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1 Introduction

An important aspect of the AdS/CFT correspondence [1-3] is understanding the precise
map between supersymmetric states in the CFT and on the gravity side. In the last
years, there was an impressive progress in this direction. In particular, the supergravity
spectrum on AdSs x S° [4] was put [3] in precise correspondence with the spectrum of 1/2
BPS operators of N = 4 super Yang-Mills.

The correspondence between CET operators and string states on AdS was generalized
to various sectors in [5] for (near BPS) collapsed string configurations and for more general
extended string states in numerous works (for reviews, see, e.g. [6]). The correspondence
between the spectra applies also to extended supersymmetric brane configurations, such as
BPS D brane configurations or giant gravitons, and the identification of the corresponding
operators led to important insights on the nature of the AdS/CFT correspondence [7-10].

The recent discovery of the ABJM superconformal field theory describing the physics
of multiple membranes probing an orbifold space [11] provides an extremely interesting
setup to understand properties of AdS/CFT correspondence and of M-theory from a new
perspective. In a recent work [12] BPS M2 brane configurations representing giant tori
were constructed. The corresponding states carry a large amount of angular momentum
and DO brane charge. The corresponding ABJM field theory interpretation was discussed
in [13]. In this paper we will look for different types of supersymmetric configurations.
The general M2-brane solutions discussed here have a structure which is analog to that of
the (non-supersymmetric) circular strings of [14]. These type of M2 brane solutions were
investigated in [15]. The configurations can also be viewed as (toroidal) giant gravitons.
Here we will show that there is an important subclass of solutions which are supersymmetric
(general aspects of supersymmetric giant gravitons are discussed in [16]). This subclass
of solutions has the property of having a vanishing determinant for the induced metric,
i.e. a null world-volume. This is possible only for a tensionless membrane. They may be
viewed as the large J limit of regular membranes. The solutions are the precise membrane
analog of the tensionless strings discussed in [17]. They also represent a higher dimensional
version of the BMN states.

This paper is organized as follows. In section 2 we review the AdS; x ST and AdS, x
ST /7, backgrounds and their supersymmetries. In section 3.1 we discuss the classical equa-
tions of motion for an M2 brane moving in AdS; x S7. In section 3.2 we introduce our
general ansatz that describes an M2 brane that rotates and winds in S”, and in section 3.3
we explicitly find the values of winding number and angular velocities that solve all equa-
tions of motion. In section 4 we derive the BPS bound for the energy from the superalgebra.
In section 5 we find the energy formula for our membrane solutions and show that in the
supersymmetric limit they reduce to the expected BPS form derived in section 4. In sec-
tion 6 we identify the subclass of solutions which preserve some fraction of supersymmetry.
Section 6.2 describes a class of regular supersymmetric membrane solutions, while section
6.3 discusses collapsed membrane configurations. In section 7 the solutions are adapted
to the case of AdSy x S7/Z;, and, by dimensional reduction, we obtain supersymmetric
states in AdS; x CP3. In section 8 we revisit the giant torus rotating membrane solution



found in [12] and show that in a certain region of the parameters the rotating membrane

1 'We exhibit the solution in cylindrical coordinates,

opens up taking a “diabolo” shape.
where it has a simpler form, and present a convenient characterization of the torus, spiky
membrane, diabolo, cylinder and hyperboloid regimes in terms of a single parameter (the
last three solutions did not appear in [12]). In section 9 we present a summary of our
results. Appendix A contains additional details of the calculations omitted in the main
text, appendix B contains an alternative derivation of the supersymmetries of the collapsed
membranes by treating them as effective strings and in appendix C we give the expressions

for the charges of the solutions of section 8.

2 Properties of AdS; x S and AdS; x S7/Z; backgrounds

The space AdS; x S7 can be represented by the metric

2

ds? = RI (dsRas, +4 dQ3), (2.1)

where R = £,(2°72N)'/6_ dQ2 stands for the unit radius S7 round metric, and

2 2y 342 dr? 20302 1 win2 2
dsags, = —(1+77)dt +1+T2—|—r (d6? + sin® 6 de?) . (2.2)
The 4-form flux reads
3

F@W = —§R3 r?sin® dt Adr AdOAde . (2.3)

We can parametrize the ST using four complex coordinates, Z?, which satisfy

2P+ |22 + |27 + |2 = R?. (2.4)
Choosing
4
Z' =R p; & ZMZ =1, (2.5)
i=1
the coordinates p; can be written in terms of hyper-spherical coordinates. A possible
choice is
M1 = sina,
=cosasinf,
12 g | (2.6)
3 = cos a.cos Fsiny,
b4 = COS L.COS 3 COS7Y .
In these coordinates, the full metric reads
R2 7,,2
ds? = T {—(1 +r?)dt? + T2 + 7"2(d«92 +sin” @ dapZ)}
4 ‘ (2.7)
+ R? {da2 + cos? a d3? + cos? v cos? 3 dy? + Z i de} .
i=1

!The diabolo consists of a spool whirled and tossed on a string (it illustrates angular momentum con-
servation and it was said to be the favorite toy of Maxwell).



M-theory on AdSy x S7/7Z;, is obtained by identification under the Z;, orbifold action

L 2
Zi = T 71 = §Z—>§’+%7 (2.8)

with integer k. The solution represents the gravity dual of N M2-branes probing a C* /2y,
singularity, with R equal to Ep(25772N k:)l/ 6. To connect with the ABJM theory it is useful
to introduce C'P? adapted variables. By completing squares we can write

dQ2 = ds ps + (dy + A)?, (2.9)

where dA = 27 and J is the Kéhler form of CP3. We introduce a new set of coordinates
adapted to C'P3, defined by

@1:51_527 902:53_547

y=7(E+€+0+eY), w= (@ +2-E-6Y),

0, ) (2.10)
,ul:COSCCOSE, pgzcosgsmg,
. 02 .. b
i3 = sin  cos — | Hq = sinsin — .
2 2
By reducing along y, we get type IIA strings on AdS; x C'P3,
~ ~ 1
ds* = R? (dsid&l + 4 dstps) R* = ER‘O’, (2.11a)
2 2 2 2 1 1 ’
dsgps = d¢* + cos” ¢ sin” ¢ <d1/1 + 5 €08 01 dpy — 5 cos 0 d@g)
1 1
+ 1 cos? ¢ <d6’% + sin? 6, dcp%) + 1 cos? ¢ <d9§ + sin? 6 dgo%) , (2.11b)

with a one- and 3-form RR potentials and dilaton given by [18]

CM = 2 |(cos? ¢ —sin?¢) dyp + cos? ¢ cos O dey + sin® ¢ cos by d<p2] =kA, (212
E -

c® = B R% 3sinf dt Adf A de, (2.13)
52

26 _ 413 ‘ (2.14)

We now describe the supersymmetries of the background. Our conventions for the
Clifford algebras is such that {I',, T',} = 2 g, where g, is given by (2.7), and {v,, 7.} =
21, is the standard flat space-time Dirac algebra. We also define 4 = —vg123. This allows
us to write

R R 1
¢ 5 +7° %, r 2\/1—|——’I“271,
R R .
Iy = PR ry,= irsmﬁ Y3, (2.15)
Io=Ry, g = Rcosa 7,

[y = RcosacosfB v, L'e =R i vite -



The Killing spinors of this background are given by

e=M e,
4
M = M, MsM, (H MZ-) M, M;MgM,, .
i=1

(2.16)

Here € is an arbitrary constant Majorana spinor, and the M,’s are the exponentiation of

generators of translations in the p-direction,

ta T4 0 k2
M;=e2M0 M, =e2? | My=e2M2, M,=e?"

