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1 Introduction 

One perspective of the Standard Model sees only its enormous success. A good deal 
of the success is genuine-there are many cases of splendid agreement between experi- 
ments and theoretical calculations. But other evidence for the standard model is only 
circumstantial; agreement is qualitative, but physicists think things will work out, after 
improvements in the calculations. Other experiments measure the product of a fmda- 
mental parameter and a quantity that is calculable in principle, but not (yet) in practice. 
Consequently, the consistency of the standard model hinges on imprecise or incomplete 
knowledge. A more modest perspective sees the flaws and worries about the work left 
to be done. 

The situation deteriorates roughly as the reliability of perturbation theory. The 
obstacles are the technical, and occasionally conceptual, problems of performing non- 
perturbative calculations. Where do these issues arise? 

One place is in the electro-weak symmetry-breaking sector. Results from LEP and 
the Tevatron imply that the top-quark Yukawainteraction are moderately large. Pertur- 
bation theory suggests that the associated runni ng coupling increases at short distances, 
as does that of the Higgs-boson self-interaction. Hence, non-perturbative methods me 
needed to ensure that the short-distance behavior is under control. Indeed, lattice field 
theory has had one of its most significant triumphs in this area, providing a bound on 
the mass of the Higgs boson, cf. sect. 9. 

Non-perturbative phenomena are essential to understanding quantum chmmody- 
namics (QCD), the theory of the strong interactions. The particles observed me mesons 
and baryons, but the fundamental fields are quarks and gluons. Most properties of 
the hadrons are inaccessible in perturbation theory. Aside from their mere existence, 
the most blatant example is the mass spectrum. The lack of an accurate, reasonably 
precise, calculation of the mass spectrum is a major piece of mflnished business for 
theoretical particle physics. In addition, a wide variety of other non-perturbative cal- 
culations in QCD are necessary to interpret ongoing experiments. For example, it is 
impossible to extract the Cabibbo-Kobayasbi-Maskawa angles without knowing matrix 
elements of operators in the K, D and B mesons. Furthermore, non-perturbative anal- 
yses of quarkonia can determine the strong coupling constant with uncertainties already 
comparable to perturbative analyses of high-energy data. 

These lectures cover lattice field theory, the only general, systematic approach that 
can address quantitatively the non-perturbative questions raised above. Sects. 2-8 ex- 
plain how to formulate quantum field theory on a lattice and why lattice field theory is 
theoretically well-founded. Sect. 9 sketches some analytic calculations in scalar lattice 
field theory. They serve as an example of how lattice field theory can contribute to 
particle physics without necessarily using computers. Sect. 10 turns to the most pow- 
erful tool in lattice field theory: large-scale Monte Carlo integration of the functional 
integral. Instead of discussing algorithms in gory detail, the general themes of compu- 
tational field theory are discussed. The methods needed for spectroscopy, weak matrix 
elements, and the strong coupling constant are reviewed. 

The early successes of lattice gauge theory are not reviewed here. One of the fist 
was the shape of the heavy-quark potential. Lattice gauge theory gives convincing 
evidence that the potential rises linearly at large distances, which is sufficient for con- 
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finement. There are many important results on non-Abelian gauge theories at non-zero 
temperature. For SU(3) there is a first-order transition to a “quark-gluon plasma.” The 
temperature at which the transition occurs has been determined with precision in the 
pure gauge theory, and calculations are underway in full QCD (i.e. with quarks). The 
lectures also do not provide status reports on many of the longstanding problems, such 
as the light hadron spectrum, where progress has been incremental for several years. 

The reason for neglecting these topics is that the intended audience for these lectures 
are students interested in the interplay between theoretical and experimental physics. 
Over the next few years more and more results from lattice QCD will become relevant 
to phenomenology. Non-experts will have to understand what these results mean, how 
reliable they are, and what can be reasonably expected. Therefore, these lectures give 
a broad outline of the ideas supporting lattice QCD, why it is a theory, instead of a 
model. Lattice QCD has already produced reliable calculations that help extract VCKM 
and as-fundamental parameters of the standard model. These calculations are used 
as examples of how computational methods can yield real results. 

2 Field Theory on a Lattice 

Without an ultraviolet cutoff, quantum field theory does not make much sense. One 
way to introduce a cutoff is a lattice. For our purposes it is enough to consider a 
lattice embedded into d dimensional space-time. A lattice is discrete set of points with 
connections between nearby neighbors. The connectivity also specifies a hierarchy of 
elementary cells, from O-dimensional sites up to d-dimensional polyhedra, which are 
usually hypercubes, but sometimes simplexes. One-dimensional cells (the connections 
between neighbors) are called “links,” and two-dimensional cells “plaquettes.” A square 
lattice (d = 2) is depicted in fig. 1. Lattice field theory has field variables only on sites, 
links, or higher dimensional cells, rather than throughout space-time. Sometimes the 
lattice is considered to be a discrete approximation to space-time. However, a better 
perspective is to view space-time as continuous and view the lattice fields as approximate 
aggregates of contmuun fields spread over a region of linear size a. 

One way to understand why cutoffs simplify field theory is presented in fig. 2. No 
one working in the upper left corner has succeeded either in constructing quantum field 
theories, or in computing quantities that are measured in experiments. Evidently, the 
mathematics of an uncountably infinite number of degrees of freedom is too daunting. 
Instead, the most promising avenue of constructive field theory starts in the lower right, 
and travel to the upper left via the upper right. Analytical calculations of measurable 
quantities, either in perturbation theory or the expansion sketched in sect. 9, use the 
lower left corner. The numerical calculations of sect. 10 (as well as analytical calculations 
concerned with tiared behavior) use the lower right corner. 

An obvious question is whether the use of cutoffs affects physical results. For physical 
reasons one expects that they hardly do. After all, the shortest-distance physics is given 
by the ultimate theory of particle interactions, and the longest-distance physics by the 
ultimate theory of cosmology. These fundamental theories ought not be crucial to our 
understanding of, say, QCD. Similarly, as long as A = r/a and l/L correspond to energy 
scales different from, say, the QCD energy scale, the cutoffs should only distort physical 
results only negligibly. 
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Figure 1: A square two-dimensional lattice. Sites are denoted by dots and links by lines. 
The bold lines outline a plaquette. The distance separating nearest neighbors is a. 

continuum (a -) 0) continuum (u -+ 0) 

infinite volume (L - co) - finite volume (L finite) 

Nd..,.r. is uncountably infmite Nd.O.r. is infinite, but countable 

lattice (o non-zero) 

infinite volume (L + w) 

N &.r. is infinite, but countable 

lattice (a non-zero) 

finite volume (L finite) 

N d.o.f. is finit= 

i 

Figure 2: The number of degrees of freedom Nd.o.f in quantum field theories, with and 
without ultraviolet and intrared cutoffs. 
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Physically, the lattice cutoff may seem artificial. But if one recalls the standard 
derivation of the Feynman path integral, one sees a mathematical motivation. Consider 
quantum mechanics with a Hamiltonian 

H = $2 + V(4) = T + v. (2.1) 

In anticipation of field theory 4 denotes the coordinate, and r = -X/d6 denotes the 
momentum. For reasons that wilI be explained below, consider the evolution through 
an imaginary interval t = --in, where T is real. Divide r into N small intervals and 
write a = r/N. Then 

(hde-‘H’ih) = J~~~d~~~~‘(A+‘,~-“‘,A, 
7x33 

(2.2) 

gives the amplitude for 160) to evolve into I#N) during t, expressed as N steps of duration 
-ia. If a is small enough, eeHa x e-%-“a, and it becomes easy to work out the matrix 
elements: 

(2.3) 

where 

(2.4) 

Identifying ($,,+I -&)/a with -i dqi/dt implies that -L, is the Lagrangian. Combining 
eqs. (2.2) and (2.3) gives the path integral 

(!6Nk-%,) = ~ 
a-0 

Jy$2&exp (-i@.) = Jvw. (2.5) 

N-too 
N.X=rIiXd 

In the last equality the measure D$ = n,, d&/G, the action 5 = ax, L,, and the 
a + 0 limit is implicit. 

In field theory both space and time are labels, and the fields represent the degrees of 
freedom. It is frequently convenient to start with the generating functional of Green’s 
functions. Textbooks give a functional-integral formula 

=%I= jw exP(-S+/d%j(z)w), (2.6) 

justified by formal manipulations. If one wants to define functional integrals explicitly, 
eq. (2.5) suggests the following approach: Start with finite intervals L, for each space- 
time direction, and slice them into N* tiny intervals of size a. This is a hypercubic 
lattice. Then 

Z[j] = lim lim 
b-m a-0 Jn n -Jg =P 

( 
-ad~[G.+jn& 

) 
, (2.7) 

N#, + m 
n 

NW3 = L, tin.3 

where &, denotes the field at site n of the lattice, j, its source, and /Z, is now the 
Lagrange density associated with site n. 
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The functional integral over a lattice of finite extent requires boundary conditions on 
the fields. A natural choice for the time direction would be to project onto the vacuum, 
OI ground state, in the far future and far past. But that would presuppose knowledge 
of the ground state. Instead, one simply sets the final and initial states equal, and sums 
over all possibilities. In other words, one uses periodic boundary conditions in time. It 
is convenient to impose periodic boundary conditions in the spatial directions too. 

By analogy with eq. (2.4) the spatial derivatives of the Lagrangian are also replaced 
by finite differences. For example, consider scalar fields on a d-dimensional hypercubic 
lattice. The site index n can be taken to be a d-dimensional vector of integers with 
2/. = an,. A systematic method to generate a lattice action can be built around 
operators that translate fields by one lattice spacing in each direction. Define t*,, by 

k:,b(l) = 4(z +z G), P3) 

acting on the left, and 

4(z) T*,= 4(z + 4) (2.9) 

acting on the right. On an infinite lattice or a finite lattice with periodic boundary con- 

ditions C, f(z) T+, g(z) = C, f(z) &g(z), which is the discrete analog on integration 
by parts. A related property is t? = t-,. 

The action of scalar field theory is 

s = adz& = a"C (+3,4(z)q&qz) + ;-i-y(z) t V(qqz,,). 
i i 

An obvious discretization sets 

BP = i(t, - 1). 

Then, suppressing the summation sign, 

(2.10) 

(2.11) 

%~(~)fL~(Z) = -$(r)(l-, - l)(b - l)&(z) = &(4(2 - t-p - t&$(2). (2.12) 

In the middle expression the difference operator (t-,, - 1) can be thought to act either to 
the right OP to the left. After integration by parts, the derivative terms can be written 
-ib(z)A$(z), where A denotes the Laplacian. From eq. (2.12) we see that the most 
natural lattice Laplacian is 

A = $(t, + t-, - 2). (2.13) 

Putting eqs. (2.10) and (2.12) together, gives the lattice action. 

Exercise 2.1 Re-write the lattice action ~9 

S = -ad-’ c+(z + aP)4(z) + ad c ((id + da-‘)42(z) + V(+.))) (2.14) 
t i 

For scalar field theory the translation operators are, perhaps, a bit excessive. However, 
lattice Fermi fields and lattice gauge fields are less trivial, and they can be useful. 

To construct a quantum field theory, one must discuss under what circumstances 
the limits in eq. (2.7) exist. The continuum limit is especially subtle, because it must 
be taken holding physical quantities (including not only the box size, but also particle 
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masses, scattering amplitudes, etc.) fixed. This cannot be done without renormaliza- 
tion, as elaborated in sect. 4. Briefly, mo and the parameters in V(b) must depend on 
a in a special way, if the limit is to exist. 

Usually one ignores mathematical details and treats the limits in eq. (2.7) formally. 
For perturbation theory and other semi-classical approximations, this approach works 
fine, because one can check that the results reproduce canonical quantization. Once 
the correspondence becomes familiar, one can deduce useful information starting from 
formal functional integrals. However, because the ultraviolet regulator is no longer 
explicit, one must be aware that some formal arguments are misleading. 

In lattice field theory the paradigm is to compute with an explicit ultraviolet cutoff. 
The advantage is that the generating functional then exhibits an overpowering similarity 
to the partition function of classical statistical mechanics. Therefore, all the techniques 
developed in statistical mechanics are available. Some, such as high-temperature ex- 
pansions exploit a small parameter. However, unlike Feynman perturbation theory, the 
zeroth-order starting point need not be free field theory. Another widely applied tech- 
nique is Monte Carlo integration, a numerical evaluation of the functional integral at 
lixed a and L,. Since it does not rely on a small parameter, it offers the most promise 
for solving QCD. The drawback is that one must work on a sequence of lattices, to 
reduce and remove the a and L, dependence from physical quantities. 

3 Some Euclidean Field Theory 

Eq. (2.7) is mathematicaIly well-defined, but the time interval through which the fields 
evolve is imaginary. In perturbation theory, the Wick rotation back to real time can be 
verified order-by-order. Loop diagrams contain factors 

where Ea = pa + m’. The poles on w are at GE. If one moves them off the imaginary 
axis GE -+ fiE f fc/E, one can continue w + -&I. The propagator becomes 

&I i 
wa-Ea+ie’ 

which is the usual real-time expression, complete with Feynman’s ia-prescription. 
These manipulations are so straightforward in perturbation theory that much work 

is done with imaginary time. This formalism has been dubbed Euclidean field theory, 
because most changes are taken care of by using the metric diag (1, l,l, 1). However, at 
the non-perturbative level the Wick rotation is useless, and one needs another way to 
relate Euclidean field theory to real-time quantum mechanics. This section explains an 
approach based on lattice field theory and the transfer matrix [l]. 

