–

free states of the form2

Ψ0
phys = ψ(θ, x) , Υ0

phys = χ(θ, x) , (5.1.18)

where the λ–independence follows from the nonminimal part of the BRST condition

(4.2.11a). The sesquilinear form (5.1.11) between two states of the type (5.1.18) is

ill–defined for any choice of c, hence some regularisation is needed. Using the skew–

hermitian inner product (· , ·)cbrst, c = α ≡ 1, a regularised scalar product from (4.2.21)

will be constructed. A quite surprising result that will be derived below is that although

(· , ·)α=1
brst is skew–hermitian (5.1.17) for BRST quantum states that contain fermionic

information, the regularised inner product will be hermitian once the fermionic variables

have been integrated out. In order not to clutter up the notation, in the rest of this

section the superscript α = 1 in (· , ·)α=1
brst will be omitted.

The regularised version of inner product will be obtained from (4.2.21), where we

choose the anti–hermitian gauge fixing fermion to be i%̂ ≡ −λ̂̂̄ρ. It follows that when

acting on general BRST states (5.1.9), i[Ω̂, %̂ ] = iλp̂θ +ρρ̄ . Then, after an elementary

integration over the fermionic momenta(
Ψ0

phys,Υ
0
phys

)%
brst =

∫
dλ dθ dx ψ∗(θ, x)

[
exp (iλp̂θ)χ

]
(θ, x) . (5.1.19)

This formula comes with some comments. First, a remarkable consequence of choosing

the gauge fixing fermion i%̂ as anti–hermitian is that V̂ = exp
(
i[Ω̂, %̂ ]

)
is unitary and

the operator exp (iλp̂θ) in (5.1.19) can be made unitary once the fermions no longer play

any role in the scheme. If the gauge fixing fermion were chosen to be hermitian, say

iλ̂̂̄ρ, then both V̂ and exp(iλp̂θ) would be hermitian. In order to bring back unitarity, λ

should be regarded as imaginary bringing some issues with it already pointed out in [84,
2In a (Cρ̄, C̄ρ)–order, ghosts and antighosts at the left, the corresponding BRST physical states do

match with Dirac physical states.
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85]. Second, the expression (5.1.19) resembles the structure of the averaging formula

over the translational group provided the operator exp(iλp̂θ) and the λ–integration can

be appropriately defined. Third, although Eq. (5.1.19) still needs a technical precise

definition in order to be used in RAQ, it can be considered a starting point in the

construction of a physical inner product in this scheme. One needs to make an accurate

definition of the class of functions that enter into the expression (5.1.19), as well as, the

range of values taken by the Lagrange multipliers, such that both simultaneously permit

this integral to be well defined. Fourth, in contrast to the formal expression (4.2.21), once

the integral (5.1.19) becomes well defined as a group averaging within RAQ, hermiticity

at the level of the inner product will be recovered in the sense of the condition (4.1.7b).

Fifth, in the literature, alternative ghost/antighost conventions can be used, for instance,

where (Ca, ρ̄a) are real and (C̄a, ρa) are purely imaginary [124]; in this case some factors of

i in the super phase space symplectic form are added and, at a quantum level, they imply

the need of c real in order to make the sesquilinear form (5.1.11) hermitian. Nevertheless

the conclusion drawn about hermitian versus anti–hermitian choice for i%̂ is independent

of which convention is adopted.

5.1.2 Refined algebraic quantisation

In this section, the expression (5.1.19) will be used to construct a rigging map within

RAQ. The task is to supplement the required structures in order to interpret (5.1.19) as

a group averaging formula.

Following the steps listed in Sect. 4.1.2, we notice that the relevant classical functions

on the original phase space T∗Q are constructed from the canonical pairs (θ, pθ) and

(x, px). Hence let S := span{1, θ, x, pθ, px} be the space mentioned in the step (1) of

RAQ. The algebra A
(?)
aux of abstract operators is constructed as prescribed in steps (2)

and (3). The auxiliary Hilbert space Haux is taken to be the space of square–integrable

functions on the classical configuration space R2 = {(θ, x)},

Haux := L2(R2, dθdx) . (5.1.20)

The space Haux is endowed with the positive definite auxiliary inner product

(ψ, χ)aux :=
∫
R2

dθ dx ψ∗(θ, x)χ(θ, x) . (5.1.21)

The basic quantum coordinates operators (θ̂ and x̂) act by multiplication, whereas the

momentum operators (p̂θ and p̂x) act by differentiation on element of Haux. Therefore, all

elementary operators, including the constraint operator, become essentially self–adjoint
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on the dense subspace C∞0 (R2) of infinitely differentiable functions of compact support.

Therefore

Û(λ) := exp(iλp̂θ) (5.1.22)

is an element of a one–parameter group of unitary operators {Û(λ) : λ ∈ R}. Let the

test state space be Φ := C∞0 (R2), the action of the gauge group on it reads

(Û(λ) f)(θ, x) = f(θ + λ, x) =
(
f ◦ ςλ

)
(θ, x) , ∀ f ∈ Φ , (5.1.23)

which shows that Û(λ)Φ ⊂ Φ for all λ ∈ R.

We have specified the auxiliary structures Haux and Φ, and the unitary action of the

gauge group on Haux. It remains to specify the antilinear rigging map η : Φ→ Φ′, from

Φ to its topological dual Φ′. The sesquilinear form (5.1.19) provides a group averaging

in the present context if, firstly, the trivial BRST invariant states (5.1.18) are identified

with genuine elements of Φ = C∞0 (R2), and, secondly, if (5.1.19) can be properly defined.

In RAQ terms, we then have that (5.1.19) becomes

(f, g) ga :=
∫

dλ
(
f, Û(λ)g

)
aux
≡
∫

dλ F (λ) , (5.1.24)

with the λ−interval of integration to be determined and

F (λ) :=
∫
R2

dθ dx f∗(θ, x) g(θ + λ, x). (5.1.25)

The expression (5.1.24) can be thought as the averaging over the translation group if

the range of λ can be extended over the whole real line. The function F (λ) represents

a convergent integral for each λ ∈ R, moreover, F is a continuous compactly supported

function over the real line ([190]: Chap. VI). So F is Lebesgue integrable over all R and

the range of integration in (5.1.24) is taken to be the full real axis; we seek hence for a

rigging map of the form

η(f)[g] := (f, g) ga =
∫
R3

dλ dθ dx f∗(θ, x) g(θ + λ, x) . (5.1.26)

The above structure determines the algebra of observables A
(?)
phys as those operators

which together with their adjoints leave invariant the chosen test state space Φ. Observ-

ables should contain Φ within their domains and commute with Û(λ) for all λ ∈ R.

From the discussion developed in Sect. 4.1.3, cf. Eq. (4.1.18b), the mapping given in

Eq. (5.1.26) is a good candidate for a rigging map. What remains to be proven is that

it actually satisfies the conditions listed in Sect. 4.1.2.

From the following chain of equalities:

η(f)[Û †(λ)g] =
∫
R

dλ′
(
f, Û †(λ)Û(λ′)g

)
aux

=
∫
R

dλ′
(
f, Û(λ′ − λ)g

)
aux

=
∫
R

dλ̃
(
f, Û(λ̃)g

)
aux

,
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the map η solves the constraints in the sense of (4.1.8). From the hermiticity of (· , ·)aux,

the unitarity of Û and the reflection property of the integral, one can easily see that η

is real as in (4.1.7b). To prove positivity of η, one uses the Fourier transform

f(θ, x) =
1√
2π

∫
R

dk f̃(k, x)e−ikθ , (5.1.27)

with f̃(k, x) belonging to the Schwarz space S(R2) [191]. In the momentum space, the

mapping (5.1.26) is hence nothing but

η(f)[g] = 2π
∫
R

dx f̃ ∗(0, x) g̃(0, x) , (5.1.28)

which immediately yields that η is positive in the sense of (4.1.7c). Finally, let Â ∈ A
(?)
phys,

since Û(λ) commutes with Â and Â † on Φ, for all λ ∈ R, it results that η intertwines

with observables. Therefore, the prescription (5.1.26) is a rigging map.

The space span{η(f) : f ∈ Φ} solves the constraint (5.1.1) and by construction will

be a dense subspace of Hphys. The functional η(f) in the momentum space reads

η(f) = 2π
∫
R2

dk dx δ(k)f̃ ∗(k, x) ∀ f ∈ Φ , (5.1.29)

so, the physical inner product defined by (4.1.9) takes the form

(η(g), η(f))raq = η(f)[g] = 2π
∫
R

dx f̃ ∗(0, x) g̃(0, x) , (5.1.30)

which is a non–trivial, hermitian, positive definite bilinear form. The physical space

Hphys is constructed by the Cauchy completion Im(η). The averaging procedure pro-

jected out the θ−dependence of the wave functions, and the physical Hilbert space

became L2(R,dx) as one would expect on intuitive basis.

Remarks

1. The rigging map (5.1.26) is defined up to a real constant a. The rescaled ηa :=

aη multiplies with an overall factor the physical inner product and leads to an

equivalent physical Hilbert space. This freedom can be traced back to the fact

that the measure of the non–compact translational group is uniquely defined only

up to a multiplicative factor (see footnote 11 in page 81). N

5.2 Rescaled momentum constraint

We now turn our attention to the rescaled version of the classical constraint (5.1.1),

namely

φ := M(θ, x) pθ ≈ 0 . (5.2.1)
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This constraint is defined on the phase space T∗Q = {(θ, x, pθ, px)} ' R4. For a system

with a single–constraint, issues of the PB algebra play no role. The rescaled constraint φ

shares the abelian algebra of γ (5.1.1). In order to maintain the regularity property and

the polynomial structure in momenta of the unscaled constraint, we require the real–

valued function M to be smooth and nowhere vanishing on the configuration space. We

may assume without loss of generality that M is positive. Hence Γ := {(θ, x, 0, px)} '
R3, the constraint surface, is preserved by the scaling.

The generator of gauge transformations on Γ is the restriction of the Hamiltonian

vector field of φ,

X := M(θ, x) ∂θ . (5.2.2)

The integral curves of X have constant x and px, but they connect any two given values

of θ. The reduced phase space is hence Γred = {(x, px)} ' R2.

If we wish to view the gauge transformations as maps on Γ, rather than just as maps

of individual initial points in Γ, a subtlety arises. The gauge transformation with the

(finite) parameter λ is the exponential map of λX, exp(λX). If M satisfies

∫ 0

−∞

dθ
M(θ, x)

=∞ =
∫ ∞

0

dθ
M(θ, x)

(5.2.3)

for all x, then X is a complete vector field, and the family {exp(λX) : λ ∈ R} is a

one–parameter group of diffeomorphisms Γ → Γ [185]. If the conditions (5.2.3) do not

hold for all x, then X is incomplete. It is still true that the action of exp(λX) on any

given initial point in Γ is well defined for sufficiently small |λ|; however, there are no

values of λ 6= 0 for which both of exp(±λX) are defined as maps Γ → Γ, since at least

one of them will try to move points past the infinity. It is this classical subtlety whose

quantum mechanical counterpart will be at the heart of our quantisation results.

To have an incomplete X does not require an exceptional function M . Take the

smooth and nonvanishing M(θ, x) = eθ, then the equations that define the integral

curve on the configuration space, with starting point p = (0, 1) ∈ R2, are

θ(t) = ln
(

1
1− t

)
, x(t) = 1 , (5.2.4)

which are only well defined for t < 1, and not for all t ∈ R. In contrast, from the trivial

case M(θ, x) ≡ 1 a complete vector field X arises; this corresponds to the Hamiltonian

vector field of the unscaled constraint. Henceforth, we refer toM as the scaling function.

As before, there is no true Hamiltonian although its inclusion would be straightfor-

ward.



5.2 Rescaled momentum constraint | 107

5.2.1 Canonical BRST analysis

The BRST canonical structure of the theory lies on the super phase space T∗λQ ×
{(η,P)} = {(θ, x, λ, pθ, px, π)} × {(C, C̄, ρ̄, ρ)}, where the non–trivial part of the sym-

plectic structure reads as in Eq. (5.1.4). In the ghost extended phase space, not only the

rescaled constraint (5.2.1) is defined but also the ad hoc constraint π ≈ 0 is introduced.

Both forming an abelian set of first–class constraints.

The nonminimal BRST generator (see Sect. 3.4.2) and ghost number function of the

system read

Ω = M(θ, x) pθC − iρ π , (5.2.5)

G = i(Cρ̄+ ρ C̄) . (5.2.6)

We shall proceed to the canonical BRST–quantisation. The subspace Sbrst of the

vector space of all smooth, complex–valued functions on the super phase space, and

the (free associative) ?−algebra of abstract operators B
(?)
aux are built as in Sect. 5.1.1;

relations (5.1.7) and (5.1.8) are taken into account then. We realise the basic operators

as in (5.1.10) on BRST wave functions in the Schrödinger representation (5.1.9). To

finally set the arena on which the BRST operator will act, we endow the BRST vector

space with the sesquilinear form (5.1.11), where c = 1 is taken for definiteness.

The BRST physical quantum states satisfy

Ω̂Ψ = 0 , ĜΨ = 0 , (5.2.7)

where the ghost number operator Ĝ coincide with (5.1.14) and the nilpotent BRST

operator in a (ρ̄C, ρC̄)−order is given by

Ω̂ := φ̂ C − iρ̂ π̂ . (5.2.8)

To make compatible the reality of the classical BRST generator Ω at a quantum level,

hermiticity of Ω̂ must be ensured. The only non–trivial ordering issue in Ω̂ is that of the

purely bosonic factor φ̂ whose resolution is specified by the symmetric ordering

φ̂ := −i
(
M∂θ + 1

2(∂θM)
)
. (5.2.9)

To connect the BRST quantisation to a formalism that only involves bosonic vari-

ables, we first recognise that there are ghost–free BRST invariant states of the form

Ψ0
phys = ψ(θ, x) , Υ0

phys = χ(θ, x) . (5.2.10)

These are trivially annihilated by both the BRST and the ghost number operators. How-

ever, it is not possible simply to drop all the powers of the fermions from the quantum
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states keeping the BRST inner product (5.1.11); the sesquilinear form (5.1.11) evalu-

ated at the ghost–free states (5.2.10) is ill–defined due to the fermionic and Lagrange

multiplier integration. There is however the option to evaluate (· , ·)brst on suitable

gauge–equivalent states as proposed by the regularised inner product (4.2.21). Accord-

ingly, we then provide the anti–hermitian gauge fixing fermion i%̂ := −λ̂̂̄ρ that mixes

bosonic nonminimal and fermionic minimal sectors of the theory. From this choice, it

follows that i[Ω̂, %̂] = iλφ̂+ ρρ̄, then after a basic integration over all ghost–momenta we

obtain (
Ψ0

phys,Υ
0
phys

)%
brst =

∫
dλ dθ dx ψ∗(θ, x)

[
exp (iλφ̂ )χ

]
(θ, x) . (5.2.11)

When one considers the arbitrary Lagrange multiplier to be the parameter of the gauge

group, this expression resembles a group averaging formula over the group generated by

φ̂ provided we can give a rigorous interpretation of Û(λ) := exp(iλφ̂ ) on some states

χ(θ, x). The task for the rest of this chapter is to supply the appropriate auxiliary

structures to fit (5.2.11) within RAQ.

5.3 Refined algebraic quantisation: Auxiliary structures

We will now give a precise meaning to the sesquilinear form (5.2.11). As in the previous

section, we take the auxiliary Hilbert space to be the space of square–integrable functions

on the configuration space (5.1.20). The positive definite scalar product between two

auxiliary states is given by (5.1.21).

