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Abstract

In the context of the Nikolov-Stora-Todorov renormalization prescription,
we consider the notion of analytic residue of Feynman amplitude and propose
a recursive procedure for analytic renormalization in position space.
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1. Introduction. The notion of analytic renormalization has been intro-
duced by Speer [1,2]. It is based on the observation that multiplication of the
propagator ∆F , by ∆ε

F , for some small enough noninteger complex exponent ε,
gives a way for regularization of the Feynman amplitude. The analytic renor-
malization in [1,2] is carried out in momentum space (and uses a Schwinger-like
parametric representation).

In the work [3] (see also [4] for subsequent developments) of Nikolov, Stora
and Todorov was systematically developed a renormalization approach1 (later
we shortly refer to it as NST) in position space based on the techniques for
continuation of homogeneous distributions. The analytic regularization naturally
arises in the NST approach and is one of its pillars.

The current work is an addition to the NST approach, with regard to the
construction of the renormalization procedure in therms of analytic regularization.
In ([3], Sect. 5.2) the analytic renormalization for the 2-point amplitudes has been
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1for massless quantum field theories
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carried out. Using the condition for causal2 factorization (2.4), we propose (in
Sect. 4) an algorithm for subtraction of the divergences from a general Feynman
amplitude.

Basic notations: M is the Minkowski space, whose elements are denoted
by x = (x0, x1, . . . , xD−1), y, . . . . The scalar product in M is x · y := −x0y0 +
x1y1 + · · ·+ xD−1yD−1; x2 = x · x. The complexification of the Minkowski space
is denoted by MC = M + iM . Let S ⊂ N be a finite set. The Sth Cartesian
power of M (respectively MC) is denoted by MS (respectively MS

C ). The set

∆̂S :=
{
(xj)j∈S ∈ MS : xj = xk for some j, k 6= j ∈ S

}
is the large diagonal

in MS , while ∆S :=
{
(xj)j∈S ∈ MS : xj = xk ∀ j, k ∈ S

}
is the total diagonal

in MS .

2. Axiomatic requirements on the renormalization maps in Min-

kowski space. For a finite set S ⊂ N of integer labels we introduce an algebra
OS , which by definition is the linear span of all possible products of the form

(2.1) GS =
∏

j, k∈S

j <k

Pjk(xj − xk)(
(xj − xk)2

)Njk
=

∏

j, k∈S

j <k

Gjk

(
xj − xk

)
,

where Pjk(x) are homogeneous polynomials, Njk ∈ N0, Gjk(x) ∈ O2 = O{1,2}.
Also we set On := O{1,...,n} so, OS

∼= O|S|, where |S| stands for the cardinality of
S. The elements of OS model the Feynman amplitudes of massless QFT and for
the moment we consider them as meromorphic functions on MS

C .

In what follows we shall deal with translation invariant functions (distribu-
tions) on MS (or, on MS

C ), i. e. with functions (distributions) on MS/M , where
the quotient is taken with respect to the action of M on MS by translations
(xj)j∈S 7→ (xj + x)j∈S .

We can construct distributions from the elements of OS in various ways. One
way is by taking boundary values with respect to tube domains T~S ⊂ MS

C . Every

such tube T~S is defined for an ordered finite set S. We shall write ~S = (S,≺) =〈
j1, . . . , jn

〉
, for he set S = {j1, . . . , jn} equipped with a total order j1 ≺ · · · ≺

jn on it. For every such ordered set we have a standard backward tube domain
associated to ~S:

T~S :=
{
(xj)j ∈S ∈ MS + iMS : xjk − xjk+1

∈ M − iV+ for k = 1, . . . , n
}
,

where V+ is the open forward light-cone in M . We define a boundary value map
with respect to the tube T~S :

b.v.~S : OS → D
′
(
MS/M

)
=: D

′
S .