The goals are a Hilbert space of states, a time evolution operator, and a Hamiltonian. 
We shall use a hypercubic lattice, and, to simplify the formulae, we shall set a = 1. 
Eq. (2.7) treats all d directions on the same footing, but single out the d-th direction to 
play the role of time. The set of sites ‘t at fixed time t will be called a timeslice, and 
& = {#(a, t)} will denote all field variables in timeslice t. Let 71 be the Hilbert space 
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of square-integrable functions over & with inner product 

(C,%) = jm I;%, (3.3) 

where D$, = flIad+(r,t) is the measure for one timeslice. If the spatial extent of 
the lattice is tin&, 71 is precisely the Hilbert space that one would define for this 
many-degree-of-freedom system. To derive the time-evolution operator, start with the 
generating functional of eq. (2.7) 

z= lL$e-S 
/ (3.4) 

with a and L,, fixed, for the time being. (The source is suppressed.) Write the action 
as 

s = c q#Jt+1; 4th (3.5) 
t 

where 

q&+1; 44 = - c tic=, t + lM(=, 4 + f (U(h+d + U(h)). (3.6) 
r 

Here u denotes all the terms of the Lagrangian that depend on only one timeslice. Next 
reorganize the integrations in eq. (3.4) as follows 

2 = 
J 

J-J m q&+1, -A)), (3.7) 
t 

where 
K($fJt+l, q$*) = e-%+li+4. 

The kernel K: defines an operator on 7-1 

(3.8) 

(**)(b) = j Wu K(+t, 4O(~d> (3.9) 

where ? is called the transfer operator, or, by abuse of language, the transfer malriz. 

By construction K(A, Dot) = K(h h), so for suitably chosen V(6) the transfer operator 
is Hermitian. 

The transfer matrix inherits the symmetries of the canonical (lattice) Hamiltonian, 

fLl = T fT’(Z) + V(#(m)). (3.10) 

Typical examples are internal symmetries and the lattice translations and rotations. 
Unitary operators generating such symmetries commute with i. Consequently, the 
eigenstates la) fall into multiplets classified by a maximal set of commuting opera- 
tors. Furthermore, operators can be decomposed into irreducible representations of the 
symmetry group, and matrix elements satisfy a Wigner-E&hart theorem. 

The transfer matrix can be used to express thi generating functional compactly: 

2 = Tr{P}, (3.11) 
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where Nt is the total number of timeslices in the lattice, and the trace is taken over 
7i. The eigenvectors la) and eigenvalues T, of the transfer matrix yield an explicit 
representation: 

2 = ~(alTaN*la). (3.12) 
P 

For future purposes, let us introduce IO) as the state with kwgest eigenvalue lo. This 
mcwm will always be unique, as long as the number of degrees of freedom is finite. 

At this stage we have N, the quantum mechanical Hilbert space, and Z-, the evolution 
operator through imaginary time t = -ia. In real time energy eigenstates evolve with 
e-‘Eat. This consideration suggests defining the Hamiltonian to be 

&=-+ ; =-$a,h(~)(a,. 0 (3.13) 

If it is to be Hermitian, the transfer matrix must not only be Hermitian, but also 
positive. The Hamiltonian defined in eq. (3.13) is not simply related to the canonicai 
Hamiltonian, eq. (3.10), unless the lattice spacing is ititesimal and perturbation 
theory is reliable. Adapting the language of perturbative quantum field theory, one 
might say that eq. (3.10) gives the bare Hamiltonian of the cutoff-scale fields, whereas 
eq. (3.13) gives the renormalized Hamiltonian of the asymptotic states. This relationship 
and the continuum limit of the transfer matrix is explored in sect. 4. 

Exercise 3.1 Consider the partition function of quantum statistical mechanics, 

2 = Tr{e+q, (3.14) 

whereas in eq. (3.11) the trace is in Hilbert space, and p is the inverse temperature. 
Show that it and the Euclidean field theory generating functional can be expressed by an 
expression similar to eq. (2.7), hut with p = N,a fixed. 

For the purposes of these lectures, it is enough to examine positivity of the transfer 
matrix for free field theories. Let us do so for free scalar field theory, using the action 
derived in the previous section. In momentum space the translation operators are 
t hlr = e*;.**, so it is easy to read off the inverse propagator from eqs. (2.10) and (2.12): 

*(P) = c 
2 - e-iw. _ ei.*, 

aa 
+m;=J3~+m;, 

II 

where p,, = (Z/a) sin(+ap,,). The energy of a particle with momentump can be read off 
from 

C(t,P)=/_~p&+~+*‘. (3.16) 
0 

The w integral can be performed by contour integration, using the variable I = eiw’w(‘). 
One finds 

C(hP) = a 2 sh(Ea) 
e--EItI (3.17) 

where 
4sh*(+z) = a’(& +j?). (3.16) 

At non-zero a the energy, as defined by the transfer matrix, is E and not J&7. 
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Exercise 3.2 Verify eq. (3.17). Verify also that the continuum propagator and dispersion 
relation are recovered for ap, ama B: 1. 

In verifying eq. (3.17), one notices that the combination I(p) = emE” arises. These 
T(p) are the single-particle eigenvalues of the transfer matrix, positive as desired. 

Exercise 3.3 Suppose the kinetic part ofthe action had been discretised using (tc-1~,)‘/(4a’) 
instead of (t,, + t-, - 2)/a’ for the lattice Laplacian. Show that the single-particle 
eigenvalues of the transfer matrix are T&(p) = +te-“‘, and find the expression for E. 
Note that some of the eigenvalues are negative, but ?’ is positive. 

Sometimes, as in Exercise 3.3, a one-timeslice transfer matrix has negative eigen- 
values, but an I-tin&ice transfer matrix is positive. As long as 1 is small, it is then 
possible to define an acceptable Hamiltonian via 

where 7’ is the l-timeslice transfer matrix. 
To understand the transfer-matrix formalism further, consider the correlator of two 

functions defined on a single timeslice. 

(W4t)G(40)) = + JW ~1(6$J2(~0)8(~). (3.20) 

By time-translation invariance 02 is at placed at time 0. Reorganizing the integrations 
as above 

(~l(wh(~O)) = (3.21) 

In operator form 

(a(GM~o)) = 
Tr[iNe31i’ej2] 

Tr[iN*] ’ 
(3.22) 

where ($14) = CJi(#)l+). Introduce complete sets of eigenstates of ‘I- into eq. (3.22), 
yielding 

(~l(w%(hl)) = ; ~?hN~-‘c~l~,l~,l;fc~Idlla). (3.23) 
-43 

If Nt > t, then the largest eigenvalue dominates the a sums in eqs. (3.12) and (3.23). 
Combining these equations in this limit, gives the equation of greatest practical value 
in lattice QCD: 

m(~t)~a(h3)) = ~(ol~~lP)~Pl~~lo)e-t~~, (3.24) 
B 

where Ep = -ln(l~/To). 

Exercise 3.4 Consider eq. (3.22) when N, > NC - t, and derive the finite Nt corrections to 
eq. (3.24). 
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Exercise 3.5 Extend the analysis to higher-point correlation functions 

P1(4t,P2(4t,)~~ .Q(4t,)). (3.25) 

Pay attention to time order! 

The great value of eq. (3.24), and its generalization for higher-point functions, Exer- 
cise 3.5, is that it reveals precisely which particle properties are accessible from Euclidean 
field theory. First, by appropriately choosing operators 0i and studying the exponential 
fall-off of eq. (X24), one can determine the energy spectrum. For single stable particles 
at rest these energies are the masses. From the energies of scattering state and resonance 
it is possible (though not especially straightforward) to extract more detailed dynamical 
information such as scattering lengths and widths. Second, the matrix elements of local 
operators can be extracted from analyzing two- and higher-point correlators. 

Sects. 5 and 6 discuss lattice actions for fermions and gauge fields. The transfer 
matrix formalism applies in those case, but with more technicalities, so the reader is 
referred to the literature [Z, 31. 

4 Non-Perturbative Renormalization 

This section discusses how to take the continuum limit prescribed in eq. (2.7). The 
continuum limit is the same as the removal of the ultraviolet cutoff, identifying A = n/a. 
From perturbative treatments one knows that renormalization is essential: this section 
outlines the non-perturbative version [l]. 

In the previous sections, the lattice spacing a appears explicitly, and it may seem 
obvious how to take the a + 0 limit. However, one can only compute dimensionless 
quantities such as aE,. Physical units for E, and the box sizes L, (cf. eq. (2.7)) are 
best specified through a fiducial energy El. Holding E-/El, &I,,,, and other physical 
quantities iixed while aE1 -+ 0 can be called the quantum continuumlimit. By contrast, 
the a + 0 limit of the action, rather than the generating functional, can be called the 
classico~ continuum limit. 

The previous sections tacitly neglected interactions. With interactions the physical 
(or renormalized) mass is related to the bare mass by rnk = rni + a-‘, neglecting 
logarithms, where e depends on the ultraviolet regulator. In the quantum continuum 
limit, rn~ is held fixed, rather than m 0, as a + 0. Clearly this is possible only if m. 
depends on a in a suitable way. More generally, an action 

s = c K,(a)%, (4.1) 
n 

where S,, denotes various local monomials of the fields, can possess a quantum contin- 
uum limit only if the couplings K,, are functions of the lattice spacing. We shall use 5’ 
to denote the space of actions or, equivalently, the space of couplings. One should keep 
in mind that the K,, are “bare” quantities in the action. 

To discover the location in S of the quantum continuum limit, one expects certain 
features in the spectrum of the transfer matrix. The Hilbert space must exhibit a 
subspace tip with eigenvalues Ta = loewaE p such that aE, < 1. (Eo = 0, by definition.) 
We have already mentioned that ratios of energies aE,laE~ = E-/El must remain 

11 



constant. Flavor and chiral symmetries of fermions, broken in lattice formulations, 
must be restored. For L,, large enough, 71, must exhibit multiplets respecting rotational 
invariance, as well as mass shells obeying Ez = rni +pi. In short, the states comprising 
tip must comply with all requirements of the physical part of the Hilbert space. 

For generic points in S there is no reason this physical Hilbert space should emerge. 
One would like to know if it is possible at all and, if so, develop tools to identify where. 
Let us re-write eq. (2.7) as 

z= lim lim 
b-t- o-to 

Z(N,i L(a)), 

N#, - ca 
N,.. = L, fixed 

and consider an associated partition function 

Z(C) = Nfym -W’,; Kn) 

(4.2) 

of classical statistical mechanics. The particle-physics couplings K,, correspond to J,,/1p, 
where .7, is some parameter, for example a chemical potential, and IJ is the temperature. 
Suppose Z(Kn) exhibits a second-order phase transition’ somewhere in S. From the 
theory of critical phenomena one knows that the transfer matrix has eigenvalues of the 
form ‘&e-‘/t with [ --* co as the transition is approached. Identifying [ = l/aE1, one 
concludes that the most essential requirement of the quantum continuum limit arises at 
a second-order phase transition. Indeed, to re-state the point more strongly, only after 
second-order phase transitions have been identified for Z(K,,) can the a + 0 limit in 
eq. (4.2) be defined. 

It is perhaps worthwhile digressing to distinguish the phase structure of the lattice 
model of eq. (4.3) from thermodynamics of the elementary particles, described by the 
quantum field theory. The formalism of sects. 2 and 3 leans on the SchrUnger for- 
mulation of field theory; the field’s degrees of freedom live in d - 1 space dimensions 
and propagate forward in (imaginary) time. The associated thermodynamics would be 
studied through quantum statistical mechanics of this (d - l)-dimensional system. If 
the temperature-the real-world temperature, not t9-is only thermodynamic variable, 
one can use the formalism of Exercise 3.1. Phase transitions do arise in the Standard 
Model and have implications for astrophysics and cosmology. But, this is not the phase- 
transition structure sought here. The sought-after phase transition must appear in the 
d-dimensional system whose partition function is defined in eq. (4.3). 

Let us return to the discussion of the quantum continuum limit. A region S, c S of 
second-order phase transitions must be identified. As a rule, dim& < dimS. Because 
critical behavior of Z(K,) appears on SC, it is called the critical surface. Finding its 
location is not as daunting as one might fear. Sometimes the critical surface extends to 
or coincides with (part of) the boundary of S, i.e. to extreme values of one or more of 
the couplings. Then an expansion in a small parameter often yields either the location 
of the critical surface or, even better, a quantitative description of it. In other cases, SC 
separates phases of broken vs. unbroken symmetry..-Then there is generally a diagnostic 

‘The “thermodynamic” limit N,. --t 00 appears in eq. (4.3) to make the location and order of phase 
transitions unambiguous. 
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quantity, called the order parameter, whose average value changes rapidly at the phase 
transition. 

Once the critical surface has been identified, one can set up the quantum continuum 
limit. It is taken along a trajectory in S, as implied by the notation K,,(a) in eq. (4.2). 

The trajectory ends on S.. Before prescribing it off the critical surface, one needs some 
understanding of the dynamics of the partition function Z(K,,). A flexible approach 
is the renormalization group. In this context a renormalization group is any set of 
transformations generating an ultraviolet-regulated effective action from a microscopic 
action, valid at shorter distances. (The microscopic action may, in turn, be an effective 
action too.) The choice of renormalization-group transformation is analogous to the 
choice of a scheme in pertubative renormalization. In the end, the physics should not 
depend on the choice, which one makes according to calculational convenience. 

Let the renormalization group relate an action with ultraviolet cutoff a # 0 to one 
with cutoff Xa. Calculations of eigenvalues of the transfer matrix, or other convenient 
observable quantities, yield a relation between the couplings, 

K,(Xa) = *:)(K,(a)), (4.4) 

or, in differential form, 
dK, 
- = rcIm(&), dt (4.5) 

where X = e’. These renormalization-group equations map out trajectories in S. It 
is useful to think of a particle with coordinates K,, and an equation of motion given 
by eq. (4.5). If one can write2 $,,, = -83/aK,,,, at least after appropriate change 
of variables, it is easy to envision how the particle moves. As t increases it slides to 
decrease 3, spending long intervals oft near points with &,,(K,,) z 0. Points K; with 
&,,(K~) = 0 are called fixed points, because if the particle flows into one, it never flows 
out. At a fixed point the couplings do not change. From eq. (4.4) Kz(Xa) = K:(a); 
hence, Xa = a. At a fixed point either a = 0 or a = 00. The quantum continuum limit 
is defined at the critical (a = 0) fixed points. The o = ar ones will be considered later. 

