rrrrrrrrrrr

i R

0 1160 003988k 1

SDC
SOLENOIDAL DETECTOR NOTES

Top-Down Design of a Prototype VME Slave Interface

September 10, 1993

Elise Y. Tung
Lawrence Berkeley Laboratory

i W%&

SDC-93-584

September 10, 1993

Top-Down Design of a Prototype VME Slave Interface

Elise Y. Tung
Lawrence Berkeley Laboratory

1. Abstract

This technical report discusses the design of a simple VMEDbus slave interface board using state-
of-the-art software tools. Since VMEDbus-based circuit cards are widely used within SDC, the
ability to quickly design an interface board that is functional, reliable and portable is extremely
important. The unique feature of this design is that a top-down design methodology was
employed, and many industry standard tools were used for design and simulation so that design
flaws could be located and corrected early in the design process and technology obsolescence
could be prevented. The main goal of this design was to experiment with new software design
tools and create a path for future designs, so the interface board was simplified significantly
compared to a full VMEbus slave implementation. The slave interface design will be enhanced in
the near future.

2. Introduction

The idea of top-down design is to start working from the top-level module, and then divide this
module into a series of functional blocks and interfaces between each functional block. Each
functional block can then be divided into even smaller modules depending on how complex the
bottom level functional blocks are desired to be. By establishing a hierarchical structure, the logic
of the design is much more simplified, thus design correctness is easily obtained.

Mentor Graphics Corporation suite of EDA (Electronic Design Automation) tools and IEEE
Standard 1076-1987 VHDL (VHSIC Hardware Description Language) were used in the design
of the VMEbus Slave Interface Board. By using industry standard tools as a common design
database, the design can be easily maintained throughout its life cycle. Moreover, having each
module written in VHDL code prevents parts obsolescence and made the design portable to any
system. Employing Mentor Graphics Corporation's simulation tools (Quicksim IT) and Logic
Modeling Corporation's VME Simulation model also enables complete simulation of the design
at both the system and component level.

3. Design Specification
The design specifications for the VMEDbus slave interface board are as follows:
a) A24 (23:1) Address Bus line and D16 (15:0) Data Bus line

Slave I/O data transfers using DO8(EQO), D16
Supports READ, WRITE, and RMW operations

-1-

b) Upper 5 bits on Address Bus are board address specified from the Master
board, a 5-bit dip-switch is the slave board's selectable board address

¢) 13 chip select fields, 1-7 active low, 8-13 active high

d) interface to memory

In addition to the hardware specifications, LED readouts are added for testing. These readouts
include LED indicators for Board Select (bs) and one of the general purpose chip selects and
several HexDisplays to show data on the data bus lines.

4, Circuit Description
4.1. Operational Overview

The design of the slave interface controller is based on "THE VMEbus SPECIFICATION --
conforms to: ANSI/IEEE STD1014-1987 IEC 821 and 297." The IEEE1014-87 standard
specifies a high-performance backplane bus for use in microcomputer systems that employ single
or multiple microprocessors so that data can be transferred between functional modules. A
master is a functional module that initiates data transfer bus (DTB) cycles, while a slave is a
functional module that detects data transfer bus (DTB) cycles and, when those cycles specify its
participation, transfer data between itself and the master.

The VMEDbus slave interface controller responds to signals on the VMEbus, generates on-board
control signals correspondingly, and finally issues signals to the master on the VMEDbus to fulfill
the handshaking protocol.

There are six modules in the interface system:

1) Address Modifier(AM) Decoding Module (am_dcd)
2) Board Address Decoding Module (brd_dcd)

3) Chip Select Control Module (cs_ctl)

4) Read/Write Interface Module (mem_st_ctl2)

5) Transceiver Control Module (xvr_ctl)

6) Data Acknowledgment Module (dtack_ctl)

Whenever there is a bus cycle initiated by the master, the VME slave interface will first check if
the data transfer (short, standard or extended) is supported by the interface. The interface will
then check that the board address on the address bus matches the interface board address. After
passing this check, the interface will decode the addresses on the address bus to enable one of the
chip selects. Once data transfer has been accepted by the slave, the slave interface will assert the
Data Acknowledgement (DTACK) signal to acknowledge the master. The master will finish the
cycle by deasserting the data strobe signal(s). When the slave detects this change on the data
strobe, it will deassert DTACK to finish the bus cycle and fulfill the handshake mechanism.

An overall view of the interface board is shown in figure 1. The block diagram of the interface
controller is shown in figure 2.

