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Introduction

L’année 2013 aura été marquée par la découverte au CERN (Organisation Européenne
pour la Recherche Nucléaire) d’une nouvelle particule correspondant selon toute probabilité
au boson de Higgs [1] [2]. Ce boson, dont l’existence a été prédite il y a près de 50 ans [3][4],
apporte une explication à la masse des particules élémentaires mais ne répond cependant pas
complètement à la question de l’origine de la masse des hadrons. C’est en effet l’interaction
entre les quarks confinés au sein des hadrons, appelée "interaction forte", qui est respon-
sable de la majeure partie de leur masse (environ 99%). La théorie de l’interaction forte, la
chromodynamique quantique (QCD), a été validée avec précision à haute énergie en confron-
tant les prédictions théoriques aux observables expérimentales accessibles avec les collisions
de particules. La forte intensité de son couplage rend cependant difficile l’utilisation de la
QCD à basse énergie, difficulté contournée par l’élaboration de méthodes numériques dans
le cadre de la QCD sur réseau. Celle-ci offre non seulement un cadre théorique à l’étude
du confinement des quarks en calculant les propriétés fondamentales des hadrons (masse,
moment magnétique, ...), mais prédit également l’existence d’une nouvelle phase de la ma-
tière nucléaire à très haute température et/ou très haute densité. Cet état, qui aurait été
celui de l’Univers quelques microsecondes après le Big Bang, est composé de quarks et de
gluons déconfinés connu sous le nom de plasma de quarks-gluons (PQG). La mesure de sa
composition, ses propriétés et des interactions entre les constituants du PQG est un enjeu
important pour la physique nucléaire d’aujourd’hui. L’étude de la transition entre la phase
de confinement (hadrons) et la phase de déconfinement (PQG) doit en effet permettre une
meilleure compréhension des symétries et des mécanismes fondamentaux à l’origine de l’in-
teraction forte.

Les collisions d’ions lourds ultra-relativistes sont très vite apparues comme l’approche
expérimentale privilégiée pour atteindre les conditions thermodynamiques nécessaires à la
formation du plasma de quarks-gluons. Deux accélérateurs jouent actuellement un rôle ma-
jeur dans ce domaine : le Relativistic Heavy Ion Collider (RHIC) à Brookhaven et le Large
Hadron Collider (LHC) au CERN. L’augmentation de l’énergie disponible lors des collisions
au cours de ces vingt dernières années a permis de passer d’un objectif de découverte à
celui d’une caractérisation du PQG. Selon les prédictions théoriques, les interactions entre
les nucléons des deux noyaux en collision peuvent conduire à la formation d’un milieu chaud
et déconfiné de quarks et de gluons. Celui-ci va ensuite se refroidir lors de son expansion
jusqu’à se transformer en un gaz de hadrons. Lors de la phase initiale de la collision, des
collisions dures peuvent également conduire à la production de partons de grande impulsion
transverse (pT ), qui se fragmentent en un jet de hadrons après avoir éventuellement interagi
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avec le milieu chaud. L’étude des caractéristiques du PQG doit être réalisée à partir des
informations disponibles dans l’état final. Les mesures peuvent être distinguées en deux ca-
tégories. Les sondes molles, associées aux particules de faible pT (quelques GeV/c) produites
durant les différentes phases de l’évolution, mesurent les distributions spatio-temporelles et
énergétiques des différents types de particules. Elles permettent d’accéder aux propriétés glo-
bales du milieu comme sa densité ou sa température. Par opposition, les sondes dures sont
associés aux partons de grand pT produits dans la phase initiale de la collision. L’interac-
tion des partons dans le plasma de quarks-gluons modifie leur énergie et les caractéristiques
des hadrons issus de leur fragmentation. L’objectif principal de l’étude des sondes dures est
d’évaluer l’énergie perdue par le parton dans le milieu et de comprendre de quelle manière
cette énergie est redistribuée. Pour cela, il est nécessaire de comparer les mesures des col-
lisions noyau-noyau aux mesures de référence réalisées dans les collisions proton-proton ou
proton-noyau (ces dernières ayant l’avantage de prendre en compte les effets nucléaires froids
liés à l’interaction des nucléons dans le noyau). Au-delà de la simple évaluation de l’énergie
perdue, une des observables privilégiées pour ce genre d’étude est la fonction de fragmenta-
tion qui représente la distribution en énergie des hadrons produits par le parton. La fonction
de fragmentation va en effet être sensible aux détails de l’interaction du parton dans le PQG
en évaluant précisément la redistribution de l’énergie perdue. Cependant une des principales
difficultés de la mesure inclusive de la fragmentation est liée à l’absence d’information sur
l’énergie initiale du parton produit lors de la collision. Une manière efficace de palier à ce
manque consiste à mesurer les corrélations entre un photon et les hadrons issus de la frag-
mentation d’un parton émis à 180◦, la mesure de l’énergie du photon (très peu sensible au
milieu) permettant une estimation précise de l’énergie initiale du parton avant son interac-
tion dans le milieu. Cette thèse s’articule autour de l’analyse des corrélations photon-hadron
dans les collisions proton-proton et Plomb-Plomb afin d’étudier une éventuelle modification
de la fragmentation partonique par le plasma de quarks-gluons.

Depuis son démarrage en 2009, le LHC a permis de collecter des données pour des collisions
proton-proton, à une énergie disponible allant de 900 GeV à 8 TeV, et des collisions Plomb-
Plomb à une énergie de 2.76 TeV (par nucléon). Des collisions proton-Plomb ont également
été enregistrées à une énergie de 5.02 TeV au début de l’année 2013. Au LHC, la physique
du plasma de quarks-gluons est étudiée par trois des quatre grandes expériences : ALICE,
ATLAS et CMS. Le travail présenté dans ce manuscrit a été réalisé au sein de la collaboration
ALICE (A Large Ion Collider Experiment), seule expérience du LHC entièrement dédiée à
la physique des ions lourds. L’expérience ALICE a été conçue pour permettre l’identification
des particules dans un environnement de haute multiplicité et sur une large gamme en éner-
gie s’étendant de quelques centaines de MeV à près de 100 GeV. Cette dynamique offre la
possibilité d’étudier conjointement les sondes molles (bas pT ) et les sondes dures (haut-pT )
du PQG. Pour la mesure de la fragmentation des partons, deux techniques expérimentales
sont principalement utilisées : la trajectographie pour la reconstruction des hadrons chargés,
et la calorimétrie pour la reconstruction des particules neutres. Dans le cadre de l’étude des
corrélations photon-hadron, le calorimètre EMCal joue un rôle central dans la sélection des
événements, l’identification, et la mesure en énergie des particules. Une partie importante
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de cette thèse est consacrée à l’étude de ses performances.

Le plan de ce manuscrit reflète la volonté d’aborder, tant dans la présentation des résultats
que durant les trois années de travail écoulées, l’ensemble des aspects d’une analyse de phy-
sique des ions lourds. La problématique de cette thèse, à savoir la fragmentation des partons
en collisions d’ions lourds ultra-relativistes, s’inscrit dans le cadre théorique de l’interac-
tion forte (chapitre 1) replacé dans le contexte plus spécifique de la physique du plasma de
quarks-gluons (chapitres 2 et 3). Après une présentation générale du dispositif expérimental
(chapitre 4), les différentes techniques de détection sont développées pour la reconstruction
des particules chargées (chapitre 5) et neutres (chapitres 5 et 6), l’identification des pho-
tons (chapitre 7), et la sélection des photons de haute impulsion transverse (chapitre 8). La
dernière partie de ce manuscrit présente les résultats obtenus par l’analyse des données de
collisions proton-proton (chapitre 9) et Plomb-Plomb (chapitre 10). Le dernier chapitre re-
place finalement les résultats expérimentaux dans le contexte théorique de la perte d’énergie
des partons dans le plasma de quarks-gluons (chapitre 11).
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L’objectif de ce premier chapitre est de contextualiser la problématique de notre travail de re-
cherche, tant d’un point de vue historique que théorique. Nous commencerons par un détour vers
l’histoire des sciences qui nous permettra de rappeler brièvement les principales étapes du développe-
ment de la physique nucléaire et de la physique des particules au XXème et XXIème siècle. Fort de ce
contexte, nous nous concentrerons ensuite sur la théorie de l’interaction forte, la Chromodynamique
Quantique, qui permet de décrire les interactions hadroniques. Nous introduirons le formalisme de
cette théorie, puis nous expliquerons quelles en sont les limites actuelles et comment les relier à la
problématique de cette thèse.
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1.1 Contexte historique

1.1.1 Du développement de la physique subatomique

La présentation du contexte historique d’un travail de recherche est un exercice difficile,
particulièrement en Physique où la théorie et la technique sont étroitement liées, mais elle
nous semble indispensable pour aborder la première question à laquelle il nous faut répondre :
comment en sommes-nous arrivés à la problématique abordée dans cette thèse 1 ? Au début
du XXème siècle la théorie atomique est admise par la majorité des physiciens. Les expé-
riences de diffraction α-Au (E. Rutherford, 1910 [5]) ont mis en évidence l’existence du noyau
atomique, et conduit à un modèle de type "planétaire" (J. Perrin, 1901 - E. Rutherford, 1911
[5]) où l’atome est représenté comme un noyau chargé positivement autour duquel gravitent
des électrons 2. Les expériences de collisions α-noyau vont ensuite permettre la découverte
du proton (E. Rutherford, 1919 [6]) puis du neutron (J. Chadwick, 1932 [7]), qui seront
identifiés comme les constituants du noyau atomique. En parallèle, les physiciens étudient le
phénomène de radioactivité (H. Becquerel, 1896 [8]) et mettent en évidence trois types de
rayonnement : β (électrons), α (He2+) et γ (photons).
Les développements de la mécanique quantique, en particulier les travaux de Max Planck

[9] sur l’étude du corps noir, vont permettre d’améliorer les modèles atomiques. Pour re-
médier au problème de la perte d’énergie de l’électron dans le modèle de Rutherford, un
nouveau modèle introduisant la quantification de l’énergie est proposé (N. Bohr, 1913 - A.
Sommerfeld, 1915 [10]). Ce modèle permet entres autres d’expliquer les résultats spectro-
scopiques observés au cours du XIXème siècle (J.J. Balmer, W. Ritz, F. Paschen) et intègre
la relativité restreinte dans le calcul des niveaux d’énergie de l’électron. Suite aux travaux
sur la dualité onde/corpuscule (L. De Broglie, 1924 [11]), Erwin Schrödinger [12] propose en
1926 une équation d’onde permettant de calculer les différents niveaux d’énergie de l’atome
d’hydrogène, puis généralise cette équation à l’ensemble des atomes connus à l’époque. La
prise en compte du spin des électrons (W. Pauli - 1927 [13]) permettra une description encore
plus précise des niveaux d’énergie atomique.
En 1925, Werner Heisenberg [14] émet l’hypothèse que le proton et le neutron sont deux

états d’une même particule : le nucléon. Il introduit pour cela le concept d’isospin qui aura un
rôle très important dans le développement de la physique des particules. Une fois que la com-
position du noyau atomique fut clarifiée se posa le problème de l’interaction nucléaire entre
les nucléons (protons et neutrons) qui le composent. L’existence d’une telle interaction est en
effet rendue indispensable pour assurer la stabilité du noyau atomique soumis à la répulsion
électrostatique des protons. L’interaction nucléaire doit donc compenser cette répulsion en
agissant à la fois entre proton-proton, proton-neutron et neutron-neutron. Hideki Yukawa
[15] propose en 1934 un potentiel pour décrire l’interaction nucléaire. La quantification de ce
champ d’interaction fait apparaitre une particule appelée méson π (qui ne sera mise en évi-
dence expérimentalement qu’en 1947). La même année, Enrico Fermi [16] propose une théorie
de la radioactivité β (non-explicable par l’équation de Schrödinger) conduisant à l’existence

1. Nous renvoyons chaque fois que cela est possible le lecteur intéressé par cette approche historique aux
publications originales

2. Découverts par J.J Thomson en 1897.
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d’une autre interaction nucléaire dite interaction faible. Les physiciens s’intéressent alors à
la structure des nucléons et testent expérimentalement leur caractère élémentaire. Ce type
d’expériences nécessitant une énergie suffisante pour casser le noyau atomique (l’énergie de
liaison d’un nucléon est d’environ 8 MeV), cela va conduire au développement des accéléra-
teurs de particules dès les années 1930 (R. Wideröe - 1928, J. Cockcroft et E. Walton - 1931,
E.O. Lawrence - 1932).

1.1.2 À l’établissement du modèle standard

Au cours des années 1950, l’étude du rayonnement cosmique et les accélérateurs de par-
ticules vont permettre la découverte d’un nombre de plus en plus important de hadrons,
à commencer par les mésons π± en 1947 [17] et le méson π0 en 1950 [18]. Les physiciens
vont dès lors chercher à classifier ces hadrons 3. Les hadrons sont alors considérés à l’époque
comme des états excités du nucléon, mais en 1961 Murray Gell-Mann fait l’hypothèse que le
proton et le neutron ne sont pas des particules élémentaires mais sont tous deux composés
de quarks [19]. En se basant sur la théorie de l’isospin (groupe de symétrie SU(2)) dévelop-
pée par Werner Heisenberg, Murray Gell-Mann (et indépendamment Yuval Ne’eman [20])
montre que les hadrons peuvent être regroupés en multiplets classés suivant les propriétés du
groupe de symétrie SU(3)f incluant l’isospin I3 et l’étrangeté S, nombre quantique introduit
par Murray Gell-Mann en 1954 4. L’exemple du multiplet des mésons pseudoscalaires est
illustré par la figure 1.1.

Figure 1.1: Multiplet de mésons pseudoscalaires.

Cette classification est un indice fort de l’existence d’une sous-structure des hadrons qui
seraient formés par l’assemblage de trois types de quarks (up, down et strange) soit en paire

3. Il est intéressant de noter que c’est à cette époque que l’étude de la matière va se séparer en deux
domaines distincts : d’un côté la physique nucléaire qui étudie la structure du noyau atomique en termes de
nucléons, de l’autre la physique des particules qui étudie les hadrons et cherche à décrire leurs interactions.

4. Ce modèle suppose que la symétrie SU(3)f est une symétrie exacte alors qu’elle n’est en réalité qu’une
approximation.
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quark-antiquark (mésons) soit en triplet de quarks (baryons). La découverte de la particule
Ω− en 1964 [21], prédite par le multiplet des particules de spin 3/2 et de parité +1, ap-
porte une confirmation expérimentale à cette théorie. La découverte de nouvelles particules
conduira finalement à postuler l’existence de deux autres quarks, le charme (S. Glashow -
1964 [22]) et le bottom (M. Kobayashi et T. Maskawa - 1973 [23]), complétés de nos jours par
un sixième quark, le top, dont le temps de vie est trop court pour lui permettre de former
des hadrons. La spectroscopie des hadrons met alors en évidence un problème lié au principe
d’exclusion de Pauli qui postule que deux particules ne peuvent pas être dans le même état
quantique. Des hadrons tels que le ∆++, composé de quarks identiques, semblent en effet
violer ce principe. Pour résoudre ce problème les physiciens introduisent un nouveau nombre
quantique, la couleur [24]. Chaque quark se voit ainsi associé une couleur rouge, bleue ou
verte, leur assemblage formant nécessairement des hadrons neutres de couleur. Ce nombre
quantique est à l’époque un argument fort en faveur d’une théorie des champs de l’interaction
nucléaire. L’existence des quarks, jusque là considérés comme un artifice mathématique, est
mise en évidence expérimentalement par les expériences de diffusion profondément inélas-
tique. En 1969, Richard Feynman propose alors un modèle, appelé "modèle des partons",
permettant de calculer les sections efficaces des processus hadroniques en se basant sur les in-
teractions entre quarks [25] (section 1.3). En 1979, l’accélérateur PETRA permet la première
mesure d’un état final contenant 3 jets de particules, dont nécessairement un jet produit par
la radiation d’un gluon d’une paire de quark-antiquark [26] [27]. Cette mise en évidence ex-
périmentale de l’existence des gluons, proposée théoriquement quelques années auparavant
[28], va amener les physiciens à perfectionner le modèle des partons. Reprenant les travaux
de C. Yang et R. Mills [29], H. David Politzer, Frank Wilczek et David Gross développent
en 1974 une théorie utilisant le quark comme objet fondamental et le gluon comme vecteur
de l’interaction : la Chromodynamique Quantique (QCD) [30]. L’interaction nucléaire entre
hadrons est alors considérée comme un résidu d’une interaction plus fondamentale entre les
quarks : l’interaction forte.
Au cours des années 1970 se développe ainsi un modèle permettant de décrire l’ensemble

des particules élémentaires constituant la matière ainsi que leurs interactions : le modèle
standard (figure 1.2). Les particules sont regroupées en trois familles de fermions compo-
sée chacune de deux quarks et de deux leptons (ainsi que des antiparticules associées). Les
interactions sont quant à elles décrites par l’échange de bosons vecteurs : le photon pour l’in-
teraction électromagnétique, le gluon pour l’interaction forte, les bosons Z0,W± pour l’inter-
action faible et le graviton pour l’interaction gravitationnelle. Le modèle standard est ainsi
une théorie quantique des champs basée sur le groupe de symétrie SU(3)

⊗
SU(2)

⊗
U(1).

Les interactions électromagnétique et faible sont unifiées en une seule théorie, la théorie
électrofaible [31] [32] [33]. Dans la suite de ce chapitre nous introduirons les caractéristiques
principales de l’interaction forte et de son cadre théorique, la Chromodynamique Quantique.
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Figure 1.2: Tableau synthétique du Modèle standard représentant les quarks (jaune), les leptons
(vert) et les bosons (orange). Chaque élément est représenté par son nom, son symbole,
sa masse, son spin et sa charge électrique.

1.2 La Chromodynamique quantique

1.2.1 Théorie quantique des champs

1.2.1.1 Électrodynamique quantique (QED)

La théorie de l’interaction forte est une théorie quantique des champs dont le dévelop-
pement a été fortement influencé par la théorie de l’interaction électromagnétique : l’élec-
trodynamique quantique. Cette théorie trouve son origine dans l’application de la relativité
restreinte à l’équation de Schrödinger. En s’appuyant sur une première version de cette équa-
tion modifiée (O. Klein, W. Gordon - 1926 [34]), Paul Dirac propose en 1927 [35] une équation
permettant d’expliquer de manière complète les niveaux d’énergie de l’atome d’hydrogène
(dont le problème de "structure fine"). Cette équation ne fait cependant référence qu’à la
forme classique du champ électromagnétique alors que les autres quantités comme l’énergie
et l’impulsion apparaissent sous la forme quantique d’opérateurs. Paul Dirac va alors pro-
poser de quantifier le champ électromagnétique en représentant le photon, vecteur de cette
interaction, par un opérateur quantique appelé opérateur de création-annihilation [36]. Le
formalisme de la théorie quantique des champs proposée par Paul Dirac apporte des pro-
priétés nouvelles à l’état de plus basse énergie, généralement appelé le vide de la théorie, en
particulier l’existence de fluctuations conduisant à des divergences dans le calcul (à un ordre
supérieur) des observables physiques comme par exemple la masse de l’électron. Ce problème
sera résolu plusieurs années après par l’introduction d’une procédure de renormalisation de
la théorie (J. Schwinger [37], S. Tomonaga [38], R. Feynman [39]) visant à séparer les par-
ties divergentes des termes finis. La théorie ainsi développée prit le nom d’électrodynamique
quantique.
L’électrodynamique quantique est une théorie de jauge, basée sur le groupe de symétrie

U(1), qui permet de décrire les interactions électromagnétiques des quarks et des leptons
propagées par le boson de jauge qu’est le photon. En théorie quantique des champs, la
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dynamique du système peut être calculée à partir du Lagrangien décrivant le comportement
des fermions libres (champs Ψ) [40] :

L0 = Ψ̄(x)(iγµ∂µ −m)Ψ(x) = Ψ̄(x)(i/∂ −m)Ψ(x) où γµ sont les matrices de Dirac

Ce lagrangien est invariant sous une transformation de jauge globale Ψ(x) = eiαΨ(x), mais
ne l’est pas sous une transformation de jauge locale pour laquelle α ≡ α(x) :

∂µΨ(x)→ eiqα(x)(∂µ + iq∂µα(x))Ψ(x) (1.1)

Pour que l’invariance locale soit respectée, il faut introduire un champ de jauge Aµ qui se
transforme localement comme

Aµ(x)→ A
′
µ(x) = Aµ(x)− ∂µα(x) (1.2)

de telle sorte que la dérivée covariante DµΨ(x) = (∂µ + iqAµ(x))Ψ(x) se transforme comme
Ψ(x) :

DµΨ(x)→ (DµΨ
′
)(x) = eiqα(x)DµΨ(x) (1.3)

Finalement, pour que le champ de jauge corresponde à un champ de photons physiques, autre-
ment dit pour qu’il puisse se propager, il faut ajouter un terme cinétique Lcin = −1

4Fµν(x)Fµν(x)

où Fµν = ∂µAν − ∂νAµ. Nous obtenons alors le lagrangien invariant de jauge en QED :

LQED = Ψ̄(x)(i /D −m)Ψ(x)− 1

4
Fµν(x)Fµν(x) (1.4)

1.2.1.2 Chromodynamique quantique (QCD)

La théorie de l’interaction forte, la chromodynamique quantique, est elle-aussi construite
avec le formalisme de la théorie quantique des champs. C’est une théorie de jauge basée sur
le groupe de symétrie SU(3) qui fait intervenir huit bosons vecteurs, les gluons. Comme en
QED, le lagrangien décrivant le comportement des quarks libres est donnée par la relation :

L0 =
∑

f

q̄f (x)(iγµ∂µ −m)qf (x) =
∑

f

q̄f (x)(i/∂ −m)qf (x) (1.5)

Ce lagrangien est lui-aussi invariant sous une transformation de jauge globale, mais il s’agit
dans ce cas d’une transformation du groupe SU(3) (et non plus du groupe U(1) comme en
QED). Pour obtenir un lagrangien invariant sous une transformation de jauge locale, il faut
recourir une nouvelle fois à la dérivée covariante Dµ = (∂µ + igTaG

µ
a) où Ta = λa/2 (λa =

matrices de Gell-Mann). L’invariance locale nécessite que les huits champs de jauge Gµa se
transforment comme Gµa → Gµa − 1

g∂µαa. Il faut finalement ajouter un terme cinétique qui
va contenir la partie dite non-abélienne du lagrangien :

Gaµν = ∂µG
a
ν − ∂νGaµ − gfabcGbµGcν (fabc = constantes de structure).

Nous obtenons ainsi le lagrangien invariant de jauge en QCD :

LQCD =
∑

f

q̄f (x)(i /D −m)qf (x)− 1

4
Gaµν(x)Gµνa (x) (1.6)



Interactions fondamentales 15

Afin de mettre en évidence le sens physique des différents termes, il est possible de décomposer
de manière schématique le lagrangien obtenu :

L = q̄q +G2 + gq̄qG+ gG3 + g2G4

Les trois premier termes (représentant respectivement la propagation des fermions, des bo-
sons, et les vertex à deux fermions) sont communs à l’électrodynamique et à la chromody-
namique quantique. Les deux derniers termes, représentant respectivement un vertex à trois
et à quatre gluons, sont quant à eux propres à la QCD. Cette particularité peut s’expliquer
par le fait que contrairement aux photons qui se couplent à la charge électrique en restant
neutre, les gluons se couplent à la charge de couleur tout en la portant eux-mêmes directe-
ment. Cela rend possible l’existence d’interactions entre gluons (alors que toute interaction
entre photons est interdite par la théorie), interactions à l’origine des caractéristiques les
plus fondamentales de la chromodynamique quantique.

1.2.2 Liberté asymptotique

Le fait que les gluons puissent interagir entre eux a un impact direct sur les caractéristiques
de l’interaction forte, et en particulier sur le couplage. Dans le cas de la QED, le calcul du
couplage des quarks aux ordres supérieurs fait intervenir des boucles de quarks qui divergent
et doivent être corrigées par une procédure de renormalisation. Une solution possible à ce
problème consiste à redéfinir la charge mesurée (e) qui diffère de la charge nue (e0), c’est-à-
dire la charge sans interaction. Les divergences de calculs imposent cependant que la relation
entre e et e0 soit spécifiée pour une valeur déterminée de Q2, que l’on note Q2 = µ2, où
Q2 représente l’échelle d’énergie de l’interaction (moment transféré entre les quarks). La
renormalisation a pour conséquence de redéfinir la constante de couplage α = e2/4π qui
dépend désormais de Q2. Cette constante de couplage "mobile" est liée au paramètre libre
µ introduit par la procédure de renormalisation :

α(Q2) =
α(µ2)

1− α(µ2)
3π ln(Q

2

µ2
)

(1.7)

L’équation (1.7) permet de mettre en évidence l’effet d’écrantage propre à la QED : plus Q2

augmente, plus la constante de couplage α(Q2) augmente.
Qu’en est-il dans le cas de l’interaction forte ? En QCD, l’équation (1.7) reste valable, mais

il convient de tenir compte à la fois du nombre quantique de couleur et des interactions entre
gluons. Contrairement au cas de la QED, il est en effet possible en QCD d’avoir à la fois des
vertex quark-quark-gluon et des vertex gluon-gluon. Il y a ainsi une sorte de compétition
entre les diagrammes de polarisation du quark (relatif au nombre de quarks dans la théorie)
et ceux du gluon (relatif au nombre de gluons), le terme dominant dépendant finalement
du nombre relatif de saveurs et de couleurs. La constante de couplage mobile prend alors la
forme suivante :

αs(Q
2) =

αs(µ
2)

1 + αs(µ2)
12π (33− 2nf ) ln(Q

2

µ2
)

(1.8)
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Pour un nombre de saveurs de quarks nf inférieur à 16 (ce qui est le cas dans la théorie
actuelle), la constante de couplage mobile QCD correspond donc à un effet d’anti-écrantage
où les gluons virtuels entourant les quarks diluent la charge de couleur de ces derniers : plus
Q2 augmente, plus la constante de couplage αs(Q2) diminue (figure 1.3). À grand Q2, le
couplage αs tend vers 0 ce qui signifie que les quarks n’interagissent quasiment plus : c’est
le phénomène de liberté asymptotique. À l’inverse lorsque les quarks s’éloignent les uns des
autres la constante de couplage augmente : c’est le phénomène de confinement. À partir
d’une distance de l’ordre du fermi, l’énergie d’interaction est suffisante pour permettre la
création de nouvelles paires qq̄. Les quarks s’assemblent alors et se retrouvent confinés au
sein d’un hadron neutre de couleur.

9. Quantum chromodynamics 31

Notwithstanding these open issues, a rather stable and well defined world average
value emerges from the compilation of current determinations of αs:

αs(M
2
Z) = 0.1184 ± 0.0007 .

The results also provide a clear signature and proof of the energy dependence of αs, in
full agreement with the QCD prediction of Asymptotic Freedom. This is demonstrated in
Fig. 9.4, where results of αs(Q

2) obtained at discrete energy scales Q, now also including
those based just on NLO QCD, are summarized and plotted.

Figure 9.4: Summary of measurements of αs as a function of the respective energy
scale Q. The respective degree of QCD perturbation theory used in the extraction
of αs is indicated in brackets (NLO: next-to-leading order; NNLO: next-to-next-to
leading order; res. NNLO: NNLO matched with resummed next-to-leading logs;
N3LO: next-to-NNLO).
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Figure 1.3: Synthèse des différentes mesures de la constante de couplage αs en fonction de l’échelle
d’énergie Q [41].

Contrairement à la QED, la constante de couplage mobile QCD ne peut pas dépendre du
paramètre αs(µ2 = 0) mais doit être définie pour une échelle d’énergie αs(µ2 = Λ2

QCD)

permettant le calcul perturbatif de αs. La constante de couplage s’écrit alors sous la forme :

αs(Q
2) =

12π

(33− 2nf ) ln(Q
2

Λ2 )
(1.9)

ΛQCD (≈ 217 MeV) est un paramètre fondamental de la chromodynamique quantique
déterminé expérimentalement à partir de la mesure de la dépendance de αs en fonction de Q2

ou par comparaison des observables et prédictions théoriques à l’ordre supérieur [42]. Il existe
donc deux régimes bien distincts en QCD (la séparation ayant lieu autour de Q2 ≈ 1 GeV2)
dont il va falloir tenir compte dans les calculs des interactions hadroniques :

- Q2 � Λ2 : domaine de la QCD perturbative (processus durs à grand Q2 / courte portée).
- Q2 ≈ Λ2 : domaine de la QCD non-perturbative (processus mous à faible Q2 / longue
portée).
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1.3 Processus hadroniques

Les collisions hadroniques de haute-énergie sont un moyen de sonder les propriétés du nu-
cléon avec une résolution spatiale d’autant plus fine que l’énergie des particules est grande.
Le modèle des quarks développé par Murray Gell-Mann permet de comprendre la "spectro-
scopie" des hadrons, mais il ne permet pas de décrire l’interaction des hadrons dans les colli-
sions de haute-énergie. Au début des années 1970, les expériences de diffusion d’électron sur
un nucléon (accélérateur SLAC Stanford Linear Accelerator Center [43] [44]) vont conduire
au développement du modèle des partons qui décrit la diffusion profondément inélastique
comme une somme incohérente de diffusions élastiques d’un électron sur les constituants
élémentaires du nucléon appelés "partons". Ce modèle sera ensuite amélioré par la prise en
compte des propriétés de la chromodynamique quantique, en particulier le phénomène de
liberté asymptotique permettant un calcul perturbatif des processus hadroniques [45] [46].

1.3.1 Modèle des partons

Le modèle des partons introduit par Feynman [25] considère le nucléon comme un ensemble
de partons ponctuels, identifiés par la suite aux quarks. Il a été développé pour permettre
le calcul de la section efficace de la diffusion profondément inélastique électron-nucléon. Le
postulat de base consiste à décrire l’interaction électron-nucléon à partir des interactions
électron-partons au cours desquelles les partons sont considérés comme libres et indépen-
dants les uns des autres. Pour décrire le processus, il faut dans ce cas répartir l’impulsion
totale du nucléon entres ses constituants. Chaque constituant i porte ainsi une fraction xi
avec la densité de probabilité fi(xi), appelée "fonction de densité de partons (pdf)". La sec-
tion efficace hadronique est une superposition incohérente des sections efficaces partoniques,
appelés "processus durs" :

σAB(p, p′) ≈
∑

parton i,j

∫ 1

0
dxdx′fAi (x)fBj (x′)σ̂ij(xp, x′p′) (1.10)

L’équation 1.10 met en évidence la propriété de factorisation du calcul des sections efficaces
hadroniques : la fonction de densité de parton fi(x) contient les effets à "longue distance"
(confinement) alors que les effets à "courte distance" sont contenus dans la section efficace
partonique dure σij .
L’application de ce modèle aux processus hadroniques, tels que la diffusion profondément

inélastique et la diffusion Drell-Yan, fait apparaitre une grandeur sans dimension F appelée
"fonction de structure" qui paramétrise la structure du hadron lors de la collision. La fonction
de structure F1(x) = 1/2

∑
i q

2
i fi(x) mesure la densité de parton en fonction de la fraction

d’énergie x portée par le parton, alors que la fonction de structure F2(x) =
∑

i q
2
i xfi(x)

décrit la densité d’impulsion, chacune étant pondérée par la charge du parton qi. Un des
résultats majeurs du modèle des partons fut la mise en évidence de l’invariance des fonctions
de structure (également appelée invariance de Bjorken) en fonction de l’impulsion transférée
Q2 : F (x,Q2) → F (x) quand Q2 → ∞ [47] [48]. L’observation de cette invariance a été
la première preuve expérimentale de la structure composite du nucléon. Malgré ses succès
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expérimentaux, le modèle des partons laisse un certain nombre de questions ouvertes qui
vont conduire à l’utilisation de la chromodynamique quantique pour le calcul des processus
hadroniques. Parmi ces questions ouvertes, nous pouvons citer la largeur de décroissance des
mésons neutres π0 → γγ et la section efficace du processus d’annihilation e+e− → qq̄ qui ont
apporté une confirmation expérimentale d’un degré de liberté supplémentaire : la couleur
des quarks. Les règles de somme sur l’impulsion montrent quant à elles que les quarks ne
portent que 50% de l’impulsion totale du hadron, d’où la nécessité d’inclure un autre type
de constituant (électriquement neutre) identifié par la suite comme étant le boson vecteur de
l’interaction forte, le gluon. Un des arguments les plus forts en faveur d’une amélioration du
modèle des partons provient finalement de la violation d’invariance d’échelle des fonctions de
structure dans les collisions à très grand moment transféré Q2 (figure 1.4). L’invariance étant
basée sur l’hypothèse de partons libres, il apparaît alors nécessaire de prendre en compte
l’interaction entre partons dans le calcul des processus hadroniques.

18 16. Structure functions

NOTE: THE FIGURES IN THIS SECTION ARE INTENDED TO SHOW THE REPRESENTATIVE DATA.

THEY ARE NOT MEANT TO BE COMPLETE COMPILATIONS OF ALL THE WORLD’S RELIABLE DATA.
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Figure 16.7: The proton structure function F
p
2 measured in electromagnetic scattering of positrons on

protons (collider experiments ZEUS and H1), in the kinematic domain of the HERA data, for x > 0.00006
(cf. Fig. 16.10 for data at smaller x and Q2), and for electrons (SLAC) and muons (BCDMS, E665, NMC)
on a fixed target. Statistical and systematic errors added in quadrature are shown. The data are plotted as a
function of Q2 in bins of fixed x. Some points have been slightly offset in Q2 for clarity. The ZEUS binning
in x is used in this plot; all other data are rebinned to the x values of the ZEUS data. For the purpose of
plotting, F

p
2 has been multiplied by 2ix , where ix is the number of the x bin, ranging from ix = 1 (x = 0.85)

to ix = 28 (x = 0.000063). References: H1—C. Adloff et al., Eur. Phys. J. C21, 33 (2001); C. Adloff et al.,
Eur. Phys. J. C30, 1 (2003); ZEUS—S. Chekanov et al., Eur. Phys. J. C21, 443 (2001); S. Chekanov et al.,
Phys. Rev. D70, 052001 (2004); BCDMS—A.C. Benvenuti et al., Phys. Lett. B223, 485 (1989) (as given
in [55]) ; E665—M.R. Adams et al., Phys. Rev. D54, 3006 (1996); NMC—M. Arneodo et al., Nucl. Phys.
B483, 3 (1997); SLAC—L.W. Whitlow et al., Phys. Lett. B282, 475 (1992).

Figure 1.4: Fonction de structure du proton F p2 mesurées par diffusion électromagnétique e±-
proton (expérience H1 et ZEUS), et par diffusion d’électrons (SLAC) et de muons
(BCDMS, E665, NMC) sur cible fixe. Les données sont représentées en fonction de Q2

[49].
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1.3.2 QCD perturbative

L’amélioration du modèle des partons passe par la prise en compte des gluons (réels
et virtuels) pouvant être émis par les quarks formant le hadron. Tout comme dans le cas
de la constante de couplage αs, les gluons font apparaitre des divergences dans la théorie
(divergences Ultra-Violettes) qu’il va falloir renormaliser en faisant apparaître dans les calculs
une échelle de renormalisation µR. L’émission de gluons induit également un autre type de
divergence, appelées divergences Infra-Rouges, qui sont liées à la fois à l’émission de gluons
colinéaires au quark et à l’émission de gluons d’impulsion quasi nulle. La régularisation de
ces divergences passe par une redéfinition des fonctions de structure qui acquièrent de ce
fait une dépendance en Q2 et violent l’invariance d’échelle de Bjorken obtenue dans le cas
du modèle des partons. La figure 1.4 présente une compilation des mesures expérimentales
de la fonction de structure du proton et met en évidence la dépendance en Q2 prévue par la
chromodynamique quantique.
La prise en compte des corrections QCD ne modifie pas les propriétés de factorisation mises

en avant par le modèle des partons. La chromodynamique quantique permet ainsi un cal-
cul séparé des processus perturbatifs (courte distance) et non-perturbatifs (longue distance)
intervenant dans la description d’une collision hadronique. Cette séparation, qui tire sa jus-
tification théorique du théorème de factorisation [50], implique d’utiliser une autre échelle
appelée "échelle de factorisation" µF 5. Dans l’approximation des logarithmes dominant, la
section efficace d’un processus hadronique A+B → h+X peut finalement s’exprimer sous
la forme [45] [46] :

dσ(A+B → h+X) =
∑

abc

fa/A(xa, Q
2, µ)fb/B(xb, Q

2, µ)⊗dσ̂ab→c+X(µR)⊗Dc→h(z,Q2, µF )

(1.11)
La partie perturbative de l’équation, σ̂ab, est calculée par application de la théorie des per-
turbations. Le formalisme lagrangien de la théorie quantique des champs permet en effet
d’obtenir un certain nombre de règles, appelées règles de Feynman, permettant le calcul des
processus perturbatifs à l’ordre dominant (LO) et aux ordres supérieurs (NLO, NNLO, ...).
Le théorème de factorisation assure que le calcul de σ̂ab est indépendant du type de hadron
h produit par la collision. La partie non-perturbative, à savoir les fonctions de distributions
f(x,Q2, µ2) et la fonction de fragmentation D(z,Q2

f ), est alors estimée séparément. Les fonc-
tions de distribution ne peuvent pas être calculées de manière perturbative, mais peuvent
être déterminées expérimentalement à partir des fonctions de structure. Ces fonctions dé-
pendent de l’échelle de factorisation µF ≡ µ, leur évolution étant paramétrisée par l’équation
DGLAP (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) [51] [52] [53] :

µ2∂f(x, µ2)

∂µ2
=
αs(µ

2)

2π

∫ 1

x

dz

z
Pab(z, αs(µ

2))f(x/z, µ2) (1.12)

où la fonction de division Pab est associée à la probabilité d’embranchement b → a(X)

(splitting function). Les fonctions de distribution de quarks et de gluons sont représentées
sur la figure 1.5 pour deux valeurs d’échelle µ2 = 10 et µ2 = 10000 GeV2.

5. dans la suite de cette partie nous prendrons µF = µR = µ



20 Interactions fondamentales

La fonction de fragmentation D(z,Q2
f ) est quant à elle une convolution d’un terme pertur-

batif, correspondant à la fragmentation des partons jusqu’à une valeur limite Q2
0 ≈ 1 GeV2,

et d’un terme non-perturbatif décrivant la manière dont les quarks et les gluons se com-
binent pour former des hadrons. Cette partie non-perturbative ne peut pas être déterminée
par la QCD et se base sur des modèles effectifs d’hadronisation dont les plus courants sont
le modèle des cordes [54] et le modèle des clusters [55].

12 16. Structure functions
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Figure 16.4: Distributions of x times the unpolarized parton distributions f(x)
(where f = uv, dv, u, d, s, c, b, g) and their associated uncertainties using the NNLO
MSTW2008 parameterization [13] at a scale µ2 = 10 GeV2 and µ2 = 10, 000 GeV2.
Color version at end of book.

16.4. The hadronic structure of the photon

Besides the direct interactions of the photon, it is possible for it to fluctuate into a
hadronic state via the process γ → qq. While in this state, the partonic content of the
photon may be resolved, for example, through the process e+e− → e+e−γ∗γ → e+e−X ,
where the virtual photon emitted by the DIS lepton probes the hadronic structure of
the quasi-real photon emitted by the other lepton. The perturbative LO contributions,
γ → qq followed by γ∗q → q, are subject to QCD corrections due to the coupling of
quarks to gluons.

Often the equivalent-photon approximation is used to express the differential cross
section for deep inelastic electron–photon scattering in terms of the structure functions
of the transverse quasi-real photon times a flux factor NT

γ (for these incoming quasi-real
photons of transverse polarization)

d2σ

dxdQ2
= NT

γ
2πα2

xQ4

[(
1 + (1 − y)2

)
F

γ
2 (x, Q2) − y2F

γ
L(x, Q2)

]
,

where we have used F
γ
2 = 2xF

γ
T + F

γ
L , not to be confused with F

γ
2 of Sec. 16.2. Complete

formulae are given, for example, in the comprehensive review of Ref. 68.

The hadronic photon structure function, F
γ
2 , evolves with increasing Q2 from

the ‘hadron-like’ behavior, calculable via the vector-meson-dominance model, to the
dominating ‘point-like’ behaviour, calculable in perturbative QCD. Due to the point-like

February 16, 2012 14:08

Figure 1.5: Distributions de x fois les distributions de partons non-polarisées f(x) (ou
f = uv, dv, ū, d̄, s, c, b, g) et les incertitudes associées utilisant la paramétrisation NNLO
MRST2006 à l’échelle µ2 = 10 GeV2 et µ2 = 10000 GeV2 [49].

1.3.3 Collisions hadroniques et approche Monte Carlo

Le modèle des partons amélioré par les corrections de QCD perturbative permet le calcul
des sections efficaces de production hadroniques, comme par exemple la production inclusive
de jets, avec un accord remarquable entre la théorie et l’expérience. Un tel accord néces-
site la description complète d’une collision hadronique en prenant en compte non seulement
le processus dur partonique (comme décrit dans le paragraphe précédent) mais également
l’ensemble des autres processus ayant lieu dans l’état initial et final de la collision. Les par-
tons impliqués dans le processus dur peuvent ainsi émettre des radiations dans l’état initial
(Initial State Radiation (ISR)) et/ou dans l’état final (Final State Radiation (FSR)) de la
collision. Ces radiations peuvent être estimées théoriquement par le calcul des éléments de
matrice correspondant aux diagrammes de Feynman ordre par ordre. Lors d’une collision
entre deux faisceaux de particules, il est également important de tenir compte des interac-
tions multiples entre les différentes particules du faisceau non-impliquées dans le processus
dur (beam remnants), ces interactions constituant les événements sous-jacents à la collision
(underlying event).
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Dans le but de reproduire avec la plus grande précision possible les observables expéri-
mentales, le développement des approches Monte-Carlo a mis en évidence la nécessité de
prendre en compte l’ensemble des processus intervenant au cours de la collision. Les généra-
teurs Monte-Carlo ont pour objectif de simuler la production de particules lors de collisions
hadroniques via une distribution aléatoire des variables suivant leur densité de probabilité.
Le générateur Monte-Carlo PYTHIA [56], un des plus utilisés actuellement en physique des
hautes énergies, est basé sur le modèle des partons présenté dans le paragraphe précédent.
L’utilisation de ce type de générateurs étant devenu un élément fondamental des analyses
de physique, il est important de comprendre la manière dont les collisions hadroniques sont
simulées. Lors d’une collision entre deux faisceaux de particules, PYTHIA reproduit le dé-
veloppement temporel suivant :

1. deux faisceaux de particules sont propagés l’un vers l’autre, chaque particule du faisceau
étant caractérisée par une fonction de distribution de parton qui définit la composition
partonique en terme de saveurs et de distribution en énergie.

2. dans chaque faisceau, un parton initie une gerbe partonique sous la forme d’une suc-
cession de branchement q → qg. Cette gerbe constitue le rayonnement de l’état initial
(ISR).

3. dans chaque faisceau, un parton intervient dans le processus dur (type 2 → 2).

4. les partons produits par le processus dur rayonnent à leur tour pour créer les rayonne-
ments de l’état final (FSR).

5. en plus du processus dur, d’autres interactions semi-dures peuvent avoir lieu entre les
autres partons des particules constituant les faisceaux.

6. les particules restantes sont à leur tour prises en compte (beam remnants).

7. le mécanisme de confinement est appliqué via l’hadronisation des partons produits
par les différents processus. L’hadronisation, également appelée "fragmentation" dans
certains cas, est basée sur le modèle des cordes (string fragmentation).

Dans les faits, PYTHIA ne respecte pas l’ordre chronologique décrit précédemment mais
commence par le processus dur avant d’intégrer les radiations de l’état initial/final puis les
interactions multiples. La simulation des radiations par le générateur PYTHIA n’est pas
réalisée en totalité par le calcul des éléments de matrice aux ordres supérieurs, en partie à
cause d’un temps de calcul trop important, mais elle est approximée par une succession de
branchement du type a → bc. La fragmentation des partons étant un élément central de la
problématique de cette thèse, elle fera l’objet d’une description détaillée dans un chapitre à
part entière (chapitre 11).

1.4 Le confinement

Malgré le succès de la chromodynamique quantique pour le calcul perturbatif des proces-
sus hadroniques, sa légitimité à être considérée comme la théorie de l’interaction forte n’a
pas encore été confirmée. Les propriétés de l’interaction forte, en particulier le phénomène
de confinement des quarks au sein des hadrons, reposent en effet sur des symétries fonda-
mentales qui ne sont actuellement que partiellement décrites par la QCD non-perturbative.
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La validation du modèle standard nécessite alors des résultats plus précis tant du point de
vue théorique (QCD sur réseau, modèles effectifs) qu’expérimental (physique hadronique,
plasma de quark-gluon).

1.4.1 Le vide QCD

En théorie quantique des champs, le vide (état de plus basse énergie) tient un rôle capital
dont va dériver la majeure partie des propriétés de la théorie. Dans la théorie électrofaible,
ce vide est responsable de la masse des particules via l’interaction de ces dernières avec le
champ de Higgs [3] [4]. Dans la théorie de l’interaction forte, le vide confine la couleur des
quarks et des gluons au sein des hadrons. Le vide de QCD est opaque à la charge de couleur,
autrement dit il ne tolère des objets colorés que lorsqu’ils sont confinés au sein d’une "bulle"
dont la taille caractéristique est de l’ordre du fermi (≈ 1

ΛQCD
). La création de cette bulle

nécessite une certaine énergie qui constitue l’essentiel de la masse des hadrons, le reste étant
fournie par la masse des quarks eux-mêmes ou "masse nue". Cette masse dynamique des
hadrons, tout comme la masse créée par le champ de Higgs, n’est donc pas une propriété de
la particule elle-même mais une propriété a priori du vide.

1.4.2 Symétrie chirale

Le lagrangien QCD possède non seulement la symétrie exacte d’invariance de jauge locale
(section 1.2.1) mais également un certain nombre de symétries dites "approximatives", c’est-
à-dire valables sous certaines conditions principalement liées à la masse des quarks. Si l’on
s’intéresse uniquement à la partie du lagrangien correspondant aux quarks up et down, il est
possible de mettre en évidence deux types de symétries :

L =
∑

j=u,d

q̄j(i /D −m)qj = q̄(i /D −M)q (1.13)

avec /D = γµDγ
µ, q =

(
u
d

)
et M =

(
mu 0
0 md

)
.

- si mu −md ≈ 0 alors le lagrangien devient invariant sous une transformation unitaire
2x2 agissant sur le champ de quark : c’est la symétrie d’isospin SU(2)f .

- si mu = md = 0 alors le lagrangien devient invariant sous une transformation agissant
sur l’hélicité des quarks, également appelée transformation chirale. En introduisant les
projecteurs γL = 1

2(1 − γ5) et γR = 1
2(1 + γ5) il est en effet possible de décomposer le

champ de quarks en deux composantes :

L = q̄Li /DqL + q̄Ri /DqR avec qL = γLq et qR = γRq (1.14)

Comme cette formulation du lagrangien ne possède pas de terme connectant les champs
gauche et droit, ce dernier devient invariant sous une transformation distinguant l’hé-
licité : c’est la symétrie chirale. La réalisation de la symétrie chirale devrait conduire à
un dédoublement du spectre de hadrons : chaque hadron devrait posséder un partenaire
chiral de parité opposée et de même masse (par exemple le π et le σ). Mais la symé-
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trie chirale est en fait explicitement brisée par la masse nue des quarks. Cette masse
étant faible, la brisure devrait cependant laisser apparaître des doublets de hadrons de
masse quasi-identique. Or la réalité expérimentale montre clairement que la violation
de symétrie est bien plus importante que celle liée à la masse nue des quarks. C’est en
fait la masse dynamique des quarks qui brise fortement la symétrie chirale. Cette masse
provient de l’interaction des quarks avec le vide de QCD. Le paramètre d’ordre associé à
la brisure spontanée de symétrie chirale, appelé condensat de quark < qq̄ >, prend une
valeur non-nulle dans le vide < 0|qq̄|0 >≈ - 250 MeV3. Les quarks interagissent avec le
condensat et acquièrent de ce fait une masse supplémentaire qui justifie l’essentiel de la
masse des hadrons 6. Le théorème de Goldstone explique qu’à toute symétrie spontané-
ment brisée est associée un boson de masse nulle appelé boson de Goldstone [57]. Cette
brisure de symétrie chirale implique ainsi l’existence de trois bosons de Goldstone que
l’on identifie au triplet π+, π−, π0. Comme cette symétrie n’est pas exacte dans le cas
de la QCD (mu,md 6= 0), la masse des pions n’est pas nulle mais elle reste cependant
très faible comparée à la masse des autres hadrons (mu,md � ΛQCD).