A critical f&d point is a saddle point: some directions leading out of the fixed point 
increase 3, some decrease F, and others may be flat. An example with one stable and 
one unstable direction is sketched in fig. 3, using the Rocky Mountains as a model. To 
quantitatively analyze the fied point one can linearize eq. (4.5) about the fixed point 

[41: 
dKn 
- = M,n(K, - K;), dt 

up to terms of order (K,, - K;)2, where 

wm M - 
mn = 8K,, Kz (4.7) 

Diagonalizing M = V-‘DV, defining h,, = C, Vn,,,(Km - K;), and manipulating 
eq. (4.6), dh,Jdt = D,h, or 

h, = h,,,,eD*’ = h,o (;) Dn, 

‘This assumption ia restrictive, but it gives an intuitive feel for solutions to the renormalizatian-group 
equations. 
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Figure 3: Alpine illustration of renormalization group flows on Mount F(K). The dotted 
lines are at constant 7. The plane Ka = 0 is the critical surface. The star denotes the 
critical tied point. The skier’s tracks pointing downhill are renormalization group 
trajectories. The solid line pointing uphill gives a trajectory for taking the quantum 
continuum limit. The bold line is the renormalized trajectory. 

where aa and h ,,,o are the initial cutoff and coupling, and at = eta,,. Eq. (4.8) shows that 
D, is the scaling dimension of coupling h,. Because of their role in effective actions with 
increasing t, if D, > 0 the coupling is called relevant, if D, < 0 it is called irrelevant, 
and if D, = 0 it is called marginal. For marginal operators, one can expand eq. (4.5) 
to higher order in K,., - Ki. If quadratic order suffices, one has dh,fdt = b,hi or 

h, = ho 
1 - h,,ob,,t = 

h,,o 
1 - h&,~(at/ao)’ 

(4.9) 
If h,&, > 0 the coupling is marginally relevant, and if h,,& < 0 it is marginally irrel- 
evant. Eqs. (4.8) and (4.9) can be re-written in terms of dimensionfnl renormalization- 
group invariants 

IGIn= 
amle-‘lbmh, for marginal couplings 
.-I l/D.. h, otherwise, 

14 



modified by higher-order corrections to eq. (4.6). As usual a is defined through the 
fiducial energy El. 

This description of the fixed point allows us to construct the quantum contin- 
uum limit. The relevant couplings shall flow into the fixed point as dictated by the 
renormalization-group equations, now with t < 0. On the other hand, the irrelevant 
couplings must be forced to vanish. The uphill line in fig. 3 shows a possibility when 
there is one irrelevant and one relevant coupling (Kl and Kz in fig. 3, respectively). 
As long as an irrelevant parameter is small, perturbation theory in h, suggests that 
physical quantities will be contaminated by cutoff artifacts of order &,&‘=I. Except 
for these small effects, the physics depends only on the parameters II, for the relevant 
(and marginally relevant) couplings. These correspond to the N, unstable directions 
at the fixed point. If the fixed point is to have much predictive power, N, should 
be small, especially since the dimension of S is not really bounded. In perturb&ye 
quantum field theory, the requirement of a small number of parameters boils down to 
the criterion of renormalizability. The terminology used is a bit different: relevant, 
marginal, and irrelevant couplings correspond to super-renormalizable, renormalizable, 
and non-renormalisable, respectively; margindy relevant corresponds to asymptotically 
free. This correspondence demonstrates that the couplings have been treated the same 
way in both paradignx3 

Consider now the surface SR where all irrelevant couplings vanish. In fig. 3 this 
is the bold line. Trajectories in Sn connect the saddle point to a minimum of 3. 
A minimum, incidentally, is a tied point with a = co. Actions on SR have a # 0, 
but they describe the same physics as the fixed point! In other words, they represent 
fully renormalized actions. The trajectories in SR are, therefore, called renormalised 
trajectories. In particular, for a fixed point with only one relevant parameter, there is 
a single renormalized trajectory. The renormalized trajectories provide an alternative 
definition of the quantum continuum limit. Unless one has an exact solution of eq. (4.3), 
however, one can only pin down SA approximately. For example, an analytical expansion 
yields the renorrmlized trajectory to the order computed. A numerical Monte Carlo 
calculation with an explicit choice of K,, on the other hand, misses SR by O(a”), unless 
a miracle occurs. Nevertheless, renormalized trajectories only offer an opportunity to 
improve the approach to the continuum limit, to reduce the magnitude of the cutoff 
artifacts, cf. sect. 6. 

It is probably useful to illustrate these abstract ideas with two examples closely 
related to the standard model. In both examples the renormalization group equations 
are taken from perturbation theory. Hence, it is not necessary to use a lattice for the 
ultraviolet cutoff; Pauli-Villars or dimensional regulators will do. 

The first example is pure gauge theory for d = 4. Since the lattice action for gauge 
fields is introduced in sect. 6 we shall use a momentum space cutoff A (~2 ~/a). The 
action is S = (l/49,2) J~‘z(F;)~, where gi corresponds to K in the general discussion. 
As a bare coupling, go? is a function of A. According to the procedure outlined above, 
one must compute, say, the four glum scattering amplitude as a function of g:(A) and A 
and demand that the implicit and explicit h-dependence cancel. To one loop on obtains 

‘The reader may have noticed that marginally inelcvmt couplings are treated differently. The last 
paragraph of this section cle.riJies the difference. 
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the renormalization-group equation 

@ z bg4 
dt ” 

(4.11) 

where b > 0 and d/dt = -AdJdA. Th e 1 ogic is similar, but not identical to, the 
derivation of the Callan-Symansik equation. Not surprisingly, b is (minus) the fist 
Callan-Symawik coefficient. Eq. (4.11) shows that gz = 0 is a fixed point, and the 
gauge coupling is marginally relevant. Hence, the renormalized theory is determined 
by one dimensionful scale. To one loop it is a-l exp(l/bg;). In QCD this parameter 
is, up to a scheme-dependent factor, A~co. These days, the m scheme is the most 
popular, because it is so convenient in perturbation theory. JIn the long run, a better 
convention would use a scale defined by a physics that is accessible to non-perturb&iv= 
and perturb&iv= calculations, as well as experiments. 

The second example is scalar field theory with V(4) = (go/4!)$‘. This action has a 
field-inversion symmetry 4 H -$. There are now two coupling constants, in the sense of 
eq. (4.1), h, = a%n~ and h, = &‘g,, > 0. In perturbation theory the renormalization- 
group equations are 

dhm -=2/t,,, + ch,, 
dt 

k(4 - d)h, + bhj, 
dt 

(4.12) 

where c depends on the regulator (e.g. lattice vs. Pauli-Villars), but b < 0 does not. 
The perturb&v= fixed point’ is h, = h# = 0. Near the fixed point the field-inversion 
symmetry is unbroken for rnz > 0 and spontaneously broken for rni < 0. The perturba- 
tive fixed point is not enlightening for d # 4: The mass coupling h, is relevant for all 
d, but the self-coupling ho is irrelevant (relevant) for d > 4 (d < 4). However, for d = 4 
the self-coupling h, is marginally irrelevant. If the continuum limit of the d’ theory is 
defined at the perturb&v= fixed point, ga must vanish. This is the so-called “triviality” 
of the 4” theory: if go vanishes, so does the physical four-scalar coupling. The same 
results hold for multi-component scalar field theories, such as the Riggs sector of the 
standard model. The way out is to fmd another fixed point. A futile (so far) search 
for a non-trivial tied point has been carried out by many notable authors. A more 
pragmatic view, which will be taken up again in sect. 9, is to keep A Ii&e and view 
the cutoff #’ action as an effective action. This is certainly the correct view for anyone 
who believes that there is a more fundamental explanation of electroweak symmetry 
breaking than the scalar fields of the standard model. 

5 Lattice Fermi Fields 

For scalar field theories the most straightforward discretization of the derivatives led to 
a lattice field theory with positive transfer matrix. Consider now the (free) Dirac action 

SF = -a4 c ‘j(z,(a t hO)$(+), (5.1) 
D 

‘This fixed point is often called Gaussian, because at h, = 0 the functional integral is Gaussian. 
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where a = r,a, ad hp17yl = 24, in Euclidean field theory.5 On the lattice one 
wants 8, to be a difference operator. The simple choices t, - 1 and 1 - t-, are not 
anti-Hermitian, so particles and anti-particles would propagate differently. Therefore, 
they are not acceptable. However, the symmetric difference operator f(t,, - t&) is 
anti-Hermitian, so it is an obvious first candidate. 

As in sect. 2, let us check the positivity of the free action with 8, = (tv - t-,)/(h); 
the action obtained with this naive discretization will be denoted SNF. The inverse 
propagator is i,9(p) t mo, where S,(p) = sin(ap,,)/a. Fourier transforming in p. yields 

C(t) = sh(;EEa) [cEt (a-‘sh(Ea)yo - is. -r + no) (5.2) 

- (-ebb-)*‘- (a-‘sh(Ea)y,, - is. 7 - m,,)] 

for t > 0, and a similar expression for t < 0. As always, E denotes the transfer-matrix 
definition of the energy. It obeys a dispersion relation 

sh’(Ea) = a’(S’ + m;) (5.3) 

that reduces the relativistic one, when pa, mea < 1. 
There are many problems with these naive lattice fermions, which one can read off 

eq. (5.2). First, concentrate on the first parentheses. For p = 0 it is proportional to 
(1 + TO), as expected. But, from eq. (5.3) and the definition of S,(p), any state with 
momentum p; = x/a-~i has the same energy as a state with p; = qi. Next, concentrate 
on the second parentheses in eq. (5.2). For p = 0 it is proportional to (1 - 7a)r contrary 
to expectations. Furthermore, its eigenvalue of the (single-tin&ice) transfer matrix 
is -emEn < 0, so the Hamiltonian must be defined by i!i = -h(F/l-,1)/(2a), as in 
eq. (3.19). All in all, with the naive lattice action one Fermi field produces 2d fermions. 

These bad features are the first signature of a pervasive problem, the “fermion 
doubling problem.” 

To get rid of the second parentheses in eq. (5.2), Wilson took a hint from the p = 0 
states. Wilson fermions [5] replace -yo(to - t-o)/2 with f(1 - yo)(ta - 1) t i(l + 
yo)(t-0 - 1). Then only particles propagate “forward in time,” and only anti-particles 
propagate “backward in time.” (The field operator li, annihilates particles and creates 
anti-particles.) Using this prescription in the spatial directions should, by symmetry, 
eliminate the other unwanted states. The derivative operator is thus 

$Jl - -r&t, - 1) t $1 t r,J(t-,, - 1) = -C’t ;A, (5.4) 

where, as before, a, = (t,, - t-,)/(2a) and A = (tr + t-, - 2)/a’. In other words the 
Wilson fermion action 

SWF = SNF + ; Cd(.)&(z) (5.5) 
I 

is obtained by adding to the naive action a term, called the Wilson term, that is 
irrelevant by power counting. Frequently one defines the hopping parameter K by 
(2K)-’ = nu,a + d and writes 

SWF = Kg q(z) [(I - 7&, + (1 f 7.&,.I q(z) - c&z)‘/‘(z). (5.5) 
az 

‘Euclidean 7 matrices are Hermitian, 7: = 7+, and 7: = 1. 
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Eq. (5.6) assumes a different normalization of the Fermi fields, which is of no conse- 
quence, because it is unobservable. 

The inverse propagator is now K(2ia$(p) t C&S’ - 2d) f 1. Again, let us check 
positivity. The time dependence of the propagator is 

c(t) = a=-EL sh(Ea)yo - iaS. 7 + am,, + +‘j,’ _ 2 shZ(jEa) 

2 sh(Ea) 1 - K[2(d - I) + a’$] 
(5.7) 

for t > 0. The peculiar denominator of eq. (5.7) appears because the $ does not have 
the conventional normalization. The energy depends on mo = (1 - 2dK)/(2Ka) and p 
through 

1 (m~a + f&2)2 f sz 
ch(Ea) = 1 f - 

2 1 t moat fa”fi’ (5.8) 

Wilson fermions achieve the objective of removing all unwanted states. Neither the 
‘2- < 0 states appear, nor are there low-lying states with p; N r/a. 

Exercise 5.1 Verify that eq. (5.7) is proportional to 1 t 70 for p = 0. In a similar vein, derive 
C(1) for t < 0 and verify that it is proportional to 1 - 70 for p = 0. 

There is, however, a drawback. Under chiral transformations 

l/J(z) H 2-n -4(Z)? 4(z) I-+ 4(z)=‘-, (5.9) 

the Wilson term is not invariant, 

; c +&z)A+(z) ++ ; c +(z)Ae”““$(z). (5.10) 
t t 

The light pseudo-scalar meson spectrum suggest that QCD has approximate chiral sym- 
metries. Because the pseudo-scalars are “almost massless” the symmetry must be re- 
alized in the Goldstone mode, but since they are not massless, there must be a small 
explicit breaking. In the Wilson formulation two terms break the chiral symmetry ex- 
plicitly. In the notation of eq. (5.5), they are the local term proportional to rno and the 
Wilson term. Hence, to describe QCD on the lattice, mo must be tuned carefully to 
counter-act most, but not all, of the breaking from the Wilson term. 

An obvious question is whether it is possible to find a fermion action that retains 
chiral symmetries, as well as other desirable properties. The answer is no. The Nielsen- 
Ninomiya theorem [6] states that there is no local fermion action that has full chiral 
symmetry, no additional states, and a real, positive transfer matrix. This result has 
many important implications. The most significant is that chiral lattice gauge theories 
are difficult to formulate. (At present, the most promising approaches evade the Nielsen- 
Ninomiya theorem by adding additional fields. Since no proposal has been proven 
workable, chiral gauge theories will not be considered further in these lectures.) 

Another popular lattice formulation [7] of ferrnions starts with SNF and makes a 
unitary transformation (for d = 4), 

where [E] 

111(z) = T(I)X(=), 4(z) = K(Z)T’(Z) (5.11) 

T(z) = 7;‘7l”‘73”“7?. (5.12) 
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As usual n, denotes a vector of integers, z+ = an,, so this transformation is valid only 
on the lattice. Substituting eq. (5.11) into eq. (5.1) yields 

SSF = -a4 ~%x(z)(‘f&)~~ t mO)Xa(z)r (5.13) 
=,a 

where a is the Dirac index. Because the 7 matrices have disappeared in favor of 

a(z)1 = T’(zhJ(z f =b), (5.14) 

the four components of Xp decouple, each with the same action. Since the doubling 
problem implies that there are too many degrees of freedom, one can reduce the total 
by replacing the four-component field Xp with a one-component field X. Just as XII(p) 
creates 2’ = 16 Diiac fermions, x(p) creates 16 one-component fermions. Furthermore, 
the Hamiltonian must be defined from a two-timeslice transfer matrix. 

