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1 Introduction

An important aspect of the AdS/CFT correspondence [1–3] is understanding the precise

map between supersymmetric states in the CFT and on the gravity side. In the last

years, there was an impressive progress in this direction. In particular, the supergravity

spectrum on AdS5 ×S5 [4] was put [3] in precise correspondence with the spectrum of 1/2

BPS operators of N = 4 super Yang-Mills.

The correspondence between CFT operators and string states on AdS was generalized

to various sectors in [5] for (near BPS) collapsed string configurations and for more general

extended string states in numerous works (for reviews, see, e.g. [6]). The correspondence

between the spectra applies also to extended supersymmetric brane configurations, such as

BPS D brane configurations or giant gravitons, and the identification of the corresponding

operators led to important insights on the nature of the AdS/CFT correspondence [7–10].

The recent discovery of the ABJM superconformal field theory describing the physics

of multiple membranes probing an orbifold space [11] provides an extremely interesting

setup to understand properties of AdS/CFT correspondence and of M-theory from a new

perspective. In a recent work [12] BPS M2 brane configurations representing giant tori

were constructed. The corresponding states carry a large amount of angular momentum

and D0 brane charge. The corresponding ABJM field theory interpretation was discussed

in [13]. In this paper we will look for different types of supersymmetric configurations.

The general M2-brane solutions discussed here have a structure which is analog to that of

the (non-supersymmetric) circular strings of [14]. These type of M2 brane solutions were

investigated in [15]. The configurations can also be viewed as (toroidal) giant gravitons.

Here we will show that there is an important subclass of solutions which are supersymmetric

(general aspects of supersymmetric giant gravitons are discussed in [16]). This subclass

of solutions has the property of having a vanishing determinant for the induced metric,

i.e. a null world-volume. This is possible only for a tensionless membrane. They may be

viewed as the large J limit of regular membranes. The solutions are the precise membrane

analog of the tensionless strings discussed in [17]. They also represent a higher dimensional

version of the BMN states.

This paper is organized as follows. In section 2 we review the AdS4 × S7 and AdS4 ×
S7/Zk backgrounds and their supersymmetries. In section 3.1 we discuss the classical equa-

tions of motion for an M2 brane moving in AdS4 × S7. In section 3.2 we introduce our

general ansatz that describes an M2 brane that rotates and winds in S7, and in section 3.3

we explicitly find the values of winding number and angular velocities that solve all equa-

tions of motion. In section 4 we derive the BPS bound for the energy from the superalgebra.

In section 5 we find the energy formula for our membrane solutions and show that in the

supersymmetric limit they reduce to the expected BPS form derived in section 4. In sec-

tion 6 we identify the subclass of solutions which preserve some fraction of supersymmetry.

Section 6.2 describes a class of regular supersymmetric membrane solutions, while section

6.3 discusses collapsed membrane configurations. In section 7 the solutions are adapted

to the case of AdS4 × S7/Zk and, by dimensional reduction, we obtain supersymmetric

states in AdS4 × CP 3. In section 8 we revisit the giant torus rotating membrane solution
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found in [12] and show that in a certain region of the parameters the rotating membrane

opens up taking a “diabolo” shape.1 We exhibit the solution in cylindrical coordinates,

where it has a simpler form, and present a convenient characterization of the torus, spiky

membrane, diabolo, cylinder and hyperboloid regimes in terms of a single parameter (the

last three solutions did not appear in [12]). In section 9 we present a summary of our

results. Appendix A contains additional details of the calculations omitted in the main

text, appendix B contains an alternative derivation of the supersymmetries of the collapsed

membranes by treating them as effective strings and in appendix C we give the expressions

for the charges of the solutions of section 8.

2 Properties of AdS4 × S7 and AdS4 × S7/Zk backgrounds

The space AdS4 × S7 can be represented by the metric

ds2 =
R2

4

(

ds2AdS4
+ 4 dΩ2

7

)

, (2.1)

where R = ℓp(2
5π2N)1/6, dΩ2

7 stands for the unit radius S7 round metric, and

ds2AdS4
= −(1 + r2) dt2 +

dr2

1 + r2
+ r2

(

dθ2 + sin2 θ dϕ2
)

. (2.2)

The 4-form flux reads

F (4) = −3

8
R3 r2 sin θ dt ∧ dr ∧ dθ ∧ dϕ . (2.3)

We can parametrize the S7 using four complex coordinates, Zi, which satisfy

|Z1|2 + |Z2|2 + |Z3|2 + |Z4|2 = R2 . (2.4)

Choosing

Zi = R µi eiξi

,
4
∑

i=1

µi
2 = 1 , (2.5)

the coordinates µi can be written in terms of hyper-spherical coordinates. A possible

choice is
µ1 = sinα ,

µ2 = cosα sin β ,

µ3 = cosα cos β sin γ ,

µ4 = cosα cos β cos γ .

(2.6)

In these coordinates, the full metric reads

ds2 =
R2

4

{

−(1 + r2) dt2 +
dr2

1 + r2
+ r2

(

dθ2 + sin2 θ dϕ2
)

}

+R2

{

dα2 + cos2 α dβ2 + cos2 α cos2 β dγ2 +

4
∑

i=1

µi
2 dξi2

}

.

(2.7)

1The diabolo consists of a spool whirled and tossed on a string (it illustrates angular momentum con-

servation and it was said to be the favorite toy of Maxwell).
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M-theory on AdS4 × S7/Zk is obtained by identification under the Zk orbifold action

Zi → ei
2 π
k Zi ⇐⇒ ξi → ξi +

2π

k
, (2.8)

with integer k. The solution represents the gravity dual of N M2-branes probing a C4/Zk

singularity, with R equal to ℓp(2
5π2Nk)1/6. To connect with the ABJM theory it is useful

to introduce CP 3 adapted variables. By completing squares we can write

dΩ2
7 = ds2CP 3 + (dy +A)2 , (2.9)

where dA = 2J and J is the Kähler form of CP 3. We introduce a new set of coordinates

adapted to CP 3, defined by

ϕ1 = ξ1 − ξ2 , ϕ2 = ξ3 − ξ4 ,

y =
1

4

(

ξ1 + ξ2 + ξ3 + ξ4
)

, ψ =
1

2

(

ξ1 + ξ2 − ξ3 − ξ4
)

,

µ1 = cos ζ cos
θ1
2
, µ2 = cos ζ sin

θ1
2
,

µ3 = sin ζ cos
θ2
2
, µ4 = sin ζ sin

θ2
2
.

(2.10)

By reducing along y, we get type IIA strings on AdS4 × CP 3,

ds2 = R̃2
(

ds2AdS4
+ 4 ds2CP 3

)

, R̃2 =
1

4k
R3 , (2.11a)

ds2CP 3 = dζ2 + cos2 ζ sin2 ζ

(

dψ +
1

2
cos θ1 dϕ1 −

1

2
cos θ2 dϕ2

)2

+
1

4
cos2 ζ

(

dθ2
1 + sin2 θ1 dϕ2

1

)

+
1

4
cos2 ζ

(

dθ2
2 + sin2 θ2 dϕ2

2

)

, (2.11b)

with a one- and 3-form RR potentials and dilaton given by [18]

C(1) =
k

2

[

(cos2 ζ − sin2 ζ) dψ + cos2 ζ cos θ1 dϕ1 + sin2 ζ cos θ2 dϕ2

]

= k A , (2.12)

C(3) =
k

2
R̃2 r3 sin θ dt ∧ dθ ∧ dϕ , (2.13)

e2φ =
4 R̃2

k2
. (2.14)

We now describe the supersymmetries of the background. Our conventions for the

Clifford algebras is such that {Γµ, Γν} = 2 gµν , where gµν is given by (2.7), and {γµ, γν} =

2 ηµν is the standard flat space-time Dirac algebra. We also define γ̂ = −γ0123. This allows

us to write

Γt =
R

2

√

1 + r2 γ0 , Γr =
R

2

1√
1 + r2

γ1 ,

Γθ =
R

2
r γ2 , Γϕ =

R

2
r sin θ γ3 ,

Γα = R γ4 , Γβ = R cosα γ5 ,

Γγ = R cosα cosβ γ6 , Γξi = R µi γi+6 .

(2.15)
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The Killing spinors of this background are given by

ǫ = M ǫ0 ,

M ≡MαMβMγ

(

4
∏

i=1

Mi

)

MrMtMθMϕ .
(2.16)

Here ǫ0 is an arbitrary constant Majorana spinor, and the Mµ’s are the exponentiation of

generators of translations in the µ-direction,

Mt = e
t
2
γ̂γ0 , Mr = e

r̄
2
γ̂γ1 , Mθ = e

θ
2
γ12 , Mϕ = e

ϕ
2

γ23 ,

Mα = e
α
2

γ̂γ4 , Mβ = e
β
2
γ̂γ5 , Mγ = e

γ
2
γ̂γ6 , Mi = e

ξi

2
Xi .

(2.17)

where we have defined r = sinh r̂, and introduced2

(Xi) ≡ (γ47, γ58, γ69, γ̂γ10) , X1 X2 X3 X4 = −1. (2.18)

Next, consider the Zk orbifold action (2.8), which only affects to the ξi angular vari-

ables. Let us define the eigenvalues of X1, X2 and X3 to be iςi. Since X
2
i = −1, it must be

ςi = ±1. The spinors in (2.16) with ς1 = ς2 = ς3 are projected out by the projection (2.8)

with k > 2, henceforth 24 Killing spinors (3/4 of the original 32) survive the orbifold action.