4.2 Address Modifier(AM) Decoding Module (am_dcd)

The VMEDbus implementation residing on the board is capable of operating with the following
Address Modifier (AM) codes:

_______'<}__/W\,_____O bs_led*

——K}—wWA——op led*
74L8244A-1 A A
am(5:0) 38 dtack*

e T | NAND >
oast BUF siackout
lack*®

_—
74LS244A-1 > csbus(13: 1
_ 2 on disp
1W0rd* —_ VME HEX /en— lsp
gs‘l): — DISP
S
wite* ——> SLAVE =
. we ISRAM
pSw S
74.5244A- 1 , = |adr(11]1)
adr(23:16) INTERFAC -
> adr(23:]19) 1415245
74L8244A~ 1) Jl msb*
adr(15:8) || pdr(18:114) dir > XVR
: 74L5244A- 1) fadr(1) |
adr(7:1) a N 7415245 P . dbus(15:0)
1sh* D
—>1 XVR
adr(23:1)

Figure 1. An overall view of the interface board

am_dcd

>

=

=

an(5 0> n(s 0
reset sset
|aCk N 1ackin valid
as jas 1ackout
brd_ded
Jd- -4 B Jack el
dpsuw(4 O[> psu(4 0) ~
aset Ltrsest cack
a2 >— N I
a V ctd b)
a
a mem_si_oi2
a cs_ctt ropack stata (2 B
.t
CS-“OU wits -
a 3 el o
a led > ceclend
a{g -'*4 o e
a en_dis olk coh
cs; [
dr_in(3 8) csb
eset ;;3‘
n cs2
H csl
xvr_ctl
rw[> u
aset
lword> Iuord
S 51 nsb
s0 Isb]
6 61 dir
clk>
— Figure 2. Block diagram of the inte~*=ce controller

dtack

tp_csflag
tp_cyclend

tp_statecnt(2 0

82%

Cs
Ccs
Cs

n—3
—w
200

Table 1. Supported Address Modifier codes

F AM Codes (AMS5-AMO0)] Function
3E (HEX) Standard Supervisory Program Access

3D (HEX) Standard Supervisory Data Access
3A (HEX) Standard Nonpriviledged Program Access
39 (HEX) Standard Nonpriviledged Data Access

The am_dcd module checks whether the data transfer (short, standard or extended) is supported
by the interface. The design only supports standard data transfer so the AM codes can only be
3E, 3D, 3A, 39. If the AM codes are valid, the am_dcd module will send a "valid" signal to
Board Address Decoding Module to proceed. If the AM codes are not supported by the
interface, it will deassert the "valid"” signal so that the board won't respond to the master's
request. See the appendix for the VHDL code.

4.3 Board Address Decoding Module (brd_dcd)

The brd_dcd module ensures the board address on the address bus matches the slave board's base
address. Address bits 19-23 on the address bus are the board address. The slave's board address
is set by 5 bits on a dip switch. If the addresses match, the brd_dcd module will send a Board
Select (bs) signal to the Chip Select Control Module to enable its function. See the appendix for

the VHDL code.
4.4 Chip Select Control Module (cs_ctl)

The cs_ctl module will start decoding the address bus once the enable signal from brd_dcd is
received. Address bit 15-18 are used for decoding purposes. Table 2 shows the decoding table.

Table 2. decoding table
cs \ bit 18 17 | 16 15 active
\en_disp 1 1 1 1 L
\en_ram 1 1 1 0 L
csl3 1 1 0 1 H
csl2 1 1 0 0 H
csll 1 0 1 1 H
csl10 1 0 1 0 H
cs9 1 0 0 1 H
cs8 1 0 0 0 H
\cs7 0 1 1 1 L
\cs6 0 1 1 0 L
\cs5 0 1 0 1 L
\cs4 0 1 0 0 L
\cs3 0 0 1 1 L
\cs2 0 0 1 0 L
\csl 0 0 0 1 L
\led 0 0 0 0 L

En_ram enables the SRAM Interface Module for read and write cycles to the SRAM. Other
chip select signals are for future board enhancements and testing. See the appendix for the VHDL
code.

4.5 READ/WRITE Interface Module (mem_st_ctl2)

The mem_st_ctl2 module manages the VMEDbus accesses for the following normal slave I/O
transfers: READ, WRITE, READ-MODIFY-WRITE.

The mem_st_ctl2 module uses an external clock (originally assumed to be at 33ns clock period
when writing VHDL codes) to set the control signals of the SRAM -- Chip Select (CS), Write
Enable (WE), Output Enable (OE). The three signals are set during different clock periods using
the timing information of IDT 6116SAS55 so that they will meet all the setup and hold times to
ensure reading the right data from or writing the right data to the SRAM. Both read and write
cycles take three clock cycles to finish.

A VHDL implementation of a Moore State Machine is used to control the CS, WE and OE
signals. There is one reset state, three states for the READ cycle and three states for the WRITE

cycle:

RESET state:

When either data strobes (ds0, ds1) is high, the state machine goes to state 0. OE, CS are
disabled, and WE is set to read. Cycl_end flag is unset.

READ cycle:

Since Tacs(Chip Select Time) is at most 50 ns, it takes 2 clock cycles to finish the
READ(state 1, state 2). Cycl_end flag is set in state 3 to finish the cycle.

WRITE cycle:

Since Tcw(Chip Select to End of Write) is about 40 ns, it takes 2 clock cycles to finish the
write(state 4, state 5). Cycl_end flag is set in state 6 to finish the cycle.