In the continuum limit, one would like to interpret the sixteen fermionic degrees of 
freedom as four “flavors” of Dirac ferndons. This is possible, at least for tree fields, 
but the manipulations involved are too involved to be presented here. These flavors are 
spread out throughout the lattice, yielding the name “staggered fermions.” 

If mo = 0 the staggered fermion action exhibits a continuous chiral symmetry [8, 91. 
After the transformation of eq. (5.11), 7~ becomes 

T’(z)ysT(z) = y&z), e(r) = (-l)“‘+“y+“‘+nr. (5.15) 

Since the four-component version is identical to naive fermions, the chiral symmetry is 
the same as always. In the truncation to one-component, one chooses a basis in which 
7s is diagonal and preserves a 76 = fl component. Then the chiral symmetry is not 
lost in passing from a four-component to a one-component field. To be explicit, the 
one-component action has a continuous U(1) x U,(l) chiral symmetry 

x(z) H ei@+i4+) x(z), n(z) H +)c-ie+i+)a, (5.16) 

where /I is the parameter of the vector part and a is the parameter of the axial vector 
part of the symmetry. 

Note that U(1) x U.(l) is only a subset of the full chiral symmetry group that four- 
flavor QCD must have. Hence, a requirement on staggered lattice QCD is that the 
chid-flavor symmetry SU(4) x SU(4) x U(1) b e restored, in the quantum continuum 
limit. Nevertheless, the U(1) x U.(l) chiral symmetry has many important implica- 
tions. First, when the symmetry is spontaneously broken (e.g. in QCD), there will be a 
genuine pseudo-Goldstone boson with mass rn: o[ mo. In addition, the chiral symmetry 
constrains the form of physical amplitudes, and the constraints can be derived using 
the techniques described in Leutwyler’s lectures [lo], adapted to U(1) x U,(l). This is 
of enormous importance in performing phenomenologically significant calculations with 
staggered fermions, cf. sect. 10. 

The functional integral is specified not only by the action but also by the measure. 
A fermionic degree of freedoms are represented by Grassman variables. Grassman num- 
bers are numbers that anti-cormnut&, {$I~,&} = 0. For a single Grassman variable, 
integration is defined by 

I 
&)(a t q/J) = 6. (5.17) 
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Since @ = 0 more eq. (5.17) contains the most general function of one Grassman 
variable. Since integration must be invariant under changes of variables, if $ = E$‘, 
then d$ = d$‘/[. The measure for the fermionic functional integral is D$D$, where 

W = ndti*(Z), 
+,* 

(5.18) 

and a similar expression for Dv,~. In eq. (5.18) the index b runs over all indices except 
space-time, e.g. color, flavor, and spin. If $ = 2111’ and 2 is an invertible matrix, then 
Vl/, = V$‘/ d&(Z). 

Exercise 5.2 Suppose the matrix M can be diagonalieed. Then show that J’l+!&~+e~~~ = 
d&(M), using the rules for changes of Grassman variables. 

6 Lattice Gauge Fields 

The goal of this section is to formulate lattice field theories with local gauge invariance. 
Imagine first that the matter fields are defined on the sites of the lattice, with a gauge 
field defined on continuous space. The gauge transfommtion law is, e.g. for fermions, 

ti(z) H c?(~W(~), 4(z) - 4(~)!r’(~), (6.1) 

where g(z) is an element of (a representation of) the gauge group G. For particle- 
physics applications G will be a compact, semi-simple Lie group, likely non-Abelian. In 
the following we shall take G = SU(N). The equations below follow conventions that 
the generators T” are anti-Hermitian (2’“’ = -TO) and tr(T’T”) = -$a”*. Then the 
commutator reads [T”,T*] = fakTc. 

The kinetic part of the matter-field action arises, in general, from couplings of the 
form &r)+(y) where + and y are neighboring sites. These terms are not gauge invariant; 
instead 

&=MY) H 4(~hP(~MYM(Y). (6.2) 

On the other other hand, the combination $(z)(l(z,y)$(y) is gauge invariant if 

U(z, y) = P exp (/.‘dz. 444) 3 (6.3) 

i.e., if V(z,y) is any path-ordered parallel transporter from I to y. It is therefore 
straightforward to build gauge-invariant lattice models by taking the fundamental gauge 
degrees of freedom to be the parallel transporters on the links connecting neighbors. 
Longer parallel transporters can be formed from products of parallel transporters on 
liIlkS. 

To write down gauge invariant actions, let us concentrate on hypercubic lattices and 
write u*,,(z) = Cr(z, z + pa). Minimal coupling of gauge fields to matter fields is done 
by changing the translation operators of the previous sections to covariant translation 
operators 

Tfi = U,&, T-, = ;-,,t-,. (6.4) 

(Strictly speaking, the representation matrix for U,, should appear instead of U,, in this 
equation.) As with the t,,, one has T-, = Tj, because V-,(z) = U,!(z - a~). 
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The action of the gauge field can be obtained by generalizing the discretization for 
scalar fields. The following consideration makes it easy. For a local gauge symmetry 
the full symmetry group is 4 = n, G., a direct product over alI sites in the lattice. A 
matter field $(z) transforms non-trivially under G, and trivially under all other factors. 
Similarly, a parallel transporter CJ(+, y) transforms non-trivially under G, and G, and 
trivially under alI other factors. Hence, the generalization of the covariant translation 
operators is to attach to t+, the representation matrix of 4. Explicitly, 

T&L(z) = U,,(z)Uv(z t ap)U$ t av). (6.5) 

In the continuum the action is a combination of derivative terms and non-linear 
terms required by gauge invariance. We shall use the covariant translation operators 
to form a gauge invariant derivative-type term, expecting that the non-linear terms are 
correct, owing to the gauge invariance. By analogy with eq. (2.12) the derivative terms 
for V,, are given by 

where 

- c W,!(+)(T, + T-, - WJv(~)l = 2 c p,(n), 
=+ r,e (6.6) 

PpY(z) = Re tr[l - U,,(z)Uy(z + aj++ f au)V;(z)]. (6.7) 

Fortunately, the p = Y term vanishes, just as in the continuum, where (for A”) the 
operator A - 8; (no sum on V) appears. Summing eq. (6.6) over v yields the gauge 
invariant lattice action [ll] 

SC = & c PM”(Z), (6.8) 
=,A$” 

where p is a parameter related to the bare coupling constant, cf. Exercise 6.1. This 
action is called the Wilson action, or, to distinguish it from the Wilson fermion ac- 
tion, plaquette action, because the product in eq. (6.7) is parallel transport around a 
p1aquette. 

Exercise 6.1 Show that a, a - 0 the plaquettc action reduces to the familiar Yang-Mills 
action S = (l/49:) Jd’z(F;,)‘, i.e. that the non-linear terms come out correctly. This is 
8 bit tedious, because you must keep terms of O((aA,)‘) in the expansion of VP, but it 
identifies p = 2NJgi. 

The last ingredient of the theory is the functional measure. Lie groups have a natural 
measure invariant under left (and right) multiplication with a constant, 

jdUf(U) = /d(W) f(U) = jdUf(UV-‘), (6.9) 

which is called Hear measure. If the functional measure is defined to be 

DU = n dU,(z) 
+,lr 

i.e. by Haar measure for every link matrix in the lattice gauge field. The invariance 
property in eq. (6.9) guarantees that DU is gauge invariant. 
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7 Lattice Perturbation Theory 

Lattice gauge theory has been developed mostly as a tool for non-perturb&k calcnla- 
tions. It is also possible to derive perturbation theory on the lattice, but the Feynman 
rules are not a pretty sight. For QCD (and the Wilson action) a correct set can be 
found in ref. (121. For efficient ways of deriving Feynman rules for improved actions (cf. 
sect. 8) see ref. [13]. 

There are four important reasons, all related to renormalization, for considering 
lattice perturbation theory. Because of time limitations, they cannot be considered 
in detail in these lectures. Instead, we shall summarize the main themes and results, 
referring the reader to other reviews for further details. 

7.1 R&z Theorem 

Reisz’ Theorem, really his series of theorems [14], establishes the equivalence between 
lattice perturbation theory and traditional approaches [15]. 

Theorem If a lattice field theory is renormalizable by power counting, and its propa- 
gators exhibit no species doubling, then renormalized perturbation theory is uni- 
versal, i.e. as a -+ 0 it is independent of the lattice action. 

Neither the statement, proof, nor consequences of this theorem are trivial. Unfortu- 
nately, because of the high technical level of the proofs, the importance is, perhaps, 
underappreciated. 

In the hypothesis, “power counting” is defined carefully, tailored to the vagaries of 
lattice Feynman rules. The assumption forbidding species doubling is technical, and it 
would be helpful to remove the requirement for staggered ferrnions. In the conclusion, 
“renormalized perturbation theory” means that renormalieed (or physical) couplings 
are defined, and all other quantities are re-expanded in terms of them. The proof shows 
that lattice artifacts vanish to all orders in perturbation theory, as a -+ 0, for any action 
whose classical continuum limit is correct. 

The proof proceeds by constructing a BPHZ subtraction program, tailored so that 
counter-terms are local on the lattice. It reveals the fist important consequence of Reisz’ 
Theorem. Through BPHZ renormalization, it establishes a link between perturbation 
theory with a lattice regulator and perturbation theory with dimensional or Pauli- 
Villars regulators. Since lattice field theory is an approach to quantum field theory 
that maintains rigorous control over the ultraviolet, this link puts the more familiar 
perturbative renormalization program on a sounder footing. Those who pursue higher 
order perturb&k calculations should sleep better after studying R&e’ Theorem. 

The second important consequence also concerns the renormalization program. Wil- 
son’s abstract ideas on the renormalization group bear little resemblance to the tradi- 
tional, perturbative renormalization group. The abstract ideas have a concrete realiza- 
tion through lattice field theory. R&z bridges the last gap-showing in detail how to 
carry through the traditional BPHZ program on the lattice. 

7.2 Asymptotic Scaling 

Perturbation theory also plays a crucial role in understanding numerical results from 
Monte Carlo simulations of lattice QCD. For simplicity, let us consider SU(N) lattice 
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gauge theory without matter fields. There is only one parameter in the action p = 
ZN/gi. A solution of the theory (e.g. numerical) yield a relations 

a& = fi(Z) (7.1) 

for every physical quantity. (Any dimensimfkl quantity can be converted to an energy 
by raising it to the appropriate power.) As a 
eq. (7.1) with respect to lna yields 

-+ 0, Ei should not change. Differentiating 

a$(aEi) = aE< + O(a”) 

for the left-hand-side, and 

dfi dfi hi dfi 
“‘;i;; = @“da = 2&f(d) (7.3) 

for the right-had-side, where /3(g$ E dg,l/dha’. (In the notation of sect. 4 Zp(gi) = 
111,:.) Equating these two expressions and neglecting the O(a”) term yields a differential 
equation 

fi = Z~~(go2). (7.4) 
0 

The p-function can be expanded in power series p(u) = 111 vm fl *+ where 0, arises - ,>“-nCnl . _.._“. .- . 
from the (n t I)-th loop of perturbation theory. The f?m --.--_-___ t two coefficimts do not depend 
on the regulator, but the rest do. For N colors and Nt flavors the universal coefficients 
are 

11N - 2Nt 

PO = 3(16+) ’ 
Pl = 

34N3 - (13N’ - 3)N, 
3N(16+)2 ’ (7.5) 

Truncating the p-function at two loops and integrating eq. (7.4) gives 

JG = Cihtt (74 

where Ci is a constant of integration and 

*,mt = ; ( hJ~+&.d)“‘2p~ ,-1/280s:w 

is a standard scale parameter, as in eq. (4.10). The behavior given in eqs. (7.6) and 
(7.7) is called asymptotic scaling, and the O(a”) terms in eq. (7.2) are called scaling 
violations. 

As usual perturb&k QCD predicts eq. (7.7), the evolution with an ultraviolet scale 
(here l/a), but not Ci, the initial condition. The only promising method to compute 
the C; is numerically, as explained further in sect. 10. Since everyone feels QCD is 
correct, an important element of numerical lattice QCD is to test numerical algorithms. 
The prediction of asymptotic scaling, for gi small enough, offers a powerful check of the 
numerical approach. 
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7.3 Matching Scales and Operators 

Perturbation theory is also needed to compare unphysical quantities in different regu- 
later schemes. To be concrete, let us choose lattice and dimensional regulators. The 
latter is the darling of perturbation-theory mavens; it introduces a mass parameter p 
and evaluates Feynman integrals in n = d - 2~ dimensions. Just as one identifies r/a 
as the ultraviolet cutoff, we shall write 

A’ = 4x$ exp 
1 

( > 
- - YE 
c 

for dimensional regularization. In a comparison with the lattice, A plays the role an&- 
gous to x/a. On the other hand, it also plays precisely the role of p in the m scheme. 

As an example, let us consider the relation between go’ and g& In the one-loop 
approximation the renormalized coupling is 

in terms of the bare lattice coupling and 

in terms of the m coupling. 4 is the renormalization point. The constants c depend on 
the physical choice of g;(q), e.g. quark-anti-quark scattering at momentum transfer q 
or the QCD correction to efe- + hadrons at center-of-mass energy q. But cm - Q.,~ is 
process independent. Since g&(q) is a physical quantity both regulators must yield the 
same (experimentally measured) number. Equating the right-hand sides of eqs. (7.9) 
and (7.10) one obtains 

& = gb(;,a) + Pa hl $g + cm - %t. 

Explicit calculations [16] yield 

(7.11) 

Nl-1 
cm - 9., = -8N t (0.008204)1~ + (0.002778)N,, 

which is -0.3087 for N = 3 and Nf = 0. 