N . N . (2.17)
M, =e27 Mg=e27%, M,=e27%, M =c2".
where we have defined r = sinh #, and introduced?
(Xi) = (a7, 758, Y695 Y710) 5 X1 X X3 Xy = -1 (2.18)

Next, consider the Zj, orbifold action (2.8), which only affects to the & angular vari-
ables. Let us define the eigenvalues of X1, X9 and X3 to be ig;. Since X? = —1, it must be
¢; = +1. The spinors in (2.16) with ¢; = ¢ = ¢3 are projected out by the projection (2.8)
with k& > 2, henceforth 24 Killing spinors (3/4 of the original 32) survive the orbifold action.

3 A class of M2 brane configurations

3.1 Action and equations of motion

Let Y#, with p=0,--- ,4, be the embedding coordinates in the AdS piece of the space, and

X% k=1,---,8, the ones corresponding to the 7-sphere. The membrane action reads [15]
T+ .
S :?2 / o ( — V=1 B (1, DY HO5Y" + Oy 00X 05X7) +V—h
2 (3.1)

- R
+A (W YHYY + T) + A (XFXF - R2)> + T / CO | uitback -

We choose 7, = diag(—1,1,1,1,-1). A and A are Lagrange multipliers that enforce the

conditions
4

M Y'YV =——, Y (X*)?=R?, (3.2)
k=1
respectively, thus defining the AdS, x S” space.
Using the formula dh = —hhagého‘ﬁ one finds that the equation of motion for the

world-volume metric gives

hap = T oY O5Y" + 0j 0 X 05 X7 . (3.3)

2 The last relation in (2.18) follows from the definition 10 = —y0 71 ... 9.



The equations of motion for Y* and X* are given by

95(V-hh*’9,Y,) = —A Y, (3.4a)
95(V—hh*P 0, X)) = —A X}, (3.4b)
where the indexes of Y# are lowered and raised by 7,,. It is also useful to define the
variables
R )
Zo=Y" +iv* = 3 V14+rZet, (3.5a)
Yizgrni, i=1,2,3, (3.5b)
Zi= X% i X% =Ry, i=1,....4, (3.5¢)
4
where the constraints (3.2) enforce 7 -7 = 1 and Y ;> = 1; their equations of motion
i=1
read,
(95(\/ —hhaﬁaaZ(]) = —/~\ Zo 5 (36&)
95(V—hh*P9,Y) = A Y, (3.6b)
95(V—hh*P0,2") = -\ Z" . (3.6¢)

3.2 General ansatz
We now introduce the following ansatz,

t=uwpy o, r=0,

' 1 . (3.7)
Wi = constant , & =uw; Uo—l—m@' 01+nz’ 0255@200‘,

where o', 02 are 2r-periodic. Since m; and n; represent winding numbers, all of them

must be integers; furthermore, for convenience we have introduced the compact notation,
Bh=2wi, Bi =2m, B5=2n0

Solutions with this structure were found in [15] in a particular gauge where hg; = hgo =
0, hgo = CODSt.(h%2 — h11h22).4 However, we will be later interested in a special class of
solutions (called “non-collapsed membranes”) for which this gauge choice is inconvenient.
Therefore the analysis of solutions will be carried out in an arbitrary gauge.

The i index of 3¢ can be raised with the ¢ part of the metric (2.7), i.e.,

4
Bia = pi® By, BiaBh=>  1iBLB5 . (3.8)

i=1

3The index 4 in w;, ms, n; has been written as a subindez to avoid confusion with powers in the formulas
containing specific values of i (e.g. we prefer to write ms instead of m?).

“Generalizations of the solutions of [15] including non-constant y; were discussed in [19] (extending the
integrable string o models of [14] to membranes).



The world-volume metric becomes
h (B@ aﬂﬁ Wo e 066 0) > (3.9)

RG . . ‘ ‘
{wS [(@',15{) (B,2) — (ﬁi,lﬁé)z] —detq g (@',aﬁé)} . (3.10)

h=_——
64

The ansatz (3.7) includes momentum and winding around all four & angles. However,
by performing a redefinition in the world-volume coordinates, we can reduce it to a problem

with rotation in two planes only. Namely, defining

50— 50
1

ot = (B 0"+ B ot + By o), (3.11)
1

7t =5 (B "+ B ot + 5 0?),

the ansatz (3.7) reduces to

g=s, ¢

=, ¢

||
Qz
+
Sz
Qv
—
+
il
Qe

(3.12)

Il
El
_|_
+
S
Q

It should be noted that it is (locally) equivalent to the original (3.7) only if the following
condition holds,
BiBs =0y B #0. (3.13)

Because of the periodicity of the o', 2 variables, the solutions are not globally equivalent

in general. We recall that winding numbers must be integers for membranes in AdSy x S7
(and € Z/k for membranes in AdSy x S7/Zj,).
We will be interested in the particular case m’ = n/ = 0, i.e. in the solution

é‘l
53

Returning to the o variables, (3.14) corresponds to the following choice in eq. (3.7),

~1 2 1
a & =

~2 4
o, =

O 4 mat,

_|_

Ez
Qz

(3.14)

O'

El
Qz
pupl

@ = (w1, w2, w3, wa),
m=(a, aa, b, Bb), (3.15)
= (¢, ac, d, fd) .

if we make the identifications,

a, n=_p, Wy = wy — awy, Oy =wy—Pws. (3.16)

m

Equations (3.11) then take the form

&OEUO
Fl=w o’ +act +co?, (3.17)
2=w3o’+bot +do?,



and the condition (3.13) for this equivalence to hold now reads ad — bc # 0. One has
the option of considering m, 7 integers in (3.14), or the solution (3.7), (3.15), with m, 7
integers, giving rise to globally inequivalent solutions.

The ansatz (3.14) leads to the following values for 3 :

(Bé) = (07 2, 0)7 (/3(3:) = (2(:)27 2m, 0)7 (ﬁg’z) = (07 0, 2)7 (ﬁé) = (2(:)47 0, 27:") .
(3.18)

When ad—bc = 0, m results proportional to 7i. More generally, whenever m = K1, we
have 3} 33— 33 = 0 (or ad—bc = 0) and the change of coordinates (3.11) (or (3.17)) is not
possible. Instead, it will be more convenient to introduce a new world-volume coordinate
o = 02 + K o', exhibiting the fact that the configuration depends only on ¢. This is the
case when the M2 brane collapses to a string-like configuration.

3.3 Solving the conditions on the parameters

The equations of motion (3.6) impose some conditions on the parameters characterizing

the solution. In order to solve these conditions for the ansatz (3.14), we first compute the

hoo

inverse matrix h®? = ¢, where h?ﬁ is the co-factor matrix of h,g. Its explicit expression

is given in the appendix A (for clarity in the notation, in this section and in the appendix
we will remove “tildes” from wy, ,&4, M, ).