The mem_st_ctl2 module also takes care of the bus events which do not require access to the
SRAM. In these cases the state machine will jump from reset state(stateQ) directly to the end
cycle state(state6) which will set the Cycl_end flag.

The block diagram for the Moore State Machine used in the READ/WRITE interface module is
shown in figure 3. See the appendix for the VHDL code.

present_state

output
next_statg™
. State State Output Output ——{ >
Input Decode Register Decode Register
[>——1 Logic Logic

(state transitions) (synch) {outpt_decode) (outpw_c3)

Figure 3. Block diagram for the Moore State Machine in R/W interface module

4

4.6 Transceiver Control Module (xvr_ctl)

The transceiver control module is used to control which byte, the most significant byte (msb) or
the least significant byte(Isb), to choose when receiving from or sending data to the data bus.
The choice is made based on the data strobes(ds1, ds0), the address bit 1(a01) and lword. (See

table 3)

Table 3. control table of signals msb, Isb

dsl ds0 a0l lword msb 1sb
0 1 0 1 0 1
0 1 1 1 0 1
1 0 0 1 1 0
1 0 1 1 1 0
0 0 0 0 0 0
0 0 1 1 0 0

Note: 1) ds1, dsO, lword, msb and Isb are all active low.
2) Other values of ds1, ds0, a01, lword will have both msb and Isb disabled. (msb="'1', 1sb
= Ill)

This design supports single-byte and double-byte access only. Unaligned data access is not
supported.

Single-byte access: BYTE(0), BYTE(1), BYTE(2), BYTE(3)

Double-byte access: BYTE(0-1), BYTE(2-3)

See the appendix for the VHDL code.
4.7 Data Acknowledgement module(dtack_ctl)

Since bus error control is not supported in this design, it makes the dtack_ctl module very simple
to implement. Whenever the cycl_end flag is set by the READ/WRITE interface module, the
dtack_ctl module will enable the Data Acknowledgement (DTACK) signal as long as the reset
signal from the front panel is deasserted. This is to acknowledge that the slave has responded to
the bus cycle initiated by the master so cycle can be finished. See the appendix for the VHDL
code.

5. Hardware Description

The slave interface controller was targeted into a CrossPoint FPGA (CP20420-155CPGA).
Besides , there are two IDTSA55 CMOS SRAMs on the board. Each SRAM can hold 16K (2K
x 8 bit) of data. Bits 1to 11 on the Address Bus are connected to each SRAM's address bits. The
8 bit data lines of each SRAM are connected to the D16 Data Bus , one SRAM connected to bits
8-15 and the other connected to bits 0-7.

There are buffers for all the signals on the VME bus. All the drivers and receivers are chosen
from the VME bus specification's suggestion list.

DS <>

g
13
]

vee

CROSSPOINT
CP20428-155CPCA

BEREEREE

= CELERITRES

e o
2
=

o
had
o
m
-

'—"/V{PULLW

]

=
]

N3

N

/otipo/SinAralirmgell

EEXREX
DD bl e Lt

BREEEEE Wi
3

=3
&
bat
fat
=4

h
M
n
™
Y
™
£
n
£

=EELERIGREE

BEBREEBE

T

il
F_

&
Y

B
3
3

dpeu(4 0)

NN NN N

ey

oniow (e lve loe

-4 -]
;
3

¥ BRAN

T

/e

2 3:-3 3:21.3.3.1

=

NN

L

b3
a
o

:

¥
3333

REXE
!ia!

B
=
3
=

A2 1>

vee

il

I

W

i

Sande

he i)

223 1)

D+

LA

e

2
=

Figure 4. Connections between contro™ship and registers

>
2 PULLUP

Rl

=

.emnyslid

gb?géﬂ 1)

en_disp

TN
{E:DD—-——{[:DO————D TACKOuT

DTACK

741.8245: transceiving the lines D00-15

741.5244: driving or receiving the lines A0O1-A31, AM0O-AMS, IACKIN, LWORD,
WRITE

74S38: driving the lines DTACK, IACKOUT

There is one RESET switch on the board's front panel, which will generate a reset signal(active
low) when pressed. This resets the signals of the entire board. There is also a 5-bit dip switch on
the board to select the board's base address.

A schematic of the hardware on board is shown in figure 4.
6. Using Software in the Design Process

VHDL implementation is used to model each functional block. Since it is much easier dealing
with the logic of the functional block instead of the gate-level implementation, writing VHDL
codes has saved a lot of time and effort. For example, the cs_ctl module is a circuit of over
seventy gates but it only takes less than a hundred lines of VHDL codes to describe the logic of
this module. After using the Mentor Graphics Corporation (MGC) QuicksimlI tool to simulate
the compiled VHDL code, the logic for that functional block is guaranteed to work, only leaving
the timing aspect of the functional block to be inspected. The compiled VHDL codes are
synthesized into the general library gates by MGC's Autologic tool and are then optimized using
CrossPoint's technology file. All the timing and area requirements are taken care of in the
process of optimization.