(7.12) 

The dominant contribution is -(N’ - 1)/8N, and its origin is easy to understand 
[17]. A formal but elegant way to derive eq. (7.11) is the background field method, 
which computes the response of the generating functional to an external field [18]. A 
Gedanken experiment with classical non-Abelian capacitor plates demonstrates that 
the calculation is a physical one. An important intermediate step in the background 
field calculation requires the average action per upit volume. In the m scheme this 
vanishes, but on the lattice it does not. In fact, the average plaquette action density is 
g;*(P,,,,) = (N’- 1)/8N, to leading order, which is precisely the dominant term on the 
right-hand side of eq. (7.12). 
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Eq. (7.11) is usually recast to provide a relationship between the renormalization- 
group invariant scales of the two regulators. To one loop goa = &,ln(l/A&“) and 
g& = &, ln(A2/xzA~), so 

Am = ,,@-XE)/~~A~~~. (7.13) 

Because of the sizable average plaquette in q&e - ‘MS, the ratio Am/Al,, is large. For 
example, Am/Al., = 28.8 for N = 3 and Nf = 0. 

Another class of examples is given by operators appearing in the operator-product 
expansion [19]. Generically, 

A(fz)B(-fz) = ~C,(z)O(-j(O), (7.14) 
n 

in the weak sense of matrix elements. The coefficient functions C,,(z) are c-numbers 
containing the singularity structures as .z’ -+ 0. The sensitivity to initial and final states 
resides in the matrix elements of local operators O(“). In a typical application the C,, are 
calculated in perturbation theory using dimensional regularization, and the (hf lO(“)lhi) 
are calculated numerically in lattice field theory. To apply eq. (7.14) one must either 
re-derive the coefficient functions on the lattice, or convert the lattice matrix element to, 
say, the m scheme. If the operator is multiplicatively renormalizable, the procedure is 

analogous to the relationship between couplings. Writing .Z&J~ = Ok’ = Z,!;‘Oti), 
one-loop perturbation theory yields 

(hfloqhi)~ = (hflO(qk)~;:la) 1 +gz 
[ ( 

y&& +c$-c;;:) I , (7.15) 

where the cc”) depend on the states (hi) and Ihf), but the difference does not. To obtain 
them matrix element for eq. (7.14) one can either set A = n/a and keep the correction 

factor, or set A = (r/a)= (~-m/l7” MS so that the correction factor is unity. 

8 Improved Actions 

In the previous sections lattice action were constructed by using nearest-neighbor dif- 
ferences as approximants to derivatives. The dispersion relations (eqs. (3.18), (5.3), 
and (5.6)) show that the spectrun is affected at O($). This section re-examines the 
nearest-neighbor approach and addresses the question, whether, and to what extent, 
better approximants can be derived [20]. 

At the classical level the procedure is straightforward and has been used for ages in 
numerical analysis of differential equations. Instead of writing A, = (t,, + t-, - 2)/a2 
for the /I term in the Laplacian, look for an improvement 

a’A, = cl(t, t t-, - 2) t c,(t; t t:, - 2). (8.1) 

The quickest way to determine the correct values of the cg is in momentum space where 

&A = e*+, and demand that the right-hand side be a’p: + Ok). This exercise 
yields cl = 4/3 and ca = -l/12. Similarly, the (a~,)~ term cancels in 

aa, = bl(t, - tq f qt:, - e&J. (8.2) 
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if bl = 4/7 and 62 = -l/14. Clearly, this procedure can be extended to high order in ap, 
without much work, and inserting these derivatives into the lattice action will improve 
it at the classical level. Furthermore, for d > 1 improved Laplacians or a can become 
not only arbitrary but arbitrarily baroque, when the possibility of higher dimensional 
paths is fully exploited. 

Since gauge interactions are introduced through derivatives by the minimal coupling 
prescription, one might ask what subtleties arise. For gauge-matter interactions, nothing 
special happens, except that the translation operators t, are replaced by their covariant 
counterparts TP. For pure gauge interactions the c: differ, because Pw (cf. eq. (6.6)) is 
simultaneously a derivative term for L’,, and U,. By analogy with eq. (8.1) a candidate 
improved action is 

S = ; c [d’,w(=) t @&)I, (6.3) 
=,Aw 

where 

R&z) = Re tr[l - Uy(z - ap)U,,(+ + a~ - a+)U,,(z + av)UL(r t a~)U,?(z)U,!(z - ;~k]; 

comes from a next-to-nearest neighbor interaction, 

- z tr[U;(+)(T; + 7’1, - 2)&(z)] = ~&w(z). (6.5) 
a,* 

To determine co and cl (at the classical level) it is enough to consider U,, as the parallel 
transporters of an Abelian plane wave, e.g. A,(z) = b,t3eik’s. Then a short calculation 
shows that c,, = 5/3 and c1 = -l/12. 

The classical analysis is inadequate at the quantum level for several reasons. From 
the renormalization group ideas in sect. 4 one realizes that the real goal of the im- 
provement program is to deduce a trajectory for the quantum continuum limit that is 
closer to the renormalized trajectory. Recall that an irrelevant coupling h1 # 0 induces 
corrections of O(hpz”) to continuum values of physical quantities. Of course, the lowest 
7~ dominates, and in typical cases T& = 2 or n = 1. Without an exact solution it is not 
feasible, in practice, to set all irrelevant couplings to zero, but it is still desirable to 
make them as small as possible. As in eq. (4.1) one must start with a general action, 
and derive and solve the renormalization group equations. For obvious reasons, the 
terms in eq. (4.1) will be chosen for calculational convenience (e.g. deriving Feynman 
rules or computer programmin g). If the error associated with the approximations in the 
calculations is c, then the coefficients K,, (or Ci and bi), chosen SO that the irrelevant 
couplings vanish, will really yield hI - E. 

For asymptotically free theories, such as QCD, the classicalanalysis is a good starting 
point, because perturbation theory describes the approach to the fixed point. Therefore, 
the scaling behavior of operators differ from their classical values by perturbatively 
calculable amounts. In other words, irrelevant couplings can be reduced to hl cx gf, at 
the f-loop level. A generic lattice action can be written schematically as 

s = a4 c (9’04 + aah,Oe + a’hsOs + . . .) 
z 

(8.6) 

where the 0, is a continuum operator of (classical) di mension n. Suppose an action has 
been improved classically to O(a’), i.e. he = 0. At one loop insertions of 0~ generate 
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effects like those of O4 and Oe at tree level. The 01-like contribution is compensated by 
renormalieing gl. Let the &-like contribution be ce+ehsg’. Taking ha = -cs-,~h~g* 
(instead of 0) cancels it, i.e. improves the action to O(g’a’). 

In light of these complications, it is worth discussing exactly what quantities should 
be improved. An ambitious goal would be to improve alI correlators involving the 
fundamental fields. A more practical and completely adequate goal is to improve only 
physical quantities. Defining physical states to have E < r/a, p < x/a, their energies 
and matrix elements must be improved, even if off-shell Green function are not. This 
improvement criterion is called “on-shell” improvement 121). A short consideration 
shows that composite operators require their own improvement, beyond that of the 
action (i.e. transfer matrix). Imagine computing the matrix elements by adding a source 
term to the action. The modified action must be improvement in its own right, say to 
fist order in the source. The improved operator is then the part proportional to the 
source in the improved, modified action. 

In lattice QCD the Wilson fermion action is the simplest and most important can- 
didate for systematic improvement. The pure gauge action is automatically improved 
(classically) to O(a’), and symmetry forbids O(a) effects from appeared through renor- 
malization. On the other hand, because the Wilson term is dimension five (multiplied 
by a), cutoff artifacts appear at O(a). To be explicit, the gauge-boson-fermion vertex 
is r,, + ap, + O((ap,J2), which leads to O(a) artifacts in scattering states (at tree level) 
and everything else (beyond tree level). 

Consider the naive fermion action SNF = -a4 C. $($J t mb)$(+), where D, = 
(Z’,, - Z’-,)/(2a). For low momentum states, the naive action is perfectly fine, and its 
leading lattice artifact is O(aa). Let us transform the fields by [22] 

111 I-+ [I - $-a(@ - n&)]$, 7J t-+ 4[1 t +t6 -tntb)l. (8.7) 

The spectrum does not change, because a change of integration variables does not change 
the integral. The measure I&jD$ does not change, up to O(a’$‘), and 

SNF ++ -a4 c ‘j[@ + mo - +@]Tb(Z) + O(d), 
t 

where mo = mb(1-t fram;). One can replace 

JD” = 0; - fo,,,[D,, Dy] -+ 02 = A - fu&,,, (8.9) 

againup to O(aaJP), where A = C,(T,+T-,-2)/ a2 is the (covariant) lattice Laplacian 

ami C,w xs Fry + O(d). For example, 

C,, = ; _c c T,T,T-,T-, - h.c. (8.10) 
*=fp.Y=f” 

Since &$P-O,)li, is a dimension seven operator, the replacement in eq. (8.9) introduces 
effects of order g& at the one-loop level. The effects can be reduced by adding a 
dimension five operator other than qO&, say (ica/4)$r,,,,CP,$, where the perturbative 
series for e starts in O(g,2). The beauty of these replacements is that the resulting action 

SlF = -2 CM t ml3 - yoo f ~c7wc,]~(z) e 
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removes the doubling problem in tha same fashion as Wilson fermions, without modi- 
fying matrix elements on shell. In fact, to all orders in perturbation theory one can set 
r = 1, so that particles travel forward and anti-particles backward in time, and tise c to 
obtain O(g,$z) improvement. 

Another way of interpreting this result is that the Wilson action modifies a sensible 
action by adding the term ia$~,,~F,,,,$. Since a,; is the spin operator, one should 
expect spin splittings (e.g. mP - m, or m,, - mu) to be inaccurate. In charmonium, 
numerical simulations show that for gi % 1 there is a significant difference between 
c = -1 (Wilson action) and c = 0.4 (to account for loop effects) 
C,, involves closed paths, ~n,,,,C,,,$(z) couples fields locally [22]. 

[23]. Moreover, since 

The above reasoning can also be applied to composite operators of fermion fields, 
which are studied in phenomenological applications of lattice QCD, cf. subsect. 10.2. 
However, one must track how the operators transform under eq. (8.7). For example, 
consider a bilinear: 

up = rn;&6 H 0; = ma@? t +l(rJ!l- 0’ I-)]$ t O(d). (6.12) 

In a calculation with SIF the matrix elements of 0; are correct to O(g&) [24]. 
The gauge part of the QCD action can also be improved along analogous lines [21]. 

Again, there is a free parameter z, like T, that can be set according to a criterion 
separate from on-shell improvement. The range of z is restricted, in order for the action 
to have a minimum at U,,(z) = 1. Since the classically improved actions involve next-to- 
nearest neighbor interactions, the transfer matrix must be defined over two timeslices. 
In setting up the transfer matrix [25], one finds a breakdown of positivity of the transfer 
matrix. There are states with complex eigenvalues of the transfer matrix. Fortunately, 
the low-lying states are isolated from those unphysical states, and there should be no 
problem defining the continuum limit. 

9 Upper Bound on the Mass of the Higgs Boson 

As mentioned in sect. 4, the only known fixed point of the scalar field theory is the 
perturbative one, at which the continuum limit is “trivial.” Clearly, this assertion must 
be backed up by a non-perturbative analysis, which this section provides at a pedestrian 
level. A trivial theory need not be useless. Scalar field theories can be used as effective 
field theories when (more) fundamental physics is well approximated by scalar fields at 
energy scales E 6 A. If one understood the fundamental physics, the renormalization- 
group equations would determine its effects at experimentally accessible energies. 

The lattice +* theory has been analyzed from this philosophy in several papers [26]. 
Triviality still influences the behavior of the effective field theory. The main result is 
a bound on the renormalized coupling constant. In the O(4) scalar field theory this 
results in an upper bound on the mass of the Higgs boson (modified in order g& 

by gauge interactions). The single component model is discussed here to avoid subtle 
complications associated with the Goldstone bosoqs of the O(4) model. The objective 
of this section is to keep the calculations as simple as possible, yet still demonstrate 
that analytical, non-perturbetive techniques can lead to important physical results. 
Numerical work has also played an important role in understanding the validity of the 
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bound [27], but it is not discussed here, because there is plenty of material on numerical 
lattice QCD in sect. 10. 

A non-perturbative analysis is essential for a simple reason. Perturbation theory 
in go predicts that it is a marginally irrelevant coupling, which means that Ae-l/bga(A) 
is constant, where A is the ultraviolet cutoff and b < 0. In other words, go(A) must 
increase when A does; perturbation theory in go predicts its own downfall. 

The non-perturb&iv= analysis presented here naturally uses lattice field theory. As 
usual, we make the rough identification A = ~/a. Following ref. [28] we shall write the 
lattice action as 

S = -2K c Q~Q,,+@ + c (Q: t X(Q:, - 1)‘) 
WJ n 

For convenience, ‘p and n are dimensionless: ‘pn = a(d-‘)l’$(z)/m and n = z/a, 
where d is the space-time dimension. This action reduces to the familiar Euclidean 
Lagrangian 

L = f(a& t fm~Q t ep + constant 
4! 

in the classical continuum limit. 

(9.2) 

Exercise Q.l Verify eq. (9.2), by writing #(z + jia) = b(z) + aa,,+ + fa’8:4(z), or by 
working backwards from eq. (2.14). This procedure will yield relations between the bare 
parameters (K, A) and (mo, go). 

In the rest of this section we shall take d = 4. Only the mass term and 4’ terms of 
a general scalar potential are used, because others are strongly irrelevant in perturba- 
tion theory. The non-perturb&iv= analysis will give an a posteriori justification for 
neglecting, say, 1pe terms. 

Eq. (9.1) has a discrete symmetry p H -‘p, which is spontaneously broken for large 
enough K. The phase diagram and perturb&iv= fixed point are shown in fig. 4. 

Exercise 0.2 Discuss which range of X corresponds to a potential with one minimum, and 
which range corresponds to two minima. (At tree level these correspond to unbroken and 
broken symmetry, respectively.) In which regime do the parameter values K < 1, go fixed 
lie? 