We now want to capitalise on the formal symmetric ordered definition we gave to the

quantum constraint (5.2.9) and obtain a family of operators {Û(λ)} by exponentiation,

Û(λ) := exp(iλφ̂ ) , (5.3.1)

hence we need to provide a dense definition of φ̂. An inner product on the physical

Hilbert space could be found afterwards by a suitable interpretation of the sesquilinear

form, cf. Eq. (5.2.11),

(ψ, χ) ga :=
∫

dλ
(
ψ, Û(λ)χ

)
aux

. (5.3.2)

The operator φ̂ is symmetric on the dense linear subspace of smooth functions of

compact support C∞0 (R2) ⊂ Haux. If φ̂ has self–adjoint extensions on Haux, a choice of

the self–adjoint extension in (5.3.1) defines {Û(λ) : λ ∈ R} as a one–parameter group of

unitary operators, and we can look for an interpretation for (5.3.2) as the group averaging

sesquilinear form in RAQ. So, it is clear the need to analyse the self–adjoint extensions

of φ̂.
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The basic criterion for self–adjointness, or deficiency indices theorem by von Neu-

mann3 is proved to be of paramount usefulness in this case. The existence of self–adjoint

extensions of any symmetric operator T̂ on a Hilbert space H is determined by the de-

ficiency indices (n+, n−), that is, the dimensions n± of the subspaces of H satisfying

T̂ψ = ±iψ. There are three different outputs [191, 193]: (a) n+ = n− = 0, then T̂

is self–adjoint (this is a necessary and sufficient condition); (b) n+ = n− =: d ≥ 1, if

d <∞ then any maximal symmetric extension4 of T̂ is self–adjoint, that is, T̂ has self–

adjoint extensions. The situation is more complicated if d is infinite, then some maximal

symmetric extensions of T̂ are self–adjoint and some are not. (c) n+ 6= n−, then T̂ has

no self–adjoint extension.

Then the existence of self–adjoint extensions of φ̂ boils down just to the counting

of solutions of the equations φ̂ψ = ±iψ that have a finite norm in the auxiliary inner

product!. The (weak) solutions to the differential equation

− i
(
M∂θ + 1

2(∂θM)
)
ψ = ±iψ (5.3.3)

are

ψ±(θ, x) =
F±(x)√
M(θ, x)

exp
[
∓ σx(θ)

]
, (5.3.4)

where

σx(θ) :=
∫ θ

0

dθ′

M(θ′, x)
, (5.3.5)

and the complex valued functions F±(x) are arbitrary. The corresponding norms of the

solutions ψ± are respectively

I± =
∫
R2

dθ dx
|F±(x)|2 exp

[
∓ 2σx(θ)

]
M(θ, x)

= ∓1
2

∫
R

dx |F±(x)|2
[

lim
θ→∞

e∓2σx(θ) − lim
θ→−∞

e∓2σx(θ)

]
. (5.3.6)

3This corresponds to the Theorem X.2 and its corollary cited in [191] and originally proved by von

Neumann in the late 1920’s. This theorem has as special case the Theorem VIII.3 printed in [177]. A

beautiful pedagogical introduction to these results and their application to quantum mechanics can be

found in [192].
4A symmetric operator bT is maximal if it has no proper symmetric extensions, i.e. if the relationbT ⊂ bT ′ for a symmetric bT ′ implies bT = bT ′. Any self–adjoint operator is maximal, but there are

maximal symmetric operators which are not self–adjoint; for instance, the differential expression i
d

dθ
with domain

D := {ψ,ψ′ ∈ L2(0,∞) : ψ ∈ ac(0,∞) and ψ(0) = 0} ,

where ‘ac’ stands for absolutely continuous, is a maximal symmetric operator which is not self–

adjoint [193].
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Only positive definite scaling functions are under consideration now, then σx(θ) is, for

almost every x ∈ R, a strictly increasing function in θ whose range is either (−∞,+∞),

(−∞, σ(1)
x ), (σ(a)

x , σ
(b)
x ), or (σ(2)

x ,+∞) as θ varies from −∞ to ∞. Here σ(a,b)
x and σ(1,2)

x

are real constants as we vary θ at a constant x. Then there are qualitatively three

different cases, depending on the asymptotics of σx(θ) as θ → ±∞: the range of σx is

either the real line, or a semi–infinite subset, or a compact set of the real line. We shall

analyse these situations in the following section.

5.4 Self–adjointness of the constraint operator and types of scaling func-

tions

The evaluation performed in this section can be repeated, finding no new phenomena,

for the case of negative definite scaling function.

[Scaling functions of type I] Suppose that the range of σx is the whole real line

σx(θ)→ ±∞ as θ → ±∞ for a.e. x , (5.4.1)

where ‘a.e.’ stands for almost everywhere in the Lebesgue measure on R. Then

from Eq. (5.3.6) every nonzero ψ± (5.3.4) has infinite norm, for ψ+ because of

the behaviour at θ → −∞ and for ψ− because of the behaviour at θ → ∞. The

deficiency indices are (0, 0) and φ̂ is self–adjoint. The operator Û(λ) is unitary, and

it acts on the wave functions by the exponential map of the vector field X (5.2.2),

explicitly

(
Û(λ)ψ

)
(θ, x) =

√
M
(
σ−1
x (σx(θ) + λ), x

)√
M(θ, x)

ψ
(
σ−1
x (σx(θ) + λ), x

)
. (5.4.2)

This expression can formally be obtained by iterative applications of φ̂ on ψ. In

this calculation a useful expression for φ̂ acting on ψ is(
φ̂ψ
)
(θ, x) = −i 1√

M(θ, x)

(
M∂θ(

√
M ψ)

)
(θ, x) ,

which is equivalent to the action of φ̂ (5.2.9).

[Scaling functions of type II] Suppose a semi–infinite range of σx, that is, the

condition (5.4.1) holds either with the upper signs or with the lower signs but not

both. If the condition (5.4.1) holds for the upper signs, say σx(θ)→∞ as θ →∞
but σx(θ) → σ

(2)
x as θ → −∞, then from (5.3.6) every nonzero ψ− has again an
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infinite norm; however, any F+ ∈ L2(R) whose support is in the set where (5.4.1)

with the lower signs fails will give a square–integrable ψ+. The deficiency indices

are hence (∞, 0). Similarly, if (5.4.1) holds for the lower signs, the deficiency indices

are (0,∞). Then the quantum constraint (5.2.9) has no self–adjoint extension in

either case, and (5.4.2) does not provide a definition of Û(λ). At the level of

formula (5.4.2), the problem is that σ−1
x is not well defined even for a.e. x.

The scaling function M(θ, x) = eθ, which defines an incomplete X (5.2.2), is also

an example of scaling function of type II; the corresponding σ(θ) holds the condi-

tion (5.4.1) only for the lower signs, but σ(θ) → 0 as θ → ∞. Within the gauge

part of the argument in the functions at the RHS of Eq. (5.4.2), σ−1(σ(θ) + λ) is

not defined for λ > e−θ.

[Scaling functions of type III] Suppose a compact range of σx, that is, the

condition (5.4.1) holds with neither upper nor lower signs; for instance, σx → σ
(a)
x

as θ → −∞ and σx → σ
(b)
x as θ →∞. Reasoning as with scaling functions of type

II, it can be seen that the values for both I± are finite in this case, showing that the

deficiency indices are (∞,∞). The quantum constraint φ̂ has an infinity of self–

adjoint extensions, and each of them defines {Û(λ) : λ ∈ R} as a one–parameter

group of unitary operators. Formula (5.4.2) has again a problem in that σ−1
x is not

defined, but the self–adjoint extension of φ̂ provides a rule by which the probability

that is pushed beyond θ = ±∞ by (5.4.2) will re–emerge from ∓∞. The group

{Û(λ) : λ ∈ R} may be isomorphic to either R or U(1).

A concrete example of a scaling function of type III is given by M(θ, x) = (θ2 +

1)/(x2 + 1), for which σx(θ) = (x2 + 1) arctan(θ). The limit values for σx as

θ → ±∞ are ±π
2

(x2 + 1). The corresponding norms for ψ±,

I± =
∫ +∞

−∞
|F±(x)|2 sinhµ(x) dx with µ(x) = π(x2 + 1) ,

are finite for suitable F±, e.g. when F± =
e−x

2/2√
sinhµ(x)

we have I± =
√
π. The

expression for σ−1
x (σx(θ) + λ) becomes a periodic function in this case, namely

tan(arctan(θ) + λ). The Eq. (5.4.2) specifies the translation for compactly sup-

ported functions and only for sufficiently small |λ|, one way to specify what hap-

pens to them beyond ±∞ by a unitary action is as follows: one requires at the

RHS of (5.4.2) that what shows up after ±π
2

(x2 +1) (equivalently θ → ±∞) enters

at the other end ∓π
2

(x2 + 1) (equivalently θ → ∓∞). In other words, from all of

the infinity possible extended domains of φ̂, we characterise a subfamily of them by
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the boundary conditions that match the wave functions (possibly up to a phase)

at the endpoints in the range of σx.

This qualitative classification in the scaling functions permit us to proceed only with

those of types I and III. Only for them a unitary action (5.4.2) can be achieved. In

sections 5.5 and 5.6 below, we address the integral (5.3.2) for these two types.

5.5 Refined algebraic quantisation: Scaling functions of type I

For scaling functions of type I, the multiplication law in the group {Û(λ) : λ ∈ R} is

the addition in λ. We hence take the range of integration in (5.3.2) to be the full real

axis.

It is convenient to map Haux into H̃aux := L2(R2,dΘ dx) by the Hilbert space iso-

morphism

Haux → H̃aux ,

ψ 7→ ψ̃ ,

ψ̃(Θ, x) :=
√
M
(
σ−1
x (Θ), x

)
ψ
(
σ−1
x (Θ), x

)
, (5.5.1)

where the last line is well defined for a.e. x, this isomorphism suggests5 Θ ≡ σx(θ).

Working in H̃aux, the auxiliary inner product reads(
ψ̃, χ̃

)
gaux

:=
∫
R2

dΘ dx ψ̃ ∗(Θ, x) χ̃(Θ, x) . (5.5.2)

It can be seen that the group averaging sesquilinear form (5.3.2) is reduced to(
ψ̃, χ̃

)
fga

:=
∫ ∞
−∞

dλ
(
ψ̃, Ũ(λ)χ̃

)
gaux

, (5.5.3)

where (
Ũ(λ)ψ̃

)
(Θ, x) = ψ̃

(
Θ + λ, x

)
, (5.5.4)

which is equivalent to (5.4.2) times
√
M(θ, x). The system has thus been mapped to

that in which M is the constant function 1.

RAQ in H̃aux can now be carried out as for the closely related system discussed in

the previous section (see also Section IIB of [93]). We can choose smooth functions of

compact support on R2 = {(Θ, x)} as the dense linear subspace of H̃aux on which (5.5.3)
5At a classical level this can be thought as a point transformation on the original configuration space,

that once elevated to the phase space [141], implies PΘ = M(θ, x)pθ as a change in the corresponding

momenta.
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is well defined. The averaging projects out the Θ–dependence of the wave functions,

and the physical Hilbert space is L2(R,dx). The technical steps are identical as in the

Sect. 5.1.2 and we will not repeat them here.

5.6 Refined algebraic quantisation: Scaling functions of type III

For scaling functions of type III, the sets in which the conditions (5.4.1) fail for the upper

and lower signs can be arbitrary sets of positive measure. In the immediate subsection,

we first make two assumptions that allow the action of the gauge group to be written

down in an explicit form. Then in subsequent subsections, we consider two special

cases where we are able to extract from the group averaging formula (5.3.2) families of

sesquilinear forms that provide RAQ rigging maps.

5.6.1 Subfamily of classical rescalings and quantum boundary conditions

The first assumption we make is at a classical level. We assume that (5.4.1) fails for all

x for both signs, so that the formula

N(x) := 2π
(∫ ∞
−∞

dθ
M(θ, x)

)−1

(5.6.1)

defines a function N : R → R+. It follows that we can map Haux to H̃c := L2(I ×
R,dω dx), where I = [0, 2π], by the Hilbert space isomorphism

Haux → H̃c ,

ψ 7→ ψc ,

ψc(ω, x) :=

√
M
(
σ̃−1
x (ω/N(x)), x

)
N(x)

ψ
(
σ̃−1
x (ω/N(x)), x

)
, (5.6.2)

where

σ̃x(θ) :=
∫ θ

−∞

dθ′

M(θ′, x)
, (5.6.3)

so that σ̃−1
x : [0, σ(b)

x − σ(a)
x ]→ R :

ω

N(x)
7→ σ̃−1

x

(
ω/N(x)

)
. The auxiliary inner product

in H̃c reads

(ψc, χc)c :=
∫
I×R

dω dx ψ∗c (ω, x)χc(ω, x) , (5.6.4)

and φ̂ (5.2.9) is mapped to

φ̂c := −iN(x) ∂ω , (5.6.5a)
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explicitly

(
φ̂cψc

)
(ω, x) =

√
M
(
σ̃−1
x (ω/N(x)), x

)
N(x)

(
φ̂ψ
)(
σ̃−1
x (ω/N(x)), x

)
. (5.6.5b)

We work from now on in H̃c, dropping the subscript c from the wave functions.

The second assumption we make is at a quantum level. We consider those self–adjoint

extensions of φ̂c whose domain consists of wave functions with boundary conditions at

ω = 0 and ω = 2π that do not couple different values at x. The self–adjointness analysis

then reduces to that of the momentum operator on an interval [191, 193], independently

at each x. Concisely, the domains of self–adjointness are

Dα :=
{
ψ, ∂ωψ ∈ H̃c | ψ(·, x) ∈ ac(0, 2π) and ψ(0, x) = ei2πα(x)ψ(2π, x), ∀x

}
, (5.6.6)

where ac(0, 2π) denotes absolutely continuous functions of ω and the function α : R→ R

specifies the phase shift between ω = 0 and ω = 2π at each x.

Under these assumptions, the remaining freedom in the classical scaling function

M : R2 → R2 is encoded in the function N : R→ R+, while the remaining freedom in

the self–adjoint extension of φ̂c (5.6.5) is encoded in the function α : R→ R. Note that

no smoothness assumptions about either function are needed at this stage.

On H̃c, the action of Ûc(λ) := exp
(
iλφ̂c

)
takes now a simple form in a Fourier

decomposition adapted to Dα. We write each ψ ∈ H̃c in the unique decomposition

ψ(ω, x) =
1√
2π

∑
n∈Z

ei[n−α(x)]ω ψn(x) , (5.6.7)

where each ψn is in L2(R,dx). It follows that

(ψ, χ)c =
∑
n∈Z

(ψn, χn)
R
, (5.6.8)

where (· , ·)
R

is the inner product in L2(R,dx). The action of Ûc(λ) reads6(
Ûc(λ)ψ

)
(ω, x) = ψ(ω +N(x)λ, x) ,

=
1√
2π

∑
n∈Z

ei[n−α(x)]ω
(
Ûc(λ)ψ

)
n
(x) , (5.6.9a)

with (
Ûc(λ)ψ

)
n
(x) := eiRn(x)λψn(x) , (5.6.9b)

where for each n ∈ Z the function Rn : R→ R is defined by

Rn(x) = [n− α(x)]N(x) . (5.6.10)

6The operator bφc = −iN(x)∂ω can be thought as the quantum analogue of the classical constraint

N(x)pω ≈ 0; therefore, the first line in the expression (5.6.9a) indicates that scaling the constraint

pω ≈ 0 by a function that only depends on the true degree of freedom N(x), yields the expected scaling

in the translation group parameter: ψ(ω + λ, x) 7→ ψ(ω +N(x)λ, x).
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5.6.2 Test space, observables and rigging map candidates

Let Φ̃ be the dense linear subspace of H̃c where the states have the form (5.6.7) such that

every ψn is smooth with compact support and only finitely many of them are nonzero

for each ψ ∈ Φ̃. From (5.6.9) we see that Φ̃ is invariant under Ûc(λ) for each λ. We

adopt Φ̃ as the RAQ test space of ‘sufficiently well–behaved’ auxiliary states.