3 A class of M2 brane configurations

3.1 Action and equations of motion

Let Y µ, with µ = 0, · · · , 4, be the embedding coordinates in the AdS piece of the space, and

Xk, k = 1, · · · , 8, the ones corresponding to the 7-sphere. The membrane action reads [15]

S =
T2

2

∫

d3σ

(

−
√
−h hαβ

(

ηµν ∂αY
µ∂βY

ν + δkj ∂αX
k∂βX

j
)

+
√
−h

+ Λ̃

(

ηµν Y
µY ν +

R2

4

)

+ Λ (XkXk −R2)

)

+ T2

∫

C(3)|pullback .

(3.1)

We choose ηµν = diag(−1, 1, 1, 1,−1). Λ̃ and Λ are Lagrange multipliers that enforce the

conditions

ηµν Y
µY ν = −R

2

4
,

4
∑

k=1

(Xk)2 = R2 , (3.2)

respectively, thus defining the AdS4 × S7 space.

Using the formula δh = −hhαβδh
αβ one finds that the equation of motion for the

world-volume metric gives

hαβ = ηµν ∂αY
µ∂βY

ν + δkj ∂αX
k∂βX

j . (3.3)

2 The last relation in (2.18) follows from the definition γ10 ≡ −γ0 γ1 . . . γ9.
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The equations of motion for Y µ and Xk are given by

∂β

(
√
−hhαβ∂αYµ

)

= −Λ̃ Yµ , (3.4a)

∂β

(
√
−hhαβ∂αXk

)

= −Λ Xk , (3.4b)

where the indexes of Y µ are lowered and raised by ηµν . It is also useful to define the

variables

Z0 = Y 0 + iY 4 =
R

2

√

1 + r2 eit , (3.5a)

Y i =
R

2
r ni , i = 1, 2, 3 , (3.5b)

Zi = X2i−1 + iX2i = R µi eiξi

, i = 1, . . . , 4 , (3.5c)

where the constraints (3.2) enforce ~n · ~n = 1 and
4
∑

i=1
µi

2 = 1; their equations of motion

read,

∂β

(√
−hhαβ∂αZ0

)

= −Λ̃ Z0 , (3.6a)

∂β

(
√
−hhαβ∂α

~Y
)

= −Λ̃ ~Y , (3.6b)

∂β

(
√
−hhαβ∂αZ

i
)

= −Λ Zi . (3.6c)

3.2 General ansatz

We now introduce the following ansatz,

t = ω0 σ
0 , r = 0 ,

µi = constant , ξi = ωi σ
0 +mi σ

1 + ni σ
2 ≡ 1

2
βi

ασ
α ,

(3.7)

where σ1, σ2 are 2π-periodic. Since mi and ni represent winding numbers, all of them

must be integers; furthermore, for convenience we have introduced the compact notation,

βi
0 = 2ωi , β

i
1 = 2 mi , β

i
2 = 2 ni.

3

Solutions with this structure were found in [15] in a particular gauge where h01 = h02 =

0, h00 = const.(h2
12 − h11h22).

4 However, we will be later interested in a special class of

solutions (called “non-collapsed membranes”) for which this gauge choice is inconvenient.

Therefore the analysis of solutions will be carried out in an arbitrary gauge.

The i index of β i
α can be raised with the ξi part of the metric (2.7), i.e.,

βi,α ≡ µi
2 βi

α , βi,αβ
i
β ≡

4
∑

i=1

µ2
iβ

i
αβ

i
β . (3.8)

3The index i in ωi, mi, ni has been written as a subindex to avoid confusion with powers in the formulas

containing specific values of i (e.g. we prefer to write m2 instead of m2).
4Generalizations of the solutions of [15] including non-constant µi were discussed in [19] (extending the

integrable string σ models of [14] to membranes).
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The world-volume metric becomes

hαβ =
R2

4

(

βi,αβ
i
β − ω2

0 δα,0δβ,0

)

, (3.9)

h = −R
6

64

{

ω2
0

[

(

βi,1β
i
1

)(

βj,2β
j
2

)

−
(

βi,1β
i
2

)2
]

− detα,β

(

βi,αβ
i
β

)

}

. (3.10)

The ansatz (3.7) includes momentum and winding around all four ξi angles. However,

by performing a redefinition in the world-volume coordinates, we can reduce it to a problem

with rotation in two planes only. Namely, defining

σ̃0 = σ0 ,

σ̃1 =
1

2

(

β1
0 σ

0 + β1
1 σ

1 + β1
2 σ

2
)

,

σ̃2 =
1

2

(

β3
0 σ

0 + β3
1 σ

1 + β3
2 σ

2
)

,

(3.11)

the ansatz (3.7) reduces to

ξ1 = σ̃1 , ξ2 = ω̃2 σ̃
0 + m̃ σ̃1 + ñ′ σ̃2 ,

ξ3 = σ̃2 , ξ4 = ω̃4 σ̃
0 + m̃′ σ̃1 + ñ σ̃2 .

(3.12)

It should be noted that it is (locally) equivalent to the original (3.7) only if the following

condition holds,

β1
1 β

3
2 − β1

2 β
3
1 6= 0 . (3.13)

Because of the periodicity of the σ1, σ2 variables, the solutions are not globally equivalent

in general. We recall that winding numbers must be integers for membranes in AdS4 × S7

(and ∈ Z/k for membranes in AdS4 × S7/Zk).

We will be interested in the particular case m̃′ = ñ′ = 0, i.e. in the solution

ξ1 = σ̃1 , ξ2 = ω̃2 σ̃
0 + m̃ σ̃1 ,

ξ3 = σ̃2 , ξ4 = ω̃4 σ̃
0 + ñ σ̃2 .

(3.14)

Returning to the σα variables, (3.14) corresponds to the following choice in eq. (3.7),

~ω = (ω1, ω2, ω3, ω4) ,

~m = (a, α a, b, β b) ,

~n = (c, α c, d, β d) .

(3.15)

if we make the identifications,

m̃ ≡ α , ñ ≡ β , ω̃2 ≡ ω2 − αω1 , ω̃4 ≡ ω4 − β ω3 . (3.16)

Equations (3.11) then take the form

σ̃0 ≡ σ0 ,

σ̃1 ≡ ω1 σ
0 + a σ1 + c σ2 ,

σ̃2 ≡ ω3 σ
0 + b σ1 + d σ2 ,

(3.17)

– 7 –
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and the condition (3.13) for this equivalence to hold now reads ad − bc 6= 0. One has

the option of considering m̃, ñ integers in (3.14), or the solution (3.7), (3.15), with ~m, ~n

integers, giving rise to globally inequivalent solutions.

The ansatz (3.14) leads to the following values for βi
α:

(β1
α) = (0, 2, 0) , (β2

α) = (2 ω̃2, 2 m̃, 0) , (β3
α) = (0, 0, 2) , (β4

α) = (2 ω̃4, 0, 2 ñ) .

(3.18)

When a d−b c = 0, ~m results proportional to ~n. More generally, whenever ~m = K~n, we

have β1
1 β

3
2−β1

2 β
3
1 = 0 (or ad−bc = 0) and the change of coordinates (3.11) (or (3.17)) is not

possible. Instead, it will be more convenient to introduce a new world-volume coordinate

σ = σ2 +K σ1, exhibiting the fact that the configuration depends only on σ. This is the

case when the M2 brane collapses to a string-like configuration.

3.3 Solving the conditions on the parameters

The equations of motion (3.6) impose some conditions on the parameters characterizing

the solution. In order to solve these conditions for the ansatz (3.14), we first compute the

inverse matrix hαβ = hαβ
c

h , where hαβ
c is the co-factor matrix of hαβ . Its explicit expression

is given in the appendix A (for clarity in the notation, in this section and in the appendix

we will remove “tildes” from ω̃2, , ω̃4, m̃, ñ).

The equations of motion (3.6) then reduce to

−ω0
2 h00

c =
√
−h Λ̃ , (3.19)

−1

4
hαβ

c βi
α β

i
β =

√
−h Λ , i = 1, . . . , 4 . (3.20)

While the first equation just fixes the value of Λ̃, the second one gives non-trivial conditions,

since it must be satisfied for each i = 1, . . . ., 4. One of the equations determines Λ and,

generically, three independent conditions remain.

