
1111111 11111 ~Ill lllll lll~i\~iii~1~il~~~I IIIII IIIII IIIII ~111111
0 1160 0039886 1

SDC-93-584

soc
SOLENOIDAL DETECTOR NOTES

Top-Down Design of a Prototype VME Slave Interface

September 10, 1993

Elise Y. Tung
Lawrence Berkeley Laboratory

SDC-93-584

September 10, 1993

Top-Down Design of a Prototype VME Slave Interface

1. Abstract

Elise Y. Tung
Lawrence Berkeley Laboratory

This technical report discusses the design of a simple VMEbus slave interface board using state-
of-the-art software tools. Since VMEbus-based circuit cards are widely used within SDC, the
ability to quickly design an interface board that is functional, reliable and portable is extremely
important. The unique feature of this design is that a top-down design methodology was
employed, and many industry standard tools were used for design and simulation so that design
flaws could be located and corrected early in the design process and technology obsolescence
could be prevented. The main goal of this design was to experiment with new software design
tools and create a path for future designs, so the interface board was simplified significantly
compared to a full VMEbus slave implementation. The slave interface design will be enhanced in
the near future.

2. Introduction

The idea of top-down design is to start working from the top-level module, and then divide this
module into a series of functional blocks and interfaces between each functional block. Each
functional block can then be divided into even smaller modules depending on how complex the
bottom level functional blocks are desired to be. By establishing a hierarchical structure, the logic
of the design is much more simplified, thus design correctness is easily obtained.

Mentor Graphics Corporation suite of EDA (Electronic Design Automation) tools and IEEE
Standard 1076-1987 VHDL (VHSIC Hardware Description Language) were used in the design
of the VMEbus Slave Interface Board. By using industry standard tools as a common design
database, the design can be easily maintained throughout its life cycle. Moreover, having each
module written in VHDL code prevents parts obsolescence and made the design portable to any
system. Employing Mentor Graphics Corporation's simulation tools (Quicksim II) and Logic
Modeling Corporation's VME Simulation model also enables complete simulation of the design
at both the system and component level.

3. Design Specification

The design specifications for the VMEbus slave interface board are as follows:
a) A24 (23:1) Address Bus line and D16 (15:0) Data Bus line

Slave I/0 data transfers using D08(EO), D16
Supports READ, WRITE, and RMW operations

-1-

b) Upper 5 bits on Address Bus are board address specified from the Master
board, a 5-bit dip-switch is the slave board's selectable board address

c) 13 chip select fields, 1-7 active low, 8-13 active high
d) interface to memory

In addition to the hardware specifications, LED readouts are added for testing. These readouts
include LED indicators for Board Select (bs) and one of the general purpose chip selects and
several HexDisplays to show data on the data bus lines.

4. Circuit Description
4.1. Operational Overview

The design of the slave interface controller is based on "THE VMEbus SPECIFICATION --
conforms to: ANSI/IEEE STD1014-1987 IEC 821 and 297." The IEEE1014-87 standard
specifies a high-performance backplane bus for use in microcomputer systems that employ single
or multiple microprocessors so that data can be transferred between functional modules. A
master is a functional module that initiates data transfer bus (DTB) cycles, while a slave is a
functional module that detects data transfer bus (DTB) cycles and, when those cycles specify its
participation, transfer data between itself and the master.

The VMEbus slave interface controller responds to signals on the VMEbus, generates on-board
control signals correspondingly, and finally issues signals to the master on the VMEbus to fulfill
the handshaking protocol.

There are six modules in the interface system:
1) Address Modifier(AM) Decoding Module (am_dcd)
2) Board Address Decoding Module (brd_dcd)
3) Chip Select Control Module (cs_ctl)
4) Read/Write Interface Module (mem_st_ctl2)
5) Transceiver Control Module (xvr_ctl)
6) Data Acknowledgment Module (dtack_ctl)

Whenever there is a bus cycle initiated by the master, the VME slave interface will first check if
the data transfer (short, standard or extended) is supported by the interface. The interface will
then check that the board address on the address bus matches the interface board address. After
passing this check, the interface will decode the addresses on the address bus to enable one of the
chip selects. Once data transfer has been accepted by the slave, the slave interface will assert the
Data Acknowledgement (DTACK) signal to acknowledge the master. The master will finish the
cycle by deasserting the data strobe signal(s). When the slave detects this change on the data
strobe, it will deassert DTACK to finish the bus cycle and fulfill the handshake mechanism.

An overall view of the interface board is shown in figure 1. The block diagram of the interface
controller is shown in figure 2.

4.2 Address Modifier(AM) Decoding Module (am_dcd)

The VMEbus implementation residing on the board is capable of operating with the following
Address Modifier (AM) codes:

-2-

(

(

(

-·

am(5:0)
as*

iack*

lword*
dsO*
dsl*

write*

dpsw

adr(23: 16)

adr(l5:8)

adr(7: 1)

...
r ..
-_..._
,

.... -...
r

...
,

... -

....
,

....
,

... -

71LS211A-1 II\ II\

... ,

... -

......
r

71LS211A-1 VME ...
,
...
r ...
,

SLAVE ...
,

...
71LS211A-1 - INTERFAC ...