1.4.3 Théories effectives et QCD sur réseau

Le condensat de quarks est un paramètre fondamental de la chromodynamique quantique
dont l’étude est indispensable à une meilleure compréhension des propriétés dynamiques du
vide, et donc de la QCD non-perturbative dans son ensemble. Le calcul de ce paramètre est
cependant rendu extrêmement complexe par le fait qu’il nécessite une connaissance détaillée
des configurations possibles de quarks et de gluons dans le vide. Il existe de nos jours deux
types d’approches à la résolution de ce problème : les modèles (ou théories) effectifs et le
calcul sur réseau.
Les modèles effectifs (ou phénoménologiques) cherchent à utiliser les symétries fondamen-

tales de l’interaction forte, en particulier la symétrie chirale. Dans le cadre de l’approximation
mπ ≈ 0, la symétrie chirale peut en effet être utilisée pour décrire les propriétés du nucléon.
La théorie des perturbations chirales [58] [59], une des théories effectives les plus utilisées
actuellement, utilise ainsi les propriétés des bosons de Goldstone pour étudier la limite à
basse-énergie de la QCD. D’autres modèles effectifs interprétent le nucléon comme un noyau
de quarks de valence entouré d’un nuage de pions, ce dernier étant considéré comme une
excitation du vide de QCD. Ces modèles effectifs permettent de retrouver les caractéris-
tiques principales du spectre de hadrons observés expérimentalement, mais ils restent peu
précis quant à la description de la structure des nucléons à proprement parler. Le lecteur
intéressé par une description détaillée des principaux modèles peut se reporter aux références
suivantes : modèle du sac [60] [61], modèle sigma [62] [63], modèle Nambu-Jona-Lasinio [64].
Une seconde approche repose sur le calcul de la QCD sur réseau. L’idée directrice consiste

à supprimer les divergences qui apparaissent dans les calculs de QCD non-perturbative via
une discrétisation sur un réseau de type euclidien à 4-dimensions [65]. Il est alors possible de
calculer à l’aide d’une simulation numérique de type Monte-Carlo les observables liées à la

6. Le mécanisme de Higgs n’explique que la masse nue des quarks, soit quelques MeV pour les quarks up
et down
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QCD non-perturbative [66]. Les calculs de QCD sur réseau nécessite 6 paramètres d’entrée :
la constante de couplage αs et les masses des quarks up, down, charm, strange et bottom
(le quark top ayant une durée de vie trop brève pour former des états liés). Ces paramètres
sont fixés à partir de la masse expérimentale de six hadrons. La QCD sur réseau permet
alors de tester la chromodynamique quantique dans le domaine non-perturbatif à partir des
observables hadroniques (masse, moment magnétique, facteur de forme, ...). Un autre ob-
jectif du calcul sur réseau est d’étudier la topologie du vide de QCD, et en particulier les
mécanismes responsables du phénomène de confinement (constante de couplage) et de la
brisure spontanée de symétrie chirale.

Le calcul sur réseau présente finalement l’avantage de pouvoir également étudier le compor-
tement de la QCD à haute température. Que ce soit dans le cas de l’interaction électrofaible
ou dans celui de l’interaction forte, la théorie prédit qu’à haute-température le vide subit
un changement de nature. La théorie électrofaible prédit ainsi une disparition du champ de
Higgs pour une température de l’ordre de 200 GeV. Dans le cadre de la QCD cela se traduit
par une valeur nulle du condensat de quarks < qq̄ >, et donc une restauration de la symétrie
chirale à une température de l’ordre de 200 MeV. L’opacité à la charge de couleur disparaît
alors, et les quarks ne sont plus confinés au sein des hadrons. Cet état de la matière, qui
était probablement celui de l’Univers quelques microsecondes après le Big-Bang, est appelé
le plasma de quark-gluon (PQG). Il représente une piste privilégiée dans l’étude du vide
de QCD et donc de l’interaction forte. L’étude des propriétés du plasma de quark-gluon
constitue la problématique centrale de cette thèse.
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Dès les années 1970, les physiciens se sont intéressés à l’étude de la matière nucléaire dans des
conditions thermodynamiques extrêmes. La dépendance exponentielle en masse des résonances pro-
duites par les interactions hadroniques semble par exemple conduire à l’existence d’une température
limite au-delà de laquelle le système utilise toute l’énergie disponible pour produire de nouveaux ha-
drons (limite de Hagedorn : Tc ≈ 150− 200 MeV [67]). De nouvelles mesures ont finalement conduit
à l’hypothèse de l’existence d’une nouvelle phase de la matière nucléaire, le plasma de quarks-gluons,
au sein de laquelle le concept de hadron disparaît au profit des quarks et des gluons.

Nous commencerons ce chapitre par introduire les caractéristiques principales du plasma de quarks-
gluons. Nous décrirons ensuite les différents types de sondes qui peuvent être utilisées pour étudier
ses propriétés, pour finalement parvenir à la sonde privilégiée de ce travail de thèse : l’interaction
des partons dans le milieu.



26 Le plasma de quarks-gluons

2.1 Diagramme de phase

Le plasma de quarks-gluons (PQG) est généralement défini dans la littérature comme un
état de la matière au sein duquel les quarks et les gluons ne sont plus confinés en entités
neutres de couleur. Cette définition est liée au fait que le concept de hadron perd son sens
lorsque la densité de nucléons est élevée et que chaque quark se retrouve entouré d’un nombre
considérable d’autres quarks : il est alors impossible d’identifier les quarks partenaires ap-
partenant à un même hadron.

2.1.1 Potentiel d’interaction

Le déconfinement peut être modélisé à l’aide du potentiel d’interaction Vqq̄ entre une paire
de quarks statiques séparés par une distance r. À une température nulle le potentiel peut
s’exprimer sous la forme :

V (r, T = 0) ≈ −αs(T = 0)

r
+ σ(r) (2.1)

où αs représente le couplage fort entre les quarks, et σ(r) la tension entre les quarks. Le
premier terme représente l’interaction coulombienne liée à la charge de couleur, alors que le
second terme est responsable du phénomène de confinement. Le potentiel peut avoir deux
comportements différents selon la distance r entre les quarks :

- pour une distance r faible, le comportement coulombien domine et le potentiel diminue
avec la distance.

- pour une distance r grande, le potentiel prend une forme quasi-linéaire (proportionnel
à la tension σ(r)) avec un couplage qui augmente avec la distance.

Lorsque la température augmente, les paires qq̄ excitées dans le vide conduisent à une sa-
turation du potentiel d’interaction par un effet d’écrantage de l’interaction entre les quarks.
Au-delà d’une certaine température critique (Tc ≈ 160 MeV), le milieu atteint la phase de
déconfinement : les quarks interagissent fortement entre-eux mais ils sont désormais libres
d’accéder à la totalité du volume occupé par le système (ils ne sont plus confinés au sein
d’un hadron). Le potentiel modifié par l’écrantage des charges de couleur déconfinées peut
alors s’écrire :

V (r, T > Tc) ≈ −
αs
r
e−µr + σr

{1− e−µr
µr

}
(2.2)

où µ−1 caractérise le rayon d’écran (également appelé "rayon de Debye" (rD)). Le facteur µ
est proportionnel à la température et inversement proportionnel à la densité de charges de
couleur. Lorsque la température de déconfinement est atteinte, le terme de tension σ s’annule
et le potentiel d’interaction est alors réduit au terme coulombien écranté (figure 2.1).

2.1.2 Transition de phase

Le passage d’un état confiné de la matière, sous forme de "gaz de hadrons", à l’état de
plasma de quarks-gluons est un véritable changement de phase d’un point de vue thermody-
namique. Il est ainsi possible de construire le diagramme de phase de la matière nucléaire,



Le plasma de quarks-gluons 27ils appartenaient et peuvent se mouvoir dans un volume plus grand que la taille du hadron
car les forces de confinement sont écrantées par la présence de nombreux quarks et anti-quarks
intermédiaires.
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Figure 2: Variation du potentiel quark-antiquark (Vqq) en fonction de la distance
d’interaction(r). Illustration du déconfinement: comparaison entre la matière nucléaire dans
son état fondamental (densité ρ0) et la matière nucléaire comprimée à ρ ∼ 8ρ0.

Ceci est schématisé sur la figure 2 par l’évolution du potentiel V qq en fonction de la distance
inter-quarks r. Ce potentiel se décompose en un terme coulombien (en 1/r) pour les faibles
distances d’interaction et un terme en Kr à grande distance, où K est la tension de la corde
qui relie les quarks et les maintient confinés. Si ce potentiel diminue suffisamment (courbe
pointillée), 2 quarks distants de R vont ressentir une distance effective d’interaction < r > plus
faible que celle qu’ils ont dans le hadron et se trouvent ainsi déconfinés.

Grâce aux calculs QCD sur réseau, on est en mesure de décrire, de façon potentiellement exacte
(en se fondant sur l’expression même du Lagrangien de QCD), les états thermodynamiques d’un
système de quarks et de gluons en interaction à l’intérieur du domaine non perturbatif de QCD,
autour de T ∼ 100-300 MeV. Concrètement, cette théorie permet de calculer numériquement des
valeurs moyennes d’observables en fonction de la température dans l’ensemble grand canonique.
Un exemple de calcul sur réseau [7], donné sur la figure 3, permet d’observer le changement
rapide de la densité d’énergie dans un domaine étroit autour de la température critique (ici
entre 150 et 180 MeV). Suivant le nombre et le type de saveurs inclus dans les calculs et suivant
les masses attribuées au quarks, l’ordre de la transition de phase et la température critique
peuvent être différents [7, 9, 18, 19]. Des calculs sur réseau, effectués récemment pour des

3

Figure 2.1: Haut : Variation du potentiel quark-antiquark Vqq̄ en fonction de la distance d’interac-
tion (r) en présence ou non des effets d’écrantage par les charges de couleur déconfinées ;
Bas : illustration du phénomène de déconfinement par comparaison entre la matière
nucléaire dans son état fondamental (densité ρ0), son état comprimé (ρ ≈ 8xρ0) et son
état déconfiné [68].

qui sera fonction de la température et du potentiel baryonique µB 1. La figure 2.2 fournit une
représentation schématique du diagramme de phase en faisant apparaitre les différents états
de la matière nucléaire. À faible température et faible densité, la matière existe sous sa forme
hadronique telle que nous la connaissons dans les noyaux atomiques. Une augmentation de
la température et/ou de la densité baryonique permet d’atteindre la phase déconfinée de
plasma de quarks-gluons. La supraconductivité de couleur, état où les quarks s’assemblent
en paires de Cooper, est quant à elle (théoriquement) accessible à basse-température et très
haute-densité.
Cet état de déconfinement peut théoriquement être atteint par deux voies expérimentales

distinctes permettant de sonder deux régions différentes du diagramme de phase :

1. Augmentation de la température : l’excitation thermique du vide produit des
paires quark-antiquark et dissout les états liés hadroniques. Cela permet d’obtenir un
état déconfiné de la matière avec un nombre baryonique µB ≈ 0. Si la température est
suffisante, les nuages de gluons présents autour de chacun des quarks se mélangent, ce
qui conduit à la restauration de la symétrie chirale (cette symétrie étant brisée par la
masse dynamique des quarks).

2. Augmentation de la densité baryonique : une compression adiabatique d’un grand
nombre de baryons permet également l’obtention d’une transition de phase vers un état
déconfiné de la matière mais avec une densité baryonique µB > 0.

1. µB correspond à la différence entre le nombre de baryons et d’anti-baryons
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Figure 2.2: Diagramme de phase QCD représentant les différents états de la matière nucléaire
(gas de hadrons, plasma de quarks-gluons, zone de supra-conductivité de couleur) en
fonction de la densité baryonique et de la température. La matière nucléaire à l’état
ordinaire est représentée par le point gris [69].

La transition entre la phase hadronique (confinement) et la phase de plasma de quarks-
gluons (déconfinement) peut être étudiée soit à l’aide de modèles thermodynamiques effectifs,
soit par des calculs de QCD sur réseau. Ces deux approches complémentaires cherchent à
quantifier les propriétés thermodynamiques du système et leur évolution lors du changement
de phase. La simulation numérique sur réseau détermine ses propriétés thermodynamiques
en se basant directement sur la chromodynamique quantique. L’idée sous-jacente aux calculs
de la QCD sur réseau consiste à déterminer la fonction de partition du système à partir du
lagrangien QCD [70] :

Z(T, V ) =

∫
dAdΨdΨ̄e(−

∫
V d

3x
∫ 1/T
0 dτLQCD(A,Ψ,Ψ̄)) (2.3)

où Ψ (Ψ̄) représente les champs de quarks (anti-quarks), et A le champ d’interaction. Les
observables thermodynamiques, comme la densité d’énergie ε et la pression P peuvent être
déduites directement à partir de la fonction de partition :

ε = (
T 2

V
)(
∂lnZ

∂T
)V , P = T (

∂lnZ

∂V
)T (2.4)

L’évolution de ces observables en fonction de la température du système permet d’étudier
la transition de phase. La figure 2.3 représente la variation de la densité d’énergie, de la
pression et de l’entropie obtenue par un calcul de QCD sur réseau en fonction de la tem-
pérature (normalisée par la température critique Tc). La densité d’énergie (ε), représentée
par la variable ε

T 4 , subit une augmentation brutale après Tc pour tendre ensuite asympto-
tiquement vers la limite thermodynamique de Stefan-Boltzmann (SB) correspondant à la
densité d’énergie d’un gaz parfait [71]. Cette variable étant reliée aux degrés de liberté du
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système, elle constitue un argument fort en faveur de l’existence d’une transition de phase
thermodynamique.
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Figure 1: Figure of ε(T )/T 4, P (T )/T 4, and s(T )/T 3 for three light flavors of
quarks on the lattice.

Table 1: Table of RHIC Performance.
Run Species Particle Energy Total Delivered Average Store

[GeV/n] Luminosity Polarization
Run-1 2000 Au + Au 27.9 < 0.001µb−1 -

Au + Au 65.2 20 µb−1 -
Run-2 2001-2 Au + Au 100.0 258 µb−1 -

Au + Au 9.8 0.4 µb−1 -
pol. p + p 100.0 1.4 µb−1 14%

Run-3 2002-3 d + Au 100.0 1.4 pb−1 -
pol. p + p 100.0 5.5 pb−1 34%

Run-4 2003-4 Au + Au 100.0 3740 µb−1 -
Au + Au 31.2 67 µb−1 -
pol. p + p 100.0 7.1 pb−1 45%

Run-5 2004-5 Cu + Cu 100.0 42.1 nb−1 -
Cu + Cu 31.2 67 µb−1 -
Cu + Cu 11.2 0.02 nb−1 -
pol. p + p 100.0 29.5 pb−1 46%
pol. p + p 204.9 0.1 pb−1 30%

Figure 2.3: Estimation de la densité d’énergie ε(T )/T 4, de la pression P (T )/T 4 et de l’entropie
s(T )/T 3 obtenus par simulation de QCD sur réseau (en considérant 3 saveurs de
quarks) [72].

La transition de phase peut également être étudiée à partir de l’évolution de la valeur
du condensat de quark < qq̄ >. Le paramètre < qq̄ > permet en effet de mesurer la brisure
dynamique de la symétrie chirale à température finie. Il est d’usage de distinguer deux phases,
la phase de Wigner (< qq̄ > = 0) et la phase de Nambu-Goldstone (< qq̄ >6= 0) [73] [74],
qui vont dépendre de la température du système. En milieu confiné, les quarks acquièrent
une masse dynamique Mq ≈ 0.3 GeV qui brise la symétrie chirale (< qq̄ > (T ) 6= 0). Mais
lorsque la température augmente, les paires qq̄ du vide sont dissociées par les fluctuations
thermiques et la symétrie chirale est restaurée (< qq̄ > (T ) = 0). Il est alors possible de
déterminer numériquement la température critique Tc à partir de laquelle le condensat de
quark prend une valeur nulle.
Une des questions ouvertes de la physique nucléaire concerne finalement la nature de la

transition de phase. Comme l’indique la figure 2.4, les calculs théoriques semblent indiquer la
présence d’un point critique qui représente une séparation nette entre une transition continue
(crossover) et une transition brutale du 1er ordre entre la phase hadronique et la phase de
plasma de quarks-gluons.

2.2 Formation et évolution du Plasma de Quarks-Gluons
(PQG)

Dans les années 1970, les découvertes sur la liberté asymptotique conduisirent à l’idée
d’utiliser les collisions d’ions lourds ultra-relativistes pour étudier le déconfinement. Selon
l’énergie

√
s de la collision, la densité baryonique µB et la température T du milieu formé

vont prendre des valeurs différentes et donc permettre de sonder une région différente du dia-
gramme de phase (figure 2.2). Pour des collisions d’énergie disponible de l’ordre de quelques
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Figure 2.4: Diagramme de phase de la matière nucléaire en fonction de la densité baryonique et de
la température. La ligne pointillée bleue correspond à une transition de phase continue
("crossover"), le trait plein vert à la transition de 1er ordre [75].

GeV, l’importance relative des quarks de valence comparée aux quarks de la mer donne une
densité baryonique assez élevée. Aux énergies de l’ordre du TeV (et à petit x de Bjorken),
les quarks de valence ne représentent au contraire qu’une faible fraction de la densité totale
(≈ 5%), d’où une densité baryonique proche de 0.
Le plasma de quarks-gluons formé lors des collisions d’ions lourds a une taille caractéris-

tique de l’ordre de quelques fermis et un temps de vie de l’ordre de 10 fm/c, ce qui rend
impossible toute étude directe de ses propriétés. Formé dans les premiers instants de la col-
lision, le PQG se refroidit rapidement par expansion et par émission de différents types de
radiation. L’évolution spatio-temporelle d’une collision est communément décrite par le mo-
dèle de Bjorken [76]. Ce modèle met en évidence trois étapes principales de l’évolution : la
phase de pré-équilibre (ou thermalisation), l’équilibre thermodynamique suivie d’une expan-
sion hydrodynamique au cours de laquelle se produit la transition entre l’état de plasma de
quarks-gluons et celui de gaz de hadrons, puis la phase d’hadronisation (figure 2.5). L’étude
du PQG repose bien-entendu sur une connaissance précise des caractéristiques principales
de chacune de ces phases.

2.2.1 Pré-équilibre (0 < τ <1 fm/c)

Après la collision des noyaux au temps τ = 0, des interactions multiples entre partons
se produisent formant ainsi un état de pré-équilibre. Il y a aujourd’hui plusieurs modèles
concurrents permettant de décrire la thermalisation du milieu. Dans le cadre du modèle des
cordes, des cordes de couleur sont produites lorsque les deux noyaux en collision se traversent.
Les champs de couleur ainsi créés génèrent alors des paires colorées en interaction (quark-
antiquark, gluon-gluon, ...) permettant l’établissement d’un équilibre thermique [77]. Dans
le modèle du condensat de verre coloré (CGC), le milieu produit par la collision est dans un
état initial saturé par des gluons de faible énergie [78] [79]. La fraction d’impulsion portée
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Figure 2.5: Déroulement spatio-temporel d’une collision d’ions lourds ultra-relativistes [70].

par un gluon dans le proton (xg(x,Q2)) dominant la contribution des quarks à faible x, le
nombre de gluons va augmenter avec l’énergie de la collision (nature non-abélienne de la
QCD). Cette augmentation ne peut cependant pas être infinie car les gluons, d’une taille
transverse de l’ordre de 1/Q, vont se superposer jusqu’à saturer le milieu en favorisant les
recombinaisons du type gg → g (figure 2.6 droite). Le modèle fait ainsi apparaitre une échelle
de saturation Q2

s, dépendante de la taille caractéristique du noyau considéré, qui permet de
décrire l’évolution de la densité gluonique du milieu :

Q2
s ≈ αs(Q2

s)
xg(x,Q2

s)
πR2 (avec R le rayon du noyau)

2.2.2 Expansion hydrodynamique (1 fm/c < τ <20 fm/c)

Si l’énergie de la collision est suffisante, les partons produits durant la phase de pré-
équilibre sont déconfinés et produisent un état d’équilibre thermodynamique. Comme le libre
parcours moyen des particules est inférieur à la taille caractéristique du système (système
en interaction forte), l’expansion spatiale de ce dernier peut alors être décrite par l’hydro-
dynamique relativiste 2. Il est ainsi possible d’estimer les propriétés de transport du milieu,
comme par exemple sa viscosité (normalisée par l’entropie) η/s. L’évolution du plasma sera
décrite par les deux équations de base de l’hydrodynamique, à savoir la conservation de
l’énergie-impulsion (tenseur Tµν) et la conservation du nombre baryonique (µB) :

∂µ < Tµν >= 0

∂µ < jµB >= 0
(2.5)

Au cours de son expansion, le milieu se refroidit jusqu’à atteindre une phase mixte où coexiste
la phase de plasma de quarks-gluons et la phase de gaz hadronique.

2. Cette idée a été suggérée pour la première fois par Enrico Fermi en 1950 [81], puis reprise par Lev
Landau en 1953 [82]
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Parton Density Function (PDF) determinations are usually global fits [18, 19, 44], which use fixed target

DIS data as well as HERA data. In such analyses the high statistics HERA NC e+p data, which span
the range 6.3 × 10−5 < x < 0.65, 2.7 < Q2 < 30, 000GeV2, have determined the low-x sea and gluon
distributions, whereas the fixed target data have determined the valence distributions and the higher-x sea
distributions. The ν-Fe fixed target data have been the most important input for determining the valence
distributions, but these data suffer from uncertainties due to heavy target corrections. Such uncertainties

are also present for deuterium fixed target data, which have been used to determine the shape of the

high-x d-valence quark.

HERA data on neutral and charged current (NC and CC) e+p and e−p inclusive double differential
cross-sections are now available, and have been used by both the H1 and ZEUS collaborations [45, 46]

in order to determine the parton distributions functions (PDFs) using data from within a single experi-

ment. The HERA high Q2 cross-section data can be used to determine the valence distributions, thus

eliminating uncertainties from heavy target corrections. The PDFs are presented with full accounting

for uncertainties from correlated systematic errors (as well as from statistical and uncorrelated sources).

Peforming an analysis within a single experiment has considerable advantages in this respect, since the

global fits have found significant tensions between different data sets, which make a rigorous statistical

treatment of uncertainties difficult.

Fig. 31 compares the results of the H1 and ZEUS analyses. Whereas the extracted PDFs are

broadly compatible within errors, there is a noticeable difference in the shape of the gluon PDFs. Full

details of the analyses are given in the relevant publications, in this contribution we examine the differ-

ences in the two analyses, recapping only salient details.

3.3.1 Comparing ZEUS and H1 published PDF analyses

The kinematics of lepton hadron scattering is described in terms of the variables Q2, the invariant mass

of the exchanged vector boson, Bjorken x, the fraction of the momentum of the incoming nucleon taken
by the struck quark (in the quark-parton model), and y which measures the energy transfer between the
lepton and hadron systems. The differential cross-section for the NC process is given in terms of the

38Contributing authors: A. Cooper-Sarkar, C. Gwenlan
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bas est représentée l’évolution de la densité de gluons en fonction de kt pour une valeur de
x fixée.

– Condensate : la densité de gluons dans l’espace de phase est très élevée.

L’équation II.13 définit une ligne marquant la frontière entre la région de saturation et la
région diluée et permet d’établir un diagramme de phase de la matière hadronique dans le
plan (log(1/x) , log(Q2)) qui est montré sur la figure II.8 :

– pour Q2 > Q2
s ⇒ !Aσgg→g < 1 le système est dilué : la recombinaison des gluons

est négligeable et donc l’évolution des partons peut être décrit par la dynamique
DGLAP ou BFKL. Pour une valeur de x fixée, la densité de gluons évolue comme
1/k2t (figure II.8 en bas) ;

– pour Q2 < Q2
s ⇒ !Aσgg→g > 1 le système est saturé : la recombinaison de gluons doit

être prise en compte, ce qui est fait dans dans l’équation BK (Balitsky-Kovchegov) [23,
24] ou JIMWLK (Jalilian-Iancu-McLerran-Weigert-Leonidov-Kovner) [25, 26, 27, 28,
29, 20, 21, 22]. Pour kt < Qs, la densité de gluons suit une loi en ln(kt) et tend vers
1/αs (figure II.8 en bas).

L’équation JIMWLK prend en compte les effets de recombinaison par l’introduction d’un
terme non-linéaire. Cette équation peut être schématisée par l’expression :

∂n(kt, y)
∂y

∝ c1n(kt, y)− αsc2n2(kt, y) ; y ≡ log 1
x

(II.14)
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Figure 2.6: Gauche : distributions de gluons xg(x,Q2) en fonction de la fraction d’impulsion x pour
différentes valeurs du moment transféré Q2 [80] ; Droite : illustration de l’évolution de
la densité gluonique en fonction du moment transféré Q2 et de la fraction d’impulsion
x.

2.2.3 Hadronisation et freeze-out (20 fm/c < τ)

Lorsque la température critique de changement de phase est atteinte, le milieu se trans-
forme en un gaz de hadrons. L’hadronisation conduit à un nouvel équilibre global qui fixe les
abondances relatives des hadrons et de leurs résonances. Un premier gel intervient lorsque
les interactions inélastiques entre hadrons cessent, fixant ainsi la composition du système
(gel chimique ou freeze-out). Quand le libre parcours moyen devient trop important par
rapport aux dimensions spatio-temporelles du milieu, l’équilibre thermodynamique est brisé
et le système se "casse” en un ensemble de particules individuelles (gel cinétique). Pendant
la phase d’hadronisation, la température reste à peu près constante, cette température (de
l’ordre de 160 MeV) étant proche de la température critique Tc.

2.3 Signatures du plasma de quarks-gluons

La durée de vie du plasma de quarks-gluons ne permettant pas son observation directe,
seules les particules de l’état final peuvent être utilisées comme sondes afin de remonter aux
caractéristiques du milieu. L’évolution spatio-temporelle du plasma de quarks-gluons met en
avant l’idée d’un milieu à l’équilibre thermodynamique au sein duquel les quarks et les gluons
évoluent de manière collective jusqu’à leur hadronisation. Les collisions d’ions lourds, ou plus
exactement les collisions nucléon-nucléon au sein des noyaux, vont également produire des
partons de haute-impulsion transverse qui ne vont pas participer directement à cette ex-
pansion collective. Ces partons produits lors des processus partoniques durs interagissent
cependant avec le milieu déconfiné "avant" de s’hadroniser. Nous voyons ainsi apparaître
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deux types de sondes complémentaires pour l’étude du PQG : les observables globales, sen-
sibles aux propriétés collectives du milieu, et les sondes dures qui décrivent l’interaction des
partons de haut-pT avec le milieu 3.

2.3.1 Observables globales

La majorité des particules produites durant l’évolution du milieu, environ 95%, ont une
impulsion transverse inférieure à 2 GeV/c. Ces particules sont des sondes privilégiées pour
l’étude des caractéristiques thermodynamiques et hydrodynamiques. La densité d’énergie ε
peut ainsi être estimée à partir de la distribution en énergie transverse (ET ) des hadrons :

ε =
1

πR2τ

dET
dy

avec τ le temps de thermalisation et πR2 l’aire effective de collision

La mesure des spectres hadroniques permet d’accéder à la température du milieu à partir d’un
ajustement par un modèle statistique de type grand canonique (Statistical Hadronization
Model (SHM) [83]). Ce modèle statistique prédit en effet la densité de particules (n) produites
par un milieu à l’équilibre thermique de température (T ) :

ni = di

∫
d3p

(2π)3

1

exp[(Ei − µi)/T ]± 1
(2.6)

où d représente la dégénérescence de spin, p l’impulsion, E l’énergie totale, et µ le po-
tentiel chimique. Le signe "±" dépend quant à lui du type de particules considérées (bo-
sons/fermions).

Les hadrons peuvent également être utilisés pour remonter aux caractéristiques spatio-
temporelles. Les analyses interférométriques de type "Hanbury-Brown Twiss" (HBT) se
basent sur l’étude des interférences quantiques qui apparaissent lors de l’émission de deux
hadrons identiques par deux points distincts d’une même source [84] [85]. L’étude des corré-
lations entre hadrons permet alors de déterminer la taille caractéristique du milieu dans les
trois directions de l’espace.

L’étude de l’expansion hydrodynamique est réalisée par la mesure des anisotropies spatiales
dans le spectre d’émission des hadrons [86]. Lors d’une collision, la zone d’interaction entre
les deux noyaux a la forme d’une amande, comme le montre la figure 2.7. L’expansion de
cette forme elliptique va conduire à des gradients de pression plus ou moins importants selon
la direction spatiale considérée. Les spectres hadroniques produits par le milieu seront ainsi
sensibles aux fluctuations initiales de densité qui apparaîtront sous la forme d’anisotropies
spatiales.

3. La présentation des principaux résultats expérimentaux obtenus au LHC est faite dans le chapitre 3.
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Figure 2.7: Illustration d’une collision d’ions lourds (bleus) et de la zone d’interaction (orange).
La plan quadrillé (x,z) représente le plan de réaction de la collision

Ce comportement collectif, appelé "flot anisotropique", peut être déterminé par une ex-
pansion en série de Fourier de la distribution azimuthale des hadrons :

E
d3N

d3p
=

d2N

2πpTdpTdy
(1 +

∞∑

n=1

2vncos[n(Φ−Ψr)]) (2.7)

où Φ représente l’angle azimuthal de la particule et Ψr l’angle azimuthal du plan de réaction.
Le plan de la réaction est déterminé événement par événement par une mesure du plan
de l’événement (Ψep). La figure 2.8 représente une simulation des distributions initiales de
nucléons de type v2 et v3 lors d’une collision entre deux noyaux.
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Figure 2.8: Simulation du flot anisotropique de type v2 et v3 lors d’une collision noyau-noyau (les
points colorés représentent les nucléons).

Plusieurs autres analyses peuvent finalement être réalisées pour remonter aux caracté-
ristiques et à la composition du milieu produit lors d’une collision d’ions lourds. À titre
d’exemple, la masse des mésons vecteurs légers (ρ, ω, φ) permet d’étudier la restauration
de la symétrie chirale, tandis que la production de hadrons étranges doit être sensible à la
densité de gluons présents dans le milieu.
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2.3.2 Sondes dures

Outre les observables globales décrites dans le paragraphe précédent, il est possible d’étu-
dier les propriétés du milieu à partir des modifications qu’il induit sur la production des
hadrons de haute impulsion transverse. Ces modifications peuvent provenir soit d’un chan-
gement dans les conditions de production de ces hadrons, soit d’une interaction entre les
partons produits par le processus dur de la collision et ceux présents dans le milieu.

Perte d’énergie des partons

La première discussion concernant l’interaction des partons dans le plasma de quarks-
gluons a eu lieu dans les années 1980. La publication de J.D. Bjorken [87] met en avant
l’idée que les partons perdent de l’énergie lors de la traversée du milieu conduisant ainsi
à une modification des spectres hadroniques. Le mécanisme de perte d’énergie privilégié à
cette époque est la diffusion élastique des partons sur les quarks et les gluons déconfinés du
milieu. Dix ans plus tard est publiée une première estimation quantitative, basée sur une
approche de QCD perturbative utilisant désormais des pertes d’énergies de type radiatif [88].
Les calculs de perte d’énergie prédisent alors une suppression importante de la production
hadronique à haut-pT , phénomène connu sous le nom de quenching 4.
Les partons de haute impulsion transverse (pT � ΛQCD) sont produits par les collisions

dures partoniques à une échelle de temps (τ ≈ 1/Q) bien inférieure au temps de formation du
plasma de quarks-gluons. Ces partons vont donc se propager à travers le milieu et interagir
avec lui. La perte d’énergie ∆E que subit le parton suite à ces interactions dépend alors à la
fois de paramètres décrivant les caractéristiques du parton (virtualité, énergie, quark/gluon)
et du milieu (température, couplage parton-milieu, taille caractéristique). Ces paramètres
peuvent être reliés à travers un certain nombre de variables caractérisant l’interaction entre
le parton et le milieu :

- Libre parcours moyen (λ) : λ = 1/(ρσ) où ρ est la densité du milieu et σ la section
efficace d’interaction parton-milieu.

- Opacité (N) : N=L/λ où L est la longueur parcourue dans le milieu. L’opacité N
correspond au nombre de diffusions du parton dans le milieu.

- Masse Debye mD : mD(T) ≈ gT où g représente la paramètre de couplage et T
la température du milieu. La masse Debye représente l’échelle d’échange d’impulsion
typique entre le parton et le milieu.

- Coefficient de transport (q̂) : q̂ ≡ m2
D/λ = m2

Dρσ. La variable q̂ caractérise le
pouvoir de diffusion du milieu via le transfert d’impulsion (carré) moyen par unité
de longueur. Elle présente l’avantage d’associer les caractéristiques thermodynamiques
(mD, ρ) et dynamiques du milieu (σ).

La perte d’énergie des partons peut être de type collisionnelle, par diffusion avec les consti-
tuants du mileu, et radiative, par émission de gluons sous la forme d’un rayonnement de

4. Cette prédiction théorique est confirmée en 2001 par la première mise en évidence expérimentale du
quenching au Relativistic Heavy Ion Collider de Brookhaven [89] [90]
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freinage (gluonstrahlung) (figure 2.9). Ces mécanismes dépendent à la fois de la masse du
parton considéré, et de son couplage (α) avec les constituants du milieu (quarks, gluons).
Les interactions seront ainsi différentes dans le cas d’un quark léger (u,d), d’un quark lourd
(c,b) ou d’un gluon. En utilisant un modèle très simple de plasma statique et uniforme, il
est possible de mettre en évidence les diverses dépendances de la perte d’énergie du parton
dans le plasma de quarks-gluons [91] :

- cas collisionnel : la perte d’énergie dépend de la couleur du parton (quark, gluon) :

∆Ecoll
∣∣
q,g
∝ CRLαs (2.8)

où le facteur de Casimir CR = 4/3 (3) caractérise la charge de couleur du quark (gluon).
Il apparait que la quantité d’énergie perdue ∆coll dépend linéairement de la taille du
milieu.

- cas radiatif : la perte d’énergie dépend de la taille caractéristique du milieu (L� λ

ou L� λ) et de l’énergie des gluons rayonnés (ω)

L� λ ⇔ ∆Erad ∝ αsq̂L2 ("Bethe-Heitler") (2.9)

L� λ ⇔ ∆Erad ∝ αs
{
q̂L2 (ω < ωc)

q̂L2 ln(E/(q̂L2)) (ω > ωc)
("LPM")

où ωc = 1/2q̂L2 représente l’énergie caractéristique des gluons rayonnés. Contrairement
au cas collisionnel, les pertes d’énergies radiatives dépendent quadratiquement de la
taille du milieu 5. Il faut noter que dans le cas d’un milieu large (L � λ), les effets
d’interférences cohérentes destructives (effet Landau-Pomeranchuk-Migdal (LPM) [92])
réduit le nombre de gluons rayonnés. La perte d’énergie radiative est de ce fait moins
importante dans le cas d’un milieu épais (régime LPM) que dans celui d’un milieu fin
(régime de Bethe-Heitler). Le spectre de gluons émis par le parton diffère également
entre les quarks lourds et les partons sans masse (quark léger, gluon). À cause des
contraintes cinématiques de la QCD perturbative, les gluons ne peuvent être rayonnés
avec un angle θ inférieur au rapport de la masse du parton sur son énergie (M/E). Cet
effet, appelé "effet de cône mort" [93], induit une réduction du nombre de gluons émis
par un quark lourd. Déjà présent dans le vide, l’effet de cône mort dans le plasma de
quarks-gluons dépend de manière non-triviale des caractéristiques du milieu (mD, T,
L) et du parton considéré (M, E) [94]. Il en résulte finalement un classement des pertes
d’énergie radiatives selon la nature du parton :

∆Erad(g) > ∆Erad(u, d) > ∆Erad(c) > ∆Erad(b) (2.10)

5. La prise en compte de l’expansion du milieu modifie cependant la dépendance en L2 obtenu dans le
cas d’un milieu statique (pour une dépendance linéaire en L)



Le plasma de quarks-gluons 37

4 David d’Enterria

As a numerical QCD example3, let us consider an equilibrated gluon plasma

at T = 0.4 GeV and a strong coupling !s ≈ 0.5 [10]. At this temperature, the

particle (energy) density is "g = 16/#2 $(3) · T 3 ≈ 15 fm−3 (%g = 8#2/15 · T 4
≈ 17 GeV/fm3), i.e. 100 times denser than normal nuclearmatter (" = 0.15 fm−3).
At leading order (LO), the Debye mass is mD = (4#!s)

1/2T ≈ 1 GeV. The LO

gluon-gluon cross section is &gg # 9#!2s/(2m2D) ≈ 1.5 mb. The gluon mean free

path in such a medium is 'g = 1/("g&gg) # 0.45 fm (the quark mean-free-path is

'q =CA/CF 'g ≈ 1 fm, whereCA/CF = 9/4 is the ratio of gluon-to-quark colour
factors). The transport coefficient is therefore q̂ # m2D/'g # 2.2 GeV2/fm. Note
that such a numerical value has been obtained with a LO expression in !s for

the parton-medium cross section. Higher-order scatterings (often encoded in a

“K-factor”≈ 2 – 4) could well result in much larger values of q̂.

• the diffusion constant D, characterising the dynamics of heavy non-relativistic

particles (mass M and speed v) traversing the plasma, is connected, via the Ein-

stein relations

D= 2T 2/( = T/(M )D) (3)

to themomentum diffusion coefficient ( – the average momentum squared gained

by the particle per unit-time (related to the transport coefficient as (≈ q̂ v) – and

the momentum drag coefficient )D.

2.2 Mechanisms of in-medium energy loss

In a general way, the total energy loss of a particle traversing a medium is the sum of

collisional and radiative terms4: *E = *Ecoll +*Erad . Depending on the kinematic

region, a (colour) charge can lose energy5 in a plasma with temperature T mainly by

two mechanisms6.

E E- E!

!E

E

E- E!

!E

X
(medium)

Fig. 3. Diagrams for collisional (left) and radiative (right) energy losses of a quark of energy

E traversing a quark-gluon medium.

• Collisional energy loss through elastic scatterings with the medium constituents

(Fig. 3, left) dominates at low particle momentum. The average energy loss in

3 For unit conversion, multiply by powers of !c # 0.2GeV fm (other useful equalities:

10 mb = 1 fm2, and 1 GeV−2 = 0.389 mb).
4 In addition, synchrotron-, Čerenkov- and transition-radiation energy losses can take place

respectively if the particle interacts with the medium magnetic field, if its velocity is greater

than the local phase velocity of light, or if it crosses suddenly from one medium to another.

Also, plasma instabilities may lead to energy losses. Yet, those effects – studied e.g. in [11,

12, 13, 14] for QCD plasmas – are generally less important in terms of the amount of Eloss.
5 Note that if the energy of the particle is similar to the plasma temperature, E ∼ O(T ), the
particle can also gain energy while traversing it.

6 Note that the separation is not so clear-cut since the diagrams assume well-defined asymp-

totic out states, but the outgoing particles may still be in the medium and further rescatter.

Figure 2.9: Diagrammes de perte d’énergie collisionnelle (gauche) et radiative (droite) pour un
quark d’energie E traversant un milieu de type plasma de quarks-gluons [91]

Cas particulier des quarkonia

Les quarkonia sont des mésons formés d’une paire qq̄ de quark charmé (comme le J/ψ)
ou beau (comme le Υ). À cause de leur masse importante, ils sont produits dans les tout
premiers instants de la collision, principalement par fusion de gluons, et ne sont donc pas
soumis à la perte d’énergie des quarks lourds dans le milieu. Les quarkonia constituent une
sonde privilégiée du plasma de quarks-gluons car ils sont sensibles aux conditions initiales
du milieu. En présence d’un milieu déconfiné, le potentiel de liaison entre les paires qq̄ est en
effet écranté par les charges de couleur se trouvant à une distance r > rD (où rD représente le
rayon d’écrantage de Debye). Lorsque le rayon rD devient inférieur à la taille caractéristique
du quarkonium, ce dernier ne peut plus être formé. L’effet d’écrantage étant proportionnel
à la température du milieu, il est possible de définir une température TD au-delà de laquelle
le quarkonium ne sera plus formé dans le milieu. L’énergie de liaison étant plus ou moins
importante selon le quarkonium, la suppression des quarkonia à une température donnée
devrait être différente selon le type de quarkonium considéré [95]. Cette suppression séquen-
tielle pourrait cependant être compensée par le mécanisme de recombinaison qui augmente
la production de quarkonia en présence d’un milieu déconfiné [96]. La recombinaison corres-
pond à la production statistique d’états liés entre un quark et anti-quark non-corrélé. Cette
production est favorisée dans le plasma de quarks-gluons par la présence d’un grand nombre
de partons libres produits par le milieu.
Parmi les quarkonia, le taux de production de J/Ψ est une des sondes historiques du

plasma de quarks-gluons [97]. L’observation d’une diminution dans le spectre de production
du J/Ψ par la collaboration NA38 fut considérée à l’époque comme une indication forte de
l’existence d’un milieu déconfiné [98]. Elle représente aujourd’hui un enjeu important pour
comprendre le processus de recombinaison au cours de l’évolution du milieu.

2.4 Tomographie du plasma de quarks-gluons

Une étude complète de la perte d’énergie des partons dans le milieu doit permettre d’accé-
der aux détails des interactions mises en jeu. Celle-ci est réalisable à partir de la mesure de
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la production des hadrons dans l’état final issus d’une sonde dont les caractéristiques sont
connues. Cette mesure peut être vue comme une tomographie du plasma de quarks-gluons.
L’interaction des partons dans le milieu dépend de l’énergie du processus de production : si

la virtualité Q2 est suffisamment grande, le processus a lieu à une échelle de temps (τ ≈ 1/Q)
inférieure au temps de formation du PQG. Le parton dur devra dans ce cas traverser toute
la phase d’expansion du milieu avant de fragmenter et de s’hadroniser. Afin d’être en mesure
de relier les modifications observées aux propriétés du milieu, il faut faire appel à plusieurs
ingrédients théoriques : la QCD pour le calcul de la production et de la fragmentation
du parton, les modèles de perte d’énergie pour le calcul des interactions parton-milieu, et
l’hydrodynamique pour la prise en compte de l’évolution spatio-temporelle du milieu. D’un
point de vue expérimental cela implique une analyse complémentaire des sondes dures (perte
d’énergie du parton) et des sondes molles (caractéristiques du milieu).

2.4.1 Observables

L’étude tomographique du plasma de quarks-gluons nécessite d’utiliser plusieurs obser-
vables en lien avec la fragmentation et l’hadronisation du parton. Les différentes observables
permettent d’obtenir des informations complémentaires sur les mécanismes d’interaction et
les modifications produites au niveau hadronique.

Mesure inclusive et semi-inclusive : l’approche la plus simple d’un point de vue
expérimental est la mesure inclusive de la production de particules (par exemple les par-
ticules chargées) ou d’une particule identifiée (par exemple le π0). À cause du phénomène
de perte d’énergie des partons dans le milieu, la production de hadrons doit être en partie
supprimée dans le cas d’une collision noyau-noyau permettant la formation d’un plasma de
quarks-gluons. Les modifications induites par le milieu sont ainsi évaluées par rapport à la
section efficace de production de référence mesurée expérimentalement dans les collisions
proton-proton. Afin de comparer une collision proton-proton (un nucléon par particule) à
une collision noyau-noyau (N nucléons par noyau), la section efficace de référence est nor-
malisée par le nombre de collisions binaires (collisions nucléon-nucléon) se produisant lors
d’une collision entre deux noyaux. Le paramètre caractéristique est le facteur de modification
nucléaire RAA :

RAA(pT ) =
dNAA/dpT

< Ncoll > dNpp/dpT
(2.11)

où < Ncoll > est le nombre de collisions nucléon-nucléon, dNAA/dpT le spectre hadronique
mesuré en collision noyau-noyau et dNpp/dpT le spectre hadronique mesuré en collision
proton-proton. Le paramètre RAA permet de quantifier la suppression des hadrons liée à
l’interaction des partons dans le milieu. Une valeur de RAA égale à 1 signifie que la collision
noyau-noyau n’est en fait qu’une superposition de collisions indépendantes proton-proton.
Une valeur de RAA inférieure à 1 met en évidence une suppression des hadrons produits
par la collision noyau-noyau. La figure 2.10 représente le facteur de modification mesuré par
l’expérience ALICE dans le cas des hadrons chargés inclusifs. Il indique plusieurs régimes
avec un domaine au-delà de 8 GeV/c, qui peut être interprété comme provenant de la perte
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d’énergie des partons, et un domaine d’impulsions inférieures à 8 GeV/c qui semble montrer
une combinaison des effets de perte d’énergie du parton et des effets collectifs propres au mi-
lieu lui-même (en particulier le flot transverse). Un degré de précision supplémentaire peut
finalement être apporté par l’identification des particules qui permet d’accéder à la perte
d’énergie de partons de nature différente (gluon, quark léger et lourd).
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Figure 2.10: Facteur de modification nucléaire (RAA) des hadrons chargés en fonction de l’im-
pulsion transverse (pT ) mesuré par l’expérience ALICE en collision Pb-Pb à√
s = 2.76 TeV de centralité 0-5% [99].

Le facteur de modification nucléaire apporte des informations sur la quantité d’énergie
perdue par les partons lors de la traversée du milieu, mais il ne permet pas d’étudier la ma-
nière dont cette énergie est redistribuée. Il est par exemple impossible de déterminer l’énergie
à laquelle les gluons sont rayonnés, ni l’angle avec lequel ils sont émis par le parton. Pour
accéder à ce type d’information, il est nécessaire d’étudier de manière simultanée l’ensemble
des hadrons produits par la collision.

Corrélations hadron-hadron : cette méthode utilise une approche statistique en étu-
diant les corrélations angulaires et énergétiques entre les hadrons d’un même événement.
Au niveau des processus durs, la réaction la plus probable consiste à avoir un état final
composé de deux partons émis à 180◦. La distribution azimuthale des hadrons par rapport
à une particule de référence (généralement la particule la plus énergétique de l’événement)
prend alors la forme de deux pics distincts correspondant à ∆Φ = 0◦ et 180◦ (voir figure
2.11). L’étude des caractéristiques de ces pics, comme leur largeur ou leur intégrale, apporte
des informations sur la modification des hadrons par le milieu. Le phénomène de suppres-
sion des hadrons doit en effet conduire à une diminution de l’amplitude des pics en collision
noyau-noyau (comparé au cas d’une collision proton-proton). De plus, les pertes d’énergie
radiatives sous forme de rayonnement de gluons doivent conduire à un élargissement de la
distribution angulaire des hadrons. La valeur de cet élargissement apporte des informations
sur l’angle d’émission des gluons rayonnés. Sur la figure 2.11, la comparaison des distri-
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butions azimuthales di-hadrons obtenues pour les collisions proton-proton et noyau-noyau
indique clairement une suppression importante des hadrons émis à l’opposé de la particule
prise comme référence.
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FIG. 4: (a) Efficiency corrected two-particle azimuthal dis-
tributions for minimum bias and central d+Au collisions, and
for p+p collisions[6]. Curves are fits using Eq. 3, with pa-
rameters given in Table I. (b) Comparison of two-particle
azimuthal distributions for central d+Au collisions to those
seen in p+p and central Au+Au collisions [6]. The respective
pedestals have been subtracted.

TABLE I: Fit parameters from Eq. 3. Errors are statistical
only.

p+p min. bias d+Au min. bias d+Au central

AN 0.081±0.005 0.073±0.003 0.067±0.004

σN 0.18±0.01 0.20±0.01 0.22±0.02

AB 0.119±0.007 0.097±0.004 0.098±0.007

σB 0.45±0.03 0.48±0.02 0.51±0.03

P 0.008±0.001 0.039±0.001 0.052±0.002

trality dependence [14]. Figure 3 also shows RAB(pT ) for
central Au+Au collisions[5], exhibiting large suppression
in hadron production at high pT .

Figure 4(a) shows the two-particle azimuthal distribu-
tion D(∆φ), defined as

D(∆φ) ≡ 1

Ntrigger

1

ε

dN

d(∆φ)
, (2)

for minimum bias and central d+Au collisions, and for
p+p collisions[6]. Only particles within |η|<0.7 are in-
cluded in the analysis. Ntrigger is the number of particles
within 4<pT (trig)<6 GeV/c, referred to as trigger parti-
cles. The distribution results from the correlation of each
trigger particle with all associated particles in the same
event having 2 < pT < pT (trig), where ε is the tracking
efficiency of the associated particles. The normalization
uncertainties are less than 5%.

The azimuthal distributions in d+Au collisions include

a near-side (∆φ ∼ 0) peak similar to that seen in p+p and
Au+Au collisions [6] that is typical of jet production, and
a back-to-back (∆φ ∼ π) peak similar to that seen in p+p
and peripheral Au+Au collisions [6] that is typical of di-
jet events. The azimuthal distributions are characterized
by a fit to the sum of near-side (first term) and back-to-
back (second term) Gaussian peaks and a constant:

D(∆φ) = AN
e−(∆φ)2/2σ2

N

√
2πσN

+AB
e−(|∆φ|−π)2/2σ2

B

√
2πσB

+P. (3)

Fit parameters are given in Table I. Their systematic
uncertainties are highly correlated between the data sets,
and are less than 20% for σN and less than 10% for all
other parameters. The only large difference in the az-
imuthal distributions in p+p and d+Au collisions is the
growth of the pedestal P . It increases with increasing
〈Nbin〉, but is not proportional to 〈Nbin〉 as might be ex-
pected for incoherent production. Both σN and σB ex-
hibit at most a small increase from p+p to central d+Au
collisions. A small growth in σB is expected to result
from initial-state multiple scattering [24, 25]. The mod-
est reduction in the correlation strengths AN and AB

from p+p to central d+Au collisions is similar to that
seen previously for peripheral Au+Au collisions [6].

