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Abstract 
Ptychography is used to characterize coherent X-ray 

beam focus and to image nanoscale matter at light sources 
such as synchrotrons and free-electron lasers.  Ptycho-
graphy is a method for lensless imaging of a sample and 
can be performed via iterative algorithms and recently with 
AI-based methods. We study AI-based ptychographic 
image reconstruction from experimental X-ray diffraction 
patterns in the presence of additive noise and compare the 
effect of different noise types on the learning process and 
on inference.   Experiments at the Advanced Photon Source 
(APS) provide the data and neural network for the study.  
Noise sources in the study include Poisson noise produced 
by quantization at the detector, Gaussian distributed shot-
to-shot changes in total beam fluence (beam fluence jitter), 
and additive speckle. 

INTRODUCTION 
Lensless imaging is increasingly used to obtain resolu-

tion in the range of tens of nanometers or less, beyond the 
ability of the numerical aperture of a microscope lens.   
Synchrotron X-ray light sources and free-electron lasers 
can generate bright and coherent light beams that can be 
used to image samples.  For thin samples, a method called 
ptychography (“ptych” is Greek for “to fold”) can be used 
as described in [1, 2].  This method relies on imaging a 
sample at many overlapping regions, called scan points.  
See Fig. 1.  The phase image of a sample is particularly 
useful for detecting differences in materials.  Ptychography 
is also used for beam characterization.  An amplitude 
image can be easily computed from the intensities of the 
diffraction pattern.  However, the phase image is traditio-
nally retrieved with computationally intensive and time-
consuming iterative algorithms that leverage the region 
overlap.   

Recently AI-based ptychographic methods have been 
explored [3-6] using encoder-decoder networks, convolu-
tional generative adversarial networks, or a combination of 
AI and iterative methods. Samples include etched tungsten, 
human cancer cells, and simulated data from image data-
sets.  These methods show great promise in quickly infer-
ring phase images and reducing the number scan points 
needed for a reconstruction.   

A number of noise sources occur in pytchographic setups 
in [7].  Some noise has been simulated by diffraction simu-
lators for other applications [8] and to a limited extent by 
open-source ptychographic codes.  Noise sources include

 
noise from parasitic scattering (background), outliers, cor-
related noise sources, cosmic rays, bad frames, beam jitter, 

motor jitter, fluctuating dark noise, beam miscentering, sta-
tic background and beam fluence jitter. 

 

  
Figure 1:  Cartoon of ptychography setup with (a) first po-
sition scanned and (b) second overlapping area scanned.  
Diffraction patterns are recorded on the detector behind the 
sample.  Image from [9]. 

Little is known, however, about the impact of experi-
mental noise on AI-based ptychography techniques.  Kno-
wing this impact could greatly improve research efforts in 
AI-based ptychography.  We study the effect of random 
noise in experimental data used for AI-based ptychogra-
phic reconstruction.  We assess how it impacts learning and 
inference (eg. the quality of the inferred reconstructed 
image).  We use available ptychographic datasets from ex-
periments performed by colleagues at the Advance Photon 
Source.  We also use their neural network, PtychoNN [3].   

METHODS 
Noise can originate in the beam itself, elements along the 

beam path, the environment in the vicinity of the beam, 
sample, or detector, space (such as cosmic noise), the mo-
tors that move the sample in front of the beam, the camera 
readout, and the detector itself. 

Table 1 lists the subset of different noise sources used in 
this study and what is required to simulate them.  This in-
formation was gleaned from [7, 8, 10].  

Neural Network and Data 
We use the AI-based ptychography neural network cal-

led PtychoNN.  The Python code and experimental data is 
available via open source at [11].   The network is an enco-
der-decoder convolutional network with 1,247,072 trai-
nable parameters.  The decoder part of the network has two 
arms, one to predict an amplitude image and one to predict 
a phase image.  Both input training data images and output 
inferred images are 64x64 pixels.   

We use the experimental dataset in [3] available at the 
same site as the code.  The data are from experiments per-
formed on etched Tungsten thin samples. The data include 
a 161x161 scan point square sample area.  The top 100 
lines of scan points (16,100) are used for training and the  
lower right 61x61 area is used for testing. 