- adr(23; 9)
71LS211A-1'' ,

- adr(l&; 4)
,

71LS211A-1' \ adr(lt
, -

adr(23: 1)

Figure 1. An overall view of the interface board

VV'v

I

... ,,
oe* '

cs* r

'
we ,

...
,
... - adr(l 1
, -

msb* ...
dir : ,

-lsh* ... ,

u

1

71s38
NANO
BUF

HEX
DISP

'~RAM ,-

1)

71ls215

XVR

71ls215

XVR

bs led*

"· 1 .,.

.... .,

.... ,,,

/ ... - ,

dtack*
ackout*

csbus(l3: 1:
en_disp*

dbus(l5:0)

ari(5 0)
re1~et

16Ci-. In as

dpsw(LJ 0)

m
m

rw
!word

iB~
elk

../

< <
../

../

--..._

-<
--<
-<
I-----<
L-/

----..
-<
:--<.
f-<
I_./

/

,,,-

<
< ,,,-

~--

-
v
-i/
?/
-i/

J

"-.!

-

am_dcd

"(5 0)

esel
1ackm valid
s 1ackout

brd ded

~dr_m(1 Ol
dtaek ell ~pswC 1 Ol

esel _,.....
'""' '---en , 1..n1

s bs-

--- ., _..,
es_cll ,... ..,,. 11,'

OIJIOI

cs_f lac - ... ,,. ,.
-

led - -,.1..n1

en_ran,... ...
en_d1sp - '"' ""'

cs7
dr_m(3 O> cs6

cs5
es1

esel cs3 -~en cs2 -
s csli-

l:l ill' " "" u u u u u

xvr ell - ~-
w
eset

lword
-en

sl "Sb
so lsb
01 d1r

Figure 2. Block diagram of the intP~ce controller

r

r

L

r

L

t P-,~l'lVl:l i Id 1ac,-.out

6~=r~&al'l
dtack

tp_csflao
tp_cyclend

tp_statecnt(2 0) we oe
cs!
CS11

led en...,d1sp cs cs cs cs cs cs cs cs cs ~m
7~g air

-'~,_

(Table 1. Supported Address Modifier codes

AM Codes (AMS-AMO) Function
3E (HEX) Standard Supervisory Program Access
3D (HEX) Standard Supervisory Data Access
3A (HEX) Standard Nonpriviledged Proe:ram Access
39 (HEX) Standard Nonpriviledged Data Access

The am_dcd module checks whether the data transfer (short, standard or extended) is supported
by the interface. The design only supports standard data transfer so the AM codes can only be
3E, 3D, 3A, 39. If the AM codes are valid, the am_dcd module will send a "valid" signal to
Board Address Decoding Module to proceed. If the AM codes are not supported by the
interface, it will deassert the "valid" signal so that the board won't respond to the master's
request. See the appendix for the VHDL code.

4.3 Board Address Decoding Module (brd_dcd)

The brd_dcd module ensures the board address on the address bus matches the slave board's base
address. Address bits 19-23 on the address bus are the board address. The slave's board address
is set by 5 bits on a dip switch. If the addresses match, the brd_dcd module will send a Board
Select (bs) signal to the Chip Select Control Module to enable its function. See the appendix for
the VHDL code.

(4.4 Chip Select Control Module (cs_ctl)

(

The cs_ctl module will start decoding the address bus once the enable signal from brd_dcd is
received. Address bit 15-18 are used for decoding purposes. Table 2 shows the decoding table.

Table 2. decoding table

cs\ bit 18 17 16 15 active
\en_disp 1 1 1 1 L
\en ram 1 1 1 0 L
cs13 1 1 0 1 H
cs12 1 1 0 0 H
csll 1 0 1 1 H
cslO 1 0 1 0 H
cs9 1 0 0 1 H
cs8 1 0 0 0 H
\cs7 0 1 1 1 L
\cs6 0 1 1 0 L
\cs5 0 1 0 1 L
\cs4 0 1 0 0 L
\cs3 0 0 1 1 L
\cs2 0 0 1 0 L
\csl 0 0 0 1 L
\led 0 0 0 0 L

-3-

En_ram enables the SRAM Interface Module for read and write cycles to the SRAM. Other (
chip select signals are for future board enhancements and testing. See the appendix for the VHDL
code.

4.5 READ/WRITE Interface Module (mem_st_ctl2)

The mem_st_ctl2 module manages the V:MEbus accesses for the following normal slave I/0
transfers: READ, WRITE, READ-MODIFY-WRITE.