Figure 4(b) shows the pedestal-subtracted azimuthal
distributions for p+p and central d+Au collisions.
The azimuthal distributions are shown also for central
Au+Au collisions after subtraction of the elliptic flow
and pedestal contributions [6]. The near-side peak is sim-
ilar in all three systems, while the back-to-back peak in
central Au+Au shows a dramatic suppression relative to
p+p and d+Au.

The contrast between d+Au and central Au+Au col-
lisions in Figs. 3 and 4 indicates that the cause of the
strong high pT suppression observed previously is asso-
ciated with the medium produced in Au+Au but not in
d+Au collisions. The suppression of the inclusive hadron
yield at high pT in central Au+Au collisions has been
discussed theoretically in various approaches (see [5] for
references). Measurements of central Au+Au collisions
[5] are described both by pQCD calculations that incor-
porate shadowing, the Cronin effect, and partonic energy
loss in dense matter, and by a calculation extending the
saturation model to high momentum transfer. However,
predictions of these models differ significantly for d+Au
collisions. Due to the Cronin effect, pQCD models pre-
dict that RAB(pT )>1 within 2<pT <6 GeV/c for mini-
mum bias d+Au collisions, with a peak magnitude of 1.1-
1.5 in the range 2.5<pT <4 GeV/c [11]. The enhancement
is expected to be larger for central collisions [12]. The
saturation model calculation in [7] predicts RAB(pT )<1,
with larger suppression for more central events, achieving
RAB(pT )∼ 0.75 for the 20% most central collisions. In
contrast, another saturation model calculation [15] gener-
ates an enhancement in RAB(pT ), similar to the Cronin

Figure 2.11: (a) Distribution azimuthale à deux particules pour des collisions d+Au centrale et
de biais minimum, ainsi que des collisions p+p. (b) Comparison des distributions
azimuthales à deux particules pour des collisions centrales d+Au, des collisions p+p
et des collisions centrales Au+Au dans l’expérience STAR [100].

Il faut cependant noter que la sélection d’un hadron particulier comme référence peut
biaiser l’origine du processus dur au sein du milieu. Comme l’indique la figure 2.12, la
production des deux partons émis dos-à-dos ne sera pas distribuée uniformément dans le
milieu, mais préférentiellement près de la surface correspondant à l’hémisphère du hadron
de référence. Ce biais de surface conduit à une perte d’énergie faible du côté de hadron de
référence tandis que le parton émis à 180◦ devra traverser la quasi totalité du milieu avant
de s’hadroniser.

Questions addressed by dihadron correlations

• What is the pathlength dependence of energy loss?

→ for constant medium, elastic energy loss ∼ number of scattering centers ∼ L
→ radiative energy loss ∼ L2 due to coherence time effects

(modified by medium expansion - in Bjorken expansion radiative energy loss ∼ L!)

near side near side

L pathlength dependence L pathlength dependence
2

⇒ expect (due to surface bias of trigger) ∼ factor 2 in away side pathlength

Large difference in predicted away side per-trigger yield (IAA)

Sufrace bias

Probability density of triggered event vertices 8 GeV< pT <15 GeV (near side ≡ −x):

The away side yield must be averaged over this distribution rather than [TA(r0)]
2

TAA(0)

⇒ expect different away side suppression even for identical RAA

T. Renk and K. J. Eskola, Phys. Rev. C 75 (2007) 054910

Figure 2.12: Gauche : illustration du biais de surface lié à la position du vertex de production
des partons ; Droite : simulation de la densité de probabilité de position du vertex de
production du hadron de référence (8 < pT < 15 GeV/c) [101].
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Les corrélations di-hadrons apportent des informations plus précises que celles obtenues à
partir du facteur de modification nucléaire. En étudiant les corrélations entre hadrons dans
une gamme d’énergie définie (coupure en énergie sur le hadron de référence et sur les hadrons
corrélés), il est en effet possible d’étudier la manière dont l’énergie perdue par le parton est
redistribuée au sein du milieu en fonction de l’énergie du parton initial.

Jets de particules : les processus de fragmentation et d’hadronisation des partons
conduisent à la production de particules plus ou moins collimées autour d’un axe : les jets.
L’intérêt majeur des jets dans l’étude de la perte d’énergie des partons dans le milieu est
d’associer entre eux les hadrons provenant de la fragmentation d’un même parton. Comme
dans le cas des hadrons inclusifs, il est possible de mesurer le facteur de modification nucléaire
des jets de particules (RjetAA). Dans le cas des jets, ce facteur dépend de deux paramètres sup-
plémentaires liés aux algorithmes utilisés pour la reconstruction des jets : le rayon du cône
de détection (R) et le seuil en impulsion transverse des hadrons inclus dans la reconstruction
du jet (pseuilT ). Les pertes d’énergie radiatives se faisant sous la forme de rayonnement de
gluons émis avec un angle plus ou moins important, la valeur du RjetAA peut varier en fonction
de la taille de cône utilisée dans les algorithmes de reconstruction. Dans le cas idéal d’un
cône suffisamment grand pour inclure la totalité des particules résultant de l’hadronisation
des gluons rayonnés, le paramètre RjetAA doit tendre vers 1. Si le RjetAA mesuré est inférieur à
1, cela signifie qu’une fraction de l’énergie perdue par le parton dans le milieu n’a pas été
récupérée sous forme de hadrons dans le jet. L’autre paramètre important est le seuil en
impulsion transverse des particules incluses dans la reconstruction du jet. Selon la valeur
de ce seuil, une fraction plus ou moins importante des gluons rayonnés par le parton sera
récupérée dans le jet. Ces gluons étant de faible énergie, le facteur RjetAA doit être d’autant
plus petit (supression forte) que le seuil en impulsion est grand. L’étude de la distribution du
paramètre RjetAA en fonction de ces deux paramètres (Rcone et pseuilT ) permet ainsi d’accéder
aux caractéristiques spatiales (distribution angulaire) et énergétiques de la perte d’énergie
du parton dans le milieu.
L’étude des jets permet également une étude directe de la redistribution en énergie des

particules à partir de l’estimation des fonctions de fragmentation partonique. Les pertes
d’énergie radiatives des partons doivent théoriquement conduire à une redistribution en
énergie des hadrons au sein du jet : les hadrons de haut-pT sont supprimés alors que les
gluons rayonnés augmentent le nombre de hadrons de bas-pT . La fragmentation est généra-
lement représentée par la distribution du paramètre ξ = log(Eparton/Ehadron). La figure 2.13
représente les modifications attendues pour un parton d’énergie E = 7 GeV et E = 100 GeV.
Dans le vide, la distribution dN/dξ fait apparaître une structure caractéristique appelée
"Hump-Back Plateau" [103]. Il apparait alors que l’interaction du parton dans le milieu se
traduit par une augmentation du nombre de hadrons de bas-pT (ou grand ξ) et par une
diminution du nombre de hadrons de haut-pT (ou bas ξ).
La comparaison de la fragmentation des partons dans les collisions proton-proton et noyau-

noyau nécessite au préalable de définir précisément le terme de "fonction de fragmentation".
Dans les collisions proton-proton, l’énergie totale du jet reconstruit est une bonne approxima-
tion de l’énergie initiale du parton à l’origine du jet. La fonction de fragmentation déterminée
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Comparisons of (3) to data have been performed repeat-
edly [13, 14, 15, 16, 17] over a logarithmically wide kine-
matic regime 7 < Ejet < 150 GeV in both e+e− and
pp/pp̄ collisions. To illustrate the degree of agreement,
we reproduce in Fig. 1 two sets of data [15, 16] together
with the curves obtained from (3). The parameters Kh

and Λeff entering (3) were chosen as in Refs. [15, 16],
Λeff = 254 MeV, Kh = 1.15 for Ejet = 100 GeV,
Kh = 1.46 for Ejet = 7 GeV. Following Ref. [16], we
use Nf = 3. From Fig. 1, we conclude that Eq.(3) ac-
counts reasonably well for the jet multiplicity distribution
in the kinematic range accessible in heavy ion collisions
at RHIC (Ejet ∼ 10 GeV) and at the LHC (Ejet ∼ 100
GeV). Corrections not included in (3) are of relative or-
der 1/τ , which at face value corresponds to a 30% (15%)
uncertainty at typical RHIC (LHC) jet energies. Also,
the MLLA resums large ξ, τ ∼ ξ, but is expected to be
less accurate for hard jet fragments, where other improve-
ments are currently sought for [18]. Thus, the agreement
of (3) to data for the entire ξ-range is surprisingly good.
At least from a pragmatic point of view, (3) can serve
as a baseline on top of which one can search for medium
effects.
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FIG. 1: The single inclusive hadron distribution as a function
of ξ = ln [Ejet/p]. Data taken from e+e− collision experiments
TASSO [15] and OPAL [16], Ejet =

√
s/2. Lines through data

obtained from the MLLA result (3). Dashed and dash-dotted
curves labeled ”in medium” are calculated with a medium-
modification fmed = 0.8 of the LO splitting functions.

The multiplicity distribution dNh/dξ is dominated by

soft gluon bremsstrahlung, dIvac " CR
αs(k2

T )
π

dk2
T

k2
T

dω
ω ,

ω = z Ejet, which is described by the singular parts
∼ 1

z , ∼ 1
(1−z) of the QCD splitting functions entering

(2). They determine the leading 1
ν -terms of the evolution

matrix in (1). Remarkably, calculations of the additional

medium-induced radiation indicate that ω dImed

dω is ∼ 1√
ω

if the medium is modeled by soft multiple momentum
transfers [19, 20], and ∼ 1

ω if the medium is modeled by a
single hard momentum transfer [6, 20]. Thus, parametri-
cally, the additional medium-dependent contributions to

the gluon bremsstrahlung are more singular than dIvac

for small ω and may thus be expected to dominate the
multiplicity distribution (3). However, destructive inter-
ference due to finite in-medium path length is known to
regulate the soft ω-divergence [20]. For the relevant range

of soft ω, this may be modeled as ω dImed

dω ∼ fmed = const.
A medium-induced gluon bremsstrahlung spectrum, con-
sistent with this ansatz, was also found in [21]. This
suggests that medium effects enter (3) by enhancing the
singular parts of all LO splitting functions Pgg , Pqg , Pqq

by the same factor (1 + fmed), such that for example

Pqq(z) = CF

(
2 (1 + fmed)

(1 − z)+
− (1 + z)

)
. (4)

We do not modify the non-singular subleading terms.
On general grounds, one expects that medium-induced
rescattering is a nuclear enhanced higher-twist contribu-
tion (fmed ∼ L

Q2 ) [22]. This means that it is subleading

in an expansion in Q2, while being enhanced compared
to other higher twist contributions by a factor propor-
tional to the geometrical extension ∼ L of the target. A
1/Q2-dependence of fmed is also suggested by the follow-
ing heuristic argument. A hard parton of virtuality Q has
a lifetime ∼ 1/Q in its own rest frame, and thus a life-
time (in-medium path length) t = 1

Q
E
Q before it branches

in the rest frame of the dense matter through which it
propagates. Medium effects on a parton in between two
branching processes should grow proportional to (some
power of) the in-medium path length and thus ∝ 1/Q2

or higher powers thereof.
In contrast, jet quenching models [3, 6, 7, 8] reproduce

inclusive hadron spectra in Au-Au collisions at RHIC by
supplementing the standard QCD LO factorized formal-
ism with the probability P (∆E) that the produced par-
tons radiate an energy ∆E due to medium effects prior
to hadronization in the vacuum [9]

P (∆E) =

∞∑

n=0

1

n!

[
n∏

i=1

∫
dωi

dImed(ωi)

dω

]
δ

(
∆E −

n∑

i=1

ωi

)

× exp

[
−

∫ ∞

0

dω
dImed

dω

]
. (5)

This formula is based on a probabilistic iteration of
medium-modified parton splittings, but does not keep
track of virtuality or angular ordering. The kT -integrated
medium-induced contribution dImed is treated on an
equal footing with LO vacuum splitting functions. In
this sense, the medium-modified fragmentation func-

tion D
(med)
h/q (x, Q2) =

∫ 1

0 dε E P (∆E) 1
1−ε Dh/q(

x
1−ε , Q

2),

ε = ∆E/E, entering jet quenching models [3, 6, 7, 8],
amounts to a medium-induced Q2-independent modifi-
cation of parton fragmentation.

The single inclusive distribution D(x, Q2), supple-
mented by LPHD, is a fragmentation function. Single
inclusive hadron spectra, whose parent partons show a

Figure 2.13: Distribution inclusive de hadron en fonction de ξ = log(Ejet/p). Les données e+e−
de TASSO et OPAL sont comparées aux fonctions de fragmentation dans le vide
(lignes solide rouge et tiretée bleue) et aux fonctions de fragmentation modifiées par
le milieu (lignes tiretées rose et verte) [102].

à partir de la distribution du paramètre ξ = log(Ejet/p) est alors une bonne approximation
de la fonction de fragmentation partonique (distribution du paramètre ξ = log(Eparton/p)).
Dans le cas des collisions noyau-noyau, cette approximation n’est plus valable. La fonction
de fragmentation déterminée à partir de l’énergie Ejet ne correspond pas à la fonction de
fragmentation du parton initial car l’énergie de ce dernier peut différer de l’énergie totale
du jet reconstruit à cause de l’énergie dissipée dans le milieu. Pour accéder à la véritable
fonction de fragmentation (au sens théorique du terme), il faut ainsi être en mesure d’estimer
l’énergie initiale du parton, autrement dit l’énergie avant son interaction dans le milieu.

2.4.2 Corrélation photon/π0-hadron

Il est possible d’estimer l’énergie initiale du parton en sélectionnant des événements de
type "gamma-jet" pour lesquels un photon est émis dos-à-dos avec un parton. Les deux
processus durs à l’origine des évènements gamma-jet sont, à l’ordre dominant, la diffusion
Compton (g + q → γ + q) et l’annihilation quark anti-quark (q + q̄ → γ + g). Pour ces
deux processus, l’énergie du photon est égale à celle du parton émis à 180◦ : une mesure
expérimentale de l’énergie du photon permet ainsi d’accéder directement à l’énergie initiale
du parton. Comme le photon est insensible à l’interaction forte, il présente l’avantage de
n’être quasiment pas modifié par le milieu, permettant également une mesure non-biaisée
de l’énergie initiale du parton dans les collisions noyau-noyau. Il faut noter que des effets
tels que le mouvement intrinsèque des partons dans l’état initial de la collision (mouvement
de Fermi) et les corrections d’ordres supérieurs peuvent venir détériorer l’équivalence entre
l’énergie du photon et celle du parton. Ces effets restent cependant relativement faibles aux
énergies considérées.
L’analyse des évènements gamma-jets permet de calculer la fonction de fragmentation du

parton en utilisant comme référence l’énergie du photon qui correspond à l’énergie initiale
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du parton avant son interaction avec le milieu. L’étude de la fragmentation peut se faire
soit en reconstruisant le jet de particules, soit par l’intermédiaire des corrélations entre le
photon et les hadrons émis dans l’hémisphère opposé (figure 2.14). La reconstruction des jets
en collision noyau-noyau est une étape expérimentale compliquée à cause du bruit de fond
inhérent à l’événement. Ce bruit de fond peut atteindre plusieurs centaines de GeV selon la
taille du jet considérée. La soustraction du bruit lors de la reconstruction du jet induit des
fluctuations importantes qui imposent une énergie minimale des jets reconstruits (de l’ordre
de 30 GeV). Dans le cas des corrélations, le fait de ne pas reconstruire le jet permet d’étudier
la fragmentation des partons à partir d’une énergie plus faible (typiquement 5 GeV). Les
deux méthodes sont ainsi complémentaires, et permettent d’accéder à une gamme en énergie
très importante.

Figure 2.14: Illustration de l’analyse des corrélations photon-hadron.

L’étude de la fragmentation des partons à partir des corrélations photon-hadron constitue
l’axe central de cette thèse. Les deux observables privilégiées de cette étude sont les corré-
lations angulaires azimuthales (∆φ = φphoton − φhadron) et la fonction de fragmentation du
parton approximée par la distribution du paramètre xE :

xE =
−~p γ

T · ~p hadron
T

|~p γ
T |2

≈ ~p parton
T · ~p hadron

T

|~p parton
T |2

≡ zT (2.12)

Une des principales difficultés expérimentales réside dans la sélection des événements gamma-
jet. Cette sélection repose sur l’identification des photons appelés "photons prompts", au-
trement dit les photons produits directement par le processus dur.
Ce travail de thèse s’intéresse également à la possibilité d’utiliser des événements π0-

jets pour la mesure de la fragmentation du parton. En effet, les corrélations π0-hadron
possèdent une statistique beaucoup plus importante que les corrélations photon-hadron. La
comparaison entre ces deux types de sondes permet par ailleurs de tester différents scénarios
de perte d’énergie dans le milieu.
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Les progrès de la physique des ions lourds sont indissociables de ceux de la physique des accéléra-
teurs. Près de trente années se sont écoulées entre la mise en activité du premier accélérateur d’ions
lourds relativistes, le Bevalac au LBNL (Lawrence Berkeley National Laboratory), et les expériences
réalisées au Large Hadron Collider (LHC) au CERN. L’objectif de ce chapitre est de fournir un
panorama des résultats expérimentaux majeurs de la physique des ions lourds afin de définir notre
degré de compréhension actuel.

Nous commencerons par introduire la cinématique des collisions d’ions lourds, en particulier le
concept de centralité. Nous décrirons ensuite les effets nucléaires "froids" dont la compréhension
est indispensable à l’étude du plasma de quark-gluon. Nous terminerons par une présentation des
résultats produits durant les 20 dernières années, et nous discuterons l’apport du LHC à la physique
des ions lourds en insistant sur les observables relatives à la problématique de cette thèse.
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3.1 Caractéristiques de la collision

3.1.1 Cinématique relativiste

La description cinématique d’une collision de particules passe avant tout par le choix d’un
référentiel. Les deux référentiels couramment utilisés sont le référentiel du laboratoire (LB)
et le référentiel du centre de masse (CDM). L’énergie disponible dans le centre de masse
pour la production de particules dépend du type de collision (cible fixe, collision frontale).
Au sein du référentiel, la coordonnée le long de l’axe du faisceau de particules est appelée
"coordonnée longitudinale" (axe z), les deux coordonnées perpendiculaires à cet axe étant
appelées "coordonnées transverses" (axe x-y). L’impulsion d’une particule peut ainsi être
décomposée en une composante longitudinale pz et une composante transverse ~pT qui est
invariante par translation selon l’axe ~z. Une variable sans dimension, la rapidité (y), est
utilisée pour décrire la dynamique des collisions de particules relativistes. Soit une particule
d’énergie E, de vitesse longitudinale β et d’angle d’émission θ :

y =
1

2
ln(

E + pz
E − pz

) =
1

2
ln(

1 + β

1− β ) =
1

2
ln(

√
m2 + p2 + pcosθ√
m2 + p2 − pcosθ

) (3.1)

L’intérêt d’utiliser la rapidité vient du fait que sa distribution ne change pas lors d’un
changement de référentiel. Le passage du référentiel du laboratoire à celui du centre de
masse entraîne un décalage constant de telle sorte que :

yLB = yCDM + ybeam/2 (3.2)

Pour des collisions ultra-relativistes (p � m), il est possible de définir une autre variable
appelée "pseudo-rapidité" (η) qui dépend uniquement de l’angle θ :

η = −ln(tan(θ/2)) =
1

2
ln(

p+ pcosθ
p− pcosθ ) ≈ y (3.3)

3.1.2 Pouvoir d’arrêt

L’évolution spatio-temporelle d’une collision d’ions lourds dépend à la fois du type de
noyau considéré et de l’énergie de la collision. Ces caractéristiques sont prises en compte
via le "pouvoir d’arrêt nucléaire", un paramètre qui correspond à la quantité d’énergie que
perdent les nucléons des noyaux durant l’interpénétration. Alors qu’à faible énergie les deux
noyaux se freinent mutuellement (accélérateur AGS), l’augmentation de l’énergie de la col-
lision (

√
s > 100 GeV/nucléon, accélérateurs RHIC et LHC) fait apparaître une saturation

du pouvoir d’arrêt : les nucléons ne perdent plus toute leur énergie et traversent le noyau
opposé (phénomène de transparence). Ces deux schémas de collisions sont décrits respecti-
vement par les modèles de Landau [82] et de Bjorken [76], représentés sur la figure 3.1. La
saturation du pouvoir d’arrêt conduit finalement à une diminution de la densité baryonique
µB (section 2.1) : dans une collision de faible énergie, les nucléons sont directement impliqués
via les quarks de valence (µB 6= 0), mais lorsque l’énergie est suffisante pour atteindre le
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régime de transparence, les nucléons se "traversent" et les gluons (et les quarks de la mer)
dominent la collision (µB = 0).

1.2. THE SEARCH FOR THE QGP 11

from direct QCD processes where the quarks and gluons interact directly to produce jets with pT > 2 GeV.

1.2.2 Collision scenarios: The Landau Model

Figure 1.8: A heavy ion collision with full stopping (Landau picture).

Figure 1.8 shows a sketch of a heavy ion collision in the full stopping picture, introduced by Landau
[20]. The following assumptions are made about the evolution of the collision:

1. Full Stopping. The nuclei are stopped completely as they hit each other and all their kinetic energy
is deposited in the fireball.

2. Hydrodynamics. The particles have such a small mean free path that the state of the matter can
be treated as an ideal fluid (ideal in the sense that it is non-viscous and non-heat-conducting).

3. Adiabatic expansion. The expansion of the fluid following the collision is adiabatic, ie. the entropy
is constant.

In Landaus model the equation of state is set to the equation of state of an ideal relativistic gas: p = ε
3 ,

where p is the pressure and ε is the energy density[20]. As a consequence of this choice and the assumptions
above the number of particles produced becomes directly proportional to the entropy, N ∝ S0, where S0

is the initial entropy.

Relativistic hydrodynamics is calculated from the relations δT ik

δxk = 0 where T ik is the energy-momentum
tensor:

T ik = pgik + (ε+ p)uiuk (1.4)

Here, ui is the four-velocity and g00 = −1, g11 = g22 = g33 = 1. For i #= k, gik = 0. Solving the
resulting equations of motion with the above assumptions, Landau demonstrated that the multiplicity
distributions, dN

dη must be expected to be Gaussian in η. This has been observed at RHIC energies for
dN
dy of pions and kaons by the BRAHMS experiment [21]. The similar LHC measurement is difficult due
to the restricted y range with proper identification of particle type.

1.2.3 Collision scenarios: The Bjorken Picture

A different approach from the one applied by Landau has been suggested by Bjorken [22]. In this approach
the nuclei are ‘transparent’ to each other so that in the collision, they interpenetrate losing a fraction of
their energy in the process. Figure 1.9 shows a heavy ion collision with transparency. Bjorken makes the
following assumptions about the evolution of heavy ion collisions:

1. Transparency. The collisions are transparent in the sense that the region around y = 0 is net-baryon
free.
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Figure 1.9: A heavy ion collision with transparency (Bjorken picture).

2. Boost invariance. The number of produced particles per unit rapidity, dN
dy , is assumed to be constant

within a few units of rapidity around y = 0.

3. Hydrodynamics. At a time t ∼ 1 fm/c the matter in the fireball is thermalized and relativistic
hydrodynamics is applicable to describe the expanding fluid.

4. For central collisions transverse expansion can be ignored for a time comparable to the size of the
nuclei divided by c. This reduces the problem of describing the collisions to a two-dimensional one
in z and t.

From these assumptions two important results are derived: First of all assumption 2 implies homogeneity
of the source. This means that there can be no longitudinal pressure gradient so all ‘layers’ of the fireball
travel forward with β = z/t. The proper time of a layer is then τ = t/γ = t ·

√
1 − β2 =

√
t2 − z2.

With these proper times the collisions can be visualized in a space-time diagram, where the z − t curves
are hyperbolas in space-time. Secondly the Bjorken collision scenario predicts the energy density in the
fireball. Bjorken estimates ε = 1 − 10 GeV/fm3. This is high enough for a QGP to be created according
to lQCD (Section 1.2.1).

1.2.4 Glauber Calculations in Heavy Ion Collisions

Regardless of the collision scenario considered it is possible to calculate geometrical properties of the
collisions using socalled Glauber7 Modeling. There are two variants of Glauber Modeling: The optical
approach where quantum wave functions are used directly to calculate geometrical properties of heavy
ion collisions and the Monte–Carlo Glauber approach where computer simulations are constructed based
on Glaubers model. For both approaches two inputs are required from physics data [23]:

Nuclear Charge Densities Usually a Fermi distribution is used to describe the nuclear charge density,
given by:

ρ(r) = ρ0
1 + w(r/R)2

1 + exp( r−R
a )

(1.5)

Here, ρ0 is the density in the core of the nucleus, R is the nuclear radius, a is the ‘skin depth’ of
the nucleus, and w measures the deviation from a spherical shape of the nucleus. w is usually very
small. This holds at least for Au and Pb nuclei while U nuclei are known to be more elongated and
have larger values of w.

Inelastic Nucleon–Nucleon Cross Section To simulate the individual nucleon–nucleon interactions in a
heavy ion collision the corresponding experimental cross section, σNN

Inel, are needed for the calculation.
These should be known from measurements of p+p collisions.

7After Nobel Laureate Roy J. Glauber who first considered using optical techniques for modeling of high energy subatomic
reactions.

Figure 3.1: Haut : illustration d’une collision noyau-noyau vue par le modèle de Landau ; Bas :
illustration d’une collision noyau-noyau vue par le modèle de Bjorken.

3.1.3 Centralité

La description de la géométrie de la collision, ou centralité, fait appel au "paramètre d’im-
pact" (~b) défini comme la distance transverse entre les barycentres des deux noyaux (figure
3.2). Une collision centrale correspond à un choc frontal entre les deux noyaux (b ≈ 0),
alors qu’une collision périphérique ne met en jeu qu’une partie de chacun des noyaux (b > 0).
La zone d’interaction est ainsi d’autant plus grande que le paramètre d’impact est petit.
Par conséquent, la densité d’énergie est beaucoup plus importante pour des collisions cen-
trales que pour des collisions périphériques, ces dernières ne permettant généralement pas
d’atteindre les conditions thermodynamiques nécessaires à la formation du plasma de quark-
gluon. La description géométrique de la collision fait intervenir deux types de nucléons : les
nucléons participants et les nucléons spectateurs. Comme les nucléons spectateurs gardent
leur vitesse longitudinale et émergent autour d’un angle de 0o, il est expérimentalement im-
possible de les mesurer. Des estimations théoriques, rassemblées sous le terme générique de
"modèle de Glauber" 1 [104], ont alors été développées pour relier le paramètre d’impact aux
observables expérimentales. Le modèle de Glauber modélise la collision noyau-noyau comme
une superposition de collisions nucléon-nucléon, en faisant l’approximation d’une trajectoire
rectiligne des nucléons (approximation eikonale) 2.
Considérons la collision d’un noyau A (contenant A nucléons) et d’un noyau B (contenant

B nucléons) avec un paramètre d’impact ~b (figure 3.2). La densité de nucléons de chacun des

1. le terme "modèle de Glauber" est utilisé en référence aux travaux de Roy Glauber sur les collisions
nucléaires dans les années 1950.

2. Il existe en fait deux approches du modèle de Glauber : le modèle optique et l’approche Monte-Carlo.
Le lecteur intéressé par la spécificité de chacune de ces approches peut se référer à [105].
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A

Figure 3: Schematic representation of the Optical Glauber Model geometry, with

transverse (a) and longitudinal (b) views.

2.3 Optical-limit Approximation

The Glauber Model views the collision of two nuclei in terms of the individual

interactions of the constituent nucleons (see, e.g., Ref. (27)). In the optical limit,

the overall phase shift of the incoming wave is taken as a sum over all possible

two-nucleon (complex) phase shifts, with the imaginary part of the phase shifts

related to the nucleon-nucleon scattering cross section through the optical theo-

rem(28,29). The model assumes that at sufficiently high energies, these nucleons

will carry sufficient momentum that they will be essentially undeflected as the

nuclei pass through each other. It is also assumed that the nucleons move inde-

pendently in the nucleus and that the size of the nucleus is large compared to the

extent of the nucleon-nucleon force. The hypothesis of independent linear tra-

jectories of the constituent nucleons makes it possible to develop simple analytic

expressions for the nucleus-nucleus interaction cross section and for the number

of interacting nucleons and the number of nucleon-nucleon collisions in terms of

the basic nucleon-nucleon cross section.

Consider Fig. 3. Two heavy-ions, “target” A and “projectile” B are shown

colliding at relativistic speeds with impact parameter b (for colliding beam ex-

periments the distinction between the target and projectile nuclei is a matter of

convenience). We focus on the two flux tubes located at a displacement s with

respect to the center of the target nucleus and a distance s − b from the center

of the projectile. During the collision these tubes overlap. The probability per

unit transverse area of a given nucleon being located in the target flux tube is

T̂A (s) =
∫

ρ̂A(s, zA)dzA, where ρ̂A (s, zA) is the probability per unit volume, nor-

malized to unity, for finding the nucleon at location (s, zA). A similar expression

follows for the projectile nucleon. The product T̂A (s) T̂B (s − b) d2s then gives

the joint probability per unit area of nucleons being located in the respective

overlapping target and projectile flux tubes of differential area d2s. Integrating

Figure 3.2: Représentation schématique de la géométrie du modèle de Glauber, avec une vue
longitudinale (a) et transverse (b) [105].

noyaux est généralement paramétrisée par une distribution de Fermi :

ρ(r) = ρ0
1 + ω(r/R)2

1 + exp ( r−Ra )
(3.4)

où ρ0 représente la densité nucléaire au centre du noyau (∼ 0.17 GeV/fm3), R le rayon du
noyau, a (≈ 0.5 fm) l’épaisseur de peau du noyau et ω une fonction caractérisant la déviation
par rapport à une forme sphérique. La probabilité (par unité d’aire transverse) qu’un nucléon
soit localisé dans un élément de surface situé à une distance ~s du centre du noyau A (~s−~b
pour le noyau B) est donnée par la fonction d’épaisseur (thickness function),

TA(~s) =

∫
ρA(~s, zA)dzA (3.5)

où ρA(~s, zA) représente la probabilité normalisée (par unité de volume) de trouver un nucléon
en (~s, zA). Le produit TA(~s)TB(~s−~b) correspond alors à la probabilité (par unité de surface)
d’avoir deux nucléons localisés dans un élément de surface où les noyaux se superposent
(voir figure 3.2 droite). La probabilité totale que deux nucléons se recouvrent spatialement,
appelée "fonction de recouvrement nucléaire (overlap function)", est définie comme :

TAB(~b) =

∫
TA(~s)TB(~s−~b)d2~s (3.6)

Le probabilité d’interaction doit tenir compte de la section efficace inélastique nucléon-
nucléon (σinelNN ) :

PAB(~b) = TAB(~b)σinelNN (3.7)

À partir de cette probabilité, il est finalement possible de déduire le nombre de collisions
binaires :

Ncoll(~b) = AB TAB(~b)σinelNN (3.8)
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Le nombre de nucléons participant à la collision est quant à lui donné par la relation :

Npart(~b) = A

∫
TA(~s)[1− exp−σ

inel
NN TB(~s−~b)]d2~s+B

∫
TB(~s−~b)[1− exp−σ

inel
NN TA(~s)]d2~s (3.9)

L’estimation de la centralité d’une collision se base sur la mesure expérimentale de la
multiplicité des particules chargées dσ/dNch. Cette distribution est ajustée par une estima-
tion obtenue à l’aide d’une simulation numérique combinant un modèle de production de
particules et un modèle de Glauber pour lequel les paramètres ~b, Npart et Ncoll sont connus
évènement par évènement. L’ajustement permet alors de relier dans chaque classe de cen-
tralité, définie comme une fraction de la distribution totale de particules chargées, la mesure
expérimentale dNevent/dNch au paramètre d’impact théorique. La figure 3.3 représente la
distribution des particules chargées dσ/dNch en fonction de la multiplicité Nch. Cette distri-
bution est reliée au paramètre d’impact (b) et au nombre de nucléons participants (Npart).
La centralité est généralement exprimée en pourcentage de la section efficace totale, la classe
de centralité [0-10]% correspondant par exemple aux 10% des événements les plus centraux.

Glauber Modeling in Nuclear Collisions 14

3 Relating the Glauber Model to Experimental Data

Unfortunately, neither Npart nor Ncoll can be directly measured in a RHIC exper-

iment. Mean values of such quantities can be extracted for classes of (Nevt) mea-

sured events via a mapping procedure. Typically a measured distribution (e.g.,

dNevt/dNch) is mapped to the corresponding distribution obtained from phe-

nomenological Glauber calculations. This is done by defining “centrality classes”

in both the measured and calculated distributions and then connecting the mean

values from the same centrality class in the two distributions. The specifics of this

mapping procedure differ both between experiments as well as between collision

systems within a given experiment. Herein we briefly summarize the principles

and various implementations of centrality definition.

3.1 Methodology

Figure 8: A cartoon example of the correlation of the final state observable

Nch with Glauber calculated quantities (b, Npart). The plotted distribution and

various values are illustrative and not actual measurements (T. Ullrich, private

communication).

The basic assumption underlying centrality classes is that the impact param-

eter b is monotonically related to particle multiplicity, both at mid and forward

rapidity. For large b events (“peripheral”) we expect low multiplicity at mid-

rapidity, and a large number of spectator nucleons at beam rapidity, whereas

for small b events (“central”) we expect large multiplicity at mid-rapidity and a

small number of spectator nucleons at beam rapidity (Figure 8). In the simplest

Figure 3.3: Illustration de la centralité d’une collision (centrale, semi-périphérique, périphérique)
en fonction de la multiplicité Nch, du paramètre d’impact b et du nombre de nucléons
participants Npart [105].

3.2 Effets nucléaires froids

Une collision noyau-noyau ne peut pas être interprétée comme une simple superposition de
collisions nucléon-nucléon. Des interactions entre partons dans l’état initial (entre hadrons
dans l’état final), appelées effets nucléaires froids, peuvent en effet modifier le spectre des
hadrons produits par la collision. Ces effets doivent être compris afin de séparer la contri-
bution de l’état initial (noyaux froids) et de l’état final (plasma de quarks-gluons) dans la
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modification des spectres de hadrons de haut-pT . L’état initial est étudié dans les collisions
asymétriques proton-noyau (pA). La densité d’énergie fournie par ce type de collisions est
supposée insuffisante pour la formation du plasma de quark-gluon, permettant ainsi d’asso-
cier les effets expérimentaux observés aux effets nucléaires froids uniquement.

3.2.1 Fonctions de structure FA
2

Certains de ces effets nucléaires froids ont été mis en évidence dans les années 1980 par
l’étude des fonctions de structure de noyaux plus ou moins lourds [106]. Des expériences de
diffusion profondément inélastique ont alors montré que la fonction de structure FA2 d’un
noyau A diffère de celle du deutérium F d2 utilisée comme référence 3. Cette modification est
étudiée via le paramètre :

RF
A
2 (x,Q2) =

FA2 (x,Q2)

AFN2 (x,Q2)
(3.10)

La valeur de ce paramètre, autrement dit l’impact des effets nucléaires sur la fonction de
structure, dépend de la fraction d’impulsion portée par le parton x et du transfert d’impulsion
Q2. Comme la fonction de structure est directement reliée aux distributions partoniques
(section 1.2), le facteur RFA2 permet de déterminer l’impact des effets nucléaires sur la
section efficace de production des hadrons. Les effets nucléaires sont communément séparés
en quatre grandes régions [107], comme l’illustre la figure 3.4 :

- RFA2 < 1 pour x . 0.1 : saturation de la densité de gluons (shadowing).

- RFA2 > 1 pour 0.1 . x . 0.3 : région d’anti-shadowing.

- RFA2 < 1 pour 0.3 . x . 0.8 : effets nucléaires EMC (modification de la distribution
en impulsion des quarks).

- RFA2 > 1 pour x & 0.8 : mouvement de Fermi des partons dans les nucléons.

Nuclear shadowing 3
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Figure 1. Diagram of leptoproduction on a nucleus through virtual photon exchange.
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Figure 2. Schematic behaviour of RA
F2

(x, Q2) as a function of x for a given fixed Q2.

(see [1, 2, 10, 11, 12] for previous experimental results), confined to a limited region of

not very low x and small or moderate Q2 (and with a strong kinematical correlation

between small x and small Q2, see Fig. 3), indicate that: i) shadowing increases with

decreasing x, though at the smallest available values of x the behaviour is compatible

with either a saturation or a mild decrease [8]; ii) shadowing increases with the mass

number of the nucleus [6]; and iii) shadowing decreases with increasing Q2 [7]. On

the other hand, the existing experimental data do not allow a determination of the

dependence of shadowing on the centrality of the collision.

In the region of small x, partonic distributions are dominated by sea quarks and

gluons. Thus isospin effects, partially corrected in practice by the use of deuterium as

Figure 3.4: Illustration du paramètre RFA2 en fonction de x (pour un Q2 fixé) [108].

3. les effets nucléaires faibles dans le deutérium permettent de considérer F d2 comme une approximation
moyennée sur l’isospin de la fonction de structure du nucléon FN2 .
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3.2.2 Fonction de distribution partonique nucléaire (nPDF)

Un des moyens utilisés pour tenir compte des effets nucléaires froids consiste à les inclure
dans des fonctions de distributions de partons nucléaires (nPDF). Les nPDFs sont paramétri-
sées, pour une valeur de Q2 donnée, via un ajustement des données provenant de la diffusion
profondément inélastique lepton-noyau et de processus Drell-Yan proton-noyau, puis calcu-
lées pour différentes valeurs de Q2 en résolvant les équations d’évolution DGLAP (section
1.2). Dans la région des petits x, les mesures expérimentales montrent une diminution (dé-
pendante du Q2) de la section efficace de production des hadrons (figure 3.5).

data on charged leptons DIS with nuclear targets and Drell-Yan in proton-nucleus collisions.

Checks of the compatibility with other hard processes are also available: the inclusive particle

production at high transverse momentum from d+Au collisions at RHIC has been included in

the analysis of [25] without signs of tension among the different data sets; the compatibility with

neutrino DIS data with nuclear targets has also been checked in Ref. [29]2. Moreover, the most

recent data from Z-production at the LHC [30] also show good agreement with the factoriza-
tion assumption although errors are still moderately large. In spite of these successes, the gluon

distribution remains poorly constrained for the nucleus, as can be seen in Fig. 1 where different

sets of nPDFs are shown, together with the corresponding uncertainty bands. DGLAP evolution

is, however, very efficient in removing the nuclear effects for gluons at small-x, which quickly
disappear for increasing Q2. In this way, these uncertainties become smaller for the hardest

available probes — see Fig. 1 — except for the large-x region where substantial effects could
survive for large virtualities. This region is, however, dominated by valence quarks which in

turn are rather well constrained by DIS data with nuclei.

An alternative approach [31] computing the small-x shadowing by its connection to the
hard diffraction in electron-nucleon scattering has been used to obtain the nuclear PDF at an

initial scale Q0 which are then evolved by NLO DGLAP equations. The inputs in this calcula-

tion are the diffractive PDFs measured in DIS with protons at HERA. These distributions are

dominated by gluons, resulting in a stronger shadowing for gluons than the corresponding one

for quarks. In Fig. 1 the results from this approach for the gluon case are also plotted. The

differences at small-x become even larger at smaller virtualities (not shown) [31].
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Fig. 1: Current knowledge of nuclear PDFs, shown as the ratio of bound over free proton gluon distributions,

RPb
g (x, Q2), obtained by the NLO global fits EPS09 [25], HKN07 [26] and nDS [27] at two different virtualities,

Q2 = 1.69 GeV2 and Q2=100 GeV2. Also shown for Q2 = 100 GeV2 are the results from Ref. [31] (FGS10) in

which gluon shadowing is computed from the DIS diffraction cross section measured at HERA.

It is worth noticing that in contrast to RHIC, where there are constraints at mid-rapidity

(x >∼ 10−2) for nuclear distributions from DIS and DY data, the LHC will probe completely

unexplored regions of phase space. This complicates the interpretation of the A+Adata before

a p+Abenchmarking programme removes these uncertainties, e.g. for the suppression of high

transverse momentum particles observed in [3]. The experimental data from d+Au collisions at

RHIC have already proven to be an appropriate testing ground for nPDFs studies: as mentioned

before, data on inclusive production at high-pT has been included in global fits, providing con-

straints for gluons; nPDFs are also extensively used in phenomenological studies of hard probes

2See, however, Ref. [28] for contradicting results.

Figure 3.5: Paramétrisation actuelles des nPDFs présentée comme le rapport entre la distribution
de gluons dans le noyau Pb sur la distribution de gluon dans le proton, obtenue par
les ajustements globaux NLO EPS09 [109], HKNO7 [110] et nDS [111] pour deux
valeurs de virtualité différentes Q2 = 1.69 GeV2 et Q2 = 100 GeV2. Pour la virtualité
Q2 = 100 GeV2, les résultats FGS10 [112] sont également représentés, calculés à partir
de la section efficace DIS mesurée à HERA [113].

Les mesures effectuées à RHIC en collision d-Au ont démontré la nécessité de prendre en
compte les effets nucléaires froids dans l’étude du plasma de quark-gluon [114]. Les effets
dominants sont le shadowing et l’effet Cronin, relié aux diffusions multiples des nucléons
dans le noyau [115]. Deux approches se sont développées de manière parallèle pour tenter
d’apporter une explication théorique aux résultats expérimentaux de RHIC : un modèle de
type "Color Glass Condensate" (section 2.2), et une modification de la paramétrisation des
nPDFs. L’expérience PHENIX à RHIC a mesuré le facteur de modification nucléaire RdA
dans le cas des photons directs, des électrons et de différents hadrons, permettant ainsi de
tester la validité des approches théoriques. Comme le montre la figure 3.6, les paramétri-
sations des nPDF (EPS09 dans ce cas) sont en bon accord avec la mesure expérimentale.
D’un point de vue plus général, les incertitudes expérimentales restent cependant encore trop
importantes pour permettre la confirmation d’un modèle particulier.
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Figure 3.6: Facteur de suppression nucléaire RdA du π0 pour la classe de centralité (0-20%). Les
courbes noires représentent les prédictions théoriques des fonctions de distributions
nucléaires EPS09 [116].

3.3 De 1987 à hier

Les programmes de physique des ions lourds relativistes ont réellement débuté en 1986
avec la mise en activité de l’Alternating Gradient Synchrotron (AGS) au BNL et du Super
Proton Synchrotron (SPS) au CERN. Les expériences concernaient alors des collisions en
cible fixe utilisant des noyaux relativement légers (A < 32). En 1994, le CERN débute son
"Lead Beam Programme", une expérience sur cible fixe utilisant des noyaux de Plomb qui
se concrétisera en février 2000 par l’annonce de la première mise en évidence expérimentale
d’un nouvel état de matière [117]. Au cours de cette année 2000, le Relativistic Heavy Ion
Collider (RHIC) est mis en activité au BNL. Il s’agit du premier accélérateur dédié à la
physique des ions lourds. Quatre expériences (BRAHMS, PHENIX, PHOBOS et STAR) y
étudient des collisions frontales noyau-noyau.

Accélérateur AGS SPS RHIC LHC
Mise en activité 1986 1994 2000 2010

Lieu BNL CERN BNL CERN
Mode fixe fixe collision collision
Noyaux Au Pb Au Pb

Energie
√
sNN (GeV/n) 4.8 17.3 200 2760

Table 3.1: Caractéristiques principales des accélérateurs d’ions lourds.

Les premières expériences de physique des ions lourds ont concentré leurs efforts sur l’étude
des caractéristiques générales des collisions noyau-noyau. Nous allons présenter ces obser-
vables à travers une revue (non-exhaustive) des résultats des expériences SPS au CERN et
des expériences de l’accélérateur RHIC à Brookhaven 4.

4. Pour une revue complète des principaux résultats du SPS et de RHIC, nous renvoyons le lecteur aux
références [118] et [72].
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3.3.1 CERN-SPS : premières signatures du plasma de quarks-gluons

Le programme ions-lourds du CERN-SPS a été mis en place dans le but de produire un
nouvel état de la matière et de vérifier si ses propriétés correspondent à l’état de plasma
déconfiné de quarks-gluons prédit par la QCD. En ce qui concerne les caractéristiques ther-
modynamiques du milieu, la densité d’énergie mesurée ε0 = 1

πR2τ0

dET
dy

∥∥
y≈0

est comprise entre
0 et 3.5 GeV/fm3, donc potentiellement supérieure à la densité critique permettant le passage
à l’état de plasma de quark-gluon. De plus l’ajustement des taux de production de parti-
cules par des modèles statistiques (section 2.3) ont permis d’établir que le milieu formé au
CERN-SPS possède une température de freeze-out chimique de l’ordre de 160 MeV et une
densité baryonique µB ≈ 270 MeV. La mise en évidence expérimentale d’un milieu en expan-
sion hydrodynamique a pu être réalisée via la mesure de la distribution en masse transverse
de hadrons identifiés (p,K,π). Les températures extraites par ajustement 5 de ces distribu-
tions sont approximativement égales pour les collisions proton-proton (Tπ ≈ TK ≈ Tp) tandis
qu’elles diffèrent sensiblement dans les collisions noyau-noyau (Tπ < TK < Tp). Ce résultat
s’accorde avec l’hypothèse d’un fluide en expansion émettant des particules qui possèdent
de ce fait une vitesse transverse en plus de leur vitesse thermique. Les propriétés du milieu
ont été étudiées, entres autres, par la mesure du spectre en masse invariante diélectrons
e+e−. Alors que le spectre mesuré au SPS est bien reproduit expérimentalement pour les
collisions proton-proton et proton-noyau à partir des sources hadroniques connues (décrois-
sance des mésons vecteurs et décroissance Dalitz des mésons neutres), celui mesuré pour
les collisions noyau-noyau diffère fortement des prédictions théoriques (figure 3.7). Cet effet
d’augmentation à basse masse peut être expliqué par l’annihilation des pions thermiques
(π + π → e+e−) indiquant ainsi la création d’un milieu chaud et dense lors de la collision.
Les mesures effectuées sur le J/Ψ ont quant à elles mises en évidence une suppression de la
production en collision centrale noyau-noyau, suppression interprétée à l’époque comme une
preuve de la dissociation des paires cc̄ dans la matière nucléaire déconfinée (figure 3.7).
L’ensemble de ces résultats a été synthétisé dans un document publié au CERN en 2000

([117]). Ce document précise que les données collectées permettent de conclure qu’un nouvel
état de matière a bien été créé, avec une densité supérieure à vingt fois la densité nucléaire
normale. Cet état présente beaucoup de caractéristiques attendues pour le plasma de quarks-
gluons, mais les résultats du CERN-SPS ne sont pas suffisants pour conclure à l’existence
d’un milieu déconfiné. Même si l’existence d’un système complexe au sein duquel se pro-
duisent des effets collectifs (différent de la simple superposition de collisions nucléon-nucléon
indépendantes) est avérée, les résultats obtenus au CERN-SPS ne constituent que des preuves
indirectes de l’existence du plasma de quarks-gluons.

3.3.2 BNL-RHIC : mise en évidence du quenching

La première interrogation lors de la mise en activité du RHIC a été de savoir si les énergies
accessibles étaient bien au-delà de l’énergie critique de formation du PQG , permettant ainsi
de s’éloigner de la zone de transition de phase et donc de caractériser de manière plus

5. L’ajustement des distributions en masse transverse est réalisée par une fonction du type
E d3σ
d3p
∝ exp(−mT

T
).
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10

state of approximate local thermal equilibrium, to build up thermodynamic pressure and
to collectively explode, as seen from the above analysis of the freeze-out stage. That the
dileptons from collision-broadened ρ’s outnumber those from the decay of unmodified ρ’s
emitted at thermal freeze-out (which should show up as a normal ρ-peak) shows that the
hadronic rescattering stage must have lasted several ρ lifetimes.
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Figure 6. Invariant mass spectrum of
e+e− pairs from 158AGeV/c Pb+Au
collisions [27]. The solid line is the ex-
pected spectrum (the sum of the many
shown contributions) from the decays
of hadrons produced in pp and pA col-
lisions (where it was experimentally
confirmed [27]), properly scaled to the
Pb+Au case. Two sets of data with
different analyses are shown. Note that
the ρ-peak reappears if only e+e− pairs
with p⊥ > 500 MeV/c are selected [27];
such fast ρ’s escape quickly from the
fireball and are not as strongly affected
by collision broadening.

7. SEEING THE QUARK-HADRON TRANSITION

In the rest of this talk I will concentrate on observables which in heavy-ion collisions
were found to be drastically different from NN collisions but which we now believe cannot
be changed quickly enough by hadronic rescattering during the time available between
hadronization and kinetic freeze-out. Observables for which this last property can be
firmly established yield insights about where heavy-ion collisions differ from NN collisions
already before or during hadronization, irrespective whether or not the hadrons rescatter
with each other after being formed.

Of course, the formation of a quark-gluon plasma is one possibility how the early stage
of a heavy-ion collision may differ from that in a NN collision. It is thus important to
review a few key QGP predictions and check how they fare in comparison with the data.
In the present Section I discuss strangeness enhancement as a QGP signature, returning
to two further QGP predictions in the following two Sections.

