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Abstract

Ptychography is used to characterize coherent X-ray
beam focus and to image nanoscale matter at light sources
such as synchrotrons and free-electron lasers. Ptycho-
graphy is a method for lensless imaging of a sample and
can be performed via iterative algorithms and recently with
Al-based methods. We study Al-based ptychographic
image reconstruction from experimental X-ray diffraction
patterns in the presence of additive noise and compare the
effect of different noise types on the learning process and
on inference. Experiments at the Advanced Photon Source
(APS) provide the data and neural network for the study.
Noise sources in the study include Poisson noise produced
by quantization at the detector, Gaussian distributed shot-
to-shot changes in total beam fluence (beam fluence jitter),
and additive speckle.

INTRODUCTION

Lensless imaging is increasingly used to obtain resolu-
tion in the range of tens of nanometers or less, beyond the
ability of the numerical aperture of a microscope lens.
Synchrotron X-ray light sources and free-electron lasers
can generate bright and coherent light beams that can be
used to image samples. For thin samples, a method called
ptychography (“ptych” is Greek for “to fold”) can be used
as described in [1, 2]. This method relies on imaging a
sample at many overlapping regions, called scan points.
See Fig. 1. The phase image of a sample is particularly
useful for detecting differences in materials. Ptychography
is also used for beam characterization. An amplitude
image can be easily computed from the intensities of the
diffraction pattern. However, the phase image is traditio-
nally retrieved with computationally intensive and time-
consuming iterative algorithms that leverage the region
overlap.

Recently Al-based ptychographic methods have been
explored [3-6] using encoder-decoder networks, convolu-
tional generative adversarial networks, or a combination of
Al and iterative methods. Samples include etched tungsten,
human cancer cells, and simulated data from image data-
sets. These methods show great promise in quickly infer-
ring phase images and reducing the number scan points
needed for a reconstruction.

A number of noise sources occur in pytchographic setups
in [7]. Some noise has been simulated by diffraction simu-
lators for other applications [8] and to a limited extent by
open-source ptychographic codes. Noise sources include
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noise from parasitic scattering (background), outliers, cor-
related noise sources, cosmic rays, bad frames, beam jitter,
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motor jitter, fluctuating dark noise, beam miscentering, sta-
tic background and beam fluence jitter.
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Figure 1: Cartoon of ptychography setup with (a) first po-
sition scanned and (b) second overlapping area scanned.
Diffraction patterns are recorded on the detector behind the
sample. Image from [9].

Little is known, however, about the impact of experi-
mental noise on Al-based ptychography techniques. Kno-
wing this impact could greatly improve research efforts in
Al-based ptychography. We study the effect of random
noise in experimental data used for Al-based ptychogra-
phic reconstruction. We assess how it impacts learning and
inference (eg. the quality of the inferred reconstructed
image). We use available ptychographic datasets from ex-
periments performed by colleagues at the Advance Photon
Source. We also use their neural network, PtychoNN [3].

METHODS

Noise can originate in the beam itself, elements along the
beam path, the environment in the vicinity of the beam,
sample, or detector, space (such as cosmic noise), the mo-
tors that move the sample in front of the beam, the camera
readout, and the detector itself.

Table 1 lists the subset of different noise sources used in
this study and what is required to simulate them. This in-
formation was gleaned from [7, 8, 10].

Neural Network and Data

We use the Al-based ptychography neural network cal-
led PtychoNN. The Python code and experimental data is
available via open source at [11]. The network is an enco-
der-decoder convolutional network with 1,247,072 trai-
nable parameters. The decoder part of the network has two
arms, one to predict an amplitude image and one to predict
a phase image. Both input training data images and output
inferred images are 64x64 pixels.