In order to check if the slave interface design is working precisely according to the VMEbus
specification, Logic Modeling Corporation (LMC)'s VME SimuBus is used as a master model in
the simulation to generate the bus cycle. Also, LMC's SRAM model is used as the memory
device in the simulation. So before the design is turned into a CrossPoint FPGA chip, a
comprehensive simulation has been done to ensure that it works.

The simulation diagram is shown in figure 5. Figure 6 shows the traces generated in the
simulation and figure 7 is a closer view of the trace diagram.

7. Performance:

All single-byte accesses and double-byte accesses are tested to be fully functional. Using the
internal clock at 20ns clock period for the READ/WRITE interface module, the time from when
the first Data Strobe falls low to when the Data Acknowledgment falls low is about 90 ns. Since
it takes 3 clock cycles in the READ/WRITE interface module, the time taken from when the
master generates a bus cycle to when the slave finishes address decoding is only around 30 ns.

Having designed this basic interface, many other more complicated VME interfaces can be
easily derived from it. Since VHDL is an industry standard and is technology independent, the
design is portable to all systems and can be developed into a gate-level implementation using
different technologies. Further enhancement can be easily made by slightly modifying the VHDL
codes for the specific module.

it AT
L HIE -!]5[1 -!! sny
I_! 11 l! r][
s reann il]
RO L
R] nrs
= =
i TTTI I TITITT 1T T TI I TITT,
R R
1 nn
£
—1_ >
<
i £ b Aﬁt 000 3_1 NN
»«*"‘.\\&

Fiqure 5. SIM"™ "1ON DIAGRAM

“ M L LT
W | read write read r mw/ read read ____J
el ik L L
am(5:0) Y3:\3p 3 €7 (32 X>[3A (38)039 130 J(Xm X3F
4s0] | . ||
P G (1 o {3 a0 0} B e om V3 B O D O N O
e L L L L
Ly L L L
cesl | L__l u [___l . L_,
v L] L
S S O s Yy Y e Y o A O
S | | _l L]
R T D O €)@z e aokea G)00 e i edee i NrKna Yo o Yoz
A0 Wiz Yx X Vs Xxz z Xo - Xxz X oxa Y15 Yxe
esl3 I
csT | : ‘ |]
en_disp |]
dtalckojo 1;110 0 - 680 lo_, LoJo 0 = csol__o—l |—17100 ;L_J 17140 oL—J 2380.0

Time(ns)

Figure 6

O]]

W

read write read

w1 1 T T

an($:0) Ve Y3 X Yaa { [aa @ &

ds(?_r'—""—“ . -_—]’_ |

clk

tp_statecnt (2:0) o 12Xz Yo o6 e o Xae s Yo

1312x3 0 4 X5
ce _ [T
csh _ | - - l
csl _ | I l
v i | ' |

[]

I —

1sb w____l

a(15:8) W Xzz Yo Y7 Yas \xz Xx X35 Xxe

Xx

80

Xxz Xx

d”:O)XX’E kYoo Yes Yxz Xx Yes Xxe

X0

Xxz

csl3
cs?]
en_disp |
dtack | [
0.0 180.0 360.0 . 540.0 720.0 900.0 1080.0 1260.0
Tima(ns)

Figure

mem_st_ctl2.vhdl_28

cycl_end_tmp <= ‘0’;
WHEN 85 => we_thp <= ‘0'; -- idle
cs <= '0';
oce_tmp <= ‘1’';
cycl_end_tmp <= '0°;

WHEN 86 =» we_tmp <= ‘1'; ~-- End of Write
cs <= ‘1';
oe_tmp <= ‘1’
cycl_end _tmp <= "1';
END CASE;

END PROCESS output_decode;

output_cs: PROCESS (clk)
BEGIN
IF (clk’LAST_VALUE = ‘1“ AND clk = ‘0‘) THEN
csh <= c¢s OR msb;
csl <= ¢s OR 1lsb;
we <= We_tmp;
ce <= oe_tmp;
cycl_end <= cycl_end_tmp;:
END IF;
END PROCESS output_cs;

END behave;

Acknowledgment

I would like to acknowledge in particular Stephen Wunduke of the SDC group, Lawrence
Berkeley Laboratory, for his time, teaching, and advice. I would also like to thank other members
of the SDC group in Lawrence Berkeley Laboratory, without whose help this project could not
have been completed: Scott Dow, Richard Jared, Frederic Kral, Michael Levi, Robert Minor, Phil
Smith. Finally, I would like to thank the University of California at Berkeley Engineering
Cooperative Program for the opportunity to participate in the SDC project.

P AR S R s e R R S S AR A s e SRR R RS R s e e R R R R RS T T YR TSTE)

-~ Copyright University of California - Berkeley (LBL) 1993
-- All rights reserved

-~ Author: Elise Tung
-~ Date Created: April 1993
-- Revision: May 14 1993

-- Module Name: am_dcd

-~ Module Description: This module is an AM decoder. It is used to check if the AM
- signals on the VME bus are set to do standard data transfer

-- {excluding block transfer). If AM signals are set correctly,
-- signal *valid" will be set (active high); else *"valid® will be
-- unset .