At X = 00 the model reduces to the Ising model, which is known to have a second-order 
phase transition (for d = 4) at K = Kc = 0.074750.. . . 

Suppose K < 1 but X is arbitrary. Then ems can be expanded in powers of K. In the 
jargon of statistical mechanics this is a high-temperature expansion. After expanding, 
the drp, integrals factorize; any expectation value is a product of integrals of the form 

&,,(A) = /dQ Q”e-bl+Ab’-l)zl~ (9.3) 

If m is odd, the integral vanishes. 
Consider the propagator, or two-point correlator, 

(Q.pQd = ; j j-‘+ Q,@Qo=-~. (9.4) 
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K 
broken 

unbroken 
0.074750 

Figure 4: Phase diagram of 4’ theory in four space-time dimensions. At X = 0, Kc = 
l/8; at X = 00, Kc = 0.074750. 

The term of lowest order in K comes when the expansion of e-’ yields a factor of the 
“hopping term” ZKp,,+,gpn for every site n on the straight line linking 0 and rb. One 
finds 

(vp.,i’po) = fi(-J) PKfi(X)I’ > (9.5) 

where f,,,(X) = I,,,(X)/&,(X); the denominator 10 comes from the normalization factor 
2-l. Eq. (9.5) exhibits the eeMar b&w’ mr expected from the transfer-matrix formal- 
ism, where the mass is 

A4 = +(ZKf~(X)). (9.6) 

Obviously K and X must be functions of a, chosen in a suitable way, if M is to stay 
fmed and finite as a - 0. Comparing eqs. (3.17) and (9.5) one sees that vpl& is 
conventionally normalized if 

2, = Zfz(x)sh(Ma) = &, 

the last equality holding for K Q 1. 
The renormalized coupling constant is 

OR = -2 (%i%ri’P.a4La). 
G (1Pt+mmwJo)~ ’ (9.8) 

taking both field normalization and propagator truncation into account. It can also 
be computed easily. In leading order the numerator has two terms. One comes from 
a product of hopping terms in towards the origin, yielding f,(x)[ZKfi(x)]l(‘f’). The 
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other comes from subtracting the disconnected parts, -3 j~(X)[ZKfi(X)]‘(‘+‘). The 
factors of ZKfi(X) cancel between numerator and denominator, leaving 

gR = GPf,l - f4) = 2i 
fi Wfd2 ’ (9.9) 

where 2x(X) = 3 - fd(X)/fi(X). When X is small, i = 3X + 0(X2), and as X increases 
it rises monotonically to 1. (As X -+ 00, f,,, + 1.) 

Exercise 9.3 At X = 0, check that eq. (9.6) reproduces eq. (3.18) for p = 0 and K < 1. You 
will need the result of Exercise 9.1, 2d+ m&a2 = (1 - U)/K and fa(O) = i. When X is 
small, check that eq. (9.9) reduces to the expression for 9,~ in Exercise 9.1. 

Note that at fixed K, 9~ is bounded. The physics behind this result is that the size 
of the renormalized coupling measures the extent of the field fluctuations. This fact is 
usually obscured by normalizing the field to a conventional size. In the normalization of 
eq. (9.1), however, a strong X# interaction suppresses fluctuations; in the Ising limit, Iv/ 
does not fluctuate at all. Indeed, the essence is captured by a single degree of freedom, 
for which the expectation value of ‘pm is &(A). 

To apply these lattice results to continuum physics, one must accurately determine 
the location of the critical line in fig. 4, and then compute 9~ close enough to it, 
so that effects of order M/h are not too large. Liischer and W&e 128) have done 
both by applying the tenth-order high-temperature expansion [29]. The critical line 
is determined by pin-pointing where the series diverges. For K too close to K, the 
expansion is no longer accurate, but for K 5 0.95K, it still is. On the line K = 
0.95K, the renormalized coupling is bounded, as suggested in eq. (9.9). The Ising limit, 
X = 00, yields the maximal value go,,,,= = 41, which is “small,” because the natural 
expansion parameter of renormalieed perturbation theory is g&6a’. (The leading 
order expression in eq. (9.9) is only qualitatively correct, estimating gn, ,,,= = 99.) The 
line K = 0.95K, has other admirable features, in particular, am1 6 2&f, i.e. the scale of 
new physics A is not much larger than M itself. 

Since gR is small, one can integrate perturbative renormalization group equations, 
to study the strip of the phase diagram with 0.95K, 5 K 5 K,. Given the form 
of the initial data, a(O.%K.,X) and gR(O.Q5K,,X), it is easier to work on curves of 
constant X than cones of constant physics. Then it follows immediately that gR vanishes 
on the critical line. The continuum limit is trivial. Furthermore, since renormalized 
perturbation theory is universal (R&z’ Theorem) changes in the initial lattice action 
would not alter this step of the analysis. 

These calculations are done in the unbroken phase, so they do not apply directly 
to the Higgs boson. However, it is possible to transfer the results across the critical 
line, into the broken phase using perturbation theory in AK = K - Kc. Again the 
renormalized coupling is bounded, gR 5 gn, mm. In the region where ama 5 0.5 (mu 
is the Higgs boson mass), gR, ,,,= = 48. In terms of the Higgs-field vacuum expectation 
value v = 250 GeV, gR = 3m&/va, so the bound on gR is a bound on mu. Hence, 
ma S 1 TeV lf the cutoff A = 2nm~ % 6 TeV. If A/mx is higher, gR, mDl, and hence 
mu, mU, is smaller. 

There are only two ways to raise the bound on mu. One is to fiddle with the 
lattice action, which boils down to makiig specific assumptions about the effective 
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action at scale A. An action different from eq. (9.1) would provide different the initial 
conditions for the perturbative renormalization group equations, perhaps leading to a 

lww m, ms in the Riggs phase. It might also provide other physics implications- 
signs of new physics. The other way to raise the bound is simpler: merely lower Alma. 
But then there will almost certainly be signs of new physics. If the experiments are 
precise enough, these would be seen in the 1 TeV region. 

These results apply only to the one-component 4” theory. Liischer and W&z have, 
however, repeated the whole analysis for the O(4) scalar field theory [30]. Every feature 
follows through as above, although the details are more demanding. Furthermore, nu- 
merical work [27] confirms the analytical results. The result for the Higgs boson mass 
is a bit stronger, ma & 630 GeV. Even allowing a conservative margin of error (for 
theorists fiddling with and experimentalists detecting rn~/A effects), the conclusion re- 
mains compelling: either a fundamental Higgs boson or new physics will be found at 
an energy scale below 1 TeV. 

10 Numerical Calculations 

With the theoretical foundations and one analytical example of non-perturbative tech- 
niques out of the way, this section covers numerical analysis of the functional integral, 
focusing on QCD. It does not give details of the computation-intensive algorithms. In- 
stead, in line with the goal of providing a guide to non-experts, it points out some of 
the big obstacles, and tries to cultivate an intuition for numerical analysis well done. 
Consumers of lattice QCD calculations need to recognize the difference between solid 
and shabby results. 

For non-zero a and finite N,, lattice field theory is defined by a multi-dimensional 
integral. The suggestion is to use a computer and “Just do it.” For bosonic degrees of 
freedom, such as the gauge field in QCD, the only viable option is Monte Carlo integra- 
tion with importance sampling [31]. Let UC’) represent a gauge-field configuration, i.e. a 
random SU(N) matrix for each integration variable V,,(z). Imagine generating a large 
ensemble of configurations {CJ(‘)}, i = 1,. . . , NEo,,r, distributed according to the product 
Haar measure Du = l&+ dU,,(z). A numerical estimate of an expectation value would 
be 

(10.1) 

where NFonf is the size of the ensemble. This is a garden-variety Monte Carlo integration 
algorithm. Because S is extensive, it is hopelessly inefficient. For a large lattice e-’ 
varies over extremely many orders of magnitude. However, as long as e-’ > 0 for all 
configurations, which is usually the case, there is an alternative. Suppose a co&igu- 
ration UC’) appears in the ensemble with probability ‘LJU e-‘(‘(‘)). This is importance 
sampling. Then the numerical estimate is 

(f(U)) 0 f(v) s -$- N!ff(U(i)). 
ccd +I 

(10.2) 

Several suitable algorithms are available for gauge theories, taking the Haar measure 
correctly into account. An ensemble generated by importance sampling provides an 
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X 

Figure 5: Quark-line diagram for the pion propagator. 

estimate f for every (f), leading to the slightly imprecise terminology “Monte Carlo 
simulation.” 

Fermion fields, such as the quarks in QCD, cannot be handled this way, because they 
take values in a Grassman algebra. A general fermion action can always be written in the 
form $M(u)+, where M(U) is a matrix function of the boson fields U with space-time, 
spin and internal indices. The fermion fields can then be integrated exactly: 

I DUD$D,j ,-s(“)+@+‘)+ = 
I 

‘DU det M(U) ,-s(V), (10.3) 

I 
DUDgq $;& f(U) ,-w)+ww+ = 

I ZYUM~‘f(U) detM(LI)e-S(v’), (10.4) 

and similar expressions for expectation values of products of fermion fields. The com- 
putation of determinant or inverse of M requires overwhelming amounts of computer 
time. Fortunately, almost every problem in QCD can be recast into a system of linear 
equations. Writing space-time indices explicitly, but spin and internal indices implicitly, 
one must solve 

W~,Y)‘&(Y) = x(z) (10.5) 

for G,, which is the lattice analog of the Dirac equation in a background boson field. 

If x(r) = J(z - z), then G6.t~) = G(Y, ) z is the fermion propagator from z to y, 
including all interactions with the boson fields. By linearity, G,(y) = C. G(y,+)x(r). 
The dimension of M is huge, but, because the interactions are local, it is sparse-most 
of its entries are zero, and there are several acceptable algorithms for solving systems 
such as eq. (10.5) for sparse matrices. 

The propagators make it easy to generalize eq. (10.4) to arbitrary products offermion 
fields. Under the boscmic functional integral they are replaced by propagators according 
to Wick’s theorem. This leads to a diagrammatic notation. For example, a ?y+ meson 
oxrelator (&~u(z)Ey5d(O)), where u and dare up and down quarks, is sketched in fig. 5. 
One should keep in mind that the gauge-field average is implied in fig. 5; it represents 
the sum of all Feynman diagrams with gluons and internal quark loops attached. 

If det M(U)e-S(u) is positive for all U configurations, it can be used as a probability 
distribution. In lattice QCD, det M is positive for staggered fermionse or for two equal- 
mass flavors of Wilson fermions. All “full QCD” algorithms being used nowadays start 

“Recall, one staggered Fermi field yields 4 Asrorr in the continuum limit. 
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by expressing det M as a bosonic functional integral [32]: 

det M(U) = /D&~exp [-$+M-‘(LJ)$] = /Zl#e-s~(~,V) (10.6) 

and generating &-u configurations with weight e-S(u)-S~(~~u). In lattice QCD the 
present algorithmof choiceis called “hybrid Monte Carlo” [33]. Wise-guys have observed 
that alI fields of numerical science proceed until an algorithm is given this name. Time 
wilI tell if algorithms for lattice QCD have indeed reached their apex. 

An alternative is the quenched (or valence) approximation, which approximates 
det M(U) by a constant, independent of U, and a compensating shift in the bare pa- 
rameters [34]. In term of quark-line diagrams det M produces internal fermion loops. 
Hence, the shift in the bare parameters ought to account well for high-momentum loops, 
but not for low-momentum loops. Operationally, the gauge fields are generated accord- 
ing to the pure gauge theory weight e-s(V). Hadron correlators cm still be computed, 
though, using fermion propagators d la eq. (10.5) for the valence quarks. Algorithms 
for quenched QCD are much, much faster than those for full QCD. In hybrid Monte 
Carlo most of the computer time in generating the ensemble {LT(i)} is spent solving 
eq. (10.5) with the (dynamical) field 4 in eq. (10.6) as a source. A quenched simulation 
generates a pure gauge ensemble and must cope with eq. (10.5) only for valence quark 
propagators. 

The Monte Carlo procedures lead to statistical errors. Owing to the central limit 
theorem (the law of large numbers), the estimates f are Gaussian distributed with 
variance 

uj = N,.,: _ 1 (US) - w) 9 (10.7) 

which can be estimated by (7 - f)/(N.,d - 1). A more subtle problem arises when 
several averages fi must be combined to obtain a physical result. For example, the mass 
comes from a fit of the time-dependence of eq. (3.24). Then the statistical error analysis 
must take into account that 

1 
4fi = Ncod _ 1 (Vlfi) - (h)(h)) # 0. 

In other words, the data that come out of a simulation are correlated, often strongly. 
Estimates of uncertainties that neglect these correlations can be either too large or too 
small. For example, in subsect. 10.2 we shall see that ratios frequently have smaller 
statistical uncertainties than numerator or denominator separately. 

It is not enough to “just do it.” Instead, “do it over and over,” to study the 
lattice-spacing and volume dependence. To decouple the two, it is best to study one 
while holding the other t&d. The volume dependence is reasonably straightforward 
to attack: fix the bare couplings (and hence a) and vary the lattice size N,,. UsualIy 
this is done by fixing the geometry, say N; = NSpee and Nt = 2N.pMc so there is only 
one parameter to vary. The lattice-spacing dependence is more problematic, because 
both the bare couplings and N,puc must be varied, such that the physical size of the 

box &cc = aN.p- stays fixed, cf. eq. (2.7). Perturbation theory controls the scaling 
behavior in QCD, so the adjustments can be made on that basis, at least close enough 
to the continuum limit. Obtaining reliable estimates of lattice-spacing and finite-size 
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uncertainties is similar to the analysis of systematic errors in experiments. In the end, 
every piece of physical or mathematical information from outside the simulation ought 
to be used to check that the numbers make sense. Fortunately, theoretical consideiations 
predict the form of both the a dependence (at small a) and the L dependence (at both 
small and large L). 