Given H̃c, Φ̃ and Ûc(λ), the RAQ observables are operators Â on H̃c such that the

domains of Â and Â † include Φ̃, Â and Â † map Φ̃ to itself and Â commutes with Ûc(λ)

on Φ̃ for all λ. We denote the algebra of the observables by A
(?)
phys.

We now seek the anti–linear map η : Φ̃→ Φ̃′, from the test state space to its algebraic

dual, such that the conditions of reality (4.1.7b) and positivity (4.1.7c) are satisfied.

The map η must also solve the constraints in the sense of (4.1.8) and intertwine with

the observables (4.1.7d). The physical Hilbert space Hphys is then the completion of the

image of η in the inner product (4.1.9)

(η(g), η(f))raq := η(f)[g] , f, g ∈ Φ̃ (5.6.11)

and the properties of η and A
(?)
phys imply that η induces an anti–linear representation of

A
(?)
phys on Hphys, with the image of η as the dense domain.

Observe that σ◦ σ̃−1 :
[
0, σ(b)

x −σ(a)
x

]
→
[
σ

(a)
x , σ

(b)
x

]
: y 7→ y+σ

(a)
x implies the identity

σ−1
(
σ
(
σ̃−1(ω/N)

)
+ λ

)
= σ̃−1

(
(ω/N) + λ

)
. (5.6.12)

The change of variable θ ≡ σ̃−1(ω/N) into the sesquilinear form (5.3.2), the isomor-

phism (5.6.2), and the identity (5.6.12), show that on H̃c the group averaging ansatz

reads ∫
dλ
(
f, Ûc(λ)g

)
c

=
∫

dλ
∫
I×R

dωdx f∗(ω, x) g(ω +N(x)λ, x) , (5.6.13a)

=
∫

dλ
∫
R

dx
∑
n

f∗n(x) gn(x) eiRn(x)λ , (5.6.13b)

for all f, g ∈ Φ̃ and the integration over λ to be specified. The second line in this

expression is obtained by direct substitution of (5.6.7) and (5.6.9) into the first line. To

define a rigging map we reconsider the group averaging proposal in a renormalised form;

namely,

η(f)[g] := lim
L→∞

1
ρ(L)

∑
n∈Z

∫ ∞
−∞

dx f∗n(x)gn(x)
∫ L

−L
dλ eiRn(x)λ , (5.6.14)

where the LHS follows from (5.6.13) after interchanging sums and integrals, justified by

the assumptions about Φ̃. The normalisation function ρ : R+ → R+ has been included

in order to seek a finite answer in cases where the limit would otherwise diverge.
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The existence of the limit in (5.6.14) depends delicately on the zero sets and the

stationary point sets of the functions Rn. In what follows we introduce conditions that

make the limit controllable.

5.6.3 Functions N and α smooth, α with integer–valued intervals

We assume that α and N are smooth functions. What will play a central role are

the integer value sets of α and the stationary point sets of the functions {Rn : n ∈ Z}.
To control the stationary point sets, we assume that Rn satisfy the following technical

condition:

(i) The stationary point set of each Rn is either empty or the union of at most count-

ably many isolated points, at most countably many closed intervals and at most

two closed half–lines, such that any compact subset of R contains at most finitely

many of the isolated points and at most finitely many of the finite intervals.

To control the integer value set of α, we assume in this subsection the following condition:

(ii) α takes an integer value on at least one interval.

It follows from (ii) that at least one Rn takes the value zero on an interval. Note that

(i) and (ii) include the special case where α takes an integer value everywhere, and the

very special case where this integer value is zero.

The group averaging formula (5.6.14) takes the form

η(f)[g] = lim
L→∞

2L
ρ(L)

∑
n∈Z

(∫
Jn

dx f∗n(x)gn(x) +
∫
R\Jn

dx f∗n(x)gn(x)
sin
[
LRn(x)

]
LRn(x)

)
,

(5.6.15)

where Jn ⊂ R is the union of all open intervals contained in the zero set of Rn, that is, in

the solution set of α(x) = n. The function N is nonvanishing due to the scaling function

properties. Setting ρ(L) = 2L, the second term in (5.6.15) vanishes by dominated

convergence, and from the first term we obtain the map η∞ : Φ̃→ Φ̃′,(
η∞(f)

)
[g] =

∑
n∈Z

∫
Jn

dx f∗n(x) gn(x) . (5.6.16)

We have the following theorem.

Theorem 5.6.1 The map η∞ is a rigging map, with a non–trivial image.

Proof. The map η∞ solves the constraints. Note that η∞ is the evaluation of the

integral specifically on the set Jn ⊂ R, where Rn(x) ≡ 0, hence the exponential
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e−iRn(x)λ in (Û †c (λ)g)n(x), see Eq. (5.6.9b), contributes nothing to the integral, so that

η∞(f)[Û †c (λ)g] assigns back η∞(f)[g]. Positivity and reality rigging map axioms are

immediate. We verify the intertwining property (4.1.7d) in Appendix A.

Group averaging has thus yielded a genuine rigging map η∞ after a suitable renor-

malisation. The Hilbert space H∞ is separable and carries a non–trivial representa-

tion of A
(?)
phys. Comparison of (5.6.8) and (5.6.16) shows that H∞ can be (antilin-

early) embedded in H̃c as a Hilbert subspace, such that η∞ extends into the projection

L2(R,dx)→ L2(Jn, dx) in each of the components in (5.6.7).

Note that the function N does not appear in η∞ (5.6.16), and the discussion in

Appendix A shows that the representation of A
(?)
phys on the image of η∞ does not depend

on N either. The quantum theory has turned out completely independent of the choice of

scaling function, even when the scaling function may vary non–trivially over the intervals

Jn that contribute in (5.6.16).

In the special case where α(x) = 0 for all x, where the only nonempty zero set of

Rn(x) = nN(x) at n = 0 is nothing but R, from (5.6.16) we obtain

η(f)[g] = (f0, g0)
R
. (5.6.17)

Embedding H∞ antilinearly as a Hilbert subspace of Hc as above, that is, η∞ extends

into the (antilinear) projection to the n = 0 sector in H̃c. When N is a constant function,

N(x) = N0 for all x, we can recover this extension of η∞ directly, without introducing

a test space, by noticing that the quantum gauge group {Uc(λ) | λ ∈ R} ' U(1) is

compact and taking the group averaging formula to read

η(f)[g] =
N0

2π

∫ 2π/N0

0
dλ
(
f, Ûc(λ)g

)
c
, (5.6.18)

so that the integration is over U(1) exactly once. However, if N is not constant, this

shortcut is not available because the quantum gauge group is still isomorphic to R rather

than U(1).

5.6.4 Functions N and α smooth and generic

In subsection 5.6.3, the quantum theory arose entirely from the integer value intervals

of α. We now continue to assume that α and N are smooth, the technical stationary

point condition (i) holds and α takes an integer value somewhere, but we take the integer

value set of α to consist of isolated points. We first replace condition (ii) by the following:
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(ii′) The integer value set of α is non–empty, at most countable and without accumu-

lation points, and α has a nonvanishing derivative of some order at each integer

value.

Second, we introduce the following notation for the zeroes of Rn. Let p be the order

of the lowest nonvanishing derivative of α (and hence also of Rn) at a zero of Rn. For

odd p, we write the zeroes as xpnj , where the last index enumerates the solutions with

given p and n. For even p, we write the zeroes as xpεnj , where ε ∈ {1,−1} is the sign of

the pth derivative of α and the last index enumerates the zeroes with given p, ε and n.

Let P be the value set of the first index of the zeroes {xpnj} and {xpεnj}. Given this

notation, we assume:

(iii) If p ∈ P, then P contains no factors of p smaller than p/2.

Before examining the group averaging formula (5.6.14) under these assumptions, we

use the assumptions to define directly a family of rigging maps as follows. For each odd

p ∈ P we define the mapping ηp : Φ̃→ Φ̃′, and for each even p ∈ P and ε ∈ {1,−1} for
which the set {xpεnj} is non–empty, we define the map ηpε : Φ̃→ Φ̃′, by the formulas

(
ηp(f)

)
[g] =

∑
nj

f∗n(xpnj) gn(xpnj)∣∣α(p)(xpnj)N(xpnj)
∣∣1/p , (5.6.19a)

(
ηpε(f)

)
[g] =

∑
nj

f∗n(xpεnj) gn(xpεnj)∣∣α(p)(xpεnj)N(xpεnj)
∣∣1/p . (5.6.19b)

These maps are rigging maps, with properties given in the following theorem.

Theorem 5.6.2 Under the assumptions (i), (ii′) and (iii), we have that

1. Each ηp and ηpε is a rigging map, with a non–trivial image.

2. The representation of A
(?)
phys on the image of each ηp and ηpε is irreducible.

Proof.

1. All the rigging map axioms except the intertwining property (4.1.7d) are imme-

diate from (5.6.19). In particular, each ηp (resp. ηpε) solves the constraint in

the sense of (4.1.8), since in the RHS of (5.6.19a) ((5.6.19b)) the terms in the

sum are evaluated at the points where Rn = 0, so (Û †c (λ)g)n(xpnj) = gn(xpnj)

(cf. Eq. (5.6.9b)) for p even or odd, implying that ηp(f)[Û †c (λ)g] (ηpε(f)[Û †c (λ)g])

assigns back ηp(f)[g] (ηpε(f)[g]) for all λ. The relevance on p even or odd enters

when we verify (4.1.7d) in Appendix A.
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2. The proof is an almost verbatim transcription of that given for a closely similar

system in Appendix C of [107]. We review the details in Appendix B.

The rigging maps (5.6.19) thus yield a family of quantum theories, one from each

ηp and ηpε. Each of the physical Hilbert spaces is either finite–dimensional or separable

and carries a non–trivial representation of A
(?)
phys that is irreducible on its dense domain.

Functions f ∈ Φ̃ whose only nonvanishing component fn is non–negative and is positive

only near a single zero of Rn provide the Hilbert spaces with a canonical orthonormal

basis.

From Appendix B, we see that the representation of A
(?)
phys on the image of each ηp

and ηpε is not just irreducible but has the following stronger property, which one might

call strong irreducibility : given any two vectors v and v′ in the canonical orthonormal

basis, there exists an element of A
(?)
phys that annihilates all the basis vectors except v

and takes v to v′. The upshot of this is that the function N plays little role in the

quantum theory, despite appearing in the rigging map formulas (5.6.19). The Hilbert

spaces and their canonical bases are determined by the function α up to the normalisation

of the individual basis vectors (B.4), and the representation of A
(?)
phys is so ‘large’ that the

normalisation of the individual basis vectors, determined by N , is of limited consequence.

In particular, the representation of A
(?)
phys on any Hilbert space with dimension n0 < ∞

is isomorphic to the complex n0 × n0 matrix algebra, independently of N .

Note that the images of any two rigging maps (5.6.19) have trivial intersection in Φ̃′.

The ‘total’ RAQ Hilbert space decomposes as a direct sum of orthogonal spaces

H tot
phys :=

⊕
p odd

H
p
phys

⊕( ⊕
p even, ε

H
pε
phys

)
. (5.6.20)

In view of Theorem 5.6.2, under the action of A
(?)
phys vectors in H

p
phys (resp. H

pε
phys) are

transformed into vectors in H
p
phys (H

pε
phys) in an irreducible way. This means that H

p
phys

and H
pε
phys can be regarded as exhaustive superselection sectors in H tot

phys, there are no

further superselection sectors.

Under the assumption of N and α smooth functions, we wish to relate these quan-

tum theories to the renormalised group averaging formula (5.6.14), which under the

assumption (ii′) takes the form

η(f)[g] = lim
L→∞

2
ρ(L)

∑
n∈Z

∫ ∞
−∞

dx f∗n(x)gn(x)
sin
[
LRn(x)

]
Rn(x)

. (5.6.21)

Note that the integral over x in (5.6.21) is well defined because the zeroes of the denom-

inator are isolated and the integrand does not diverge at them. However, as L → ∞



5.6 Refined algebraic quantisation: Scaling functions of type III | 120

each term in the sum of (5.6.21)

In(L) :=
∫ ∞
−∞

dx f∗n(x)gn(x)
sin
[
LRn(x)

]
Rn(x)

, (5.6.22)

diverges. The viability to extract from (5.6.21) a genuine rigging map relies on the

possibility to ‘nicely’ isolate the divergent terms coming from J(L) :=
∑

n∈Z In(L) as

L→∞. The major contribution to the divergence is seeded at the zeroes of Rn.

Suppose first that P = {1}. Then all zeroes of Rn are of order p = 1. The lemmas of

Appendix C then show that (5.6.21) is well defined and equals η1(f)[g] provided ρ(L) has

been chosen as 2π and the assumptions on N are modestly strengthened, in particular

to preclude any Rn from taking a constant value on any interval.

Suppose then that P 6= {1} and we again set ρ(L) = 2π. Suppose further that the

assumptions on N are again modestly strengthened so that the conditions of Appendix

C hold, and suppose that condition (iii) above is strengthened to the following:

(iii′) If p ∈ P, then P contains no factors of p.

Lemmas of Appendix C then show that (5.6.21) contains contributions that diverge in

the L → ∞ limit; however, these divergences come in well–defined inverse fractional

powers of L such that the coefficient of each L(p−1)/p is proportional to ηp(f)[g] for odd

p and to ηp,1(f)[g] + ηp,−1(f)[g] for even p.

When P = {1}, we may hence regard the rigging map η1 as arising from (5.6.21)

with only minor strengthening of our technical assumptions. When P 6= {1}, we may

regard the rigging maps ηp and ηp,1 + ηp,−1 as arising from (5.6.21) by peeling off and

appropriately renormalising the various divergent contributions, but only after strength-

ening the assumptions so that some generality is lost, and even then the two signs of ε

are recovered only in a fixed linear combination but not individually.

Remarks

1. Another, qualitatively different self–adjointness domains for φ̂c are

Dα :=
{
ψ, ∂ωψ ∈ H̃c | ψ(·, x) ∈ ac(0, 2π) and ψ(0, x+ a) = ei2πα(x)ψ(2π, x),∀x

}
,

which are excluded by our second assumption written down after Eq. (5.6.5b).

2. It may be possible to find assumptions that interpolate between those in sec-

tions 5.6.3 and 5.6.4, allowing both a superselection sector that comes from integer–

valued intervals of α and superselection sectors that come from isolated zeroes of α.
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In formula (5.6.15), the task would be to provide a peeling argument in the L–

dependence of the second term, that is, one would need to supply an analysis of

the 1/L expansion that can provide the algebraic properties of the coefficients from

which possibly different rigging maps could be obtained. In the observable analysis

of Appendix A, the task would be to provide a similar argument in the small |s|
behaviour of the integrands in (A.3b).

3. Our quantum theories arise from the integer value set of α, as established in the

assumption (ii) or (ii′). Neither the averaging formulas nor the observable ana-

lysis of Appendix A suggest ways to proceed when α takes no integer values, no

zeroes of Rn do exist. In (5.6.21), the challenge would be to recover, from the

oscillatory L–dependence, a map that satisfies the positivity condition (4.1.7c).

A similar oscillatory dependence on λ offers the same challenge in the observable

formula (A.2). N



CHAPTER 6

Constraint Rescaling in Refined Algebraic Quantisation:

Two Momentum Constraints

Can anything be sadder than work left unfinished? Yes,

work never begun.