-- Module Inputs:

- am => AM(S5 to 0) on Dbus

- reset => active low, asynchronous reset signal

- as => address strobe

-- iackin => interrupt acknowledgement in signal, will reset process

-- Module Outputs:

- valid => indicate if AM signals are set to do standard data transfer(D24

-- iackout => interrupt acknowledgement out signal
PO AR AR RS R A e e R RS AR S AR RS SR s R e A e s e R A R AR T R R R LSRR SR

LIBRARY mgc_portable;
USE mgc_portable.gsim_logic.all;

ENTITY am_dcd IS

PORT { reset : IN gsim_state; . -~ active low
am : IN gsim_state_vector(5 downto 0);
as : IN gsim_state; -- active low
iackin : IN gsim_state; ~- active low
iackout : OUT gsim_state; -- active low
valid : Out gsim_state); -- active high
END am_dcd;

ARCHITECTURE behave OF am_dcd IS
SIGNAL mst_clr: gsim_state;
SIGNAL validl: gsim_state;
BEGIN
iackout <= iackin;
mst_clr <= iackin AND reset; -- either iackin or reset will reset the system
decode: PROCESS{mst_clr, as)
BEGIN
IF (mst_clr = '0') THEN
validl <= '0';
ELSIF (as’EVENT AND as = ‘0’ AND as’LAST _VALUE = ’1‘) THEN
CASE am IS
~-- standard transfer
WHEN *111110* | *111101* | *111010* | *111001*=>
validl <= *1’;
WHEN OTHERS => validl <= ‘0';
END CASE;

~- reset

N

am_dcd.vhdl_22

END IF;
END PROCESS decode;

-~ use a 2nd process so that *AM" is only decoded on falling edge of "as" and
-~ valid will keep unset after disasserting reset, even though "as* is asserted
decode2: PROCESS{as, validl)
BEGIN
IF {as = *'1') THEN
valid <= ‘0/;
ELSE
valid <= validl;
END IF;
END PROCESS decode2;
END behave;

dtack_ctl.vhdl_16

e AR A A S A s a SR A R SRS R iR Rl s R e R R R R R R R A e e RS A R R s RS Y]

-- Copyright University of California - Berkeley (LBL) 1993
-- All rights reserved

-~ Author: Elise Tung
~- Date Created: April 1993
-- Revigion: May 14 1993

-- Module Name: dtack_ctl

-~ Module Description: This module is to control the dtack(data transfer

- acknowledgement) signal én the VME bus. *dtack® will be

- asserted or dissasserted depending on the "cycl_end* signal
-— from mem_st_ctl module

~~- Module Inputs:

- reset => active low, asynchronous reset signal
-- cycl_end => active high, used to set dtack signal

-- Module Outputs:

- dtack => active low
S A2 S R R e e R A R R R e R T e R e T R AT RS

LIBRARY mgc_portable;
USE mgc_portable.gsim_logic.all;

ENTITY dtack_ctl IS

PORT (reset : IN gsim_state; -- active low
cycl_end : IN gsim_state; -~ active high
dtack : OUT gsim_state); -- active low

END dtack_ctl;

ARCHITECTURE behave OF dtack_ctl IS

BEGIN
ack_proc: PROCESS(reset,cycl_end)
BEGIN
IF (reset = '0') THEN ~- reset asserted, or bs disserted
dtack <= "1';
ELSE -- dtack disserted when cycl_end disserted
dtack <= NOT cycl_end; -~ dtack active low

-- c¢ycl_end active high
END IF;
END PROCESS ack_proc:
END behave;