The equations of motion (3.6) then reduce to

—wo? h% = V/—h A, (3.19)

1 o
—Zhgﬁﬁ;ﬁ’ﬁ:\/—hzx, i=1,...,4. (3.20)
While the first equation just fixes the value of A, the second one gives non-trivial conditions,
since it must be satisfied for each i = 1,....,4. One of the equations determines A and,

generically, three independent conditions remain.
Using the expressions for hoP given in the appendix A, equations (3.19)—(3.20) become

V=

Tl RA A= (m? + pa® m?) (us® + pa® n?), (3.21)
iﬂ A = (us?® +n? 1a?) <M22 <2w—u;2>2 - 1) + pg? pa® (%)2, (3.22a)
iﬂ A = (u3? + 12 s <u12 <2_u;2>2 — m2> + ps” pa® m? <%>2, (3.22b)
% A= (m® +m? p?) <u42 <2w—c:4>2 — 1) +u? o’ (%)2 (3.22¢)

—@ A= (,ul2 +m? M22) <M32 <%>2 - n2> + M12 ,U22 n? <@>27 (3.22d)
wy 0 wo



where the determinant A of h,g is given by,

4
WQQ R6

2(4)2 2
h=(u1?+m? po?) (us® +n® pa®) — pn® po® (s +n’ pa®) <w—0>

2(4)4 2
- M32 M42 (M12 +m? M22) (w—0>

For generic® values of the ;s the relations (3.22) impose three conditions on the parame-
ters. They can be solved explicitly in terms of a free variable z as follows,

2 2 2 . o
m2:%i—522’ “2:%%_@7 (3.24a)
2wp\? 1 22— n®— pp? 1 , .
<w0> T z—p® (3z—1)(z—2) (22 =20 2+ (m* + p2®) 20) ,  (3.24b)
2wy ’ 1 22— pg® — pg? 1 2 2 2
<w0> Tl z—p® (3z—1)(z — 2) (22 —zaz+ (ua® + pa®) 20) ,  (3.24c)

where we have defined,

0=Co <M1 pa® (o® + ps®) — po® ps® (ma® + M42)) ;
2=Co <u1 pa® (14 po® — ps®) — po® pa® (14 pn® — u32)> : (3.25)
1=Co <M1 pa® (1 + ps® — pa®) — po® p® (1 + pa® — M22)> :

and Cy = (1?2 14 — po? u3?)~L. They satisfy the relations,
2o+24—220=1, 2o — 24 = 12 4 po? — g — pa® . (3.26)

For completeness, we also give the expression for the Lagrange multiplier parameters,

S S 22— pn? — po? 22 — pg® — pa?
 wp? R4 z — pg? z — jug? (3.27)
4v— 1 o 9 2z—p®—pe® 22— puz® — pg’
w2 RA R4 3,1/ 2 — g2 Z — g .

We find that the on-shell value of the determinant of the metric (3.23) is given by
4 2z —n® —po® 22— p3® — a2
h= 2 : 3.28
~ wy?RS i s 2z — p2? Z — g 3z—1 (3:28)

Of particular interest is the case z = 0, because it characterizes a supersymmetric
solution (see section 6.2). In this A = 0 case the membrane becomes tensionless. A similar
phenomenon for supersymmetric rotating strings had been noticed in [17]. These M2 brane
configurations with A = 0 are thus the precise higher dimensional analog of the rotating

5By generic we mean that all the ju;’s are non zero and different from each other.



strings of [17]. When z = 0 the winding numbers and angular velocities are (up to signs)
determined by the u; by the following relations:

4 4 2 2\ 2 2 2\ 2
2w 2w
m2=FL o8 <_2>:<1+“—12>, (—4>:<1+“—32>, (3.29)
2 pa wo H2 wo Ha

where we have used equations (3.24). This solution is continuously connected with the
|z| = oo solution, for which h # 0 and

2 2 2 2

2 2 2 2

m2=Hl o (ﬂ) == <ﬂ> =" . (330
M2 i wo 3 12 wo 3 114

4 BPS bound from the superalgebra

In this section we use the superalgebra on the AdS, x S7 vacuum to show that a solution
that preserves a fraction of the supersymmetries must obey a simple bound. Our discussion
follows the similar derivation given in [17] for AdS5 x S°. The AdSs x ST vacuum has
the isometry superalgebra OSp(4]8). The bosonic symmetry is SO(2,3) x SO(8). The
supercharges are 32 Majorana spinors which under the SO(2,3) x SO(8) subgroup of the
11d Lorentz group SO(1,10) decompose as 4-component Majorana spinors @,, with a =
1,...,8, transforming in the spinorial 8 representation of SO(8) (more precisely, spin(8)).
Let us denote by 4, (in this section u,v = 0,1,2,3) the 4 x 4 four-dimensional Dirac
matrices for AdS,;. The anticommutators are

{Qa, Qy}=<?{(%LP“+-%ﬁw,mﬂW>6@-+1B@], (4.1)

where C' is the charge conjugation matrix (C' = 4" for the real Majorana representation),
PH. MM are the charges in AdS; , and Bab is a real antisymmetric matrix of spin(8)
charges. For our solutions, the only non-vanishing charges are the energy PY and the
angular momenta Ji,...,Js. These last ones are eigenvalues of the Cartan generators of
SO(8) in the vector representation 8y. Using the standard relation By = %'Ayi]l;Bij, where
{4*,i =1,...,8} are the gamma matrices in the spinorial 8 representation, and putting

B;j in block-diagonal form by means of a SO(8) transformation, we have

. 0 Ji 0 Jy
Bij:dlag[<_J1 O),..., <—J4 0)], (4.2)

and similarly for Bab, with 31, .. ,64 instead of J;. The non-vanishing elements of Bab are
related to the J;’s by
b= g (il Sy ), b= (RS = Tyt s+ ),
by= G (H i Ty = Sy 2),  ba= S (RI Tt s — i) (4.3)
The anticommutation relations then become
{Qar Qv} =104, P°+73° By . (4.4)

,10,



Since (V)2 = —1, the eigenvalues of ﬁOB are =+b;. Therefore, the eigenvalues of the

anticommutator matrix are P 4+ l;i, 1=1,...,4. In any unitary representation the matrix
{Qa, Qb} is definite positive, thus the BPS bound is

P > by - (4.5)

where lA)maX is the maximum of :I:lA)Z-.

P generates translations in the time ¢. For the membranes considered in this paper
lying at r = 0, the proper time is given by dr = gdt, see (2.1). Therefore their energies
E are related to P by E = 2PY/R. Defining 1; = sgn(J;), the signs are subject to the
condition ninen3 = —n4. This implies that, for these membranes, Bmax is nothing but
% 2?21 |J;]. Thus the energies of our membrane solutions are subject to the bound

4
1
E>—= Jil . 4.6
> (46)

When the bound is saturated, the matrix of anticommutators have some zero eigenvalues,
implying that some fraction of supersymmetry is preserved.

When three or more J; are non-vanishing and generic,% there is only one vanishing
eigenvalue and the corresponding state saturating the bound preserves 1/8 of the super-
symmetries. When two J; are non-zero and generic, there are two vanishing eigenvalues
and the corresponding state preserves 1/4 of the supersymmetries. Finally, states with
only one non-zero J; have four vanishing eigenvalues and the solution preserves 1/2 of the

supersymmetries.

5 Energy and angular momenta

5.1 General formulas

According to Noether’s theorem, if
XH=XF4edX" +o(?) . (5.1)

is a continuum transformation with parameter e such that S[°X, h] = S[X, ], then

oL
JY=06XH , (5.2)
8604XM on-shell
is a conserved current,
Vo =0, (5.3)
and, therefore,
Q= / dolde? J° = —Ty / do'do® V—h h" G, (X) 6 X" 0, X", (5.4)

$When some .J; have coincident values, some b; will be equal to each other, implying the possibility of
enhancement of supersymmetry. However, it is easy to see that this possibility is not realized our membrane
solutions subject to the condition m1n2n3 = —na.