Using the expressions for hαβ
c given in the appendix A, equations (3.19)–(3.20) become

−
√
−h

ω0
2 R4

Λ̃ = (µ1
2 + µ2

2 m2) (µ3
2 + µ4

2 n2) , (3.21)

−4
√
−h

ω2
0 R

4
Λ = (µ3

2 + n2 µ4
2)

(

µ2
2

(

2ω2

ω0

)2

− 1

)

+ µ3
2 µ4

2

(

2ω4

ω0

)2

, (3.22a)

−4
√
−h

ω2
0 R

4
Λ = (µ3

2 + n2 µ4
2)

(

µ1
2

(

2ω2

ω0

)2

−m2

)

+ µ3
2 µ4

2 m2

(

2ω4

ω0

)2

, (3.22b)

−4
√
−h

ω2
0 R

4
Λ = (µ1

2 +m2 µ2
2)

(

µ4
2

(

2ω4

ω0

)2

− 1

)

+ µ1
2 µ2

2

(

2ω2

ω0

)2

, (3.22c)

−4
√
−h

ω2
0 R

4
Λ = (µ1

2 +m2 µ2
2)

(

µ3
2

(

2ω4

ω0

)2

− n2

)

+ µ1
2 µ2

2 n2

(

2ω2

ω0

)2

, (3.22d)

– 8 –
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where the determinant h of hαβ is given by,

− 4

ω0
2R6

h = (µ1
2 +m2 µ2

2) (µ3
2 + n2 µ4

2) − µ1
2 µ2

2 (µ3
2 + n2 µ4

2)

(

2ω2

ω0

)2

− µ3
2 µ4

2 (µ1
2 +m2 µ2

2)

(

2ω4

ω0

)2

.

(3.23)

For generic5 values of the µi’s the relations (3.22) impose three conditions on the parame-

ters. They can be solved explicitly in terms of a free variable z as follows,

m2 =
µ1

2

µ2
2

z − µ1
2

z − µ2
2
, n2 =

µ3
2

µ4
2

z − µ3
2

z − µ4
2
, (3.24a)

(

2ω2

ω0

)2

=
1

µ2
2

2 z − µ1
2 − µ2

2

z − µ2
2

1

(3 z − 1)(z − z0)

(

z2 − z2 z + (µ1
2 + µ2

2) z0
)

, (3.24b)

(

2ω4

ω0

)2

=
1

µ4
2

2 z − µ3
2 − µ4

2

z − µ4
2

1

(3 z − 1)(z − z0)

(

z2 − z4 z + (µ3
2 + µ4

2) z0
)

, (3.24c)

where we have defined,

z0 ≡ C0

(

µ1
2 µ4

2 (µ2
2 + µ3

2) − µ2
2 µ3

2 (µ1
2 + µ4

2)
)

,

z2 ≡ C0

(

µ1
2 µ4

2 (1 + µ2
2 − µ4

2) − µ2
2 µ3

2 (1 + µ1
2 − µ3

2)
)

,

z4 ≡ C0

(

µ1
2 µ4

2 (1 + µ3
2 − µ1

2) − µ2
2 µ3

2 (1 + µ4
2 − µ2

2)
)

,

(3.25)

and C0 ≡ (µ1
2 µ4

2 − µ2
2 µ3

2)−1. They satisfy the relations,

z2 + z4 − 2 z0 = 1 , z2 − z4 = µ1
2 + µ2

2 − µ3
2 − µ4

2 . (3.26)

For completeness, we also give the expression for the Lagrange multiplier parameters,

−
√
−h

ω0
2 R4

Λ̃ = µ1
2 µ3

2 2 z − µ1
2 − µ2

2

z − µ2
2

2 z − µ3
2 − µ4

2

z − µ4
2

,

− 4
√
−h

ω0
2 R4

Λ = − 1

3 z − 1
µ1

2 µ3
2 2 z − µ1

2 − µ2
2

z − µ2
2

2 z − µ3
2 − µ4

2

z − µ4
2

.

(3.27)

We find that the on-shell value of the determinant of the metric (3.23) is given by

− 4

ω0
2R6

h = µ1
2 µ3

2 2 z − µ1
2 − µ2

2

z − µ2
2

2 z − µ3
2 − µ4

2

z − µ4
2

z

3 z − 1
. (3.28)

Of particular interest is the case z = 0, because it characterizes a supersymmetric

solution (see section 6.2). In this h = 0 case the membrane becomes tensionless. A similar

phenomenon for supersymmetric rotating strings had been noticed in [17]. These M2 brane

configurations with h = 0 are thus the precise higher dimensional analog of the rotating

5By generic we mean that all the µi’s are non zero and different from each other.
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strings of [17]. When z = 0 the winding numbers and angular velocities are (up to signs)

determined by the µi by the following relations:

m2 =
µ1

4

µ2
4
, n2 =

µ3
4

µ4
4
,

(

2ω2

ω0

)2

=

(

1 +
µ1

2

µ2
2

)2

,

(

2ω4

ω0

)2

=

(

1 +
µ3

2

µ4
2

)2

, (3.29)

where we have used equations (3.24). This solution is continuously connected with the

|z| = ∞ solution, for which h 6= 0 and

m2 =
µ1

2

µ2
2
, n2 =

µ3
2

µ4
2
,

(

2ω2

ω0

)2

=
2

3µ2
2
,

(

2ω4

ω0

)2

=
2

3µ4
2
. (3.30)

4 BPS bound from the superalgebra

In this section we use the superalgebra on the AdS4 × S7 vacuum to show that a solution

that preserves a fraction of the supersymmetries must obey a simple bound. Our discussion

follows the similar derivation given in [17] for AdS5 × S5. The AdS4 × S7 vacuum has

the isometry superalgebra OSp(4|8). The bosonic symmetry is SO(2, 3) × SO(8). The

supercharges are 32 Majorana spinors which under the SO(2, 3) × SO(8) subgroup of the

11d Lorentz group SO(1, 10) decompose as 4-component Majorana spinors Qa, with a =

1, . . . , 8, transforming in the spinorial 8s representation of SO(8) (more precisely, spin(8)).

Let us denote by γ̃µ (in this section µ, ν = 0, 1, 2, 3) the 4 × 4 four-dimensional Dirac

matrices for AdS4. The anticommutators are

{

Qa, Qb

}

= C

[(

γ̃µ P
µ +

1

2
γ̃µν M

µν

)

δab + I B̂ab

]

, (4.1)

where C is the charge conjugation matrix (C = γ̃0 for the real Majorana representation),

Pµ, Mµν are the charges in AdS4 , and B̂ab is a real antisymmetric matrix of spin(8)

charges. For our solutions, the only non-vanishing charges are the energy P 0 and the

angular momenta J1, . . . , J4. These last ones are eigenvalues of the Cartan generators of

SO(8) in the vector representation 8v. Using the standard relation B̂ab = 1
4 γ̂

ij
abBij , where

{γ̂i, i = 1, . . . , 8} are the gamma matrices in the spinorial 8s representation, and putting

Bij in block-diagonal form by means of a SO(8) transformation, we have

Bij = diag

[(

0 J1

−J1 0

)

, . . . ,

(

0 J4

−J4 0

)]

, (4.2)

and similarly for B̂ab, with b̂1, . . . , b̂4 instead of Ji. The non-vanishing elements of B̂ab are

related to the Ji’s by

b̂1 =
1

2
(−J1 + J2 + J3 + J4) , b̂2 =

1

2
(+J1 − J2 + J3 + J4) ,

b̂3 =
1

2
(+J1 + J2 − J3 + J4) , b̂4 =

1

2
(+J1 + J2 + J3 − J4) . (4.3)

The anticommutation relations then become

{

Qa, Qb

}

= I δab P
0 + γ̃0 B̂ab . (4.4)
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Since (γ̃0)2 = −1, the eigenvalues of γ̃0B̂ are ±b̂i. Therefore, the eigenvalues of the

anticommutator matrix are P 0 ± b̂i, i = 1, . . . , 4. In any unitary representation the matrix
{

Qa, Qb

}

is definite positive, thus the BPS bound is

P 0 ≥ b̂max . (4.5)

where b̂max is the maximum of ±b̂i.
P 0 generates translations in the time t. For the membranes considered in this paper

lying at r = 0, the proper time is given by dτ = R
2 dt, see (2.1). Therefore their energies

E are related to P 0 by E = 2P 0/R. Defining ηi = sgn(Ji), the signs are subject to the

condition η1η2η3 = −η4. This implies that, for these membranes, b̂max is nothing but
1
2

∑4
i=1 |Ji|. Thus the energies of our membrane solutions are subject to the bound

E ≥ 1

R

4
∑

i=1

|Ji| . (4.6)

When the bound is saturated, the matrix of anticommutators have some zero eigenvalues,

implying that some fraction of supersymmetry is preserved.