mem_st_ctl2.vhdl_28

e KRR KA AN I A AT AR A IR bR AR AR AN R AR AN TN IR NI AN F R TA A TR AR NI h TR A IR IR RN A I TN AR TR dhx SIGNAL ¢s: qsim_state; -~ tmp chip select of SRAM
- SIGNAL we_tmp, oe_tmp, cycl_end_tmp: gsim_state; -- tmp signals
-~ Copyright University of California - Berkeley (LBL) 1993 BEGIN ,
-- All rights reserved reset <= dsl NAND ds0; -- either one of the data strobe drops low will start
-- -~ the operation; both of them have to go high to stop
- -- the operation.
-~ Author: Elise Tung
-~ Date Created: April 1993 synch: PROCESS (clk, reset})
-- Revision: May 7 1993 : BEGIN
-- IF (reset = '0') THEN
- present_state <= s0;
-~ Module Name: mem_st_ctl2 -- clock period assumed to be 30ns
- ELSIF {clk‘LAST VALUE = '1' AND clk’EVENT AND clk = '0’) THEN
- -- assume clock or cs_ram are disabled once cycle ends
-~ Module Description: This module is a Moore machine to control read/write from a IF (cs_flag = ’"1’) THEN -~ no need to invoke cycle, so
-- memory device. The states are based on the timing reguirement present_state <= s6; -- only Set cycl_end
-- of read/write of IDT SRAM 6116SA55. The clock period is ELSIF (cs_ram = ’0’) THEN
- assumed to be 30 ns. present_state <= next_state;
- ELSE
-- Module Inputs: present_state <= s0;
-- END IF;
-- ds0, dsl => data strobe 0, 1; active low END IF;
-- write => read/write; high--read; low--write END PROCESS synch;
- c¢s_ram => enable signal from the cs_ctl module indicating thée master is
- trying to do a r/w from the SRAM, active low state_transitions: PROCESS (present_state, write)
-- cs_flag => signal from the cs_ctl module. When it is set, it indicates BEGIN
-~ that the master chose other chip select signals, not cs_ram, CASE present_state IS
-- clk => 30 ns period. Used for state transistion in read/write operation WHEN s0 => CASE write IS :
-- 1sb => control signal for least significant byte WHEN "1’ => next_state <= sl; -~ read
~- msb => control signal for most significant byte WHEN others => next_state <= s4; -~ write
~- Module Outputs: END CASE;
- WHEN sl => next_state <= s2;
- csl => chip select of SRAMO, active low WHEN 2 => next_state <= s3;
- csh => chip select of SRAM1, active low WHEN s3 => next_state <= 83;
- oe => output enable of SRAM, active low WHEN s4 => next_state <= s5;
- we => write enable of SRAM, active low WHEN s5 => next_state <= s6;
-- cycl_end => signal to dtack_ctl module to indicate cycle ends, active high WHEN s6 => next_state <= s6;
-- END CASE;
e AR R R AR RS s RA RS SRR R R SRS R E EEeEE E E EE R S RS R E SRS AR SRS RRRRRRSR s ss S END PROCESS State_transitions:
LIBRARY mgc_portable; output_decode: PROCESS (present_state)
USE mgc_portable.gsim_logic.all; BEGIN
CASE present_state IS
ENTITY mem_st_ctl2 IS WHEN s0 => we_tmp <= ’'1°; -- reset state
PORT (dsl : IN gsim_state; -- active low oe_tmp <= ‘1’;
ds0 : IN gsim_state; -- active low cs <= '1';
write : IN gsim_state; -~ active low cycl_end_tmp <= ‘0’;
cs_ram : IN gsim_state; -- active low
clk : IN gsim_state; WHEN sl1 => cs <= ‘0'; -~ Tacs = 50ns, takes 2 clock cycles
cs_flag : IN gsim_state; -- activée high we_tmp <= ‘1'; -- Toe_tmp = 40 ns, takes 2 clock
msb : IN gsim_state; -- active low oe_tmp <= '0‘; -- cycles
lsb : IN gsim_state; ~- active low cycl_end_tmp <= ‘0’;
csl : OUT gsim_state; -~ active low WHEN s2 => oe_tmp <= ‘0°; -~ idle
csh : OUT gsim_state; -- active low cs <= ‘0’
oe : OUT gsim_state:; -~ active low we_tmp <= ‘1’;
we : OUT gsim_state; -~ low: write; high: read cycl_end_tmp <= '0';
cycl_end: OUT gsim_state); -~ active high WHEN s3 => oe_tmp <= ‘0*; -- End of Read
END mem_st_ctl2; cs <= ‘07
we_tmp <= ‘1’;
ARCHITECTURE behave OF mem_st_ctl2 IS cycl_end_tmp <= '17; '
TYPE states IS (s0, sl1, s2, s3, s4, s5, s6);
SIGNAL reset: gsim_state; . WHEN s4 => we_tmp <= ‘0°; -- Tew = 40ns, chip select
SIGNAL ent_state : states := s0; -~ reset state

RERS o cs <= '07; -~ to End of Writ—
SIGNALS 'state: states; ’ ﬁ’\\ oe_tmp <= '1°; ’.\

brd_dcd.vhdl_25

S

e KEAKER TR IR R I AAAAFN AR AR AN TSI AR AL R TR A AT ATk bk bbbk b bk k kb bk bbb bbbk rhck kv k& - edge of 'as' and 'bs" will keep unset after disasserting reset, even
- -- though *as® is asserted

-- Copyright University of California - Berkeley (LBL) 1993 decode2: PROCESS(as, bsi, en)

-- All rights reserved BEGIN

- IF (as = '1’') THEN

- bs <= '1';

-~ Author: Elise Tung ELSIF (en = ‘1’) THEN -- make sure it is valid data transfer
-- Date Created: April 1993 bs <= bs}l;

-- Revision: May 10 1993 ELSE

-- bs <= '1*;

- END IF;

-~ Module Name: brd_dcd END PROCESS decode2;

-- END behave;
-~ Module Description: This module is a board decoder. It is used to check if the
- board addr a(23:19) is the same as the preset address on the
- dip switch. “bs® {active low) will be set if they are the
-- same, otherwise unset.