Strangeness enhancement and chemical equilibration was one of the earliest predicted
QGP signatures [29]. The idea is simple: color deconfinement leads to a large gluon
density which can create ss̄ pairs by gluon fusion, and chiral symmetry restoration makes
the strange quarks relatively light, thus reducing the production threshold (not to mention
that in the QGP strange quarks can be created without the need for additional light quarks
to make a hadron). The two effects together should cause a significant reduction of the
time scale for strangeness saturation and chemical equilibration, compared to hadronic
rescattering processes after hadronization where the production of strange hadron pairs
with opposite strangeness is suppressed by large thresholds and small cross sections. Since

1.5. Thermodynamique de la QCD, le plasma de quarks gluons

par les fortes densités régnant dans le milieu (phénomène d’écrantage) [18]. Le J/ψ est de plus

créé aux tout premiers instants de la collision par fusion de gluons. Il ne peut plus être créé par la

suite en raison des pertes d’énergies, dues aux collisions nucléons-nucléons ultérieures. L’étude

du J/ψ est aisée dans son canal de désintégration en deux leptons. C’est l’expérience NA50 au

SPS qui mesura la première une suppression anormale du J/ψ dans les collisions Pb-Pb centrales

à 158 GeV par nucléon (voir figure 1.14). Cette suppression est bien différente de la suppresion

nucléaire dite "normale" et mesurable via les collisions p-noyau. Cette suppression normale peut

être due à l’interaction de l’état pré-résonant cc̄g faiblement lié avec le milieu (avant formation

du J/ψ) où à la collision de la résonance avec d’autres nucléons (après formation du J/ψ). La

figure 1.14 regroupe les résultats des expériences NA50 en collisions Pb-Pb, NA38 en collisions

S-U et p-Noyau (pour quatre types de noyaux différents : Al, C, Cu et W) [20] et enfin ceux de

l’expérience NA51 pour les collisions pp et p-d [21]. La suppression mesurée du J/ψ est comparée

avec l’absorption nucléaire normale attendue. Les résultats des systèmes légers en collisions p-

noyau et S-U n’indiquent pas de suppression anormale du J/ψ. La suppression anormale du J/ψ
est observée dans les collisions Pb-Pb pour des densités d’énergie supérieures à 2.3 GeV/fm3. La

critique que l’on peut exposer ici sur les résultats obtenus par NA50 est que les résultats obtenus

par NA38 et NA51 pour les systèmes de collisions légers (et notamment p-noyau) ont été obtenus

à des énergies différentes (450 GeV/c) que les résultats en collisions Pb-Pb de NA50. Les effets

nucléaires froids ne sont donc pas obtenus directement à la même énergie. Ces résultats furent

ensuite confirmés par l’expérience NA60 qui observa une suppression anormale similaire du J/ψ
dans les collisions In-In à l’énergie de 158 GeV/nucléon [22].
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Figure 1.14 – Taux de production du J/ψ mesuré, rapporté au taux de production attendu (en

prenant en compte l’absorption nucléaire) en fonction de la densité d’énergie ε [19].

La suppresion anormale du ψ’ a aussi été observée par NA50 [23]. Plus récemment, l’expé-

rience PHENIX auprès du collisioneur RHIC a aussi mis en évidence la suppression anormale du

J/ψ dans les collisions Au-Au centrales [24].

20

Figure 3.7: Gauche : spectre en masse invariante des paires e+e− produites dans les collisions
Pb-Au à 158 A GeV/c. La ligne pleine représente le spectre théorique (somme de
plusieurs contributions) estimé à partir des décroissances hadroniques en collisions pp
et pA puis ajusté au cas des collisions Pb+Au [119] ; Droite : taux de production du
J/Ψ (normalisé par le taux de production attendu) en fonction de la densité d’énergie
ε mesuré par la collaboration NA50 [120].

précise les propriétés du milieu. Les mesures en énergie transverse ET et en multiplicité de
particules chargées ont permis d’estimer la densité d’énergie à environ 4 GeV.fm−3 pour des
collisions Au+Au à

√
sNN = 200 GeV, soit bien au-dessus de la valeur critique d’environ

1 GeV.fm−3. Comme au CERN-SPS, les rapports de taux de production de particules ont
fourni des informations sur l’équilibre thermochimique du milieu. L’ajustement des modèles
thermodynamiques indique que le milieu formé en collision Au+Au à

√
sNN = 200 GeV

possède une température de freeze-out T ≈ 156 MeV et une densité baryonique µB ≈ 41
MeV. Les mesures d’interférences HBT (section 2.3) ont quant à elles montré que le milieu
produit à RHIC avait un volume supérieur à la taille d’un noyau d’or, confirmant ainsi
l’hypothèse d’un milieu en expansion.
Un des résultats majeurs du RHIC a été la mise en évidence expérimentale de la sup-

pression des hadrons de haute impulsion transverse dans les collisions Au+Au (figure 3.8).
Ce phénomène, non-observé au CERN-SPS, a reçu le nom de jet quenching. Les résultats
obtenus montrent un facteur de modification nucléaire RAA des particules π0 et η nette-
ment inférieur à 1 dans le cas des collisions centrales Au+Au. La suppression des hadrons a
été interprétée comme la manifestation de la perte d’énergie des partons dans le plasma de
quarks-gluons.
La majorité des hypothèses concernant l’existence du PQG ont ainsi été vérifiée par RHIC,

mais la caractérisation précise de ses propriétés nécessite des mesures supplémentaires. Les
expériences de l’accélérateur RHIC ont également ouvert la voie à l’étude des processus durs
dans les collisions Au+Au, que ce soit via la suppression des hadrons de haut-pT ou via
l’étude de la fragmentation des partons dans le milieu.
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FIG. 3: RAA(pT ) measured in central Au+Au at
√
s
NN
= 200 GeV

for #, "0 [8, 9] and direct ! [25]. The error bars include all point-

to-point errors. The error bands at RAA = 1 have the same meaning

as in Fig. 2. The baseline p+p → !+X reference used is a NLO

calculation [25, 30], that reproduces our own data well [31], with

theoretical uncertainties indicated by the dash-dotted lines around

the points. The solid yellow curve is a parton energy loss prediction

for a medium with density dNg/dy= 1100 [16].

= 4 – 14 GeV/c, independent of their mass (note that the # is

four times heavier than the "0). The results are in agreement

with expectations of in-medium non-Abelian energy loss of

the parent parton prior to its fragmentation in the vacuum. The

initial gluon densities needed to quench the high-pT hadrons

by such an amount are of the order of dNg/dy = 1100 (solid
curve in Fig. 3) [16].

An additional way to determine possible differences in the

suppression pattern of "0 and # is to study the centrality de-

pendence of the #/"0 ratio in Au+Au collisions and com-
pare it with the ratio in more elementary systems (e+e−, p+p,
d+Au). The #/"0 ratio in hadron-hadron, hadron-nucleus and
nucleus-nucleus collisions is seen to increase rapidly with pT
and flatten out above pT ≈ 2.5 GeV/c at an asymptotically

constant R#/"0 ≈ 0.5 for all systems [27]. Likewise, in e+e−

at the Z pole (
√
s = 91.2 GeV) one also finds R#/"0 ≈ 0.5 for

# and "0 at large scaled momenta xp = phadron/pbeam ! 0.3 –

0.7 [27] consistent with the range of fractional momenta 〈z〉
relevant for high-pT production discussed here. It is interest-

ing to test if this ratio is modified in any way by final- and/or

initial-state medium effects in Au+Au collisions at RHIC.

Figure 4 showsR#/"0(pT ) for three Au+Au centrality selec-
tions and for p+p and d+Au collisions [27]. A fit to a constant

for pT > 2 GeV/c gives RAuAu0−20%
#/"0

= 0.40 ± 0.04, RdAuMB
#/"0

=

0.47± 0.03 and R
pp

#/"0
= 0.48± 0.03, where the quoted errors

are the quadratic sum of statistical and systematic uncertain-

ties. The Au+Au ratio is consistent within ∼ 1$ with both

the essentially identical d+Au and p+p ratios. The R#/"0 ra-

tio shows thus no apparent collision system, centrality, or pT
dependence. The dotted curve is the predicted PYTHIA [32]

result for the p+p ratio at
√
s = 200 GeV which is also co-
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FIG. 4: #/"0 ratio in Au+Au (centralities: 0-20%, 20-60%, 60-92%)
compared to the ratio in p+p and d+Au [27] at

√
s
NN
= 200 GeV. The

error bars include all point-to-point errors that do not cancel in the

ratio of yields. The dashed curve is the PYTHIA [32] prediction for

p+p at
√
s = 200 GeV consistent with the asymptotic R#/"0 ≈ 0.5

measured in hadronic and e+e− collisions in a wide range of c.m.

energies [27].

incident with the world data measured in the same momen-

tum range in hadronic, nuclear, and e+e− collisions in a wide
range of energies (

√
s≈ 3 – 1800 GeV) [27].

In summary, the transverse momentum spectra of #mesons

have been measured at mid-rapidity in the range pT = 2–

10 GeV/c in Au+Au at
√
s
NN
= 200 GeV. The invariant yields

per nucleon-nucleon collision are increasingly depleted with

centrality in comparison to p+p results at the same center-of-

mass energy. The maximum suppression factor is ∼5 in cen-
tral Au+Au. The magnitude, pT , and centrality dependences

of the suppression are the same for # and "0 suggesting that

the production of light neutral mesons at large pT in nuclear

collisions at RHIC is affected by the medium in the same way.

The measured #/"0 ratio is flat with pT and amounts to R#/"0

= 0.40± 0.04. This value is consistent with the world value at

high-pT in hadronic and nuclear reactions and, at high xp, in

e+e− collisions. We conclude that all these observations are in
agreement with a scenario where the parent parton first loses

energy in the produced dense medium and then fragments into

a leading meson in the vacuum according to the same proba-

bilities that govern high-pT hadroproduction in more elemen-

tary systems (p+p, e+e−).
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Figure 3.8: Facteurs de modification nucléaire des mésons π0, η et des photons directs mesurés au
RHIC en collisions centrales Au-Au. La courbe jaune représente la prédiction théorique
d’un modèle de perte d’énergie de type GLV appliqué au π0 [121].

3.4 État de l’art : apport du LHC

Les résultats produits par le SPS et par RHIC au début des années 2000 ont permis de
mettre en évidence expérimentalement l’existence d’un milieu déconfiné dense et chaud pou-
vant être identifié au plasma de quarks-gluons. Les expériences se sont dès lors intéressées
à une caractérisation plus précise des propriétés de ce milieu afin de permettre une com-
paraison quantitative avec les prédictions de la QCD sur réseau et des différents modèles
théoriques disponibles.
Il est d’usage de distinguer les sondes hadroniques des sondes électromagnétiques. Les

hadrons constituent la source d’informations la plus abondante, mais leur analyse est rendue
difficile par les nombreuses interactions qu’ils subissent dans l’état final et qui viennent en
partie masquer les informations de l’état initial. Contrairement aux hadrons qui ne sont
produits qu’une fois la température d’hadronisation atteinte, les photons et les leptons sont
émis durant toutes les phases d’évolution du PQG et n’interagissent que faiblement avec le
milieu (α� αs). Ces sondes électromagnétiques peuvent en effet être produites directement
par la collision d’ions lourds, par le plasma de quarks-gluons ou encore par la décroissance
de hadrons. Les sondes permettant d’étudier le PQG sont ainsi diverses tant par leur nature
que par leur énergie (de quelques MeV à plusieurs centaines de GeV).

3.4.1 Variables globales

Un des objectifs actuels de la physique des ions lourds est la modélisation d’un scéna-
rio complet de l’évolution du milieu allant des fluctuations de l’état initial à la production
des hadrons (freeze-out), en passant par l’expansion hydrodynamique. Le milieu formé par
les collisions d’ions lourds ultra-relativistes au RHIC et au LHC est suffisamment dense et
chaud pour atteindre rapidement un équilibre thermique local. La température du milieu
peut être déterminée via la production de photons directs de basse-énergie, appelés "pho-
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tons thermiques", qui constituent une source d’informations importante pour contraindre
la dynamique du système. Les dernières mesures réalisées par la collaboration ALICE per-
mettent d’estimer une température effective du milieu formé au LHC de 304±51 MeV (figure
3.9), la densité d’énergie étant quant à elle de l’ordre de 8.5 GeV/fm3.
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Figure 3.9: Spectre de production des photons directs mesurée par ALICE en collisions Pb-Pb
à
√
sNN=2.76 TeV. La courbe rouge représente l’ajustement exponentiel permettant

d’extraire une température effective du milieu T ≈ 304 MeV [122].

Les conditions initiales du milieu sont étudiées à partir de la décomposition en série de
Fourier du flot elliptique (section 2.3). Les résultats obtenus s’ajustent remarquablement avec
les modèles numériques (figure 3.10) et permettent ainsi une description plus fine des fluctua-
tions et inhomogénéités dans la distribution de la matière collision par collision. Ces mêmes
mesures du flot elliptique permettent de montrer que la dynamique du milieu correspond
à celle d’un fluide quasi-parfait, de très faible viscosité (divisée par la densité d’entropie)
η/s ≈ 0.2 au LHC (figure 3.11).
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not necessarily the only explanation. In fact, for RHIC
energies, calculated pion spectra also underestimate the
data for pT < 300 MeV but v1(pT ) is well reproduced.

We present event-by-event distributions of v2, v3, and
v4 compared to results from the ATLAS collaboration
[40, 41] in Fig. 9. We chose 20-25% central events be-
cause eccentricity distributions from neither MC-Glauber
nor MC-KLN models agree with the experimental data
in this bin [41]. To compare data with the distribution
of initial eccentricities [42] from the IP-Glasma model
and the final vn distributions after hydrodynamic evolu-
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tion, we scaled the distributions by their respective mean
value. We find that the initial eccentricity distributions
are a good approximation to the distribution of experi-
mental vn. Only for v4 (and less so for v2) the large vn

end of the experimental distribution is much better de-
scribed by the hydrodynamic vn distribution than the εn

distribution. This can be explained by non-linear mode
coupling becoming important for large values of v2 and
v4.

In summary, we have shown that the IP-
Glasma+music model gives very good agreement
to multiplicity and flow distributions at RHIC and LHC.
By including properly sub-nucleon scale color charge
fluctuations and their resulting early time CYM dynam-
ics, this model significantly extends previous studies in
the literature [19, 36, 43–47]. Omitted in all studies
including ours is the stated dynamics of instabilities and
strong scattering in over-occupied classical fields that
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In summary, the EbE vn distributions for n = 2 − 4 are measured for Pb-Pb collision at √sNN = 2.76 TeV. The
shape of the vn distributions is consistent with Gaussian fluctuation in central collisions (0-2% centrality range) for v2
and over the full centrality range for v3 and v4. The ratio of the RMS to the mean, σvn/〈vn〉, is studied as a function of
〈Npart〉 and pT. The values of σvn/〈vn〉 are found to be independent of pT, suggesting that the hydrodynamic response
to the eccentricity of the initial geometry has little pT dependence, however they are found to reach a minimum of
0.34 for v2 around 〈Npart〉 ∼ 200. A comparison of the vn distributions with the eccentricity distributions of the initial
geometry from the Glauber and MC-KLN models, shows that both models fail to describe the data across the full

centrality range. The vn from the event plane method is found to lie in between 〈vn〉 and
√
〈vn〉2 + σ2

vn
. These results

may shed light on the nature of the fluctuations of the created matter in the initial state as well as the subsequent
hydrodynamic evolution.
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Figure 3.10: Prédictions théoriques du flot elliptique de type v2 et v3 avec le modèle IP-Glasma
[123] et les modèles MC-KLN et MC-Glauber [124] comparées aux mesures expéri-
mentales de la collaboration ATLAS.

Les taux de production de particules permettent quant à eux l’étude de la phase d’ha-
dronisation, en particulier la détermination de la température de freeze-out chimique par
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ajustement de modèles thermodynamiques (figure 3.12). La température d’hadronisation
obtenue est de l’ordre de 150 MeV, confirmant l’hypothèse d’un refroidissement du milieu
lors de son expansion.
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3.4.2 Interactions parton-milieu

Outre les variables globales qui permettent de caractériser le milieu produit lors des colli-
sions Au-Au (RHIC) et Pb-Pb (LHC), il est possible d’étudier les propriétés du milieu formé
à partir de l’interaction des partons. Ces interactions vont conduire à une modification du
taux de production des particules de haut-pT .

Quarks lourds

L’étude des quarkonia, formées d’une paire cc̄, permet de quantifier les effets d’écrantage de
couleur liés aux interactions avec les quarks et les gluons du milieu (section 2.3). Les derniers
résultats expérimentaux montrent que le méson J/Ψ est moins supprimé au LHC qu’à RHIC
alors que le milieu formé possède une température et une densité supérieure (figure 3.13).
Cela pourrait s’expliquer par la compétition de différents effets comme les effets nucléaires
froids, l’écrantage de couleur ou encore la recombinaison cc̄ qui doit théoriquement être plus
importante au LHC qu’à RHIC à cause de la durée de vie et de la densité de paires cc̄ du
plasma.
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Figure 3.13: Facteur de modification nucléaireRAA du J/ψ en fonction du nombre de nucléons par-
ticipants en collision Pb-Pb à

√
sNN = 2.76 TeV mesuré par la collaboration ALICE.

Les mesures sont comparées aux résultats de la collaboration PHENIX obtenus en
collisions Au-Au à

√
sNN = 200 GeV à grande et moyenne rapidité [127].

L’étude des différents états excités du quarkonium Υ (bb̄), de par leur différence d’énergie
de liaison, permet également une meilleure compréhension des effets d’écrantage. La disso-
ciation des états liés dépend en effet de la température du milieu et devrait apparaître de
manière séquentielle en fonction de leur énergie de liaison respective. Le quarkonium Υ(1S)

possédant l’énergie de liaison la plus importante, sa température de dissociation doit être
la plus élévée et il doit correspondre à l’état le moins supprimé. Les mesures expérimen-
tales confirment cette hypothèse, apportant de ce fait une contrainte importante dans la
détermination des caractéristiques du milieu déconfiné (figure 3.14).
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Figure 3.14: Facteur de modification nucléaire RAA des quarkonia Ψ, J/Ψ et Υ(1S),Υ(2S),Υ(3S)
mesurés par la collaboration CMS. Les données sont présentées en fonction de l’éner-
gie de liaison respective de chacun des quarkonia [128] [129].

Outre les quarkonia, il est également possible d’étudier la suppression des hadrons prove-
nant de la fragmentation d’un quark lourd. Selon la saveur du quark mis en jeu, les modèles
prédisent en effet une interaction plus ou moins importante avec le milieu conduisant ainsi à
un facteur de modification nucléaire RAA différent selon le type de hadron considéré (section
2.3). La figure 3.15 apporte une possible confirmation aux prédictions théoriques en mesurant
le rapport du facteur de suppression nucléaire des mésons D sur celui des pions chargés.

Figure 3.15: Rapport du facteur de modification nucléaire (RAA) des mésons D (D0, D+, D+∗)
sur celui des pions chargés en fonction de l’impulsion transverse pour des collisions
Pb-Pb à

√
sNN = 2.76 TeV [130].
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Sondes électrofaibles

Les bosons de jauge γ, Z0 et W± étant neutres de couleur, leur perte d’énergie lors de la
traversée du milieu doit théoriquement être très limitée. Le facteur de suppression nucléaire
peut dans ce cas nous renseigner sur les effets nucléaires froids car il ne dépend que des
modifications de l’état initial. Les résultats obtenus au LHC confirment l’absence de sup-
pression des bosons de jauge, mais les incertitudes expérimentales restent trop importantes
pour permettre une étude quantitative des distributions de partons nucléaires (figure 3.16).
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Figure 3.16: Facteur de modification nucléaire des hadrons chargés, des photons isolés, des bosons
Z/W et des quarks b mesurés par la collaboration CMS en collisions Pb-Pb à

√
sNN

=2.76 TeV. La figure de droite représente le facteur de modification nucléaire des
photons isolés ainsi que les incertitudes théoriques liées aux distributions de partons
nucléaires (pointillés rouges) [131].

Perte d’énergie des partons

Depuis la mise en évidence de la suppression de hadrons à RHIC en 2001, de nombreuses
mesures du facteur de modification nucléaire RAA ont été réalisées. La diversité des mesures
expérimentales constitue une contrainte importante pour les différents modèles de perte
d’énergie, ces derniers devant désormais s’ajuster simultanément à des énergies de collisions
et des types de particules différentes. La figure 3.17 synthétise les résultats expérimentaux
liés aux hadrons légers, ainsi qu’un certain nombre de modèles théoriques de perte d’énergie
(chapitre 11).
Les mesures de jets de particules réalisées permettent de contraindre la fragmentation des

partons ayant interagi avec le milieu. En étudiant en parallèle la suppression de la production
des jets (RjetAA) et la modification de leur fonction de fragmentation, il est en effet possible de
comprendre la manière dont l’énergie perdue par les partons est redistribuée dans le milieu.
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Figure 7: Measurements of the nuclear modification factor RAA in central heavy-ion colli-
sions at three different center-of-mass energies, as a function of pT, for neutral pions (π0),
charged hadrons (h±), and charged particles [12, 27–30], compared to several theoretical pre-
dictions [32–37] (see text). The error bars on the points are the statistical uncertainties, and the
yellow boxes around the CMS points are the systematic uncertainties. Additional absolute TAA
uncertainties of order ±5% are not plotted. The bands for several of the theoretical calculations
represent their uncertainties.

4 Summary
Measurements of the charged particle transverse momentum spectra have been presented for√sNN = 2.76 TeV pp and PbPb collisions. The results for the PbPb collisions have been com-
pared to the measured pp pT spectrum scaled by the corresponding number of incoherent
nucleon-nucleon collisions. The high-pT yields in central PbPb collisions are significantly sup-
pressed when compared to peripheral PbPb and pp collisions. In the range pT = 5–10 GeV/c, the
suppression is stronger than that seen at RHIC. Beyond 10 GeV/c, both RAA and RCP show a ris-
ing trend, as already suggested by data from the ALICE experiment, limited to pT = 20 GeV/c.
The CMS measurement, with improved statistical precision, clearly shows that this rise contin-
ues at higher pT, approaching a suppression factor RAA ≈ 0.5–0.6 in the range 40–100 GeV/c.
The overall pT dependence of the suppression can be described by a number of phenomeno-
logical predictions. The detailed evolution of the RAA rise from 6 to 100 GeV/c depends on
the details of the models. Together with measurements of high-pT charged hadron azimuthal
anisotropies, inclusive jet spectra, fragmentation functions, and dijet transverse energy balance,

Figure 3.17: Facteurs de modification nucléaire RAA mesurés au SPS, à RHIC et au LHC. Les
lignes colorées représentent les prédictions des différents modèles de perte d’énergie
[132].

Le premier résultat marquant du LHC dans ce domaine a été l’observation d’une asymétrie en
énergie dans la mesure des corrélations di-jets (figure 3.18) [133] [134]. Cette asymétrie peut
en effet être interprétée comme une conséquence directe de la perte d’énergie des partons
dans les collisions Pb-Pb. La mesure du facteur de suppression des jets a par ailleurs montré
que l’énergie perdue par le parton est rayonnée à très grands angles. Comme le montre la
figure 3.19 (gauche), le facteur RjetAA est en effet du même ordre de grandeur que celui des
hadrons chargés (figure 3.17) ce qui implique que l’énergie perdue par le parton n’est pas
récupérée dans le cône utilisé pour la reconstruction des jets (R = 0.2 dans ce cas). Des
résultats récents montrent que l’énergie perdue commence à être récupérée dans un cône de
taille R = 0.5 et qu’elle est associée à des hadrons de très faible impulsion transverse [135].
Comme l’indique la figure 3.20, des mesures de la fragmentation des jets ont par ailleurs

montré une augmentation des particules de bas-pT et une suppression du nombre de parti-
cules à pT intermédiaire. Ces fonctions de fragmentation sont cependant obtenues à partir
de l’énergie du jet reconstruit qui est différente de l’énergie du parton initial (en particulier
pour les collisions Plomb-Plomb à cause du phénomène de quenching). Dans le but d’appro-
fondir notre compréhension et de faciliter la comparaison avec les modèles théoriques, les
nouvelles analyses gamma-jet cherchent à utiliser le photon pour accéder à l’énergie parto-
nique initiale et ainsi accéder à la fonction de fragmentation non-biaisée (au sens théorique
du terme). En parallèle des premières mesures gamma-jet réalisées par la collaboration CMS
[139], les résultats récents de la collaboration PHENIX constituent une première étude de la
fragmentation des partons par mesure des corrélations photon-hadron (figure 3.19 (droite)).
Les analyses en cours auprès de l’expérience ALICE feront l’objet de la troisième partie de
ce manuscrit.
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3

τ with cτ > 10 mm) level using factors derived from PYTHIA 6.422 [28] (tune D6T [29, 30],
CTEQ6L1 PDFs [31]) pp simulations at

√
s = 2.76 TeV [32]. The uncertainty in the corrected

jet energy scale is about 3% for pp events, resulting in a per-bin jet-yield uncertainty of ±15%.
In the case of PbPb events, due to the influence of the underlying event, the uncertainty in the
jet energy scale increases to about 4% for peripheral events (30–100% centrality) and 5% for
central events (0–30% centrality) which results in per-bin jet-yield uncertainties of ±20% and
±25%, respectively.

The dijets selected for this analysis consist of a leading jet (denoted by subscript 1) with pT,1 >
100 GeV/c and a subleading jet (subscript 2) of pT,2 > 40 GeV/c, with axes that lie within |η| < 2.
The pT thresholds are chosen to ensure high reconstruction efficiency for the leading and, espe-
cially, the subleading jet. In addition, the azimuthal opening angle ∆φ1,2 between the leading
and subleading jet is required to be larger than 2π/3. No explicit requirement is made on the
presence or absence of a third jet in the event.

A detailed description of the charged-particle reconstruction algorithm and its performance
can be found in Ref. [9]. The track-finding efficiency in the kinematic range of this study is (60–
70)% and the corresponding correction is applied as a function of track pT, jet pT, and event
centrality by reweighting the found tracks with the inverse of the reconstruction efficiency.
The track reconstruction efficiency correction is derived from a GEANT4 [33] simulation of the
CMS detector applied to PYTHIA events, which are embedded into PbPb collisions simulated
using HYDJET [34] in order to include the effect of the underlying PbPb event. The momentum
resolution of the track reconstruction is σ(pT)/pT ≈ 1–3%.
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Figure 1: Dijet asymmetry, AJ , distributions in (a) pp collisions, (b) peripheral (30–100%) PbPb,
and (c) central (0–30%) PbPb collisions. Data are shown as black points while the histograms
show PYTHIA dijets, which when compared to PbPb data have been embedded into HYDJET

events. Error bars represent the statistical uncertainty.

The dijet momentum balance is studied in terms of the dijet asymmetry ratio [15–17],

AJ =
pT,1 − pT,2

pT,1 + pT,2
, (1)

which is positive by construction. Figure 1 shows the AJ distributions in (a) pp and in (b,c)
PbPb for two bins in event centrality. Central PbPb events (0–30%) show a significant excess of
unbalanced pairs when compared to both peripheral PbPb collisions (30–100%) and pp data.
This can be interpreted as a direct observation of parton energy loss in central PbPb collisions.

Figure 3.18: Distribution de l’asymétrie di-jets (Aj) en collision pp (a), PbPb périphérique (30-
100%) (b) et centrale (0-30%) (c). Les points noirs représentent les données alors que
les histogrammes montrent les résultats di-jets PYTHIA, combinés avec HYDJET
dans le cas des données PbPb [136].
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FIG. 2: (Color online) The top panel shows per trigger yield
as a function of ξ for p+p collisions (squares) and 0–40% most
central Au+Au collisions (circles). The points are shifted for
clarity. For reference, the dependence on zT is also indicated.
The bottom panel shows IAA, the ratio of Au+Au to p+p
fragmentation functions. Also shown are predictions from
BW-MLLA [16] (dashed line), calculated at Ejet = 7 GeV
with fmed = 0.8 selected for 0–10% central Au+Au and from
YaJEM-DE [25, 26] (dot-dashed curve) for 0–40% centrality
and trigger photons from 9–12 GeV/c, both for the full away-
side (|∆φ − π| < π/2).

In order to study the jet fragmentation function, D(z),
associated hadron yields are determined as a function of
zT = ph

T /pγ
T , the ratio of the associated hadron trans-

verse momentum, ph
T , to the trigger photon transverse

momentum, pγ
T . Here zT ≈ z, since direct photon trig-

gers balance the opposing jet. To focus on the low zT

region, one can express the fragmentation function as a
function of the variable, ξ = ln(1/zT ). To extend the
accessible zT range, hadrons from 0.5 < pT < 7.0 GeV/c
are used in combination with a single 5 < pγ

T < 9 GeV/c
photon bin.

Figure 1 shows azimuthal pair angle distributions for
the extracted direct γ-h correlations in 0–40% central
Au+Au collisions as well as comparison with the direct
γ-h correlations in p+p. Unlike on the away-side, on the
trigger side (|∆φ| < π/2) the direct γ-h correlations in
Au+Au show a negligible yield, indicating that the sta-
tistical subtraction method indeed yields direct photons
and that the yield of fragmentation photons in Au+Au
is negligible within uncertainties.

On the away side the associated particle yield is vis-
ible, and there is significant variation when comparing
the correlations in Au+Au to p+p. To further quan-
tify this variation, the yields are integrated over ∆φ for
|π−∆φ| < π/2, as a function of ξ, to obtain the effective
fragmentation function. The top panel of Fig. 2 shows
the integrated away-side yields in Au+Au and p+p as cir-
cles and squares, respectively. The statistical error bars
include the point-to-point uncorrelated systematic uncer-
tainty from the background subtraction, while the boxes
around the points show the correlated uncertainties. For
reference, the dependence on zT is also indicated as the
upper scale axis label.

To study medium modification of the jet fragmenta-
tion function, we take a ratio of the ξ distribution in
Au+Au to p+p. This ratio, known as IAA, is shown
in the bottom panel of Fig. 2 and can be written as
IAA = Y Au+Au/Y p+p. Much of the global scale uncer-
tainty cancels in this ratio, but there is a remaining 6%
uncertainty. In the absence of modification, IAA would
equal 1. The data instead indicate suppression at low ξ
and enhancement at higher ξ. Including all systematic
uncertainties the χ2/dof value for the highest 4 points
compared to the hypothesis that IAA = 1 is 17.6/4, cor-
responding to a probability that IAA is 1.0 for ξ > 0.8 of
less than 0.1%.

The dashed curve in the bottom panel of Fig. 2 shows
IAA calculated at Ejet = 7 GeV using the BW-MLLA
model in medium and in vacuum. The vacuum calcula-
tion agrees well with the measured ξ distribution in e+e−,
and the in-medium conditions reproduce the measured π0

RAA at high-pT for 0–10% central Au+Au events [16].
The dot-dashed curve shows IAA predicted by YaJEM-
DE [25] for trigger photons from 9–12 GeV/c for the same
centrality range (0–40%) as the present data [26]. Both
models, which include all away-side jet fragments, show
suppression at low ξ due to parton energy loss in Au+Au
collisions, and increasing IAA with increasing ξ. In both
cases, this is due to the lost energy being redistributed
into enhanced production of lower momentum particles.

The suppression of IAA at high zT and enhancement
at low zT seen in these models agrees with the quali-
tative trend in the data. However, the models do not
reproduce the location in ξ where transition from sup-
pression to enhancement is observed. Understanding the
details of this transition can lead to better understand-
ing of how lost energy is being redistributed. One such
detail is how IAA depends on the angular distribution of
particles about the away-side jet axis. The top panel of
Fig. 3 shows IAA in three integration ranges. Reducing
the integration range from |∆φ − π| < π/2 reduces the
observed enhancement and shifts the effect to higher ξ.
If the integration range is restricted to |∆φ − π| < π/6,
the enhancement for ξ > 1.0 becomes negligible, while
still showing significant suppression for ξ < 0.8.

To better quantify the angular range of the enhance-

Figure 3.19: Gauche : facteur de modification nucléaire des jets (RjetAA) en fonction de l’impulsion
transverse pour des collisions Pb-Pb à

√
sNN = 2.76 TeV. Les jets sont reconstruits

par un algorithme de cône de type anti-kT utilisant un cône de rayon R = 0.2 [137] ;
Droite : fonction de fragmentation en fonction de ξ mesurée en collisions pp (carré) et
Au-Au (rond), et rapport des fonctions de fragmentation Au-Au sur pp (IAA) [138]
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Figure 3.20: Rapport des fonctions de fragmentation D(z) pour six classes de centralité sur celles
mesurées en collision périphérique (60-80%), D(z)cent/D(z)60−80 dans le cas de jets
de particules de rayon R = 0.4 [140].
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Mis à part l’accélérateur Bevalac (Lawrence Berkeley National Laboratory - 1974), la recherche en
physique des ions lourds relativistes a été l’œuvre de deux acteurs principaux : le Brookhaven Na-
tional Laboratory (BNL) aux États-Unis et l’Organisation Européenne pour la Recherche Nucléaire
(CERN) en Europe. Ce travail de thèse s’inscrit dans le programme de physique des ions lourds du
Large Hadron Collider (LHC) mis en activité en 2009 au CERN. Le LHC permet d’accélérer au choix
des protons ou des noyaux lourds, rassemblant ainsi sur un même site des expériences de physique
des particules et de physique des ions lourds.

Nous présenterons dans ce chapitre le complexe d’accélérateurs du LHC et les expériences qui en
dépendent, en particulier celles impliquées dans un programme de physique des ions lourds (ALICE,
ATLAS et CMS). Afin de fournir le contexte expérimental général de cette thèse, nous décrirons de
manière synthétique les caractéristiques des différents détecteurs de l’expérience ALICE, puis nous
introduirons les notions de reconstruction et d’analyse des données.
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4.1 Large Hadron Collider (LHC)

Le LHC est un accélérateur circulaire de 27 km de circonférence. Implanté dans l’ancien
tunnel du LEP (Large Electron Positron Collider), il a été mis en activité en 2009. Le LHC
produit des collisions à partir de faisceaux de protons à une énergie nominale

√
s = 14 TeV

ou de noyaux de Plomb à une énergie nominale
√
sNN = 5.5 TeV. Entre sa mise en fonc-

tionnement en 2009 et l’arrêt technique en 2013, le LHC a pu collecter des données de
collisions proton-proton, Plomb-Plomb et proton-Plomb dont les caractéristiques générales
sont résumées dans le tableau 4.1.

Année Collisions
√
sNN

2009 pp 900 GeV
pp 2.36 TeV

2010 pp 7 TeV
pp 900 GeV

Pb-Pb 2.76 TeV
2011 pp 7 TeV

pp 2.76 TeV
Pb-Pb 2.76 TeV

2012 pp 8 TeV
2013 p-Pb / Pb-p 5.02 TeV

Table 4.1: Caractéristiques des collisions produites au LHC entre 2009 et 2013.

Six expériences sont distribuées autour de l’anneau, dont trois impliquées directement dans
l’étude des collisions d’ions lourds ultra-relativistes :

- ATLAS (A Toroidal LHC ApparatuS) [141] : boson de Higgs, nouvelle physique
à l’échelle du TeV, plasma de quarks-gluons.

- CMS (Compact Muon Solenoid) [142] : boson de Higgs, nouvelle physique (TeV),
plasma de quarks-gluons.

- ALICE (A Large Ion Collider Experiment) [143] : plasma de quarks-gluons, QCD
basse-énergie.

- LHCb (Large Hadron Collider-beauty) [144] : violation de symétrie CP, physique
du quark b.

- TOTEM (TOTal Elastic and diffractive cross section Measurement) [145] :
interactions élastiques, phénomènes diffractifs.

- LHCf (Large Hadron Collider-forward) [146] : particules produites aux petits
angles.

4.1.1 Production et accélération de particules

Le LHC est un accélérateur construit pour fonctionner à la fois avec des protons et des
ions lourds. À chacune de leur rotation dans l’anneau, les particules sont alternativement
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accélérées par des cavités radiofréquences superconductrices de 400 MHz et courbées par
des aimants supraconducteurs fournissant un champ magnétique jusqu’à 8.3 T. Ces aimants
supraconducteurs doivent être maintenus à une température de 1.9 K, d’où la nécessité
de limiter en permanence l’augmentation de température liée à leur fonctionnement et au
rayonnement synchrotron du faisceau. Les particules, focalisées par des aimants quadripo-
laires, circulent dans deux faisceaux tournant en sens inverse l’un de l’autre. Avant d’être
injectées dans l’anneau principal, les particules parcourent une chaîne d’injection permettant
d’augmenter de manière progressive leur énergie (figure 4.1) :

CP b

Figure 4.1: Complexe d’accélérateurs du CERN.

Protons : la production de protons est réalisée par bombardement d’électrons sur un
gaz d’Hydrogène. Les protons sont ensuite accélérés par un système de quadripôles
radio-fréquence, puis injectés dans un accélérateur linéaire (LINAC) les amenant res-
pectivement à une énergie de 750 keV et 50 MeV. Après avoir été accélérés par le Proton
Synchrotron Booster (PSB) jusqu’à une énergie de 1.4 GeV, les protons entrent dans le
Proton Synchrotron (PS) pour être rassemblés en paquets de 1011 particules environ,
séparés de 50 ns 1. Le Super Proton Synchrotron (SPS) les fait alors passer d’une énergie
de 26 GeV (PS) à une énergie de 450 GeV. Les paquets de protons (environ 1300) sont
finalement injectés dans l’anneau du LHC pour être accélérés jusqu’à l’énergie finale.

1. Une séparation en temps de 25 ns est envisagée pour les prises de données futures.
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Ions lourds Pb82+ : la production des ions est basée sur le principe de résonance cy-
clotronique électronique (Electronic Cyclotronic Resonance). Cette méthode consiste à
utiliser des ondes électromagnétiques en résonance avec la fréquence d’orbite des élec-
trons afin d’augmenter leur énergie et de les utiliser pour ioniser un plasma de Plomb.
Les ions multi-chargés (Pb27+) ainsi produits sont injectés dans le LINAC pour être
pré-accélérés jusqu’à une énergie de 4.2 MeV par nucléon. À la sortie du LINAC, des
électrons sont à nouveau arrachés (stripper) pour former des ions Pb54+. Le Low Energy
Ion Ring (LEIR) sélectionne ensuite les ions d’énergie 4.2 MeV par application d’un
champ magnétique puis constitue des paquets d’ions accélérés à 72 MeV/nucléon. Cette
énergie passe à 5.9 GeV/nucléon dans le PS, puis 158 GeV/nucléon dans le SPS. Une
dernière étape permet d’obtenir des ions Pb82+ avant leur injection dans le tunnel LHC
et leur accélération à l’énergie finale.

Les performances du LHC dépendent à la fois de l’énergie des particules et de la luminosité
fournie par la machine. Pour un processus de section efficace de production σp, le nombre
d’évènements produits par seconde Np est en effet directement relié à la luminosité L via la
relation Np = Lσp. La luminosité s’exprime en fonction des paramètres de l’accélérateur par
la relation [147] :

L =
N2
b nbfrevγrF

4πεnβ∗
avec F = (1 + (

θcσ2

2σ∗
)2)−1/2 (4.1)

où Nb représente le nombre de particules par paquets, nb le nombre de paquets par faisceau,
frev la fréquence de révolution, εn l’émittance normalisée du faisceau, Θc l’angle de croisement
au point d’interaction, σ2 l’écart-type de la longueur du paquet, σ∗ l’écart-type de la taille
transverse du faisceau et β∗ la fonction beta des faisceaux au point d’interaction.
Les interactions qui ont lieu au sein du faisceau vont induire une baisse de la luminosité au

cours du temps en réduisant l’intensité et l’émittance du faisceau. Le temps de vie dépend
principalement de la diffusion nucléaire des particules d’où l’importance de maintenir un
vide quasi-absolu dans les tubes au sein desquels circulent les faisceaux. Les expériences ont
généralement recours au facteur de luminosité intégrée (figure 4.2) qui tient compte du temps
de vie du faisceau τL et de la durée totale de la prise de donnée Trun :

Lint = L0τL[1− e−Trun/τL ] avec L la luminosité initiale.

4.1.2 Les expériences ATLAS et CMS

ATLAS et CMS sont deux expériences complémentaires principalement dédiées à l’étude
du boson de Higgs et à la recherche de nouvelle physique (supersymétrie, bosons de jauge).
Les performances de ces détecteurs sont ainsi orientées vers la réalisation d’objectifs spéci-
fiques, en particulier :

- identification et mesure en énergie des photons (H → γγ)
- identification des électrons/muons de basse-énergie (H → Z0Z0) et de haute-énergie
(recherche de bosons de jauge de l’ordre du TeV)
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Figure 4.2: Luminosité intégrée délivrée par le LHC en 2012 (collisions proton-proton) pour les
quatres expériences principales ALICE, ATLAS, CMS et LHCb.

- mesure des jets hadroniques de très haute-énergie
- reconstruction des traces de particules chargées et des vertex secondaires (identification
des quarks b)

En parallèle de ces activités de physique des particules, chacune de ces expériences ras-
semble une communauté de physiciens travaillant sur l’étude du plasma de quarks-gluons
via l’analyse des collisions d’ions lourds ultra-relativistes.

ATLAS [141] [148] Le détecteur ATLAS (figure 4.3) est un détecteur hermétique (4π)
multi-couches constitué de trois grands ensembles : le trajectographe interne (ensemble
de trois sous-détecteurs (pixels, micropistes, rayonnement de transition) immergés dans un
champ magnétique de 2 T généré par un aimant solénoïdal (|η| < 2.5)), les spectromètres
à muons (aimants toroïdaux, générant un champ moyen de 0.5 T dans la partie centrale,
chambres à muons utilisant la technologie des tubes à dérive (|η| < 2.7)), et les calorimètres
hadronique (calorimètre à échantillonnage séparé en une partie centrale (|η| < 0.8), une
partie étendue (0.8 < |η| < 1.7) et un calorimètre avant (3.1 < |η| < 4.9)) et électromagné-
tique. Le calorimètre électromagnétique est un calorimètre à échantillonnage composé d’une
partie centrale (|η| < 1.475) et de bouchons (1.375 < |η| < 3.2). Constitué de Plomb (absor-
beur) et d’Argon liquide, il a été construit suivant une géométrie en accordéon permettant
une couverture totale en φ et une extraction rapide du signal de chaque côté de l’accordéon.
Outre le pré-échantillonneur permettant d’estimer l’énergie perdue par les particules lors
de la traversée du trajectographe et de l’aimant solénoïdal, le calorimètre se décompose en
trois sous-couches permettant à la fois une discrimination optimale γ/π0 et une séparation
γ/hadrons. La granularité dépend à la fois de la couche et de la rapidité considérée (par
exemple ∆η ×∆φ = 0.025× 0.025 pour |η| < 2.5 dans la deuxième couche du calorimètre).
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Figure 4.3: Vue détaillée du détecteur ATLAS.

CMS [142] [149] Le détecteur CMS (figure 4.4) est organisé autour d’un aimant solé-
noïde d’une intensité centrale de 3.8 T (1.9 T à l’extérieur). Il est segmenté longitudinalement
en une partie centrale (|η| . 1.5) et deux segments latéraux (1.5 . |η| . 3.0). Deux calori-
mètres à grande-rapidité complète cet ensemble (3.0 < |η| < 5.0). Chaque partie est consti-
tuée de trajectographes (détecteurs silicium en pixels ou en bandes selon la distance radiale
au point d’interaction), de détecteurs à muons (détecteurs gazeux) et de calorimètres
hadronique (calorimètre à échantillonnage Laiton/Scintillateur plastique) et électroma-
gnétique. Le calorimètre électromagnétique est un calorimètre totalement actif composé de
cristaux de PbWO4. Ces cristaux permettent une extraction très rapide du signal (80% de
la lumière de scintillation est émise après 25 ns) et une résolution très fine. Un calorimètre
à échantillonnage appelé "détecteur de pied de gerbe" permet également une discrimination
γ/π0 (1.65 < |η| < 2.7). L’acceptance couverte par le calorimètre électromagnétique est
répartie entre la partie centrale (|η| < 1.48) et les deux bouchons (1.48 < |η| < 3.0). La
granularité est de ∆η ×∆φ = 0.0174× 0.0174 dans la partie centrale.

4.1.3 Complémentarité des expériences ALICE, ATLAS et CMS

La comparaison des expériences est un exercice difficile qui ne souffre pas la généralité, mais
suppose au contraire une comparaison des performances dans le cadre précis d’une analyse
physique. Il nous semble cependant important de mettre en avant la complémentarité des
expériences étudiant la physique des ions lourds au LHC.
Un des points forts des expériences ATLAS et CMS est la physique à très haute impulsion

transverse, en particulier la physique des jets. Les objectifs scientifiques de physique des
particules (recherche du boson du Higgs et des bosons de jauge à l’ordre du TeV) ont imposé
une conception des détecteurs qui les rend particulièrement efficaces pour l’étude des sondes
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10 Chapitre 1. De la création à l’observation

à l’intérieur du solénöıde et 1.9 T à l’extérieur. Des parties actives du détecteur sont

intégrées dans les éléments de retour de champ externe. La grande intensité du champ

magnétique est motivée par la précision des mesures des impulsions transverses des muons.

Le détecteur CMS est composé de plusieurs sous-détecteurs disposés en couches cylin-

driques autour de l’axe du faisceau. Deux bouchons couvrent les parties avant et arrière

du détecteur (fig. 1.4). Les sous-systèmes sont complémentaires entre eux et permettent

la détection directe de la plupart des particules du Modèle Standard. Seuls les neutrinos

sont identifiés indirectement par repérage d’énergie manquante.

Figure 1.4 – Schéma du détecteur CMS

Les limitations technologiques actuelles (temps de calcul, système de stockage de

données) ne permettent pas d’enregistrer l’ensemble des événements produits à une

fréquence de 40 MHz. Un système de déclenchement lié à l’ensemble des sous-détecteurs

permet de réduire le flux de données à un taux d’acquisition de quelques centaines de

Hertz.

Les sous-systèmes et leurs finalités sont listés ci-dessous et sont ordonnés selon leur

proximité avec l’axe du faisceau :

– Le trajectographe, composé de senseurs en silicium : reconstruction des trajectoires

(notées traces) des particules chargées.

– Le calorimètre électromagnétique formé de cristaux scintillants de PbWO4 : mesure

des dépôts d’énergie électromagnétique (photons, électrons).

– Le calorimètre hadronique, alternance de couches de scintillateurs en plastique et de

laiton : mesure des dépôts d’énergie hadronique.

– Le spectromètre à muon, composé de détecteurs gazeux : détection et reconstruction
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Figure 4.4: Vue détaillée du détecteur CMS.

dures du plasma de quarks-gluons. La complémentarité entre les calorimètres hadronique et
électromagnétique est mise à contribution pour la reconstruction calorimétrique des jets jus-
qu’à des énergies de plusieurs centaines de GeV. L’acceptance des détecteurs, associée à une
luminosité intégrée très importante, permet quant à elle d’obtenir la statistique nécessaire
à l’étude d’observables au delà de 100 GeV. L’étude des sondes dures du plasma de quark-
gluon nécessite également une analyse particulièrement précise des collisions proton-proton,
utilisées comme référence pour la mise en évidence des effets tels que la perte d’énergie des
partons dans le milieu. Outre la physique des sondes dures, ATLAS et CMS apportent éga-
lement une contribution majeure pour l’étude des photons et des bosons Z et W, permettant
ainsi une meilleure compréhension des sondes électromagnétiques.
La conception de l’expérience ALICE complète particulièrement bien les performances

des expériences ATLAS et CMS. Les détecteurs de l’expérience ALICE offrent en effet une
capacité unique de reconstruction et d’identification des particules à partir d’énergies très
faibles de quelques centaines de MeV. L’identification des particules est indispensable à
l’étude des caractéristiques et de l’évolution du PQG, en particulier pour déterminer la
composition hadronique du milieu. Elle repose en grande partie sur les performances des
trajectographes, en particulier la chambre de projection temporelle (TPC) de près de 5
mètres de long. ALICE apporte également une contribution à la physique des sondes dures,
pour laquelle l’identification des particules peut permettre une caractérisation précise de la
composition des jets et de leur modification par le milieu.
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4.2 A Large Ion Collider Experiment (ALICE)

ALICE est la seule expérience du LHC dédiée à l’étude du plasma de quarks-gluons.
La conception technique de ce type d’expérience doit répondre à un certain nombre de
contraintes liées aux spécificités des collisions d’ions lourds et aux objectifs scientifiques. En
ce qui concerne l’identification et la reconstruction des objets, la contrainte principale est liée
à la très grande multiplicité de particules produites dans les collisions noyau-noyau (jusqu’à
trois ordres de grandeur plus importante que pour des collisions proton-proton). Une seconde
contrainte provient de la grande gamme en énergie à laquelle doivent accéder les différents
détecteurs qui composent l’expérience, cette gamme devant s’étendre de quelques dizaines
de MeV (effets collectifs) à plus de 100 GeV (physique des jets).

Figure 4.5: Vue détaillée du détecteur ALICE [150].