— 11 —



is a conserved quantity
d@
do¥
If we apply this standard procedure to isometries of the background (and hence sym-

(5.5)

metry transformations) we can define the following conserved charges.

Energy: g 0XY = % ot = —

E= VTR“’O he? Vo= [doldo? = 4r? (5.6)
2 1y It — ; 0 = o do® =4n° . .
v—h
Angular momenta: 8¢ =1 ,Vi.
hga ﬂa R ; hOl h02
Ji =V Tr R? Na pi* =E o 11 <50 700 B+ A0 ﬁz) . (5.7)

5.2 Energy and momenta of non-collapsed membranes

Evaluating these formulas on our family of solutions (3.24)

2y 2 _ 2 25— 2 _ 2 32—1 1/2
E=Vy Ty B iy i3 ( P et 22 gy’ 3z ) ’ (5.80)
Z— M2 z — p1q? z
2 2 1/2
Z— 1 22— 20z + (ur? +M2 20
Ji=RFE 5.8b
e 1 ((3z—1)(z—z0) 22 — 12 — po? ) ( )
2 2 1/2
Z— 2 22— 2oz + (r? +M2 20
Jo=RFE 5.8
122 H2 ((32—1)(z—zo) 22— pui? — po? ) (5.8¢)
2 2 1/2
Z— U3 22— za 2+ (usg® —|—,u4 20
J3=REFE 5.8d
1173 1 ((32—1)(z—zo) 22 — pg? — pg? ) (5-8d)
2 2
2 — [y 22 — 242 + (us? —l—,u4)z0
Jy=RFE ) 5.8
fh p <(3z—1)(z—zo) 22 — pg? — pg? > (5.8)
where we have introduced the signs of ws, w4, m,n in the following way,
sgn(wg) =12, sgn(wy) =4, sgn(m) = —n2 1, sgn(n) = —-ngn3, (5.9)

so that sgn(J;) = ;.
In the limit z — 0 both E and J; tend to infinity. It is straightforward to show that
in this limit,

4
1
Ji=mREu® =  E=5 Y |l (5.10)

This simple relation is due to the fact that in this limit the solution becomes supersym-
metric, as explained in section 4 and will be seen more explicitly in section 6.
On the other hand, in the opposite limit |z| = oo, one finds the solution with J; =

Mi 35 B i, giving

4
6 § : 2
i=1

There is no preserved supersymmetry for this solution. The general relation between E
and J; for solutions with arbitrary z is given in appendix A, for completeness.
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5.3 Energy and momenta of collapsed membranes

Let us now consider the collapsed membrane configurations with m = K 7. In this case, the
expressions (5.6), (5.7) for E and J become ambiguous and need a proper regularization.
The same ambiguity occurs for the BMN string if one attempts to compute the energy and
angular momentum using the Nambu-Goto action. In this case, the solution describing the
BMN state is X° = wy 7, ¢ = wo T, where ¢ is an angle of the S® sphere. The proper way
to do the calculation is, as in [20], to use the Polyakov action in the conformal gauge, and
then compute F and J (obtaining F o J). For membranes, there is no possibility of a
conformal gauge. The closer analog is the gauge ho; = hoa = 0 and hgg = —(h11 hao —h122).
The formulas (5.6), (5.7) for the energy and angular momentum in this gauge reduce to

E:{@ngwo, Ji = Vo Ty R i? w; . (5.12)

In addition, for the collapsed membrane with m = K7, g = 0 and the constraint hgg = —g
implies the relation

(5.13)

Since wy # 0, at least one u; and w; must be non-vanishing. Taking py # 0, wy # 0, the
equations of motion then imply the additional relation

wi? =w? = A, Vi such that p; # 0 . (5.14)

It follows that wp = 2 |wy|. This agrees with the general formulas of [15] particularized to
the case m = K. Therefore

J
E=2, J:Zi:ui\. (5.15)

In addition, the constraint associated with the gauge choice hg; = hgz = 0 imposes the
condition

4
> miJi=0. (5.16)
=1

The derivation of the previous formulas implies dealing with membranes with null
world-volume, i.e. h = 0, for which classical methods are not, in general, justified. Indeed,
these membranes can be more properly viewed as the limit of large angular momentum of
general non-collapsed, regular membranes of the form (3.7). This is obviously the case as
can be explicitly seen from the general formulas given in section 4 of [15], where the large
J limit indeed leads to the conditions (5.13), (5.14) and (5.15) (while the condition (5.16)
holds for any finite .J). In general, one finds [15] E = J/R+ O(1/J).

6 Supersymmetry conditions for the solutions

6.1 Supersymmetry equations

We shall now investigate the configurations of the form (3.7) which preserve some fraction of

supersymmetry. A configuration preserves a supersymmetry for every independent Killing
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spinor € defined in (2.16) that satisfies

1 b v
G X X DX T (6.1)

where I',; is the k-symmetry matrix, the Gamma matrices are given by (2.15), and +1(—1)
stands for the M2 (anti) brane. Substituting the ansatz (3.7) we find

'y, e =*e, I, =

3
o o
Iy = ﬁ“i 1 B B3 <w0 Yo + By 'Yk+6>%'+6 Vi+6 - (6.2)

where summation over ¢, j is understood and k indexes between 1 and 4.
Using (2.16), we find that the Killing spinors of AdS; x S7 must satisfy

MIT  Mey=+¢ . (6.3)

After some algebra, the full supersymmetry equations reduce to”

> v0virevice (wwz‘ujﬁijg - Miﬂjﬂzﬁzjkok> M} M7 M

1<j
—Y78910 Y EiuBIFX H Mg 5 € (6.4)
ijkl
Wi 2 i (B = 3 (BN @,
i<j i<j<k
where
Ok =47 Xy, (6.5)
Oy = —01 05 O3, '
the X}, have been defined in (2.18), and
By = B3}~ B .

Gk = g1 Bl 4 35 Bl + 5

Equation (6.4) is highly complicated in general. However, for our ansatz (3.7), (3.15),
gets simplified in a striking way. In particular, it is easy to check that all the 3,5 either
vanish or are proportional to

N =ad—bec. (6.7)

This implies that both terms of (6.4) are proportional to N. On the face of it, it might
seem that if N = 0 then the supersymmetry condition (6.4) is trivially satisfied for all 32
spinors ¢y. However, the N = 0 case is rather subtle, because in this case m is proportional
to 7 and the M2 brane collapses to a string-like configuration, as explained at the end of
section 3.2. In this case the equation (6.1) becomes singular and cannot be used. We will
return to this case in section 6.3.