-~ Module Inputs:

- adr_in => bits 23-19 on the address bus

-- reset => asynchronous reset signal (active low)

-- as => address strobe (active low)

- dpsw => dip switch to preset the board address

- en => output from am_dcd module to validate a standard data transfer
- {active high}

-- Module Outputs:

-- bs => set if it is the correct board address (active low)
P 22 R R R RS A R e R R RS SR R RS R R SRR R SRS SRR R R R R SRR SRA R 2RSS

LIBRARY mgc_portable;
USE mgc_portable.gsim_logic.all;

ENTITY brd._dcd IS

PORT {reset: IN gsim_state; -- active low
as: IN gsim_state; ~- active low
dpsw: IN gsim_state_vector{4 downto 0);
adr_in: IN gsim_state_vector{4 downto 0);
en: IN gsim_state; -~ active high
bs: OUT gsim_state); ~- active low

END brd_dcd;

ARCHITECTURE behave OF brd_decd IS
SIGNAL bsl: gsim_state;
BEGIN

decode: PROCESS(reset, as)
BEGIN
IF (reset = '0’} THEN
bsl <= ‘1';
ELSIF (as'EVENT AND as’LAST_VALUE = ‘1‘ AND as = ‘0’) THEN
IF (dpsw = adr_in) THEN
bsl <= '0’; ~-~active low
ELSE
bsl <= '1';
END IF;
END IF;
END PROCESS decode;

-- use two processes so that the board address is only checked on falling

e AR s i R e e s R s R R s s A s e e e e e R s e R e A e R S T TR LR 2

-- Copyright University of California - Berkeley (LBL) 1993
-- All rights reserved

-~ Author: Elise Tung
-- Date Created: April 1993
-- Revision: May 12 1993

-~ Module Name: cs_ctl

-- Module Description: This module is a chip select controller. It takes the address
-- bits a(18:15) and enables a specific chip select signal
- according to the cs_table

-- Module Inputs:

- adr_in => bits 18-15 on the address bus

- reset => asynchronous reset signal (active low)

- as => address strobe (active low)

-- en => output from bs_dcd module to validate board address (active low)

-~ Module Outputs:

-- led => enable signal for a led

-~ csl1-13 => 13 chip select signals

- cs_flag => signal to flag if the enabled signal is not en_ram
- en_ram => signal to enable an SRAM

-- en_disp => signal to enable a hex displayer

-- c¢s_table:

-- Bits: adr (18 17 16 15} 1sig bit#
-- \en_disp 1 1 1 1 15
~- \en._ram 1 i 1 0 14
-=- 513 1 1 0 1 13
-~ ¢sl2 1 1 0 0 12
-- csl1 1 0 1 1 11
-~ ¢sl0 1 0 1 0 10
-~ €s9 1 0 o] 1 09
-- cs8 1 0 0 0 08
~- \cs7 0 1 1 1 07
-~ \csé 0 1 1 0 06
-- \gsb o] 1 o] 1 05
-~ \cs4] 1 o] 0 04
-~ \cs3 0 0 1 1 03
-- \cs2] 0 1 0 02
-~ \csl 0 0 o] 1 01
-- \led 0 o] 1] 0] 00

O A e R R e e s s R R e R T L T T

LIBRARY mgc_portable;
USE mgc_portable.gsim_logic.all;

ENTITY cs_ctl IS

PORT { reset : IN gsim_state;
adr_in : IN gsim_state_vector (3 downto 0);
as : IN gsim_state;
en : IN gsim_state; ~--active low
— led ¢ OUT gsim_state; --active low
Z/A_‘% csl ;. OUT ¢gsim_state; ~--active low

cs_ctl.vhdl_44

cs2 <= sig(2);

cs2 : OUT gsim_state; ~-~active low
cs3 : OUT gsim_state; ~--active low
csd : OUT gsim_state; --active low
cs5 : OUT gsim_state; --active low
cst : OUT gsim_state; --active low
cs? : OUT gsim_state; --active low
cs8 : OUT gsim_state; -~-active high
cs9 : OUT gsim_state; --active high
cs10 ¢+ OUT gsim_state; --active high
csll : OUT gsim_state; --active high
csl2 + OUT gsim_state; ~-active high
csl3 : OUT gsim_state; --active high
cs_flag : OUT gsim_state; --active high
en_ram : OUT gsim_state; --active low
en_disp : OUT gsim_state); --active low
END cs_ctl;
ARCHITECTURE behave OF cs_ctl IS
signal lsig: gsim_state_vector{ 15 downto 0); -- grouping together the
-- 16 output control signals
signal sig: gsinm_state_vector{ 15 downto 0); -- final output of the 16
-~ controls signals
BEGIN
decode: PROCESS {reset, as)
BEGIN
IF (reset = '0') THEN
lsig <= "1100000011111111";
ELSIF {(as'EVENT AND as’LAST VALUE = ‘1' AND as = ‘0') THEN
CASE adr_in IS
WHEN "0000* => 1sig <= "1100000011111110";
WHEN *0001°" => lsig <= *1100000011111101*;
WHEN *0010" => 1sig <= “1100000011111011*;
WHEN *0011" => 1sig <= “1100000011110111*;
WHEN. *0100* => 1sig <= "“1100000011101111"*;
WHEN "0101* => 1sig <= *“1100000011011111";
WHEN "0110* => 1sig <= *"1100000010111111*;
WHEN *0111* => 1sig <= *1100000001111111";
WHEN *1000* =»> 1sig <= *1100000111111111*";
WHEN *1001* => 1sig <= "1100001011111111";
WHEN *1010* => lsig <= "1100010011111111";
WHEN *“1011* => 1sig <= “1100100011111111*;
WHEN *1100* => lsig <= "1101000011111111~";
WHEN *1101* => 1sig <= *1110000011111111";
WHEN *1110* => 1lsig <= *1000000011111111*;
WHEN others => 1sig <= *"0100000011111111";
END CASE;
END IF;
END PROCESS decode:
decode2: PROCESS{as,en,lsig)
BEGIN
IF (as = '1*) THEN
sig <= *1100000011111111*;
ELSIF (en = '0') THEN -- active low
sig <= 1sig;
ELSE
sig <= "1100000011111111%;
END IF;
END PROCESS decodel;
led <= sig(0};
A csl <= sig{l); T,