– Christina G. Rossetti

In the previous chapter a system with a single constraint was considered through-

out, gauge transformations formed an abelian Lie group before and after the constraint

rescaling. This chapter is devoted to mentioning some of the quantum obstacles, at

the levels of BRST and RAQ, found after the rescaling of two constraints. The two–

constrained system under consideration is an extension of the single–constrained system

introduced in the Sect. 5.1. The original phase space T∗Q corresponds to T∗R3 with

points labelled by (θ, ϕ, x, pθ, pϕ, px), the unscaled constraints are γ1 := pθ and γ2 := pϕ.

For completeness, we develop the BRST analysis of this system. The group averaging

formula is derived form the canonical BRST–quantisation, we implement this expression

as a mathematical precise rigging map in RAQ.

The constraints γ1 and γ2 are rescaled by real–valued, positive definite, and well

behaved scaling functions M(θ, ϕ, x) and N(θ, ϕ, x), respectively. In the most general

case, the rescaled–constrained system exhibits an open gauge algebra. The canonical

BRST–quantisation of the rescaled constraints is performed. The quantum states that

are found to fulfil BRST and zero ghost number conditions are the trivial BRST invariant

122
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physical states. Using a specific anti–hermitian gauge fixing operator, we construct the

regularised inner product (4.2.21). The intricate structure of the final expression for the

regularised inner product does not lead to a simple integral in the ghost–momenta. Only

in cases where the structure functions are gauge invariant a ghost–free expression can

be explicitly obtained; this includes the cases where the structure functions are constant

everywhere.

To gain some control over the infinite number of possible algebras obtained by rescal-

ing the constraints γa, we use a specific parameterised family of real–valued scaling func-

tions. Depending on the values taken by the parameters, either the original abelian gauge

algebra: (1) is maintained, or, (2) corresponds to the algebra of a nonunimodular group

with gauge invariant structure functions, or, (3) is a full open algebra, the structure

functions depending on all the configuration variables, gauge and non–gauge invariant.

The RAQ of cases (1) and (2) are analysed in full. We map each of them to the case

where the scaling functions are the identity function, recovering then the physical Hilbert

space of the unscaled constrained system. In particular the resolution of (2) signifies the

first example known to the author where a constrained system with structure functions

is handled by RAQ. Our results for case (3) remain incomplete, although we have a

formal expression for the ‘group averaging ansatz’ coming from the BRST regularised

inner product, this still includes the ghost–momenta variables.

6.1 Two momentum constraints system

In this section we briefly comment on a generalisation of the system introduced in

Sect. 5.1 to the case where two trivial momentum constraints are present. The con-

figuration space of the system is Q = R3 = {(θ, ϕ, x)}, whereas the corresponding phase

space is T∗Q = T∗R3 = {(θ, ϕ, x, pθ, pϕ, px)} ' R6. The following two trivial con-

straints are considered

γ1 := pθ ≈ 0 , (6.1.1a)

γ2 := pϕ ≈ 0 . (6.1.1b)

The corresponding gauge algebra is abelian

{γ1, γ2} = 0 . (6.1.2)

So two independent translational gauge symmetries, one along the θ−direction and the

other along the ϕ−direction, are present. The gauge orbits on the surface constraint

Γ := {(θ, ϕ, x, 0, 0, px)} ' R4 are bi–dimensional planes parallel to the θ–ϕ plane. The
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vector fields Y1 := ∂θ and Y2 := ∂ϕ are complete on the configuration space R3. The

inclusion of a true Hamiltonian would be straightforward: any H independent of the

variables θ and ϕ is gauge invariant.

6.1.1 Canonical BRST analysis

We wish to construct the super phase space T∗λQ × {(η,P)}. Points in this manifold

are labelled by (θ, ϕ, x, λa, Ca, C̄a, pθ, pϕ, px, πa, ρ̄a, ρa), with a = 1, 2. The notation and

conventions of Sect. 3.4.1 will be used. The non–trivial part of the symplectic structure

on the super phase space reads

{θ, pθ} = 1 , {ϕ, pϕ} = 1 , {x, px} = 1 , {λa, πb} = δab ,

{Ca, ρ̄b} = −δab , {C̄a, ρb} = −δab .
(6.1.3)

The pair of fermionic variables (Ca, ρ̄a) are associated to the constraints (6.1.1), while

(C̄a, ρa) are associated to the nonminimal sector of constraints πa ≈ 0. Together γa and

πa form an abelian first–class set of constraints.

The nonminimal BRST generator and the ghost number function are

Ω = pθC
1 + pϕC

2 − iρaπa , (6.1.4a)

G = i(Caρ̄a + ρa C̄a) . (6.1.4b)

Both functions can be built from the basic canonical variables in the super phase space,

then we let those to span the subspace Sbrst. Each element in Sbrst is an elementary

classical variable.

Quantum mechanically, the abstract (free associative) algebra of quantum operators

Baux is constructed from the basic operators once the graded commutation relations,

which are in correspondence with i times the super–PBs (6.1.3), have been input. The

reality conditions of points in the super manifold are

q∗ = q , (λa)∗ = λa , (Ca)∗ = Ca , C̄∗a = C̄∗a , (6.1.5a)

p∗ = p , π∗a = πa , ρ̄ ∗a = −ρ̄a , ρ ∗a = − ρa . (6.1.5b)

where q and p collectively denote coordinates (θ, ϕ, x) and momenta (pθ, pϕ, px), respec-

tively. The algebra B
(?)
aux is built from the inclusion of the corresponding ?–relations. All

bosonic variables, together with ghosts and antighosts, are meant to be hermitian, while

fermionic momenta ρ̂ a and ̂̄ρa are anti–hermitian.

The representation of the basic operators on some vector space Vbrst is the next step

in the canonical BRST–quantisation. We choose as before the Schrödinger representation
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in which the wave functions depend on the bosonic coordinates (q, λa) and the fermionic

momenta (ρ̄a, ρa). In this representation, any BRST wave function can be expanded as

a polynomial in the ghost–momenta

Ψ(q, λ, ρ̄, ρ) = ψ(q, λ) + Ψa(q, λ) ρ̄a + 1
2Ψ[ab](q, λ) ρ̄aρ̄b + 1

2Ψ[ab]
c ρ̄aρ̄bρ

c

+ 1
2Ψa

[bc](q, λ) ρ̄aρbρc + Ψa(q, λ) ρa + 1
2Ψ[ab](q, λ) ρaρb

+ Ψ12
12(q, λ) ρ̄1ρ̄2 ρ

1ρ2 . (6.1.6)

with the coefficients being complex–valued functions. The action of the fundamental

operators reads

q̂Ψ := qΨ , p̂Ψ := −i∂Ψ
∂q

, (6.1.7a)

λ̂a Ψ := λaΨ , π̂a Ψ := −i ∂Ψ
∂λa

, (6.1.7b)

Ĉa Ψ := −i∂
`Ψ
∂ρ̄a

, ̂̄ρa Ψ := ρ̄aΨ , (6.1.7c)

̂̄Ca Ψ := −i∂
`Ψ
∂ρa

, ρ̂ a Ψ := ρa Ψ , (6.1.7d)

where p̂ denotes the momentum operators p̂θ, p̂ϕ and p̂x. The superscript ` on the

fermionic derivative stands for left derivative. This choice is compatible with the basic

graded commutation relations

[θ̂, p̂θ] = i , [ϕ̂, p̂ϕ] = i , [x̂, p̂x] = i , [λ̂a, π̂b ] = iδab , (6.1.8a)

[Ĉa, ̂̄ρb ] = −iδab , [ ̂̄Cb, ρ̂ a ] = −iδab . (6.1.8b)

The sesquilinear form that we introduce to realise ?−relations as hermitian ones is

the following:

(Ψ,Υ)cbrst := c

∫
d2λ d3q d2ρ̄d2ρ Ψ∗(q, λ, ρ̄, ρ)Υ(q, λ, ρ̄, ρ) , (6.1.9)

with c a nonzero constant which in general takes complex values, d2λ ≡ dλ1dλ2, d3q ≡
dθ dϕdx and d2ρ̄ d2ρ ≡ dρ̄2dρ̄1 dρ2dρ1. The integrals over fermionic variables are dif-

ferent from zero when the integrand contains linearly all the fermionic momenta, that

is, ∫
d2ρd2ρ̄ f(q, λ) ρ̄1ρ̄2ρ

1ρ2 = f(q, λ) . (6.1.10)

Independently of the value of c, the sesquilinear form (6.1.9) shares some properties

with its lower dimension version (5.1.11). First, it is compatible with the ?−relations
in the sense that all basic operators (6.1.7) become hermitian with the exception of



6.1 Two momentum constraints system | 126

the fermionic momenta which are realised anti–hermitian. Second, the nilpotent BRST

operator and the ghost number operator.

Ω̂ := p̂θ Ĉ
1 + p̂ϕ Ĉ

2 − iρ̂ a π̂a , (6.1.11)

Ĝ := i(ρ̂ a ̂̄Ca − ̂̄ρ aĈa) , (6.1.12)

are hermitian and anti–hermitian respectively. Third, the product (· , ·)cbrst between

physical states depends on the states only through a gauge–equivalent class (4.2.13) as

it follows from the hermiticity of Ω̂. And finally, trivial ghost–free BRST physical states

Ψ0
phys = ψ(q) , Υ0

phys = χ(q) , (6.1.13)

have ill–defined inner product (· , ·)cbrst.

So far, most of the BRST analysis done for the single–constrained system (Sect. 5.1.1)

has been trivially extended for the case of two–constrained system. However, the nature

of c in order to make the sesquilinear form (6.1.9) hermitian changes: If c is real, c = α,

hermiticity is implied1; if, however, c is purely imaginary, c = iα, the sesquilinear form

becomes skew–hermitian. In this system we opt for c = −1 and suppress the superscript

c from (6.1.9). This choice will link the regularised inner product (4.2.21) to the structure

of the group averaging formula when i%̂ is fixed appropriately.

We choose the anti–hermitian gauge fixing fermion to be i%̂ ≡ −λ̂ a ̂̄ρa. It follows that
i[Ω̂, %̂ ] = iλ1p̂θ + iλ2p̂ϕ + ρaρ̄a when it acts on general BRST states (6.1.6). Then, after

an elementary integration over the fermionic momenta. The Eq. (4.2.21) becomes(
Ψ0

phys,Υ
0
phys

)%
brst =

∫
d2λ d3q ψ∗(q)

[
exp (iλ1p̂θ + iλ2p̂ϕ)χ

]
(q) . (6.1.14)

This formula resembles the structure of the averaging formula over the gauge group

provided the operator exp(iλ1p̂θ + iλ2p̂ϕ) and the λ–integrations can be appropriately

defined. The task of the following section is to provide the required auxiliary structures

in order to interpret (6.1.14) as the group averaging into the RAQ scheme.

6.1.2 Refined algebraic quantisation

Guided by Sect. 5.1.2 we wish to recognise the states in the expression (6.1.14) as genuine

elements of some dense subspace of some auxiliary Hilbert space, and provide a precise
1This is a consequence of the identityZ

d2ρ d2ρ̄Ψ∗Υ =

„Z
d2ρ d2ρ̄Υ∗Ψ

«∗
,

that holds for any two general BRST states of the form (6.1.6) (see also footnote 1 in page 101).
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definition of the involved unitary operator. We choose Haux := L3(R3, d3q) endowed

with the positive definite auxiliary inner product

(ψ, χ)aux :=
∫
R3

d3q ψ∗(q)χ(q) . (6.1.15)

The basic quantum operators q̂ (which denotes θ̂, ϕ̂ and x̂) and p̂ (which denotes p̂θ,

p̂ϕ and p̂x) act by multiplication and differentiation, respectively (cf. Eqs. (6.1.7a)).

All of them, γ̂1 and γ̂2 obviously included, become essentially self–adjoint on the dense

subspace C∞0 (R3) of infinitely differentiable functions of compact support. We choose

Φ = C∞0 (R3) as the dense subspace required by RAQ. Therefore

Û(λa) := exp
(
iλaγ̂a

)
(6.1.16)

becomes a unitary operator for each λa ∈ R. The action of Û(λa) on f ∈ Φ is

(
Û(λa)f

)
(θ, ϕ, x) := f(θ + λ1, ϕ+ λ2, x) , (6.1.17)

so that the group of gauge transformations {Û(λa) : λa ∈ R, a = 1, 2} is isomorphic to

R2. The group averaging formula, cf. Eq. (6.1.14), reads as

(f, g) ga :=
∫

d2λ d3q f∗(q)
[
Û(λa)g

]
(q) . (6.1.18)

Straightforward generalisations of the arguments given in Sect. 5.1.2 about (5.1.24)

yield that the mapping

η(f)[g] := (f, g) ga =
∫
R2

d2λ
(
f, Û(λa)g

)
aux

=
∫
R5

d2λ d3q f∗(θ, ϕ, x) g(θ + λ1, ϕ+ λ2, x) (6.1.19)

is a rigging map. Any η(f) in the momentum space becomes

η(f) = (2π)2

∫
R3

d2k dx δ(k1)δ(k2) f̃ ∗(k1, k2, x) , (6.1.20)

so, the physical inner product defined by (4.1.9) takes the form

(η(g), η(f))raq = η(f)[g] = (2π)2

∫
R

dx f̃ ∗(0, 0, x) g̃(0, 0, x) , (6.1.21)

which is a non–trivial, hermitian, positive definite bilinear form. The Hilbert space Hphys

is constructed by the Cauchy completion Im(η). The averaging procedure projects out

the gauge dependence of the wave functions, leaving us with the physical Hilbert space

Hphys = L2(R,dx).
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6.2 Rescaled momentum constraints

We begin considering the following rescaling of the constraints (6.1.1):

φ1 := M(θ, ϕ, x) pθ ≈ 0 , (6.2.1a)

φ2 := N(θ, ϕ, x) pϕ ≈ 0 , (6.2.1b)

which is only a particular case of (4.1.23). In order not to change the constraint surface

Γ defined by the original constraints (6.1.1), the scaling functionsM and N are assumed

to be real–valued, nonvanishing, smooth functions on the configuration space. These

guarantees that the set of constraints (6.2.1) is regular and irreducible in the sense

described in Sect. 2.2. The associated vector fields X1 := M(θ, ϕ, x) ∂θ and X2 :=

N(θ, ϕ, x) ∂ϕ are then linearly independent at each point of the constraint surface. Again

depending on the nature of the scaling functions, the vector fields Xa may or may not be

complete on the phase space. Both scaling functions are assumed to be positive definite.

In contrast to the algebra (6.1.2), we have for the anholonomic basis (6.2.1) structure

functions appearing on the RHS of their PBs

{φa, φb} = fab
c(q)φc , (a = 1, 2) , (6.2.2)

given by

f11
a = 0 = f22

a , (6.2.3a)

f12
1 = N(∂ϕ lnM) , (6.2.3b)

f12
2 = −M(∂θ lnN) . (6.2.3c)

This kind of rescaling is a prototype of the way one can turn a closed gauge algebra, in

this case an abelian one, into an open algebra by rescaling each constraint with some

nonzero function. These class of rescalings are not harmful at the classical level. The

Dirac observables of the theory are still functions on the reduced phase space Γred =

{(x, px)} ' R2. In the following subsection we give a specific family of scaling functions

which covers the spectrum of possibilities in the general rescaling of two momentum

constraint with functions on the configuration space.