The mem_st_ctl2 module uses an external clock (originally assumed to be at 33ns clock period
when writing VHDL codes) to set the control signals of the SRAM -- Chip Select (CS), Write
Enable (WE), Output Enable (OE). The three signals are set during different clock periods using
the timing information of IDT 6116SA55 so that they will meet all the setup and hold times to
ensure reading the right data from or writing the right data to the SRAM. Both read and write
cycles take three clock cycles to finish.

A VHDL implementation of a Moore State Machine is used to control the CS, WE and OE
signals. There is one reset state, three states for the READ cycle and three states for the WRITE
cycle:

RESET state:
When either data strobes (ds0, dsl) is high, the state machine goes to state 0. OE, CS are
disabled, and WE is set to read. Cycl_end flag is unset.
READ cycle:
Since Tacs(Chip Select Time) is at most 50 ns, it takes 2 clock cycles to finish the
READ(state 1, state 2). Cycl_end flag is set in state 3 to finish the cycle.
WRITE cycle:
Since Tcw(Chip Select to End of Write) is about 40 ns, it takes 2 clock cycles to finish the
write(state 4, state 5). Cycl_end flag is set in state 6 to finish the cycle.

The mem_st_ctl2 module also takes care of the bus events which do not require access to the
SRAM. In these cases the state machine will jump from reset state(state0) directly to the end
cycle state(state6) which will set the Cycl_end flag.

The block diagram for the Moore State Machine used in the READ/WRITE interface module is
shown in figure 3. See the appendix for the VHDL code.

present_state

outp next_stat
State State -- Output - Output

input Decode Register Decode Register

ut

Logic Logic
(Nte_tnnsili0111) (output..d<:COde) (oatput_a)

Figure 3. Block diagram for the Moore State Machine in R/W interface module

-4-

(

(

(

4.6 Transceiver Control Module (xvr_ctl)

The transceiver control module is used to control which byte, the most significant byte (msb) or
the least significant byte(lsb), to choose when receiving from or sending data to the data bus.
The choice is made based on the data strobes(dsl, ds0), the address bit l(a0l) and lword. (See
table 3)

Table 3. control table of signals msb, lsb

dsl dsO aOl lword msb lsb
0 1 0 1 0 1
0 1 1 1 0 1
1 0 0 1 1 0
1 0 1 1 1 0
0 0 0 0 0 0
0 0 1 1 0 0

Note: 1) dsl, ds0, !word, msb and lsb are all active low.
2) Other values of dsl, ds0, a0l, lword will have both msb and lsb disabled. (msb = 'l', lsb
= '1')

This design supports single-byte and double-byte access only. Unaligned data access is not
supported.
Single-byte access: BYTE(0), BYTE(l), BYTE(2), BYTE(3)
Double-byte access: BYTE(0-1), BYTE(2-3)

See the appendix for the VHDL code.

4. 7 Data Acknowledgement module(dtack_ctl)

Since bus error control is not supported in this design, it makes the dtack_ctl module very simple
to implement. Whenever the cycl_end flag is set by the READ/WRITE interface module, the
dtack_ctl module will enable the Data Acknowledgement (DTACK) signal as long as the reset
signal from the front panel is deasserted. This is to acknowledge that the slave has responded to
the bus cycle initiated by the master so cycle can be finished. See the appendix for the VHDL
code.

5. Hardware Description

The slave interface controller was targeted into a CrossPoint FPGA (CP20420-155CPGA).
Besides, there are two IDTSA55 CMOS SRAMs on the board. Each SRAM can hold 16K (2K
x 8 bit) of data. Bits 1 to 11 on the Address Bus are connected to each SRAM's address bits. The
8 bit data lines of each SRAM are connected to the D16 Data Bus, one SRAM connected to bits
8-15 and the other connected to bits 0-7.

There are buffers for all the signals on the VME bus. All the drivers and receivers are chosen
from the VME bus specification's suggestion list.

-5-

OCJ5 B)c u.. 11m11~a -=- ._ ,. HJt15
Yet ._ Al DOI . J -- ,._ 1111

Al ... 3 8 :,.... ... a-·-:! M 1111 - ,. D05

' f1 CROSSl'DJHT § Al 1111 ,. 1111 I !q ii Cl'Z0128·155Cl'CA ,.
H ·T

AIII - :! : HAK LYOff . -
'u n~ i::::. ": . ose yz R

,_
OSI

L....l
... 1 •I-

' ' ' i"" .Ill
,.,._ --, ~21 - ,.. _..,.
:E -t'I DIP

HJt15 YRITtl--< IAI IYI - ._ ,.
tll~ I-<

... m - Al DOI I a
IU ID " I - 1111 8

!!, Altl'""' IA1 111
, ,. Al ... 3 u ::l AKi I-< ZAI lfl "'_ ... ~-•-Is t k ... m : -- ... ¥ 1111

ZAl m n
all- ._ ,. D05 6 BS

iESET IACKJNi:: ZA1 lf1 -· Al 1111 l RJ - ,--Jl -•- •I>- ,. 1111 I !qL I--" ""::::
,. jl _. ... AIII

I ' cu:: .,
• HAH I I " - [

dpow(1 8) ZA1 lf1 -----. == .,_ - •
-=- ..L ZAl m ... m

F ZAI !fl -- .. .-..,
IA1 111 1 , :r : IU m '"

...... ... m , ... :r I IAl 111
,. ., -· l.ul.t..C . ,. :: - " ... :r : ..