cs_ctl.vhdl_44

csl <= sig(3};
csd <= sig(4):
csS <= 8ig(5);
csb <= s8ig(6);
cs? <= s8ig(7);:
cs8 <= sig(8);
cs9 <= s8ig(9):;
cs10 <= sig(10);
‘esll <= sig(ll);
csiz2 <= sig(12);
csl3 <= 8ig(13});
en_ram <= sig({14);
en_disp <= sig(15);

cs_flag <= (NOT sig{15)) OR sig(13) OR sig(12) OR sig(11) OR
sig(10) OR sig(9) OR sig(8) OR (NOT sig(7)) OR (NOT sig(6)} OR
{NOT sig(5)) OR (NOT sig{4)) OR (NOT sig{(3)) OR (NOT sig{2)} OR
(NOT sig(1)) OR (NOT sig(0))};
END behave;

xvr_ctl.vhdl 4

S AR R A R e s SRR s E R A R s R R s AR R R R R e s T RS s R AR RS TS RS LS RS S S RS S Y WHEN *0101" l '0111" => msb <= ’O';

-- 1sb <= *1’;

~-- Copyright University of California - Berkeley (LBL) 1993 . WHEN *1001* | *1011* => msb <= ‘1’;

~-- All rights reserved 1sb <= '0';

- WHEN *0001" | "0011* => msb <= ‘0‘;

-- isb <= ‘0*;

~- Author: Elise Tung WHEN others => msb <= ‘1';

-- Date Created: April 24 1993 1sb <= ’17;

-- Revision: July 29 1993 END CASE;

- IF {rw = ‘1‘) THEN -~ read

-~ Module Name: xvr_ctl dir <= '1’; -~ buffer A to B
-~ ELSE -~ wWrite

- dir <= '0'; -- buffer B to A
-~ Module Description: This is a transceiver controller module. Based on dsG, dsi, END IF;

- a0l and lword signals, the controller can tell if it is single ELSE

- byte access or double byte access. Then the controller will msb <= ‘17;

- enable the corresponding transceivers. 1sb <= *17;

- END IF;

~~ Module Inputs: END PROCESS -decode;

- END behave;

-- reset => global reset disables both transceivers

-- en => signal from brd_dcd module’s board select {bs)

-- lword => long word signal from VME bus

- ds0 => Data Strobe from VME bus

-- dsl => Data Strobe from VME bus

- a0l => address bit 1 on VME bus

- rw => read/write signal, used to determine the direction of the transceivers

-~ Module Outputs:
-- dir => direction of the transceivers

-—- msb => enable signal for the most significant byte

-- 1sb => enable signal for the least significant byte
e AR R R RS R R R S R R e s R e R e e e e A R R S A A A AR R TR AR LRSS R SRS

LIBRARY mgc_portable;
USE mgc_portable.gsim_logic.all;

ENTITY xvr_ctl IS

PORT(reset: IN gsim_state; -- active low
en: IN gsim_state; -- connect to bs, active low
lword: IN gsim_state;
ds0: IN gsim_state;
dsi: IN gsim_state;
all: IN gsim_state;
Iw: IN gsim_state; -~- high: read; low: write
dir: OUT gsim_state; -- high: buffer A to B:; low: buffer B to A
msb: OUT gsim_state; -- active low
1sb: OUT gsim_state);-- active low

END xvr_ctl;

ARCHITECTURE behave OF xvr_ctl IS

signal ctl: gsim_state_vector(3 downto 0); ’
BEGIN

ctl <= (dsl, ds0, a01l, lword);

decode: PROCESS(reset, ctl, rw; en}
BEGIN
IF (reset = '0') THEN '
msb <= ‘1';
1sb <= *1’;
ELSIF (en = ‘0') THEN
P CASE ctl IS o SN