"This algebra requires commuting M with T matrices. Useful relations can be found in the appendix B
of [12].
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6.2 Supersymmetry of the non-collapsed membranes

We first investigate the supersymmetry conditions for N # 0, for generic values of the p;’s.
Let 7 denote the eigenvalues of the Oy operators,

Ok €0 = Nk €0 /{?:1,2,3. (6.8)

Since Oﬁ = 1, the eigenvalues are just equal to +1. This leads to only three independent
conditions, since ny = —mn2ns (see equation (6.5)). With no loss of generality we can
set m; =1y =mn3 = 1, ngy = —1, since the sign of any 7; can be reversed by a coordinate
redefinition £ — —&°. Let us start by fixing,

a—_M g=H (6.9)
2 4
By using (6.8), the supersymmetry condition (6.4) leads to two equations
2 2 1 2 2
piwrt pp wWa =5 Wo (11 + 12), (6.10a)
1
pE ws — i wa = 5 wo (3 + 1) - (6.10b)

Note that these equations only restrict the possible values of the parameters, but they
do not imply any condition on the spinor. Therefore equations (6.10) do not reduce the
number of supersymmetries. Once (6.10) are imposed on the parameters, both sides of the
supersymmetry equation (6.4) become identically zero. In terms of the coordinates ¢, the
solution takes the simple form

t = wo 50, r=20, i = constant,
I
¢ =¢t, 2 =06"+mét, (6.11)
with
1 2 1 2 2 2
Wy = 5 wo <1+M—§>, Wy = —5 wo <1+'u—§>, Th:—'u—;, ﬁ:—i-'u—g.
2 145 2 11y 145 11y
(6.12)

On shell (i.e. upon use of (3.24)), this M2 brane has a singular induced metric, h = 0.
Nonetheless, it should be noted that the membrane is regular, in particular, it is not
collapsed to a string, despite the fact that the induced world-volume metric has vanishing
determinant A = 0. The phenomenon is similar to the one found for strings in [17].
The interpretation is that these configurations describe tensionless membranes, since the
world-volume is null. Physically, it means that, for these membranes, the energy due to
the tension is negligible compared to the energy due to rotation (see also section 5).

In conclusion, the M2 brane configuration (6.11) is supersymmetric for Killing spinors
satisfying the three conditions (6.8). Therefore our solution preserves 1/8 of the super-
symmetries of the background. Furthermore, we note that the solution is just the z = 0
solution to the equations of motion given in (3.29).
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The number of supersymmetries can also be deduced from the BPS algebra. For generic
values of y;’s, the bound (4.6) is saturated with the four J; non zero and different from
each other, as shown in section 5.2, see (5.10). In this case the 8 x 8 matrix {Q,, @y} has a
unique zero eigenvalue, hence only 1/8 of the supersymmmetries is preserved, in agreement
with the above counting using the I, matrix.

6.3 Supersymmetry of the collapsed membranes

In terms of the new world-volume coordinate o = o2+ K ¢!, the solution for the M2 brane
collapsed to a string is obtained from the ansatz (3.7) by simply setting n; = 0. This gives

t=woT, r=20,
(6.13)

4 1 .
Wi = constant , gZ:wiT+miUE§ﬂéaa,

where 0 = (6%, 1) = (1, 0), a = 0, 1.

The simplest way to study the supersymmetry of the collapsed membrane configuration
is from the supersymmetry algebra. In section 5.3 we have seen that these configurations
saturate the BPS bound (4.6), and therefore they are all supersymmetric. The preserved
fraction of supersymmetries depends on how many J; are different from zero:

e In the case of rotation in four planes with generic J;’s non-zero, the 8 x 8 matrix
{Qa, Qp} has only one zero eigenvalue. As a result, the solution preserves 1/8 of the
supersymmetries.

e In the case of rotation in three planes, only one of the J; vanishes, say J4. Generically,
the b; given in (4.3) are still different from each other and as a result the matrix
{Qq, Qp} has still only one zero eigenvalue. This solution also preserves 1/8 of the
supersymmetries.

e In the case of rotation in two planes, two of the J; vanish, say Js, Js. From (4.3) we
obtain b; = —by and b3 = by. It is easy to see that in this case the matrix {Qq, Qp}
has two zero eigenvalues, coming from F + %3374 or B+ %31, EF }—2% 32, according to
the signs of Jq, Jo. This solution preserves 1/4 of the supersymmetries.

e Finally, in the case of rotation in one plane, taking e.g. Jo = J3 = Jy = 0, there
are four vanishing eigenvalues when the BPS bound is saturated. The membrane
preserves 1/2 of the supersymmetry. However, in this case the constraint (5.16)
Z?:l m;J; = 0 implies that m; = 0: the membrane collapses to a point. This is a
BMN state.

The case of the M2 brane (6.13) collapsed to a string-like configuration the k-symmetry
matrix I', of the M2 brane is singular and cannot be used to determine the unbroken
supersymmetries. The same problem exists for strings collapsing to a point, like in the
BMN solution [5, 20], representing a collapsed string moving around the equator of S° at
the speed of light; the I',, matrix of the string is singular but one can use the supersymmetry
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algebra in a similar way as we did above to show that the solution preserves 1/2 of the
supersymmetries (see e.g. [17]).

In the present case, since the membrane is collapsed to a string, one may try to
determine the unbroken supersymmetries by using the I'y matrix corresponding to an
effective string. In appendix B we show that this approach reproduces the correct number
of supersymmetries obtained above from the supersymmetry algebra.

7 Generalization to AdS, X S7/Z

The supersymmetric M2 brane configurations described in the previous sections admit a
straightforward generalization to the case of AdSy x S7/Zj. As explained above, the Zj
orbifold acts on the &; angles by identification & ~ &+27/k. The spectrum on AdSyxS”/Z;,
is obtained by the projection of the original spectrum on Z; invariant states. This leads
to the following quantization conditions on the winding numbers:

mi, N; € Z//{: . (7'1)

Dimensional reduction of AdS, x S7/Z;, along the y coordinate gives the AdSy x C' P3 space
(see section 2). Finding novel supersymmetric states in this space is of particular interest
given the connection with ABJM theory. To proceed, we recall that y is the diagonal part
of the four &; angles,

y = i(£l+£2+£3+£4). (7.2)

For our general ansatz (3.7) this gives
y=w, o’ +myo! +n,0%, (7.3)

where we have defined
1 1 1

The other coordinates 1, o1, @2 in eq. (2.10) have a similar 6%, o!, 0 dependence. As

pointed out in [15], these type of configurations in the generic case correspond to non-
perturbative objects in the type II string theory. Generally, in ten dimensions these config-
urations represent bound states of DO branes, D2 branes and rotating circular fundamental
strings. The DO brane charge arises from the momentum in the y direction, P, = kw,,.
Because the circles 9, ¢1, @9 are contractible, the net D2 brane and fundamental string
charges are zero (just like the fundamental strings of [14]).
Consider in particular the 1/8 supersymmetric non-collapsed M2 brane solution (6.11).
In this case
4y = (wo +wy) o + (1 +m)ot + (1 +n)o?, (7.5)

where we removed tildes. Using (6.12), we see that DO brane charge P, = wok (ujpui —
p3u3)/(8p3u?) is determined in terms of angles y; representing the location of the bound
state system.
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Consider now the collapsed membrane configurations of section 6.3. They are of the
form
4ycon. = Wy o + ny o’ ) (76)

2

where we now use o°, instead of o, to avoid possible confusion with the world-sheet string

coordinate o of type IIA string theory. The other coordinates v, 01, o depend only on o°
and o2 as well. The configuration has non-vanishing D0 brane charge. To see this explicitly,
we recall that another consequence of the orbifold projection is that the momentum along
the y is quantized as J; + Jo + J3 + Jy = kp, for p units of DO brane charge (see related

discussion in [12]). There are two cases to be distinguished:

a) ny = 0. In this case the string-shaped membrane is not wrapped around the eleven
dimensional circle . The other coordinates 1, @1, @2 will generically depend on oo,
which, in this particular case, can be identified with the string world-sheet coordi-
nate. The configuration then represents a bound state system of p DO branes and
fundamental strings with vanishing total charge.

b) ny # 0. In this case the string-shaped membrane is now wrapped around the eleven
dimensional circle y. As a result, upon reduction, the configuration does not contain
any fundamental string, but it has p units of DO brane charge.