.I ., .. -u.r : "' . , 1 ro _,
I I

,. M, ·-ZAl ffl I I ,.. m ,. ., -·

II
_Cl'l¥l I id

m1m1~ .enrcn

-=- > ?
ZAI lfl .----- . . IA1 111 .---------111-~-1 IU m ,-.-..._ ... m r---
IAI rn .--------- >

>
>
>

0--0 ZA1 lf1 -ZAl m ... m
ZAI m 0--rO IA1 111
IU m _> ... m
IAI 111

?i:Y:a 13 I)
en.d 1sp

IACKOUT

DTACK

ACZJ b ~L ., •• 11

-~ -=--.__ _.__P\JTIJ.P
Yet Yet PUUUP

Figure 4. Connections between controJ•-~hip and registers ·~.

(

74LS245:
74LS244:

74S38:

transceiving the lines D00-15
driving or receiving the lines A01-A31, AMO-AMS, IACKIN, LWORD,
WRITE
driving the lines DTACK, IACKOUT

There is one RESET switch on the board's front panel, which will generate a reset signal(active
low) when pressed. This resets the signals of the entire board. There is also a 5-bit dip switch on
the board to select the board's base address.

A schematic of the hardware on board is shown in figure 4.

6. Using Software in the Design Process

VHDL implementation is used to model each functional block. Since it is much easier dealing
with the logic of the functional block instead of the gate-level implementation, writing VHDL
codes has saved a lot of time and effort. For example, the cs_ctl module is a circuit of over
seventy gates but it only takes less than a hundred lines of VHDL codes to describe the logic of
this module. After using the Mentor Graphics Corporation (MOC) QuicksimII tool to simulate
the compiled VHDL code, the logic for that functional block is guaranteed to work, only leaving
the timing aspect of the functional block to be inspected. The compiled VHDL codes are
synthesized into the general library gates by MGC's Autologic tool and are then optimized using
CrossPoint's technology file. All the timing and area requirements are taken care of in the
process of optimization.

In order to check if the slave interface design is working precisely according to the VMEbus
specification, Logic Modeling Corporation (LMC)'s VME SimuBus is used as a master model in
the simulation to generate the bus cycle. Also, LMC's SRAM model is used as the memory
device in the simulation. So before the design is turned into a CrossPoint FPGA chip, a
comprehensive simulation has been done to ensure that it works.

The simulation diagram is shown in figure 5. Figure 6 shows the traces generated in the
simulation and figure 7 is a closer view of the trace diagram.

7. Performance:

All single-byte accesses and double-byte accesses are tested to be fully functional. Using the
internal clock at 20ns clock period for the READ/WRITE interface module, the time from when
the f'rrst Data Strobe falls low to when the Data Acknowledgment falls low is about 90 ns. Since
it takes 3 clock cycles in the READ/WRITE interface module, the time taken from when the
master generates a bus cycle to when the slave finishes address decoding is only around 30 ns.

Having designed this basic interface, many other more complicated VME interfaces can be
easily derived from it. Since VHDL is an industry standard and is technology independent, the
design is portable to all systems and can be developed into a gate-level implementation using
different technologies. Further enhancement can be easily made by slightly modifying the VHDL
codes for the specific module.

-6-

I
liliilli

I! a
'

••••s•••••= •

' J
.N

---------+
-----.

I I
i
,
N

-
-
-
-
-
1

-
-
-
1

~
 -=

"'
II

;
I ,.

I I

ii
I

I
IL'.:;=

E
IU

iliR
'

"• l!llliila
i

§:fltl -

::

m

--
f

r
-

•1 u
u

u
n

 UI
·-

.!

'
I

,,

!:. =
r
-

_
,_

" ..

I

A

I
.,

g u
.
+

+
I
-
!
-
-
-
-
-
-
-
¼

!
'

I
=

.,
:: g

.,

=~
I

(<
(

a: CD
<

(
0 z 9
((f)

l!')
Q

)
... ::::,
0
u::

/~,.,_

as

rw

dsl

am(S: 0)

ds0

elk

ip_statecnt(2:0)

oe

csh

csl

we

msb

lsb

d(15:8)

d(7 :0)

cs13

cs7

en_disp

dtack

0.0 340.0 680.0

/~

1020.0
Time(ns)

Figure 6

1360.0 1700.0 2040.0 2380.0

as _J I

R MIW I rw J read I \--Jri{e I ,-e0-J
I

dsl J I I I I I I I n I
am(S:0) X(JF X3o X)3A){]3A)C{3A (){3A

ds0

elk

tp_statecnt(2:0)

oe __J

csh _J

csl

we

msb J I I I I I -- I I n
lsb

d(15: 8) Xz 35 Xz xx X78 XX8o XXz
d(7: 0) Xz 85 Xz Xz 0 Xz

cs13

cs7

en_disp

dtack

o.o 180.0 360.0 540.0 720.0 900.0 1080.0 1260.0
Time (ns) - -~

Figl!re

-
cycl_end_tmp <= '0';

