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Abstract

In the context of the Nikolov-Stora-Todorov renormalization prescription,
we consider the notion of analytic residue of Feynman amplitude and propose
a recursive procedure for analytic renormalization in position space.
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1. Introduction. The notion of analytic renormalization has been intro-
duced by SPEER [1'2]. Tt is based on the observation that multiplication of the
propagator Ar, by A%, for some small enough noninteger complex exponent ¢,
gives a way for regularization of the Feynman amplitude. The analytic renor-
malization in ['?] is carried out in momentum space (and uses a Schwinger-like
parametric representation).

In the work [?] (see also [*] for subsequent developments) of NIKOLOV, STORA
and TODOROV was systematically developed a renormalization approach! (later
we shortly refer to it as NST) in position space based on the techniques for
continuation of homogeneous distributions. The analytic regularization naturally
arises in the NST approach and is one of its pillars.

The current work is an addition to the NST approach, with regard to the
construction of the renormalization procedure in therms of analytic regularization.
In ([%], Sect. 5.2) the analytic renormalization for the 2-point amplitudes has been
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carried out. Using the condition for causal? factorization (2.4), we propose (in
Sect. 4) an algorithm for subtraction of the divergences from a general Feynman
amplitude.

Basic notations: M is the Minkowski space, whose elements are denoted
by x = (20, 2%,...,2P71), y, .... The scalar product in M is x -y := —a%° +
olyt + .- 4 2P~ 1yP~1 x2 = x . x. The complexification of the Minkowski space
is denoted by Mc = M + iM. Let S C N be a finite set. The Sth Cartesian
power of M (respectively Mc) is denoted by M (respectively M(g ). The set
ﬁg = {(Xj)jes e M*S: x; = X}, for some j,k # j € S} is the large diagonal
in M°, while Ag := {(Xj)jeg e M3 xj =X, Vjk € S} is the total diagonal
in M*S.

2. Axiomatic requirements on the renormalization maps in Min-
kowski space. For a finite set S C N of integer labels we introduce an algebra
OUs, which by definition is the linear span of all possible products of the form

P; (X‘ —Xk)
2 S e 2l | I
i kES J k j,keS
i<k i<k

where Pji(x) are homogeneous polynomials, Nj. € No, Gji(x) € O2 = Oy 93.
Also we set Oy, == Oyy, . ny 50, O = O|g|, where |S| stands for the cardinality of
S. The elements of 0s model the Feynman amplitudes of massless QFT and for
the moment we consider them as meromorphic functions on Mg .

In what follows we shall deal with translation invariant functions (distribu-
tions) on M*® (or, on M{), i. e. with functions (distributions) on M*/M, where
the quotient is taken with respect to the action of M on M® by translations
(xj)jes = (xj + X)jes-

We can construct distributions from the elements of & in various ways. One
way is by taking boundary values with respect to tube domains Tg C M@q . Every
such tube Tz is defined for an ordered finite set S. We shall write S =(8<) =
<j1, . ,jn>, for he set S = {j1,...,Jjn} equipped with a total order j; < --- <
jn on it. For every such ordered set we have a standard backward tube domain
associated to S

Tg = {(Xj)jes e MS+iM*% : Xj, — Xjp, € M —iVy fork:I,...,n},

where V is the open forward light-cone in M. We define a boundary value map
with respect to the tube Tg:

bv.g: Os — ' (M°/M) = P
2See [5] for a survey on the relativistic causality and renormalization in position space.
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For Gg (2.1) we have:

B Pj(x; — xp,) _ () ifj =<k,
(2.2) bv.s Gy ._JL[S e xk)j;i iO(xgk— i (£) = {(_) if*; DY

J
i<k

Let us note that the product in (2.1) is indexed with respect to the standard
order < coming from N. But, for taking the boundary value b.v.g in (2.2) the
order <, that is assumed in S , plays an additional role and hence, the resulting
boundary values b.v.g Gg will be in general different distributions on M SIM
when we change this order < on S. The maps b.v.g can be used in fact, to
produce the Wightman functions of composite fields of any free Wightman fields.