When three or more Ji are non-vanishing and generic,6 there is only one vanishing

eigenvalue and the corresponding state saturating the bound preserves 1/8 of the super-

symmetries. When two Ji are non-zero and generic, there are two vanishing eigenvalues

and the corresponding state preserves 1/4 of the supersymmetries. Finally, states with

only one non-zero Ji have four vanishing eigenvalues and the solution preserves 1/2 of the

supersymmetries.

5 Energy and angular momenta

5.1 General formulas

According to Noether’s theorem, if

ǫXµ = Xµ + ǫ δXµ + o(ǫ2) . (5.1)

is a continuum transformation with parameter ǫ such that S[ǫX,h] = S[X,h], then

Jα = δXµ ∂L
∂∂αXµ

∣

∣

∣

∣

on-shell

, (5.2)

is a conserved current,

∇αJ
α = 0 , (5.3)

and, therefore,

Q ≡
∫

dσ1dσ2 J0 = −T2

∫

dσ1dσ2
√
−h h0α Gµν(X) δXµ ∂αX

ν , (5.4)

6When some Ji have coincident values, some b̂i will be equal to each other, implying the possibility of

enhancement of supersymmetry. However, it is easy to see that this possibility is not realized our membrane

solutions subject to the condition η1η2η3 = −η4.
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is a conserved quantity
dQ

dσ0
= 0 . (5.5)

If we apply this standard procedure to isometries of the background (and hence sym-

metry transformations) we can define the following conserved charges.

Energy: R
2 δX

0 = R
2 δt = −1 .

E = V2 T2 R
ω0

2

h00
c√
−h

, V2 ≡
∫

dσ1dσ2 = 4π2 . (5.6)

Angular momenta: δξi = 1 ,∀i.

Ji = V2 T2 R2 h0α
c√
−h

βi
α

2
µi

2 = E
R

ω0
µi

2

(

βi
0 +

h01
c

h00
c

βi
1 +

h02
c

h00
c

βi
2

)

. (5.7)

5.2 Energy and momenta of non-collapsed membranes

Evaluating these formulas on our family of solutions (3.24)

E = V2 T2 R
2 µ1 µ3

(

2 z − µ1
2 − µ2

2

z − µ2
2

2 z − µ3
2 − µ4

2

z − µ4
2

3 z − 1

z

)1/2

, (5.8a)

η1 J1 = R E µ1

(

z − µ1
2

(3 z − 1)(z − z0)

z2 − z2 z + (µ1
2 + µ2

2) z0
2 z − µ1

2 − µ2
2

)1/2

, (5.8b)

η2 J2 = R E µ2

(

z − µ2
2

(3 z − 1)(z − z0)

z2 − z2 z + (µ1
2 + µ2

2) z0
2 z − µ1

2 − µ2
2

)1/2

, (5.8c)

η3 J3 = R E µ3

(

z − µ3
2

(3 z − 1)(z − z0)

z2 − z4 z + (µ3
2 + µ4

2) z0
2 z − µ3

2 − µ4
2

)1/2

, (5.8d)

η4 J4 = R E µ4

(

z − µ4
2

(3 z − 1)(z − z0)

z2 − z4 z + (µ3
2 + µ4

2) z0
2 z − µ3

2 − µ4
2

)1/2

. (5.8e)

where we have introduced the signs of ω2, ω4,m, n in the following way,

sgn(ω2) ≡ η2 , sgn(ω4) ≡ η4 , sgn(m) ≡ −η2 η1 , sgn(n) ≡ −η4 η3 , (5.9)

so that sgn(Ji) = ηi.

In the limit z → 0 both E and Ji tend to infinity. It is straightforward to show that

in this limit,

Ji = ηiRE µi
2 =⇒ E =

1

R

4
∑

i=1

|Ji| . (5.10)

This simple relation is due to the fact that in this limit the solution becomes supersym-

metric, as explained in section 4 and will be seen more explicitly in section 6.

On the other hand, in the opposite limit |z| = ∞, one finds the solution with Ji =

ηi
R√
6
E µi, giving

E2 =
6

R2

4
∑

i=1

Ji
2 . (5.11)

There is no preserved supersymmetry for this solution. The general relation between E

and Ji for solutions with arbitrary z is given in appendix A, for completeness.
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5.3 Energy and momenta of collapsed membranes

Let us now consider the collapsed membrane configurations with ~m = K ~n. In this case, the

expressions (5.6), (5.7) for E and Jα become ambiguous and need a proper regularization.

The same ambiguity occurs for the BMN string if one attempts to compute the energy and

angular momentum using the Nambu-Goto action. In this case, the solution describing the

BMN state is X0 = ω0 τ , φ = ω0 τ , where φ is an angle of the S5 sphere. The proper way

to do the calculation is, as in [20], to use the Polyakov action in the conformal gauge, and

then compute E and J (obtaining E ∝ J). For membranes, there is no possibility of a

conformal gauge. The closer analog is the gauge h01 = h02 = 0 and h00 = −(h11 h22−h12
2).

The formulas (5.6), (5.7) for the energy and angular momentum in this gauge reduce to

E = V2 T2
R

2
ω0 , Ji = V2 T2R

2 µ2
i ωi . (5.12)

In addition, for the collapsed membrane with ~m = K~n, g = 0 and the constraint h00 = −g
implies the relation

ω0 = 2

√

√

√

√

4
∑

i=1

µ2
i ω

2
i . (5.13)

Since ω0 6= 0, at least one µi and ωi must be non-vanishing. Taking µ1 6= 0, ω1 6= 0, the

equations of motion then imply the additional relation

ωi
2 = ω1

2 = −Λ , ∀i such that µi 6= 0 . (5.14)

It follows that ω0 = 2 |ω1|. This agrees with the general formulas of [15] particularized to

the case ~m = K~n. Therefore

E =
J

R
, J =

∑

i

|Ji| . (5.15)

In addition, the constraint associated with the gauge choice h01 = h02 = 0 imposes the

condition
4
∑

i=1

mi Ji = 0 . (5.16)

The derivation of the previous formulas implies dealing with membranes with null

world-volume, i.e. h = 0, for which classical methods are not, in general, justified. Indeed,

these membranes can be more properly viewed as the limit of large angular momentum of

general non-collapsed, regular membranes of the form (3.7). This is obviously the case as

can be explicitly seen from the general formulas given in section 4 of [15], where the large

J limit indeed leads to the conditions (5.13), (5.14) and (5.15) (while the condition (5.16)

holds for any finite J). In general, one finds [15] E = J/R+O(1/J).

6 Supersymmetry conditions for the solutions

6.1 Supersymmetry equations

We shall now investigate the configurations of the form (3.7) which preserve some fraction of

supersymmetry. A configuration preserves a supersymmetry for every independent Killing
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spinor ǫ defined in (2.16) that satisfies

Γκ ǫ = ±ǫ , Γκ =
1

3!
√
−h

ǫabc∂aX
µ∂bX

ν∂cX
ρΓµνρ , (6.1)

where Γκ is the κ-symmetry matrix, the Gamma matrices are given by (2.15), and +1(−1)

stands for the M2 (anti) brane. Substituting the ansatz (3.7) we find

Γκ =
R3

8
√
−h

µi µj β
i
1β

j
2

(

ω0 γ0 + µkβ
0
k γk+6

)

γi+6 γj+6 . (6.2)

where summation over i, j is understood and k indexes between 1 and 4.

Using (2.16), we find that the Killing spinors of AdS4 × S7 must satisfy

M−1 Γκ M ǫ0 = ± ǫ0 . (6.3)

After some algebra, the full supersymmetry equations reduce to7







∑

i<j

γ0γi+6γj+6

(

ω0µiµjβ
ij
12 − µiµjµ

2
kβ

ijkOk

)

M2
t M

2
i M

2
j

−γ7,8,9,10

∑

ijkl

εijklβ
ijk

Xl

4
∏

k=1

µkM
2
k







ǫ0

= −
√

ω2
0

∑

i<j

µ2
iµ

2
j(β

ij
12)

2 −
∑

i<j<k

µ2
iµ

2
jµ

2
k(β

ijk)2 ǫ0 ,

(6.4)

where
Ok = γ̂ γ0 Xk ,

O4 = −O1 O2 O3 ,
(6.5)

the Xk have been defined in (2.18), and

βij
αβ ≡ βi

αβ
j
β − βj

αβ
i
β ,

βijk ≡ βi
0 β

jk
12 + βj

0 β
ki
12 + βk

0β
ij
12 .

(6.6)

Equation (6.4) is highly complicated in general. However, for our ansatz (3.7), (3.15),

gets simplified in a striking way. In particular, it is easy to check that all the β ij
12 either

vanish or are proportional to

N = ad− bc . (6.7)

This implies that both terms of (6.4) are proportional to N . On the face of it, it might

seem that if N = 0 then the supersymmetry condition (6.4) is trivially satisfied for all 32

spinors ǫ0. However, the N = 0 case is rather subtle, because in this case ~m is proportional

to ~n and the M2 brane collapses to a string-like configuration, as explained at the end of

section 3.2. In this case the equation (6.1) becomes singular and cannot be used. We will

return to this case in section 6.3.
7This algebra requires commuting M with Γ matrices. Useful relations can be found in the appendix B

of [12].
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6.2 Supersymmetry of the non-collapsed membranes

We first investigate the supersymmetry conditions for N 6= 0, for generic values of the µi’s.