We use the experimental dataset in [3] available at the
same site as the code. The data are from experiments per-
formed on etched Tungsten thin samples. The data include
a 161x161 scan point square sample area. The top 100
lines of scan points (16,100) are used for training and the
lower right 61x61 area is used for testing.
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Table 1: Noise in Diffraction

Type Origin Simulation
Photon count ~ Detector The noise takes a
quantization photon Poisson distribution
noise (ran- counting sta-
dom) tistics
Additive For noise Add Gaussian noise
Gaussian testing pur- to randomly selected
noise (ran- poses, artifi-  subset of diffraction
dom) cial pixels
Fluence jitter =~ Beam char- Change beam fluence

acteristics from shot-to-shot us-
ing a Gaussian distri-
bution
Metrics
Mean-squared-error (MSE). For quality mea-

surements, the study uses the MSE of the difference bet-
ween the fully reconstructed predicted amplitude or phase
images and the corresponding ground truth iteratively re-
constructed images. Two MSE values, one for amplitude
and one for phase are computed. An additional MSE me-
tric is also computed with the idea that the fully recons-
tructed predicted images have enough overlap and pixel
averaging that the previous MSE metric is not indicative of
the direct impact of a noise on a particular predicted patch.
It may make the reconstruction appear more resilient.
Therefore, the MSE of the average difference between pre-
dicted amplitude and phase patches compared to ground
truth is also computed.

Signal-to-Noise Ratio (SNR) metric.
lated as:

SNR is calcu-

SNR = mean(0,°)/MSE (0, 0,)

Where 0, is the ground truth object image and O,, is the
predicted object image. SNR is computed for each fully
reconstructed predicted amplitude image and phase image
and then again for the average over the patches. The reason
for computing SNR for the 0,0, patches is similar to the
reason for computing MSE on patches -- the individual
patches do not have the redundancy, so a metric over those
on their own could be useful.

Experiments

The experiments are described below with the name of
the test in parentheses. This name is used in the plots in
the results section.

Baseline Test. We use the original experimental data
with thresholding of diffraction data that sets pixels below
3 to 0. This should remove some of the existing experi-
mental Poisson noise.

Quantization Test. We use the original experimental
data, but do not threshold pixels below 3, and add Poisson
noise to all diffraction data (Poisson). An additional test
(Poisson .01) is to scale down the photon counts by .01 and
compute Poisson on that, then scale back. The rationale for
this test is to create a larger jump in the counts when ap-
plied.
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Fluence Tests. Use original experimental data,
threshold as in the baseline, but multiply each pattern by
fluence factor from Gaussian distribution with sigma at .1
and .5 for separate tests, factor is absolute value of the ran-
dom number (Fluence.1 and Fluence.5).

Speckle Tests. Use original experimental data,
threshold as in the baseline:

e Add photons of a random value distributed with
Gaussian sigma at 130 or 260 (chosen because the av-
erage pixel value is 260 over all pixels in the experi-
ment dataset) or 5000.

¢ Add the photons to a random number of pixels distrib-
uted with Gaussian sigma of 5% or 50% of the total
pixels in a pattern (64x64) (Speckle 130-05, and
Speckle 260-50).

e Space them according to uniform distributions be-
tween 0 and 63 for the y and x coordinates.

¢ As a second test, space them according to a Gaussian
distribution between 0 and 63 with mean of 32 and
clamped at x or y coordinates at 0 and 63 (Speckle-
Center 260 and SpeckleCenter 5000) (Fig. 2).
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Figure 2: Diffraction with uniform (left) and spatially
Gaussian distributed (right) speckle added.

Combination Test (Combo). Use original experimental
data and do not threshold. Add speckle, then fluence and
finally Poisson noise in that order, where fluence sigma is
at .5, the speckle sigma for additive pixel value is at 130
and sigma for number of pixels to modify in a diffraction
pattern is at .1x64x64.

RESULTS

The MSE results from the tests are summarized in Fig. 3
and Fig. 4. SNR results showed similar trends with low
SNR when MSE was high and are not shown due to space.