Since if a boundary value of an analytic function vanishes on some open set,
then the function is zero everywhere, we have that b.v.g: Os — Py is an injection,
and also b.v.g maps commute with the action of the differential operators with
polynomial coefficients. Another property of the boundary value maps is that
they preserve the multiplication,

b.V.g(G/G//) = b.v.g(G/) b.v.g(G”).

The renormalization gives rise to other linear maps (see [?], Sect. 5) of type
R : Os — 2%, which we shall axiomatically characterize here. Before that let
us note that the linear spaces 0s and Zg form inductive systems in S C N and
hence, it is convenient to take the inductive limits:

on = ﬁgz@ﬁn, 7% = | .@g:[j@;.
n=1

SCN n=1 SCN
finite finite

Then, a renormalization map is a linear map:
(2.3) R: Oy — Z, suchthat R(Os) C %

and satisfies the axiomatic conditions (r1)—(r5) listed below.

(rl) Permutation symmetry. First, we have a natural action o : Oy — Oy,
o D — Z of the permutations o € #(N), thus it is appropriate to request
coR=Roo.

(r2) Preservation of the filtrations. The image R(Gg) is an associate homo-
geneous distribution with a degree of associate homogeneity (as defined in [3],
Sect. 3.1) less or equal to the degree of homogeneity of Gg.

(r3) Commutativity with multiplication by polynomials. If p is a polynomial
on M®/M (S C N), then R(pG) = pR(G).

(r4) Causality. For every disjoint union S = S"US” we have

(24) R(GS) ‘ CS’;S” - R(GS/) R(GS//) bvm (GS’,S”)

QS';S”
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for every Gg € Os of the form (2.1). Our notations in Eq. (2.4) are the following:
Cgr.gv is the open region:

QS’;S” = {(Xj)jes S MS DXy z X for j/ S SI and j// S SH}

(the relation x; >x;» stands for x;» ¢ x; — V1); we consider some order on the

%
sets S’ and S” and equip S with an order denoted by S'US” and induced by S’
< S8”; we also introduce the splitting

Gs = Gg Ggn GS’,S” )
(2‘5) Gg = H ij, Ggn = H ij, G5/7S// = H ij.

i kes! jkes" jes’
i<k j=<k jes!"
The right hand side of Eq. (2.4) is well defined due to the following (see [?],
Lemma 2.6):
Lemma 2.1. The product R(GS/)R(GSH) b.v.s.—>(GS/75u) of the three

oS
distributions R(GS/, R(Gsu)) and b-U'm(GS’,S”) erists on MS/M.

(r5) Lorentz invariance. The map R : Oy — % intertwines the natural
actions of the Lorentz group on Oy and Z.

This completes our general axiomatic requirements on the renormalization
map R in the Minkowski space.

3. Analytic regularization. The residue functional. For a finite index

set S C N let us introduce a collection of complex parameters
(3.1) es = (ejp €C:(j,k) €S2, j<k).

(For a convenience €y, ; := €;.) We say that the parameters eg are generic iff
for every S’ C S:

2|ES/|¢Z, where ’€5’| = Z 8]',]6.
7, kesS; j<k
Now, let us set
(3.2) os= [ (Gg—x1)?)™*
G keS;j<k

Note that the function pg is not in &s. The product (3.2) can be understood
as a well defined analytic function on every tube domain 7g, yet one has to be
careful since 9g depends on the tube T5 (when we change the order in S ). Note
that when we take a boundary value of the product (3.2) with respect to Tg we
obtain:

(3.3) bv.gog= | | ((xj—xp) 2 £i0(2) —a})) V"= | | ((xj—xp)2+i0(2) —a})) 7",
J,keS i kesS
J<k j=<k
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where the (£) convention in (3.3) is the same as in Eq. (2.2) and the second
equality is due to the formal symmetry of the product (3.2).