WHEN s5 => we_tmp <= '0'; -- idle
cs<='O';
oe_tmp <:::: '1 ' ;
cycl_end_tmp <= '0';

WHEN s6 => we_tmp <= 'l'; -- End of Write
CS<='l';
oe_tmp <= '1' 1
cycl_end_tmp <= '1';

END CASE;
END PROCESS output_decode;

output_cs: PROCESS (elk)
BEGIN

IF (clk'LAST_VALUE = '1' AND elk
csh <= cs OR msb;
csl <= cs OR lsb;
we <= we_tmp;
oe <= oe_tmp;
cycl_end <= cycl_end_tmp;

END IF;
END PROCESS output_cs;

END behave;

'0') THEN

A"'t~,

mem_st_ctl2. vhdl_28

(Acknowledgment

(

(

I would like to acknowledge in particular Stephen Wunduke of the SDC group, Lawrence
Berkeley Laboratory, for his time, teaching, and advice. I would also like to thank other members
of the SDC group in Lawrence Berkeley Laboratory, without whose help this project could not
have been completed: Scott Dow, Richard Jared, Frederic Kral, Michael Levi, Robert Minor, Phil
Smith. Finally, I would like to thank the University of California at Berkeley Engineering
Cooperative Program for the opportunity to participate in the SDC project.

-7-

am_dcd. vhd1_22

Copyright University of California - Berkeley (LBL) 1993
All rights reserved

Author, Elise Tung
Date Created: April 1993
Revision: May 14 1993

Module Name: am_dcd

Module Description: This module is an AM decoder. It is used to check if the AM
signals on the VME bus are set to do standard data transfer
(excluding block transfer). If AM signals are set correctly,
signal •valid" will be set (active high); else •valid• will be
unset.

Module Inputs:

am=> AM(S to 0) on Dbus
reset=> active low, asynchronous reset signal
as=> address strobe
iackin => interrupt acknowledgement in signal, will reset process

Module Outputs:

valid=> indicate if AM signals are set to do standard data transfer(D24)
iackout => interrupt acknowledgement out signal

LIBRARY mgc__portable;
USE mgc__portable.qsim_logic.all;

ENTITY am_dcd IS
PORT (reset IN qsim_state;

am IN qsim_state_vector(S downto O);
as IN qsim_state;
iackin IN qsim_state;
iackout OUT qsim_state;
valid Out qsim_state);

END am_dcd;

ARCHITECTURE behave OF am_dcd IS
SIGNAL mst_clr: qsim_state;
SIGNAL validl: qsim_state;

BEGIN
iackout <= iackin;

active low

-- active low
-- active low
-- active low
-- active high

mst_clr <= iackin AND reset; -- either iackin or reset will reset the system

decode: PROCESS(mst_clr, as)
BEGIN

IF (mst_clr = '0') THEN -- reset
validl <= '0';

ELSIF (as'EVENT AND as= '0' AND as'LAST_VALUE
CASE am IS

-- standard transfer

'1') THEN

WHEN '111110' I '111101' I '111010' I '111001"=>

,,~~

valid! <= '1';
WHEN OTHERS => validl <= •o·;

ENU CASE;

END IF;
END PROCESS decode;

-- use a 2nd process so that 'AM' is only decoded on falling edge of •as• and
-- valid will keep unset after disasserting reset, even though 'as• is asserted
decode2: PROCESS(as, validl)
BEGIN

IF (as= '1') THEN
valid<= '0';

ELSE
valid<= validl;

END IF;
END PROCESS decode2;

END behave;

~.

-· .-_,

dtack_ctl. vhdl_l 6

Copyright University of California - Berkeley (LBL) 1993
All rights reserved

Author: Elise Tung
Date Created: April 1993
Revision: May 14 1993

Module Name: dtack_ctl

Module Description: This module is to control the dtack(data transfer
acknowledgement) signal pn the VME bus. 'dtack' will be
asserted or dissasserted depending on the •cycl_end' signal
from mem_st_ctl module

Module Inputs:

reset=> active low, asynchronous reset signal
cycl_end => active high, used to set dtack signal

Module Outputs:

dtack => active low

LIBRARY mgc_portable;
USE mgc_portable.qsim_logic.all;

ENTITY dtack_ctl IS
PORT (reset

cycl_end
dtack

END dtack_ctl;

IN qsim_state;
IN qsim_state;
OUT qsim_state);