Rescaling constraints is not the only way in which one can produce open algebras

from closed ones; for instance, from a set of reducible constraints whose PBs close with

structure constants, one can extract a linearly independent subset of gauge generators

whose PBs close with nonconstant structure functions [66].
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6.2.1 Rescaling two momentum constraints: A family of scaling functions

We now make a particular choice of the scaling functions M and N . Let M and N be

f(x)eκ1ϕ and g(x)eκ2θ, respectively, so that the relations (6.2.1) are reduced to

φ1 = f(x)eκ1ϕpθ ≈ 0 , (6.2.4a)

φ2 = g(x)eκ2θpϕ ≈ 0 , (6.2.4b)

with κa real–valued parameters. The nonzero structure functions in the algebra of these

specific constraints are

f12
1 = κ1 g(x)eκ2θ , (6.2.5a)

f12
2 = −κ2 f(x)eκ1ϕ , (6.2.5b)

from which one can read the following interesting limits:

(1) Let f(x) = f0, g(x) = g0 for all x ∈ R, with f0 and g0 real constants. Under these

conditions we further analyse:

(1a) [Structure functions on the gauge variables only]. Case κ1 6= 0, κ2 6= 0.

One obtains a set of first–class constraints where the structure functions of

their algebra only depend on the gauge degrees of freedom θ and ϕ.

(1b) [Constant structure functions]. Case either κ1 or κ2 vanishes. A closed

gauge algebra is obtained. For instance, if κ2 = 0 and κ1 = κ 6= 0, only one

structure function is different from zero taking a constant value, namely

f12
1 = κg0 . (6.2.6)

The gauge algebra {φ1, φ2} = κg0φ1 turns out to be isomorphic to the Lie

algebra of a triangular subgroup of GL(2,R), a nonunimodular Lie group (see

Sect. 6.3.2 below and Appendix E).

(1c) [Constant scaling functions]. Case κ1 = 0 = κ2. This corresponds to the

trivial case of abelian constraints pθ and pϕ rescaled by the constants f0 and

g0, respectively. Then the structure functions vanish everywhere.

(2) Let f(x) and g(x) be general nonvanishing smooth functions. Under these condi-

tions we further analyse:

(2a) [Structure functions on the whole configuration space]. Case κ1 6=
0, κ2 6= 0. This is the full case. The structure functions depend on all

configuration variables, Eq. (6.2.5).
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(2b) [Gauge invariant structure functions]. Case either κ1 or κ2 vanishes. In

this case the structure functions are gauge invariant, that is, they only depend

on the physical degree of freedom x. For example, if κ2 = 0 and κ1 ≡ κ 6= 0,

the only nonzero (x–dependent) structure function is

f12
1 = κg(x) . (6.2.7)

The open algebra {φ1, φ2} = κg(x)φ1 reduces to the case (1b) at each point

x. Then the interpretation of the gauge group in this case is immediate: At

a point x0, the gauge group is the nonunimodular group of (1b) generated by

the constraints φ1 and φ2 evaluated at x0 (see Appendix E).

(2c) [Gauge invariant scaling functions]. Case κ1 = 0 = κ2. This corresponds

to the case of rescaling the trivial abelian constraints pθ ≈ 0 and pϕ ≈ 0 with

the nonvanishing functions f(x) and g(x) respectively. Such rescalings do not

change the abelian nature of the original abelian constraints

{φ1, φ2} = 0 = {γ1, γ2} .

6.2.2 Canonical BRST analysis

In the present section we perform the canonical BRST analysis of the system of con-

straints (6.2.1). In the quantum mechanical analysis we leave the issues of operator

domains for later.

The super phase space, where the constraints (6.2.1) are defined, has already been

described in Sect. 6.1.1. The symplectic 2−form is given by (6.1.3). The nonminimal

sector of constraints, πa ≈ 0, added to elevate the Lagrange multipliers as degrees of

freedom, is not affected by the rescaling of constraints (6.2.1). According to the general

discussion in Chap. 3, the BRST generator associated to the system of constraints (6.2.1)

has the form

Ω = Ωmin − iρaπa (6.2.8)

with Ωmin the BRST generator constructed from the minimal sector of constraints,

φa ≈ 0; namely,

Ωmin = M(q) pθ C1 +N(q) pϕC2 + 1
2fab

c(q)CaCbρ̄c . (6.2.9)

The BRST generator in this case has to be of rank 1. Indeed, since the Latin indices take

only two different values, 1 and 2, we have that the second (or higher) order structure

functions
(n)

U
[b1...bn]

[a1a2...an+1] (q), n ≥ 2, vanish. Only the constraints φa on the original

phase space determine the rank of the set of constraints in the BRST sense. The ad
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hoc introduced constraints πa ≈ 0 are abelian and have vanishing PB with the minimal

sector of constraints.

If more than two constraints were present, the possibility of having higher order

structure functions in the BRST generator is authentic; however, the following theorem

precludes the associated BRST generator to have them, provided the constraints are all

linear in momenta.

Theorem 6.2.1 Let (qi, pi) be a representative point on a phase space on which a set of

regular and irreducible constraints, linear in momenta, are defined. Then, the classical

minimal BRST charge Ω min can be taken to be linear in the momenta (pi, ρ̄a).

We place some comments here. First, a generalisation of this theorem, to cases where

reducible linear–momentum constraints take place, can be found as Proposition 1 in

Ref. [194], its proof can easily be specialised to prove the validity of the Theorem 6.2.1.

Second, within Ω the momenta (πa, ρa) of the nonminimal sector enter as in the gen-

eral expression (3.4.21). Third, it is remarkable that even when the gauge algebra of

constraints may contain structure functions of configuration variables, the cumbersome

BRST generator (3.4.14) can be truncated to include the zero and first order structure

functions only without losing any gauge information2.

So, although we continue our analysis for the system of constraints (6.2.1), most

of our results in this section can be generalised to more than two constraints linear in

momenta.

The starting point in the canonical BRST–quantisation of the above systems, is to

choose the elementary classical variables and then promote them into quantum operators

that fulfil the basic (graded) commutation relations. These steps are achieved using the

same choices as in Sect. 6.1.1. The sesquilinear form (6.1.9), with c = −1, will be the

way we pair any two BRST general states (6.1.6). The basic hermitian operators act on

BRST states as in (6.1.7). With these ingredients we have set the arena where we wish

a nilpotent and hermitian quantum version of the BRST generator (6.2.9) acts on.

One can readily see that, in contrast to the one–rescaled–constraint system, various

terms in Ω̂ involve non–trivial ordering issues. The purely bosonic φ̂1 and φ̂2 are specified

by the symmetric operators
φ̂1 := −i

(
M(q)∂θ + 1

2(∂θM)
)
, (6.2.10a)

φ̂2 := −i
(
N(q)∂ϕ + 1

2(∂ϕN)
)
. (6.2.10b)

2An example with physical content where nonconstant structure functions appear in the algebra, and

still its BRST generator is of rank 1 is that of general relativity in four dimensions when expressed in

Ashtekar variables [195].
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Those terms which contain structure functions possess ordering problems arising from

the ghost and ghost–momenta graded commutation relations (6.1.8b). Their resolution

can be written in two different, but equivalent, ways depending on the position of the

fermionic momenta, these are

Ω̂R := Ĉa
(
φ̂a +

i

2
fab

b(q)
)

+ 1
2fab

c(q) Ĉa Ĉb ̂̄ρc − iπ̂aρ̂ a , (6.2.11a)

Ω̂L :=
(
φ̂a −

i

2
fab

b(q)
)
Ĉa + 1

2fab
c(q) ̂̄ρc Ĉa Ĉb − iρ̂ a π̂a . (6.2.11b)

Both are hermitian in the sesquilinear form (6.1.9) and nilpotent. The BRST operator

written as Ω̂R (resp. Ω̂L) corresponds to the ordering where the fermionic momenta

appear at the right (left) of the fermionic coordinates, that is, Ω̂R (resp. Ω̂L) is in a

(Cρ̄, C̄ρ)– ((ρ̄C, ρC̄)–) ordering. The term +
i

2
fab

b Ĉa (resp.− i
2
fab

b Ĉa) in Ω̂R (Ω̂L)

comes from reordering of ghost degrees of freedom. All these ambiguities are of order ~
(set equal to one here). In the limit ~→ 0, φ̂1 and φ̂2 go over into M(q)pθ and N(q)pϕ,

respectively, and the BRST operator written in either Ω̂R or Ω̂L form collapses into Ω,

possessing hence the right classical limit. Note that in the case of unimodular behaviour

in the gauge group (fabb(q) ≡ 0), the order ambiguity introduced by the ghosts does not

have any impact in the term linear in Ĉa within the BRST operator.

We now define the following non–hermitian operators:

φ̂ ′a := φ̂a +
i

2
fab

b , (6.2.12a)

φ̂ ′′a := φ̂a −
i

2
fab

b , (6.2.12b)

which, as can be seen by direct calculation, fulfil the algebra

[ φ̂ ′a, φ̂
′
b ] = i fab

c(q) φ̂ ′c , (6.2.13a)

[ φ̂ ′′a, φ̂
′′
b ] = i φ̂ ′′c fab

c(q) . (6.2.13b)

These commutators guarantee Ω̂2
R = 0 = Ω̂2

L. In the BRST formalism, Ω̂R and Ω̂L are

anomaly free; whereas, in a Dirac–type quantisation only (6.2.12b) is considered to be

anomaly free and therefore a good candidate to quantum mechanically represent the

constraints in such formalism, especially if we decide not to use self–adjoint constraint

operators. There is a Lie algebra morphism between φa and φ̂ ′a, cf. Eq. (6.2.2) and

Eq. (6.2.13a). The absence of anomaly in the algebra of the constraints φ̂ ′a follows from

the ghost contribution to the naive φ̂a. On these grounds, Dirac condition on physical

states reads

φ̂ ′a|ψ〉 = 0 ⇔ φ̂a|ψ〉 = − i
2
fab

b|ψ〉 . (6.2.14)

In the canonical BRST quantum approach, physical states must be zero ghost num-

bered BRST invariant states. Trivial zero ghost numbered states are for example of the
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form (6.1.13). Considering Ω̂R as the physical state selector, Ω̂RΨ = 0, we have that all

functions ψ(q) that obey

φ̂a ψ(q) = − i
2
fab

b ψ(q) , (6.2.15)

are physical states, where their independence of the Lagrange multipliers comes from

the nonminimal sector of the BRST operator. Thus, in the (Cρ̄, C̄ρ)−ordering Dirac

states are recovered. However, these are not the only solutions to the physical conditions

Ω̂RΨ = 0 = ĜΨ. Consistently employing the graded commutation relations between the

basic operators, the BRST operator Ω̂R can also be written as

Ω̂R = φ̂ ′a Ĉ
a − f12

1(q) Ĉ1 ̂̄ρ1 Ĉ
2 − f12

2(q) Ĉ2 ̂̄ρ2 Ĉ
1 − iπ̂aρ̂ a . (6.2.16)

Then it also accepts physical states (6.1.13). These states, are naturally solutions to

Ω̂LΨ = 0 and ĜΨ = 0 simultaneously. In these states we focus our attention from now

on.

The sesquilinear form (6.1.9) between physical states Ψ0
phys = ψ(q) needs to be

regularised. The regularised inner product (4.2.21) is introduced with the anti–hermitian

gauge fixing operator i%̂ := −λ̂a ̂̄ρa that mixes the minimal sector with the nonminimal

one. By direct calculation it can be proved that on general BRST states (6.1.6) one has

i[ Ω̂R, %̂ ] = iλa φ̂ ′′a − iuaĈa + ρaρ̄a = i[ Ω̂L, %̂ ] , (6.2.17)

where ua := fba
c λbρ̄c.

For the regularised inner product (4.2.21) it is significant to provide an explicit for-

mula for the exponential of the operator (6.2.17) as it acts on trivial BRST physical

states. Afterwards, in RAQ we wish to use(
Ψ0

phys,Υ
0
phys

)%
brst :=

(
Ψ0

phys, e
i[ bΩ,b% ] Υ 0

phys

)
brst

= −
∫

d2λ d3q d2ρ̄ d2ρ ψ∗(q)
[

exp
(
i[ Ω̂, %̂ ]

)
χ
]
(q) (6.2.18)

as an ansatz to construct a physical inner product; however, in order to interpret (6.2.18)

as a group averaging formula, the fermionic variables need to be integrated out. For the

cases where the structure functions are gauge invariant, the corresponding formula takes

a simple form as we show in the next subsection.

Remarks

1. As it was mentioned, there is a canonical relation between the classical set of

constraints {γa} and its rescaled counterpart {φa} in the super phase space. One
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can show that

θ′ := θ , ϕ′ := ϕ , x′ := x , λ′a := λa , (6.2.19a)

ρ′a := ρa , C ′ 1 := M(q)C1 , C ′ 2 = N(q)C2 , (6.2.19b)

p′θ := pθ − (∂θ lnM)C1 ρ̄1 − (∂θ lnN)C2 ρ̄2 , (6.2.19c)

p′ϕ := pϕ − (∂ϕ lnM)C1 ρ̄1 − (∂ϕ lnN)C2 ρ̄2 , (6.2.19d)

p′x := px − (∂x lnM)C1 ρ̄1 − (∂x lnN)C2 ρ̄2 , (6.2.19e)

π′a := πa , C̄ ′a := C̄a , (6.2.19f)

ρ̄ ′1 :=
1

M(q)
ρ̄1 , ρ̄ ′2 :=

1
N(q)

ρ̄2 , (6.2.19g)

is a canonical transformation which takes the BRST generator Ω′ = p′θ C
′1+p′ϕC

′2−
iρ′aπ′a, proper of the abelian system of constraints {p′θ, p′ϕ}, into (6.2.8) with Ωmin

given by (6.2.9). N

6.2.3 Regularised inner product and gauge invariant structure functions

In this section we analyse the regularised BRST inner product for cases where the struc-

ture functions only depend on the true degree of freedom x. The cases of structure

constants are trivially contained in this analysis.

Under the assumption that f c
ab only depends on x, from Appendix D in particular

Eq. (D.12), we have that on trivial BRST physical states

exp
(
i[ Ω̂, %̂ ]

)
ψ = exp

(
ρ̄a

(e−u − 1
u

)a
b
ρb + iλaφ̂ ′′a

)
ψ , (6.2.20)

where the 2× 2 matrix u explicitly reads

u =

(
f 1

21 λ2 f 1
12 λ1

f 2
21 λ2 f 2

12 λ1

)
. (6.2.21)

Using (6.2.20) and solving the Gaussian integral in the Grassmann variables, the regu-

larised BRST inner product (6.2.18) is reduced to

(
Ψ0

phys,Υ
0
phys

)%
brst =

∫
d2λ d3q det

[
1− e−u

u

]
det 1/2 [eu] ψ∗(q)

[
exp

(
iλaφ̂a

)
χ
]
(q) .

(6.2.22)

The matrix u defined in (6.2.21) vanishes if the the gauge group shows unimodular

behaviour, that is, f b
ab (q) = 0 with a, b = 1, 2. In this limit, the determinants in the

integrand become the identity. The structure of the regularised BRST inner product

coincides with the group averaging formula of a unimodular group provided that the

exponential of the constraint operators can be properly interpreted as unitary operator
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on some auxiliary Hilbert space and that, simultaneously, the integrals over the Lagrange

multipliers converge in some sense.

The factor det 1/2 [eu] in the measure of (6.2.22) follows from the use of the well–

known matrix identity

det(exp(A)) = exp(tr (A)) , (6.2.23)

applied to the inhomogeneous term in φ̂ ′′a (6.2.12b); this manipulation produces that

only the symmetric operators φ̂a (6.2.10) stands inside the exponential. In the case of

structure constants in the gauge algebra the factor det 1/2 [eu] coincides with the square

root of the modular function ∆(g) = det(Adg). This factor turns the ‘left–invariant

measure’, written in the adjoint representation of the group [189]

|jl(u)| := det
[
1− e−u

u

]
, (6.2.24)

into the symmetric measure (cf. Eq. (4.1.16))

|j0(u)| := ∆1/2(g)| jl(u)| = det

[
eu/2 − e−u/2

u

]
. (6.2.25)

The change λa → −λa gives an alternative BRST regularised sesquilinear form;

namely(
Ψ0

phys,Υ
0
phys

)%
brst =

∫
d2λd3q det

[
eu − 1

u

]
det−1/2[eu] ψ∗(q)

[
exp

(
− iλaφ̂a

)
χ
]
(q).