It would be interesting to identify the dual BPS operators of ABJM three dimensional
N = 6 Chern-Simons theory, both for the collapsed membranes and for the 1/8 super-
symmetric M2 brane (6.11). In general, these operators have conformal dimension kp/2
and (like the configurations of [13]) are to be given in terms of configurations involving
non-abelian degrees of freedom in some non-trivial way.

8 Giant diabolo

8.1 BPS equation

In this section we study a different class of supersymmetric membranes that also extend
to the AdS, part of the background. It is convenient to introduce cylindrical coordinates.
The metric and three-form become

R2

d2
ST

dz + pdp)? (2dp — pdz)?
— (14224 p?) dt* + (2 + p?dy?
{ ( P) 2+ ) (1 + 22 + p?) 2 1 p2 pae

4
+ R? {da2+cos2ad62+0052a cosZBd’yQ—i-Z 2 dg?}

i=1
3
c® = % pdt A (zdp—pdz) Adep.

The ansatz is as follows

t =0 , 2:02,

1 2
Lp:Oé00'0+0410' +ag 07,
i 1 2
§=m; (8000+S10 +520),

p=p(a?).
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We shall derive the BPS equations using again the condition (6.1) on the background
spinors. We first decompose the k-symmetry matrix in two factors

4

- 't —p)y -1 .
r=-5T, = , r Si+0|, 8.3
v v 7“(1 +p12 o f/2)1/2 —h ; ( )

where f2(z) =1+ p?(z) + 22, and

ﬁ

4 4
1
01 = 501pf03, 0 = s1fv0 Y pimivire, 03 = (oSt — a150)pYs Y HiMmiYits,
i=1 i=1

(8.4a)

5 rf -
0 = (152 — 1) a5 V30 Y Z Wi it 6 - (8.4b)

— 1/2
(1+p% = )V —

An important feature of these matrices is that 4 and T’ do not commute unless 6 = 0.

We will assume 6 = 0 in order to get an analytic solution. Thus we take
S =a o, 1=1,2, (8.5)

with a arbitrary. Once this condition is implemented, our ansatz becomes equivalent to
the ansatz considered in [12] using spherical coordinates. The cylindrical coordinates are
more convenient to exhibit how the various geometries are realized for different values of
the parameters. Some of the geometries shown here are novel.

The supersymmetry condition is

(MM M IT M+ ] g = 0. (8.6)

with € = 4+1(—1) for the (anti) M2 brane. In order to cancel out terms proportional to
MEM]?, for i # j =1,2,3,4, we demand

m; = €;m, 612:1’ m>0’ i:1’253’4’
Xz‘ X4 €0 = —€; €4 €, 1= 1,2,3 . (8.7)
Note that we can impose these conditions on the spinor since X? = —1 and [X;, X;] = 0.

However, due to the relation J[P_,(X;X,) = +1 (see 2.18), we have that [[L, e; = —1.
Furthermore, this also implies that there are just two independent constraints in (8.7). The
signs e; can be reabsorbed into a redefinition of &%, and m can be absorbed by the s,’s.

Therefore in what follows we set m1 = ms = m3 = —my = +1. We omit some details of

the computation, which is straightforward, albeit tedious. The resulting conditions turn
out to be

70,10 €0 = 11 €0, Y1 €0 =12 €, (8.8)

1
so=aay+an (1_E>’ (8.9)
(pf)* + 02> = p* (b= 1)’

= 8.10

€ sgn{o;} = sgn { it D) : (8.10)

p=(0b-1) L(z)’ (8.11)

P +b(1+2%)
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Torus Sphere Spike Cylinder Diabolo

Hyperboloid Hyperboloid

L
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Figure 1. The solution (8.13) describes different geometries depending on the value of the param-
eter b.

where b = —2n; 12 a. Equation (8.11) is the BPS differential equation that determines the
shape of the M2 brane. Upon imposing these conditions, the solution takes the form

t=0o", o =wo', z=0?, (8.12a)
1
51252253:—54:%(1—b)00—§n1n2ba101. (8.12b)

where we have made a coordinate redefinition ago? + ajo! + ago? — wo'l (w is a winding

number). The general solution of equation (8.11) is given by
2 =rg?pt—1-p?, (8.13)

where r( is an integration constant and
c=—". (8.14)

The solution is symmetric under z — —z and it has an important feature: it always crosses
the z = 0 hyperplane smoothly. To see this, we differentiate the equation (8.13) with
respect to p,

d
22d—;:cr02 Pt —2p, (8.15)

and consider the limit z — 0. From (8.13), it is easy to see that in this limit the r.h.s.
of (8.15) does not vanish. Therefore, when z — 0, one has 0,z — oo (or p/(0) = 0), which
is the required condition for a smooth transition.

From (8.7) and (8.8) it follows that the spinor must satisfy four independent, com-
patible constraints, so the solution will preserve at least % of the supersymmetries. The
condition (8.10) is non-trivial, but it can be shown that the solutions described below do

satisfy it.

8.2 Brane scanning

The solution (8.13) describes membranes of diverse geometries depending on the value of
the constant b, as shown in figure 1. Generically, these membranes have angular momenta

Jo, J; in the ¢ and ¢' directions (general formulas are given in appendix C). The standard
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expression for the Hamiltonian in the gauge t = ¢ leads to the general formula

1 ! 2T
P
E = E<2|Jgo| + ;1 |Jz|> t /d01d02 L. (8.16)

As shown in [12], for these solutions the Lagrangian £ becomes a total derivative. This
implies that the last term vanishes in the case of M2 branes without boundaries. The
resulting energy saturates the bound that one finds from the superalgebra, which in case of
rotation in both AdS, and S7 is a slight generalization of the results of section 4. Indeed,
the term 2|J,| comes from the contribution 093 M2 = ﬁoﬁgglﬁp. Since the matrices 7%993
and 4" commute, they can be simultaneously diagonalized and the eigenvalues of the matrix
{Qa, Qp} are PV + J, & b;, leading to the bound PV > %(2|J¢| + Z?:l |Jl|>

For uncompact M2 branes, the last term in (8.16) will give a non-vanishing contribution
to the energy.

8.2.1 Giant spherical graviton
This appears for b = 0 (which implies ¢ = 0). The solution (8.13) then becomes

24 pP=rg? -1, (8.17)

which is the equation of a sphere of radius Ry = v/r92 — 1 in cylindrical coordinates. In
this case our ansatz reads

t=o09, @p=woy, z=o09, fi:%O'O. (8.18)

From the formulas of appendix C one finds that this solution has J, = 0 and

Ji = mejeqpi?m|w| Ty R? Rg. The energy is £ = 7|w|Ty R? Ry, and therefore £ =
4

7 i1 il

8.2.2 Cylinder

For b = 1, the constant ¢ tends to infinity and the solution (8.13) is no longer valid. We
have to return to the original equation (8.11), which now gives p’ = 0, so the radius p = pg
of the cylinder is constant and arbitrary. Using the formulas of appendix C it can be easily
shown that this is the only case where the angular momenta J,, J; vanish.

The energy is E = 3 To 7w |w| R? L, where L regularizes the (infinite) length in z di-
rection. Note that it is independent of pg, i.e. expanding the cylinder does not cost any
energy, which is consistent with the fact that solution exists for arbitrary radius. This is
why the M2-brane can be in equilibrium in spite of the fact that J, = J; = 0.