2See [5] for a survey on the relativistic causality and renormalization in position space.
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For GS (2.1) we have:

(2.2) b.v.~S GS :=
∏

j, k∈S

j <k

Pjk(xj − xk)(
(xj − xk)2 ± i0(x0j − x0k)

)Njk
, (±) =

{
(+) if j ≺ k,
(−) if k ≺ j

.

Let us note that the product in (2.1) is indexed with respect to the standard
order < coming from N. But, for taking the boundary value b.v.~S in (2.2) the

order ≺, that is assumed in ~S, plays an additional role and hence, the resulting
boundary values b.v.~S GS will be in general different distributions on MS/M

when we change this order ≺ on ~S. The maps b.v.~S can be used in fact, to
produce the Wightman functions of composite fields of any free Wightman fields.

Since if a boundary value of an analytic function vanishes on some open set,
then the function is zero everywhere, we have that b.v.~S : OS → D ′

S is an injection,
and also b.v.~S maps commute with the action of the differential operators with
polynomial coefficients. Another property of the boundary value maps is that
they preserve the multiplication,

b.v.~S
(
G′G′′

)
= b.v.~S

(
G′
)
b.v.~S

(
G′′
)
.

The renormalization gives rise to other linear maps (see [3], Sect. 5) of type
R : OS → D ′

S , which we shall axiomatically characterize here. Before that let
us note that the linear spaces OS and D ′

S form inductive systems in S ⊂ N and
hence, it is convenient to take the inductive limits:

ON =
⋃

S ⊂
finite

N

OS =
∞⋃

n=1

On , D
′
N =

⋃

S ⊂
finite

N

D
′
S =

∞⋃

n=1

D
′
n .

Then, a renormalization map is a linear map:

(2.3) R : ON → D
′
N , such that R

(
OS

)
⊆ D

′
S

and satisfies the axiomatic conditions (r1)–(r5) listed below.
(r1) Permutation symmetry. First, we have a natural action σ : ON → ON,

σ : D ′
N → D ′

N of the permutations σ ∈ S (N), thus it is appropriate to request
σ ◦R = R ◦ σ.

(r2) Preservation of the filtrations. The image R(GS) is an associate homo-
geneous distribution with a degree of associate homogeneity (as defined in [3],
Sect. 3.1) less or equal to the degree of homogeneity of GS .

(r3) Commutativity with multiplication by polynomials. If p is a polynomial
on MS/M (S ⊂ N), then R(pG) = pR(G).

(r4) Causality. For every disjoint union S = S′ ∪̇S′′ we have

(2.4) R
(
GS

)∣∣∣
CS′;S′′

= R
(
GS′

)
R
(
GS′′

)
b.v.−−−−→

S′ ∪̇S′′

(
GS′, S′′

)∣∣∣
CS′;S′′
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for every GS ∈ OS of the form (2.1). Our notations in Eq. (2.4) are the following:
CS′;S′′ is the open region:

CS′;S′′ :=
{(

xj
)
j ∈S

∈ MS : xj′ & xj′′ for j′ ∈ S′ and j′′ ∈ S′′
}

(the relation xj′ &xj′′ stands for xj′′ /∈ xj′ − V +); we consider some order on the

sets S′ and S′′ and equip S with an order denoted by
−−−−→
S′ ∪̇S′′ and induced by S′

≺ S′′; we also introduce the splitting

GS = GS′ GS′′ GS′, S′′ ,

GS′ =
∏

j, k∈S′

j ≺ k

Gjk , GS′′ =
∏

j, k∈S′′

j ≺ k

Gjk , GS′, S′′ =
∏

j ∈S′

j ∈S′′

Gjk .(2.5)

The right hand side of Eq. (2.4) is well defined due to the following (see [3],
Lemma 2.6):

Lemma 2.1. The product R
(
GS′

)
R
(
GS′′

)
b.v.−−−−→

S′ ∪̇S′′

(
GS′, S′′

)
of the three

distributions R
(
GS′, R

(
GS′′

))
and b.v.−−−−→

S′ ∪̇S′′

(
GS′, S′′

)
exists on MS/M .