The Baseline ground truth and diffraction dataset pro-
duce reconstructions of the test area with an average MSE
(compared to ground truth) of 4.05E-5 for amplitude and
.0915 for phase. Note that amplitude is much easier to re-
construct than phase with the Al-based method. That is
also true for iterative reconstructions.

Quantization test results. For the Poisson random
number generator on the data without scaling (the Poisson
test), it showed little impact on the results. The metrics
were very close to Baseline and the diffraction appeared
unchanged.

For the Poisson random number generator on diffraction
scaled down by .01 (the Poisson .01 test) then scaled back,
it showed a bigger difference. The diffraction is noticeably
different compared to the baseline dataset.

THPAO11
3971

e=ga Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THPA011

MC6.T03: Beam Diagnostics and Instrumentation

3971

THPA: Thursday Poster Session: THPA

THPA011

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

MSE of Predicted Amplitude
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Figure 3: MSE of predicted amplitude shows steady values
except for Poisson .01 and SpeckleCenter5000.

MSE of Predicted Phase

0.7
0.6
0.5
0.4

0.3

0.2

0.1
o N | |
&

Q& & Cal o~ o~ ) @
& &
F O & F T @ @

II l| II
& N 6‘\00

A d
& “

W MSE Phase Full  m MSE Phase Patch
Figure 4: MSE of predicted phase shows variability in
phase patch prediction.

The test area reconstruction for the Poisson .01 test has
slightly degraded amplitude and phase MSEs as well as va-
lidation losses. The phase validation losses are over twice
the baseline validation losses: they increased from .1398 to
.3318. Some runs failed as early as Epoch 7, however, due
to the training generating NaNs for the amplitude. Ampli-
tude (intensities) can get quite high versus the phase num-
bers in the range of 1 to -Tt.

Fluence test results. This test thresholds experimental
data as in the baseline, but it multiplies each pattern by
fluence factor from a Gaussian distribution with sigma va-
rying. For sigma at .1 and .5, these were small perturba-
tions of the fluence and were not significantly different.

Speckle test results. The first Speckle tests uses the ori-
ginal experimental data, thresholds as in the baseline, adds
photons of pixel value of sigma 130 or 260, and affects
50% of the pixels in a pattern uniformly spaced. This pro-
duces very little change even though visually it is apparent
that speckle has been added as was shown in Fig. 2.

The second Speckle test adds higher intensity speckle
noise with Gaussian sigma at 5000 to 50% of the pixels and
with Gaussian spacing. It produces both visual confirma-
tion of noise and a noticeable degradation in reconstruction
as seen in Fig. 5, in several statistics including MSE for
predicted phase patches, and in validation loss for phase.
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Figure 5: Patch results for true phase (above) and predicted
phase (below) for SpeckleCenter 5000 noise test.

Combo test results. Overall, the amplitude and phase
are very stable with the introduction of this combination of
noise. This test could likely be made more impactful by
increasing noise using a combination of Poisson at the .01
scaling, Fluence at .5 Gaussian sigma, and Speckle with the
Gaussian sigma of 5000 for intensity and Gaussian spatial
placement.

CONCLUSION

Results show that phase images, whether noisy or clean,
are more difficult to train and predict versus amplitude
images. This is seen in the higher MSE for phase full
images and patches and lower SNR numbers for phase
images. Some noise sources such as the Poisson .01 and
Speckle Center tests affect predicted phase more than am-
plitude.

Our results also show that the redundancy provided by
ptychography is very resilient to noise in stitched, averaged
full predicted images, because it requires noise to be pre-
sent in the same way in several overlapping patches. Less
redundancy occurs if fewer samples are used, or there are
many missing shots in a dataset.

Noise that affects more of the signal in the center seems
to be impactful.

Much of the detected effect of noise in the predicted
images was not noticeable by sight. SpeckleCenter 5000,
however, shows some artifacts in predicted images.

Although some noise sources appeared to have more of
an effect than others, the results are probably somewhat
data-dependent and experiment-dependent. Future work
will address this.
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