ARCHITECTURE behave OF dtack_ctl IS
BEGIN

ack_proc: PROCESS(reset,cycl_end)
BEGIN

IF (reset= '0') THEN
dtack <= 'l';

ELSE

active low
active high
active low

reset asserted, orbs disserted

-- dtack disserted when cycl_end disserted
dtack <= NOT cycl_end; dtack active low

END IF;
END PROCESS ack_proc;

END behave;

-- cycl_end active high

mem_st_ctl2. vhdl_28

Copyright University of California - Berkeley (LBL) 1993
All rights reserved

Author: Elise 'I\lng
Date Created: April 1993
Revision: May 7 1993

Module Name: mem_st_ctl2

Module Description: This module is a Moore machine to control read/write from a
memory device. The states are based on the timing requirement
of read/write of IDT SRAM 6116SA55. The clock period is
assumed to be 30 ns.

Module Inputs:

dsO, dsl => data strobe o, l; active low
write=> read/write; high--read; low--write
cs_ram => enable signal from the cs_ctl module indicating the master is

trying to do a r/w from the SRAM. active low
cs_flag => signal from the cs_ctl module. When it is set, it indicates

that the master chose other chip select signals, not cs_ram.
elk=> 30 ns period. Used for state transistion in read/write operation
lsb => control signal for least significant byte
msb => control signal for most significant byte

Module Outputs:

csl => chip select of SRAMO, active low
csh => chip select of SRAMl, active low
oe => output enable of SRAM, active low
we=> write enable of SRAM, active low
cycl_end => signal to dtack_ctl module to indicate cycle ends, active high

LIBRARY mgc_portable;
USE mgc_portable.qsim_logic.all;

ENTITY mem_st_ctl2 IS
PORT (dsl IN qsim_state; active low

dsO IN qsim_state; active low
write IN qsim_state; -- active low
cs_ram IN qsim_state: active low
elk IN qsim_state;
cs_flag IN qsim_state, -- active high
msb IN qsim_state; active low
lsb IN qsim_state, active low
csl OUT qsim_state; -- active low
csh OUT qsim_state; active low
oe OUT qsim_state, active low
we OUT qsim_state; low: write; high: read
cycl_end: OUT qsim_state); active high

END mem_st_ctl2;

ARCHI'l'ECTURE behave OF mem_st_ctl2 IS
TYPE states IS (sO, s1, s2, s3, s4, sS, s6);
SIGNAL reset: qsim_state;
SIGNAL ~ent_state : states := sO; -- reset state
SIGNAL' 'state: states;

BEGIN

SIGNAL cs: qsim_state; -- tmp chip select of SRAM
SIGNAL we_tmp, oe_tmp, cycl_end_tmp, qsim_state; -- tmp signals

reset<= dsl NAND dsO; either one of the data strobe drops low will start
the operation; both of them have to go high to stop
the operation.

synch: PROCESS (elk, reset)
BEGIN

IF (reset= '0') THEN
present_state <= sO;

clock period assumed to be 30ns
ELSIF (clk'LAST_VALUE = 'l' AND clk'EVENT AND elk= '0') THEN

assume clock or cs_ram are disabled once cycle ends
IF (cs_flag = 'l') THEN -- no need to invoke cycle, so

present_state <= s6; -- only set cycl_end
ELSIF (cs_ram = '0') THEN

present_state <= next_state;
ELSE

present_state <= sO;
END IF;

END IF;
END PROCESS synch;

state_transitions: PROCESS (present_state, write)
BEGIN

CASE present_state IS
WHEN sO => CASE write IS

WHEN 'l' => next_state <= sl;
WHEN others=> next_state <= s4;

END CASE;
WHEN sl => next_state <= s2;
WHEN s2 => next_state <= s3;
WHEN s3 => next_state <= s3;
WHEN s4 => next_state <= s5;
WHEN s5 => next_state <= s6;
WHEN s6 => next_state <= s6;

END CASE;
END PROCESS state_transitions;

output_decode: PROCESS (present_state)
BEGIN

CASE present_state IS
WHEN sO => we_tmp <= 'l';

oe_tmp <= '1';
cs<= '1';
cycl_end_tmp <= '0';

-- reset state

read
write

WHEN sl =>cs<= '0';
we_tmp <:; '1';
oe_tmp <= '0';
cycl_end_tmp <=

Tacs = sons, takes 2 clock cycles
Toe_tmp = 40 ns, takes 2 clock
cycles

'0' j

WHEN s2 => oe_tmp <= '0'; -- idle
cs<; '0';
we_tmp <= '1';
cycl_end_tmp <= '0';

WHEN s3 => oe_tmp <= '0';
cs <:::: '0';
we_tmp <= 'l';
cycl_end_tmp <= 'l';

WHEN s4 => we_tmp <= '0';
CS<='O';
oe_tmp <:;:. ' 1 ' ;

-- End of Read

Tew= 40ns, chip select
to End of Wr Lr~

/~ ,'-,
brd_dcd.vhdl_25

Copyright University of California - Berkeley (LBL) 1993
All rights reserved

Author: Elise Tung
Date Created: April 1993
Revision: May 10 1993

Module Name: brd_dcd

Module Description: This module is a board decoder. It is used to check if the
board addr a(23:19) is the same as the preset address on the
dip switch. "bs" (active low) will be set if they are the
same, otherwise unset.