(6.2.26)

The ‘right–invariant measure’ emerges this time

|jr(u)| := det
[
eu − 1

u

]
, (6.2.27)

but it is compensated by the factor caused by f b
ab 6= 0 which yields det−1/2[eu], that is,

∆−1/2(g), so that the symmetric measure is recovered (cf. Eq. (4.1.16))

|j0(u)| := ∆−1/2(g)| jr(u)| = det

[
eu/2 − e−u/2

u

]
. (6.2.28)

We end this section with some comments. First, formulae (6.2.22) and (6.2.26) are

formally valid for nonconstant gauge invariant structure functions, which imply a gauge

invariant measure. Second, in general, the inverse matrix of u may not exist, so we

interpret 1/u or u−1 as in Eq. (D.13). Third, the Eq. (6.2.22) shows that when the

structure functions are constant, the regularised BRST inner product suitably reduces

to the averaging over a Lie group in the measure adopted in Sect. 4.1.3 based on [96].

Fourth, to recover a full quantum theory, an averaging formula is not enough and it
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has to be supplemented with auxiliary additional structures: auxiliary Hilbert space,

dense test space, dense definitions for the constraint operators, rigorous definition for

the unitary action of the group, and a sense in which the averaging converges. These

issues are generally delicate.

6.3 Refined algebraic quantisation: Artificial structure functions

In this section we sketch the RAQ of models with artificial structure functions intro-

duced in Sect. 6.2.1. The auxiliary Hilbert space in the quantisation will be Haux :=

L2(R3,dθdϕdx) with the usual inner product

(ψ, χ)aux :=
∫
R3

d3q ψ∗(q)χ(q) , (6.3.1)

where d3q represents the Lebesgue measure dθdϕdx and q represents (θ, ϕ, x) together.

6.3.1 Gauge invariant scaling functions

Here, we will deal with scaling functions that only depend on the physical degree of free-

dom x as in the case of (2c) analysed in Sect. 6.2.1. The case of scaling constant functions,

item (1c) in the same section, is trivially covered. In general, rescaling constraints by

functions that only depend on true degrees of freedom (gauge invariant quantities) does

not change the structure of an originally abelian algebra, and it turns closed gauge al-

gebras into algebras with structure functions depending at most on the gauge invariant

quantities.

Constraints in the case (2c) are

φ1 :=f(x)pθ ≈ 0 , (6.3.2a)

φ2 :=g(x)pϕ ≈ 0 , (6.3.2b)

where f and g are nonvanishing, smooth, and real–functions.

In the quantum theory, the basic quantum operators q̂ act by multiplication and the

momentum operators p̂ := −i∂q act by derivation on elements in Haux. All of them

become self–adjoint on the dense subspace C∞0 (R3). The construction of the constraint

operators presents no ordering difficulties,

φ̂1 :=f(x)p̂θ , (6.3.3a)

φ̂2 :=g(x)p̂ϕ , (6.3.3b)
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and become self–adjoint on the dense linear subspace C∞0 (R3) of all compact supported

smooth functions on R3. The unitary action of the group is then (cf. Eq. (5.6.9) and

footnote 6 in page 114)

(Û(λa)ψ)(θ, ϕ, x) := ψ(θ + f(x)λ1, ϕ+ g(x)λ2, x) , (6.3.4)

which shows that Û takes elements from C∞0 (R3) onto C∞0 (R3).

In this case, the group averaging formula reads

(ψ, χ) ga :=
∫

d2λ
(
ψ, Û(λa)χ

)
aux

. (6.3.5)

From (6.3.4), the multiplication law of the gauge group is Û(λa)Û(λ′a) = Û(λa + λ′a),

therefore {Û(λa) : λa ∈ R} ' R2. We hence take the range of integration in this integral

to be the whole R2. The regularised BRST inner product (6.2.18) indeed acquires the

group averaging structure of (6.3.5) in the case where f c
ab = 0, for all values of a, b and

c.

Once again, it is convenient to map Haux into H̃aux := L2(R3,dΘdΞdx) via the

Hilbert space isomorphism:

Haux → H̃aux ,

ψ 7→ ψ̃ ,

ψ̃(Θ,Ξ, x) :=
√
f(x)g(x)ψ

(
Θf(x),Ξ g(x), x

)
. (6.3.6)

We now translate the group averaging formula (6.3.5) to H̃aux. The Hilbert space H̃aux

is endowed with the positive definite inner product(
ψ̃, χ̃

)
gaux

:=
∫
R3

dΘdΞdx ψ̃(Θ,Ξ, x)χ̃(Θ,Ξ, x) . (6.3.7)

The group averaging sesquilinear form (6.3.5) becomes(
ψ̃, χ̃

)
fga

=
∫
R2

d2λ
(
ψ̃, Ũ(λa)χ̃

)
gaux

, (6.3.8)

where the action of the gauge group in the new Hilbert space explicitly reads(
Ũ(λa)χ̃

)
(Θ,Ξ, x) = χ̃(Θ + λ1,Ξ + λ2, x) . (6.3.9)

The system has then been mapped to that in which both functions f and g are the

constant function 1. RAQ in H̃aux can hence be carried out as we did in Sect. 6.1.2.

We choose smooth functions of compact support on R3 = {(Θ,Ξ, x)} as the linear dense
subspace of test states required by the formalism; on this space, the integral (6.3.8) is well

defined. At the end of the procedure, the averaging projects out all gauge dependence,

(Θ,Ξ), from the wave functions and the physical Hilbert space becomes L2(R, dx). The

generalisation to more constraints linear in momenta which originally are abelian is

obvious.
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6.3.2 Gauge invariant structure functions

In the previous subsection we analyse a system of constraints linear in momenta with

scaling functions that only depend on the true degree of freedom x. This rescaling main-

tained the structure functions equal to zero. In order to obtain nonvanishing structure

functions, the originally abelian constraints need to be modified by scaling functions

that depend also on the gauge degrees of freedom. In Sect. 6.2.1, we modified the con-

straints γ1 and γ2 (6.1.1) by multiplying them with functions M(θ, ϕ, x) := f(x)eκ1ϕ

and N(θ, ϕ, x) := g(x)eκ2θ, respectively. The case κ1 ≡ κ 6= 0, κ2 = 0 is considered in

this section,

φ1 :=f(x)eκϕpθ ≈ 0 , (6.3.10a)

φ2 :=g(x)pϕ ≈ 0 , (6.3.10b)

whose gauge algebra presents structure functions only depending on the true degree of

freedom x

{φ1, φ2} = f 1
12 (x)φ1 = κg(x)φ1 . (6.3.11)

This system of constraints corresponds to the case (2b) of Sect. 6.2.1, but also contains

(1b) as special case. Classically, the set of constraints (6.3.10) is equivalent to the

original set (6.1.1), both generate the same constraint surface and have the same Dirac

observables. The Hamiltonian vector fields of φ1 and φ2, restricted to the constraint

surface Γ = {(θ, ϕ, x, 0, 0, px)} ' R4, correspond to

X+
1

∣∣
(θ,ϕ,x,px)

:= f(x)eκϕ∂θ , (6.3.12a)

X+
2

∣∣
(θ,ϕ,x,px)

:= g(x)∂ϕ . (6.3.12b)

Each of these vector fields is complete on Γ and in particular on the configuration space

Q = {(θ, ϕ, x)} ' R3. Given a starting point q0 ≡ (θ0, ϕ0, x0), the curve ς(q0)
1 (t) =

(θ0 + f(x0)eκϕ0t, ϕ0, x0), which is well defined for all t ∈ R, is an integral curve for X+
1 ;

similarly, with the same starting point the curve ς(q0)
2 (t) = (θ0, ϕ0 + g(x0)t, x0) is an

integral curve for X+
2 .

In the quantum theory, the construction of the constraint operators is based on the

prescription that q̂ acts by multiplication and p̂ by differentiation in the usual way.

Building φ̂a hence does not involve any serious ordering issues and read

φ̂1 := f(x)eκϕp̂θ , (6.3.13a)

φ̂2 := g(x)p̂ϕ . (6.3.13b)
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They obey the quantum algebra of constraints with the structure functions to the left of

φ̂1, [
φ̂1, φ̂2

]
= iκg(x)φ̂1 . (6.3.14)

These constraint operators become symmetric with respect to the auxiliary inner

product (6.3.1) on the dense subspace of smooth compactly supported functions on R3,

C∞0 (R3). Using the basic criterion for self–adjointness by Von Neumann, as it was em-

ployed in the previous chapter, it is not difficult to see that each pair of deficiency indices

(n+, n−) associated to each constraint operator φ̂a is (0, 0), the constraint operators are

hence self–adjoint. The norm of the solutions to φ̂aψ = ±iψ for each a diverges either

because of the behaviour at θ →∞ or at θ → −∞.

The algebra of the quantum constraints (6.3.13) exponentiates into a unitary repre-

sentation Û , of the group B(2,R) at each point x, on Haux. This group is a subgroup

of GL(2,R) and consists of the upper triangular matrices (gij) such that g11 > 1 and

g22 = 1. In the Appendix E we place the basic properties of this gauge group. In the

decomposition (E.4), the group elements are represented by

Û
[

exp
(
β T1(x)

)]
= exp

(
iβφ̂1

)
(6.3.15a)

Û

[
exp

(
λ2

2
T2(x)

)]
= exp

(
i
λ2

2
φ̂2

)
(6.3.15b)

where β is given by

β := λ1 sinh
(

1
2κg(x)λ2

)
1
2κg(x)λ2

.

The structure of the quantum constraints (6.3.13) imply that each element (6.3.15)

acts on Haux as follows:[
exp

(
iβφ̂1

)
ψ
]

(θ, ϕ, x) = ψ(θ + βf(x)eκϕ, ϕ, x) , (6.3.16a)[
exp

(
i
λ2

2
φ̂2

)
ψ

]
(θ, ϕ, x) = ψ(θ, ϕ+ λ2g(x)/2, x) . (6.3.16b)

Hence, in the decomposition (E.4), the action of a general element of B(2,R) on a wave

function produces a shift in the ϕ–direction by 1
2λ

2 g(x), see Eq. (6.3.16b), which is

followed by a shift in the θ–direction by βf(x)eκϕ, see Eq. (6.3.16a), and ends with

another shift in the ϕ–direction by 1
2λ

2 g(x). The final result being(
Û(g)ψ

)
(θ, ϕ, x) = ψ

(
θ + βf(x)eκϕ, ϕ+ λ2g(x), x

)
. (6.3.17)

We now wish to test the ‘group averaging’ ansatz (6.2.22), which allows structure

functions depending on x, for the constraint algebra (6.3.14) and obtain a physical inner
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product. Directly from the symmetric measure (6.2.28), the definition of u (6.2.21), and

the structure functions on the RHS of (6.3.11), a direct calculation shows that

|j0(u)| =
sinh

[
1
2λ

2κg(x)
]

1
2λ

2κg(x)
. (6.3.18)

This positive quantity coincides with the symmetric measure d0g independently obtained

in Appendix E, Eq. (E.9).

Therefore the group averaging ansatz reads∫
d2λ d3q

sinh
[

1
2λ

2κg(x)
]

1
2λ

2κg(x)
ψ∗(q)

(
Û(g)χ

)
(q) . (6.3.19)

In order to make sense of this formula we now perform the following isomorphism:

Haux → H̃aux,

ψ 7→ ψ̃,

ψ̃(Θ,Ξ, x) :=
√
f(x)g(x)eκϕ ψ

(
Θf(x)eκϕ,Ξ g(x), x

)
. (6.3.20)

The Hilbert space H̃aux is endowed with the positive definite inner product (6.3.7). The

sesquilinear form (6.3.19) is translated into∫
dλ1dλ2 dΘdΞdx

sinh
[

1
2λ

2κg(x)
]

1
2λ

2κg(x)
ψ̃∗(Θ,Ξ, x) χ̃(Θ + β,Ξ + λ2, x) , (6.3.21)

or written in a more familiar way∫
dβdλ2 dΘdΞdx ψ̃∗(Θ,Ξ, x) χ̃(Θ + β,Ξ + λ2, x) , (6.3.22)

where the definition of β, Eq. (E.5), was used. Allowing λa to take values over the whole

real line, we have β ∈ (−∞,∞) and the expression (6.3.22) is equivalent to (6.1.19).

Therefore we have undone the rescaling at the quantum level. The system has been

mapped to that in which the scaling functions are the identity.

RAQ in H̃aux can now be carried out as in Sect. 6.1.2. Choosing smooth functions of

compact support on R3 = {(Θ,Ξ, x)} as the test state space, on which (6.3.22) is well

defined, one can verify that the averaging procedure projects out the gauge dependence

on the wave functions leaving the physical Hilbert space Hphys = L2(R, dx).

6.3.3 Structure functions on full configuration space: Comments

Extension of the results presented in the previous section to the full case (2a), introduced

in Sect. 6.2.1, does not seem immediate. Although the classical scaling functions in (6.2.4)



6.3 Refined algebraic quantisation: Artificial structure functions | 141

will not introduce ordering issues in the construction of the quantum constraints,

φ̂1 :=f(x)eκ1ϕp̂θ , (6.3.23a)

φ̂2 :=g(x)eκ2θp̂ϕ , (6.3.23b)

and they can actually be achieved in an anomaly–free way[
φ̂1, φ̂2

]
= if12

a(q)φ̂a , (6.3.24)

with fabc(q) given by (6.2.5), a group averaging ansatz must be provided.

The self–adjointness Von Neumann’s criterion applied to each constraint operator

φ̂a gives the result that each pair of deficiency indices (n+, n−) is (0, 0). Therefore, the

constraint operators exponentiate into a unitary operator. No necessity of an asymptotic

analysis of the scaling functions is present, the current scaling functions do not impose

any obstacle in the self–adjointness of constraints. However, a specific measure for the

group averaging formula must be provided.

In the preceding section the corresponding measure was borrowed from the regu-

larised BRST inner product once it was ghost–free. In the full case (2a), the corre-

sponding BRST inner product unwieldy involves the ghost– and antighost–momenta,

cf. Eq. (D.8), and it does not seem to be reduced to a Gaussian integral. The measure to

use for the group averaging formula in this case is not clear. Nevertheless, we emphasise

that while the search for rigging maps in this thesis used the hybrid BRST–group aver-

aging as the starting point, the non–trivial part in showing that a rigging map is actually

recovered was in the action of the quantum gauge transformations on the observables. In

the previous chapter, particularly the Sect. 5.6.4, a direct analysis of these observables

led us in fact to find more rigging maps than those suggested by the group averaging.

Should notions of averaging be difficult to generalise to rescaling with more than one

constraint, it may hence be well sufficient to focus directly on the action of the quantum

gauge transformations on the observables.



CHAPTER 7

General Summary and Discussion

In the context of canonical BRST–quantisation and refined algebraic quantisation, in this

dissertation we have dealt with one aspect in the quantisation of constrained systems:

rescaling of first–class constraints by nonconstant functions on the configuration space.

For completeness, in the first chapters we revisited various topics related to the subject.

The standard material of general constrained systems, the BRST classical formalism,

the refined algebraic quantisation scheme and the canonical BRST–quantisation were

reviewed.