8.2.3 Giant spike

This appears for 0 < b < 1. In this interval for b, the constant ¢ covers all the negative

real numbers, ¢ < 0, so we can write it as ¢ = —|c|, and the solution becomes
r2
2= 1 p%. (8.19)
p‘c|
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(a) General view of the giant diabolo. (b) In this close up we can see that the tran-

sition between the two lobes is smooth.

Figure 2. The giant diabolo for b = 1.8 and 73 = 6.

At z = 0, p has a unique, non-vanishing value. As shown above, the transition between
z > 0 and z < 0 is smooth. At z — 400, one has p — 0, and this solution takes the form
of a bulb with a spike, which in the dimensionally reduced theory can be interpreted as
an open string stretched to infinity. This solution was found by Nishioka and Takayanagi
in [12]. Now the energy picks a contribution from the boundary at infinity: E = % <2|J¢| +

Sy ) + 3 o fw] B2 L.

8.2.4 Hyperboloid
In the limit that b tends to £ infinity, the exponent ¢ in (8.13) approaches the fixed value
¢ = 2. The solution (8.13) now reads

(réd —1)p* =22 =1, (8.20)

which is the equation of an hyperboloid. Note that r§ > 1 for a real solution. It has finite
Jo/(bL), J;/L with 2|J,|/ >, |Ji| = |b] — oo.

8.2.5 Giant diabolo

Consider now b > 1. Then the exponent ¢ in (8.13) is always greater than two. At z = 0,
p again takes a unique, finite value. At z — +o0, the p° term dominates and

2~ trop?, (8.21)

where ¢/2 > 1. This geometry resembles the shape of a diabolo, as can be seen in figure 2.
A difference with the hyperboloid (¢ = 2) is that the diabolo exhibits a transition between
negative and positive curvature at a certain value of p. We recall that the solution has
angular momentum both in ¢ and ¢ directions and the general formula for the energy is
E= %(21@,; +3L yJiy) +1Tyn|w| R2L.
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8.2.6 Giant torus

Now we assume a negative, but finite, value of the constant b = —[b|. In this case,
2[b|
c=—- <2, 8.22
|b] + 1 ( )
and solution (8.13) becomes
22 =r2pt—1—p%, 0<c<2. (8.23)

Since ¢ < 2, the last term, which has a negative coefficient, dominates at large p. Therefore

2% can be positive only for p less than some maximum value pjs, where 22 = 0. Similarly,

the presence of the °

‘—1” on the r.h.s. shows that p cannot be below a certain minimum
value p,,, where z = 0 again. In short, when 0 < ¢ < 2, 22 > 0 implies that p takes values
in a finite interval [p,,, par]. Since z is a continuous function, it will have a maximum in
this range. In conclusion, eq. (8.23) represents a torus-like geometry. This is, indeed, the
giant torus configuration found in [12]. Being a compact M2 brane, one finds the simple
relation E = (2|J¢| +3 |JZ|)>

In conclusion, the solutions depends on two parameters, ry, that characterizes a scale,
and b. As the parameter b is varied from —oo to co one witnesses different transitions of

the geometry, as illustrated by figure 1.

9 Summary

Summarizing, in the first part of this paper (sections 3-7), we have investigated the fol-
lowing class of solutions

t=wo’, r=0, Z; = R 1 eiwio®+micttnic?) (9.1)
We identified two subclasses of supersymmetric solutions:

1. Supersymmetric “regular” M2 brane solutions

Zy=Ru €, Zs=Rpuse, Zy=R g2 m) 7, — Ry 10" 4n0?)

(9.2)
with m, n, we, wy determined in terms of p; (up to signs). They are tensionless
and non-collapsed; for generic values of the parameters they preserve 1/8 of the
supersymmetries.

2. 1/4 and 1/8 supersymmetric collapsed M2 brane solutions
ZZ' — R ,u/z ei(wi00+mi01)’ (93)

where the amount of preserved supersymmetries depends on the values of the param-
eters. The different cases were analyzed in detail in section 6.3 and in appendix B.
The parameters are subject to the relations (5.14) and (5.16).
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As discussed, the solutions admit globally non-trivial generalizations, which can be
obtained by redefinitions of o

In all cases, supersymmetry is achieved in the same limit where E, J — oo and the M2
branes become tensionless, i.e. the determinant of the world-volume metric vanishes. This
is the analog of the phenomenon found in [17] for strings. The main difference between the
configurations 1 and 2 is that, in the first case, the M2-brane extends in two directions,
which wrap around &' coordinates, while in the second case the membrane is collapsed to
a string and extends in a single direction.

Our configurations have also some similarity with the BMN configurations [5] in the
sense that in both cases they correspond to null objects moving around circles of S® or S7,
with F o« J — oo. It would be interesting to see if these solutions can be used to explore
special sectors in ABJM theory in the same way that the BMN limit can be used to explore
a sector of N/ = 4 super Yang-Mills theory.

An important difference with the BMN case is that in that case the limit corresponds
to a Penrose limit of the AdSs x S® space, where string theory becomes solvable, allowing
for an explicit comparison between field theory and string theory results. In the present
case, because the M2 branes are extended, it is meaningless to ask what is the geometry
seen by the generic null configurations; in particular, it cannot be obtained as a Penrose
limit. In addition, in the generic case the configurations are non-perturbative from the
viewpoint of string theory. Nevertheless, it is possible that a study of small fluctuations
around these configurations could unveil an interesting sector of the quantum spectrum on

AdS4 and thence of ABJM N = 6 Chern-Simons theory.

Finally, in section 8, we have revisited the supersymmetric giant graviton solutions
found in [12] representing giant tori and spiky M2 branes. We re-derived the supersym-
metric conditions in cylindrical coordinates, which turn out to be highly convenient to
investigate the solutions in different regimes. This has unveiled a number of interesting
supersymmetric uncompact M2 brane objects, including a cylinder, a hyperboloid and the
giant diabolo, that extend up to the boundary of AdS;. They should correspond to de-
formations ABJM by adding extra degrees of freedom (this is similar to the addition of
“flavor” D7 branes to a D3 brane system).
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A Useful relations

In the main text we have defined the completely antisymmetric quantities,
B3, = B3 — BB, "
BI% = 53 By + By BT + BEBT -

In terms of them we have,

00 RY' 2,2 ii )2 A
he = 9 Zﬂz Hj < 12) ’ (A-22)
1<)
n_ (RY 2 2 (qi7)> 2 i
he =13 Zﬂz 14 <520) —wo” Bi2 B3| » (A.2b)
_Z<] |
» _ (RY 2 2 (57> 2 i
2= (5 ) [Zntu® (85) —w’ B b (A.2)
_z<] i
R\* o
W= (5) S o 5. (4.24)
1<j
R\* L
h? = <5> > it ug® B B (A.2¢)
1<j
he* = Ry > wi 1i® B B — wo® Bia B (A.2f)
c 2 i ] 7 2 . .
1<J
For the solution with parameters given in (3.18) we obtain the following non-zero
coefficients,
é% = —4(4)2, Béil = —4(4}4, ﬁg% = —4m w4
02 = dwo , ﬁ§§ =4n woy, BS’% = —4dwy (A.3)
2 =4, 13 =4n, T3 = 4m, h=dmn.
and
123 = —8 ws, f1 = —8nws, BB = 8wy, B =8muwy . (A.4)

These expressions are used in section 6.2.
Finally, we quote the general formula for the relation between angular momentum and

energy for our family of solutions (3.24):

4 1
1 1 |22 — 202+ (124 p2?) 20 2 1 1
RE 2 il = 3 3 ( 2,25 (“1|Z_“12|2+M2|Z—M22|2>
ST ez | e
2 2 2 1
25 —z4z+ (3" + 14" )20 2 1 1
+ | (2 5 1) | <M3’Z—M32’2+M4\Z—M42!2)> (A.5)
22— pg® — pa|2
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From this general expression one can see that for supersymmetric solutions with z = 0 the
r.h.s. is equal to 1, giving rise to the BPS expression (5.10). An interesting question is if
there are special values of p; and z for which the r.h.s. is also equal to 1, hence giving rise
to the same BPS expression. This would hint on special supersymmetric configurations.