Let us review what is known about the lattice spacing dependence. At the continuum 
limit ratios aEJaEl become independent of a-they scale-up to scaling violations of 
O(an). Eventually the scaling violations are negligible, and then the energies should 
obey asymptotic scaling, possibly at the more-than-two-loop level. Before scaling sets 
in, one can remove the violations by extrapolation. The check of asymptotic scaling can 
be approached either by brute force with larger lattices at smaller values of gt, or by 
improving the action so that scaling violations are truly negligible. The real problem 
is choosing the fiducial quantity El to define a. In fulI QCD there are Nf + 1 free 
parameters, and therefore Nf + 1 physical quantities must be taken from experiment. 
Since the hadron masses are sensitive to the quark masses, a possible procedure is to 
tune the quark masses so that Nf hadron mass ratios are correct. Then a is merely 
a conversion factor from lattice (a = 1) to physical (e.g. GeV) units. In numerical 
simulations this approach is annoying, especially when one starts worrying about holding 
the physical volume fixed. In practice it is easiest to monitor scaling behavior if El is 
insensitive to the quark masses. Fortunately there is a good choice [17], which will be 
discussed further in subsect. 10.3. 

A full discussion of the L dependence is well beyond the scope of these lectures. 
(The lattice is not essential in obtaining the results.) In the small L limit a perturba- 
tive expansion in am(l/L) can be used to integrate out the gauge field, except for its 
constant modes. The constant modes constitute a quantum-mechanics problem that is 
non-trivial but still simpler than field theory. In the large L limit one can assume that 
the long-distance structure is described by a massive effective field theory. Stronger 
effects of Goldstone bosom can be incorporated using the techniques of cbiral pertur- 
bation theory. In either case, the effective field theory can be formulated in a finite 
volume, leading to general formulae for finite-size effects. The unknowns in the formu- 
lae are simply related to couplings in the effective field theory, so the formulae give not 
only a prescription for extrapolating, but also a method to compute these couplings. 

Combining data from the computer with other information is the most arduous task 
in computational physics. It is also the most important. Unfortunately, systematic un- 
certainties can only be fully analyzed when statistical errors are small enough. Since it 
requires less computer time, most numerical work with high enough statistics to study 
lattice-spacing, and volume uncertainties has been done in the quenched approximation. 
Obviously, the quenching introduces a yet another systematic error. For many proper- 
ties of light hadrons this is not easy to estimate, because there is little hard information 
besides the quenched simulations themselves. One possibility is to examine c&al mod- 
els, asking which contributions can or cannot appear in the quenched approximation 
[35]. A recent variation on this theme is to develop effective Lagrangians directly for 
quenched QCD [36]. From these and other considerations there are good indications 
that quenching is under control for heavy-quark systems, subsect. 10.3, and for some 
ratios of matrix elements, subsect. 10.2. These calculations, therefore, warrant serious 
attention, and they are discussed in detail below. 
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The remainder of this section is divided into three parts. Subsect. 10.1 describes the 
bread-and-butter topic of mass spectroscopy. The emphasis is on ways to improve the 
spectrum until it serves as a serious test of QCD. Subsect. 10.3 describes an applica- 
tion of the charmonium spectrum to compute the running coupling constant of QCD, 
c&5 GeV). Finally, the steps in the calculation of the “bag parameter” of the kaon 
system are presented in subsect. 10.2. 

10.1 Spectroscopy 

The first step in a calculation of the mass spectrum is to classify the states accord- 
ing to the symmetries of the transfer matrix. The quantum numbers associated with 
translations are the momentum. The rest of the classification is too tedious to give 
in detail, but the Review of Particle Properties tells us what to expect: mesons and 
baryons labeled by Jpc, ’ ~sospin, strangeness, etc. Assuming a hypercubic lattice of size 
N&X Nt with periodic (anti-periodic) boundary conditions for gauge fields (fermions), 
both the lattice and the finite box both break some of the rotational symmetries. There 
are only finitely many representations instead of one for each integer .7. Multiplets with 
high angular momentum must appear a9 “accidental” degeneracies in the continuum 
and large volume limits. 

J.n addition, there are glueballs, states that can be constructed out gluons only, 
labeled by Jpc. None has been unambiguously identified in experiments. E JPC is 
accessible in the quark model a glueball is an idealization, because it can mix with 
flavor singlet (~q states. In the following, distinctions between “glueballs” and “normal 
mesons” are made with this idealization in mind. There are combinations of Jpc that 
cannot appear in the quark model; these are called exotics or oddballs. 

The spectrum is extracted from the time dependence of correlation functions. Let 
Q, denote an operator annihilating states with quantum numbers T = {Jpc,p,. . .}. 
From eq. (3.24) 

c,(t) = (Q,(+qO)) = (10.9) 

‘%.. + C ~(ol&!~p, r*)lze-(T-WA--, 
B 

where r* is the complex-conjugate representation and t/a is defined module T/a = Nt. 
In QCD, T is real for zero-momentum mesons and glueballs, but not for baryons. If 
p = 0 the energy Ep,, is a mass, and the objective is to exploit the exponential fall-off 
to compute the low-lying ones for each 7. The coefficients I(Ol&&3, ?)I” depend on the 
choice of operator, but (for given r) the energies EP,~ do not. 

To compute the mass of the lowest-lying state one proceeds as follows. One must 
identify a region t+ 5 t 5 t,, where one state dominates, so that 

for + # i-O, or 

C,(t) = I(Ol&+, T)l%?~,. (10.10) 
i 

c,(t) = [(Ol&,ll, T)l’(e-tEl.* + e-(=-t)%) (10.11) 
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for T = T’. A convenient diagnostic for this region is the effective mass 

which should be t-independent in the interval th,, 5 t 5 t,,. The spectrum does not 
depend on +,, which should be chosen to minimize td;,, because the signal-to-noise 
ratio C/u deteriorates with t. This phenomenon is seen in Monte Carlo data. It can 
also be analyzed by field theoretic techniques, because (p) is just another correlator. 
Although the choice of operator is a technical issue, all calculations in lattice QCD are 
vastly improved by finding good ones. Therefore, the next several paragraphs review 
the signal-to-noise ratio and survey techniques for increasing it. 

Glueball operators are functions of the gauge field, so eq. (10.7) can be applied 
immediately. The variance of (the estimate of) CT(t) is 

o;(t) = Neo: _ 1 ((~r(t)Q!(o)~,(o)~~(t)) - c:(t)) (10.13) 

For simplicity, suppose that T does not have vacuum quantum numbers. (When it does, 
the analysis is complicated by subtracting the vacuum’s contribution out of C,(t).) 
According to the transfer matrix formalism, the f&t term in eq. (10.13) is given by 
eq. (3.24) with 01 = 02 = IQ,12. The quantum numbers of the states created by IQ,/* 
are r $7.) which always contains the vacuum. Hence the vacuum dominates the spectral 

sum (Q,(t)n!(o)Q,(o)~!(t)) = (~.(t)~!(t))(9,(0)~~(0)). Hence, 

(10.14) 

and the signal-to-noise ratio is 

SIGNAL 
=+&$x. 

NOISE I 
(10.15) 

Since C?(t) falls exponentially in t and C,(O) d 08s not, the risk is that statistical errors 
become intolerable before the plateau in rnt appears. Furthermore, C.(O) grows as 
a --t 0 for local operators, making the continuum limit inaccessible, whereas non-local 
operators can solve this problem (371. 

Exercise 10.1 Generalize eq. (10.14) to show that fluctuations in C,(t,) and C,(t2) are corre- 
lated with variance (cf. eq. (10.8)) 

u:((tl,tl) = 
WW.(l~l - hl) 

N 
conf - 1 

(10.16) 

For quark-model states the analysis differs because propagators are used. Consider 
an isospin 1 meson, for example, with Q, = &‘?u, where r’? is a 7 matrix, and u and d 
are Wilson fermion fields for the up and down quarks. To compute the meson correlator, 
one fist computes quark propagators and then works out 

C,(t) = - ~@I’,+) @d(O)) = ~(Tr{r,G(“)(r, O)l?;G(d)(O, 2))) (10.17) 
e 2 
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Figure 6: Effective mass plots for the J/1/, with (a) point-like and (b) non-local operators. 

where the average in the last line is over the gauge fields only. The variance of this 
object is given by 

&I = .,.: _ 1 N TT (Tr{r.G(U)(z,o)r!G(d)(o,=)}~ 

Wr,G(")(0, I$-!~~)(v,o))) - c:(t) 
1 

, 

where 2, = y, = t. The quark-line diagram for n: has four quark lines in it. The 
lowest-energy of states with four quarks is approximately Zm,. For t large enough 
o,l(t) (x e--l-*, and the signal-to-noise ratio 

SIGNAL 

NorsEa 
sxmiizi, (10.19) 

where ml is the lowest-lying state created by afr.u. Unless ml = m,, this signal-to-noise 
ratio also falls with t, although not as severely as with glueballs. 

The signal-to-noise ratio shows that it is imperative to fmd an operator that has 
tkn as small as possible. Point-like operators (including those that become point-like 
as a - 0) have proven inadequate. Fig. 6a shows an example effective-mass plot for J/+ 
mesons, using a point-like operator ?y;c. Clearly, the point-like operator’s amplitude to 
create higher-lying states is tbo high. Consequently, there is a steep decrease in rn, in 
fig. 621 as states with energies E - r/a die off. A better choice would be a non-local 
operator, with “size” close to that of the .7/q meson. 
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A heuristic approach is that just about any operator with the right size should do. 
Define a “smeared” quark field by iterating 

$2) = $‘(I) t a -& t T-i - 2)$(z) (10.20) 
i=1 

for suitable a. Because the covariant translation operators Ti appear in eq. (lOJO), 4 
gauge transforms as $. The sum in eq. (10.20) runs over space-like directions only, so 
that correlators built with $ are local in time and, hence, compatible with the transfer 
matrix. 

Exercise 10.2 For free field theory, show that M iterations of eq. (10.20) lead to 

4(P) = (1 - a’Ufi’yti(P) (10.21) 

in momentum space. Hence, if M - co as a -+ 0 with Q-’ = Mod fixed, then 
q(p) = e-f”lQ’$(p). In coordinate space J(a, 1) = &, g(a - y)+(g, t), where g(z) is a 
periodic function similar to a Gaussian. 

Because it has an extent of size l/Q, the operator q(z)rq should couple strongly to 
low-lying states. For glueballs the analog of eq. (10.20) does in fact yield much improved 
results. However, a drawback is that a smeared operator might well create low-lying 
states other than the lotueetlying one, either because Q is poorly chosen, or because a 
Gaussian is a poor shape. 

Exercise 10.3 Consider the meson correlator (O(z)@‘(O)), where Q(z) = z(z)r+i(z), i.e. up is 
smeared and down is not. Work out what souwx x are needed for the quark propagators. 

In the non-relativistic limit, the smeared field creates a two-particle state with a 
harmonic oscillator wave function. Ifthe quark mass is not too light, one might consider 
using a wave function from a phenomenologically successful potential instead. Even for 
light hadrons, the appalling success of the non-relativistic quark model suggest that 
these wave functions should make a good start. These wave functions are defined for a 
choice of gauge, for example Coulomb gauge. A lattice version of Coulomb gauge [39] 
is obtained by fInding the gauge transformation g that minimizes 

3c = 2 Re [l - T&Y;(z)]. (10.22) 
P,kl 

In the naive continuum limit 3~ cc JAl, which has extrema for V A = 0. Once 
the ensemble of gauge fields has been brought into Coulomb gauge, a wide variety of 
operators 

*r,f(z) = $4(~)wY)fb - Y), (10.23) 

where 14 = yd, can be constructed. A good way to determine f is to compute the ratio 

f(a) = (+ wdww)) 
km ww, ww ’ (10.24) 
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Figure 7: Plot of SU(3) glueball mass ratios vs, z~ii. 

where ip is an acceptable operator, for large enough t to project onto the lowest-lying 
state. Using a fit to f(z) to the form e-Q121, fig. 6b shows the effective mass for J/$. 
It is independent oft for 2 5 (t/a) 5 10. 

Once an effective-mass plateau has been identified, the masses should be computed 
by fitting the numerical data for C,(t) to the functional form on the right-hand side 
of eq. (10.10) or eq. (10.11). As we have emphasized above, this must be done taking 
correlations in the errors into account. Then the fit “averages” the information with 
the correct weight. In addition to an estimate of the mass, the best fit yields estimates 
of the (statistical) uncertainty and the goodness-of-fit. The latter two are especially 
sensitive to correlations in the errors. Since they measure the reliability of numerical 
results, questions of systematic errors and physical interpretation cannot be answered 
unless they are determined correctly. 

Fig. 7 gives a summar y of Monte Carlo resultsof glueball masses in the pure gauge 
theory with gauge group W(3). It plots mass ratios as a function of za = N,pmcnfir 

where K = (420 GeV)’ is the string tension. Hence, .ze measures the volume. To 

monitor scaling violations a different symbol is used for each value of 0 = S/g& i.e. a. In 
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this format it is impossible to give proper credit to those who performed the simulations. 
For the same plot, but with symbols keyed by reference, see ref. [38]. The scaling 
violations are smaller than the (quoted) statistical uncertainties, so it is impossible 
to extrapolate in a. Not all error bars in fig. 7 are correct, mostly because not all 
original authors gave error bars for mass ratios. Therefore, uncertainties quoted in the 
original work have been added in quadrature, modified by reasonable assumptions for 
the correlations. Another source of error is that some of the original fits did not include 
correlations in the uncertainties of the data, and others did not do a fit at all. Finally, the 
uncertainties shown are statistical only. The purpose of the plot is to estimate lattice- 
spacing and finite-size effects. The curves at small .za are analytical; the agreement 
with Monte Carlo simulations is good, bolstering confidence in the numerical results. 
Jn a fmite (cubic) box, the five J = 2 states split into a doublet E and a triplet T1. 
At large za one sees a restoration of rotational symmetry, as these multiplets become 
degenerate, although there is not much data for T 2. On the other hand, the statistical 
errors are still too large to discern scaling violations. 