Theorem 3.1. For every Gg € Og of the form (2.1) with homogeneous
polynomials Pj;, and for every generic set of parameters €g there exists a unique
homogeneous distribution Ueg (G) € 9 such that
(34) USS (GS’) Q:S’;S” :USS’ (GS’)USS// (GS//) b’UW (QS’,S”GS/:S//)Q:S,§S//7
where 0gr gn = I (- xk)Q)gj’]C and we follow the same conventions as

jes’; kesS”
in (rd). The map Uey extends to a linear map Uey : Os — 24 and Uey(Gg)
depend analytically on €g for generic values of the parameters €g.
Proof. The proof is by induction in |S| and we briefly outline it here. Let
|S| = 2 and take S = {1,2}, G € 0>. Then Eq. (3.4) reads

(3.5) Uey s (G)‘ Q:l_QZb-V-u,z) (9{1,2} G)’ Cro’ Ue (G)) Cor b.v.(a 1 (9{1,2} G)’ ¢y

One checks that the right hand sides of Egs. (3.5) coincide on the intersection
€12 N o . Hence, Egs. (3.5) define a translation invariant distribution on €. U
Caq. But €10 Uy = M>*2\ Ay, where Ay is the total diagonal {x; — xo = 0}.
Taking into account the translation invariance we obtain by (3.5) a distribution
68172 (G) on (M*?* \Ay)/M = M\{0}, which by construction is homogeneous of
degree deg G' + 2¢1 » if the degree of homogeneity of G is deg G. Thus, according

to the results of ([%], Sect. 3.2), [}51,2(G) extends uniquely to a homogeneous
distribution Ug,,(G) on M if 2¢15 is noninteger. This proves the basis of our
induction.

Aside from some technicalities, the proof of the induction step is essentially
the same as the proof of the base case. [

By the construction in ([%], Sect. 3.2) of extension of homogeneous distri-
butions of noninteger degree of homogeneity it follows that U (Gg) will have a
simple pole at |eg| = 0. Thus, we can write

1

(3.6) Ues(Gs) = MReSs(Gs)+T€S(Gs),

where Resg(G's) is a distribution supported at the origin 0 € M* /M and T.4(G's)
is analytic at |es| = 0 if |eg/| is noninteger for all S” & S. Hence, we obtain a
linear map

(3.7) Ress : ﬁs — @é,

which we call a residue of Gg € 0g. By the uniqueness of the extension of
distributions of noninteger degree of homogeneity we obtain also that for every
polynomial pg on M?® /M:

(3.8) Ues (ps Gs) = psUeg(Gs),
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which further implies (see [?], Eq. 4.13) the following expansion of Resg :

_1)Irl
(3.9) Resg(Gg) = Z ( 11“') resg (x5 Gg) 60 (xg) .

renP(si-D

In (3.9) we use the following notations: xg stands for some fixed set of linear
coordinates in M3 /M =2 M*USI=1); §(xg) is the delta function with respect to
the coordinates xg, and hence, its support is at xg = 0, which is the total di-
D(|S|-1)
agonal Ag; r is a multiindex and we set x§ := H (z€)"s and 6™ (xg) =
£=1
D(|S|-1)
H (a%g)%é(xs) if we enumerate the components of xg and r with a sin-
£=1
gle index ¢ = 1,...,D(|S| — 1), i.e., x5 := (2°) and r = (r¢). Thus, we have
characterized the residue map (3.7) just by one linear functional

resg : Og — C.

Note that resg is of degree D(|S| —1), i. e., it vanishes if deg G+ D(|S| —1) #0
since the delta function d(xg) has a homogenous degree —D(]S| — 1).

4. Renormalization and pole subtractions. Our goal now is to extract
a regular part in Ue4(Gg), which we shall denote by Re (Gs), and which is such

that it is regular (analytic) at eg = 0 and the map Rg := R, ‘ s =0 satisfies the
axioms of Sect. 2. In Eq. (3.6) we have already seen a kind of a pole subtraction,
but it only removes the singularity at |eg| = 0, while there can be singularities
at lesr] = 0 for S & S. On the other hand, outside the total diagonal Ag the
term with ﬁ singularity in (3.6) vanishes and we can apply (3.4) on the open
covering
U Q:S’;S" = MS\AS.

S=5"U8"isa

proper partition
Iterating this procedure we can expect that there are singularities related to every
partial diagonal in the large diagonal 85.