B Supersymmetry of collapsed membranes: effective string approach

As explained in section 6.3, in the case of the collapsed membrane the I', of the M2 brane
is singular and cannot be used. It seems more appropriate to study the supersymmetry of
this collapsed M2 brane configuration by demanding the supersymmetry condition under
the “reduced” k-symmetry matrix associated with a string-like configuration.® In what
follows we will show that this approach correctly reproduces the number of preserved
supersymmetries obtained in section 6.3 from the supersymmetry algebra. Our results will
not rely on the value of the effective string tension (classically the string is tensionless,
since, on-shell, the world-sheet is null).

We consider the following “reduced” xk-symmetry matrix, appropriate for string-like

configurations,
1 .
I, =— X*X"T,., B.1
K \/_—g 122 ( )
where 1
=5 [Py T, r=1. (B.2)
A short computation yields,
r_ B L B o G e B.3
11—4\/_— Z,Uz,u]ﬂ %+67j+6+woz,ulﬁ1’70’71+6 ) ( . )
9 \i5 i

where (Y = éjl =3} B{ — 56 B With these ingredients, and using the relations

M g M =M T < = w0 = > pivirevie O My Mj2> , (B.da)
i i
M 6 Y06 M = Yive Vive Mi® M2, (B.4b)

the supersymmetry condition (6.3) can be written as

2w; 2w; 2
e N ( wOZ mj — w—ojmz> €0
i i<j

2w 2w;
= —Z Mi2m¢0i+z it it +6 M M2 (mj Oi—m; Oj—— mj+— mz> €0,
i

w w
i<j 0 0

(B.5)

8We thank J. Maldacena for a discussion on this point.
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where .
M;* Mj* = exp <—§ﬁ70 (8: 0i + 5] 0;) 0a> : (B.6)

This equation is the starting point for analyzing the different possibilities, taking into
account that the o%-dependence on the second term of the r.h.s. must drop out.

Let us first consider the generic case where all p;’s are non-vanishing. We find a
solution by canceling all four o%-dependent terms in the r.h.s of (B.5) and leaving at least
two non-vanishing windings, m1, mo # 0. We have

1
Oi €0 =1 €0, n’=1, 2w

:Z_ Z‘, B-?
= n—am (B.7)

together with the constraint,

4 4
ZM@'Qnimi::F Zﬂiznimi
i=1 i=1

where the F signs correspond to the + signs of (B.5). Note that one possible solution of

, (B.8)

the constraint is that the sum in (B.8) vanishes. This is indeed the case as seen from the
membrane equations of motion (see (5.16)), although it is not implied by the supersym-
metry conditions. Due to the relation H?:l O; = —1 (which fixes ng = —n11m213), We see
that the solution preserves 1/8 of the supersymmetries. With no loss of generality we can
set M 23 = 1, 74 = —1, as the signs of 7; can be reversed by a coordinate transformation
£ — —¢'. Furthermore, the solution can be rewritten as,

1
§Z:§woao+mi0/1, ‘7/1501_%“’0007 i=1,...,4, (B.9)

showing that the string rotates and winds with m; in each of the four planes. This also
shows that the parameter a is gauged away after the change of coordinate o — o'!.

Now consider the case where there is a non-trivial embedding in three planes
((12), (34), (56)), i.e. g = 0 ; p1? + po? + pu3? = 1. A solution is obtained by cancelling
three o%dependent terms in the r.h.s of (B.5). One needs at least two non-vanishing m;,
iem; #0,i=1,2. Now
2!
wo
together with the constraint (B.8). From (B.10) we see that the solution preserves 1/8 of
the supersymmetries.

OZ'EOZ’I’]Z‘EO, ?72‘2:1, =1 —am;g, i:1,2,3, (BlO)

Finally, we consider the two-plane case pg = pg = 0 ; 1?2 + pu2? = 1 (thus we take the
(12) and (34)-planes). We demand that the o%-dependent term vanishes, leaving at least
two non-vanishing winding numbers, m1,mo # 0. We need to impose,

2!
wo
together with the constraint (B.8). In view of (B.11), the solution preserves 1/4 of the
supersymmetries. Thus, in all cases, the number of unbroken supersymmetries obtained

Oieozmeo, 772‘2:1, =1, —am;, i:1,2, (B.ll)

from the effective string approach agrees with the results derived in section 6.3 from the
superalgebra.
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C Energy and angular momenta of solutions of section 8

The solution (8.12) is characterized by the energy, some winding numbers and five angular
momenta, four of which associated with rotations around the ¢ directions and another one
associated with rotations around ¢. These quantities can be computed directly from the
Born-Infeld action by differentiating with respect to the parameter that governs translations
along the corresponding directions. For this, it is convenient to introduce a parameter wq

0

int=0"— wyo'. Later we will set wy = 1 to return to our original solution.

For the ansatz (8.2), the action becomes

1 1/2
S = —§T27TR3 /dz{ [(1 + p'2 — f’Q) (wgfza%pz — (aysg — ags1)*p? + s%w%fQ)
+wop(zp — p)} , (C.1)
where we have used (8.5) and |m;| = 1. The energy and the ﬁve angular momenta can

then be obtained from E = g = pi2 92 and Jp = da , leading to the following

dwo dsg

expressions:

L+ p? = f2 2 (0* + 0
E::ng&RQ/dz 2p f‘fU)Q l+p&d—p)
VI (2 +?) - (0-1)%p
1 2 f12 2
JZ:_E|’U)| T2R3 (b—l),ufm 6i64/d2 tr f P
2 V2207 = (b—1)%p?
- 1+ 2 12 2
Jo= =Tl B b0 [P (C2)
VIR +0?) = (b-1)2p

where we have substituted the parameters by their values in (8.12), i.e. @3 = w and

1 1
=-m(l-29 =—= b
50 2771( ), 81 2771772 w, (C.3)
§9 = 0, ap = 0.
We recall that the signs e;, 712 can be chosen as ej =ex =e3=1,e4 = -1, n =12 = 1.
Using the specific form of the solution (8.12),
2 2 ¢ 2 2 2 c — 2b
25 =rgp” —1=p7, fo=rep°, C=1Tq0 (C.4)
the formulas for the angular momenta take the simple form
Ji = —7T|’w| T2R3,u22’l’}16i64 P 5 d 5 (CSa)
Vgt —1—=p
™ p
0P p

Note that the change of integration variable from z to p introduces a factor of 2 which
accounts for both positive and negative z integration regions. Note the simple relations

Ji 1 9
7= —277177261'64%25, E |Ji| = T || - (C.6)
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