We have investigated the effects of rescaling constraints within the canonical BRST–

quantisation and the refined algebraic quantisation procedure. Two different first–class

constrained systems were considered: one with a single–constraint linear in one mo-

mentum, and the other, with two–constraints linear in momenta; both with a reduced

phase space R2. Whereas rescaling first–class constraints does not affect the classical

reduced phase space, and only may change the classification of the gauge algebra, at a

quantum level its influence may be more radical. In the canonical BRST–quantisation,

rescaling constraints may affect the final form of the Marnelius’ regularised BRST inner

product for physical states. In the refined algebraic quantisation approach, rescaling

constraints alters the options one has to find a rigging map by which the constraints are

implemented.

The quantum constraints were implemented by a BRST version of group averaging.

In the study of rescaling a single constraint linear in one momentum, we found that

142
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the regularised BRST inner product can be written down in a ghost–free way. This

allowed us to implement the regularised BRST inner product as a group averaging in the

refined algebraic quantisation scheme. The asymptotic properties of the scaling function

became essential in the construction of a self–adjoint constraint operator, depending on

these properties, we found three qualitatively different cases. In case (i), the rescaled

constraint operator is essentially self adjoint in the auxiliary Hilbert space, and the

quantisation is equivalent to that with no scaling. In case (ii), the rescaled constraint

operator can be symmetrically defined but has no self–adjoint extensions and no quantum

theory is recovered. In case (iii), the rescaled constraint operator admits a family of

self–adjoint extensions, and the choice of the extension to represent the constraint has

significant effect on the quantum theory. In particular, the choice determines whether

the quantum theory has superselection sectors.

Within case (iii), we analysed in full a subfamily of rescalings and self–adjoint ex-

tensions in which the superselection structures turned out to resemble closely that of

Ashtekar–Horowitz–Boulware model [107]. There were however two significant differ-

ences, one conceptual and one technical. Conceptually, the superselection sectors in the

Ashtekar–Horowitz–Boulware model are determined by the classical potential function

in the constraint, while in the system studied in this dissertation the superselection sec-

tors are determined by a quantisation ambiguity that has not counterpart in the classical

system. Technically, in our system it is ‘natural’ to consider a wider family of self–adjoint

extensions than the family of potential functions considered in [107], and we duly found

a wider set of theories. In particular, while all the quantum theories in [107] have finite–

dimensional Hilbert spaces, some of our quantum theories have separable Hilbert spaces,

and some of them can even be realised as genuine Hilbert subspaces of the auxiliary

Hilbert space.

Within those case–(iii) theories that we analysed in full, we found the quantum theory

to be insensitive to the remaining freedom in the scaling function. We in particular

discovered situations where the quantum gauge group is R for generic scaling functions

but reduces to U(1) in the special case of a constant scaling function: yet this difference

between a compact and noncompact gauge group was irrelevant for the quantum theory.

The quantum theory coincided with that which is obtained with the compact gauge group

projection into the U(1)–invariant subspace of the auxiliary Hilbert space by taking an

average over the U(1) action. The formalism of refined algebraic quantisation is thus

here able to handle seamlessly the transition between a compact and a noncompact gauge

group.

In the generalisation of the aforementioned system to that in which two linear mo-
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mentum constraints are present on the phase space R6, with reduced phase space R2,

general rescaling does convey a change in the classification of the gauge algebra. Rescal-

ing the constraints with non–gauge invariant scaling functions, turned the abelian gauge

algebra into an open gauge algebra when the right choice of scaling functions is done.

In contrast, when gauge invariant scaling functions were the only one used, the abelian

property of the gauge group is maintained.

We provided a specific parameterised family of scaling functions such that, depending

on the values taken by the parameters, the original two–constraints abelian gauge algebra

either (1) is maintained, or (2) it corresponds to a gauge algebra with nonunimodular

behaviour and nonconstant gauge invariant structure functions, or (3) it is a full open

algebra, structure functions depending on all the configuration variables are present.

One advantage of the models is that the chosen family of scaling functions permits the

construction of self–adjoint constraint operators on the auxiliary Hilbert space. Issues on

the asymptotic behaviour of the scaling functions to define self–adjointness of constraints

at a quantum level were out of discussion in this family of toy models.

The canonical BRST–quantisation and the refined algebraic quantisation of case (1)

corresponded to the quantisation of the rescaled constraints with gauge invariant scal-

ing functions. The trivial case of multiplying the original constraints with nonvanishing

constants was hence contained here. We found that the regularised BRST inner prod-

uct indeed acquired the group averaging structure . We implemented it in the refined

algebraic quantisation of the rescaled constrained system as a genuine rigging map. The

structure of the scaling functions did not place any obstacle in the construction of self–

adjoint extensions to represent the constraints, and the quantum theory turned out to

be equivalent to that in which no scaling functions were present at all. The averaging

projected out all gauge dependence of the quantum states, and the physical Hilbert space

coincided with that expected on intuitive grounds.

In case (2), the regularised BRST inner product suggested a group averaging with a

gauge invariant symmetric measure. This averaging was implemented in refined algebraic

quantisation. The rescaled constraint operators were anomaly–free defined in the auxil-

iary Hilbert space as self–adjoint operators. After a specific choice in the factorisation of

the gauge group elements, the rescaling was undone at the level of the group averaging

and the refined algebraic quantisation of the system with the unscaled constraint was

fully recovered. The refined algebraic quantisation of a system with structure functions,

though artificially constructed and gauge invariant, was successfully written down. This

became the first example of its kind known to the author were structure functions are

fully treated in refined algebraic quantisation.



7. General Summary and Discussion | 145

Within the specific family of rescaled constraints, in the case (3) we faced the most

challenging difficulties. Although one can specify the constraints as self–adjoint operators

on the auxiliary Hilbert space L2(R3, d3q) in anomaly–free way, a group averaging ansatz

for the system must be provided. This seems to be rather intricate to obtain from the

regularised BRST inner product as it takes an unwieldy ghost structure that does not

seem to reflect a Gaussian integral in the fermionic momenta. A starting point for future

investigations could be the determination of the convergence properties (if any) of the

formal series (D.8). If this series converges to Ê(t), it would give an explicit formula for

Ê(1)χ = exp
(
i[Ω̂, %̂ ]

)
χ on trivial zero ghost numbered BRST physical states. Inserting

this formula into the corresponding Marnelius’ regularised inner product (6.2.18) would

provide a candidate for a rigging map if the fermionic variables can be integrated out.

The importance of providing some insight into the open algebra cases where the structure

functions are not gauge invariant, even if artificially constructed, is that this property is

shared by the gauge algebra of general relativity.

The classical formalism of constrained systems, in terms either of the original phase

space or the ghost extended one, can be formally applied to field theories as it stands by:

(i) regarding the index i which labels the discrete degrees of freedom as both a discrete

index i, to numerate the fields, and a continuous index x for all points in space, that

is, i → (i,x); (ii) regarding the index ai or αi that labels constraints as a → (a,x)

or αi → (αi,x); (iii) interpreting the ordinary summations over the discrete indices as

summations of the discrete indices and integrations over x; finally, (iv) understanding

the partial derivatives with respect to dynamical variables as functional derivatives with

respect to the fields. The quantum formalism follows for field theories as it stands only

at a heuristic level; for instance, in gauge field theories, subtleties arise when definitions

of the Haar measure of the gauge group and auxiliary Hilbert space are meant to be

given.

The problem of finding a physical inner product in the quantisation of Dirac con-

strained systems has never been solved in full generality. Although the study performed

in this dissertation may be a welcome addition to our knowledge on the subject, it def-

initely makes evident that the formal answer to this issue given by the robust general

BRST methods does not necessarily have mathematical meaning when more rigorous

mathematical treatment is provided in examples that permit it.



APPENDIX A

Intertwining property of the rigging maps

In this Appendix we verify that the rigging maps (5.6.16) and (5.6.19) have the inter-

twining property (4.1.7d). This completes the proof of the Theorem 5.6.1 and the first

item within the Theorem 5.6.2. We follow the method introduced in Appendix B of [107].

To begin, we only assume that Rn satisfies condition (i) of Sect. 5.6.3. The fork

between the remaining conditions on α in Sect. 5.6.3 and Sect. 5.6.4 will take place

after (A.3), when also condtion (iii) on the subset P is taken into account.

Let Â ∈ A
(?)
phys, m and n be fixed integers, and f, g ∈ Φ̃ such that their only com-

ponents in the decomposition (5.6.7) are respectively fm and gn. As Ûc(λ) is uni-

tary and commutes with Â † on the relevant domain, we have
(
Ûc(−λ)f, Â †g

)
c

=(
f, Ûc(λ)Â †g

)
c

=
(
f, Â †Ûc(λ)g

)
c

=
(
Âf, Ûc(λ)g

)
c
. Using (5.6.9) and (5.6.8), the

leftmost and rightmost expressions yield∫
dx eiRm(x)λ f∗m(x)

(
Â †g

)
m

(x) =
∫

dx eiRn(x)λ
(
Âf
)∗
n
(x) gn(x) . (A.1)

We denote the intervals in which Rq has no stationary points by Iqr, where the

second index r enumerates the intervals with given q. We similarly denote the intervals

in which Rq is constant by Ĩqr̃. We take these intervals to be open and inextendible, and

we understand ‘interval’ to include half–infinite intervals and the full real line.

On the LHS (resp. RHS) of (A.1), we break the integral over x ∈ R into a sum of

integrals over {Imr} and {Ĩmr̃} ({Inr} and {Ĩnr̃}). By the assumptions about Rq, the

sums contain at most finitely many terms.
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Let Rqr be the restriction of Rq to Iqr, and let R−1
qr be the inverse of Rqr. Changing

the integration variable in each Imr on the LHS to s := Rmr(x) and in each Inr on the

RHS to s := Rnr(x), we obtain∑
r̃

∫
Ĩmr̃

dx eiRm(x)λ f∗m(x)
(
Â †g

)
m

(x) +
∫

ds eiλs
∑
r

[
f∗m
(
Â †g

)
m

|R′m|

] (
R−1
mr(s)

)
=
∑
r̃

∫
Ĩnr̃

dx eiRn(x)λ
(
Âf
)∗
n
(x) gn(x) +

∫
ds eiλs

∑
r

[(
Âf
)∗
n
gn

|R′n|

] (
R−1
nr (s)

)
, (A.2)

where for given s the sum over r on the LHS (resp. RHS) is over those r for which s is

in the image of Rmr (Rnr).

We now regard each side of (A.2) as a function of λ ∈ R. On each side, the integral

over s is the Fourier transform of an L1 function and hence vanishes as |λ| → ∞ by

the Riemann–Lebesgue lemma, whereas the sum over r̃ is a finite linear combination of

imaginary exponentials and does not vanish as |λ| → ∞ unless identically zero. A peeling

argument shows that (A.2) breaks into the pair∑
r̃

∫
Ĩmr̃

dx eiRm(x)λ f∗m(x)
(
Â †g

)
m

(x) =
∑
r̃

∫
Ĩnr̃

dx eiRn(x)λ
(
Âf
)∗
n
(x) gn(x) , (A.3a)

∫
ds eiλs

∑
r

[
f∗m
(
Â †g

)
m

|R′m|

] (
R−1
mr(s)

)
=
∫

ds eiλs
∑
r

[(
Âf
)∗
n
gn

|R′n|

] (
R−1
nr (s)

)
. (A.3b)

Suppose now that condition (ii) of Sect 5.6.3 holds. A peeling argument shows that

the λ−independent component of (A.3a) reads

η∞(f)[Â †g] = η∞(Âf)[g] , (A.4)

where η∞ is defined in (5.6.16). By linearity, (A.4) continues to hold for all f and g

in Φ̃. η∞ hence has the intertwining property (4.1.7d). This completes the proof of

Theorem 5.6.1.

Suppose then that condition (ii′) of Sect. 5.6.4, holds. Hence only (A.3b) survives,

there are not Ĩ intervals. Each side of relation (A.3b) is a Fourier transform of an

L1−function, hence we have the L1 equality∑
r

[
f∗m
(
Â †g

)
m

|R′m|

] (
R−1
mr(s)

)
=
∑
r

[(
Âf
)∗
n
gn

|R′n|

] (
R−1
nr (s)

)
(A.5)

which holds pointwise in s except at the stationary values of Rn and Rm. Note the

similarity of this expression with Eq. (B.3) in Appendix B of Ref. [107]. Examination of

the small s behaviour of the expression (A.5), by the technique of Appendix B in [107],

shows that under the property (iii) of the index set P

ηp(f)[Â †g] = ηp(Âf)[g] , (A.6a)

ηpε(f)[Â †g] = ηpε(Âf)[g] , (A.6b)
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for all p and ε for which the maps ηp and ηpε (5.6.19) are defined. By linearity, equations

(A.6) continue to hold for all f and g in Φ̃. Each ηp and ηpε hence has the intertwining

property (4.1.7d). This completes the the proof of the first item within the Theorem 5.6.2.



APPENDIX B

Representation of A
(?)
phys

In this appendix we review the fact that A
(?)
phys acts irreducibly on each of the Hilbert

spaces H
p
phys and H

pε
phys of Sect. 5.6.4. Due to the similarity of the rigging maps ηp

and ηpε given in (5.6.19) to those reported in Ref. [107], we base this appendix on the

Appendix C of that reference.

The cases of odd and even p are analysed separately.

Representation on H
p
phys

Fix an odd p ∈ P. In order not to clutter up the notation, the index p will be suppressed

in most formulas.

We construct the following observables.

Using the notation introduced in the main text, let xpnj and xpmk be two zeroes.

Define the following function from a neighbourhood Umj of xmj to a neighbourhood Unk
of xnk by the formula

hnj;mk : Umj −→ Unk

: x 7−→ hmj;nk(x) := R̃−1
nk

(
R̃mj(x)

)
(B.1)

where R̃mj := Rm � Umj and R̃nk := Rn � Unk are smooth functions that map their

corresponding domains to a neighbourhood U0 of s = 0. The inverse to each of these

functions is well–defined and denoted by R̃−1
mj and R̃

−1
nk , respectively. The function hmj;nk
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is well–defined and smooth, and we can choose the domains to be pairwise disjoint and

such that h−1
mj;nk := R̃−1

mj ◦ R̃nk = hnk;mj .

For each xli, we choose a real–valued smooth function ρli on R such that ρli(xli) ≡ 1

and the support of ρli is contained in the domain of hli;mj for all xmj .

We now define on Φ̃ the set of operators Âmj;nk (an index p is suppressed here) such

that if f ∈ Φ̃, f(ω, x) =
∑

l e
i[l−α(x)]ω fl(x), then(

Âmj;nk f
)
(ω, x) := ei[m−α(x)]ω

(
Âmj;nk f

)
m

(x) ≡ ei[m−α(x)]ω ρmj(x)fn(hmj;nk(x))

(B.2)

where no sum is implicit. In words, Âmj;nk takes
∑

l e
i[l−α(x)]ω fl(x) and discriminates

from all the modes the nth, ei[n−α(x)]ω fn(x), then modifies the coefficient by ρnk(x)fn(x)

(which is nonzero only on Unk), and finally maps the result to a vector whose dependence

on ω is ei[m−α(x)]ω and its x−dependence is nonzero only near xmj , ρmj(x) fn(hmj;nk(x)).

Since the rightmost expression of (B.2) is nonzero only on Umj no change in its value

appears if we substitute α(x) by α(hnk,mj(x)) in the exponent.

Âmj;nk has the following desirable properties: (a) It leaves invariant the test state

space, cf. Eq. (B.2); (b) a direct calculation shows that Âmj;nk commutes with Ûc(λ) on

Φ̃; finally, (c) an explicit formula for Â †mj;nk can be given

Â †mj;nk f = Ânk;mj f , (B.3)

from which Â †mj;nk is also defined on Φ̃, leaves the test state space invariant, and com-

mutes with Ûc(λ).

With this preparation we prove the following proposition:

Proposition B.1 Let V ⊂ H
p
phys be a linear subspace invariant under A

(?)
phys, V 6= {0}.

Then V = H
p
phys.