4.2.1 L’expérience ALICE

L’expérience ALICE (figure 4.5) est constituée d’un ensemble de sous-détecteurs faisant
appel à des techniques de détection très variées. Les différents sous-détecteurs peuvent être
rassemblés en trois grands groupes : les détecteurs centraux, le spectromètre à muons et
les détecteurs à grande-rapidité. L’ensemble des détecteurs centraux est soumis à un champ
magnétique de 0.5 T généré par un aimant solénoïde. Un aimant dipôle génère un champ de
0.66 T dans la partie avant de l’expérience (spectromètre à muons).
Trois détecteurs feront l’objet d’une présentation détaillée dans la deuxième partie de ce

manuscrit : la chambre à projection temporelle (TPC) et le trajectographe interne silicium
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(ITS), en tant que principaux détecteurs pour la reconstruction des traces de particules
chargées, et le calorimètre électromagnétique (EMCal) en tant que détecteur privilégié pour
la reconstruction et l’identification des photons (chapitre 5). Afin de donner un aperçu général
de l’expérience ALICE, les caractéristiques principales de chacun des détecteurs, dont la
couverture en pseudo-rapidité est représentée sur la figure 4.6, sont présentées dans cette
section.
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Commissioning and Prospects for Early Physics with ALICE

P.G. Kuijer, for the ALICE collaboration

NIKHEF, P.O.box 41882, 1009 DB Amsterdam, Netherlands and CERN

Abstract

The ALICE detector has been commissioned and is ready for taking data at the Large Hadron

Collider. The first proton-proton collisions are expected in 2009. This contribution describes

the current status of the detector, the results of the commissioning phase and its capabilities to

contribute to the understanding of both pp and PbPb collisions

1. INTRODUCTION

ALICE is a general-purpose heavy-ion experiment designed to study the physics of strongly

interacting matter and the quark-gluon plasma in nucleus-nucleus collisions at the LHC. The

ALICE detector [1] is designed to deal with large particle multiplicities, dN/dy up to 8000, well

above the multiplicities expected for PbPb collisions at LHC energies.

The ALICE collaboration will also study collisions of lower-mass ions and protons. The pp

collisions will primarily provide reference data for the nucleus-nucleus collisions but in addition

a number of genuine pp physics studies will be done.
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Figure 1: ALICE Pseudo rapidity coverage of the ALICE detectors (left panel), and the particle identification capabilities

of the detectors right panel).

The main components of the ALICE detector are a central tracking and particle identification

system covering the pseudo rapidity range −0.9 ≤ η ≤ 0.9, a muon spectrometer covering

−4.0 ≤ η ≤ −2.4, a forward multiplicity detector and a zero-degree calorimeter. An overview of

the η coverage of the ALICE systems is shown in the left panel of Figure 1.

The transverse momentum cut-off is only 0.1 GeV/c due to the extreme minimisation of the

material budget of the inner tracking system. On the other hand the pt measurement reaches up

to 50 GeV/c with full particle identification capabilities at mid-rapidity.
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Figure 4.6: Couverture en pseudo-rapidité (η) des différents détecteurs et sous-détecteurs de l’ex-
périence ALICE (le symbole * indique les détecteurs dont l’acceptance est inférieure
à 2π en φ). La ligne noire représente la distribution caractéristique des particules en
fonction de la pseudo-rapidité [151].

Détecteurs centraux :

- Inner Tracking System (ITS) : l’ITS permet la reconstruction des vertex primaire
et secondaires, la trajectographie des traces de très faible impulsion transverse, ainsi
que l’identification des particules (figure 4.7 (a)). Ce détecteur est composé de six
couches cylindriques en silicium, la technologie utilisée pour chacune des couches dé-
pendant de la multiplicité de particules chargées : pixels (SPD), drifts (SDD), strips
(SSD).

- Time Projection Chamber (TPC) : la TPC est un des détecteurs principaux de
l’expérience ALICE car il permet l’identification des particules pour des pT allant de
0.1 à 100 GeV/c (figure 4.7 (b)). C’est également le détecteur le plus lent à cause du
temps de dérive des particules dans le gaz (environ 90 µs) nécessaire à la reconstruc-
tion précise des traces de particules. La TPC est un détecteur cylindrique rempli de
gaz (Ne/CO2/N2) et soumis à un champ électromagnétique d’environ 400 V/cm. Le
principe de détection est basé sur l’ionisation du gaz produite par le passage d’une
particule chargée, le signal étant lu aux deux extrémités du cylindre par des chambres
à lecture multi-fils. Ces chambres permettent une reconstruction de la trajectoire dans
le plan (x,y), la dimension z étant donnée par le temps de dérive des charges crées.
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- Transition Radiation Detector (TRD) : le TRD permet l’identification des élec-
trons (pT > 1 GeV/c) par discrimination électron/pion (figure 4.7 (c)). Le principe
d’identification est basée à la fois sur la différence de perte d’énergie (dE/dx) entre
électrons et pions, et sur la production de photons de transition par les électrons. Le
TRD est principalement composé d’un radiateur et d’un volume de gaz (XeCO2).

- Time Of Flight (TOF) : le TOF détecte le passage d’une particule chargée via l’ava-
lanche d’ionisation produite dans une chambre gazeuse soumise à un champ électro-
magnétique uniforme. L’objectif est l’identification des pions, kaons (pT < 2.5 GeV/c)
et protons (pT < 4 GeV/c) via leurs temps de vol respectifs (figure 4.7 (d)).

- High Momentum Particle Identification Detector (HMPID) : le détecteur
HMPID permet la séparation π/K jusqu’à environ 3 GeV/c, et K/p jusqu’à environ 5
GeV/c (figure 4.7 (e)). Il utilise pour cela un anneau Cherenkov (RICH : Ring Imaging
CHerenkov). Le HMPID a également pour fonction de compléter l’identification des
particules chargées dans une gamme en énergie intermédiaire entre le système TPC/ITS
et le TOF.

- Photon Spectrometer (PHOS) : PHOS est un calorimètre électromagnétique com-
posé de cristaux de PbWO4. Il a été conçu pour permettre l’identification des photons
directs de bas-pT et des π0 jusqu’à haut-pT grâce à sa granularité très fine.

- Electromagnetic Calorimeter (EMCAL) : EMCal est un calorimètre à échan-
tillonnage composé d’une alternance de couche de Plomb et de scintillateur plastique.
Il permet l’identification des électrons et des photons, ainsi que la reconstruction de la
composante neutre des jets de hadrons.

Spectromètre à muon : le spectromètre à muons est composé d’un absorbeur (rejection
des hadrons et des photons), d’un système de trajectographie (chambre à gaz avec cathodes
de lecture aux extrémités) et d’un système de déclenchement. Le rôle du déclenchement est
de rejeter les muons de bas-pT provenant de la décroissance des pions et des kaons.

Détecteurs à grande-rapidité :

- Zero Degree Calorimeter (ZDC) : le ZDC permet l’estimation du nombre de
nucléons participant à la collision via la mesure du nombre de nucléons spectateurs
(Nparticipant = A−Nspectateur). Il est formé d’un calorimètre hadronique et d’un ca-
lorimètre électromagnétique, tous deux à fibres de quartz. La mesure du nombre de
nucléons spectateurs est basée sur une mesure de l’énergie collectée par les calorimètres
(EZDC(TeV ) = 2.76×Nspectateur).
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(a) dE/dx pour les collisions Pb-Pb me-
suré par l’ITS [150].

(b) dE/dx pour les collisions pp mesuré
par la TPC [150].

(c) Distribution de charge mesurée par le
TRD [150].

(d) Paramètre β pour les collisions Pb-Pb
mesuré par le TOF [150].

(e) Angle Cerenkov pour les collisions pp
mesuré par le HMPID [150].

Figure 4.7: Identification des particules dans l’expérience ALICE

- Photon Multiplicity Detector (PMD) : le PMD utilise la méthode dite "pied de
gerbe" pour identifier les photons dans une région où la densité de particules rend
impossible l’utilisation des techniques classiques de calorimétrie.
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- Forward Multiplicity Detector (FMD) : le FMD est un détecteur silicium qui
permet de déterminer la multiplicité des particules chargées.

- VZERO (V0) : les deux ensembles de scintillateurs (V0A, V0C) placés de chaque
côté du point d’interaction permettent le déclenchement des événements de biais mini-
mum en rejetant les événements correspondant à des collisions entre une particule du
faisceau et un atome présent dans le tube à vide. Le détecteur V0 permet également
une estimation de la centralité de la collision via la multiplicité des particules chargées
(figure 4.8), ainsi que de la luminosité.

- TZERO (T0) : Le T0 étant le système de déclenchement le plus rapide de l’expérience
ALICE, il fournit un signal de départ au TOF pour la mesure du temps de vol des
particules. Ce détecteur utilise des compteurs Cerenkov composés de radiateurs quartz
et reliés à des photomultiplicateurs.

Figure 4.8: Estimation de la centralité des collisions Pb-Pb au LHC par ajustement de la distribu-
tion de charges collectées par le détecteur V0 avec un modèle de type Glauber Monte
Carlo [150].

4.2.2 Déclenchement et acquisition de données

Le taux de collisions moyen mesuré dans l’expérience ALICE est de 400 kHz en collision
proton-proton et 4 kHz en collision Plomb-Plomb. Le système général de déclenchement
d’ALICE remplit ainsi deux fonctions principales : réduire le taux et le volume des données
collectées et améliorer la statistique des observables physiques intéressantes. Pour réduire
le taux de données, le système de déclenchement est composé d’un système hardware à
trois niveaux (L0/L1/L2) et d’un système online appelé HLT (High Level Trigger) (figure
4.9). Les informations provenant des systèmes de déclenchement des différents détecteurs
d’ALICE sont rassemblées au niveau du CTP (Central Trigger Processor). Le CTP est
conçu pour permettre la sélection en parallèle d’événements de caractéristiques différentes
(nature des particules, énergie, ...) tout en ajustant les taux de données pour s’adapter à la
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bande-passante (initialement limitée à 1.25 Go/s) du système d’acquisition (DAQ pour Data
Acquisition System). Lorsque les détecteurs recoivent un signal positif provenant du CTP,
ils envoient leurs données via des fibres optiques (DDL pour Detector Data Link) au système
d’acquisition qui les rassemble afin de recréer l’évènement dans sa totalité. Les données sont
alors exportées vers le centre de calcul du CERN pour être sauvegardées sur une bande
"Tier-0" puis copiées sur d’autres bandes "Tier-1" pour permettre leur reconstruction et
leur analyse via la grille de calcul du LHC.

Figure 4.9: Vue schématique du système de déclenchement d’ALICE pour les collisions pp et PbPb
[152].

Pour sélectionner les collisions, le CTP utilise des classes de déclenchement qui combinent
les informations provenant d’un ensemble de détecteurs. Parmi les classes dites "communes",
les événements de biais minimum correspondent à la définition la plus simple qu’il soit de ce
qu’est une interaction. Le déclenchement de biais minimum doit ainsi sélectionner les colli-
sions avec la plus grande efficacité possible tout en rejetant le bruit provenant principalement
des interactions entre un proton et le gaz résiduel du tube à vide. Cette classe de déclenche-
ment utilise pour cela les informations combinées de deux détecteurs, le VZERO et le SPD,
permettant ainsi de couvrir une large acceptance géométrique. Lorsqu’un signal est détecté
dans les scintillateurs du VZERO, l’asymétrie des compteurs V0A et V0C par rapport au
point d’interaction permet une rejection des collisions proton-gaz à l’aide d’une coupure
sur le temps d’arrivée des particules (figure 4.10). L’information fournie par le VZERO est
combinée avec celle du SPD, basée sur une mesure en énergie dans la première couche du
détecteur, afin d’émettre ou non le signal de déclenchement de biais minimum.
Les classes "communes" utilisent une fraction importante de la bande-passante totale, à

l’inverse des classes de déclenchement "rares" qui sélectionnent des évènements ne se pro-
duisant que pour un nombre limité de collisions. Ces événements correspondent par exemple
à la production de quarkonia (déclenchement par les détecteurs muons) ou à celle de jets de
haute énergie (déclenchement par le détecteur EMCal). Toute la difficulté du CTP consiste
alors à ajuster les taux de déclenchement en partageant équitablement la bande-passante
disponible. Pour cela il est possible soit d’appliquer un facteur de réduction, soit d’utiliser
un système d’auto-régulation du système d’acquisition qui bloque les événements communs
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figure 4 (a), (b) and (c) respectively. Beam–gas interactions between the two
VZERO counters are equivalent to normal pp interactions (see figure 4).

(a)

(c)

(b)

V0A V0C

t(V0A) = 11.3 ns

t(V0A) = 11.3 ns t(V0C) = 3 ns

t(V0A) = !11.3 ns t(V0C) = 3 ns

t(V0C) = ! 3 ns

Fig. 4. A schematic view of the different time of arrival of particles at the VZERO
counters for pp collisions (a) and for beam–background interactions behind V0A (b)
and V0C (c). t0 is the nominal time for pp interactions, t(V0A) is the arrival time
of particles at V0A and similarly for t(V0C).

The arrival times relative to t0 are not exact because the bunches have a
spatial extension and thus (i) the collisions happen not exactly at the nominal
interaction point, but in a region around it, and (ii) the collisions do not
happen necessarily exactly at t0 but in a time region around it. Other factors
to take into account are that not all the particles travel at the same speed and
that there are different distances form the interaction point to the different
VZERO cells. All these effects are taken into account in the present simulation
of the VZERO trigger.

The VZERO triggers use these different arrival times to define four interaction
windows for each channel. They are called BBA, BBC, BGA and BGC, where BB
stands for beam–beam (i.e. pp) and BG for beam–background interactions.
The windows are centered at +11.3, +3.0, −11.3 and −3.0 ns with respect
to t0 for BBA, BBC, BGA and BGC respectively. The trigger is built with logical
combinations of the status (hit or empty) of the windows. The detailed im-
plementation of the trigger logic is shown in Figure 5 which was taken from
ref. [4]. The signal from each PMT is sent to a discriminator. The threshold
voltage will be set such that 98% of minimum ionizing particles produce a
signal above it. Using a delay for each channel, the output of the comparator
will be ANDed with the open gate of the each window. If a signal goes above
the threshold at anytime within the window, the AND operation will set the
status of the window to TRUE. The window center and width can be set with

6

Figure 4.10: Vue schématique du temps d’arrivée des particules aux compteurs V0 pour des col-
lisions proton-proton (a), proton-gaz avant V0A (b) et après V0C (c). Le paramètre
t(V0A) représente le temps d’arrivée du signal au compteur V0A (idem pour V0C)
[153].

au profit des événements rares lorsqu’il y a saturation de la bande-passante. En plus de la
réduction des taux de données, le CTP doit permettre une protection efficace contre l’empi-
lement. Cette protection consiste à vérifier que l’événement sélectionné ne provient pas de la
superposition de plusieurs collisions, phénomène inévitable lorsque la luminosité devient trop
importante. En collision proton-proton un certain taux d’empilement est toléré alors qu’en
collision Plomb-Plomb la multiplicité rend quasiment impossible la reconstruction simultanée
de deux collisions centrales.
Les différentes fonctions du CTP doivent être réalisées dans un délai assez court pour

satisfaire l’électronique des différents détecteurs. Outre le signal de pré-déclenchement utilisé
pour démarrer l’électronique du TRD au temps t = 900 ns, le CTP prend une décision
en 100 ns puis envoie un signal de niveau 0 atteignant les détecteurs à t = 1.2 µs après
l’interaction. Ce signal étant trop rapide pour permettre de recevoir les informations de
l’ensemble des détecteurs, un second signal de niveau 1 est émis par le CTP puis reçu par les
détecteurs en t = 6.5 µs. Un dernier signal, de niveau 2, est finalement envoyé en t = 88 µs
pour éviter l’empilement des événements dans la chambre de projection temporelle (TPC). À
chaque niveau de déclenchement, l’événement peut être accepté ou rejeté sur des critères de
sélection associant un ou plusieurs détecteurs. Dans le cas des collisions Plomb-Plomb pour
lesquelles le taux de données peut atteindre 25 Go/seconde, les informations du CTP sont
ensuite transférées au système de déclenchement online HLT qui dispose de l’ensemble des
informations relatives à chacun des sous-détecteurs. Le HLT a été conçu pour sélectionner les
événements ou les sous-événements intéressants afin de compresser les données sans dégrader
leur contenu physique. Après reconstruction il peut soit accepter/rejeter l’événement dans
sa totalité, soit filtrer les informations "utiles" de l’événement.
Que ce soit au niveau des détecteurs, au niveau du CTP ou au niveau du HLT, l’utilisation

d’un système de déclenchement nécessite de s’assurer que la sélection des événements n’induit



A Large Ion Collider Experiment (ALICE) 79

pas de biais dans la mesure des observables, comme par exemple une dépendance en pT ou
une dépendance en centralité. Cette exigence, appliquée au système de déclenchement du
calorimètre électromagnétique de l’expérience ALICE, a fait l’objet d’une étude décrite dans
la deuxième partie de ce manuscrit (chapitre 8).

4.2.3 Reconstruction et analyse des données

L’environnement d’analyse de l’expérience ALICE s’appuie sur l’environnement ROOT
développé par le CERN à partir du langage informatique C++. Cet environnement, appelé
"AliRoot" [150], centralise la réalisation des étapes principales permettant de passer des
données brutes au résultat physique final.

Reconstruction des données

Les prises de données sont classées en périodes correspondant à une configuration de
collision particulière (énergie, type de particules, champ magnétique, ...). Chaque période
est composée d’un certain nombre de runs qui inclut une liste de détecteurs définie dans
la prise de donnée. Les runs peuvent être de type "technique", il s’agit alors de vérifier
le fonctionnement d’un ou plusieurs détecteurs, ou "physique" lors de l’enregistrement des
données de collisions. La durée d’un run peut aller de quelques secondes à plusieurs heures
en fonction des besoins et des performances de la machine. Pour chaque run de physique,
une critère de qualité est émis par les différents détecteurs afin de définir si les données sont
utilisables ou non dans les analyses de physique.
Les données des collisions enregistrées par l’expérience ALICE lors des runs de physique

sont disponibles sous trois formats : les données brutes (Raw Data), les ESD (Event Summary
Data) et les AOD (Analysis Oriented Data). Les données brutes correspondent aux informa-
tions obtenues en sortie des différents détecteurs (par exemple sous la forme de dépôts de
charge). Une reconstruction des traces de particules et des vertex d’interaction est réalisée,
puis les événements sont reconstruits afin de produire les ESD, qui à leur tour peuvent être
filtrés pour former les AOD. Contrairement aux données brutes, les ESD et les AOD ne
contiennent que les informations nécessaires aux différentes analyses de physique. En plus
des critères de qualité associés à chaque détecteur run à run, les objets des ESD et des AOD
tels que les traces de particules chargées et les clusters électromagnétiques sont soumis à un
contrôle systématique de leur qualité. Ces études permettent de vérifier la stabilité des objets
reconstruits au cours de la prise de donnée et de rejeter le cas échéant les runs problématiques.

Analyse des données

Les données des collisions sont accessibles via la grille de calcul WLCG (Worldwide LHC
Computing Grid). La grille est une ferme mondiale d’ordinateurs rassemblant plus de 200000
unités CPU avec une capacité de stockage totale de l’ordre de 11 petabyte (PB) 2. La gestion

2. Cette capacité de stockage des données est indispensable en physique des hautes énergies, un événement
typique ayant une taille d’environ 1Mo en collision proton-proton et 12 Mo en collision Plomb-Plomb.
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des données est hiérarchisée par une répartition en sites de niveau 0, 1 et 2. D’une manière
générale le Tiers-0 (CERN) est dédié au stockage des données brutes, les Tiers-1 permettent
la reconstruction et l’étalonnage des données, et les Tiers-2 sont utilisés pour les analyses de
physique et à la simulation Monte Carlo.

Simulation Monte Carlo

La simulation Monte-Carlo est indissociable de l’analyse des données en physique des
hautes énergies. Elle se doit de reproduire le plus fidèlement possible les mécanismes de
production et de détection des particules en allant de la collision initiale jusqu’aux signaux
électroniques produits par les détecteurs. La simulation est réalisée en deux étapes :

- génération : les interactions fondamentales qui ont lieu lors de la collision sont re-
produites afin d’obtenir l’ensemble des particules. Différents générateurs sont utilisés
pour les collisions proton-proton (PYTHIA [56]) et noyau-noyau (HIJING [154], EPOS
[155], ...).

- propagation : les particules produites par le générateur sont ensuite propagées dans les
détecteurs, en tenant compte de l’ensemble des matériaux (structure, câbles électriques)
pouvant perturber leur propagation. L’environnement AliRoot se base actuellement sur
le logiciel GEANT [156], mais des études sont en cours pour une utilisation du logiciel
Geant4 [157] adopté par les expériences ATLAS et CMS. Ce point particulier sera
développé dans la deuxième partie de ce manuscrit (chapitre 6).

Les données simulées sont produites dans un format identique à celui des données brutes.
Cela permet d’appliquer la même chaîne de reconstruction quel que soit le type de données, et
de produire de manière identique des ESD/AOD à partir d’événements simulés et réels. Afin
d’obtenir un accord le plus précis possible entre la simulation et les données expérimentales, il
est possible de prendre en compte les conditions de fonctionnement de chacun des détecteurs
dans la chaîne de simulation. La production Monte Carlo est dans ce cas ancrée à une période
de prise de données spécifique dans le temps (anchor run).
La capacité de l’environnement AliRoot à reconstruire de manière identique les données

de simulation et les données réelles permet dans certains cas un mélange de ces deux objets
(embedding). Il s’agit en général de produire un signal rare par simulation, puis de le mélanger
aux données réelles avant l’étape de production des ESD/AOD. Cet outil est particulièrement
utilisé dans le cas des collisions noyau-noyau, car il permet d’ajouter un signal Monte Carlo à
un bruit de fond expérimental qu’il est difficile de prédire théoriquement. Cette technique est
utilisée pour l’analyse des corrélations photon/π0-hadron et sera développée dans la troisième
partie de ce manuscrit (chapitre 10).
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L’analyse des corrélations photon/π0-hadron nécessite la reconstruction de deux types d’objets :
les hadrons chargés et les photons. Les particules chargées sont reconstruites par les trajectographes
centraux de l’expérience ALICE, à savoir le trajectographe interne silicium (ITS) et la chambre
de projection temporelle (TPC). Les particules neutres sont reconstruites au sein du calorimètre
électromagnétique (EMCal).

L’objectif de ce chapitre est de présenter les méthodes expérimentales utilisées pour la recons-
truction des particules. Après une description détaillée des deux trajectographes utilisés dans cette
analyse, nous introduirons les algorithmes de reconstruction des traces en nous concentrant princi-
palement sur la méthode du filtre de Kalman. La deuxième partie est consacrée à la reconstruction
des photons dans le calorimètre électromagnétique. Après une présentation générale des principes de
base de la calorimétrie, nous présenterons le détecteur EMCal puis nous introduirons le concept de
clusterisation à la base de la reconstruction des particules dans le calorimètre.
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5.1 Particules chargées

La reconstruction des particules chargées au sein de l’expérience ALICE repose princi-
palement sur l’utilisation conjointe de la chambre à projection temporelle (TPC) et du
trajectographe interne silicium (ITS). La conception de ces détecteurs est étroitement liée
aux contraintes imposées par la physique des collisions d’ions lourds sur la multiplicité de
particules produites lors des collisions Pb-Pb (une valeur maximale de dN/dη ≈ 8000 a été
retenue à l’époque), sur la dynamique en énergie (de 10 MeV à plus de 100 GeV) et sur
l’identification des particules. L’analyse des corrélations photon/π0-hadron ne nécessitant
pas d’identification des hadrons, les méthodes d’identification basées sur la perte d’énergie
dans les trajectographes ne seront pas détaillées dans ce chapitre (nous renvoyons cependant
le lecteur intéressé aux références [152] [158]).

5.1.1 Trajectographe Interne Silicium (ITS)

Les fonctions principales de l’ITS [159] portent sur la localisation des vertex d’interaction
primaire (collision) et secondaires (décroissance de particules), l’identification des particules
de faible énergie (pT < 200 MeV/c) et l’amélioration de la résolution des traces reconstruites
par la TPC. L’ITS est formé de six couches cylindriques de détecteurs silicium localisées
autour du tube de faisceau entre un rayon interne r = 3.9 cm et un rayon externe r =
43.0 cm. Le nombre, la position et la segmentation des couches ont été choisis pour op-
timiser la reconstruction en fonction de la densité de points d’impacts qui varie entre 50
particules/cm2 (couche 1) et moins de 1 particule/cm2 (couche 6) pour des collisions Plomb-
Plomb. L’acceptance globale du détecteur est de 360◦ pour l’angle azimuthal φ et |η| < 0.9

en pseudo-rapidité. La couche la plus interne possède cependant une acceptance légèrement
différente (|η| < 1.98) pour permettre une estimation plus précise de la multiplicité de par-
ticules chargées. La résolution spatiale et la résolution en impulsion étant dominées par les
diffusions multiples des particules dans le matériau, l’épaisseur totale du détecteur a été
minimisée tout en conservant un rapport signal/bruit acceptable.
Trois types de sous-détecteurs différents sont réunis au sein de l’ITS (figure 5.1) : un

détecteur à pixels (Silicon Pixel Detector) pour les couches 1 et 2, un détecteur à dérive
(Silicon Drift Detector) pour les couches 3 et 4, et un détecteur à pistes (Silicon Strip
Detector) pour les couches 5 et 6. Les deux couches du SPD étant les plus proches du
faisceau, leur rôle est essentiel pour la reconstruction des vertex primaire et secondaires.
Les couches du SSD (les plus externes) sont importantes pour le prolongement des traces
reconstruites par la TPC. Les caractéristiques principales des trois sous-détecteurs de l’ITS
sont résumées dans le tableau suivant :

SPD SDD SSD
Position radiale (cm) 3.9 < r < 7.6 15.0 < r < 23.9 38.0 < r < 43.0

Résolution spatiale z (µm) 100 25 830
Résolution spatiale rφ (µm) 12 35 20

Table 5.1: Caractéristiques principales du trajectographe interne silicium.



Reconstruction de particules 85

!"#

!##

!!#

$
%
&'
()
*

x

y

z

locz

loc
y

locx

loc
!

loc"

loc
#

Figure 2. Layout of the ITS (left) and orientation of the ALICE global (middle) and ITS-module local (right)
reference systems. The global reference system has indeed its origin in the middle of the ITS, so that the z
direction coincides with the beam line.

barrel coincides with the z axis. The module local reference system (Fig. 2, right) is defined with
the xloc and zloc axes on the sensor plane and with the zloc axis in the same direction as the global
z axis. The local x direction is approximately equivalent to the global rϕ . The alignment degrees
of freedom of the module are translations in xloc, yloc, zloc, and rotations by angles ψloc, θloc, ϕloc,
about the xloc, yloc, zloc axes, respectively1.

The ITS geometry in AliRoot is described in full detail, down to the level of all mechani-
cal structures and single electronic components, using the ROOT [7] geometrical modeler. This
detailed geometry is used in Monte Carlo simulations and in the track reconstruction procedures,
thereby accounting for the exact position of the sensor modules and of all the passive material that
determine particle scattering and energy loss.

The geometrical parameters of the layers (radial position, length along beam axis, number of
modules, spatial resolution, and material budget) are summarized in Table 1. The material budget
reported in the table takes into account the φ -averaged material (including the sensors, electronics,
cabling, support structures, and cooling) associated with radial paths through each layer. Another
1.30% of radiation length comes from the thermal shields and supports installed between SPD
and SDD barrels and between SDD and SSD barrels, thus making the total material budget for
perpendicular tracks equal to 7.66% of X0.

In the following, the features of each of the three sub-detectors (SPD, SDD and SSD) that are
relevant for alignment issues are described (for more details see [1]).

2.1 Silicon Pixel Detector (SPD)

The basic building block of the ALICE SPD is a module consisting of a two-dimensional sensor
matrix of reverse-biased silicon detector diodes bump-bonded to 5 front-end chips. The sensor

1The alignment transformation can be expressed equivalently in terms of the local or global coordinates.
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Figure 5.1: Vue schématique des trois sous-détecteurs composant le trajectographe silicium interne
[159].

5.1.2 Chambre de Projection Temporelle (TPC)

La TPC est le détecteur principal de l’expérience ALICE pour la reconstruction des traces
de particules chargées [160]. Il doit permettre d’atteindre une excellente résolution sur une
plage en énergie allant de 0.1 GeV à plus de 100 GeV. La TPC est un détecteur cylindrique
gazeux (Ne/CO2/N2), dont le volume actif s’étend sur plus de 5 mètres (suivant l’axe du
faisceau) dans un rayon compris entre 85 et 250 cm. Le volume actif est séparé en deux
régions distinctes par une électrode centrale fournissant un champ de 100 kV environ. Aux
deux extrémités sont placées des chambres proportionnelles multi-fils à cathodes de lecture
segmentée radialement en blocs dont la surface varie avec la distance radiale pour s’adapter
à la densité de traces. L’acceptance globale du détecteur est de 360◦ pour l’angle azimuthal
φ et |η| < 0.9 en pseudo-rapidité (figure 5.2).

Figure 5.2: Vue schématique de la chambre de projection temporelle [160].
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Un des paramètres fondamentaux pour la reconstruction des traces est la vitesse de dérive
des électrons produits par l’ionisation du gaz. Cette vitesse de dérive est principalement
déterminée par le champ moyen de 400 V/cm présent dans l’enceinte de la TPC, le temps de
dérive maximum étant alors de 92 µs. D’autres paramètres influent cependant sur la stabilité
de la vitesse de dérive, en particulier la pureté et la température du gaz utilisé. Pour éviter
une dépendance trop importante de la vitesse de dérive en fonction de la température, un
système de refroidissement maintient le volume actif à une température constante avec des
variations maximales de 0.1 ◦C. De plus les fractions en CO2 et N2 sont maintenues stables
à 0.1%. Les impuretés en O2 sont inférieures à 1 ppm pour limiter la réduction du signal à
2.5% au maximum sur les 2.5 mètres de dérive. Les caractéristiques principales de la TPC
sont résumées dans le tableau suivant :

Quantité Valeurs
Position radiale (volume actif) 848 < r < 2466 mm

Longueur (volume actif) 2 x 2500 mm
Segmentation en φ 18 secteurs
Segmentation en r 2 chambres/secteur
Longueur de dérive 2 x 2500 mm
Vitesse de dérive 2.7 cm/µs

Temps de dérive (maximum) 92 µs
Résolution spatiale z 1250 à 1100 µm
Résolution spatiale rφ 1100 / 800 µm (rayon interne / externe)

Table 5.2: Caractéristiques principales de la chambre à projection temporelle.

5.1.3 Trajectographie

La reconstruction de la trajectoire d’une particule chargée est séparée en deux étapes :
la reconstruction du vertex primaire de l’interaction, et la reconstruction de la trace de
la particule. Au préalable, il est nécessaire d’obtenir une liste de positions correspondant à
l’ensemble des points d’intersection entre la particule et le détecteur. Ces points d’intersection
correspondent généralement au centre de gravité du cluster formé par l’ensemble des signaux
électroniques générés par une même particule.

5.1.3.1 Vertex primaire

Le vertex primaire est déterminé en utilisant les informations du SPD (les deux couches
les plus internes de l’ITS). Une première approximation de la position sur l’axe z est obtenue
à partir de la distribution des points d’interaction reconstruits sur la couche la plus interne.
Les points d’interaction reconstruits sur les autres couches sont alors prolongées linéairement
autour de cette position afin d’estimer la coordonnée z du vertex (comme valeur moyenne de
la distribution gaussienne obtenue par prolongement). Une procédure similaire est appliquée
dans le plan transverse pour obtenir la position du vertex en x et y. Il faut cependant noter
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que la position du vertex est estimée à nouveau après la reconstruction globale des traces
par prolongement de ces dernières depuis leur point d’interaction le plus proche du vertex.
La résolution spatiale de la mesure du vertex primaire suivant ~z dépend directement de la

densité de trace selon la relation :

σz =
A√

dNch/dη
+B (5.1)

L’estimation des termes A (≈ 290 µm) et B (≈ 1 µm) donne une résolution σz de l’ordre de
150 µm en collision proton-proton et 10 µm en collision Plomb-Plomb (vertex primaire).
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Figure 8.2: Resolution on the primary-vertex position as determined using reconstructed tracks, as
a function of the charged-particle density for pp events.

transverse x/y-coordinates, are shown as a function of the charged-particle density (for pp colli-
sions). When fitting these dependencies to eq. (8.1) we get A = 270 µm for the z-coordinate, and
A = 210 µm for the x/y-coordinate (again with a few microns for B). For the average pp multi-
plicity, the precision on the measurement of the primary vertex position after the tracking step is
improved to 110 µm in the z-coordinate, and to 70 µm in the transverse coordinate.

8.1.2 Track reconstruction

The basic method employed for track finding and fitting is the Kalman filter as introduced to this
field by P. Billoir [252]. This method depends critically on the determination, for each track, of a
set of initial seed values for the track parameters and their covariance matrix. This seeding is done
using the space points reconstructed in the TPC. The space-point positions are calculated from the
centre of gravity of the two-dimensional clusters (in the pad-row and time directions). At high parti-
cle densities, due to the large occupancy, we use a more sophisticated cluster unfolding which takes
into account the cluster structure. The seeding is done twice: the first time assuming that the track
originated from the primary vertex and the second assuming that the track originated elsewhere
(decay, secondary interaction, etc.). We start to combine the space points from a few outermost pad
rows using, in the first pass, the primary-vertex position as a constraint. The procedure is repeated
several times, choosing a set of pad rows closer and closer to the centre of the TPC. From every
seed we start the track following, pad row by pad row inside the TPC. The Kalman filter essentially
consists of the following steps: a) we propagate the state vector of the track parameters and their
covariance matrix to the next pad row, b) we add to the inverted covariance matrix (which repre-
sents the information matrix of our knowledge of the track parameters at that point) a noise term
(representing the information loss due to stochastic processes like multiple scattering and energy-
loss fluctuations), c) if the filter finds in the new pad row a space point compatible with the track
prolongation, we add this measurement, i.e. we update the track parameters and the covariance
matrix, increasing the information. We repeat the seeding a second time, now without the primary-
vertex constraint. We then proceed again with track following as outlined above. The track-finding
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Figure 5.5. Resolution of the reconstructed vertex position as a function of the particle density
for B = 0.2 T. The solid line is a fit through the parametrization given in the figure (see text).

width (best resolution) at the values X ′, Y ′ close to the true vertex coordinates that can be
found through an iterative procedure. No more than 2–3 iterations were needed, since after
that the limiting factor was the straight line approximation itself.

By taking the centroids of the xv, yv and zv distributions, it is possible to estimate the
location of the primary vertex in three dimensions [6, 7].

5.1.1.3. Results for the central Pb–Pb events

Dependence on the vertex location. For the case of the highest particle density dNch/dη =
8000, for B = 0.2 T, the method gives a resolution of about 5 µm along the z axis. When the
primary vertex is away from z = 0, the algorithm tends to slightly overestimate (by a few µm)
the absolute value of its position. This is due to the difference in the left and right background
tails of the zv spectrum. Such small effect however has been corrected by including this
observed trend as a part of the estimation process. The results showed that it is possible to
obtain a very good resolution (in the order of 5 µm along the z axis), even in case of beam
displacements off the z axis, up to radial distances of 10 mm. The resolution in the transverse
plane was found to be about 25 µm at B = 0.2 T. Such values are good enough for the track
reconstruction purposes.

Dependence on the particle density. The capability to reconstruct the vertex location was
also investigated for different particle multiplicities, down to a value of Nch = 17000 in the full
phase space (dNch/dη ∼ 1500). For low particle multiplicity the combinatorial background is
very low; however the loss in statistics results in a slightly worse vertex resolution. This can
be seen from Fig. 5.5, which shows the dependence of the vertex resolution on the particle
density.

If the vertex resolution is plotted against the particle density, a power law

σz = A√
dNch/dη

+ B

can be fitted to the data, obtaining A = 292 µm and B = 1.8 µm. The result also shows that
a good vertex finding can be obtained even with a reduced number of tracks (down to 1/4 of
the expected maximal number of tracks). This could help where a fast vertex reconstruction

Figure 5.3: Gauche : résolution (x,y,z) du vertex primaire en collision pp obtenue par simulation ;
Droite : résolution (z) du vertex primaire en collision Pb-Pb obtenue par simulation
[158].

5.1.3.2 Reconstruction de traces

Le programme de physique de l’expérience ALICE nécessitant une identification précise
des particules chargées jusqu’à des impulsions de l’ordre de 100 MeV/c (énergie à laquelle
les diffusions multiples dans les matériaux deviennent non-négligeables), la reconstruction
des traces est réalisée en utilisant une méthode dite locale. Cette méthode est basée sur un
filtre de Kalman, adaptée à la trajectographie par Pierre Billoir dans les années 1980 [161]
[162] [163]. Le principe général du filtre de Kalman est de déterminer les valeurs optimales
des paramètres de la trace (ou vecteur d’état) en ajoutant de manière itérative l’ensemble
des informations disponibles expérimentalement. Soit une trajectoire paramétrisée par un
vecteur d’état local ~p (par exemple ~p = (x, y, θ, φ, q/p) et sa matrice de covariance associée
W. Chaque itération comporte trois opérations élémentaires :

1 Propagation : les paramètres de la trace ~p et la matrice de covariance W sont pro-
pagées jusqu’à la position reconstruite suivante à partir d’une équation d’évolution
prédéfinie. Soit D le jacobien de la transformation ((Dij) = ∂(propag. i)/∂(initial j)),
la matrice de covariance est propagée selon : W(propag) = (D−1)t W(initial) D−1.

2 Addition : l’information de la mesure locale est ajoutée au paramètre d’état et à la
matrice de covariance estimés après propagation. Soit ~m le vecteur d’état local et U
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sa matrice de covariance, le vecteur d’état ~p′ après ajout des informations est solution
du système linéaire d’équations :

(W+U)(~p′ − ~p) = U(~m− ~p)
la matrice de covariance étant donnée par : W’ = W+U.

3 Bruit : un terme de bruit représentant la perte d’informations liée aux processus sto-
chastiques (diffusions multiples), à la perte d’énergie ou encore aux zones mortes du
détecteur, est finalement ajouté à la matrice de covariance.

Dans l’expérience ALICE, la reconstruction de traces commence au niveau de la région
la plus externe de la TPC (là où la densité est la plus faible). Les traces sont reconstruites
au sein de la TPC par application d’un filtre de Kalman auquel il est possible d’ajouter
une contrainte liée au vertex primaire. Les traces reconstruites sont alors propagées vers la
couche externe de l’ITS puis filtrées jusqu’au plus près du vertex. Un filtre de Kalman est
ensuite appliqué aux clusters non-utilisés de l’ITS pour tenter de retrouver les traces non
reconstruites dans la TPC (décroissance, zones mortes, pT < 100 MeV/c), soit environ 10%
de l’ensemble des traces. Une nouvelle reconstruction des traces est alors réalisée en allant
du vertex aux bords externes de la TPC. Celle-ci permet d’obtenir la précision nécessaire
pour extrapoler les traces reconstruites dans les autres détecteurs (TOF, TRD, HMPID)
utilisés pour l’identification des particules. Un troisième filtre est finalement appliqué en
partant du vertex (primaire ou secondaire) pour éliminer les points incorrectement attribués
précédemment. Durant les différentes étapes de reconstruction certains points peuvent être
associés à plusieurs traces. Un critère de qualité basé sur le χ2 de la trace filtrée permet alors
de sélectionner la trace conservée. Les résultats des trois étapes de reconstruction sont tous
sauvegardés pour offrir différentes options aux analyses physiques.

Figure 5.4: Résolution en impulsion transverse des traces reconstruites lors de collisions Pb-Pb
[150].
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En ce qui concerne les performances, l’efficacité de reconstruction des traces de particules
chargées est fortement corrélée aux conditions expérimentales de la prise des données, en
particulier les zones mortes dans la TPC et l’ITS. Chaque analyse physique devra donc esti-
mer l’efficacité de reconstruction en fonction des données qu’elle utilise. En fonction du type
d’observable étudiée, il est également possible de sélectionner les détecteurs impliqués dans
la reconstruction des traces (ITS seul, TPC seule, ITS et TPC combinés). La résolution en
impulsion transverse des traces reconstruites conjointement par la TPC et l’ITS en collision
Plomb-Plomb est représentée sur la figure 5.4.

5.2 Photons

Dans l’expérience ALICE, les photons sont identifiés expérimentalement par trois sous-
systèmes. La méthode dite de "conversion" utilise les trajectographes pour reconstruire les
traces électron/positron provenant de la conversion d’un photon dans les matériaux d’ALICE.
Les deux autres sous-systèmes sont des calorimètres électromagnétiques : le spectromètre à
photons (PHOS) et le calorimètre à échantillonnage (EMCal). Dans le cadre de notre analyse,
nous utiliserons uniquement les particules reconstruites par le calorimètre EMCal, qui est le
seul à posséder une acceptance suffisante pour accéder à une statistique raisonnable pour les
photons de haute-impulsion transverse.

5.2.1 Calorimétrie

La fonction principale d’un calorimètre est la mesure en énergie des particules. Un ca-
lorimètre électromagnétique peut détecter plusieurs types de particules (hadron, neutron,
...), mais il est principalement développé pour la mesure des photons et des électrons. Le
photon peut interagir par interaction électromagnétique selon trois processus principaux :
l’effet photo-électrique, la diffusion Compton (incohérente) et la création de paires γ → e+e−

(figure 5.5 droite). Le mode privilégié dépend à la fois de l’énergie du photon et de la densité
électronique du milieu (Z), la création de paires étant l’effet dominant à haute-énergie. Le
mode principal d’interaction des électrons d’énergie supérieure à 100 MeV est le rayonnement
de freinage (Bremsstrahlung) au cours duquel l’électron, freiné par le champ électromagné-
tique des noyaux atomiques du milieu, émet un photon (figure 5.5 gauche). Ces photons
secondaires peuvent alors produire des paires e+e−, le processus se répétant pour former des
gerbes électromagnétiques pouvant contenir plusieurs milliers de particules. L’autre mode
d’interaction possible pour les électrons est l’ionisation qui peut contribuer à la production
d’électrons jusqu’à des énergies de l’ordre du MeV (électrons δ).
Un calorimètre est caractérisé par la distribution spatiale du dépôt en énergie des gerbes

électromagnétiques. Le profil longitudinal est décrit à l’aide de la longueur de radiation X0,
définie comme la distance que doit parcourir un électron d’énergie initiale E0 pour atteindre
une énergie de E0/e (soit environ 63.2% de perte). La longueur de radiation est estimée
empiriquement par la relation [165] :

X0 ≈
716.4A

Z(Z + 1)ln(287/
√
Z)

(g.cm−2) (5.2)
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Figure 27.9: Fractional energy loss per radiation length in lead as a function of
electron or positron energy. Electron (positron) scattering is considered as ionization
when the energy loss per collision is below 0.255 MeV, and as Møller (Bhabha)
scattering when it is above. Adapted from Fig. 3.2 from Messel and Crawford,
Electron-Photon Shower Distribution Function Tables for Lead, Copper, and Air
Absorbers, Pergamon Press, 1970. Messel and Crawford use X0(Pb) = 5.82 g/cm2,
but we have modified the figures to reflect the value given in the Table of Atomic
and Nuclear Properties of Materials (X0(Pb) = 6.37 g/cm2).

27.4.2. Energy loss by electrons: At low energies electrons and positrons primarily
lose energy by ionization, although other processes (Møller scattering, Bhabha scattering,
e+ annihilation) contribute, as shown in Fig. 27.9. While ionization loss rates rise
logarithmically with energy, bremsstrahlung losses rise nearly linearly (fractional loss is
nearly independent of energy), and dominates above a few tens of MeV in most materials

Ionization loss by electrons and positrons differs from loss by heavy particles because
of the kinematics, spin, and the identity of the incident electron with the electrons which
it ionizes. Complete discussions and tables can be found in Refs. 11, 12, and 31.

At very high energies and except at the high-energy tip of the bremsstrahlung
spectrum, the cross section can be approximated in the “complete screening case” as [40]

dσ/dk = (1/k)4αr2
e

{
(4
3 − 4

3y + y2)[Z2(Lrad − f(Z)) + Z L′
rad]

+ 1
9 (1 − y)(Z2 + Z)

}
,

(27.22)

where y = k/E is the fraction of the electron’s energy transfered to the radiated photon.
At small y (the “infrared limit”) the term on the second line can reach 2.5%. If it is
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Figure 27.13: Photon total cross sections as a function of energy in carbon and
lead, showing the contributions of different processes:

σp.e. = Atomic photoelectric effect (electron ejection, photon absorption)

σRayleigh = Rayleigh (coherent) scattering–atom neither ionized nor excited

σCompton = Incoherent scattering (Compton scattering off an electron)

κnuc = Pair production, nuclear field

κe = Pair production, electron field

σg.d.r. = Photonuclear interactions, most notably the Giant Dipole Reso-
nance [4]. In these interactions, the target nucleus is broken up.

Data from [5]; parameters for σg.d.r. from [6]. Curves for these and other elements,
compounds, and mixtures may be obtained from
http://physics.nist.gov/PhysRefData. The photon total cross section is
approximately flat for at least two decades beyond the energy range shown. Original
figures courtesy J.H. Hubbell (NIST).
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Figure 5.5: Gauche : Perte d’énergie (fractionnelle) par longueur de radiation dans le Plomb en
fonction de l’énergie de l’électron ou du positron ; Droite : section efficace d’interaction
dans le Plomb en fonction de l’énergie des photons (effet photo-électrique σp.e., création
de paire κe (champ électronique), création de paire κnuc (champ nucléaire), interactions
photo-nucléaires σg.d.r., en particulier les résonances de dipôle géantes [164].

où A est le nombre d’atomes par gramme de matière et Z le numéro atomique des atomes du
milieu. La dépendance en Z de X0 montre l’intérêt d’utiliser un matériau lourd pour avoir
un calorimètre compact 1. La variable X0 est très utilisée en calorimétrie car elle permet de
décrire de manière générique le développement des gerbes électromagnétiques pour n’importe
quel matériau.
L’autre paramètre caractéristique du développement des gerbes électromagnétiques est le

rayon de molière RM . Un cylindre de rayon RM autour de l’axe d’une gerbe électromagné-
tique contient en moyenne 90% de l’énergie de la particule incidente. Le rayon de Molière est
défini par rapport à l’énergie critique εc d’un électron, énergie pour laquelle les pertes par
ionisation sont égales aux pertes par radiation 2. Le paramètre RM mesure ainsi la déflection
moyenne (par rapport à l’axe de la gerbe) des électrons à l’énergie critique εc traversant une
longueur de radiation X0 [165] :

RM ≈ ES
X0

εc
(5.3)

avec : ES = mec
2
√

4π/α ≈ 21.2 MeV.

Gerbes électromagnétiques

Le développement d’une gerbe électromagnétique dans un calorimètre est directement relié
aux processus d’interaction conduisant à la multiplication des particules. Ce développement
est généralement séparé en une composante longitudinale et une composante latérale.

1. Le calorimètre EMCal possède une longueur de radiation X0 = 12.3 mm.
2. εc ≈ 610MeV

Z+1.24
(solide, liquide) et εc ≈ 710MeV

Z+0.92
(gaz).
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- Longitudinal : le profil longitudinal dépend principalement de la densité de charge
du milieu de propagation (Z). Pour une particule d’énergie donnée, la densité de charge
détermine en effet les probabilités d’interaction liées aux différents processus. D’une
manière générale, la distance à laquelle la gerbe atteint son maximum (dE/dx maxi-
mum) augmente avec la densité de charge du milieu. Il faut ainsi une distance plus
importante pour contenir une gerbe produite par un photon de 10 GeV dans le Fer que
dans l’Aluminium car la multiplication des particules (création de paires, rayonnement
Bremsstrahlung) se poursuit jusqu’à des énergies d’autant plus basses que la densité
du milieu est plus importante. La fraction d’énergie récupérée à une profondeur donnée
(exprimée en multiple de X0) dépend ainsi à la fois de l’énergie de la particule incidente
et du matériau considéré, comme le montre la figure 5.6. Le profil longitudinal dépend
également du type de particule incidente. Il faut ainsi en moyenne une longueur de ra-
diation supplémentaire pour récupérer la même fraction d’énergie d’une gerbe générée
par un photon que dans le cas d’un électron [165].

Figure 5.6: Fraction d’énergie moyenne contenue dans un bloc de matière en fonction de l’épaisseur
(X0). Les résultats sont donnés pour différentes énergie d’électrons dans le Cuivre
(haut) et pour différents matériaux pour des électrons et photons de 100 GeV (bas)
[165].

- Latéral : le profil latéral dépend principalement de deux effets physiques, à savoir la
diffusion multiple des électrons/positrons et l’isotropie des particules produites dans
la gerbe. Le profil latéral se présente sous la forme d’un noyau central qui contient la
majorité de l’énergie (processus de diffusion multiple dominant avant le maximum de
la gerbe) et d’un halo de forme approximativement exponentielle (figure 5.7). Contrai-
rement au cas longitudinal, la fraction d’énergie récupérée dans un cylindre de rayon
R est peu dépendante de l’énergie de la particule et du milieu considéré.
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Figure 5.7: Profil latéral d’une gerbe d’électrons de 1 et 10 GeV dans le Plomb (simulation Geant4).

5.2.2 Calorimètre Électromagnétique (EMCal) : tours et modules

Les caractéristiques du calorimètre électromagnétique EMCal [166] ont été fortement in-
fluencées par son intégration "tardive" dans l’expérience ALICE 3. Son acceptance azimu-
thale a ainsi due être limitée à environ 110̊ à cause des contraintes d’intégration (espace dis-
ponible) et de coût. La technologie utilisée a été choisie parmi les technologies déjà existantes
permettant d’atteindre les performances nécessaires au programme de physique d’ALICE,
en particulier les photons et les jets de haute impulsion transverse.