(r5) Lorentz invariance. The map R : ON → D ′
N intertwines the natural

actions of the Lorentz group on ON and D ′
N.

This completes our general axiomatic requirements on the renormalization
map R in the Minkowski space.

3. Analytic regularization. The residue functional. For a finite index
set S ⊂ N let us introduce a collection of complex parameters

(3.1) εS =
(
εj,k ∈ C : (j, k) ∈ S×2, j < k

)
.

(For a convenience εk,j := εj,k.) We say that the parameters εS are generic iff
for every S′ ⊆ S:

2 |εS′ | /∈Z , where |εS′ | :=
∑

j, k∈S′; j < k

εj,k .

Now, let us set

(3.2) ̺S :=
∏

j,k∈S;j<k

(
(xj−xk)

2
)εj,k

Note that the function ̺S is not in OS . The product (3.2) can be understood
as a well defined analytic function on every tube domain T~S , yet one has to be

careful since ̺S depends on the tube T~S (when we change the order in ~S). Note
that when we take a boundary value of the product (3.2) with respect to T~S we
obtain:

(3.3) b.v.~S ̺S=
∏

j,k∈S

j<k

(
(xj−xk)

2±i0(x0j−x0k)
)εj,k=

∏

j, k∈S

j ≺ k

(
(xj−xk)

2+i0(x0j−x0k)
)εj,k ,
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where the (±) convention in (3.3) is the same as in Eq. (2.2) and the second
equality is due to the formal symmetry of the product (3.2).

Theorem 3.1. For every GS ∈ OS of the form (2.1) with homogeneous
polynomials Pjk and for every generic set of parameters εS there exists a unique

homogeneous distribution UεS

(
G
)
∈ D ′

S such that

(3.4) UεS

(
GS

)
CS′;S′′ =UεS′

(
GS′

)
UεS′′

(
GS′′

)
b.v.−−−−→

S′ ∪̇S′′

(
̺S′,S′′GS′,S′′

)
CS′;S′′ ,

where ̺S′,S′′ :=
∏

j ∈S′; k∈S′′

(
(xj − xk)

2
)εj,k and we follow the same conventions as

in (r4). The map UεS
extends to a linear map UεS

: OS → D ′
S and UεS

(GS)
depend analytically on εS for generic values of the parameters εS.

Proof. The proof is by induction in |S| and we briefly outline it here. Let
|S| = 2 and take S = {1, 2}, G ∈ O2. Then Eq. (3.4) reads

(3.5) Uε1,2

(
G
)∣∣∣
C1;2

=b.v.〈1,2〉
(
̺{1,2}G

)∣∣∣
C1;2

, Uε1,2

(
G
)∣∣∣
C2;1

=b.v.〈2,1〉
(
̺{1,2}G

)∣∣∣
C2;1

.

One checks that the right hand sides of Eqs. (3.5) coincide on the intersection
C1;2 ∩ C2;1. Hence, Eqs. (3.5) define a translation invariant distribution on C1;2 ∪
C2;1. But C1;2 ∪ C2;1 = M×2 \∆2, where ∆2 is the total diagonal {x1 − x2 = 0}.
Taking into account the translation invariance we obtain by (3.5) a distribution
•

U ε1,2(G) on
(
M×2 \∆2

)
/M ∼= M\{0}, which by construction is homogeneous of

degree degG+2ε1,2 if the degree of homogeneity of G is degG. Thus, according

to the results of ([6], Sect. 3.2),
•

U ε1,2(G) extends uniquely to a homogeneous
distribution Uε1,2(G) on M if 2ε1,2 is noninteger. This proves the basis of our
induction.