Let ηk denote the eigenvalues of the Ok operators,

Ok ǫ0 = ηk ǫ0 , k = 1, 2, 3 . (6.8)

Since O2
k = 1, the eigenvalues are just equal to ±1. This leads to only three independent

conditions, since η4 = −η1η2η3 (see equation (6.5)). With no loss of generality we can

set η1 = η2 = η3 = 1, η4 = −1, since the sign of any ηi can be reversed by a coordinate

redefinition ξi → −ξi. Let us start by fixing,

α = −µ1

µ2
, β =

µ3

µ4
, (6.9)

By using (6.8), the supersymmetry condition (6.4) leads to two equations

µ2
1 ω1 + µ2

2 ω2 =
1

2
ω0 (µ2

1 + µ2
2) , (6.10a)

µ2
3 ω3 − µ2

4 ω4 =
1

2
ω0 (µ2

3 + µ2
4) . (6.10b)

Note that these equations only restrict the possible values of the parameters, but they

do not imply any condition on the spinor. Therefore equations (6.10) do not reduce the

number of supersymmetries. Once (6.10) are imposed on the parameters, both sides of the

supersymmetry equation (6.4) become identically zero. In terms of the coordinates σ̃α, the

solution takes the simple form

t = ω0 σ̃
0 , r = 0 , µi = constant,

ξ1 = σ̃1 , ξ2 = ω̃2 σ̃
0 + m̃ σ̃1 ,

ξ3 = σ̃2 , ξ4 = ω̃4 σ̃
0 + ñ σ̃2 .

(6.11)

with

ω̃2 =
1

2
ω0

(

1 +
µ2

1

µ2
2

)

, ω̃4 = −1

2
ω0

(

1 +
µ2

3

µ2
4

)

, m̃ = −µ
2
1

µ2
2

, ñ = +
µ2

3

µ2
4

.

(6.12)

On shell (i.e. upon use of (3.24)), this M2 brane has a singular induced metric, h = 0.

Nonetheless, it should be noted that the membrane is regular, in particular, it is not

collapsed to a string, despite the fact that the induced world-volume metric has vanishing

determinant h = 0. The phenomenon is similar to the one found for strings in [17].

The interpretation is that these configurations describe tensionless membranes, since the

world-volume is null. Physically, it means that, for these membranes, the energy due to

the tension is negligible compared to the energy due to rotation (see also section 5).

In conclusion, the M2 brane configuration (6.11) is supersymmetric for Killing spinors

satisfying the three conditions (6.8). Therefore our solution preserves 1/8 of the super-

symmetries of the background. Furthermore, we note that the solution is just the z = 0

solution to the equations of motion given in (3.29).
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The number of supersymmetries can also be deduced from the BPS algebra. For generic

values of µi’s, the bound (4.6) is saturated with the four Ji non zero and different from

each other, as shown in section 5.2, see (5.10). In this case the 8× 8 matrix {Qa, Qb} has a

unique zero eigenvalue, hence only 1/8 of the supersymmmetries is preserved, in agreement

with the above counting using the Γκ matrix.

6.3 Supersymmetry of the collapsed membranes

In terms of the new world-volume coordinate σ ≡ σ2 +K σ1, the solution for the M2 brane

collapsed to a string is obtained from the ansatz (3.7) by simply setting ni = 0. This gives

t = ω0 τ , r = 0 ,

µi = constant , ξi = ωi τ +mi σ ≡ 1

2
βi

a σ
a ,

(6.13)

where σa = (σ0, σ1) ≡ (τ, σ), a = 0, 1.

The simplest way to study the supersymmetry of the collapsed membrane configuration

is from the supersymmetry algebra. In section 5.3 we have seen that these configurations

saturate the BPS bound (4.6), and therefore they are all supersymmetric. The preserved

fraction of supersymmetries depends on how many Ji are different from zero:

• In the case of rotation in four planes with generic Ji’s non-zero, the 8 × 8 matrix

{Qa, Qb} has only one zero eigenvalue. As a result, the solution preserves 1/8 of the

supersymmetries.

• In the case of rotation in three planes, only one of the Ji vanishes, say J4. Generically,

the b̂i given in (4.3) are still different from each other and as a result the matrix

{Qa, Qb} has still only one zero eigenvalue. This solution also preserves 1/8 of the

supersymmetries.

• In the case of rotation in two planes, two of the Ji vanish, say J3, J4. From (4.3) we

obtain b̂1 = −b̂2 and b̂3 = b̂4. It is easy to see that in this case the matrix {Qa, Qb}
has two zero eigenvalues, coming from E ± 2

R b̂3,4 or E ± 2
R b̂1, E ∓ 2

R b̂2, according to

the signs of J1, J2. This solution preserves 1/4 of the supersymmetries.

• Finally, in the case of rotation in one plane, taking e.g. J2 = J3 = J4 = 0, there

are four vanishing eigenvalues when the BPS bound is saturated. The membrane

preserves 1/2 of the supersymmetry. However, in this case the constraint (5.16)
∑4

i=1miJi = 0 implies that m1 = 0: the membrane collapses to a point. This is a

BMN state.

The case of the M2 brane (6.13) collapsed to a string-like configuration the κ-symmetry

matrix Γκ of the M2 brane is singular and cannot be used to determine the unbroken

supersymmetries. The same problem exists for strings collapsing to a point, like in the

BMN solution [5, 20], representing a collapsed string moving around the equator of S5 at

the speed of light; the Γκ matrix of the string is singular but one can use the supersymmetry
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algebra in a similar way as we did above to show that the solution preserves 1/2 of the

supersymmetries (see e.g. [17]).

In the present case, since the membrane is collapsed to a string, one may try to

determine the unbroken supersymmetries by using the Γκ matrix corresponding to an

effective string. In appendix B we show that this approach reproduces the correct number

of supersymmetries obtained above from the supersymmetry algebra.

7 Generalization to AdS4 × S7/Zk

The supersymmetric M2 brane configurations described in the previous sections admit a

straightforward generalization to the case of AdS4 × S7/Zk. As explained above, the Zk

orbifold acts on the ξi angles by identification ξi ∼ ξi+2π/k. The spectrum on AdS4×S7/Zk

is obtained by the projection of the original spectrum on Zk invariant states. This leads

to the following quantization conditions on the winding numbers:

mi, ni ∈ Z/k . (7.1)

Dimensional reduction of AdS4×S7/Zk along the y coordinate gives the AdS4×CP 3 space

(see section 2). Finding novel supersymmetric states in this space is of particular interest

given the connection with ABJM theory. To proceed, we recall that y is the diagonal part

of the four ξi angles,

y =
1

4

(

ξ1 + ξ2 + ξ3 + ξ4
)

. (7.2)

For our general ansatz (3.7) this gives

y = ωy σ
0 +my σ

1 + ny σ
2 , (7.3)

where we have defined

ωy =
1

4

∑

i

ωi , my =
1

4

∑

i

mi , ny =
1

4

∑

i

ni . (7.4)

The other coordinates ψ,ϕ1, ϕ2 in eq. (2.10) have a similar σ0, σ1, σ2 dependence. As

pointed out in [15], these type of configurations in the generic case correspond to non-

perturbative objects in the type II string theory. Generally, in ten dimensions these config-

urations represent bound states of D0 branes, D2 branes and rotating circular fundamental

strings. The D0 brane charge arises from the momentum in the y direction, Py = k ωy.

Because the circles ψ,ϕ1, ϕ2 are contractible, the net D2 brane and fundamental string

charges are zero (just like the fundamental strings of [14]).

Consider in particular the 1/8 supersymmetric non-collapsed M2 brane solution (6.11).

In this case

4 y = (ω2 + ω4)σ
0 + (1 +m)σ1 + (1 + n)σ2 , (7.5)

where we removed tildes. Using (6.12), we see that D0 brane charge Py = ω0 k (µ2
1µ

2
4 −

µ2
3µ

2
2)/(8µ

2
2µ

2
4) is determined in terms of angles µi representing the location of the bound

state system.
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Consider now the collapsed membrane configurations of section 6.3. They are of the

form

4 ycoll. = ωy σ
0 + ny σ

2 , (7.6)

where we now use σ2, instead of σ, to avoid possible confusion with the world-sheet string

coordinate σ of type IIA string theory. The other coordinates ψ,ϕ1, ϕ2 depend only on σ0

and σ2 as well. The configuration has non-vanishing D0 brane charge. To see this explicitly,

we recall that another consequence of the orbifold projection is that the momentum along

the y is quantized as J1 + J2 + J3 + J4 = kp, for p units of D0 brane charge (see related

discussion in [12]). There are two cases to be distinguished:

a) ny = 0. In this case the string-shaped membrane is not wrapped around the eleven

dimensional circle y. The other coordinates ψ,ϕ1, ϕ2 will generically depend on σ2,

which, in this particular case, can be identified with the string world-sheet coordi-

nate. The configuration then represents a bound state system of p D0 branes and

fundamental strings with vanishing total charge.

b) ny 6= 0. In this case the string-shaped membrane is now wrapped around the eleven

dimensional circle y. As a result, upon reduction, the configuration does not contain

any fundamental string, but it has p units of D0 brane charge.