Module Inputs:

adr_in => bits 23-19 on the address bus
reset=> asynchronous reset signal (active low)
as=> address strobe (active low)
dpsw => dip switch to preset the board address
en=> output from am_dcd module to validate a standard data transfer

(active high)

Module outputs:

bs => set if it is the correct board address (active low)

LIBRARY mgc_portable;
USE mgc_portable.qsim_logic.all;

ENTITY brd_dcd IS
PORT (reset: IN qsim_state:

as: IN qsim_state:
dpsw: IN qsim_state_vector(4 downto 0):
adr_in: IN qsim_state_vector(4 downto 0);
en: IN qsim_state;
bs: OUT qsim_state);

END brd_dcd:

ARCHITECTURE behave OF brd_dcd IS
SIGNAL bsl: qsim_state:

BEGIN

decode: PROCESS(reset, as)
BEGIN

IF (reset= '0') THEN
bsl <= '1' ;

-- active low
-- active low

-- active high
-- active low

ELSIF (as'EVENT AND as'LAST_VALUE
IF (dpsw = adr_in) THEN

bsl <= '0';

'1' AND as= '0') THEN

END IF;

ELSE
bsl <= '1';

END IF;

END PROCESS decode;

--active low

-- use two processes so that the board address is only checked on falling

edge of •as• and 'bs' will keep unset after disasserting reset, even
though •as' is asserted

decode2: PROCESS(as, bsl, en)
BEGIN

IF (as= '1') THEN
bs <= '1';

ELSIF (en= '1') THEN -- make sure it is valid data transfer
bs <= bsl;

ELSE
bs <= '1';

END IF;
END PROCESS decode2;

END behave;

cs_ctl. vhdl_ 44

Copyright University of California - Berkeley (LBL) 1993
All rights reserved

Author: Elise Tung
Date Created: April 1993
Revision: May 12 1993

Module Name: cs_ctl

Module Description: This module is a chip select controller. It takes the address
bits a(l8:15) and enables a specific chip select signal
according to the cs_table

Module Inputs:

adr_in => bits 18-15 on the address bus
reset=> asynchronous reset signal (active low)
as=> address strobe (active low)
en=> output from bs_dcd module to validate board address (active low)

Module Outputs:
led=> enable signal for a led
csl-13 => 13 chip select signals
cs_flag => signal to flag if the enabled signal is not en_ram
en_ram => signal to enable an SRAM
en_disp => signal to enable a hex displayer

cs_table:
Bits: adr(18 17 16 15) lsig bit#

\en_disp 1 1 1 1 15
\en_ram 1 1 1 0 14
csl3 1 1 0 1 13
csl2 1 1 0 0 12
csll 1 0 1 1 11
cslO 1 0 1 0 10
cs9 1 0 0 1 09
cs8 1 0 0 0 08
\cs7 0 1 1 1 07
\cs6 0 1 1 0 06
\csS 0 1 0 1 05
\cs4 0 1 0 0 04
\cs3 0 0 1 1 03
\cs2 0 0 1 0 02
\csl 0 0 0 1 01
\led 0 0 0 0 00

LIBRARY mgc_portable;
USE mgc_portable.qsim_logic.all;

ENTITY cs_ctl IS
PORT

~.

reset
adr_in
as
en
led
csl

IN qsim_state;
IN qsim_state_vector(3 downto O);
IN qsim_state;
IN qsim_state; --active low
OUT qsim_state; --active low
OUT qsim_state; - -active low

cs2 OUT qsim_state; --active low
cs3 OUT qsim_state; --active low
cs4 OUT qsim_state; --active low
cs5 OUT qsim_state; --active low
cs6 OUT qsim_state; --active low
cs7 OUT qsim_state; --active low
cs8 OUT qsim_state; --active high
cs9 OUT qsim_state; --active high
cslO OUT qsim_state; --active high
csll OUT qsim_state; --active high
cs12 OUT qsim_state; --active high
csl3 OUT qsim_state; --active high
cs_flag OUT qsim_state; --active high
en_ram OUT qsim_state; --active low
en_disp OUT qsim_state); --active low

END cs_ctl;

ARCHITECTURE behave OF cs_ctl IS

BEGIN

signal lsig:

signal sig:

qsim_state_vector(15 downto 0);

qsim_state_vector(15 downto 0);

grouping together the
16 output control signals
final output of the 16
controls signals

decode:PROCESS(reset, as)
BEGIN

IF (reset= '0') THEN
lsig <= '1100000011111111';

ELSIF (as'EVENT AND as'LAST_VALUE = '1' AND as '0') THEN

END IF;