 ____________________________________________  
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Table 1: Noise in Diffraction 
Type Origin  Simulation 

Photon count 
quantization 
noise (ran-
dom) 

Detector 
photon 
counting sta-
tistics 

The noise takes a 
Poisson distribution 

Additive 
Gaussian 
noise (ran-
dom) 

For noise 
testing pur-
poses, artifi-
cial 

Add Gaussian noise 
to randomly selected 
subset of diffraction 
pixels 

Fluence jitter Beam char-
acteristics 

Change beam fluence 
from shot-to-shot us-
ing a Gaussian distri-
bution 

Metrics 
Mean-squared-error (MSE). For quality mea-

surements, the study uses the MSE of the difference bet-
ween the fully reconstructed predicted amplitude or phase 
images and the corresponding ground truth iteratively re-
constructed images.  Two MSE values, one for amplitude 
and one for phase are computed.  An additional MSE me-
tric is also computed with the idea that the fully recons-
tructed predicted images have enough overlap and pixel 
averaging that the previous MSE metric is not indicative of 
the direct impact of a noise on a particular predicted patch.  
It may make the reconstruction appear more resilient. 
Therefore, the MSE of the average difference between pre-
dicted amplitude and phase patches compared to ground 
truth is also computed.   

Signal-to-Noise Ratio (SNR) metric.  SNR is calcu-
lated as: 

𝑆𝑆𝑆𝑆𝑆𝑆 = 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚�𝑂𝑂𝑔𝑔2�/𝑀𝑀𝑆𝑆𝑆𝑆(𝑂𝑂𝑔𝑔,𝑂𝑂𝑝𝑝) 
Where 𝑂𝑂𝑔𝑔  is the ground truth object image and 𝑂𝑂𝑝𝑝  is the 

predicted object image.  SNR is computed for each fully 
reconstructed predicted amplitude image and phase image 
and then again for the average over the patches.  The reason 
for computing SNR for the 𝑂𝑂𝑔𝑔𝑂𝑂𝑝𝑝patches is similar to the 
reason for computing MSE on patches -- the individual 
patches do not have the redundancy, so a metric over those 
on their own could be useful. 

Experiments 
The experiments are described below with the name of 

the test in parentheses.  This name is used in the plots in 
the results section.   

Baseline Test. We use the original experimental data 
with thresholding of diffraction data that sets pixels below 
3 to 0.  This should remove some of the existing experi-
mental Poisson noise. 

Quantization Test.  We use the original experimental 
data, but do not threshold pixels below 3, and add Poisson 
noise to all diffraction data (Poisson).  An additional test 
(Poisson .01) is to scale down the photon counts by .01 and 
compute Poisson on that, then scale back.  The rationale for 
this test is to create a larger jump in the counts when ap-
plied. 

Fluence Tests.  Use original experimental data, 
threshold as in the baseline, but multiply each pattern by 
fluence factor from Gaussian distribution with sigma at .1 
and .5 for separate tests, factor is absolute value of the ran-
dom number (Fluence.1 and Fluence.5). 

Speckle Tests.  Use original experimental data, 
threshold as in the baseline: 
• Add photons of a random value distributed with 

Gaussian sigma at 130 or 260 (chosen because the av-
erage pixel value is 260 over all pixels in the experi-
ment dataset) or 5000. 

• Add the photons to a random number of pixels distrib-
uted with Gaussian sigma of 5% or 50% of the total 
pixels in a pattern (64x64) (Speckle 130-05, and 
Speckle 260-50). 

• Space them according to uniform distributions be-
tween 0 and 63 for the y and x coordinates. 

• As a second test, space them according to a Gaussian 
distribution between 0 and 63 with mean of 32 and 
clamped at x or y coordinates at 0 and 63 (Speckle-
Center 260 and SpeckleCenter 5000) (Fig. 2). 

 

 
Figure 2: Diffraction with uniform (left) and spatially 
Gaussian distributed (right) speckle added. 