It would be interesting to identify the dual BPS operators of ABJM three dimensional

N = 6 Chern-Simons theory, both for the collapsed membranes and for the 1/8 super-

symmetric M2 brane (6.11). In general, these operators have conformal dimension kp/2

and (like the configurations of [13]) are to be given in terms of configurations involving

non-abelian degrees of freedom in some non-trivial way.

8 Giant diabolo

8.1 BPS equation

In this section we study a different class of supersymmetric membranes that also extend

to the AdS4 part of the background. It is convenient to introduce cylindrical coordinates.

The metric and three-form become

ds2 =
R2

4

{

−
(

1 + z2 + ρ2
)

dt2 +
(z dz + ρdρ)2

(z2 + ρ2)(1 + z2 + ρ2)
+

(z dρ− ρdz)2

z2 + ρ2
+ ρ2dϕ2

}

+R2

{

dα2 + cos2 α dβ2 + cos2 α cos2 β dγ2 +

4
∑

i=1

µ2
i dξ2i

}

C(3) =
R3

8
ρ dt ∧ (z dρ− ρ dz) ∧ dϕ.

(8.1)

The ansatz is as follows
t = σ0 , z = σ2 ,

ϕ = α0 σ
0 + α1 σ

1 + α2 σ
2 ,

ξi = mi

(

s0 σ
0 + s1 σ

1 + s2 σ
2
)

,

ρ = ρ(σ2) .

(8.2)
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We shall derive the BPS equations using again the condition (6.1) on the background

spinors. We first decompose the κ-symmetry matrix in two factors

Γ = −γ̃ Γ̃ , γ̃ ≡ f ′ γ1 + (zρ′ − ρ) γ2

r (1 + ρ′2 − f ′2)1/2
, Γ̃ ≡ 1√

−h

(

4
∑

i=1

δi + δ̃

)

, (8.3)

where f2(z) ≡ 1 + ρ2(z) + z2, and

δ1 =
1

2
α1ρfγ03, δ2 = s1fγ0

4
∑

i=1

µimiγi+6, δ3 = (α0s1 − α1s0)ργ3

4
∑

i=1

µimiγi+6,

(8.4a)

δ̃ = (α1s2 − α2s1)
ρf

(1 + ρ′2 − f ′2)1/2
γ30 γ̃

4
∑

i=1

µimiγi+6 . (8.4b)

An important feature of these matrices is that γ̃ and Γ̃ do not commute unless δ̃ = 0.

We will assume δ̃ = 0 in order to get an analytic solution. Thus we take

si = a αi , i = 1, 2 , (8.5)

with a arbitrary. Once this condition is implemented, our ansatz becomes equivalent to

the ansatz considered in [12] using spherical coordinates. The cylindrical coordinates are

more convenient to exhibit how the various geometries are realized for different values of

the parameters. Some of the geometries shown here are novel.

The supersymmetry condition is
[

M−1γ̃M M−1Γ̃M + ǫ
]

ǫ0 = 0 . (8.6)

with ǫ = +1(−1) for the (anti) M2 brane. In order to cancel out terms proportional to

M2
i M

2
j , for i 6= j = 1, 2, 3, 4, we demand

mi = ei m, e2i = 1 , m > 0 , i = 1, 2, 3, 4 ,

Xi X4 ǫ0 = −ei e4 ǫ0 , i = 1, 2, 3 . (8.7)

Note that we can impose these conditions on the spinor since X
2
i = −1 and [Xi, Xj] = 0.

However, due to the relation
∏3

i=1(Xi X4) = +1 (see 2.18), we have that
∏4

i=1 ei = −1.

Furthermore, this also implies that there are just two independent constraints in (8.7). The

signs ei can be reabsorbed into a redefinition of ξi, and m can be absorbed by the sα’s.

Therefore in what follows we set m1 = m2 = m3 = −m4 = +1. We omit some details of

the computation, which is straightforward, albeit tedious. The resulting conditions turn

out to be

γ0,10 ǫ0 = η1 ǫ0 , γ1 ǫ0 = η2 ǫ0 , (8.8)

s0 = a α0 + a η2

(

1 − 1

b

)

, (8.9)

ǫ sgn{α1} = sgn

{

(ρf)2 + b2f2 − ρ2 (b− 1)2

ρ2 + b(1 + z2)

}

, (8.10)

ρ′ = (b− 1)
z ρ(z)

ρ2 + b (1 + z2)
, (8.11)
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Figure 1. The solution (8.13) describes different geometries depending on the value of the param-

eter b.

where b ≡ −2 η1 η2 a. Equation (8.11) is the BPS differential equation that determines the

shape of the M2 brane. Upon imposing these conditions, the solution takes the form

t = σ0 , ϕ = wσ1 , z = σ2 , (8.12a)

ξ1 = ξ2 = ξ3 = −ξ4 =
η1

2
(1 − b)σ0 − 1

2
η1 η2 b α1 σ

1 . (8.12b)

where we have made a coordinate redefinition α0σ
0 +α1σ

1 +α2σ
2 → wσ1 (w is a winding

number). The general solution of equation (8.11) is given by

z2 = r0
2 ρc − 1 − ρ2 , (8.13)

where r0 is an integration constant and

c =
2 b

b− 1
. (8.14)

The solution is symmetric under z → −z and it has an important feature: it always crosses

the z = 0 hyperplane smoothly. To see this, we differentiate the equation (8.13) with

respect to ρ,

2 z
dz

dρ
= c r0

2 ρc−1 − 2 ρ , (8.15)

and consider the limit z → 0. From (8.13), it is easy to see that in this limit the r.h.s.

of (8.15) does not vanish. Therefore, when z → 0, one has ∂ρz → ∞ (or ρ′(0) = 0), which

is the required condition for a smooth transition.

From (8.7) and (8.8) it follows that the spinor must satisfy four independent, com-

patible constraints, so the solution will preserve at least 1
16 of the supersymmetries. The

condition (8.10) is non-trivial, but it can be shown that the solutions described below do

satisfy it.

8.2 Brane scanning

The solution (8.13) describes membranes of diverse geometries depending on the value of

the constant b, as shown in figure 1. Generically, these membranes have angular momenta

Jϕ, Ji in the ϕ and ξi directions (general formulas are given in appendix C). The standard
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expression for the Hamiltonian in the gauge t = σ0 leads to the general formula

E =
1

R

(

2|Jϕ| +
4
∑

i=1

|Ji|
)

+
2T2

R

∫

dσ1dσ2 L . (8.16)

As shown in [12], for these solutions the Lagrangian L becomes a total derivative. This

implies that the last term vanishes in the case of M2 branes without boundaries. The

resulting energy saturates the bound that one finds from the superalgebra, which in case of

rotation in both AdS4 and S7 is a slight generalization of the results of section 4. Indeed,

the term 2|Jϕ| comes from the contribution γ̃0γ̃23M
23 = γ̃0γ̃23Jϕ. Since the matrices γ̃0γ̃23

and γ̃0 commute, they can be simultaneously diagonalized and the eigenvalues of the matrix

{Qa, Qb} are P 0 ± Jϕ ± b̂i, leading to the bound P 0 ≥ 1
2

(

2|Jϕ| +
∑4

i=1 |Ji|
)

.

For uncompact M2 branes, the last term in (8.16) will give a non-vanishing contribution

to the energy.

8.2.1 Giant spherical graviton

This appears for b = 0 (which implies c = 0). The solution (8.13) then becomes

z2 + ρ2 = r0
2 − 1 , (8.17)

which is the equation of a sphere of radius R0 ≡
√
r02 − 1 in cylindrical coordinates. In

this case our ansatz reads

t = σ0 , ϕ = wσ1 , z = σ2 , ξi =
η1

2
σ0 . (8.18)

From the formulas of appendix C one finds that this solution has Jϕ = 0 and

Ji = η1 ei e4 µi
2 π |w|T2 R

3R0. The energy is E = π |w|T2 R
2R0, and therefore E =

1
R

∑4
i=1 |Ji|.

8.2.2 Cylinder

For b = 1, the constant c tends to infinity and the solution (8.13) is no longer valid. We

have to return to the original equation (8.11), which now gives ρ′ = 0, so the radius ρ = ρ0

of the cylinder is constant and arbitrary. Using the formulas of appendix C it can be easily

shown that this is the only case where the angular momenta Jϕ, Ji vanish.