CASE adr_in IS
WHEN ·oooo• => lsig
WHEN '0001' =>
HHEN "0010' =>
WHEN "0011' =>
WHEN "0100" =>
WHEN "0101' =>
WHEN "0110' =>
WHEN "0111 • =>
WHEN '1000" =>
WHEN "1001' =>
WHEN "1010' =>
WHEN "1011' =>
WHEN "1100' =>
WHEN "1101' =>
WHEN "1110' =>
WHEN others=>

END CASE;

lsig
lsig
lsig
lsig
lsig
lsig
lsig
lsig
lsig
lsig
lsig
lsig
lsig
lsig
lsig

<= ·1100000011111110•;
<= ·1100000011111101•;
<= ·1100000011111011•;
<= ·1100000011110111•;
<= ·1100000011101111·,
<= ·1100000011011111•;
<= ·1100000010111111•;
<= ·1100000001111111•;
<= •1100000111111111·,
<= ·1100001011111111·,
<= ·1100010011111111•,
<= ·1100100011111111·,
<= ·1101000011111111·,
<= ·1110000011111111•;
<= •1000000011111111·,
<= ·0100000011111111·,

END PROCESS decode;

decode2:
BEGIN

PROCESS(as,en,lsig)

IF (as= 'l') THEN
sig <= ·1100000011111111•;

ELSIF (en= '0') THEN -- active low
sig <= lsig;

ELSE
sig <= "1100000011111111";

END IF;
END PROCESS decode2;

led
csl
cs2

<= sig(O);
<= sig(l);
<= sig(2);

- ·•~

cs3
cs4
csS
cs6
cs7
cs8
cs9
cslO
csll
csl2
cs13
en_ram
en_disp

cs_flag <=

END behave;

cs_ctl. vhdl_ 44
<= sig(3);
<= sig(4) I
<= sig(S);
<= sig(6) I
<= sig(7);
<= sig(S);
<= sig(9);
<= sig(lO);
<= sig(ll);
<= sig(l2);
<= sig(13);
<= sig(14);
<= sig(lS);

(NOT sig(lS)) OR sig(13) OR sig(l2) OR sig(ll) OR
sig(lO) OR sig(9) OR sig(B) OR (NOT sig(7)) OR (NOT sig(6)) OR
(NOT sig(S)) OR (NOT sig(4)) OR (NOT sig(3)) OR (NOT sig(2)) OR
(NOT sig(l)) OR (NOT sig(O));

xvr_ctl.vhdl_ 4

Copyright University of California - Berkeley (LBL) 1993
All rights reserved

Author: Elise Tung
Date Created: April 24 1993
Revision: July 29 1993

Module Name, xvr_ctl

Module Description, This is a transceiver controller module. Based on dsO, dsl,
aOl and lword signals, the controller can tell if it is single
byte access or double byte access. Then the controller will
enable the corresponding transceivers.

Module Inputs,

reset=> global reset disables both transceivers
en=> signal from brd_dcd module's board select (bs)
lword =>longword signal from VME bus
dsO => Data Strobe from VME bus
dsl => Data Strobe from VME bus
aOl => address bit 1 on VME bus
rw => read/write signal, used to determine the direction of the transceivers

Module Outputs:

dir => direction of the transceivers
msb => enable signal for the most significant byte
lsb => enable signal for the least significant byte

LIBRARY mgc_portable;
USE mgc_portable.qsim_logic.all;

ENTITY xvr_ctl IS
PORT(reset: IN qsim_state;

en: IN qsim_state;
lword: IN qsim_state;
dsO: IN qsim_state;
dsl: IN qsim_state;
aOl: IN qsim_state;
rw: IN qsim_state;
dir: OUT qsim_state;
msb: OUT qsim_state;
lsb: OUT qsim_state) ;--

END xvr_ctl;

ARCHITECTURE behave OF xvr_ctl IS

active low
connect to bs, active low

high: read; low, write
high: buffer A to B; low: buffer B to A
active low
active low

signal ctl: qsim_state_vector(3 downto 0);
BEGIN

ctl <= (dsl, dsO, aOl, lword);

decode: PROCESS(reset, ctl, rw, en)
BEGIN

IF (reset= '0') THEN
msb <= '1';
lsb <= '1';

ELSIF (en= '0') THEN
CASE ctl IS

WHEN "0101" I ·0111 •

WHEN "1001" I ·1011 •

WHEN '0001" I ·0011·

WHEN others=> msb <=

ELSE

END IF;

END CASE;

IF (rw = '1') THEN
dir <= '1';

ELSE
dir <= '0';

END IF;

msb <= 'l';
lsb <== '1';

END PROCESS decode;
END behave;

lsb <=

=> msb <= IQ Ii

lsb <= 'l';
=> msb <= , 1';

lsb <= '0';
=> msb <= 101;

lsb <= '0':
I 1';
, 1';

read
buffer A to B

write
-- buffer B to A