7

2 Detector Design

2.1 Design Overview
The overall design of the EMCal is heavily influenced by its integration within the ALICE [1] magnet.
The EMCal is to be located inside the large room temperature solenoidal magnet of ALICE within a
cylindrical integration volume approximately 110 cm deep in the radial direction sandwiched between
the ALICE space-frame, which supports the entire ALICE central detector, and the ALICE magnet coils.
The PHOton Spectrometer (PHOS) carriage below the ALICE TPC and the the High Momentum Particle
IDentifier (HMPID) above the ALICE TPC, define the azimuthal space available for the EMCal. These
constraints limit the EMCal to a region of about 110 degrees in azimuth. As discussed in Section 2, this
EMCal acceptance is well matched to ALICE physics goals.
The conceptual design of the electromagnetic calorimeter for the ALICE experiment is based on the
Shashlik technology as implemented in the PHENIX experiment [2] at RHIC, HERA-B [3] at HERA,
and LHCb [4] at the CERN. The scope and basic design parameters of the proposed calorimeter have
been chosen to match the physics performance requirements of the proposed ALICE high p t physics
program.

Figure 2.1: The array of super modules shown in their installed positions on the support structure.

Figure 2.1 shows the EMCal super modules, the basic structural units of the calorimeter, mounted in their

18 2 Detector Design

Table 2.3: Characteristics of the selected wavelength shifting fibers.
Quantity Value
WLS fiber Y-11 (200) M-DC
Manufacturer Kuraray
WLS Fluor K27 200 mg
Absorption Peak 430 nm
Emission Peak 476 nm
Decay Time 7 ns
Core material PS
Refractive Index 1.59
Inner Cladding PMMA
Refractive Index 1.49
Outer Cladding FP
Refractive Index 1.42
Long fiber Attenuation Length 3.5 m
fiber Diameter 1.0 mm

Figure 2.12: Fiber bundles with attached APD and preamplifier of four towers of an EMCal prototype module.

In this picture all of the module rear enclosing and structural elements are omitted so the wavelength
shifting fibers may be seen as they converge to the light guide (inside the black plastic tube) and finally
to mate with the APD and charge sensitive preamplifier. The APD and preamplifier are discussed at
length in Chapter 3. Here we will mention briefly their optical characteristics. The selected photo sensor
is the Hamamatsu S8664-55 avalanche photodiode. This photodiode has a peak spectral response at a
wavelength of 585 nm compared to an emission peak of 476 nm for the Y-11 fibers. However, both the

Figure 5.8: Gauche : vue schématique du calorimètre électromagnétique ; Droite : Module composé
de 4 tours comportant chacune 36 fibres optiques et une photo-diode à avalanche [166].

3. EMCal ne faisait pas partie de la liste des détecteurs initialement prévus dans l’expérience ALICE,
d’où une installation plus récente qui a été finalisée au cours de l’année 2011.
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La technologie du calorimètre EMCal, de type "Shashlik" (déjà utilisée dans l’expérience
PHENIX à RHIC, et dans les expériences HERA à DESY et LHCb au CERN), consiste
en un calorimètre à échantillonnage Plomb-Scintillateur avec une collection longitudinale de
la lumière de scintillation par fibre optique jusqu’à une photo-diode à avalanche (APD).
Une tour, qui représente l’élément de base du calorimètre, est un ensemble de 76 couches
de Plomb (1.44 mm) et 77 couches de scintillateur polystyrène (1.76 mm) avec une densité
moyenne de volume actif de 5.68 g/cm3. Les surfaces extérieures sont fermées par une couche
d’acier de 150 µm d’épaisseur, seules zones mortes entre les tours dans la direction η. Chaque
tour contient 36 fibres optiques qui acheminent la lumière de scintillation jusqu’à la photo-
diode à avalanche, comme l’illustre la figure 5.8. Les tours sont elles-mêmes assemblées par
groupe de quatre (2x2) pour former un module de section rectangulaire dans la direction
φ et légèrement trapézoïdale dans la direction η, avec une angle relatif entre deux tours
successives de 1.5̊ (pour une géométrie projective vers le point d’interaction). L’assemblage
Pb-Scintillateur est stabilisé par une pression interne d’environ 1,1 kg/cm2, maintenue à
l’aide d’une couche de 14 mm d’aluminium et un système de rondelles de type Belleville
s’adaptant à la force de pression (déflection de l’ordre du millimètre). La forme générale
d’EMCal est une arche de 12288 tours couvrant une acceptance en pseudo-rapidité |η| ≤ 0.7
et une acceptance azimuthale ∆φ = 107̊ , chaque tour couvrant une acceptance ∆φ x ∆η

=0.014 x 0.014 soit environ 6x6 cm2 (figure 5.8). Les modules sont regroupées en bandes
(12 modules par bande), eux-mêmes intégrés dans des super-modules (24 bandes par super-
module), avec un total 10 super-modules complets et deux tiers de super-modules. Deux
super-modules (de dimensions 3.4×1.6 m chacun) couvre l’acceptance totale en η (± 0.7)
et une acceptance en φ de 20̊ . Les caractéristiques principales du calorimètre EMCal sont
regroupées dans le tableau 5.3.

Quantité Valeurs
Taille d’une tour ≈ 6.0×6.0×24.6 cm3

Acceptance d’une tour ∆φ×∆η =0.014×0.014
Rapport d’échantillonnage 1.44 mm Pb / 1.76 mm Scintillateur

Densité effective 5.68 g/cm3

Nombre de tours 12288
Nombre de modules 3072

Nombre de super-modules 10 complets, 2 tiers
Acceptance totale ∆φ = 107̊ , |η| ≤ 0.7

Table 5.3: Caractéristiques principales du calorimètre EMCal.

5.2.3 Calorimètre Électromagnétique (EMCal) : électronique de lecture

L’électronique de lecture du calorimètre EMCal est semblable à celle du détecteur PHOS
[167]. Comme le montre la figure 5.9, l’architecture générale peut se décomposer en trois
parties :
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- Récupération du signal : une première partie consiste à récupérer le signal analogique
relatif à l’énergie déposée par les photons dans les tours du calorimètre (encadrée en
rouge sur la figure). Les photons de scintillation produits par les couches actives du
détecteur sont collectés par les fibres optiques puis convertis en signal électrique par
le biais d’une photo-diode à avalanche (APD) de type S8148. Le signal ainsi généré
est converti en courant sous la forme d’un signal de type "marche" (step) par un pré-
amplificateur de charge (CSP) de sensibilité 0.83 V/pC. La pré-amplification permet
de fonctionner avec deux gains différents (bas et haut) afin d’optimiser la résolution
en temps et en énergie. Avec un gain nominal (M = 50), le nombre de photo-électrons
produits est d’environ 220 e−/MeV.

- Numérisation : une deuxième partie est dédiée à la numérisation du signal (encadrée
en bleu sur la figure). Le signal en sortie du CSP est mis en forme par un circuit de
mise en forme (shaper) semi-gaussien (de type CR-2RC), puis numérisé par des flash
ADC 10 bits à une fréquence de 10 MHz. Le temps de mise en forme, environ 100 ns,
est optimisé pour minimiser le bruit provenant des neutrons produits tardivement lors
des interactions secondaires avec le matériel d’ALICE (environ 12 MeV/tour). Avant la
numérisation, le signal est envoyé vers un modulateur à bas gain (LG) et à haut gain
(HG), qui permet d’obtenir une dynamique totale de 14 bits avec deux numériseurs de
10 bits chacun avec une échelle de 16 MeV à 16 GeV pour le HG et de 250 MeV à 250
GeV pour le LG, soit un facteur 24 entre les deux.

- Déclenchement : une troisième partie, indépendante de la précédente, est dédiée au
système de déclenchement du calorimètre (encadrée en vert sur la figure). Cette partie de
l’électronique est détaillée dans le chapitre dédié au système de déclenchement (chapitre
8).

Figure 5.9: Schéma de l’électronique de lecture d’EMCal (FEE) composée de la voie en énergie
(bleu), de la voie de déclenchement (vert) et d’une voie commune correspondant au
signal des tours (rouge) [166]
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L’électronique de lecture est intégrée dans une carte électronique appelée Front End Elec-
tronic (FEE). Une carte FEE numérise les signaux provenant de 32 tours (soit 8 modules).
Chaque carte contient ainsi 32 régulateurs de haute-tension pour permettre un réglage indivi-
duel de la tension des APDs avec une précision de l’ordre de 0.2 V/bit, réglage indispensable
à la calibration du détecteur. Un bus GTL (Gunning Transceiver Logic), sous le contrôle
d’une carte externe Readout Control Unit (RCU), lit les données d’un groupe de 9 cartes
FEE à une vitesse d’environ 200 Mo/s. Ces données sont finalement transmises au système
d’acquisition de l’expérience ALICE via les liens DDL. Un super-module nécessite ainsi 36
cartes FEE et 2 RCU, chaque RCU étant connecté à 2 bus GTL de 10 adresses logiques
chacun qui sont intégrés dans deux châssis situés à l’extrémité du super-module.

5.3 Algorithmes de reconstruction des photons

5.3.1 Extraction du signal brut

La charge collectée par l’APD (proportionnelle à l’énergie déposée dans la tour) est numé-
risée à une fréquence de 10 MHz. Le signal brut obtenu est alors formé par la distribution en
amplitude des échantillons en temps (un échantillon toutes les 100 ns), comme le montre la
figure 5.10. Cette distribution peut être décrite par une fonction Γ dépendante de la valeur
du piédestal et de l’amplitude du signal (A) :

ADC(t) = piédestal + A.e−n.xn.en(1−x) avec x = (t-τ0)/τ

Le paramètre τ = n.τ0 est relié aux caractéristiques du shaper utilisé pour la mise en forme
du signal (τ0 = temps caractéristique, n=2 car le shaper est de type gaussien de second
ordre).
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Figure 5.10: Distribution du signal brut échantillonné à 10MHz et ajusté par une fonction Γ-2.

L’extraction du signal brut consiste à ajuster la distribution des échantillons numérisés
par une fonction Γ pour extraire la valeur d’amplitude correspondant au temps (t0 + τ)
pour lequel la distribution atteint son maximum. Cette extraction peut être réalisée par



96 Reconstruction de particules

différentes méthodes en fonction de la précision et de la rapidité d’ajustement requise par
la reconstruction du signal. La méthode appliquée actuellement utilise une minimisation
de type Minuit, la rapidité de cette minimisation pouvant être améliorée par l’application
d’un algorithme de gradient stochastique (Least Mean Square). Des méthodes d’ajustement
moins coûteuses en temps de calcul ont été développées, qu’il s’agisse d’une méthode de type
réseau de neurones ou d’une méthode d’ajustement basée sur des opérations vectorielles
paramétrisées. Quelle que soit la méthode choisie, la qualité de l’ajustement du signal brut
est déterminé par le χ2 obtenu et le nombre de degrés de liberté utilisés (χ2/ndl). L’extraction
du signal nécessite également de déterminer le piédestal moyen de la distribution à partir
d’un nombre défini d’échantillons en temps situés en amont du signal.
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Figure 5.11: Gauche : distribution temporelle du signal brut avant étalonnage ; Droite : distribu-
tion temporelle du signal brut après étalonnage.

L’autre paramètre important est le temps d’arrivée du signal brut, utilisé pour rejeter les
tours bruyantes (produisant un signal non-physique) et les signaux produits par les neutrons
secondaires (temps d’arrivée du signal plus grand que celui des autres particules). L’appli-
cation d’une coupure en temps nécessite cependant au préalable une procédure d’étalonnage
tour par tour prenant en compte à la fois le temps d’interaction (croisement des paquets de
protons ou bunch crossing), la longueur des câbles et les caractéristiques de l’électronique.
Comme l’indique la figure 5.11, les corrections apportées lors de l’étalonnage pour les colli-
sions proton-proton permettent d’obtenir une distribution gaussienne centrée en 0 (le temps
réel moyen du signal étant d’environ 650 ns) avec une résolution de l’ordre de σ ≈ 0.6

ns (cette résolution dépendant de l’énergie de la particule). Les structures temporelles (pics
espacés de 50 ns) visibles sur les deux figures correspondent à des interactions d’autres pa-
quets de protons. Ces structures mettent en évidence l’effet d’empilement des événements
au niveau de la reconstruction des photons dans le calorimètre EMCal. La mesure en temps
du signal permet ainsi de séparer les événements ne provenant pas de la même collision.
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5.3.2 Contrôle de la température

La température est contrôlée par un ensemble de capteurs placés à l’intérieur et à l’exté-
rieur du détecteur EMCal. L’enregistrement des données de température est indispensable
afin de pouvoir corriger le gain des photo-diodes à avalanches (APD) lors de la reconstruc-
tion du signal. Ce gain est en effet directement relié au libre parcours moyen des électrons
produits par les APDs qui dépend de la température. La dépendance en température du gain
de chaque tour est mesuré à l’aide d’un signal LED délivré par une lumière pulsée envoyée
sur la partie supérieure de la tour. La figure 5.12 (gauche) représente la corrélation entre
l’amplitude du signal LED et la température mesurée. Un ajustement linéaire indique une
variation de l’ordre de 2% par degré (celsius). La figure 5.12 (droite), qui montre les tem-
pérature relevées en une semaine, indique les alternances jour/nuit. Ces informations sont
utilisées lors de la reconstruction des données brutes pour corriger les gains tour par tour.
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Figure 5.12: Gauche : variation du signal APD en fonction de la température, ajusté par une
fonction linéaire ; Droite : évolution de la température mesurée par les différents
capteurs en fonction du temps.

5.3.3 Clusterisation

L’extraction du signal brut permet d’obtenir pour chaque tour du calorimètre un ensemble
de paramètres correspondant à la position, à l’amplitude et au temps du signal mesuré. La
suite de la reconstruction consiste à regrouper les tours dont le signal mesuré correspond à
l’interaction d’une même particule dans le calorimètre (cluster). Cette étape, appelée "clus-
terisation", repose sur les propriétés des gerbes électromagnétiques décrites dans la section
précédente. Il y a quatre méthodes de clusterisation possibles dans le cas d’EMCal, cha-
cune présentant des avantages et des inconvénients que nous allons détailler par la suite. Les
quatre méthodes utilisent comme point de départ une liste de tours sélectionnées selon un
certain nombre de critères communs. Chaque tour est avant tout étalonnée de manière indi-
viduelle par application d’un coefficient d’étalonnage permettant de transformer l’amplitude
mesurée (coups ADC) en énergie (MeV ou GeV). Une coupure en temps permet ensuite de
sélectionner les tours pour lesquels le temps du signal est compris dans un intervalle prédé-
fini [tmin,tmax]. Une coupure en énergie permet ensuite de sélectionner uniquement les tours
pour lesquelles l’amplitude du signal est supérieure à une valeur seuil Emin afin de rejeter
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les tours associées au bruit électronique. Une fois la liste des tours candidates obtenue, une
des quatres procédures de clusterisation est appliquée :

- Version 1 (V1) : la méthode V1 commence par rechercher dans la liste des tours
candidates la première tour ayant une énergie supérieure à une énergie seuil prédéfinie
Eseed. Cette tour est utilisée comme point de départ de la clusterisation. L’étape sui-
vante consiste à vérifier si les tours voisines (tours avec un côté commun en φ ou en
η) satisfont les coupures en énergie (énergie minimale pour appartenir au cluster) et
en temps (différence de temps maximale entre deux tours d’un même cluster). Chaque
tour qui satisfait ces conditions est associée au cluster, puis retirée de la liste des tours
candidates. La clusterisation V1 prend fin lorsqu’il n’existe plus de tour voisine dispo-
nible. La procédure recommence alors avec les tours restantes afin de former d’autres
clusters. L’avantage principal de la méthode V1 réside dans le fait qu’elle permet d’ob-
tenir une forme de cluster la plus proche possible de la forme réelle du dépôt d’énergie,
la forme du cluster ayant un rôle crucial dans l’identification des photons. La méthode
V1 est cependant incapable de séparer les dépôts d’énergie de plusieurs particules
lorsque les clusters se superposent. Ce problème apparaît à la fois dans le cas des dé-
croissances de mésons neutres de haute énergie (les deux photons de décroissance sont
alors très proches) et dans le cas des événements à haute multiplicité, en particulier
les événements en collision Plomb-Plomb.

- Version 2 (V2) : la procédure de clusterisation V2 est similaire à celle présentée dans
le cas de la méthode V1, avec une condition supplémentaire sur l’énergie de la tour à
associer est appliquée : une tour voisine ne peut être associée au cluster que lorsque son
énergie est inférieure à l’énergie de la dernière tour considérée. Cette condition permet
de séparer les dépôts d’énergie provenant de particules différentes (par exemple deux
photons de décroissance très proches dans le calorimètre). La méthode de séparation
des deux clusters est peu précise car l’énergie d’une tour commune à deux dépôts
d’énergie est associée dans sa totalité à l’un ou l’autre des clusters. La méthode V2
induit donc un biais sur la forme des clusters dans le cas d’un cluster produit par deux
ou plusieurs particules, les clusters obtenus n’étant dans ce cas qu’une approximation
de la forme réelle du dépôt d’énergie.

- Version NxN : la procédure de clusterisation NxN est similaire à celle présentée
dans le cas de la méthode V1, avec une taille maximum prédéfinie de NxN tours (3x3,
5x5). Cette méthode permet de réduire la probabilité d’associer au sein d’un même
cluster des dépôts d’énergie provenant de particules différentes. Comme dans le cas de
la méthode V2, l’inconvénient principal vient du biais introduit sur la forme du dépôt
d’énergie. Dans le cas de particules très énergétiques, une fraction de l’énergie totale
de la particule est de plus systématiquement perdue. Une simulation de l’interaction
des photons dans le calorimètre permet d’étudier l’impact sur la mesure en énergie du
cluster. La figure 5.13 montre le nombre de tours par cluster dans le cas de la méthode
3x3 comparée aux clusters de type v1. Les tours supplémentaires prises en compte dans
le cas de la méthode V1 sont cependant des tours de très basse énergie, d’où un écart
inférieur à 1% entre les deux méthodes pour des photons d’énergie 50 GeV/c.
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Figure 5.13: Gauche : distribution du nombre de tours en fonction de l’énergie du cluster pour les
méthodes V1 (rouge) et 3x3 (bleu) ; Droite : différence d’énergie entre les clusters de
type V1 et 3x3 en fonction de l’énergie du cluster V1, ajustée par un polynôme de
2nd ordre.

- Version 1 + Unfolding : l’objectif de cette méthode est de séparer le plus finement
possible les clusters de type V1 contenant plusieurs maxima locaux (donc plusieurs
dépôts d’énergie superposés). Un maximum local est défini comme une tour d’énergie
supérieure à l’ensemble de ces 8 voisins (côté et diagonale). Après application de la
méthode de clusterisation V1, les clusters avec un nombre de maxima locaux supérieur
à un sont identifiés. Un cluster est localisé dans le calorimètre par un ensemble de 3
paramètres (position du centre de masse en φ et η, énergie). Dans le cas d’un cluster à
plusieurs maxima locaux, il faut extraire les paramètres associés à chaque maximum.
Un ajustement de la distribution en énergie d’un cluster est alors utilisée pour détermi-
ner ces paramètres. Cet ajustement est basée sur la distribution en énergie d’un cluster
formé par l’interaction d’un photon unique (simulation Monte-Carlo). Il faut ensuite
reconstruire les différents clusters (un cluster par maximum local) en redistribuant
l’énergie des tours communes à plusieurs clusters. Cette méthode rassemble ainsi à la
fois les avantages de la clusterisation de type V1 (forme précise du dépôt d’énergie) et
de type V2/NxN (séparation des dépôts d’énergie superposés). Les résultats obtenus
sont cependant très sensibles à la fonction utilisée pour l’ajustement de la distribu-
tion en énergie d’un cluster. Cette procédure, qui est en cours de validation, n’est pas
utilisée dans les analyses actuelles.

Une illustration des méthodes de clusterisation V1, V2 et 5x5 est représentée sur la fi-
gure 5.14. Les paramètres de reconstruction les plus importants dépendent de l’observable
physique considérée (type de collision, énergie des particules, identification), et le choix de
la méthode utilisée pour la reconstruction des photons peut finalement varier d’une analyse
physique à l’autre. Les méthodes et les paramètres utilisés dans le cadre de l’analyse des
corrélations photon/π0-hadron seront détaillés dans les chapitres 9 et 10.
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Figure 5.14: Illustration des méthodes de clusterisation V1 (gauche), V2 (droite) et 5x5 (bas).



6
Caractérisation du calorimètre

électromagnétique

Sommaire
6.1 Calibration du calorimètre EMCal . . . . . . . . . . . . . . . . . . 103

6.1.1 Pré-calibration cosmique . . . . . . . . . . . . . . . . . . . . . . . . 103
6.1.2 Calibration π0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Tests sous faisceau . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.2.1 Installation et instrumentation . . . . . . . . . . . . . . . . . . . . 107
6.2.2 Reconstruction des données . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Simulation Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . . 113
6.3.1 Géométrie du détecteur . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3.2 Simulation de l’électronique . . . . . . . . . . . . . . . . . . . . . . 115

6.4 Performances du calorimètre EMCal . . . . . . . . . . . . . . . . . 116

L’analyse des corrélations photon/π0-hadron nécessite une connaissance précise de la mesure en
énergie des photons, caractérisée par les deux paramètres fondamentaux que sont la résolution et
la non-linéarité en énergie. Ces paramètres ont été déterminés par le biais de tests sous faisceaux
réalisés au CERN au cours de l’année 2010.

Ce chapitre est dédié à l’analyse des tests sous faisceaux du calorimètre EMCal, depuis la recons-
truction des données brutes jusqu’à la caractérisation finale des performances du détecteur. Nous
nous attacherons également à comprendre les spécificités de la simulation Monte-Carlo du détecteur
EMCal puis nous comparerons les performances simulées aux résultats obtenus à partir de l’analyse
des données sous faisceaux.
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La réponse d’un calorimètre est définie comme le signal moyen mesuré par unité d’énergie
déposée. Les caractéristiques de cette réponse dépendent du type de calorimètre utilisé ainsi
que des matériaux qui le composent. Dans les calorimètres homogènes, comme les crystaux
PbWO4 du détecteur PHOS et du calorimètre électromagnétique de l’expérience CMS, la
totalité du volume disponible transforme l’énergie en signal (volume actif). Les calorimètres à
échantillonnage, comme le détecteur EMCal, sont au contraire constitués d’une alternance de
milieu absorbeur et de milieu actif. Il faut alors tenir compte du facteur d’échantillonnage,
défini comme le rapport entre l’énergie déposée par une particule sur l’énergie de cette
particule. Ce facteur est généralement déterminé expérimentalement à travers l’étude de la
distribution du signal des muons cosmiques.
Les performances du calorimètre électromagnétique reposent sur trois quantités : la ré-

solution en énergie, la non-linéarité et la résolution spatiale. La résolution en énergie d’un
calorimètre s’écrit sous la forme :

σE
E

=
a√
E
⊕ b

E
⊕ c (6.1)

- Terme stochastique (a) : la précision avec laquelle l’énergie d’une particule est me-
surée dépend à la fois de fluctuations stochastiques et d’effets instrumentaux liés à
l’électronique de détection. Le nombre de particules détectables dans une gerbe élec-
tromagnétique suit une statistique poissonienne. L’incertitude sur la mesure en énergie
est alors proportionnelle à

√
E. Dans le cas d’un calorimètre à échantillonnage, ce terme

dépend également de l’épaisseur de la couche active et du facteur d’échantillonnage.
Le deuxième type de fluctuations dépend quant à lui du nombre de photo-électrons
produits par conversion des photons de scintillation.

- Terme de bruit (b) : outre les fluctuations statistiques, le signal collecté va fluctuer
d’un événement à l’autre à cause du bruit électronique. Cette contribution du bruit
dans la résolution est indépendante de l’énergie mesurée.

- Terme constant (c) : ce terme prend en compte les effets liés à la réponse du détecteur
en fonction de la position, du temps ou de la température. L’origine de ces effets peut
se trouver par exemple dans la géométrie du détecteur (perte de gerbe) ou encore la
non-uniformité de son électronique de lecture (calibration).

La linéarité est une autre propriété importante de la réponse d’un calorimètre puisqu’elle
caractérise la variation de l’amplitude du signal avec l’énergie déposée. Les calorimètres élec-
tromagnétiques possèdent en général une réponse linéaire, cependant certains effets expéri-
mentaux peuvent induire une non-linéarité en particulier à basse-énergie. Ces effets peuvent
être liés à l’électronique de détection (saturation des photo-multiplicateurs, atténuation dans
les fibres optiques), aux propriétés physiques du milieu (recombinaison électrons/ions) ou en-
core à la géométrie du détecteur (perte d’une partie de la gerbe à haute-énergie).
La résolution spatiale n’est pas directement liée à la mesure en énergie des particules (sauf

dans le cas des décroissances hadroniques), mais elle reste un paramètre important pour les
méthodes d’identification basée sur la forme des gerbes électromagnétiques.
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6.1 Calibration du calorimètre EMCal

Les performances d’un calorimètre sont étroitement liées à la qualité de la calibration, qui
permet à la fois de déterminer avec précision l’énergie réelle des particules (calibration abso-
lue) et d’obtenir une réponse uniforme sur l’ensemble de la surface de détection (calibration
relative). Dans le cas du calorimètre EMCal, le processus de calibration est réalisé en deux
étapes distinctes. Les modules du calorimètre sont d’abord pré-calibrés au LPSC-Grenoble
via le signal déposé par les muons cosmiques au minimum d’ionisation (MIP) [168]. Une
fois installés au sein de l’expérience ALICE au CERN, les modules sont ensuite calibrés de
manière absolue via la reconstruction de la masse invariante des mésons π0.

6.1.1 Pré-calibration cosmique

Le principe général de la pré-calibration consiste à faire varier la tension appliquée sur
chaque photo-diode à avalanche (APD) afin d’ajuster les gains pour obtenir une réponse
uniforme à un signal identique produit par l’interaction des muons cosmiques dans le calo-
rimètre. Les muons cosmiques constituent une source abondante de particules (gratuites).
Contrairement aux électrons et aux photons, les muons de haute-énergie nécessitent des quan-
tités de matière beaucoup plus importantes pour être complètement absorbés. L’ionisation
et la production d’électrons delta sont les modes d’interactions dominants pour les muons
d’énergie inférieure à une centaine de GeV. L’ionisation est paramétrisée par la formule de
Bethe-Bloch :

−〈dE
dx
〉 = Kz2Z

A

1

β2
[
1

2
ln

2mec
2β2γ2Tmax
I2

− β2 − δ

2
] (6.2)

où Tmax est l’énergie cinétique maximum d’un électron dans une collision simple, I est l’éner-
gie d’excitation moyenne du milieu, K = 4πNAr

2
emec

2 et δ est un terme de correction des
effets de densité. Les muons au minimum d’ionisation (MIP) sont utilisés pour la calibration
du calorimètre EMCal car ils ont l’avantage de déposer la même quantité d’énergie dans
la partie active d’une tour (environ 28 MeV), indépendamment de leur énergie incidente,
lorsqu’ils la traversent de part en part. En tenant compte du facteur d’échantillonnage du
calorimètre EMCal, la perte d’énergie est équivalente à celle d’un électron de 300 MeV. La
valeur de référence choisie pour la pré-calibration est de 16 coups ADC à la température de
la caverne au CERN (soit environ 17.5 coups ADC à la température du hall au LPSC où la
pré-calibration est réalisée).
Une mesure spécifique réalisée à l’aide d’un signal LED permet de déterminer la variation

du gain d’un APD (G) en fonction de la tension (V). Cette variation est paramétrisée par
une fonction du type :

G = A+BekV (6.3)

Les paramètres A, B et k sont déterminés à partir d’un ajustement des résultats obtenus,
comme l’illustre la figure 6.1. À chaque itération du processus de calibration, la tension des
APDs est recalculée à partir du rapport entre l’amplitude moyenne du signal mesuré dans
la tour et l’amplitude de référence choisie.
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Figure 6.1: Variation du gain d’un APD en fonction de la tension appliquée.

Les super-modules du détecteur EMCal sont calibrés tiers par tiers (un tiers contient 48
x 8 tours). Les muons cosmiques sont détectés par 16 scintillateurs de forme rectangulaire
placés en haut et en bas de chaque bande de 48 tours (figure 6.2). Le signal d’un scintillateur
est produit par un ensemble de deux photo-multiplicateurs (gauche (L) et droit (R)). Lorsque
les quatre photo-multiplicateurs d’une paire de scintillateurs haut/bas émettent un signal,
les données des tours sont enregistrées ainsi que les temps des signaux des scintillateurs. La
configuration spatiale des scintillateurs ne permet cependant pas de s’assurer que les muons
sélectionnés ne traverse qu’une seule tour du calorimètre. La distance moyenne parcourue
par un muon, ainsi que l’énergie moyenne déposée, sont dans ce cas entachées de fluctuations
importantes. Pour atteindre la précision nécessaire sur l’amplitude du signal des particules
MIP, il est indispensable de rejeter les muons qui traversent plus d’une tour du calorimètre.
Cette sélection est effectuée à l’aide de deux coupures :

- Isolation : le muon est rejeté lorsqu’une tour voisine de celle considérée mesure un
signal. Afin de tenir compte du bruit électronique, un seuil de 3 coups ADC est appli-
qué pour considérer le signal d’une tour comme significatif. Ce seuil, correspondant à
environ 20% du signal MIP, est non-négligeable et peut induire un décalage en énergie
qui reste cependant identique pour toutes les tours (figure 6.3 gauche).

- Temps : la mesure du temps d’arrivée du signal de part et d’autre des scintillateurs
permet de localiser le muon (avec une précision de 4 cm environ) et de déterminer le
trajet parcouru dans le détecteur. Une coupure sur la différence de temps permet alors
de sélectionner les muons verticaux.

La combinaison des coupures d’isolation et de temps permet une sélection précise des
muons n’ayant traversé qu’une seule tour (figure 6.3 gauche). Après l’application de ces
coupures, le signal obtenu est ajusté par une fonction gaussienne afin d’extraire la valeur
moyenne et la résolution du signal MIP dans la tour. Cette résolution (σ/µ ≈ 15%) est
liée aux fluctuations sur l’énergie déposée, aux fluctuations des photo-diodes ou encore aux
variations de température durant la prise de données. Les signaux de l’ensemble des tours
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Figure 6.2: Gauche : Installation expérimentale de la pré-calibration cosmique du calorimètre
EMCal ; Droite : vue latérale d’un tiers de super-module.

sont finalement comparés afin de déterminer la dispersion totale qui mesure l’uniformité de
la réponse des tours. La figure 6.3 (droite) représente la dispersion des signaux obtenus avant
calibration, après la première itération et après la quatrième itération. La dispersion initiale
de l’ordre de 10% est réduite à moins de 2% à l’issue de la calibration.
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Figure 6.3: Gauche : Distribution du signal d’une tour avant et après application des coupures
d’isolation et de temps ; Droite : dispersion des signaux de l’ensemble des tours avant
et après les itérations 1 et 4 du processus calibration.

6.1.2 Calibration π0

Après installation des modules au CERN, les données obtenues en collision proton-proton
sont utilisées pour la calibration absolue du calorimètre EMCal. Le principe consiste à sé-
lectionner un cluster particulier puis à mesurer la masse invariante des paires formées avec
l’ensemble des autres clusters afin de déterminer la valeur moyenne de la masse du π0 recons-
truite. Elle est obtenue par ajustement des données à l’aide d’une fonction gaussienne (pic)
et d’un polynôme d’ordre 2 pour le bruit de fond combinatoire. La valeur moyenne de la
gaussienne (µπ0) est alors associée à la tour d’énergie maximale du cluster sélectionné, puis
comparée à la valeur de référence mπ0 = 134.9766 MeV afin de déterminer le coefficient de
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calibration C = µπ0/mπ0 . La procédure est répétée de manière itérative jusqu’à obtenir un
ensemble de coefficients de calibration permettant de mesurer une valeur de masse invariante
correcte pour l’ensemble des tours du calorimètre. La figure 6.4 représente la distribution
des valeurs moyennes et des écart-types obtenue par ajustement de l’ensemble des tours du
calorimètre à différentes étapes du processus de calibration.
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Figure 6.4: Distribution des valeurs moyennes (µπ0) et des écart-types (σπ0).

Bien que la valeur moyenne ajustée (µπ0) soit associée à la tour d’énergie maximale uni-
quement, le coefficient de calibration obtenu dépend également de la calibration des autres
tours du calorimètre. Cette dépendance correspond à la fois aux autres tours contenues dans
les différents clusters utilisés pour former des paires dans le calcul de la masse invariante, et
aux tours voisines de la tour d’énergie maximale dans le cluster sélectionné. Les différentes
itérations permettent d’atténuer progressivement l’impact de cette approximation jusqu’à
obtenir un résultat uniforme sur l’ensemble de la surface du détecteur. La qualité de la cali-
bration reste cependant limitée par la présence de matière devant le calorimètre (détecteur
TRD avec ≈ 0.25 X0), en particulier à cause d’une plus faible statistique et des processus
de conversion (γ → e+e−). La figure 6.5 montre l’impact de la présence de matériaux sur la
valeur moyenne et l’écart-type obtenus par ajustement pour les tours avec (rouge) et sans
matériau (vert). Il apparait que la photo-conversion conduit à la fois à un décalage de la
masse µπ0 mesurée (dépendant de l’énergie du π0) et à une dégradation de la résolution. Ces
effets sont pris en compte dans le calcul des coefficients de calibration finaux.

6.2 Tests sous faisceau

Les performances du calorimètre EMCal ont été étudiées lors de deux prises de données
sous faisceau au CERN en 2007 [169] et 2010 (seules les données de 2010 seront utilisées
pour les analyses présentées dans ce manuscrit). Le détecteur EMCal utilisé pour la prise
de donnée est une version réduite de 8x8 tours (4x4 modules) instrumentée par la chaîne
d’électronique complète (APD, shaper, carte électronique FEE (section 5.2.3)). Des faisceaux
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Figure 6.5: Distribution des valeurs moyennes (µπ0) et des écarts-types (σπ0) pour les tours avec
(rouge) et sans (vert) matériel.

d’électrons, de positrons et de hadrons sont produits par le Proton Synchrotron (PS) et le
Super Proton Synchrotron (SPS) à partir d’un faisceau de protons sur cible fixe. Le PS
accélère les protons jusqu’à une énergie de 26 GeV, ce qui permet d’étudier l’interaction
de particules entre 0.5 et 6 GeV. Avec une énergie maximum de 450 GeV, le SPS permet
d’étudier des particules plus énergétiques entre 6 et 250 GeV. L’analyse présentée dans ce
chapitre s’intéresse à l’interaction des électrons dans le calorimètre EMCal pour des énergies
comprises entre 0.5 et 100 GeV.

6.2.1 Installation et instrumentation

Le dispositif expérimental pour les prises de données sous faisceau rassemble trois types
de détecteurs représentés sur la figure 6.6 1 :

- Modules EMCal : les électrons du faisceau sont envoyés sur des modules proto-
types du calorimètre EMCal (8x8 tours). Afin de permettre un balayage complet de
l’ensemble des modules, les tours du calorimètre ont été placées sur une plate-forme mo-
bile. Les déplacements verticaux et horizontaux de cette plate-forme permettent ainsi
de déplacer le point d’interaction du faisceau sur l’ensemble des tours du détecteur.

- Scintillateurs : l’électronique de lecture est déclenchée par trois scintillateurs plas-
tiques couplés à des photomultiplicateurs. Les trois scintillateurs, placés en amont du
détecteur EMCal, sont également utilisés pour séparer les électrons des hadrons du
faisceau incident en étudiant la charge déposée par les particules.

- Chambres proportionnelles multi-fils (MWPC) : trois chambres multi-fils sont
utilisées pour connaître la position du faisceau dans le plan x-y (figure 6.7). Ces

1. L’instrumentation est identique entre le PS et le SPS, seules les distances entre les différents détecteurs
sont modifiées
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Figure 6.6: Installation des tests sous faisceau (PS).

chambres permettent à la fois de reconstruire la trajectoire du faisceau et de reje-
ter les événements dans lesquels plusieurs particules interagissent simultanément avec
le détecteur EMCal (empilement). Chaque chambre est constituée de deux plans x-y de
158 fils (anodes) espacés de 2 mm et entourés de deux plans en Mylar (cathodes). La
chambre est remplie de gaz pour permettre l’ionisation du milieu par les particules qui
la traversent. Le signal électrique produit par un phénomène d’avalanche se propage le
long d’une ligne à retard jusqu’aux extrémités droite (R) et gauche (L) de la chambre.

La position de la particule est reconstruite par soustraction des temps d’arrivée des signaux
en R et L (dans le plan perpendiculaire à l’axe des fils). La première étape de reconstruction
de la trajectoire consiste à calibrer le signal de chacune des chambres afin d’obtenir une
correspondance entre le temps du signal R-L (ns) et la position dans les plans x-y (mm).
La figure 6.8 montre les résultats obtenus lors des tests sous faisceau, l’espacement moyen
entre deux pics correspondant à l’espacement entre les fils de la chambre. Une fois chaque
plan étalonné, les paramètres (x,y) de chacune des chambres sont ajustés par une régression
linéaire de type f(x) = Ax+B (avec une erreur maximale ∆ = 2 mm). La trace est finalement
projetée sur la surface du détecteur EMCal en prenant comme point de référence la position
(x,y) = (0,0) au centre de la chambre 3 (la plus proche du détecteur EMCal) et la position
z = 0 sur la face avant du détecteur EMCal.
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Figure 6.7: Schéma de fonctionnement d’une chambre multi-fils proportionnelle.
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Figure 6.8: Distributions en temps des signaux R-L correspondant au plan x de la chambre 1.

6.2.2 Reconstruction des données

L’électronique utilisée pour la prise de donnée sous faisceau est identique à celle du ca-
lorimètre EMCal. La reconstruction des données brutes suit donc la même procédure que
celle décrite dans la section 5.3. Le signal est tout d’abord échantillonné puis ajusté par une
fonction Γ afin d’extraire la valeur maximale de l’amplitude du signal. Un facteur correctif
tenant compte de la dépendance en température du gain de chaque APD est ensuite appli-
qué. Les signaux obtenus pour chacune des tours sont finalement regroupés par la méthode
de clusterisation V1, après application d’un seuil de 5 coups ADC afin de rejeter les signaux
provenant du bruit électronique.



110 Caractérisation du calorimètre électromagnétique

Sélection des événements

Les données reconstruites sont ensuite filtrées afin d’obtenir un échantillon d’événements
le plus pur possible. Pour l’analyse présentée dans ce chapitre, il s’agit de sélectionner les
événements correspondant à l’interaction d’un seul électron (par événement) avec le détec-
teur EMCal. Cette sélection est nécessaire pour ne pas biaiser les mesures en analysant les
clusters produits soit par d’autres types de particules (en particulier des hadrons), soit par
la superposition de deux ou plusieurs électrons. Deux types de coupures sont appliquées :

- scintillateurs : afin d’améliorer la pureté en électrons, il est possible d’appliquer une
coupure sur la charge mesurée dans les scintillateurs (normalisée par la charge moyenne)
représentée sur la figure 6.9. La résolution en temps des détecteurs étant insuffisante
pour permettre une distinction entre les temps de vol des différents types de particules,
une coupure fixe (indépendante du temps de propagation) est appliquée pour sélection-
ner les particules déposant une quantité d’énergie comparable dans les scintillateurs.
En ne conservant que les signaux compris dans un intervalle [dE/dxmin, dE/dxmax]

(lignes rouge de la figure 6.9) il est ainsi possible de rejeter à la fois une partie des
hadrons, qui possèdent une perte d’énergie plus fluctuante que les électrons, et les
événements contenant plus d’une particule avec un dE/dx supérieur à la moyenne.
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Figure 6.9: Évolution de l’énergie (normalisée par l’énergie moyenne) déposée dans le scintillateur
numéro 1 (ADC).

- chambres à fils : les signaux des chambres à fils sont utilisés pour sélectionner les
événements contenant une seule particule, et ceci en imposant des coupures sur la
somme en temps R+L des signaux mesurés de part et d’autre de la ligne à retard.
Pour des événements à une particule, cette somme doit être égale à la longueur de
la ligne à retard et donc être constante quelque soit la position de la particule dans
la chambre. Lorsqu’au contraire plusieurs particules traversent la chambre simultané-
ment, la somme en temps R+L devient inférieure à la valeur moyenne.
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Calibration

La dernière étape de reconstruction des données consiste à étalonner la réponse de chaque
APD. Dans un premier temps, les tensions appliquées ont été déterminées à partir d’une
calibration utilisant les muons cosmiques afin d’obtenir une réponse uniforme sur l’ensemble
du détecteur EMCal (section 6.1). Des facteurs d’étalonnage ont ensuite été calculés pour
convertir l’amplitude mesurée (canal ADC) en énergie (GeV) à partir d’une procédure qui
consiste à balayer l’ensemble des tours du détecteur avec un faisceau d’électrons d’énergie
connue (6 GeV pour le PS, 10 GeV pour le SPS). La distribution en énergie est obtenue
pour chacune des tours du calorimètre en attribuant chaque cluster reconstruit à la tour
d’énergie maximale qui le compose. Afin d’éviter un biais sur l’étalonnage des tours les plus
externes, un facteur correctif est appliqué sur l’énergie des clusters dont la tour d’énergie
maximale est située sur un des bords du détecteur. Ce facteur est déterminé au moyen d’une
simulation Monte Carlo Geant4 à partir de la fraction d’énergie perdue en fonction de la
position de la particule à la surface du détecteur (figure 6.10). Il apparaît que seules les
tours les plus extérieures sont concernées par cette correction. La figure 6.10 met également
en avant une asymétrie gauche-droite dans la distribution à deux dimensions de la fraction
d’énergie perdue. Cette asymétrie de l’ordre de 4% provient de l’angle de fuite des modules du
calorimètre (1.5◦ entre deux modules) qui permet de récupérer une fraction plus importante
de la gerbe dans le module le plus incliné par rapport à l’axe du faisceau.
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Figure 6.10: Fraction d’énergie récupérée dans le détecteur en fonction de la position du faisceau
d’électrons (6 GeV) obtenue par simulation Geant4.

En tenant compte de cette correction, il est alors possible de déterminer pour chaque
tour un nouveau coefficient d’étalonnage en calculant le rapport entre l’énergie moyenne
reconstruite (ajustement de la distribution par une fonction gaussienne) et l’énergie des
électrons du faisceau. La procédure est répétée jusqu’à ce que les valeurs des coefficients
d’étalonnage soit stables d’une itération à l’autre. Les coefficients d’étalonnage finaux sont
présentés dans la figure 6.11. Les différences de tensions appliquées sur chaque APD entre
les prises de données PS et SPS imposent d’utiliser dans la reconstruction des coefficients
d’étalonnage différents pour les deux périodes. La figure 6.11 fait cependant apparaître des
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caractéristiques communes au niveau du détecteur EMCal, en particulier en ce qui concerne
les tours les plus problématiques (bruit, gain de l’APD).
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Figure 6.11: Coefficients d’étalonnage appliqués pour la reconstruction des données PS (gauche)
et SPS (droite).

Les données reconstruites et étalonnées permettent de déterminer la résolution en éner-
gie et la non-linéarité du détecteur EMCal. La distribution obtenue à partir d’électrons
d’énergie connue avec une précision de 3% environ est alors ajustée par une gaussienne pour
extraire l’énergie moyenne (µE) et la résolution en énergie (σE). La figure 6.12 représente la
distribution obtenue dans le cas des électrons de 50 GeV au SPS.
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Figure 6.12: Distribution en énergie des clusters produits par l’interaction d’électrons de 50 GeV
dans le détecteur EMCal, ajustée par une fonction gaussienne.

L’ajustement est réalisé dans un intervalle en énergie limité afin de ne pas prendre en
compte la queue de distribution qui provient à la fois de la contamination hadronique ré-
siduelle après application des coupures de sélection, et des électrons ayant interagit avec le
matériau en amont du détecteur (scintillateur, chambres à fils). Alors que la contamination
hadronique a peu d’impact pour les électrons de grande énergie, elle devient non-négligeable
pour les électrons d’énergie inférieure à 2 GeV. L’étalement du spectre en énergie des hadrons
dégrade en effet le pic obtenu dans le cas des électrons, comme le montre la figure 6.13, d’où



Caractérisation du calorimètre électromagnétique 113

un biais potentiel sur la mesure de l’énergie moyenne (non-linéarité) et sur la résolution en
énergie.
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Figure 6.13: Distribution en énergie (normalisée) par interaction d’électrons et de hadrons de 0.5
GeV (gauche) et de 100 GeV (droite) dans le détecteur EMCal, obtenue par simulation
Geant4.

6.3 Simulation Monte Carlo

L’étude complète d’un calorimètre nécessite une comparaison détaillée avec la simulation
Monte Carlo du détecteur qui permet de mieux comprendre le détecteur et d’évaluer les
incertitudes systématiques dans les analyses de physique. La collaboration ALICE utilise
le logiciel GEANT (également appelé Geant3) [156] pour la simulation de l’interaction des
particules au sein des différents détecteurs de l’expérience. GEANT (GEometry ANd Tra-
cking) est un logiciel développé au CERN au cours des années 1970 pour la physique des
hautes énergies. En 1994 la collaboration RD44 a développé une nouvelle version du logi-
ciel, nommée Geant4 [157], qui est aujourd’hui le logiciel le plus couramment utilisé pour
l’interaction des particules dans la matière, et ce dans de nombreux domaines (physique
des particules, physique médicale, physique nucléaire, physique spatiale, ...). Les logiciels
GEANT et Geant4 permettent de reproduire les processus d’interaction des particules dans
la matière et de simuler à la fois le dépôt d’énergie des particules dans le calorimètre EMCal
et les pertes d’énergies des particules dans les matériaux en amont du détecteur (support
de structure, autres détecteurs). Les processus d’interaction sont sélectionnés dans une liste
de processus laissant à chaque utilisateur la liberté de prendre en compte ou non un pro-
cessus particulier. Dans le cas du logiciel Geant4 un certain nombre de listes pré-définies
contiennent la majorité des processus impliqués pour un type de physique donné (physique
des hautes-énergies, processus électromagnétiques, ...) 2. Il est possible d’appliquer différentes
coupures (énergie, temps, ...) pour la simulation des interactions et la production des nou-

2. Le lecteur intéressé par la description des différentes listes de processus peut consulter la référence
suivante : http ://geant4.cern.ch/support/proc_mod_catalog/physics_lists
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velles particules. Une fois le dépôt d’énergie simulé, il reste alors à modéliser les effets liés à
l’électronique de lecture afin d’obtenir un signal reconstruit le plus réaliste possible.

6.3.1 Géométrie du détecteur

Pour être la plus réaliste possible, la simulation doit prendre en compte l’ensemble des
caractéristiques physique et géométrique du détecteur. Ces caractéristiques concernent à la
fois le détecteur lui-même, mais également les éléments de structure qui peuvent avoir un rôle
non-négligeable en modifiant la nature (type, énergie) des particules produites lors des colli-
sions avant que ces dernières n’interagissent avec les détecteurs. La simulation du détecteur
EMCal prend en compte la majorité des caractéristiques techniques du détecteur. Au niveau
d’une tour du calorimètre, ces caractéristiques incluent les couches de Plomb, les couches de
scintillateurs et les feuilles de papier qui les entourent (156 feuilles de 0.1mm), les plaques
d’Aluminium sur les faces avant et arrière ainsi que la plaque de compression permettant de
stabiliser l’ensemble de la tour. La structure permettant d’assembler les tours au sein des
super-modules est également intégrée à la simulation du détecteur. Seules les fibres optiques
et les photo-diodes à avalanche ne sont pas reproduites au niveau de la géométrie.

Cas particulier des tests sous faisceau :

L’analyse des tests sous faisceau utilise une simulation basée sur le logiciel Geant4 (version
4.9.4.p02) développée au LPSC-Grenoble. Cette simulation permet de vérifier la compréhen-
sion que nous avons du détecteur EMCal via la comparaison des données expérimentales et
simulées, et contribuer à la validation de Geant4 via la comparaison des simulations Geant3
et Geant4 3. La géométrie a été adaptée afin de correspondre au détecteur de 8x8 tours utilisé
lors des tests sous faisceau. Les scintillateurs et les chambres à fils ont également été intégrés
afin de reproduire le plus précisément possible le parcours des particules avant interaction
avec le détecteur EMCal (figure 6.14).

Figure 6.14: Simulation Geant4 de l’installation expérimentale des tests sous faisceau au PS.

3. La collaboration ALICE prépare actuellement la transition entre Geant3 et Geant4, ce travail nécessi-
tant un nombre important de comparaison entre les résultats des deux logiciels de simulation.
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6.3.2 Simulation de l’électronique

La chaîne de simulation de l’électronique de lecture rassemble les différentes étapes per-
mettant de transformer l’information brute produite par le logiciel de simulation pour obtenir
des données simulées les plus proches possibles des données réelles. Ce processus nécessite
de connaître précisément les différents effets liés à l’électronique du détecteur qui dégradent
les signaux mesurés. La chaîne de simulation du détecteur EMCal peut se diviser en trois
étapes : la mesure de l’énergie déposée par une particule, les effets de bruit électronique, et
la numérisation du signal.