The energy is E = 1
2 T2 π |w|R2 L, where L regularizes the (infinite) length in z di-

rection. Note that it is independent of ρ0, i.e. expanding the cylinder does not cost any

energy, which is consistent with the fact that solution exists for arbitrary radius. This is

why the M2-brane can be in equilibrium in spite of the fact that Jϕ = Ji = 0.

8.2.3 Giant spike

This appears for 0 < b < 1. In this interval for b, the constant c covers all the negative

real numbers, c < 0, so we can write it as c = −|c|, and the solution becomes

z2 =
r20
ρ|c|

− 1 − ρ2 . (8.19)
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(a) General view of the giant diabolo.
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(b) In this close up we can see that the tran-

sition between the two lobes is smooth.

Figure 2. The giant diabolo for b = 1.8 and r20 = 6.

At z = 0, ρ has a unique, non-vanishing value. As shown above, the transition between

z > 0 and z < 0 is smooth. At z → ±∞, one has ρ → 0, and this solution takes the form

of a bulb with a spike, which in the dimensionally reduced theory can be interpreted as

an open string stretched to infinity. This solution was found by Nishioka and Takayanagi

in [12]. Now the energy picks a contribution from the boundary at infinity: E = 1
R

(

2|Jϕ|+
∑4

i=1 |Ji|
)

+ 1
2 T2 π |w|R2 L.

8.2.4 Hyperboloid

In the limit that b tends to ± infinity, the exponent c in (8.13) approaches the fixed value

c = 2. The solution (8.13) now reads

(r20 − 1)ρ2 − z2 = 1 , (8.20)

which is the equation of an hyperboloid. Note that r20 > 1 for a real solution. It has finite

Jϕ/(bL), Ji/L with 2|Jϕ|/
∑

i |Ji| = |b| → ∞.

8.2.5 Giant diabolo

Consider now b > 1. Then the exponent c in (8.13) is always greater than two. At z = 0,

ρ again takes a unique, finite value. At z → ±∞, the ρc term dominates and

z ∼ ±r0ρc/2 , (8.21)

where c/2 > 1. This geometry resembles the shape of a diabolo, as can be seen in figure 2.

A difference with the hyperboloid (c = 2) is that the diabolo exhibits a transition between

negative and positive curvature at a certain value of ρ. We recall that the solution has

angular momentum both in ϕ and ξi directions and the general formula for the energy is

E = 1
R

(

2|Jϕ| +
∑4

i=1 |Ji|
)

+ 1
2 T2 π |w|R2 L.
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8.2.6 Giant torus

Now we assume a negative, but finite, value of the constant b = −|b|. In this case,

c =
2|b|

|b| + 1
< 2 , (8.22)

and solution (8.13) becomes

z2 = r20ρ
c − 1 − ρ2 , 0 < c < 2 . (8.23)

Since c < 2, the last term, which has a negative coefficient, dominates at large ρ. Therefore

z2 can be positive only for ρ less than some maximum value ρM , where z2 = 0. Similarly,

the presence of the “−1” on the r.h.s. shows that ρ cannot be below a certain minimum

value ρm, where z = 0 again. In short, when 0 < c < 2, z2 > 0 implies that ρ takes values

in a finite interval [ρm, ρM ]. Since z is a continuous function, it will have a maximum in

this range. In conclusion, eq. (8.23) represents a torus-like geometry. This is, indeed, the

giant torus configuration found in [12]. Being a compact M2 brane, one finds the simple

relation E = 1
R

(

2|Jϕ| +
∑4

i=1 |Ji|)
)

.

In conclusion, the solutions depends on two parameters, r0, that characterizes a scale,

and b. As the parameter b is varied from −∞ to ∞ one witnesses different transitions of

the geometry, as illustrated by figure 1.

9 Summary

Summarizing, in the first part of this paper (sections 3–7), we have investigated the fol-

lowing class of solutions

t = ω0σ
0 , r = 0 , Zi = R µi e

i(ωiσ0+miσ1+niσ2) . (9.1)

We identified two subclasses of supersymmetric solutions:

1. Supersymmetric “regular” M2 brane solutions

Z1 = R µ1 e
iσ1

, Z3 = R µ3 e
iσ2

, Z2 = R µ2 e
i(ω2σ0+mσ1), Z4 = R µ4 e

i(ω4σ0+nσ2),

(9.2)

with m, n, ω2, ω4 determined in terms of µi (up to signs). They are tensionless

and non-collapsed; for generic values of the parameters they preserve 1/8 of the

supersymmetries.

2. 1/4 and 1/8 supersymmetric collapsed M2 brane solutions

Zi = R µi e
i(ωiσ0+miσ1) , (9.3)

where the amount of preserved supersymmetries depends on the values of the param-

eters. The different cases were analyzed in detail in section 6.3 and in appendix B.

The parameters are subject to the relations (5.14) and (5.16).
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As discussed, the solutions admit globally non-trivial generalizations, which can be

obtained by redefinitions of σi.

In all cases, supersymmetry is achieved in the same limit where E, J → ∞ and the M2

branes become tensionless, i.e. the determinant of the world-volume metric vanishes. This

is the analog of the phenomenon found in [17] for strings. The main difference between the

configurations 1 and 2 is that, in the first case, the M2-brane extends in two directions,

which wrap around ξi coordinates, while in the second case the membrane is collapsed to

a string and extends in a single direction.

Our configurations have also some similarity with the BMN configurations [5] in the

sense that in both cases they correspond to null objects moving around circles of S5 or S7,

with E ∝ J → ∞. It would be interesting to see if these solutions can be used to explore

special sectors in ABJM theory in the same way that the BMN limit can be used to explore

a sector of N = 4 super Yang-Mills theory.

An important difference with the BMN case is that in that case the limit corresponds

to a Penrose limit of the AdS5 × S5 space, where string theory becomes solvable, allowing

for an explicit comparison between field theory and string theory results. In the present

case, because the M2 branes are extended, it is meaningless to ask what is the geometry

seen by the generic null configurations; in particular, it cannot be obtained as a Penrose

limit. In addition, in the generic case the configurations are non-perturbative from the

viewpoint of string theory. Nevertheless, it is possible that a study of small fluctuations

around these configurations could unveil an interesting sector of the quantum spectrum on

AdS4 and thence of ABJM N = 6 Chern-Simons theory.

Finally, in section 8, we have revisited the supersymmetric giant graviton solutions

found in [12] representing giant tori and spiky M2 branes. We re-derived the supersym-

metric conditions in cylindrical coordinates, which turn out to be highly convenient to

investigate the solutions in different regimes. This has unveiled a number of interesting

supersymmetric uncompact M2 brane objects, including a cylinder, a hyperboloid and the

giant diabolo, that extend up to the boundary of AdS4. They should correspond to de-

formations ABJM by adding extra degrees of freedom (this is similar to the addition of

“flavor” D7 branes to a D3 brane system).
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A Useful relations

In the main text we have defined the completely antisymmetric quantities,

βij
αβ = βi

αβ
j
β − βj

αβ
i
β ,

βijk = βi
0 β

jk
12 + βj

0 β
ki
12 + βk

0β
ij
12 .

(A.1)

In terms of them we have,

h00
c =

(

R

2

)4
∑

i<j

µi
2 µj

2
(

βij
12

)2
, (A.2a)

h11
c =

(

R

2

)4




∑

i<j

µi
2 µj

2
(

βij
20

)2
− ω0

2 βi,2 β
i
2



 , (A.2b)

h22
c =

(

R

2

)4




∑

i<j

µi
2 µj

2
(

βij
01

)2
− ω0

2 βi,1 β
i
1



 , (A.2c)

h01
c =

(

R

2

)4
∑

i<j

µi
2 µj

2 βij
12 β

ij
20 , (A.2d)

h02
c =

(

R

2

)4
∑

i<j

µi
2 µj

2 βij
12 β

ij
01 , (A.2e)

h12
c =

(

R

2

)4




∑

i<j

µi
2 µj

2 βij
20 β

ij
01 − ω0

2 βi,1 β
i
2



 . (A.2f)

For the solution with parameters given in (3.18) we obtain the following non-zero

coefficients,

β12
01 = −4ω2 , β14

01 = −4ω4 , β24
01 = −4m ω4

β23
02 = 4ω2 , β24

02 = 4n ω2 , β34
02 = −4ω4

β13
12 = 4 , β14

12 = 4n , β23
12 = 4m, β24

12 = 4m n .

(A.3)

and

β123 = −8 ω2 , β124 = −8 n ω2 , β134 = 8 ω4 , β234 = 8 m ω4 . (A.4)

These expressions are used in section 6.2.