For several reasons the status of the spectrum of quark-model hadrons (r, p, p, 
A,. . .) will not be discussed here. It is reviewed annually at conferences and the con- 
clusion usually drawn is that it is not worth sharing with non-experts [40]. The two 
main problems are the quark mass and the quenched approximation. For small quark 
masses the algorithms for solving eq. (10.5) slow down immensely. On present comput- 
ers one-year projects use quark masses near 400 MeV. The systematic errors introduced 
by the quenched approximation and the too-large quark masses are difficult to estimate 
accurately, and semi-quantitative methods suggest they are large. For example, to the 
extent that one believes chiral perturbation theory at mu,* = 400 GeV, the proton mass 
is off by around 100% [41]. 

10.2 A Weak Matrix Element 

This section gives an example of the long-term utility of lattice QCD. In electro-weak 
phenomenology unknown hadronic matrix elements often are the most significant the- 
oretical uncertainty. Without reliable calculations of these matrix elements it is im- 
possible to determine fundamental quantities, such as the Cabibbo-Kobayashi-Maskawa 
matrix, from experimental data. Since a recent summer-school article reviews the sub- 
ject nicely [42], we will consider just one example. 

In his lectures Yosef Nir stressed the importance of the ratio 

BK = 3(~WLis4K0) 
8d f= ’ KK 

(10.25) 

and a related quantity ,!?K = BKCZ, -ais. The ingredients are the four-quark operator 

oA.93 = ;i,-,,(l - %)d,~b7& - -,S)db, (10.26) 

where a and b denote color indices, and the kaon decay constant f~, given by a hadmnic 
matrix element of an axial current 

mKfK = (OIA,fS=lIKo), A;‘=’ = ~7,,7~d. 

The mass enters eq. (10.27) when the K” is at rest. 

(10.27) 
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The first step is to find a good kaon operator 

such that 

*K = 
I 

d3zd31/ CS(~~&M~>Y), (10.28) 

CK(t) = (QjC(t)+K(0)) = J(K’I+KIO)J%-~+ + . . (10.29) 

has as little contamination from higher mass states (denoted by . . .) as possible. This is 
done during the mass-spectrum calculation, and yields rn~ as a function of the gauge 
coupling and the quark masses, as well as (K’l+~l0). 

Next compute fK from the two-point emrelator 

C,(t) = (AtS=’ (t)+K(o)) = (O~A~S=‘~Ko)(Ko~Q~~O)e-mx’ t .e.. (10.30) 

Here the choice of QK is important: Since the current is a point-like operator, it does 
not couple well to the kaon. Hence, if C,(t) relies entirely on QK to provide a good 
signal before the noise takes over. 

Finally, compute a three-point correlator to get the numerator of eq. (10.25). 

C3(h,tl) = (~K(tl)OAS=l(tl)QK(O)). (10.31) 

For tl > t2 (and tl and tl - tl large enough) 

Cs(tl,tz) = (o~Q~(~“)(Ro~Oas=~~Ko)(Ko(~~~O)e-m”’l (10.32) 

and a fit yields the numerator. Numerically nicer is to take a ratio: 

expecting a constant for suitable ta, or 

CJ(h, ta) 
Ca(h -w(t) 

= BK, 

(10.33) 

(10.34) 

again expecting a constant for suitable tz and t. In ratios such as these statistical errors 
cancel significantly because Monte Carlo fluctuations in numerator and denominator 
are strongly correlated. 

By the way, for ta > tl (and tl and ta - tl large enough) 

C3(t1,tl) = (O~Oa~~~/KoKo)(KoKo~Q~~Ko)(Ko~Q~~O)~-m~~a’a-’~~; (10.35) 

for technical reasons the matrix element (OIOas,~(K°Ko) will be needed below. 

Exercise 10.4 To extract (O~O~s=~IK°Ko) one also needs (K°K”l@xlKO). Show how to get 
this from the four-point correlator (m!,(t,)Q~(tl)‘Px(t1)4x(0)). 

In summary, BK and f~ are computed from three correlation functions, CK, Cz, 
and Cs. However, depending on whether one u8es Wilson or staggered fermions, there 
are a variety of difficulties. The details below may seem technical, but the underlying 
issue is the non-perturbative definition of composite operators. 
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First we shall discuss currents, needed for fK. In both fermion formulations the 
chiral current algebra is broken by the lattice, cf. sect. 5. Hence, one must determine 
finite normalization constants for the currents. They can be calculated in perturbation 
theory, but it is also possible to compute them non-perturbatively [43]. For Nr Wilson 
fermions the correctly normalized vector (C) and axial-vector (A) currents are 

iQ’=tcnyV;, a=O,...,Nj-1 

2; = naA;, a= l,...,N; - 1 (10.36) 

2; = &SAA;, 

where the unbarred currents are expressed by products of canonically normalized quark 
fields. As in the continuum, the singlet axial current 2: also has a ln(a)-dependent 
renormalization factor ZA. The Wilson action preserves the vector symmetries, so, by 
Noether’s theorem, there is a conserved vector current. The Ward identity for this 
current shows nv = 1. However, the Noether choice of VP is not always the most 
convenient in numerical calculations, and for other choices KY # 1. Similarly, all axial 
symmetries are broken, so KA # 1, for any choice of A,,. 

There are similar formulae for Nf staggered fermion fields [44]. Because of doubling, 
there are 4Nf fermions flavors staggering about. The n factors depend on the flavor 
associated with doubling. In general, K # 1, but the U(Nf) x U.(Nf) chiral symmetry 
guarantees that, by Noether’s theorem, there are Nj conserved vector currents and NT 
(partially) conserved axial vector currents. Fortunately, a conserved axial vector current 
can be used to compute fK. 

The broken chiral symmetry of Wilson fermions leads to two serious problems in 
defining CIas=s. The fist problem is one of operator mixing. J.n a convenient jargon 
the operator Oas,~ is called “LL,” because it is superficially the product of two left- 
handed currents, cf. eq. (10.26). When the chiral symmetry is explicitly broken, it 
mixes with the associated “RR” and “LR” operators. (“R” implies the substitution 
1 - 7~ + 1 + 7s.) The mixing can be computed in perturbation theory, and then the 
perturbatively corrected lattice approximant to the continuum operator can be used in 
eqs. (10.31). The second problem is the lack of chiml behavior of the matrix elements. 
Expanding in rnk 

and 

(R”lOas=aIKO) = a + (P + 7)m; (10.37) 

(OlO~s=~IK°Ko) = Q + (P - y)m&. (10.38) 

Chiral symmetry would require that Q and p vanish. But for Wilson fermions, with 
explicit breaking, the physically interesting quantity 7 must be determined by subtract- 
ing these two matrix elements. Unfortunately, the difference has a larger statistical 
uncertainty than the individual terms. 

For staggered fermions the continuous chiral symmetry implies Q = p = 0, but the 
remaining doubling poses problems. Moreover, to fully exploit the chiral symmetry both 
the pion and the kaon should be Goldstone bosom of the U(1) x V,(l) symmetry [45]. 
Therefore, the calculations are performed with Nf valence quark fields and, hence, 4Nf 
flavors. Each quartet has a mass corresponding to a quark found in nature. (In a full 
QCD calculation, one would still use two or three dynamical quarks.) Roughly speaking, 
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it is straightforward to work out the correct tree-level normalization for OAsz2, in&d- 
ing factors of 3/4Nf to count flavors. Then the Ward identities of chiral symmetry take 
over, ensuring the normalization in the presence of interactions. 

A generic problem is mixing with operators of lower dimension. Since the coefficients 
of these operators contain inverse powers of a there is no reliable method to remove 
them perturbatively. The only feasible way to remove these them non-perturbatively 
is to insist on the (continuum) chiral behavior. For the case at hand, these problems 
fortunately play no role, because aA.$=a is the lowest dimension operator with AS = 2. 

There is no physical reason to prefer BK to the matrix element (I?‘lCJAs,2(Ke). In 
addition to reduced statistical errors, the systematic errors associated with quenching 
are thought to be less for BK than for muff or (~“ICJ~s=~iKo) separately. The 
calculations with the smallest uncertainties have been done with staggered fermions 
[46]. At present the largest uncertainty comes from extrapolating in a; it is uncertain 
whether the extrapolation should be taken in a or a ‘. The most recent results [47] are 
go = 0.66 f 0.06 after a linear extrapolation and BEjx = 0.79 zk 0.03 after a quadratic 
extrapolation. By comparison, Wilson quarks yield 0.68 f 0.13 (481. 

10.3 Renormalized Coupling Constant 

The fundamental parameter in QCD is the renormalized coupling constant as. Tradi- 
tionally it has been determined from high energy scattering experiments, using pertur- 
bative QCD as a tool. There are two drawbacks to this approach. First, the perturbative 
calculations are much harder than in QED, so it is unlikely that many multi-loop cal- 
culations will be done soon. Second, the processes most sensitive to as also involve 
hadronization of quarks, a non-perturbative effect that is diflicult to calculate in a way 
both fundamental and reliable. 

Another way to determine as is to use a low-energy quantity as experimental input 
and lattice gauge theory as the theoretical tool. The calculation hinges on a good 
choice of the fiducial parameter to set the scale. One a is known, the bare coupling 
g:(a) can be related to a more familiar coupling such as g&(A) via relations such as 
eq. (7.11). The spin-averaged splitting Am = rnh. - f(3m~,+ + m,,<) = 458.6 + 0.4 MeV 
is an excellent choice for several reasons. The spin-averaging removes the sensitivity 
to the most important term in the improvement of Wilson fern-dons. (For quarks not 
nearly massless, there is no reason to use staggered fermions.) Potential models, which 
give a good empirical description of the $ and T systems, show that there is a wide 
range of the quark mass, spanning charm and bottom, for which Am is constant. Light 
quarks modify the results in two ways: at short distances they change the p function, 
and at long distances they lead to a breakdown in potential-model description. The 
former effect is discussed below. The latter is small below the open charm (or bottom) 
threshold. 

For a lattice determination of cxs to compete with the traditional ones, the error 
analysis must be thorough. We shall see that statistical errors play almost no role 
once they are small enough to study the systematic effects. Table 1 contains the raw 
data of the simulations. Each ensemble (labeled by lattice size and 0) consists of 25 
configurations generated in the quenched approximation. The Monte Carlo calculation 
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Table 1: Raw data for am calculation. The errors are statistical only. 

lattice fi LZAm 0-l (GeV) (Tr Up) a$.$(5 GeV) 

123~ 24 5.7 0.399(26) 1.15(8) 0.549 0.1333(23) 

16' 5.9 0.258(13) 1.78(9) 0.582 0.1371(46) 

244 6.1 0.189(12) 2.43(15) 0.605 0.1382(56) 

provides aAm, which defines a. The m coupling is obtained from eq. (7.11) 

gb;T,a, = $(~uP) + 0.025 
0 

using N = 3 and Nf = 0, where (Tr Up) = 1 - (Pry). Instead of the perturb&iv= value 
(P,,“) = igi, the non-perturb&iv= value in the fifth column of Table 1 was used. This 
accounts for higher-order corrections to eq. (7.11). In the sixth column of Table 1 the 
two-loop renormalization group equation was used to convert */a to a standard scale 
5 GeV. The superscript on am denotes the number of flavors: N, = 0 because the 
ensembles were generated without fermions. 

The results in the sixth column of Table 1 have a small but noticeable scaling 
violation. Extrapolating in a2 leads to a&5 GeV) = 0.1431 i 0.0028. One might 
expect O(g,a) corrections to be present because the quarks have been treated using the 
improved Wilson action. However, one of Am’s appealing traits is that &~,,,,C,,,li, does 
not affect it. Hence, the scaling violations are more likely proportional to a2. The data 
favor it too. 

The last step is to correct for the quenched approximation. The original justification 
for the quenched approximation can be re-phrased by treating it as an effective field 

theory for full QCD. In other words, one wouldlike to know what value of a%‘(5 GeV) 

produces the same charmonimn physics as a given value of czk(5 GeV). The shift is 

1 1 s -y=* 
&b/Q) 90 I 

GsV dhq [&5”,’ - pp + (piNI’ - pp)gq ( (10.40) 
P 

where the subscript on g now denotes Nr and the /3 function coefficients are given in 
eq. (7.5). Rather than YMS it makes more sense to use a physical definition of the 
coupling, such as the one defined by the heavy-quark potential. Choosing a range 
of fi suited to momentum scales present in charmonium leads to a correction and an 
uncertainty. The fmal result [49] is 

c&(5 GeV)= 0.174f0.012, 
MS 

or, for comparison to LEP experiments, 

(10.41) 

ct.qMz,) = 0.105 f 0.004. 
MS 

(10.42) 
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The dominant source of uncertainty stems from integrating eq. (10.40), because p must 
be chosen so low that the perturbative p function is no longer reliable. Monte Carlo 
calculations on the next generation of computers will not use the quenched a$proxi- 
mation (for this calculation) so this uncertainty will vanish. Nevertheless, despite the 
quenched approximation lattice gauge theory is already competitive with traditional 
determinations of as. 

Similar calculations have been performed for both $ and T [51] using a non-relativis- 
tic formulation of lattice fermions [50]. The results are compatible with eq. (10.41). 
This is signilicant for two reasons. First, the general pattern of lattice-spacing errors 
are different for Wilson and non-relativistic fermions. Hence, agreement between the 
two charmonium calculations shows that the lattice-spacing extrapolations are under 
control. Furthermore, the T system is much less sensitive to ambiguities in p, which is 
roughly three times larger than for +. 

There is an uncertainty that is not quoted in eq. (10.41). At several stages of 
the analysis perturbation theory was used, in particular in eqs. (10.39) and (10.40). 
For comparison with traditional determinations that is fair, because they are explicitly 
based on perturbation theory, and hence contain the same uncertainty, also not quoted. 
Obviously, it is desirable to eliminate this uncertainty and compute everything from first 
principles non-perturbatively. An especially clever technique exploits the finite physical 
volume of lattice calculations (521. The resulting coupling will be the new standard for 
as, because it will have negligible uncertainty. It is important that the new standard 
will be a physical quantity that can also be calculated in perturbation theory. Then 
formulae analogous to eq. (7.11) can be used to convert existing expansions to the new 
standard. In s mmnary, QCD (non-perturbative plus perturbative) will predict high- 
energy scattering cross sections using Am = 458.6 MeV as input. Unless QCD is 
wrong, we will find agreement. 
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