Aside from some technicalities, the proof of the induction step is essentially
the same as the proof of the base case. �

By the construction in ([6], Sect. 3.2) of extension of homogeneous distri-
butions of noninteger degree of homogeneity it follows that UεS

(GS) will have a
simple pole at |εS | = 0. Thus, we can write

(3.6) UεS
(GS) =

1

2|εS |
ResS(GS) + TεS

(GS),

where ResS(GS) is a distribution supported at the origin 0 ∈ MS/M and TεS
(GS)

is analytic at |εS | = 0 if |εS′ | is noninteger for all S′ $ S. Hence, we obtain a
linear map

(3.7) ResS : OS → D
′
S ,

which we call a residue of GS ∈ OS . By the uniqueness of the extension of
distributions of noninteger degree of homogeneity we obtain also that for every
polynomial pS on MS/M :

UεS

(
pS GS

)
= pS UεS

(GS) ,(3.8)
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which further implies (see [3], Eq. 4.13) the following expansion of ResS :

(3.9) ResS
(
GS

)
=

∑

r∈ND(|S|−1)
0

(−1)|r|

r!
resS

(
xr

S GS

)
δ(r)(xS) .

In (3.9) we use the following notations: xS stands for some fixed set of linear
coordinates in MS/M ∼= M×(|S|−1); δ(xS) is the delta function with respect to
the coordinates xS , and hence, its support is at xS = 0, which is the total di-

agonal ∆S ; r is a multiindex and we set xr

S :=

D(|S|−1)∏

ξ=1

(xξ)rξ and δ(r)(xS) :=

D(|S|−1)∏

ξ=1

(
∂

∂xξ

)rξδ(xS) if we enumerate the components of xS and r with a sin-

gle index ξ = 1, . . . , D(|S| − 1), i.e., xS := (xξ) and r = (rξ). Thus, we have
characterized the residue map (3.7) just by one linear functional

resS : OS → C .

Note that resS is of degree D(|S| − 1), i. e., it vanishes if degG+D(|S| − 1) 6= 0
since the delta function δ(xS) has a homogenous degree −D(|S| − 1).

4. Renormalization and pole subtractions. Our goal now is to extract
a regular part in UεS

(GS), which we shall denote by RεS
(GS), and which is such

that it is regular (analytic) at εS = 0 and the map RS := RεS

∣∣∣
εS = 0

satisfies the

axioms of Sect. 2. In Eq. (3.6) we have already seen a kind of a pole subtraction,
but it only removes the singularity at |εS | = 0, while there can be singularities
at |εS′ | = 0 for S′ $ S. On the other hand, outside the total diagonal ∆S the
term with 1

|εS |
singularity in (3.6) vanishes and we can apply (3.4) on the open

covering ⋃

S = S′ ∪̇S′′ is a
proper partition

CS′;S′′ = MS\∆S .

Iterating this procedure we can expect that there are singularities related to every
partial diagonal in the large diagonal ∆̂S .

The decomposition of UεS
(GS) into singular and regular parts generally

should has the following form:

(4.1) UεS

(
GS

)
=

∑

P is a
S–partition

(
∏

S′ ∈P

1

2|εS′ |
ResS′

(
GS′

)
)
RεP

(
GS/P

)
.

However, (4.1) is not quite explicit and we have to make it more precise (cf.
Eq. (4.4)). We start with explaining our notations. First of all, we assume
in (4.1) that GS ∈ OS has the form (2.1). Then GS′ , for S′ ∈ P are defined
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according to the unique decomposition:

(4.2) GS = GP ·
∏

S′ ∈P

GS′ ,

where GS′ ∈ OS′ for S′ ∈ P and GP ∈ OP := the subalgebra of OS generated by
all O{j,k} for j, k ∈ S, j ≁P k. We introduce a similar splitting for the set εS :

εS = εP ∪
⋃

S′ ∈P

εS′ , |εS | = |εP|+
∑

S′ ∈P

|εS′ | .