Finally, we quote the general formula for the relation between angular momentum and

energy for our family of solutions (3.24):

1

RE

4
∑

i=1

|Ji| =
1

|3z−1| 12 |z−z0|
1

2

(

|z2−z2z+(µ1
2+µ2

2)z0|
1

2

|2z−µ1
2−µ2

2| 12

(

µ1|z−µ1
2| 12 +µ2|z−µ2

2| 12
)

+
|z2−z4z+(µ3

2+µ4
2)z0|

1

2

|2z−µ3
2−µ4

2| 12
(

µ3|z−µ3
2| 12 +µ4|z−µ4

2| 12
)

)

(A.5)
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From this general expression one can see that for supersymmetric solutions with z = 0 the

r.h.s. is equal to 1, giving rise to the BPS expression (5.10). An interesting question is if

there are special values of µi and z for which the r.h.s. is also equal to 1, hence giving rise

to the same BPS expression. This would hint on special supersymmetric configurations.

B Supersymmetry of collapsed membranes: effective string approach

As explained in section 6.3, in the case of the collapsed membrane the Γκ of the M2 brane

is singular and cannot be used. It seems more appropriate to study the supersymmetry of

this collapsed M2 brane configuration by demanding the supersymmetry condition under

the “reduced” κ-symmetry matrix associated with a string-like configuration.8 In what

follows we will show that this approach correctly reproduces the number of preserved

supersymmetries obtained in section 6.3 from the supersymmetry algebra. Our results will

not rely on the value of the effective string tension (classically the string is tensionless,

since, on-shell, the world-sheet is null).

We consider the following “reduced” κ-symmetry matrix, appropriate for string-like

configurations,

Γκ =
1√−g Ẋ

µX ′νΓµν , (B.1)

where

Γµν =
1

2
[Γµ, Γν ] , Γ2

κ = 1 . (B.2)

A short computation yields,

Γκ =
R2

4
√−g





∑

i<j

µi µj β
ij γi+6 γj+6 + ω0

∑

i

µi β
i
1 γ0 γi+6



 , (B.3)

where βij ≡ βij
01 = βi

0 β
j
1 − βj

0 β
i
1. With these ingredients, and using the relations

M−1 γi+6 M = M−2
t Γ0

(

−
∑

i

µi Oi −
∑

j 6=i

µj γi+6 γj+6 Oj Mi
2 Mj

2
)

, (B.4a)

M−1 γi+6 γj+6 M = γi+6 γj+6 Mi
2 Mj

2 , (B.4b)

the supersymmetry condition (6.3) can be written as

±





∑

i

µi
2mi

2 −
∑

i<j

µi
2µj

2

(

2ωi

ω0
mj −

2ωj

ω0
mi

)2




1/2

ǫ0

=



−
∑

i

µi
2miOi+

∑

i<j

µiµjγi+6γj+6Mi
2Mj

2

(

mj Oi−mi Oj−
2ωi

ω0
mj+

2ωj

ω0
mi

)



 ǫ0,

(B.5)

8We thank J. Maldacena for a discussion on this point.
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where

Mi
2Mj

2 = exp

(

−1

2
γ̂γ0 (βi

a Oi + βj
a Oj)σ

a

)

. (B.6)

This equation is the starting point for analyzing the different possibilities, taking into

account that the σa-dependence on the second term of the r.h.s. must drop out.

Let us first consider the generic case where all µi’s are non-vanishing. We find a

solution by canceling all four σa-dependent terms in the r.h.s of (B.5) and leaving at least

two non-vanishing windings, m1,m2 6= 0. We have

Oi ǫ0 = ηi ǫ0 , ηi
2 = 1 ,

2ωi

ω0
= ηi − ami , (B.7)

together with the constraint,

4
∑

i=1

µi
2 ηi mi = ∓

∣

∣

∣

∣

∣

4
∑

i=1

µi
2 ηi mi

∣

∣

∣

∣

∣

, (B.8)

where the ∓ signs correspond to the ± signs of (B.5). Note that one possible solution of

the constraint is that the sum in (B.8) vanishes. This is indeed the case as seen from the

membrane equations of motion (see (5.16)), although it is not implied by the supersym-

metry conditions. Due to the relation
∏4

i=1Oi = −1 (which fixes η4 = −η1 η2 η3), we see

that the solution preserves 1/8 of the supersymmetries. With no loss of generality we can

set η1,2,3 = 1, η4 = −1, as the signs of ηi can be reversed by a coordinate transformation

ξi → −ξi. Furthermore, the solution can be rewritten as,

ξi =
1

2
ω0 σ

0 +mi σ
′1 , σ′1 ≡ σ1 − a

2
ω0 σ

0 , i = 1, . . . , 4 , (B.9)

showing that the string rotates and winds with mi in each of the four planes. This also

shows that the parameter a is gauged away after the change of coordinate σ → σ′1.
Now consider the case where there is a non-trivial embedding in three planes

((12), (34), (56)), i.e. µ4 = 0 ; µ1
2 + µ2

2 + µ3
2 = 1. A solution is obtained by cancelling

three σa-dependent terms in the r.h.s of (B.5). One needs at least two non-vanishing mi,

i.e mi 6= 0, i = 1, 2. Now

Oi ǫ0 = ηi ǫ0 , ηi
2 = 1 ,

2ωi

ω0
= ηi − ami , i = 1, 2, 3 , (B.10)

together with the constraint (B.8). From (B.10) we see that the solution preserves 1/8 of

the supersymmetries.

Finally, we consider the two-plane case µ3 = µ4 = 0 ; µ1
2 + µ2

2 = 1 (thus we take the

(12) and (34)-planes). We demand that the σa-dependent term vanishes, leaving at least

two non-vanishing winding numbers, m1,m2 6= 0. We need to impose,

Oi ǫ0 = ηi ǫ0 , ηi
2 = 1 ,

2ωi

ω0
= ηi − ami , i = 1, 2 , (B.11)

together with the constraint (B.8). In view of (B.11), the solution preserves 1/4 of the

supersymmetries. Thus, in all cases, the number of unbroken supersymmetries obtained

from the effective string approach agrees with the results derived in section 6.3 from the

superalgebra.
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C Energy and angular momenta of solutions of section 8

The solution (8.12) is characterized by the energy, some winding numbers and five angular

momenta, four of which associated with rotations around the ξi directions and another one

associated with rotations around ϕ. These quantities can be computed directly from the

Born-Infeld action by differentiating with respect to the parameter that governs translations

along the corresponding directions. For this, it is convenient to introduce a parameter ω0

in t = σ0 → ω0 σ
0. Later we will set ω0 = 1 to return to our original solution.

For the ansatz (8.2), the action becomes

S = −1

2
T2πR

3

∫

dz

{[(

1 + ρ′2 − f ′2
)

(

ω2
0f

2α2
1ρ

2 − (α1s0 − α0s1)
2ρ2 + s21ω

2
0f

2
)

]1/2

+ω0ρ(zρ
′ − ρ)

}

, (C.1)

where we have used (8.5) and |mi| = 1. The energy and the five angular momenta can

then be obtained from E = dS
dω0

∣

∣

∣

ω0=1
, Ji = µi

2 dS
ds0

and Jϕ = dS
dα0

, leading to the following

expressions:

E =
π

2
|w| T2 R

2

∫

dz

{

√

1 + ρ′2 − f ′2 f2 (ρ2 + b2)
√

f2 (ρ2 + b2) − (b− 1)2 ρ2
+ ρ (z ρ′ − ρ)

}

Ji = −π
2
|w| T2 R

3 (b− 1) µi
2η1 ei e4

∫

dz

√

1 + ρ′2 − f ′2 ρ2

√

f2 (ρ2 + b2) − (b− 1)2 ρ2

Jϕ = −π
4
|w| T2 R

3 b (b− 1) η2

∫

dz

√

1 + ρ′2 − f ′2 ρ2

√

f2 (ρ2 + b2) − (b− 1)2 ρ2
(C.2)

where we have substituted the parameters by their values in (8.12), i.e. α1 = w and

s0 =
1

2
η1(1 − b) , s1 = −1

2
η1η2 bw ,

s2 = 0 , α0 = 0 .
(C.3)

We recall that the signs ei, η1,2 can be chosen as e1 = e2 = e3 = 1, e4 = −1, η1 = η2 = 1.

Using the specific form of the solution (8.12),

z2 = r20ρ
c − 1 − ρ2 , f2 = r20ρ

c , c ≡ 2b

b− 1
, (C.4)

the formulas for the angular momenta take the simple form

Ji = −π|w|T2R
3µ2

i η1eie4

∫

dρ
ρ

√

r20ρ
c − 1 − ρ2

, (C.5a)

Jϕ =
π

2
|w|T2R

3b η2

∫

dρ
ρ

√

r20ρ
c − 1 − ρ2

. (C.5b)

Note that the change of integration variable from z to ρ introduces a factor of 2 which

accounts for both positive and negative z integration regions. Note the simple relations

Ji

Jϕ
= −2η1η2eie4µ

2
i

1

b
,

∑

i

|Ji| =
2

|b| |Jϕ| . (C.6)
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