- Mesure en énergie : le logiciel de simulation permet de connaître la quantité d’énergie
perdue par une particule dans les différentes couches actives d’une tour du calorimètre.
La première étape de la chaîne de simulation consiste à sommer cette énergie afin de
déterminer la quantité totale d’énergie contenue dans chaque tour. Pour tenir compte
des effets de saturation qui peuvent se produire au sein des scintillateurs lors d’une perte
d’énergie importante, un facteur correctif est appliqué individuellement sur chaque
dépôt d’énergie lors du processus d’addition. Ce facteur correctif est déterminé à partir
de la loi de Birks [170], qui définit la relation entre la quantité de lumière émise (dL/dx)
et l’énergie déposée (dE/dx) :

dL

dx
= L0

dE/dx

1 + kBdE/dx
(6.4)

où kB la constante de Birks dépend du matériau scintillant (kB = 0.126 mm/MeV dans
le cas des scintillateurs polystyrène). Le rapport de l’énergie de la particule incidente sur
l’énergie déposée dans les scintillateurs est alors donné par le facteur d’échantillonnage
du calorimètre. Celui-ci dépend des caractéristiques physiques du détecteur, comme
l’épaisseur ou le nombre de couches actives et de couches de Plomb. Il est cependant
nécessaire d’ajuster ce paramètre au logiciel de simulation afin de remonter à l’énergie
la particule incidente. Cela conduit à appliquer des facteurs d’échantillonnage différents
dans le cas de Geant3 et Geant4, ainsi que pour les différentes listes de processus de
Geant4 (tableau 6.1).

Logiciel Facteur d’échantillonnage
GEANT 10.87

Geant4 (option EMV) 11.92
Geant4 (option BERT / CHIPS) 9.35

Table 6.1: Facteur d’échantillonnage pour différentes versions du logiciel de simulation.

- Bruit et fluctuations électroniques : l’énergie mesurée doit être dégradée afin de
reproduire les effets liés à l’électronique de lecture. Deux effets sont pris en compte
dans la chaîne de simulation : le bruit électronique et les fluctuations des photo-diodes
à avalanche (APD). Le bruit électronique est ajouté tour par tour suivant une dis-
tribution gaussienne de paramètres µ = 0 et σ = 12 MeV. Ces paramètres ont été
déterminés à partir d’une étude du bruit dans les données sous faisceau réalisées en
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2007 [169]. Les fluctuations du signal des APD sont prises en compte en multipliant
le nombre moyen de photo-électrons produits (4400 e− / GeV d’énergie déposée) par
un facteur distribué selon une loi de Poisson. Les paramètres de la loi de Poisson ont
été ajustés pour permettre un bon accord entre données réelles (tests sous faisceau) et
données simulées, en particulier au niveau de la résolution en énergie, prenant ainsi en
compte d’autres sources de fluctuations éventuelles comme celles liées à la propagation
de la lumière de scintillation.

- Numérisation : la dernière étape consiste à numériser le signal en appliquant un
facteur de conversion de 0.0153 ADC/GeV. L’amplitude obtenue est alors comparée
à la dynamique maximale des convertisseurs (16 bits = 216 = 65536). Si l’amplitude
est supérieure à cette dynamique, la valeur maximale (65536 canaux ADC) lui est
automatiquement attribuée. La chaîne de simulation se termine par l’application d’un
seuil de 5 canaux ADC, qui correspond au seuil appliqué lors de la reconstruction afin
de rejeter les événements de bruit. Avant d’appliquer ce seuil, les données simulées
sont cependant décalibrées pour reproduire le plus finement possible les fluctuations
possibles d’une tour à l’autre (un seuil de 5 ADC aura un impact différent selon le
coefficient de calibration de la tour considérée).

6.4 Performances du calorimètre EMCal

En analysant les données correspondant aux différentes énergies d’électrons disponibles
au PS et au SPS, il est possible de déterminer à la fois la résolution en énergie (largeur de
la distribution) et la non-linéarité (valeur moyenne de la distribution) du détecteur EMCal.
Afin de limiter les biais liés à la géométrie du détecteur, en particulier les pertes de la gerbe à
grande énergie, l’analyse est restreinte aux clusters pour lesquels la tour d’énergie maximale
est une des quatre tours les plus centrales du détecteur. Les courbes finales de résolution
en énergie (figure 6.15 gauche) et de non-linéarité (figure 6.16 gauche) correspondent à la
moyenne pondérée des distributions de chacune des quatre tours. En appliquant une pro-
cédure d’analyse identique aux données de simulations Geant3 et Geant4, il est finalement
possible de déterminer les performances simulées du calorimètre EMCal afin de les comparer
aux résultats obtenus à partir de l’analyse des données réelles.

Résolution en énergie

Les résultats représentés sur la figure 6.15 (gauche) indiquent une résolution en énergie
d’environ 10% pour une énergie de 1 GeV et de moins de 4% pour des énergies supérieures à
10 GeV, ce qui est proche des performances attendues par le cahier des charges du détecteur
[166]. La figure 6.15 (droite) compare la résolution en énergie obtenue à partir des tests sous
faisceau avec celles des simulations Geant3 et Geant4. Dans ces simulations, les fluctuations
des photo-diodes ont été ajustées pour permettre un bon accord entre les données réelles
et simulées (Geant3). Il apparaît que la résolution en énergie du détecteur EMCal est bien
reproduite, excepté pour les énergies inférieures à 1 GeV. La contamination hadronique, dont
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l’impact est plus important pour la mesure des électrons de basse-énergie, peut expliquer
ce léger décalage. La figure 6.15 (droite) montre également que les simulations Geant3 et
Geant4 donnent des résultats très similaires en ce qui concerne la résolution en énergie.
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Figure 6.15: Gauche : Résolution en énergie obtenue à partir de l’analyse des données de tests
sous faisceau (PS + SPS) ; Droite : comparaison de la résolution en énergie obtenue
à partir de l’analyse des données des tests sous faisceau (SPS+PS), d’une simulation
Geant3 et d’une simulation Geant4.

Non-Linéarité

Les résultats obtenus sur la figure 6.16 (gauche) montrent que la réponse du détecteur EM-
Cal est linéaire à partir d’une énergie de 3 GeV environ, mais qu’en-dessous la non-linéarité
augmente de manière inversement proportionnelle à l’énergie des électrons. La comparaison
avec les résultats de simulation, présentée sur la figure 6.16 (droite) met en évidence des
différences significatives au niveau de la non-linéarité pour des énergies inférieures à 8 GeV.
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simulation Geant4.
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Etude systématique des étapes de reconstruction du signal

Une étude systématique de l’impact des différents effets expérimentaux sur les perfor-
mances du détecteur est réalisée en comparant les résultats bruts de la simulation Geant4
avec ceux obtenus après application de la clusterisation de type V1, du bruit électronique et
des fluctuations des photo-diodes. La figure 6.17 (gauche) montre que les fluctuations appli-
quées au niveau du signal des APDs représente la contribution majeure à la dégradation de
la résolution. En ce qui concerne la non-linéarité, la figure 6.17 (droite) montre que le calo-
rimètre possède une bonne linéarité intrinsèque qui est fortement dégradée par l’application
d’un seuil de clusterisation. Á grande-énergie, une fraction de l’énergie peut également être
perdue à cause de l’acceptance limitée du détecteur utilisé pour les tests sous faisceau (8x8
tours), d’où une légère diminution de la non-linéarité.
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Figure 6.17: Gauche : Résolution en énergie obtenue à partir d’une simulation Geant4 pour dif-
férentes coupures de reconstruction ; Droite : non-linéarité obtenue à partir d’une
simulation Geant4 pour différentes coupures de reconstruction.

L’étude des performances du détecteur EMCal permet en principe d’évaluer l’impact de la
reconstruction sur les résultats physiques. Les résultats obtenus à partir de l’analyse des tests
sous faisceau montrent cependant que des différences entre les données expérimentales et la
simulation subsistent. Ces différences, en particulier au niveau de la non-linéarité, sont prises
en compte dans l’analyse des corrélations photon/π0-hadron en corrigeant différemment les
données expérimentales et simulées.
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L’identification des photons et des π0 est réalisée principalement à partir de la forme de la gerbe
électromagnétique produite par la particule incidente, forme qui varie en fonction du type de par-
ticules et de leur énergie. Dans le cas des photons issus de la décroissance d’un méson neutre,
l’identification est également réalisée via une mesure de la masse invariante di-photons.

Ce chapitre a pour objectif de présenter les principales méthodes d’identification utilisées, en les
justifiant à partir de la simulation des interactions dans le détecteur EMCal. Nous commencerons
par un rappel des caractéristiques générales du développement des gerbes électromagnétiques dans
un calorimètre, puis nous décrirons les méthodes d’identification des photons et des π0. Nous ter-
minerons ce chapitre par une comparaison de la forme des gerbes électromagnétiques entre données
expérimentales et simulation Monte-Carlo.
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7.1 Forme des gerbes électromagnétiques

7.1.1 Centre de masse

La segmentation du calorimètre EMCal ne permet pas d’accéder au profil longitudinal
de la gerbe électromagnétique, et seule la forme latérale est utilisée. Le terme de "forme"
correspond à la fois à la géométrie de la gerbe et à la manière dont l’énergie est distri-
buée spatialement. Le premier paramètre qui peut être utilisé pour décrire une gerbe est
la multiplicité, autrement dit le nombre de tours contenues dans un cluster. Ce paramètre
est cependant peu discriminant, et une caractérisation plus précise de la géométrie de la
gerbe doit être mise en place. Pour définir la géométrie d’une gerbe électromagnétique, il
est nécessaire de déterminer préalablement la position de son centre de masse. Dans le cas
d’un calorimètre segmenté latéralement avec une taille caractéristique des tours de l’ordre
du rayon de Molière (ce qui est le cas du calorimètre EMCal), il est possible de calculer les
coordonnées du centre de masse à partir de la moyenne pondérée des coordonnées de chaque
tour contenue dans la gerbe électromagnétique :

x =
∑
i wixi∑
i wi

avec xi = coordonnées de la tour i selon l’axe ~x, wi = poids de la tour i

La méthode de calcul la plus simple consiste à utiliser une pondération linéaire wi = ei/E

(ei = énergie de la tour i, E = énergie totale de la gerbe). Cependant comme la taille
caractéristique d’une tour est similaire à celle de la gerbe électromagnétique, les coordonnées
calculées sont dans ce cas fortement dépendantes de la position du point d’impact de la
particule à la surface du détecteur [171]. Le biais systématique associé au calcul du centre
de masse est lié à la forme exponentielle du profil latéral de la gerbe qui conduit à donner
un poids relatif très important à la tour centrale (figure 5.7). Afin de limiter l’impact de la
tour centrale sur le calcul des coordonnées, il est nécessaire de donner un poids relatif plus
important à l’ensemble des tours contenues dans la gerbe. La méthode appliquée dans le cas
du calorimètre EMCal utilise pour cela un poids logarithmique :

wi = max
{

0,
[
W0 + ln(ei/E)

]}
avec W0 = paramètre empirique sans dimension

L’échelle logarithmique permet d’obtenir un poids relatif qui varie linéairement en fonction
de la distance latérale, ce qui rend le calcul du centre de masse quasiment indépendant de
la position du point d’impact et de la granularité du détecteur. Le paramètre W0 permet
quant à lui à la fois de déterminer le seuil en fraction d’énergie qu’une tour doit posséder
pour être incluse dans le calcul de la position, et de définir l’importance relative des tours
les plus externes (si W0 →∞ alors chaque tour a le même poids).

7.1.2 Paramétrisation elliptique

Une fois la position du centre de masse déterminée, il est possible de caractériser la forme
de la gerbe électromagnétique. La forme latérale d’une gerbe est généralement estimée à
partir de la dispersion des positions de chacune des tours la contenant (moment d’ordre 2
du calcul de la position du centre de masse) [171]. Soit (ηi, φi) la position de la i-ème tour
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et (η, φ) la position du centre de masse, la dispersion en η et φ s’écrit :

Sηη =

∑
iwiη

2
i∑

iwi
−
(∑

iwiηi∑
iwi

)2
, Sφφ =

∑
iwiφ

2
i∑

iwi
−
(∑

iwiφi∑
iwi

)2
,

Sηφ = Sφη =

∑
iwiηiφi∑
iwi

−
∑

iwiηi ×
∑

iwiφi
(
∑

iwi)
2

(7.1)

La forme de la surface d’intersection du cône contenant la gerbe avec le plan (ηi, φi) du calori-
mètre est également un moyen de caractériser le profil latéral d’une gerbe électromagnétique
[158]. Cette forme elliptique peut être exprimée sous la forme d’une matrice de covariance :

S =

(
Sηη Sφη
Sηφ Sφφ

)
(7.2)

La diagonalisation de la matrice S permet alors de déterminer les deux axes principaux de
l’ellipse, λ0 et λ1, comme la racine carrée des vecteurs propres de la matrice de covariance :

λ2
0 =

1

2
(Sηη + Sφφ) +

√
1

4
(Sηη − Sφφ) + S2

ηφ

λ2
1 =

1

2
(Sηη − Sφφ) +

√
1

4
(Sηη − Sφφ) + S2

ηφ

(7.3)

Les deux axes principaux λ0 et λ1, également appelés composantes principales, permettent
de caractériser la dispersion de la gerbe électromagnétique dans le plan (η, φ). Comme dans
le cas de la position du centre de masse, le calcul des axes de l’ellipse utilise une pondération
logarithmique pour limiter les biais systématiques liés à la position de la particule incidente et
aux fluctuations de la gerbe. Les valeurs des paramètres λ2

0 et λ2
1 dépendent donc directement

de la valeur choisie pour le paramètreW0. La dispersion est en effet d’autant plus importante
que la valeur de W0 est élevée de par le poids relatif des tours les plus externes, comme le
montre la figure 7.1 obtenue pour un photon de 10 GeV. La pondération logarithmique ne
permet donc pas d’avoir une description précise de la forme de la gerbe mais seulement une
approximation dépendante du paramètre W0. Le choix de ce paramètre permet d’optimiser
son impact sur les performances physiques recherchées (identification e/π, identification des
mésons neutres) en trouvant un compromis entre la résolution sur la position du centre
de masse (meilleure à faible valeur de W0) et le biais systématique liée à la position de la
particule incidente (plus faible à grande valeur de W0). Dans le cas du calorimètre EMCal,
le facteur est W0 = 4.5.

7.2 Identification des photons et des mésons neutres (π0,η)

Les photons reconstruits dans le calorimètre EMCal peuvent avoir des origines diverses. La
grande majorité des photons sont produits par décroissance de mésons neutres, en particulier
les mésons π0 (environ 90% des photons détectés) et η (environ 5%). Les mésons neutres
ayant un temps vie extrêmement court, ils se désintègrent bien avant d’atteindre la surface
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Figure 7.1: Distribution des axes (λ2
0,λ2

1) d’une gerbe produite par un photon de 10 GeV pour
différentes valeurs du paramètre W0 (simulation Geant4).

du détecteur EMCal (la désintégration a lieu quasiment au point d’interaction). Les modes
de désintégration principaux des mésons π0 et η sont :

π0 → γ + γ (98.82%)
η → γ + γ (71.91%)

Le second type de photons concerne les photons produits directement par le processus dur
partonique, en particulier les événements gamma-jets, et ceux produits par fragmentation
d’un des partons. Ces photons sont rassemblés sous l’appellation de photons directs.
L’identification des photons dans le calorimètre EMCal est réalisée en deux étapes. La

première étape consiste à rejeter les clusters produits par des particules chargées, en par-
ticulier les électrons et les hadrons. Une fois les clusters de particules neutres identifiés, il
reste à séparer ceux issus d’un seul photon de ceux produits par la décroissance d’un méson
neutre 1.

7.2.1 Cluster de particules chargées

La forme de la gerbe peut être utilisée pour séparer les gerbes électromagnétiques des
gerbes hadroniques. La figure 7.2 représente les distributions des paramètres λ2

0 et λ2
1 obte-

nues par simulation Monte-Carlo (Geant4) de photons, d’électrons et de pions. Les gerbes
hadroniques sont en moyenne plus dispersées que les gerbes électromagnétiques, d’où la
possibilité de rejeter une partie de la contamination hadronique en sélectionnant les gerbes
correspondant à des valeurs de λ2

0 et λ2
1 inférieures à une valeur seuil. La figure 7.2 montre

cependant que les photons et les électrons produisent une gerbe électromagnétique dont le
profil latéral est quasiment identique. Une coupure sur les paramètres λ2

0 et λ2
1 ne permet

1. Les clusters neutres produits par d’autres types de particules, en particulier les neutrons, sont rejetés
via une coupure sur le temps d’arrivée du signal
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donc pas de rejeter efficacement les gerbes produites par des électrons, d’où l’utilisation d’une
seconde méthode d’identification.
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Figure 7.2: Dispersion des gerbes électromagnétiques et hadroniques, caractérisée par les para-
mètres (λ2

0, λ2
1), obtenue par simulation Monte-Carlo (Geant4) pour des photons, des

électrons et des pions d’énergie E = 10 GeV.

Prolongement de traces

Contrairement aux photons, les électrons et les hadrons chargés produisent des traces
dans les trajectographes. La reconstruction de ces traces permet d’estimer la trajectoire
suivie par la particule entre le point d’interaction et la limite externe de la chambre à
projection temporelle (TPC). En prolongeant les traces reconstruites, il est alors possible
d’estimer leur point d’impact à la surface du détecteur EMCal. La résolution en position
de la trace extrapolée tient compte à la fois des caractéristiques déterminées à partir de la
reconstruction, en particulier la courbure de la trace, et des possibles pertes d’énergie dans le
matériel situé entre la TPC et EMCal. Lorsque la trace extrapolée se situe dans l’acceptance
du détecteur EMCal, le cluster le plus proche de la trace lui est associée. La distribution de la
distance entre l’ensemble des traces extrapolées et leurs clusters associés est une gaussienne
à deux dimensions dont l’écart-type (ση, σφ) peut être utilisé comme critère d’identification
des clusters produits par une particule chargée (figure 7.3). Un cluster est finalement identifié
comme particule chargée lorsque la distance (∆η,∆φ) entre la position du centre de masse
du cluster et les coordonnées de la trace à la surface du détecteur EMCal est inférieure à une
distance seuil proportionnelle à (ση, σφ). Il faut noter que le champ magnétique courbe les
traces de particules chargées positivement et négativement dans des directions opposées en
φ. L’écart-type σφ entre une trace et le cluster associé sera donc légèrement plus important
que ση, en particulier pour des particules de faible énergie.
Une fraction des clusters de particules chargées n’est pas rejetée après application de

la méthode de prolongation des traces. Cela concerne principalement les particules pour
lesquelles la trace n’a pas été reconstruite (ou de manière incorrecte). Cette contamination
doit bien entendu être estimée dans le cadre de l’analyse des corrélations photon/π0-hadron.
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Figure 7.3: Distance (∆η,∆φ) entre les coordonnées d’une trace prolongée jusqu’à la surface du
détecteur EMCal et les coordonnées du cluster associé le plus proche.

7.2.2 Cinématique

Une fois que les clusters neutres ont été sélectionnés, l’étape suivante consiste à séparer
les photons directs et les photons de décroissance. Afin de déterminer les paramètres les
plus discriminants pour l’identification des photons et des π0, il est nécessaire d’étudier la
cinématique de production des photons de décroissance. Considérons la décroissance d’un
π0 d’énergie totale Eπ0 (et d’impulsion Pπ0) en deux photons (π0 → γγ). La distribution de
l’angle d’ouverture (Θ12) entre les deux photons de décroissance, ainsi que la valeur minimum
prise par cet angle en fonction de l’énergie et de la masse au repos du π0, peut être déterminée
par la relation :

tan
(Θmin

12

2

)
=
mπ0

Eπ0

(7.4)

En normalisant l’angle d’ouverture Θ12 par la valeur de l’angle d’ouverture d’une tour du
calorimètre EMCal (ΘEMCal = 0.8◦), il est possible d’étudier la distance (en unité de tours)
entre les deux photons de décroissance à la surface du détecteur en fonction de l’énergie du π0.
Comme l’indique la figure 7.4 (gauche), cette distance est d’autant plus faible que l’énergie du
π0 est grande. La figure 7.4 (droite), qui représente la fraction de clusters de π0 contenant
un et deux photons, montre que la superposition des gerbes électromagnétiques a lieu à
partir de 5 GeV environ et que les clusters contenant deux photons deviennent dominants
à partir de 8 GeV. La figure 7.4 (gauche) permet également de constater qu’une faible
fraction des photons de décroissance sont émis avec un angle d’ouverture très important.
Ces décroissances peuvent conduire à la perte d’un des deux photons lorsque celui-ci est
émis hors de l’acceptance du calorimètre EMCal.
Pour des photons de décroissance d’énergie supérieure à 5 GeV, la méthode de cluste-

risation de type V1 (section 5.3.3) produit en majorité un seul cluster contenant les deux
gerbes électromagnétiques. Le paramètre le plus sélectif pour le différencier d’un cluster à
un photon est dans ce cas le grand axe λ2

0 car sa valeur est fortement modifiée entre un
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Figure 7.4: Gauche : distribution de l’angle d’ouverture des photons de décroissance (en unité de
tour du calorimètre EMCal) pour différentes énergies Eπ0 ; Droite : fraction de cluster
à un ou deux photons obtenue par simulation de π0 distribués uniformément entre 0
et 50 GeV.

cluster quasi-circulaire (photon direct) et un cluster elliptique (méson neutre). La figure 7.5
représente la distribution simulée du paramètre λ2

0 dans le cas des photons et des π0 produits
en collision proton-proton. Alors que la valeur de λ2

0 est relativement constante en fonction
de l’énergie dans le cas des photons, la distribution associée aux mésons π0 montre une forte
dépendance en énergie. Pour des énergies inférieures à 6 GeV environ, la valeur du paramètre
λ2

0 est proche de celle des photons car les clusters des deux photons de décroissance ne sont
pas encore superposés. Aux énergies supérieures, la superposition des clusters conduit à une
dispersion plus grande donc à une valeur de λ2

0 plus importante. Comme l’angle d’ouverture
minimum diminue avec l’énergie du π0, la valeur moyenne du paramètre λ2

0 décroît lorsque
l’énergie augmente. La figure 7.6 montre la distribution en λ2

0 obtenues à partir des don-
nées expérimentales dans les collisions proton-proton et Plomb-Plomb. Alors que la région
des π0 se distingue clairement en collision proton-proton, l’identification dans les collisions
Plomb-Plomb est rendue plus difficile à cause du grand nombre de clusters produits par les
collisions sous-jacentes.

7.2.3 Identification des photons

La sélection des photons directs nécessite d’optimiser la coupure en λ2
0 afin de rejeter au

maximum les photons issus de la décroissance du π0. Il faut pour cela déterminer l’effica-
cité de sélection des différentes particules qui est définie comme la fraction d’événements
appartenant à une région en λ2

0 définie. La figure 7.7 représente la fraction de particules sé-
lectionnées en fonction de la coupure en λ2

0. Comme la distribution du paramètre λ2
0 est peu

dépendante de l’énergie dans le cas des photons, la fraction du signal des photons d’énergie
comprise entre 5 et 30 GeV est directement comparée à celle de π0 d’énergies [5-10], [10-20] et
[20-30] GeV. Les résultats obtenus montre que la courbe correspondant aux photons atteint
rapidement un plateau à partir de λ2

0 = 0.27. Les courbes correspondant aux π0 augmentent
quant à elles à partir de valeurs de λ2

0 d’autant plus élevées que l’énergie du π0 est faible.
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Figure 7.5: Distribution en énergie du paramètre λ2
0 obtenue par simulation de photons (gauche)
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Figure 7.6: Distribution en énergie du paramètre λ2
0 pour des collisions proton-proton (gauche) et

Plomb-Plomb (droite).

La coupure λ2
0 ≤ 0.27 apparaît ainsi comme un compromis intéressant entre une efficacité

d’identification des photons (supérieure à 80%) et une bonne pureté (l’efficacité des π0 étant
inférieure à 5% pour des π0 d’énergie inférieure à 30 GeV). Les photons de décroissance dont
la valeur du paramètre λ2

0 est inférieure à 0.27 proviennent en majorité des décroissances
très asymétriques pour lesquelles un seul des photons atteint la surface du détecteur EMCal.

7.2.4 Identification des π0

L’identification des mésons neutres se base également sur la cinématique des photons de
décroissance, en particulier sur l’angle d’ouverture entre les deux photons. La distribution de
l’angle d’ouverture en fonction de l’énergie du π0 (figure 7.4) conduit soit à la reconstruction
de deux clusters distincts (énergie inférieure à 5-10 GeV) soit à la reconstruction d’un seul
cluster contenant les gerbes des deux photons. Il faut ajouter à cela le cas des décroissances
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0 = 0.27.

très asymétriques pour lesquelles un seul des deux photons de décroissance interagit avec le
détecteur.
Dans le cas où deux clusters sont associés à un π0, le calcul de la masse invariante des

paires de clusters permet d’identifier les π0 (et η). La masse invariante associée à deux
photons d’énergie E1 et E2 et d’angle d’ouverture Θ12 s’exprime sous la forme :

M2
γγ = 2E1E2(1− cosΘ12) = 4E1E2sin

2(Θ12/2) (7.5)

Cette méthode d’identification reste cependant limitée à des π0 d’énergie inférieure à 8 GeV.
Pour des énergies plus importantes, l’identification est alors réalisée en quatre étapes : sélec-
tion des clusters en fonction de leur forme (λ2

0), séparation des clusters en deux sous-clusters,
calcul de l’asymétrie en énergie, calcul de la masse invariante des paires de sous-clusters. Les
clusters sont tout d’abord triés selon leur nombre de maxima locaux (NLM), ces derniers
correspondant à une tour d’énergie supérieure à l’énergie de l’ensemble de ses tours voisines.
Un cluster produit par décroissance de π0 peut avoir soit un maximum local si les deux
photons ont interagi dans la même tour du détecteur, soit deux maxima si les deux photons
ont interagi dans deux tours différentes. La première étape d’identification consiste alors
à sélectionner les candidats π0 en appliquant une coupure sur le paramètre λ2

0. Comme le
montre la figure 7.5, cette coupure doit cependant dépendre de l’énergie du cluster associé.
La figure 7.8 représente la distribution en λ2

0 des clusters en fonction de leur énergie pour
des collisions proton-proton. Les lignes roses définissent la zone de sélection des candidats
π0, les limites de cette zone correspondant au minimum entre la bande des photons et la
bande des π0.
Une fois les candidats π0 sélectionnés, chaque cluster est séparé en deux sous-clusters. La

procédure consiste à déterminer les deux maxima locaux les plus énergétiques, puis à recons-
truire des sous-clusters de taille 3x3 autour de chacun des maxima. Si une tour est commune
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4.3 Cluster and split sub-cluster properties and selection criteria453

4.3.1 Shower shape454

We want to select V1 clusters that are likely to be produced by a π0. We discussed earlier that the best455

shower shape parameter is λ 2
0 , that depends on the cluster energy and the NLM value for V1 clusters (in456

other clusterizers NLM = 1, and λ 2
0 will not vary much). Here, the selection of clusters depending on457

λ 2
0 is discussed. This is the first step before the cluster split algorithm is called. In all the plots of this458

section, two reference pink lines are shown, representing the selection window that we find to be optimal.459
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Fig. 16: λ 2
0 of V1 clusters, not matched to track, versus cluster energy: first row, pp collisions at

√
s= 7 TeV,

LHC11c+LHC11d EMCal triggered; second row, MC production, LHC12f2a Pythia pp collisions at
√

s= 7 TeV,
selected clusters have contribution from 2 photon decays from the same generated π0; Left plots: clusters with 1
local maximum; Middle plots: 2 local maxima; Right plots: more than 2 local maxima. The black line represents
λ 2

0 = 0.3 to distinguish the photon region from the π0 region. The pink lines represent the λ 2
0 π0 selection band,

defined at the end of Sec. 4.3.1.

Figures 16 (pp collisions), 17 (Pb-Pb central collisions) and 18 (Pb-Pb peripheral collisions) show the461

shower shape λ 2
0 distribution for clusters as a function of their energy in data (top plots) and simu-462

lation (π0 clusters, bottom plots), and for different number of local maxima (NLM) in the cluster.463

Figure 19 shows the λ 2
0 distribution in pp collisions when the clusterization threshold is increased to464

Emin = 150 MeV/c2, like in Pb-Pb analysis.465

From the figures we observe a band due to the presence of π0 in the data. We observe that:466

– For NLM = 2 clusters, the π0 band starts to appear clearly for λ 2
0 > 0.6;467

– For NLM > 2 clusters, the π0 band is a bit higher and much broader in the λ 2
0 axis;468

– For NLM = 1 clusters, the π0 band is not easy to define since it merges rather fast when increasing469

the energy with the photon band at around λ 2
0 > 0.25, but it is clearly seen a band with values of470

λ 2
0 > 0.3 up to at least 20 GeV.471

Figure 7.8: Forme des clusters avec NLM= 1 (gauche) et NLM= 2 (droite) en fonction de l’énergie.
Les courbes représentent la zone de sélection des candidats π0.

aux deux sous-clusters, son énergie est répartie avec une fraction fi = Eloc.maxi /Ecluster,
où Ei représente l’énergie du premier et deuxième maximum local. Comme toute l’énergie
de la tour ne sera pas partagée (la somme en énergie des deux maxima n’est pas égale à
celle du cluster), l’énergie restante est partagée équitablement entre les deux sous-clusters.
À l’issue de la procédure de séparation, l’asymétrie en énergie A = |E1 − E2|/(E1 + E2) et
la masse invariante sont calculées. L’asymétrie est reliée à l’angle d’ouverture des photons
de décroissance, qui diminue avec l’énergie du π0. Si l’asymétrie est proche de 1, le cluster
a une probabilité plus grande d’avoir été produit par la conversion d’un photon dans la
structure ou les autres détecteurs d’ALICE. Des études de simulation ont permis d’estimer
les coupures les plus efficaces pour la réjection des faux clusters de π0, ces coupures étant
présentées sur la figure 7.9.
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Fig. 31: Split sub-clusters energy asymmetry, input V1 cluster not matched to track, versus cluster energy: first
row, pp collisions at

√
s= 7 TeV, LHC11c+LHC11d EMCal triggered; second row, MC production, LHC12f2a

Pythia pp collisions at
√

s= 7 TeV, selected clusters have contribution from 2 photon decays from the same π0;
Left plots: clusters with 1 local maximum; Middle plots: 2 local maxima; Right plots: more than 2 local maxima.
Pink line represents the cut above which the pairs come mainly from background.

Figure 7.9: Asymétrie des clusters avec NLM = 1 (gauche) et NLM = 2 (droite) en fonction de
l’énergie. Les lignes correspondent à la zone de sélection de π0.
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La distribution en masse invariante des paires de sous-clusters obtenues après séparation
permet d’appliquer une coupure d’identification dans une fenêtre de ± 3σ autour de la valeur
moyenne. La figure 7.10 représente la distribution en masse invariante des paires de sous-
clusters dans le cas des collisions proton-proton et Plomb-Plomb (pour NLM = 1 et 2). Les
distributions font apparaître un bruit de fond combinatoire correspondant à l’ensemble des
paires de clusters ne provenant pas de la décroissance d’un méson π0, et un pic correspondant
aux clusters produits par deux photons de décroissance. Un ajustement utilisant une fonction
gaussienne et un polynôme de second degré permet de séparer le signal du bruit de fond
combinatoire.
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Figure 7.10: Distribution de la masse invariante des paires de clusters (après partage de l’énergie
dans les deux sous-clusters) dans les collisions proton-proton (gauche) et Plomb-
Plomb (droite) pour NLM = 1 et 2.

7.3 Simulation des gerbes électromagnétiques

La simulation des gerbes électromagnétiques produites par l’interaction des photons dans
le détecteur EMCal est indispensable à la détermination de l’efficacité et de la pureté des cou-
pures de sélection décrites précédemment. Dans le cas particulier des corrélations photon/π0-
hadron, la simulation Monte-Carlo des gerbes électromagnétiques est utilisée pour estimer
la contamination des mésons neutres dans l’échantillon de clusters identifiés comme prove-
nant d’un photon direct. Avant d’utiliser la simulation pour estimer cette contamination, il
est nécessaire de comparer précisément les informations spatiales de la gerbe obtenues en
simulation et avec les données expérimentales.

7.3.1 Configuration de la simulation

Comme nous l’avons vu précédemment, le profil latéral peut être décrit à l’aide des pa-
ramètres λ2

0 et λ2
1 qui dépendent de l’extension spatiale et de la distribution en énergie des

particules de la gerbe électromagnétique. La forme obtenue par simulation Monte-Carlo dé-
pend à la fois du logiciel utilisé pour la simulation des interactions, et de la reconstruction
appliquée au signal afin de reproduire les effets de l’électronique de lecture. Les paramètres
les plus significatifs sont les processus physiques et les coupures en énergie associées. Geant3
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et Geant4 permettent en effet de déterminer quels processus d’interaction sont utilisés dans
la production des gerbes. Il est également possible de déterminer un seuil en énergie en-deçà
duquel la production de nouvelles particules s’arrête 2.
Dans le cadre des tests sous faisceau, la distribution du paramètre λ2

0 varie en fonction
de la position de la particule incidente sur la tour centrale. Cette dépendance doit alors
être prise en compte lors de la simulation afin de ne pas biaiser les résultats. Pour cela la
distribution des électrons du faisceau dans le plan x-y est mesurée à partir des informations
fournies par les chambres multi-fils. Afin d’être le plus réaliste possible, la simulation se base
directement sur les distributions obtenues expérimentalement (figure 7.11 gauche). L’impact
de la position de la particule incidente sur la forme des gerbes électromagnétiques peut être
étudié en comparant les résultats d’une simulation utilisant un profil de faisceau réaliste
(mesuré expérimentalement) à ceux d’une simulation utilisant une distribution uniforme sur
la tour. Comme l’indique la figure 7.11 (droite), des différences significatives sur le paramètre
λ2

0 sont observées.
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Figure 7.11: Gauche : distribution des électrons du faisceau dans les directions X (rouge) et Y
(bleu) dans le cas d’électrons d’énergie 10 GeV au SPS ; Droite : distribution du
paramètre λ2

0 dans le cas d’une simulation s’appuyant sur la forme expérimentale du
faisceau d’électrons (rouge) et d’une simulation utilisant une distribution uniforme
dans le plan x-y (bleu).

7.3.2 Résultats

Comme l’indique la figure 7.12 , une première comparaison du paramètre λ2
0 obtenus pour

les simulations Geant3 et Geant4 ne montre aucune différence significative sur la distribution
en λ2

0 entre les deux simulations. Il est intéressant de noter que les deux logiciels donnent
également des résultats très proches pour la résolution en énergie et la non-linéarité (section
6.4).
Cependant, une étude plus détaillée à l’aide de la simulation Geant4 pour des électrons de

10 GeV permet de mettre en évidence l’importance des listes de processus physiques et des

2. Le seuil en énergie est exprimé en eV dans le logiciel Geant3, alors qu’il est exprimé en unité de distance
(longueur d’interaction) dans Geant4.
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Figure 7.12: Distribution du paramètre λ2
0 par simulation Geant3 (noir) et Geant4 (rouge) d’élec-

trons de 10 GeV dans le détecteur EMCal.

coupures en énergie utilisées. Comme le montre la figure 7.13 (gauche), les listes de processus
Electromagnetic standard et QGSP-BERT donnent des résultats comparables, tandis que
l’option EMV (simplification des processus physiques liés à la propagation de la gerbe pour
diminuer le temps de calcul) modifie considérablement la forme des gerbes reconstruites. Dans
une moindre mesure, le seuil en énergie utilisé pour la production de nouvelles particules (libre
parcours moyen de 0.01 mm au lieu de 1 mm par défaut) modifie légèrement la distribution du
paramètre λ2

0. Par ailleurs, la figure 7.13 (droite) met en évidence l’impact de l’électronique et
de la reconstruction du signal comme la clusterisation, l’influence du bruit et les fluctuations
des APDs. Il apparaît que le paramètre le plus significatif sur la valeur de λ2

0 est lié aux
fluctuations des photodiodes, dont l’influence était déjà importante pour la résolution en
énergie.
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La simulation Geant4 a été ajustée afin d’obtenir le meilleur accord possible entre données
expérimentales et simulées, en particulier sur la résolution en énergie (figure 6.15), la non-
linéarité (6.16), et la forme des gerbes électromagnétiques. Après avoir ajusté au mieux la
simulation en tenant compte de l’ensemble des effets précédemment cités (forme du faisceau,
processus physiques, coupures en énergie), les distributions du paramètre λ2

0 obtenues à partir
des tests sous faisceau sont comparées aux distributions obtenues par simulation Geant4. Les
résultats, qui sont présentés sur la figure 7.14, correspondent à des électrons de 6, 10 et 25
GeV. À une énergie de 6 GeV, l’accord entre les données et la simulation est satisfaisant
en tenant compte des fluctuations statistiques. Lorsque l’énergie de l’électron augmente, un
décalage vers les faibles valeurs de λ2

0 apparaît. Celui-ci n’est pas compris à ce jour, mais une
analyse de la distribution en énergie des particules au sein de la gerbe semble montrer que
la simulation donne un poids trop important à la tour centrale au détriment des tours les
plus périphériques. Des discussions sont en cours avec d’autres expériences rencontrant des
problèmes similaires, comme la collaboration ATLAS [172], afin de déterminer les paramètres
les plus pertinents à modifier pour ajuster la propagation des gerbes électromagnétiques dans
la simulation Geant4. Le paramètre λ2

0 étant fondamental pour l’identification des photons,
une évaluation de l’impact de ce décalage sera finalement nécessaire pour l’estimation des
incertitudes systématiques lors de l’analyse des corrélations photon/π0-hadron.
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La faible section efficace de production des événements de type jet-jet et gamma-jet impose d’uti-
liser un système de déclenchement pour atteindre une statistique suffisante pour l’analyse des corré-
lations photon/π0-hadron. La sélection des photons et des π0 nécessite à la fois un étalonnage précis
du détecteur et un système de déclenchement efficace afin de sélectionner des particules d’énergie
supérieure à une valeur seuil.

Ce chapitre est dédié au système de déclenchement du détecteur EMCal. Après une présentation
de l’électronique de déclenchement et du principe général de fonctionnement du système, nous dé-
velopperons les caractéristiques des deux niveaux de déclenchement (niveau 0 et 1). Les résultats de
l’analyse des données pour des collisions proton-proton et Plomb-Plomb sont utilisés pour caractéri-
ser les performances du système de déclenchement de niveau 1, en particulier l’efficacité de sélection
des photons.
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8.1 Système de déclenchement du calorimètre EMCal

Le calorimètre électromagnétique EMCal est un des détecteurs pouvant être utilisés comme
système de déclenchement dans l’expérience ALICE. Le système de déclenchement central
(CTP) de l’expérience ALICE utilise en effet les signaux émis par un ou plusieurs détecteurs
afin de fournir une décision logique à l’ensemble des détecteurs. La décision est basée sur une
logique à trois niveaux : niveau 0 (L0) à t = 1.2 µs, niveau 1 (L1) à t = 7.7 µs et niveau 2
(L2) à t = 90 µs. Le niveau 0 est un signal rapide généralement utilisé pour mettre hors
veille l’électronique de lecture des détecteurs. Le niveau 1 permet d’appliquer une logique de
décision plus complexe. Le niveau 2 est une protection contre l’empilement des événements
(basé sur le temps de dérive de la TPC). Il faut cependant noter que les niveaux 1 et 2 ne
peuvent s’appliquer que sur les événements déjà acceptés par le niveau 0.
Le système de déclenchement d’ALICE est conçu pour un fonctionnement à environ

100 kHz en collision proton-proton et 5 kHz en collision centrale Plomb-Plomb. Une fraction
de la bande-passante est allouée à chaque détecteur utilisé dans le système de déclenchement
central. Ces détecteurs adaptent leurs critères de sélection en fonction de la bande-passante
autorisée, tout en respectant un objectif de physique particulier. Dans le cas du calorimètre
EMCal, l’objectif principal est d’améliorer la statistique associée à la détection des électrons,
photons et jets de haut-pT .

8.1.1 Électronique de déclenchement

Le calorimètre EMCal peut fournir un signal de déclenchement de niveau 0 et de niveau 1
[166]. L’électronique du système de déclenchement est indépendante de celle utilisée pour la
mesure en énergie des particules (section 5.2.3). Avant que le signal ne soit mis en forme,
des sommes analogiques correspondant à 2x2 tours sont calculées pour produire un signal
de déclenchement (fast-OR). Chacune des 32 voies d’un carte FEE forme ainsi 8 sommes
analogiques qui sont mises en forme par un simple shaper RC de temps caractéristique
τ = 100 ns. Pour chaque bus GTL, les 96 sommes d’un groupe de 12 cartes FEE sont envoyées
à une carte électronique TRU (Trigger Region Unit) associée au déclenchement de niveau 0
[173]. Celle-ci numérise les sommes analogiques à l’aide d’un flash ADC 12-bits de fréquence
d’échantillonnage 40 MHz puis applique un algorithme de sélection implémenté dans un
FPGA (Field-Programmable Gate Array). La TRU transmet le résultat de l’algorithme au
système de déclenchement central (CTP). Si la décision du CTP est positive, l’ensemble
des sommes analogiques numérisées sont envoyées à la carte électronique STU (Summary
Trigger Unit) associée au déclenchement de niveau 1 [174]. La STU applique à son tour
un algorithme de sélection afin de calculer deux types de déclenchement, un niveau 1 dédié
aux électrons/photons (L1-Gamma) et un niveau 1 dédié aux jets (L1-Jet). Le résultat de
l’algorithme est finalement envoyé au système de déclenchement central pour permettre la
prise de décision finale concernant l’événement. Le fonctionnement général de l’électronique
de déclenchement est schématisé sur la figure 8.1.



Sélection des photons et π0 de haut-pT 135

Figure 8.1: Vue schématique du système de déclenchement du calorimètre EMCal [175].

8.1.2 Algorithme de sélection : Niveau 0

Les cartes électroniques TRU numérisent les sommes analogiques des signaux de 2x2 tours
fournies par les cartes FEE. Après la numérisation, l’amplitude du signal est intégrée en
temps et le piédestal est soustrait afin de limiter la dépendance au bruit électronique. Les
signaux intégrés en temps provenant de l’ensemble des fast-OR sont alors utilisés comme
paramètres d’entrée de l’algorithme de sélection de niveau 0. Deux critères doivent être
satisfaits pour qu’un fast-OR soit sélectionné par l’algorithme :

- L’amplitude du signal intégré en temps associée à 2×2 fastOR doit dépasser une valeur
seuil prédéfinie. Ce critère est appliqué sous la forme d’une fenêtre glissante qui vérifie
pas à pas que l’amplitude totale du signal des 4 fast-OR dépasse la valeur de seuil.

- L’algorithme doit trouver un pic dans la distribution du signal. Ce critère permet de
vérifier que le signal ne provient pas d’un bruit électronique, en s’assurant que la forme
du signal correspond bien à celle attendue dans le cas d’un dépôt d’énergie (signal
piqué).

Lorsque les deux conditions sont satisfaites pour au moins une configuration de la fenêtre
glissante, les cartes TRU envoient un signal positif au système de déclenchement central. Si
celui-ci émet à son tour une décision positive (en tenant compte des réponses fournies par les
autres détecteurs) l’ensemble des sommes analogiques numérisées par les cartes TRU sont
envoyées à la carte électronique du niveau 1 (STU). L’information est légèrement dégradée
lors de la transmission du signal en passant d’un signal 16-bits (sommes intégrées en temps)
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à un signal 12-bits (format STU) par suppression des 2 derniers bits de poids faibles. Les
données du niveau 0 sont sauvegardées dans une mémoire circulaire dans l’attente de la
décision du système central. Pour un bon fonctionnement du système de déclenchement,
il est nécessaire d’étudier la cohérence des informations disponibles à différents niveaux de
l’électronique (FEE, TRU, STU, et de s’assurer qu’il n’y a pas de décalage en temps entre
les données enregistrées et les données transmises (jitter). La figure 8.2 montre la corrélation
entre les signaux produit par les cartes FEE, TRU et STU dans le cas d’une fenêtre de taille
2x2 tours. Les différences observées peuvent être dues à la numérisation du signal (FEE
ou TRU) ainsi qu’à la qualité de la transmission du signal entre les cartes FEE/TRU ou
TRU/STU.
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Figure 8.2: Amplitude totale du signal dans une fenêtre de 4x4 tours mesurée par les cartes élec-
troniques FEE et TRU (gauche), TRU et STU (droite).

Chaque carte TRU analyse les informations produites dans une région de 48x8 tours (24x4
fast-OR), soit un tiers de super-module du calorimètre EMCal. L’algorithme de sélection
du niveau 0 est un algorithme local ne fonctionnant qu’à l’intérieur d’une région TRU.
Il est de ce fait impossible de sommer les amplitudes des signaux produits par des fast-
OR à l’intersection de deux super-modules différents. Au sein d’un même super-module, il
est impossible de déplacer la fenêtre de sélection à l’intersection entre deux régions TRU
différentes. Cette contrainte a un impact direct sur l’efficacité de sélection des événements,
d’où l’intérêt du déclenchement de niveau 1 qui utilise un algorithme global permettant
d’opérer une sélection sur l’ensemble du calorimètre.

8.1.3 Algorithme de sélection : Niveau 1

Les cartes électroniques STU appliquent un algorithme de sélection sur les sommes inté-
grées en temps de chaque fast-OR transmises par les cartes TRU. L’algorithme permet de
produire deux niveaux de déclenchement distincts (figure 8.3) :

- niveau 1 Gamma : la sélection des photons et des électrons est réalisée par l’appli-
cation d’un algorithme similaire à celui utilisé au niveau 0 (sans la recherche du pic).
La différence provient de la zone géographique accessible par la fenêtre glissante de
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taille 2x2 fast-OR, cette dernière pouvant se déplacer sur l’intégralité de la surface du
détecteur.

- niveau 1 Jet : la sélection des jets utilise une fenêtre glissante de taille plus impor-
tante afin de tenir compte de la dispersion spatiale des particules composant le jet.
L’amplitude du signal est sommée dans une fenêtre de 16x16 fast-OR se déplaçant
avec un pas de 4 fast-OR.

compute the energy deposit in patches of 4× 4 towers (or 2× 2 fastOR) for the region managed.
Each patch energy is constantly compared to a minimum bias threshold; whenever it is crossed
and the maximum of the peak has been found, a local L0 trigger is fired. In preparation for the
L1 algorithm, the time integrated sums are also stored in a circular buffer for later retrieval and
transmission to STU. Note that Level 0 trigger suffers from some spatial trigger inefficiencies due
to the fact that TRUs cannot compute the spatial sum for patches sitting on region boundaries

2.2 Global EMCal triggers computed in STU

The STU is the access point to the Central trigger Processor CTP[9] for EMCal. Consequently,
it is used to provide the global L0, which is an OR of the 32 L0 locally calculated by the TRUs
and two L1 triggers: the L1-gamma trigger and the L1-jet trigger. The L1-gamma trigger uses the
same patch size as L0, but without the inefficiencies displayed by the local L0 (i.e. 2× 2 patch
across several TRU regions can be computed). The L1-jet trigger is built by summing energy over
a sliding window of 4× 4 subregions, where a subregion is defined as a 4× 4 fastOR (or 8× 8
towers) area, see fig. 2. With the given EMCal geometry and due to the various trigger patches
sizes, there are a total of 2208 L0, 2961 L1-gamma and 117 L1-jet trigger patches that can be fired.

2.3 L1 trigger processing

A block diagram of the L1 trigger processing is shown in fig. 3. The L1-processing is not con-
tinuously running, i.e. pipelined, it is instead initiated on the confirmed L0 reception provided
by the CTP via the TTC[10] links (TRUs and STU). At this moment, 1.2 µs after interaction, the
TRUs send to the STU the appropriate time integrated data from their circular buffers to the STU
via the custom serial links. The serialization, propagation delay and deserialization takes 3075 ns.
Meanwhile, the V0 detector transfers its charge information to the STU via a direct optical link.
The thresholds for photon and jet patches are immediately processed and made available before the
actual trigger processing starts. Once the TRU data reception is achieved, the L1-photon trigger
processing and also the subregion energy calculation are done in parallel for each TRU region.
Then when the previous processing is over, the L1-jet trigger starts and uses the previously gen-
erated subregion accumulation. Finally, both triggers are adequately delayed to accommodate the
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Figure 2. Cartoon of different possible L0, L1-gamma and L1-jet trigger patches.
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Figure 8.3: Illustration de l’algorithme de fenêtre glissante dans le cas du niveau 0,
niveau 1-Gamma et niveau 1-Jet [174].