Thus, we explained the meaning of GS′ in Eq. (4.1). Concerning the meaning
of “GS/P”, Eq. (4.1) is not precise. We have instead a well defined function GP.

Because of the presence of the product
∏

S′ ∈P

1
2|εS′ |

ResS′

(
GS′

)
in (4.1), which is

supported on ∆P, the function GP will be “restricted” to a function on MS/P,
where the quotient S/P means S/ ∼P. We shall identify S/P with the subset of
S formed by the minimal elements of the sets S′ ∈ P. Above, we put “restricted”
in quotation marks since this restriction will also include derivatives because of
the derivatives of the delta function. In more details, let us denote D ′

S,0 :=
{
u ∈

D ′
(
MS/M

)
: suppu ⊆ {0}

}
, i. e., the linear span of all delta function δ(xS)

and its derivatives. Then, for an S-partition P we set:

D
′
P,0 :=

⊗

S′ ∈P

D
′
S′,0 .

We have a unique linear map n.f.P (“normal form”):

n.f.P : OP ⊗ D ′
P,0 → OS/P ⊗ D ′

P,0 ,

n.f.P

(
GP ⊗

∏
S′ ∈P

δ(rS′ )
(
xS′

)
)

:=
∑
q

(
GS/P

)
r

q
⊗

∏
S′ ∈P

δ(qS′ )
(
xS′

)
.(4.3)

Let us give an example how (4.3) works: take S = {1, 2, 3, 4},P =
{
{1, 2}, {3, 4}

}
,

GS := A(12)B(13)C(24)D(34), where A(jk) := A(xj − xk), . . . . Hence, G{1,2} =
A(12), G{3,4} = D(34) and GP = B(13)C(24). Then if we denote δ(jk) :=
δ(xj − xk), δ

′(jk) := ∂xjδ(xj − xk), C
′(jk) := ∂xjC(xj − xk), we have:

GP δ(12)δ′(34) = B(13)C(13) δ(12)δ′(34) − B(13)C ′(13) δ(12)δ(34) .

Now, after the preparation we made above, the precise form of Eq. (4.1) is:

UεS

(
GS

)
=

∑

P is a
S–partition

(
∏

S′ ∈P

1

2|εS′ |

∑

rS′ ∈N|S′|−1
0

(−1)|rS′ |

rS′ !
resS′

(
x
rS′

S′ GS′

)
)

×

(
∑

q

RεP

((
GS/P

)
r

q

) ∏

S′ ∈P

δ(qS′ )
(
xS′

)
)
.(4.4)
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The terms in the sum in Eq. (4.4) that correspond to P = {S} and P =
{
{j}j ∈S

}

are: 1
2|εS |

∑

r∈ND(|S|−1)
0

(−1)|r|

r! resS
(
xr

S GS

)
δ(r)(xS) =

1
2|εS |

ResS
(
GS

)
and RεS

(
GS

)
,

respectively. In particular, Eq. (4.4) can be used to define recursively RεS
as

linear maps:

(4.5) RεS
: OS → D

′
S

for every finite set S of indices. Note also that the part of the sum in Eq. (4.4)
with |P| > 1 equals TεS

(GS) in Eq. (3.6). We can summarize this section by the
following

Theorem 4.1. Equation (4.4) recursively defines linear maps (4.5) such

that every distribution RεS
(GS) is regular (analytic) at εS = 0 and the map

RS :=RεS

∣∣∣
εS = 0

satisfies the axioms of Sect. 2.

The proof of the theorem is by induction in |S|. Here we just outline the
main steps: for |S| = 2 Eq. (4.4) reduces to Eq. (3.6) and Rε1,2 = Tε1,2 . For
|S| > 2 we take the difference of both sides, restrict it on a configuration space
FP :=

{
(xs)s∈S ∈ MS : xj 6= xk if j ≁P k

}
corresponding to partition P. Then,

using the properties (see [3], Appx. B) of FP one shows under the inductive
hypothesis that the difference is zero.
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