The decomposition of Ug(Gg) into singular and regular parts generally

should has the following form:

1
(41) Ues (GS) = Z ( H m Ressz(GS/)> Rs‘ﬂ (GS'/‘B> .
5-gartition

However, (4.1) is not quite explicit and we have to make it more precise (cf.
Eq. (4.4)). We start with explaining our notations. First of all, we assume
n (4.1) that Gg € Og has the form (2.1). Then Gg, for S’ € P are defined
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according to the unique decomposition:

(4.2) Gg = Gm . H Gy,

S'eP
where Gg € Og for S € P and Gy € Oy :=the subalgebra of Og generated by
all Op;py for j,k € S, j =g k. We introduce a similar splitting for the set eg:

es =epU |J esry les| = legl+ D les].
S ep S eP
Thus, we explained the meaning of Gg in Eq. (4.1). Concerning the meaning
of “Ggp”, Eq. (4.1) is not precise. We have instead a well defined function Gp.

S

supported on Ag, the function Gy will be “restricted” to a function on M S/
where the quotient S/P means S/ ~q. We shall identify S/9 with the subset of
S formed by the minimal elements of the sets S € B. Above, we put “restricted”
in quotation marks since this restriction will also include derivatives because of
the derivatives of the delta function. In more details, let us denote @é*,o = {u €
2'(M5/M) : suppu C {0}}, i. e., the linear span of all delta function §(xg)
and its derivatives. Then, for an S-partition B we set:

.@(/I;’O = ® .@fgzo.
S’ ep

Because of the presence of the product [] m%s,' Resg: (GS/) in (4.1), which is
rep

We have a unique linear map n.f.q (“normal form”):
n.f.qg : ﬁm & @%370 — ﬁg/qg & @;33,0 ,
(4.3) Tlfgp(Gfp@ H 5(r5/)(XS/)> = Z (Gs/m);(@ H 5(‘215/)()(5,/) .
S'ep q S eR

Let us give an example how (4.3) works: take S = {1,2,3,4}, B = {{1,2},{3,4}},
Gs = A(12)B(13)C(24)D(34), where A(jk) := A(xj —xg), ... Hence, Gy ) =
A(12), Gyzqy = D(34) and Gy = B(13)C(24). Then if we denote 6(jk) :=
0(xj — xx), 0'(jk) := Ox,;0(xj — xx), C'(jk) := 0y, C(x; — x1), we have:

Gy 6(12)6'(34) = B(13)C(13)6(12)8'(34) — B(13)C"(13) 6(12)5(34) .
Now, after the preparation we made above, the precise form of Eq. (4.1) is:
1 (_1)|rsl| rqr
Uey (GS) = Z ( H g Z — ress/(xsﬁ Gs/)

rgr.
Pis a S’ ep ro e NS'IE1 o
S—partition o 0

m (S ral(em)) T 5<qs/>(xs,>>.

S’ ep
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The terms in the sum in Eq. (4.4) that correspond to B = {S} and P = {{j}, c s}
—1)Irl
are: ﬁs‘ > ) ress(xg Gs) 5(r) (X5) = 50— ResS(GS) and R (Gs),

r! 2les|
reNPUsI-D
respectively. In particular, Eq. (4.4) can be used to define recursively Re  as

linear maps:

(4.5) Reg : Os — D5

for every finite set S of indices. Note also that the part of the sum in Eq. (4.4)
with || > 1 equals T¢,(Gg) in Eq. (3.6). We can summarize this section by the
following

Theorem 4.1. Equation (4.4) recursively defines linear maps (4.5) such
that every distribution Rey(Ggs) is reqular (analytic) at es = 0 and the map

Rs:=Reg .

The proof of the theorem is by induction in |S|. Here we just outline the
main steps: for [S| = 2 Eq. (4.4) reduces to Eq. (3.6) and R.,, = T.,,. For
|S| > 2 we take the difference of both sides, restrict it on a configuration space
Fyp = {(Xs)sgs € MS : xj #xy if j 2 k} corresponding to partition 9. Then,
using the properties (see [*], Appx. B) of Fy one shows under the inductive
hypothesis that the difference is zero.
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_o satisfies the axioms of Sect. 2.
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