Combination Test (Combo).  Use original experimental 
data and do not threshold.  Add speckle, then fluence and 
finally Poisson noise in that order, where fluence sigma is 
at .5, the speckle sigma for additive pixel value is at 130 
and sigma for number of pixels to modify in a diffraction 
pattern is at .1x64x64.   

RESULTS 
The MSE results from the tests are summarized in Fig. 3 

and Fig. 4.  SNR results showed similar trends with low 
SNR when MSE was high and are not shown due to space. 

The Baseline ground truth and diffraction dataset pro-
duce reconstructions of the test area with an average MSE 
(compared to ground truth) of 4.05E-5 for amplitude and 
.0915 for phase.  Note that amplitude is much easier to re-
construct than phase with the AI-based method.  That is 
also true for iterative reconstructions.  

Quantization test results.  For the Poisson random 
number generator on the data without scaling (the Poisson 
test), it showed little impact on the results.  The metrics 
were very close to Baseline and the diffraction appeared 
unchanged. 

For the Poisson random number generator on diffraction 
scaled down by .01 (the Poisson .01 test) then scaled back, 
it showed a bigger difference.  The diffraction is noticeably 
different compared to the baseline dataset. 
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Figure 3: MSE of predicted amplitude shows steady values 
except for Poisson .01 and SpeckleCenter5000. 

  
Figure 4:  MSE of predicted phase shows variability in 
phase patch prediction. 

The test area reconstruction for the Poisson .01 test has 
slightly degraded amplitude and phase MSEs as well as va-
lidation losses.  The phase validation losses are over twice 
the baseline validation losses: they increased from .1398 to 
.3318.  Some runs failed as early as Epoch 7, however, due 
to the training generating NaNs for the amplitude.  Ampli-
tude (intensities) can get quite high versus the phase num-
bers in the range of π to -π. 

Fluence test results.  This test thresholds experimental 
data as in the baseline, but it multiplies each pattern by 
fluence factor from a Gaussian distribution with sigma va-
rying.  For sigma at .1 and .5, these were small perturba-
tions of the fluence and were not significantly different. 

Speckle test results.  The first Speckle tests uses the ori-
ginal experimental data, thresholds as in the baseline, adds 
photons of pixel value of sigma 130 or 260, and affects 
50% of the pixels in a pattern uniformly spaced. This pro-
duces very little change even though visually it is apparent 
that speckle has been added as was shown in Fig.  2.   

The second Speckle test adds higher intensity speckle 
noise with Gaussian sigma at 5000 to 50% of the pixels and 
with Gaussian spacing.  It produces both visual confirma-
tion of noise and a noticeable degradation in reconstruction 
as seen in Fig. 5, in several statistics including MSE for 
predicted phase patches, and in validation loss for phase.  

 

 
Figure 5:  Patch results for true phase (above) and predicted 
phase (below) for SpeckleCenter 5000 noise test. 

Combo test results.   Overall, the amplitude and phase 
are very stable with the introduction of this combination of 
noise.  This test could likely be made more impactful by 
increasing noise using a combination of Poisson at the .01 
scaling, Fluence at .5 Gaussian sigma, and Speckle with the 
Gaussian sigma of 5000 for intensity and Gaussian spatial 
placement.   

CONCLUSION 
Results show that phase images, whether noisy or clean, 

are more difficult to train and predict versus amplitude 
images.  This is seen in the higher MSE for phase full 
images and patches and lower SNR numbers for phase 
images.  Some noise sources such as the Poisson .01 and 
Speckle Center tests affect predicted phase more than am-
plitude. 

Our results also show that the redundancy provided by 
ptychography is very resilient to noise in stitched, averaged 
full predicted images, because it requires noise to be pre-
sent in the same way in several overlapping patches.  Less 
redundancy occurs if fewer samples are used, or there are 
many missing shots in a dataset. 

Noise that affects more of the signal in the center seems 
to be impactful. 

Much of the detected effect of noise in the predicted 
images was not noticeable by sight. SpeckleCenter 5000, 
however, shows some artifacts in predicted images. 

Although some noise sources appeared to have more of 
an effect than others, the results are probably somewhat 
data-dependent and experiment-dependent.  Future work 
will address this. 
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