Proof. Let v ∈ V , v 6= 0. Let f ∈ Φ̃ be such that ηp(f) = v. We have f(ω, x) =∑
l e
i[l−α(x)]ω fl(x). From (5.6.19a) it follows that there is at least one pair (n, k) such that

fn(xnk) 6= 0. For each m and j such that xmj exists, we define wmj := Âmj;nk f ∈ Φ̃.

It follows that ηp(wmj) ∈ V , and from the construction of Âmj;nk we see that for every

g ∈ Φ̃,

ηp(wmj) =
f∗n(xnk)

|α(p)(xmj)N(xmj)|1/p
gm(xmj) . (B.4)

Comparison of (B.4) and (5.6.19a) shows that the set {ηp(wmj)} spans H
p
phys.
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Representation on H
pε
phys

Now fix an even p ∈ P, and one of the values for ε so that solutions xpεmj exist.

No restriction of Rm to a neighbourhood Umj of xpεmj has an inverse in this case.

However we can give meaning to hmj;nk if we divide the Umj (resp. Unk) into two parts:

U lmj (U lnk) and U rmj (U lnk), the former lying on the interval Iml (Inl) at the left of xmj
(xnj) and the latter contained in the interval Imr (Inr) at the right of xmj (xnk). In this

way, we break hmj;nk into its left and right parts,

hl,rmj,nk : U r,l
mj −→ U l,r

nk ,

: x 7−→ h l,rmj,nk(x) := (R̃ l,r
nk )−1

(
R̃ l,r
mj(x)

)
, (B.5)

where R̃ l,r
mj := Rm � U

l,r
mj and R̃ l,r

nk := Rn � U
l,r
nk , each one being a well–defined smooth

function with smooth inverse. If ε > 0, both R̃ l
mj and R̃ l

nk are decreasing functions,

whereas, both R̃ r
mj and R̃ r

nk are increasing functions. If ε < 0, we have the opposite

behaviour of R̃ l,r
mj and R̃

l,r
nk .

After (B.5) all the arguments go through as for p odd. This completes the proof of

item 2. in the Theorem 5.6.2, and the proof of the theorem itself.



APPENDIX C

Lemmas on asymptotics

We use this appendix to record a pair of lemmas on asymptotics of integrals that occur in

Sect. 5.6.4. With the notation O(u) we mean that u−1O(u) remains bounded as u→ 0,

o(u) is such that u−1o(u)→ 0 as u→ 0, and o(1)→ 0 as u→ 0 [196].

Lemma C.1 Let f ∈ C∞0 (R), L > 0, p ∈ {1, 2, . . .} and

Gp(L) :=
∫ ∞
−∞

du f(u)
sin(Lup)

up
. (C.1)

As L→∞,

Gp(L) =
p−1∑
q=0

Kp,q f
(q)(0)L(p−1−q)/p +O

(
L−1/p

)
, (C.2)

where

Kp,q =

√
π 2(q+1−p)/pΓ

( q+1
2p

)
p q! Γ

(3p−q−1
2p

) . (C.3)

Proof. (Sketch) We replace f(u) in (C.1) by its Taylor series about the origin, including

terms up to up−1, at the expense of an error that is O
(
L−1/p

)
. The terms in the Taylor

series give respectively the terms shown in (C.2) plus an error that is O
(
L−1

)
.

Let f ∈ C∞0 (R) and R ∈ C∞(R). Let R have at most finitely many zeroes and

at most finitely many stationary points, and let all stationary points of R be of finite
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order. Denote the zeroes of R by xpj , where p ∈ {1, 2, . . .} is the order of the lowest

nonvanishing derivative of R at xpj and j enumerates the zeroes with given p. For L > 0,

let

I(L) :=
∫ ∞
−∞

dx f(x)
sin
[
LR(x)

]
R(x)

. (C.4)

Lemma C.2 As L→∞,

I(L) =
∑
pj

Ipj(L) + o(1) , (C.5)

where

Ipj(L) = Kp,0

(
p!∣∣R(p)(xpj)

∣∣
)1/p

f(xpj)L(p−1)/p +
p−1∑
q=1

ApjqL
(p−1−q)/p +O

(
L−1/p

)
(C.6)

and the coefficients Apjq can be expressed in terms of derivatives of f and R at xpj.

Proof. (Sketch) Lemma C.1 and the techniques of Section II.3 in [196] show that the

contribution from a sufficiently small neighbourhood of xpj is Ipj (C.5). The techniques

in Section II.3 in [196] further show that the contributions from outside these small

neighbourhoods are o(1).

Note that K1,0 = π. This will be used to choose ρ(L) = 2π in (5.6.21).



APPENDIX D

Calculation of exp
(
i[ Ω̂, %̂ ]

)

This Appendix is devoted to the analysis of exp
(
i[ Ω̂, %̂ ]

)
when acting on trivial BRST

physical states. For the particular case of gauge invariant structure functions, a tractable

expression is derived. The main tools used in this calculation are variations of those

used in [89] within its Appendix A where a nonunimodular gauge algebra with structure

constants is considered. In our case the calculation involves genuine structure functions

on the configuration space.

From (6.2.17) we formally have

exp
(
i[ Ω̂, %̂ ]

)
Ψ = exp

(
iλa φ̂ ′′a − iuaĈa + ρaρ̄a

)
Ψ . (D.1)

The following definitions are found useful for our analysis:

Â := ρa ρ̄a 1, B̂ := −iua Ĉa (D.2)

with ua given in the main text. So that i[Ω̂, %̂ ] = iλa φ̂ ′′a + Â + B̂. On general BRST

wave functions the following commutators are shown to be satisfied:

[ iλa φ̂ ′′a, Â+ B̂ ] = λc(∂c uab) ρ̄a Ĉ
b (D.3)

[ Â, B̂ ] = − ρ̄a uab ρb (D.4)

with uab = uab(q, λ) := fcb
a(q)λc and the notation ∂a in this Appendix refers to

−iM(q)∂θ and −iN(q)∂ϕ when a = 1 and a = 2, respectively . Remember q = (θ, ϕ, x).

Define the following operator

Ê(t) := exp
(
it[ Ω̂, %̂ ]

)
exp

(
− tB̂

)
. (D.5)
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Due to the property Ĉaχ = 0 on trivial zero ghost number physical states χ, one has

Ê(1)χ = exp
(
i[ Ω̂, %̂ ]

)
exp

(
− B̂

)
χ = exp

(
i[ Ω̂, %̂ ]

)
χ. Differentiating (D.5) with respect

to t one obtains
dÊ
dt

= Ê(t) r̂(t) , (D.6)

with r̂(t) ≡ exp(tB̂)
(
iλaφ̂ ′′a + Â

)
exp(−tB̂). Eq. (D.6) may be solved by iteration of the

corresponding integral equation:

Ê(t) = 1+
∫ t

0
dt1 Ê(t1) r̂(t1) (D.7)

where the boundary condition lim
t→0

Ê(t) = 1 has been introduced, with the result that

Ê(t) = 1+
∫ t

0
dt1 r̂(t1) +

∫ t

0
dt1
∫ t1

0
dt2 r̂(t2)r̂(t1) + . . .

+
∫ t

0
dt1
∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn r̂(tn)r̂(tn−1) · · · r̂(t1) + . . . . (D.8)

In this expression the ordering of the operators is important and a ‘t–ordering’ symbol

may be used to rewrite this expression. Instead, using the Baker–Hausdorff lemma1, a

direct calculation shows that

r̂(t) = iλaφ̂ ′′a −ρ̄a
(
e−tu

)a
b
ρb − λcρ̄a(∆c(t))ab Ĉ

b , (D.9)

with

(∆c(t))ab ≡ ∂c(tu)ab +
1
2!

[∂c(tu), (tu)]ab +
1
3!
[
[∂c(tu), (tu)], (tu)

]a
b

+ · · · , (D.10)

where u is the matrix with coefficients uab(q, λ) and the square brackets refer to the usual

commutator of matrices [u,v]ab := uac v
c
b − vacucb. From expression (D.9), one can see

that for Eq. (D.8) the order of operators becomes irrelevant if the structure functions

depend at most on the true degree of freedom, that is, fabc = fab
c(x) only. Indeed, in

such cases (∆c(t))ab ≡ 0 and it follows [ r̂(t), r̂(t′) ] = 0. Each integrand on the RHS

of (D.8) becomes symmetric in the parameters ti, and one can convince oneself that the

n−th integral satisfies the following:

n!
∫ t

0
dt1
∫ t1

0
dt2 · · ·

∫ tn−1

0
dtn r̂(tn)r̂(tn−1) · · · r̂(t1) =

[∫ t

0
dt′ r̂(t′)

]n
.

Hence

Ê(t) = exp
(∫ t

0
dt′ r̂(t′)

)
,
(
fab

c = fab
c(x)

)
, (D.11)

making use of (D.9) in our corresponding special case, a direct integration gives

Ê(1)χ = exp
[
iλaφ̂ ′′a − ρ̄a

(
1− e−u

u

)a
b

ρa

]
χ , (D.12)

1etXY e−tX = Y + t[X,Y ] +
t2

2!
[X, [X,Y ]] +

t3

3!
[X, [X, [X,Y ]]] + . . .
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where the matrix involved in this equation is regarded as the expansion(
1− e−u

u

)a
b

≡ δab −
1
2!
uab +

1
3!
uacu

c
b −

1
4!
uacu

c
du

d
b + · · · . (D.13)



APPENDIX E

The gauge group at x

In this Appendix we place the basic properties of the gauge group B(2,R) and its Lie

algebra at each point x.

The gauge group is the subgroup B(2,R) of GL(2,R) that is upper triangular with

matrices such that g11 > 0 and g22 = 1. This is a two–dimensional, non–abelian group

with x–dependent nonunimodular behaviour, that is, fabb(x) 6= 0.

The Lie algebra b(2,R), at each point x, is spanned by the following matrices with

x dependent coefficients:

T1(x) := κg(x)

(
0 1

0 0

)
, T2(x) := κg(x)

(
1 0

0 0

)
, (E.1)

which obey the algebra [
T1(x), T2(x)

]
= −κg(x)T1(x) . (E.2)

The mapping φa 7→ Ta becomes an anti–homomorphism of Lie algebras at each point x,

cf. Eq. (6.3.11). Elements of B(2,R) can be written as the exponential of λaTa(x), with

λa ∈ R,

exp (λaTa(x)) =

eλ2κg(x) λ1

λ2
(eλ

2κg(x) − 1)

0 1

 =: g(λa) ∈ B(2,R) , (E.3)

from which g−1(λa) = g(−λa) and, in the limit λa → 0, we have g(0) = 1.
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An equivalent way to write elements of B(2,R) is through the factorisation

g = exp
(
λ2

2
T2(x)

)
exp

(
βT1(x)

)
exp

(
λ2

2
T2(x)

)
, (E.4)

with β uniquely defined by

β := λ1 sinh
(

1
2κg(x)λ2

)
1
2κg(x)λ2

. (E.5)

A direct calculation shows that g−1dg = W a(x)Ta(x), from which one can read the

left–invariant 1–forms

W 1(x) :=
1− eλ2κg(x)

λ2κg(x)
dλ1 +

w(λa, x)
κg(x)

e−λ
2κg(x) dλ2 , (E.6a)

W 2(x) := dλ2 , (E.6b)

with w(λa, x) a function whose specific dependence is irrelevant in the present analysis,

henceforth we just denote it as w; a similar analysis shows that dgg−1 = Ẇ a(x)Ta(x),

from which the following right–invariant 1–forms can be read:

Ẇ 1(x) :=
eλ

2κg(x) − 1
λ2κg(x)

dλ1 +
[
λ1

λ2

(
1− eλ2κg(x)

)
+

w

κg(x)

]
dλ2 , (E.7a)

Ẇ 2(x) := dλ2 . (E.7b)

From the expressions (E.6) and (E.7) we respectively construct the left– and right–

invariant measures forms

(dLg)(x) := W 1(x) ∧W 2(x) =
1− e−λ2κg(x)

λ2κg(x)
dλ1dλ2 , (E.8a)

(dRg)(x) := Ẇ 1(x) ∧ Ẇ 2(x) =
eλ

2κg(x) − 1
λ2κg(x)

dλ1dλ2 . (E.8b)

The adjoint action of the group B(2,R) on its Lie algebra b(2,R) reads (Adg T1)(x) =

(gT1g
−1)(x) = eλ

2κg(x) T1(x) and (Adg T2)(x) = (gT2g
−1)(x) =

λ1

λ2
(1− eλ2κg(x))T1(x) +

T2(x). The modular function at each point x can then be obtained ∆(g) = det(Adg) =

eλ
2κg(x). The symmetric measure, invariant under g 7→ g−1, is

(d0g)(x) = ([∆(g)]1/2 dLg)(x) = ([∆(g)]−1/2 dRg)(x) =
sinh[1

2λ
2κg(x)]

1
2λ

2κg(x)
. (E.9)
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Glossary of Symbols

S Action functional 16

L Lagrangian 17

Li Euler derivative of L with respect to qi 17

Q Configuration manifold 18

H Canonical Hamiltonian function 19

T∗Q Phase space manifold 20

{f, g} Poisson bracket between f and g 21

δG/δyα Variational derivative of G with respect to yα 23

δS/δyα(t) Functional derivative of S 24

H(1) Primary Hamiltonian function 34

≈ Weakly symbol 34

φµ Generic symbol for a Hamiltonian constraint 37

Γ Surface defined by all the constraints present in the theory 37

χα Second–class constraints on the original phase space 40

γa First–class constraints on the original phase space 41

{F,G}∗ Dirac bracket between F and G 42

HE Extended Hamiltonian 46

λa Lagrange multiplier 48
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πa Conjugate momentum to the Lagrange multiplier λa 48

T∗λQ Lagrange–multiplier enlarged phase space 48
(k)

U k − th order structure function 54

ηα Generic symbol for a classical ghost variable 55

Pα Generic symbol for a classical ghost–momenta variable 55

ε(·) or ε· Grassman parity function 55

∂ `f

∂θ

(
∂ rf

∂θ

)
Left (Right) partial derivative of f with respect to θ 56

gh(·) Ghost number function 57

Ω BRST classical generator 58

C̄a, ρ
a Antighost, antighost–momentum 60

Ca, ρ̄a Ghost, ghost–momentum 61
(k)

A k − th order coefficient in the BRST extension of the

Dirac observable A0 66

Haux Auxiliary Hilbert space 71

η Rigging map 71

Hphys Physical Hilbert space 72

Aaux Free associate algebra of kinematical operators 73

A
(?)
aux ?− free associate algebra of kinematical operators 73

(· , ·)aux Inner product defined in Haux 74

γ̂a Quantum constraint operator 75

Û(g) Unitary gauge operator 75

Φ′, Φ̃′ Algebraic dual to Φ, Φ̃ 75

Φ, Φ̃ Test state space in Haux 75

A
(?)
phys ?− algebra of (strong) physical observables 76

(· , · )raq Physical inner product defined in RAQ through a rigging

map 78

dLg Left–invariant measure on a Lie group G 81

dRg Right–invariant measure on a Lie group G 82

∆(g) Modular function of a Lie group G 82

d0g Symmetric measure on a Lie group G 82
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dg Haar measure on a locally compact Lie group 84

Baux BRST free associative algebra of kinematical operators 88

B
(?)
aux ?−BRST free associative algebra of kinematical operators 88

Ĝ Ghost number operator 88

Ω̂ BRST operator 89

Vbrst BRST state space 89

(· , ·)brst Indefinite BRST inner product on Vbrst 89

Im(·) Image of a mapping 90

(· , ·)bm Batalin–Marnelius–Shvedov’s physical inner product 94

(· , ·)%brst Regularised inner product for BRST–invariant states 95
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