Outre le fait de permettre un déclenchement global sur l’ensemble du détecteur, le second
intérêt du déclenchement de niveau 1 est de permettre un ajustement du seuil en fonction
de la multiplicité de l’événement dans le cas des collisions Plomb-Plomb. Le bruit de fond
moyen contenu dans une fenêtre de n×n fast-OR varie en effet de manière importante en
fonction de la centralité de la collision. La sélection des données ne peut pas être réalisée
de manière uniforme par l’application d’un seuil fixe car la statistique serait inévitablement
plus importante pour les événements centraux que pour les événements périphériques. La
figure 8.4 (gauche) représente l’énergie maximale contenue dans une fenêtre de taille 32x32
tours (L1-jet) en fonction de la centralité de la collision. La forme de la distribution montre
qu’un seuil fixe conduirait à déclencher principalement sur les événements provenant de
collisions centrales. Afin de limiter ce biais en collision Plomb-Plomb, le seuil appliqué au
niveau 1-Gamma et Jet est calculé événement par événement en fonction de la centralité.
Cette information est fournie à la carte STU par le détecteur VZERO dont la charge totale
collectée est proportionnelle à la centralité de l’événement. Les seuils des niveaux L1-Gamma
et L1-Jet sont alors calculés indépendamment d’après un polynôme de second ordre fonction
de la charge totale collectée par le détecteur VZERO (V0) :

Seuil[ADC] = A.V 02 +B.V 0 + C (8.1)

Les premières prises de données ont permis de déterminer la corrélation entre le signal mesuré
par la carte STU et celui mesuré par le détecteur V0. Comme l’indique la figure 8.4 (droite),
le résultat montre que l’utilisation d’une fonction linéaire de type B.V0+C est suffisante (en
première approximation) pour adapter le seuil à la centralité de la collision.
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Figure 8.4: Gauche : énergie maximale dans une fenêtre 32x32 tours en fonction de la centralité
dans les collision Pb-Pb ; Droite : corrélation entre le signal total mesuré dans le
détecteur VZERO et le signal total mesuré dans la carte STU.

8.2 Performances du système de déclenchement

Un système de déclenchement doit être à la fois efficace, afin de permettre une sélection
précise des objets physiques intéressants, et non-biaisé, afin de ne pas fausser les analyses
physiques. Le seuil en énergie utilisé dépend principalement du facteur de rejection néces-
saire pour atteindre la bande-passante maximale lors de l’enregistrement des données. Pour
l’analyse des corrélations photon/π0-hadron, les données utilisées ont été sélectionnées par
le déclenchement de niveau 0 pour les collisions proton-proton (seuil : 4.5 et 5.5 GeV) et par
le déclenchement de niveau 1-Gamma pour les collisions Plomb-Plomb (seuil : de 4.5 GeV
(périphérique) à 9.5 GeV (central)).

8.2.1 Biais de sélection

La sélection des objets par le système de déclenchement doit se faire en limitant au maxi-
mum les biais de sélection. Le déclenchement ne doit en effet introduire aucun autre biais
que celui lié à l’application d’un seuil en énergie, ce biais étant corrigé lors des analyses phy-
siques en utilisant les courbes d’efficacité décrite précédemment. Les données sélectionnées
doivent donc être analysées en vérifiant que leurs caractéristiques communes, en particulier
leur distribution spatiale, correspondent bien à celles obtenues dans le cas des données de
biais minimum. Ces caractéristiques doivent être vérifiées en continu lors des prises de don-
nées, ce qui conduit au développement d’outils de contrôle du système de déclenchement du
calorimètre EMCal.
La distribution (η, φ) de l’amplitude du signal mesurée à l’intérieur d’une fenêtre de taille

4x4 tours en collision proton-proton et Plomb-Plomb fait apparaître quelques zones dites
"chaudes" pour lesquelles la fréquence d’apparition d’un signal dans le système de déclen-
chement de niveau 1-Gamma est plus importante que la moyenne des autres fenêtres, comme
le montre la figure 8.5 (gauche). Une étude des corrélations entre le signal des cartes FEE et
celui de la carte STU permet cependant de démontrer que de telles zones ne sont que très
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rarement associées à un cluster (donc à une particule réelle). La figure 8.5 (droite) montre
ainsi que la distribution des fenêtres de taille 4x4, qui ne sont pas associées à un signal dans
les cartes FEE, est très similaire à la distribution des zones chaudes dans le système de
déclenchement. Cela semble montrer que le signal mesuré dans ces zones provient du bruit
électronique du système de déclenchement et ne biaise donc pas la sélection des photons.
Cette hypothèse devra être vérifiée à partir de la distribution (η, φ) des photons reconstruits
dans le calorimètre EMCal qui permet de confirmer que la sélection des photons au niveau
0 (proton-proton) et au niveau 1-Gamma est spatialement non-biaisée (voir section 9.2.2).
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Figure 8.5: Gauche : distribution (η, φ) des fenêtres de taille 4x4 tours ayant passées le seuil de
déclenchement de niveau 1-Gamma ; Droite : distribution (η, φ) des fenêtres de taille
4x4 tours non-associées à un signal mesuré dans la voie d’électronique FEE (mesure
en énergie).

La distribution (η, φ) de l’amplitude du signal mesurée à l’intérieur d’une fenêtre de taille
32x32 tours en collisions proton-proton et Plomb-Plomb fait également apparaître de telles
zones "chaudes" dans le système de déclenchement de niveau 1-Jet, comme le montre la figure
8.6 (gauche). Une analyse des coefficients de calibration (obtenus à l’aide de la calibration π0)
appliqués lors de la reconstruction des données a permis de démontrer que la décalibration
des APDs au niveau des cartes TRU et STU était en partie responsable de l’effet mesuré.
Comme l’indique la figure 8.6 (droite), les coefficients de calibration sont en effet plus faibles
dans la région où le point chaud est localisé. Cela confirme la nécessité d’ajuster au mieux
les tensions des APDs à la fin de chaque période de prise de données (à partir des coefficients
de calibration obtenus) afin de calibrer au mieux les signaux utilisés pour le déclenchement.

8.2.2 Facteur de rejection

Le taux moyen de collisions dans l’expérience ALICE est de 400 kHz en proton-proton et
4 kHz en Plomb-Plomb. Le système de déclenchement central doit alors réduire le taux et
le volume des données enregistrées afin de satisfaire la fréquence maximale de fonctionne-
ment des détecteurs (en particulier la TPC qui fonctionne à 500 Hz en proton-proton et 100
Hz en Plomb-Plomb) et la limite de bande-passante du système d’acquisition (environ 1.25
Go/seconde). La fréquence disponible totale est partagée entre les différents détecteurs utili-
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déclenchement de niveau 1-Jet ; Droite : distribution (η, φ) des coefficients de calibra-
tion utilisés pour les mesures en énergie des clusters.

sés pour le déclenchement, ces détecteurs devant de ce fait appliquer un facteur de rejection
leur permettant de satisfaire la fréquence maximale imposée.
Dans le cas du détecteur EMCal, les taux de réjection requis sont d’environ 103 à 104 en

collision proton-proton (selon les autres détecteurs utilisés dans le déclenchement) et 50 en
collision Plomb-Plomb. Des études préliminaires ont été réalisées au cours de l’année 2010
afin d’estimer les seuils en énergie correspondant à ces facteurs de réjection. Elles sont basées
sur la distribution en énergie du nombre moyen par événement de clusters (sélection L0 ou
L1-Gamma) et de fenêtre de taille 32x32 tours (sélection L1-Jet). La figure 8.7 (gauche)
représente ainsi le nombre moyen de clusters par événement en fonction de leur énergie pour
les collisions proton-proton. Un seuil d’environ 5 GeV (niveau 0 ou niveau 1-Gamma) est
nécessaire pour atteindre le taux de réjection souhaité. La figure 8.7 (droite) représente quant
à elle le nombre moyen de fenêtres de taille 32x32 tours par événement en fonction du seuil
en énergie pour les collisions Plomb-Plomb centrales (0-20%) et périphériques (20-60%).

8.2.3 Efficacité de sélection

L’efficacité est déterminée à partir du rapport entre le nombre d’événements sélection-
nés par le système de déclenchement d’EMCal sur le nombre total d’événements de biais
minimum. Dans le cas du calorimètre EMCal, l’efficacité peut être mesurée d’une manière
générale à partir du spectre en énergie des clusters reconstruits, ou bien de manière plus spé-
cifique après identification d’un type d’objet particulier (photons, π0, électrons, jets). Elle
permet d’en déduire l’énergie à laquelle l’efficacité maximale est atteinte avec le gain lié au
système de déclenchement. La pente de la courbe obtenue indique quant à elle la précision
de la sélection des événements au niveau du seuil en énergie.
Le rapport des distributions de clusters obtenues pour les collisions proton-proton (niveau

0) est représenté sur la figure 8.8 (gauche). Au cours de la prise de données, le seuil a été
modifié pour passer de 4.5 à 5.5 GeV environ. Les courbes obtenues montrent que l’efficacité
maximale est atteinte aux alentours de 8 GeV. La valeur de plateau obtenue confirme qu’un
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gain en statistique de 103 à 104 est obtenu en collision proton-proton. La figure 8.8 (droite)
représente quant à elle le rapport des distributions de clusters en collisions Plomb-Plomb
pour différentes valeurs de centralité. L’efficacité maximale est atteinte aux alentours de
5 GeV pour les collisions périphériques et de 10 GeV pour les collisions les plus centrales.
Pour les collisions Plomb-Plomb, un gain compris entre 40 et 200 est obtenu sur la statistique
selon la centralité de la collision.
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L’analyse des corrélations photon/π0-hadron est effectuée en deux étapes successives. La première
étape consiste à déterminer les caractéristiques de la fragmentation du parton dans le vide pour les
collisions proton-proton à une énergie

√
s = 7 TeV. Cette étape est cruciale pour le reste de l’analyse

car elle constitue une mesure de la référence à partir de laquelle seront évaluées les modifications de
la fragmentation en collisions Plomb-Plomb lors de la deuxième étape de l’analyse.
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Introduction

L’étude des corrélations photon/π0-hadron consiste à mesurer les caractéristiques des ha-
drons résultant de la fragmentation d’un parton, et ce tant du point de vue énergétique
que topologique (section 2.4.2). Deux observables sont utilisées dans ce but : les corrélations
angulaires photon/π0-hadron et la fonction de fragmentation. Les corrélations angulaires re-
présentent la distribution angulaire (η, φ) des hadrons par rapport à la particule de référence
(photon ou π0). Elles sont définies par :

∆η = ηhadron − ηγ/π0
, ∆φ = φhadron − φγ/π0

(9.1)

La fragmentation est quant à elle déterminée à partir du paramètre de balance xE :

xE =
−~p γ/π0

T · ~p hadron
T

|~p γ/π0

T |2
(9.2)

Dans le cas des corrélations photon-hadron, la distribution en xE est une bonne approxi-
mation de la fonction de fragmentation du parton émis à l’opposé du photon dans la mesure
où l’impulsion transverse du photon est très proche de celle du parton. La validité de cette
approximation peut être étudiée à l’aide du générateur DIPHOX [176] [177] [178], qui per-
met de générer des événements gamma-jet à l’ordre supérieur en respectant les contributions
(sections efficaces) des différents processus de production (voir figure 9.1 (gauche)). La frag-
mentation du parton en hadrons est déterminée à partir de la fonction de fragmentation DSS
[179] [180] du quark et du gluon. Les coupures cinématiques utilisées pour la production des
événements gamma-jet correspondent à un seuil en impulsion pγT ≥ 20 GeV/c pour le photon
et phadronT ≥ 3 GeV/c pour les hadrons issus de la fragmentation.

La figure 9.1 (droite) représente la distribution de la variable xE obtenue à partir des évé-
nements gamma-jets générés avec DIPHOX (points bleus). Cette distribution est comparée
aux fonctions de fragmentation DSS du quark (rouge) et du gluon (noire) utilisées pour la
génération (normalisées en xE = 0.2). Il apparaît que la distribution en xE reproduit très
bien la forme des fonctions de fragmentation entre xE = 0.2 et 0.8. La distribution en xE est
plus proche de la fonction de fragmentation du quark que de celle du gluon, ce qui s’explique
par la contribution dominante du processus Compton par rapport à l’annihilation quark-
antiquark dans la production de photons directs (voir figure 9.1 (gauche)). Pour les faibles
valeurs de xE , la distribution en xE s’écarte des fonctions de fragmentation à cause des
coupures cinématiques utilisées sur les hadrons et le photon (phadronT /pγT ≈ 0.15). À partir de
xE ≈ 0.8, la contribution des photons de fragmentation commence à devenir dominante d’où
l’écart important observé entre la distribution en xE et les fonctions de fragmentation. Il est
en effet plus favorable d’un point de vue énergétique d’obtenir une valeur de xE proche de 1
à l’aide d’un photon de fragmentation et d’un hadron emportant la même fraction d’énergie
des deux partons initiaux (événements jet-jet), que d’obtenir une valeur de xE proche de 1 à
l’aide d’un photon prompt et d’un hadron emportant quasiment 100% de l’énergie du parton
émis à l’opposé du photon (événements gamma-jet).
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5

On the other hand, the fragmentation component is usually accompanied by other particles issuing from
the hadronization of the same parent parton (jet). Yet, the isolated cross section measured experimentally
cannot be automatically identified with the direct cross section calculated at the Born level. First, higher
order terms originating in the non-collinear fragmentation of partons also contribute to the isolated cross
sections. Second and most important, although isolation cuts such as Eqs. (2), (3) reduce the dσ

frag

contribution, a fraction of fragmentation photons with z ≥ 1/(1 + εh) survive the cuts [16]. The average
z-value for fragmentation photons is 〈z〉 ! 0.6 at the LHC and 〈z〉 ≈ 0.7 at the Tevatron [13], and a
typical isolation energy cut of εh = 0.1, corresponding to 1/(1 + εh) > 0.9, suppresses about 60 – 80% of
dσ

frag
(this value is E

γ

T
- and scale-dependent). We see this in more detail in Fig. 3 where we show the

subprocesses contributions to the isolated photon cross section. At variance with Fig. 2 for the inclusive
prompt-γ case, we can see that a very significant part of the fragmentation component is suppressed after
applying typical isolation cuts (R = 0.4, εh = 0.1). The Compton process now clearly dominates the
photon yield below E

γ

T
≈ 120 GeV at Tevatron and accounts for about 3/4 of isolated γ production for

all ET ’s at the LHC. These results confirm the interesting potential of isolated photon hadroproduction
to constrain the gluon density.
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FIG. 3: Relative contributions of the quark-gluon Compton, qq̄ annihilation and fragmentation subprocesses in
NLO isolated photon production at the Tevatron (left), LHC midrapidity (center) and LHC forward rapidity (right)

obtained with jetphox (CTEQ6.6 PDF, µ = E
γ

T
, BFG-II FFs) for an isolation radius R = 0.4 and a hadron fraction

of the photon energy of εh = 0.1 inside the cone.

C. jetphox Monte Carlo

The present study relies on the implementation of the photon NLO calculation of both dσ
dir

and
dσ

frag
in the jetphox Monte Carlo (MC) programme [32, 34]. The main advantage of the jetphox MC

is that one can easily account for any kind of experimental cuts (e.g. on kinematics and/or isolation)
implementable at the partonic level. In addition, one can match naturally the binning of experimental
data by histogramming of the partonic configurations generated. All the NLO results provided in the
following sections are obtained using5 αs(MZ) = 0.118, with up to 5 active quark flavours (the lowest E

γ

T

considered in this work is close to mb ≈ 4 GeV/c2). We switched off the box diagram g g → gγ in the
calculations because its contribution to the single inclusive spectrum is found to be of just a few percent.
The CTEQ6.6, MSTW08 and NNPDF1.2 PDFs were interfaced to jetphox via the lhapdf (version 5.7.1)

5 Note that although each PDF set uses a slightly different reference value: αs(MZ) = 0.118 (CTEQ6.6), αs(MZ ) = 0.119
(NNPDF1.2), and αs(MZ ) = 0.12018 (MSTW08), the resulting differences in the γ cross sections obtained using the slightly
different coupling choices are very small.
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Figure 9.1: Gauche : contributions relatives des processus de diffusion Compton qg, d’annihilation
qq̄ et de fragmentation dans la production de photons directs au LHC obtenue avec
Jetphox (CTEQ 6.6 PDF, µ = Eγ , et BFG-II FF) [181] ; Droite : distribution en xE
pour des événements gamma-jet générés par DIPHOX (points bleus). La distribution
est comparée aux fonctions de fragmentation DSS quark (ligne rouge) et gluon (ligne
noire) utilisées pour la génération des événements.

Stratégie d’analyse

L’analyse présentée dans ce chapitre réunit deux analyses différentes : les corrélations π0-
hadron et les corrélations photon-hadron. Elle fait suite à une analyse préliminaire basée sur
les données des collisions proton-proton collectées au cours de l’année 2010 par l’expérience
ALICE [182] [183]. L’analyse des corrélations photon(π0)-hadron consiste à identifier les
clusters produits par des photons (π0) dans le calorimètre EMCal, puis à mesurer événement
par événement les corrélations angulaires (∆Φ,∆η) et la valeur du paramètre xE entre le
photon (π0) et l’ensemble des hadrons chargés reconstruits dans les trajectographes.
Alors que la pureté d’identification des π0 est proche de 100%, l’identification des photons

est plus compliquée (pureté comprise entre 5 et 70% selon le pT du photon) et impose une
étape supplémentaire dans l’analyse des corrélations photon-hadron. Après avoir identifié
les clusters correspondant aux photons prompts, il est en effet nécessaire de corriger les
corrélations angulaires et la distribution en xE de la contamination résiduelle. La sélection
des photons est tout d’abord réalisée à l’aide d’un critère d’isolation. La pureté (p) de
l’échantillon obtenu est ensuite estimée en comparant la forme des clusters à celle attendue
pour les photons prompts (simulation) et les clusters de bruit (π0, hadrons). Comme les π0

constituent la source principale de contamination, la correction consiste alors à soustraire une
fraction des distributions obtenues dans le cas des corrélations π0-hadron. La distribution
en xE obtenue après correction est donnée par la relation :

1

Nγ

dN

dxγE
=

1

p

1

Ncluster

dN

dxclusterE

− 1− p
p

1

Nπ0

dN

dxπ
0

E

(9.3)
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9.1 Sélection des données

L’analyse est réalisée à partir des données de collisions proton-proton à une énergie√
s = 7 TeV collectées au LHC en 2011. La statistique utilisée correspond à environ 300×106

événements de biais minimum et 30×106 événements déclenchés par le calorimètre EMCal
(soit environ 85% de la statistique totale enregistrée en 2011). Les données reconstruites au
format AOD (Analysis Oriented Object) sont sélectionnées à l’aide des critères généraux de
qualité, appliqués de manière commune à l’ensemble des analyses (section 4.2.3). Ces don-
nées sont ensuite classées selon le mode de déclenchement utilisé : les événements de biais
minimum et les événements sélectionnés par le système de déclenchement de niveau 0 du
calorimètre électromagnétique. Pour ce dernier, un seuil de 5.5 GeV a été appliqué pour la
période LHC11d alors que la période LHC11c se divise en deux sous-périodes avec des seuils
respectifs de 4.5 et 5.5 GeV. Les courbes d’efficacité obtenues pour ces deux périodes ont été
présentées sur la figure 8.8 (section 8.2).
Après cette sélection globale, des coupures propres à l’analyse des corrélations photon/π0-

hadron sont appliquées. Les événements sujets à un nombre trop important de zones mortes
dans le calorimètre EMCal et/ou dans les trajectographes (ITS,TPC) sont exclus afin de
limiter les biais sur la mesure des corrélations. Une coupure sur la qualité de reconstruction
du vertex est également appliquée pour rejeter les événements produits par empilement de
plusieurs collisions et pour assurer une acceptance uniforme des traces et des clusters dans la
direction η (|Vz| < 10 cm, Vx, Vy, Vz 6= 0). Les données sont ensuite soumises à une sélection
encore plus fine des clusters électromagnétiques (photon, π0) et des traces de particules
chargées (hadrons).

9.1.1 Particules neutres

Les photons et les π0 sont identifiés à l’aide du calorimètre électromagnétique EMCal. Les
particules sont reconstruites par une méthode de clusterisation de type V1 (section 5.3.3)
avec une énergie minimale de 50 MeV sur les tours et de 100 MeV sur le cluster reconstruit.
Afin de ne garder que les clusters produits par une particule neutre, les clusters associés à
une trace reconstruite dans la partie centrale sont rejetés (section 7.2). Les valeurs minimales
acceptées entre le cluster et la trace prolongée sont ∆η = 0.025 et ∆φ = 0.03. Une coupure
en temps permet ensuite de rejeter les événements produits par l’empilement de plusieurs
collisions dans le calorimètre en ne conservant que les clusters appartenant à une même
fenêtre en temps |t| < 20 ns.
Il a été démontré qu’un certain nombre de tours du calorimètre (entre 2% et 4% selon

la période) étaient mortes ou bruitées et pouvaient biaiser la mesure en énergie des clusters
électromagnétiques. Afin de limiter leur impact sur l’analyse, un ensemble de coupures a été
appliqué :

- réjection des clusters ne comportant qu’une seule tour.

- réjection des clusters situés à moins de 2 tours d’une tour considérée comme mauvaise
(morte ou bruitée).

- réjection des clusters avec une énergie inférieure à 0.3 GeV.
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Malgré l’application de ces coupures, une fraction non-négligeable de clusters possèdent
un nombre de tours relativement faible quelle que soit leur énergie. Ces clusters, qualifiés
de clusters "exotiques", sont probablement le résultat de l’interaction directe de neutrons
avec les photo-diodes à avalanche du calorimètre. Les clusters dont l’énergie contenue dans
les quatre tours formant une croix autour de la tour centrale (Ecross) est inférieure à 3%
de l’énergie de la tour centrale (Emaxcell ) sont rejetés. La figure 9.2 représente le nombre de
tours par cluster en fonction de l’énergie avant (gauche) et après (droite) application de
cette coupure. Les clusters exotiques, qui correspondent à un faible nombre de tours par
cluster et une grande énergie, sont supprimés par la coupure. Pour améliorer la rejection des
clusters exotiques de basse énergie (moins sensible à la coupure Ecross), une coupure sur la
valeur minimale du paramètre λ2

0 caractérisant la forme du cluster est également appliquée
(λ2

0 > 0.1). Il est intéressant de noter que cet effet n’est pas présent dans la simulation car
les photo-diodes ne sont pas incluses dans la description du détecteur.

Energie [GeV]
0 5 10 15 20 25 30

To
ur

s 
pa

r 
cl

us
te

r

0

5

10

15

20

25

30

35

40
co

un
ts

210

310

410

510

610

 = 7 TeV, pas de coupurescollisions pp 

Energie [GeV]
0 5 10 15 20 25 30

To
ur

s 
pa

r 
cl

us
te

r

0

5

10

15

20

25

30

35

40

co
un

ts

210

310

410

510

610

 < 0.97max/Ecross = 7 TeV, 1-Escollisions pp 

Figure 9.2: Nombre de tours par cluster en fonction de l’énergie avant (gauche) et après (droite)
application de la coupure en énergie (Ecross) permettant de rejeter les clusters exo-
tiques (multiplicité très faible quelle que soit l’énergie).

La figure 9.3 représente la distribution en énergie des clusters avant et après application de
l’ensemble des coupures de sélection. Le rapport entre les deux distributions met en évidence
une réjection importante des clusters de haute énergie, majoritairement liée à la réjection
des clusters exotiques. L’effet du seuil de déclenchement apparaît dès 3-4 GeV. Afin d’éviter
les biais de déclenchement, l’analyse des corrélations est réalisée avec des clusters d’énergie
minimale 8 GeV, dans la région où la distribution en pT redevient monotone décroissante.

9.1.2 Particules chargées

L’analyse des corrélations est particulièrement sensible aux zones mortes dans la recons-
truction des traces de particules chargées, ces dernières pouvant biaiser la distribution an-
gulaire des hadrons. Dans les données utilisées, l’efficacité de reconstruction de l’ITS est
inhomogène en φ en raison de certaines zones défectueuses du SPD (couche la plus interne
de l’ITS) durant la prise de données. Afin d’obtenir une efficacité de reconstruction uniforme
et une bonne résolution en impulsion, deux types de traces reconstruites sont utilisées : les
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Figure 9.3: Distribution en énergie des clusters reconstruits dans le calorimètre électromagnétique
avant (rouge) et après (bleu) application des coupures de sélection sur les clusters.

traces contenant au moins un point d’impact reconstruit dans une des deux couches internes
de l’ITS (SPD) et les traces n’utilisant pas l’information des couches du SPD. Pour ces
dernières, une contrainte supplémentaire par prolongement au vertex primaire est ajoutée
afin de maintenir une résolution acceptable. La figure 9.4 (gauche) représente la distribution
azimuthale des traces reconstruites pour les deux cas décrits précédemment. La méthode
dite "hybride" permet finalement d’obtenir une distribution homogène en sommant les deux
contributions (courbe noire). La résolution en impulsion σ(pT )/pT sur les particules chargées
est de l’ordre de 1% à 1 GeV/c, puis augmente linéairement jusqu’à environ 10% à 50 GeV/c.
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Dans la suite de l’analyse, seules les traces reconstruites dans l’acceptance |η| < 0.8 avec
une impulsion pT > 0.2 GeV/c sont sélectionnées. La figure 9.4 (droite) représente l’effi-
cacité de reconstruction des traces obtenues à partir d’une simulation PYTHIA+GEANT
en collision proton-proton calquée sur les conditions expérimentales de la période LHC11d.
L’efficacité de reconstruction, de l’ordre de 85% pour des impulsions supérieures à 3 GeV/c,
décroît fortement pour les traces d’impulsion inférieure à 1 GeV/c. Le seuil de 0.2 GeV/c
permet ainsi de ne pas prendre en compte les traces pour lesquelles l’efficacité de recons-
truction est trop faible. Ce seuil permet également de limiter la dégradation de la résolution
qui apparaît à partir de 0.5 GeV/c (section 5.1.3). La coupure en acceptance |η| < 0.8 per-
met quant à elle de limiter l’impact d’une plus faible résolution sur les bords de la TPC
(acceptance totale |η| < 1.0).

Le fait d’utiliser différents seuils de déclenchement pour EMCal durant les périodes LHC11c
et LHC11d conduit à des distributions en impulsion différentes pour les traces de particules
chargées. Comme le montre la figure 9.5, les traces correspondant aux événements de biais
minimum ont une distribution en énergie similaire dans les deux périodes, ce qui montre
que les conditions expérimentales (efficacité des détecteurs) sont stables au cours des prises
de données. La figure 9.6, qui représente la distribution en énergie des traces pour les évé-
nements déclenchés par le niveau 0 du calorimètre, montre en revanche une dépendance en
fonction du seuil de déclenchement. En comparant la distribution de la période LHC11d
(seuil de 5.5 GeV) avec celle obtenue dans le cas de la sous-période LHC11c utilisant un
seuil de 4.5 GeV (figure 9.6 gauche), il apparaît que la différence est significative pour des
hadrons chargés de pT supérieur à 5 GeV/c et varie au moins jusqu’à 15 GeV/c. Ceci s’ex-
plique par le fait que le seuil sur la particule neutre (photon, π0) a un impact sur les hadrons
d’un pT environ deux fois supérieur, le cluster électromagnétique ne portant qu’une fraction
du pT partonique. Par ailleurs, une légère différence apparaît entre la période LHC11d et
la sous-période LHC11c qui correspondent pourtant à un même seuil de 5.5 GeV, ce qui
montre que les conditions expérimentales (associées au système de déclenchement) ne sont
pas rigoureusement identiques entre les deux périodes (température APDs, ...).

9.1.3 Monte Carlo

Une simulation Monte Carlo est utilisée dans l’analyse des corrélations à la fois pour
déterminer la pureté d’identification des photons prompts et pour estimer les corrections
à appliquer afin de prendre en compte l’impact des effets expérimentaux (résolution en
énergie, efficacité de reconstruction des particules chargées, ...) sur les résultats de l’analyse.
Les productions Monte Carlo utilisées dans les collisions proton-proton ont été produites par
le générateur PYTHIA puis propagées dans les détecteurs par le programme GEANT. Deux
types de productions sont utilisées :

- simulation de processus jet-jet à une énergie
√
s = 7 TeV calquée sur les conditions de

prise de données de la période LHC11d. Afin d’optimiser la statistique, la simulation
requiert un π0 de pT > 5 GeV/c dans l’acceptance d’EMCal.

- simulation de processus gamma-jet à une énergie
√
s = 7 TeV calquée sur les conditions

de prise de données de la période LHC11d.
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Figure 9.5: Distributions des traces de particules chargées pour la période LHC11c et LHC11d
avec un déclenchement de biais minimum.
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de déclenchement dans le calorimètre (EMCal) de 4.5 GeV (gauche) et de 5.5 GeV
(droite) comparée à la distribution LHC11d (seuil 5.5 GeV).

9.2 Sélection des photons

La sélection des photons consiste à identifier les photons prompts isolés produits par les
événements gamma-jet, et à rejeter l’ensemble des autres particules. Ces dernières peuvent
être des photons produits par décroissance de mésons neutres (principalement des π0), des
photons prompts produits par fragmentation d’un parton, mais également des particules
chargées (hadrons, électrons) ayant déposé une fraction de leur énergie dans le calorimètre
électromagnétique et n’ayant pas été rejetées par la coupure de prolongement des traces. Les
photons prompts isolés sont donc sélectionnés selon trois critères :
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- Condition de plus haute impulsion transverse (pT ) : le candidat photon doit
être la particule de plus haute impulsion transverse dans l’événement. La cinématique
à l’ordre dominant du processus gamma-jet impose au photon prompt d’avoir un pT
supérieur à celui des hadrons produits par fragmentation du parton émis dans la direc-
tion azimuthale opposée au photon. Cette coupure permet ainsi de rejeter à la fois une
partie des photons de fragmentation et des particules appartenant à un jet (photon de
décroissance, hadrons).

- Forme du cluster : le photon doit produire dans le calorimètre un cluster de forme
quasi-circulaire à cause de la topologie de la gerbe électromagnétique.

- Isolation : contrairement aux particules appartenant à un jet, le photon prompt d’un
processus gamma-jet doit être produit avec un minimum d’activité hadronique autour
de lui. L’application d’une coupure d’isolation permet dans ce cas de rejeter l’ensemble
des particules produites par la fragmentation d’un parton (photon de fragmentation,
photon de décroissance, hadron).

9.2.1 Forme des clusters

Comme nous l’avons vu dans la section 7.2, la forme des clusters est un critère principa-
lement utilisé dans le but de séparer les photons directs (photons prompts et photons de
fragmentation) des photons de décroissance. Les gerbes hadroniques pouvant être de forme
non-circulaire, ce critère permet également de rejeter une partie des clusters produits par les
hadrons chargés. La figure 9.7, qui résume l’étude présentée dans la section 7.2.3, représente
la fraction de clusters ayant un paramètre λ2

0 compris entre 0.1 (la valeur minimale 0.1 étant
liée à la réjection des clusters exotiques (section 9.1)) et une valeur maximale. Elle montre
qu’un seuil maximal de l’ordre de λ2

0 = 0.27 permet d’optimiser l’efficacité de sélection des
photons en réduisant les autres contributions.
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Figure 9.7: Efficacité de sélection des particules (photon, π0) en fonction de la coupure sur le
paramètre λ2

0. La ligne pointillée représente la coupure de sélection λ2
0 = 0.27.
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9.2.2 Isolation

Le photon généré par un processus gamma-jet doit être produit avec très peu d’activité
hadronique autour lui, contrairement aux photons de décroissance et de fragmentation qui
appartiennent à un jet de particules. Il est ainsi possible d’améliorer la pureté des photons
prompts par application d’un critère d’isolation. La méthode d’isolation utilisée consiste à
mesurer l’activité hadronique dans un cône de rayon R autour du candidat photon :

R =
√

(ηγ − ηi)2 + (φγ − φi)2 (9.4)

où i représente la i-ème particule de l’événement. Afin d’optimiser la sélection des photons
non-prompts, l’activité hadronique est mesurée à la fois à partir des traces de particules
chargées et des clusters de particules neutres contenues dans le cône d’isolation (hormis celle
associée au candidat photon), comme l’illustre la figure 9.8. Deux critères d’isolation peuvent
alors être utilisés :

- un seuil sur la somme totale en impulsion transverse des particules contenues dans le
cône.

- un seuil individuel sur l’impulsion transverse de chaque particule contenue dans le cône.

Figure 9.8: Illustration de la méthode d’isolation consistant à mesurer l’activité hadronique des
particules chargées et neutres dans un cône de rayon R autour du candidat photon.

Afin d’optimiser la pureté de sélection des photons prompts, il faut chercher le jeu de
paramètres (rayon de cône R, seuil) qui permet de rejeter la plus grande fraction de bruit
possible (photon de fragmentation, photon de décroissance, hadron), tout en conservant une
statistique suffisante pour l’étude de la fonction de fragmentation. En ce qui concerne le
rayon du cône, un compromis doit être trouvé entre la réjection du bruit (d’autant plus
efficace que le cône est grand) et l’acceptance limitée du calorimètre EMCal. L’étude des
critères d’isolation est réalisée sur deux échantillons distincts : un échantillon de photons
prompts obtenu par simulation gamma-jet, et un échantillon de bruit obtenu à partir des
données en sélectionnant les clusters de forme non-circulaire (λ2

0 > 0.5). Le choix de ne pas
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utiliser la simulation dans l’étude du bruit permet d’être indépendant de la modélisation de
l’hadronisation qui peut avoir un impact non-négligeable dans ce genre d’étude. Une mesure
de la distribution en impulsion transverse des particules contenues dans le cône d’isolation est
réalisée pour chacun des deux échantillons. La figure 9.9 (gauche), qui représente la fraction
d’événements isolés en fonction du seuil sur le pT des particules dans le cône, montre qu’un
cône de rayon R = 0.4 représente un choix intéressant qui permet une réjection efficace des
clusters de bruit et une bonne sélection des photons prompts tout en conservant une taille de
cône acceptable par rapport à l’acceptance du calorimètre. L’application d’un seuil pT < 0.5
GeV/c permet dans ce cas de conserver plus de 80% des photons prompts tout en rejetant
plus de 80% des clusters de bruit. La somme totale de l’impulsion transverse contenue dans le
cône d’isolation est également mesurée pour les deux échantillons. La figure 9.9 (droite), qui
montre la fraction d’événements isolés en fonction du seuil sur la somme en pT des particules
dans le cône, montre qu’une coupure de 1.0 GeV/c sur la somme en impulsion transverse
dans un cône de rayon R = 0.4 permet d’atteindre des performances équivalentes à celles
obtenues avec le seuil individuel de 0.5 GeV/c.
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Figure 9.9: Fraction d’événements ayant au moins une particule de pT supérieur à pseuilT (gauche)
et distribution normalisée de la somme totale en impulsion transverse des particules
(droite) dans un cône de taille R = 0.3, 0.4 et 0.5. Les symboles vides correspondent
aux photons prompts obtenus par simulation PYTHIA gamma-jet pour des collisions
proton-proton à

√
s = 7 TeV. Les symboles pleins correspondent aux clusters de forme

non-circulaire (λ2
0 > 0.5) sélectionnés dans les données pour des collisions proton-

proton à
√
s = 7 TeV.

Un autre paramètre à prendre en compte est l’acceptance utilisée pour l’application de
la méthode d’isolation. Pour un candidat photon reconstruit à proximité des bords du ca-
lorimètre EMCal, une partie du cône d’isolation est situé à l’extérieur de l’acceptance du
détecteur (|η| < 0.7) ce qui diminue l’activité hadronique dans la partie du cône contenue
dans l’acceptance. Cet effet peut alors biaiser la coupure d’isolation en sélectionnant pré-
férentiellement des photons en bordure de détecteur. Une étude systématique a permis de
montrer qu’une coupure en pseudo-rapidité |η| < 0.6 permet de limiter l’impact de ce biais.
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Dans le cas d’un cône de rayon R = 0.4, la fraction du cône située hors de l’acceptance
d’EMCal pour un photon en |η| > 0.3 est en partie compensée par les traces de particules
chargées reconstruites jusqu’à une pseudo-rapidité |η| < 0.8. La figure 9.10 représente la dis-
tribution de la fraction de clusters isolés dans le plan (η,φ) après application de la coupure
en pseudo-rapidité |η| < 0.6. Les particules isolées sont distribuées de manière uniforme à la
surface du détecteur EMCal, exceptées dans les zones mortes et/ou bruitées où les clusters
sont rejetés par les coupures de sélection.
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Figure 9.10: Distribution de la fraction de clusters isolés dans le plan (η,φ) pour les collisions
proton-proton.

Les efficacités finales de sélection (photons prompts) et de réjection (clusters avec λ2
0 >

0.5) obtenues après sélection des paramètres d’isolation et de la coupure en acceptance sont
représentées sur la figure 9.11. Alors que la fraction de photons prompts isolés varie peu en
fonction de l’impulsion transverse, la réjection des autres types de particules est plus efficace
lorsque l’impulsion transverse est élevée. L’isolation permet finalement de sélectionner entre
80 et 85% des photons prompts tout en rejetant entre 80 et 90% des autres particules. Comme
les deux critères d’isolation ont une sensibilité différente au processus d’hadronisation et à
la multiplicité de particules produites, l’analyse sera réalisée en parallèle afin de permettre
une comparaison des résultats obtenus pour chacun des deux critères d’isolation.

9.2.3 Pureté

Même si l’application des coupures de sélection sur la forme du cluster et l’isolation per-
mettent d’améliorer fortement la pureté des photons sélectionnés, la contamination résiduelle
reste finalement importante. Il est donc nécessaire de déterminer la pureté afin de pouvoir
réaliser une correction de la contamination. L’étape suivante consiste ainsi à évaluer cette
contamination résiduelle dans l’échantillon de photons isolés pour chacune des deux mé-
thodes d’isolation. La pureté, qui est définie comme la fraction de photons prompts présents
dans l’échantillon des clusters isolés, est estimée à partir de la distribution en λ2

0. Celle-ci est
ajustée à l’aide des distributions associées aux photons prompts (signal) et à un échantillon
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Figure 9.11: Fraction de photons prompts (symboles vides) et de clusters de bruit (symboles pleins)
isolés pour deux critères d’isolation et un rayon de cône R = 0.4.

de clusters produits par d’autres types de particules (bruit) afin de déterminer la fraction de
signal et de bruit dans l’échantillon. La pureté est alors déterminée en intégrant les fractions
de signal et de bruit sur la région de sélection des photons de 0.1 < λ2

0 < 0.27 (section
9.2). L’échantillon de photons prompts est obtenu à partir d’une simulation PYTHIA d’évé-
nements gamma-jet. L’échantillon de bruit est quant à lui obtenu directement à partir des
données en sélectionnant les clusters n’ayant pas passé la coupure d’isolation, ce qui permet
d’obtenir un échantillon enrichi en particules appartenant à un jet représentatif des diffé-
rentes contributions de bruit (photon de fragmentation, photon de décroissance, hadrons).
La procédure d’ajustement appliquée à une simulation d’événements gamma-jet (signal) et
jet-jet (bruit) est représentée sur la figure 9.12. Dans cet exemple de simulation, la dis-
tribution complète en λ2

0 (photons prompts et bruit) est ajustée à partir des distributions
obtenues dans le cas des photons prompts (gamma-jet) et des clusters de bruit (jet-jet).
Pour ces derniers (principalement des clusters de π0), la distribution possède une contribu-
tion importante autour de λ2

0 = 0.25 à cause des décroissances pour lesquelles un seul des
deux photons est reconstruit dans le calorimètre (dû à la cinématique ou l’acceptance du
détecteur). L’ajustement permet finalement d’obtenir les fractions de photons prompts et de
bruit contenues dans l’échantillon considéré.

Paramètres d’ajustement

Un des paramètres les plus sensibles pour l’estimation de la pureté en photons prompts est
le choix de la région d’ajustement. La valeur minimale λ2

0=0.1 est imposée par la rejection
des clusters exotiques (section 9.1). Les simulations gamma-jet (signal) et jet-jet (bruit)
peuvent être utilisées pour estimer la variation du biais sur l’estimation de la pureté en
fonction de la valeur maximale λ2

0max. La figure 9.13 (gauche) représente l’écart relatif entre
la pureté obtenue par ajustement et la pureté initialement utilisée dans la simulation (p=0.5)
en fonction de la valeur λ2

0max. Le résultat montre que le biais sur l’estimation de la pureté
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Figure 9.12: Distribution en λ2
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augmente lorsque la région d’ajustement diminue. En comparant ce résultat avec celui de
la figure 9.12, il apparaît que le biais augmente lorsque λ2

0max est inférieur à 2, la région
λ2

0 ∈ [1,2] contenant une grande partie des π0. Comme la distribution du paramètre λ2
0

évolue en fonction de l’énergie des clusters (photons de décroissance), cela conduit à utiliser
une région d’ajustement variable en fonction de l’énergie des clusters. En optimisant la
région d’ajustement, il est finalement possible d’atteindre des valeurs de biais sur la pureté
inférieures à 5%. Cette étude de simulation, qui utilise l’ensemble des outils d’analyse, permet
ainsi de valider la méthode d’estimation de la pureté utilisée, en particulier en ce qui concerne
l’utilisation d’un échantillon de particules non-isolées pour déterminer la contribution du
bruit. En plus des études de simulation, une étude systématique de χ2 sur les données
réelles permet de déterminer la région d’ajustement optimale en fonction de l’énergie des
clusters considérés. La figure 9.13 (droite) représente la valeur de χ2 obtenue en fonction de
l’énergie du cluster et de la valeur maximale λ2

0max utilisée pour l’ajustement. Deux régions
se distinguent : à bas-pT (8-10 GeV/c) l’ajustement converge difficilement à cause de la
fraction très faible de signal, tandis qu’à haut-pT (> 22 GeV/c) le manque de statistique
donne des valeurs de χ2 largement inférieure à 1 lorsque la région d’ajustement est trop
large. La région d’ajustement utilisée pour l’estimation de la pureté dans le cadre de cette
analyse est déterminée en minimisant le χ2 dans chaque intervalle en pT (tableau 9.1).

Energie [GeV] 8-9 10-12 13-15 16-20 21-25
λ2

0max 4.0 3.5 2.5 2.0 1.2

Table 9.1: Région d’ajustement [0.1-λ2
0max] en fonction de l’énergie des clusters.
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Résultats

L’ajustement est réalisé pour des clusters isolés d’impulsion transverse comprise entre 8
et 25 GeV/c. Les clusters sont séparés en intervalle de 1 GeV/c. Pour chaque intervalle, le
nombre de photons prompts est obtenu en intégrant la distribution du signal obtenue par
ajustement dans la région λ2

0 ∈ [0.1, 0.27], cette région correspondant à la coupure d’iden-
tification des photons décrite dans le paragraphe précédent. La pureté est alors déterminée
comme le rapport du nombre de photons prompts sur l’intégrale de la distribution totale des
clusters isolés pour 0.1 < λ2

0 < 0.27. Les figures 9.14 représentent l’ajustement des clusters
d’impulsion comprise entre 12 et 16 GeV/c, ainsi que la pureté mesurée en fonction du pT
du cluster. Les incertitudes représentées dans la figure 9.14 (droite) sont obtenues par pro-
pagation des erreurs liées à l’ajustement (facteur de normalisation des échantillons de signal
et de bruit) dans le calcul de la pureté.
Il existe deux sources d’incertitudes systématiques supplémentaires à prendre en compte

pour l’estimation de la pureté. La première provient de la difficulté à reproduire dans la
simulation la forme des gerbes électromagnétiques observée lors des tests sous faisceau (sec-
tion 7.3). Le désaccord observé étant un décalage de la distribution en λ2

0 (voir figure 7.14),
l’erreur a été évaluée en déplaçant la région utilisée pour l’identification du photon d’un
facteur correspondant au décalage moyen mis en évidence via l’étude des tests sous faisceau.
La pureté est ainsi estimée pour les intervalles 0.1 < λ2

0 < 0.27 et 0.1 < λ2
0 < 0.3. La seconde

source d’incertitude est liée à la composition de l’échantillon de bruit sélectionné à partir
des clusters non-isolés. L’utilisation de cet échantillon dans l’ajustement repose en effet sur
l’hypothèse que les clusters isolés et non-isolés ont une distribution en λ2

0 similaire, autre-
ment dit que la forme des clusters est un paramètre indépendant de celui d’isolation. Cette
hypothèse peut être vérifiée en constituant deux échantillons de bruit différents. Le premier
échantillon est formé de clusters très proche de la coupure d’isolation utilisée, sélectionnés
par la condition d’isolation (0.5 < pT < 1 GeV/c), alors que le second échantillon est com-
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posé de clusters plus éloignés de la coupure d’isolation (pT > 0.5 GeV/c). Si la forme du
cluster est un paramètre indépendant de l’isolation, les deux échantillons de bruit doivent
conduire à la même estimation de la pureté. Les incertitudes systématiques sont déterminées
en comparant les résultats obtenus pour les différentes régions λ2

0 et les différents échantillons
de bruit décrits précédemment (figure 9.15). Les incertitudes systématiques obtenues sont
ajoutées quadratiquement aux incertitudes statistiques liées à l’ajustement afin d’obtenir
l’incertitude totale sur l’estimation de la pureté (tableau 9.2).

pT [GeV/c] ∆p/p(%) pT [GeV/c] ∆p/p(%)

10 25 18 24
11 22 19 25
12 22 20 27
13 22 21 29
14 22 22 29
15 22 23 32
16 22 24 31
17 22

Table 9.2: Incertitudes totales sur l’estimation de la pureté (p) en fonction de l’impulsion trans-
verse du photon.

Les résultats obtenus conduisent finalement à restreindre l’analyse des corrélations photon-
hadron dans une gamme en énergie comprise entre 10 et 25 GeV. L’estimation de la pureté
pour des énergies inférieures à 10 GeV est en effet rendue très difficile par la très faible fraction
de photons directs dans l’échantillon obtenu après application des coupures de sélection. La
pureté obtenue étant inférieure à 5% avec une incertitude importante sur le résultat de
l’ajustement, il est préférable de ne pas prendre en compte les photons d’énergie inférieure
à 10 GeV dans cette analyse.



Analyse des corrélations photon/π0-hadron dans les collisions proton-proton 161

 cluster [GeV/c]
T

p
8 10 12 14 16 18 20 22 24

e
P

ur
et

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Resultat final

<0.27, bruit non-iso #12
0λ0.1<
<0.3, bruit non-iso #22

0λ0.1<

 cluster [GeV/c]
T

p
8 10 12 14 16 18 20 22 24

R
at

io
 (

/fi
na

l)

0.7

0.8

0.9

1

1.1

1.2

Figure 9.15: Distribution de la pureté en fonction du pT du photon pour différentes régions d’iden-
tification du photon (λ2

0) et différents critères de sélection du bruit à partir du critère
d’isolation (noir : λ2

0 ∈ [0.1-0.27] pT > 0.5 GeV/c ; bleu : λ2
0 ∈ [0.1-0.27] 0.5 < pT <

1 GeV/c ; rouge : λ2
0 ∈ [0.1-0.3] pT > 0.5 GeV/c).

9.3 Sélection des π0

L’identification des π0 est indispensable à l’analyse des corrélations π0-hadron. Mais elle
l’est également pour corriger les corrélations photon-hadron de la contamination résiduelle
après identification des photons prompts.

9.3.1 Identification des π0

Aux énergies considérées, la majorité des paires de photons produits par décroissance
d’un π0 sont superposées dans le détecteur EMCal et ne donne qu’un seul cluster recons-
truit. Les clusters sont tout d’abord triés en fonction du nombre de maxima locaux (NLM)
qu’ils contiennent. Un maximum local correspond à une tour dont l’énergie est supérieure
à l’ensemble des tours voisines. Seuls les clusters contenant 1 ou 2 maxima sont conservés.
L’identification des π0 est ensuite réalisée en quatre étapes : sélection des clusters en fonction
de leur forme (λ2

0), séparation des clusters en deux clusters correspondant aux deux photons
de décroissance, calcul de la masse invariante des deux clusters séparés, et calcul de l’asymé-
trie en énergie. Ces quatre étapes sont décrites de manière détaillée dans la section 7.2 de ce
manuscrit. La procédure d’identification des π0 conduit à une efficacité de sélection qui dé-
pend de l’énergie et du nombre de maxima locaux des π0. Cette efficacité, représentée sur la
figure 9.16, est obtenue en appliquant la procédure d’identification à une simulation PYTHIA
d’événements jet-jet dans les collision proton-proton d’énergie

√
s = 7 TeV 1. L’identification

se dégrade avec l’énergie du π0 car la diminution de l’angle d’ouverture rend la procédure de

1. Des études complémentaires ont été réalisées pour vérifier que la simulation enrichie en π0 utilisée
donne des résultats comparables à une simulation jet-jet non-biaisée.
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séparation des clusters de plus en plus difficile à mesure que l’énergie augmente. La figure
9.17 représente les différentes contributions associées aux π0, photons et hadrons obtenues
après application de la procédure d’identification sur les données de simulation. Dans la
gamme en énergie considérée pour l’analyse des corrélations (8-25 GeV), la pureté des π0 est
constante quelque soit l’énergie avec une valeur de l’ordre de 95%. Contrairement au cas des
photons, la pureté des π0 est suffisamment grande pour utiliser l’échantillon obtenu sans faire
de correction de la contamination (et sans l’inclure dans les erreurs systématiques). Ce choix
est également justifié par le fait que la principale source de contamination provient d’évé-
nements pour lesquels un seul des deux photons de décroissance ayant emporté la majorité
de l’énergie du π0 est reconstruit, ces derniers pouvant de ce fait être considéré comme un π0.82 ALICE Internal Note 2012
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Figure 9.16: Efficacité de sélection en fonction de l’énergie du π0 pour un nombre de maxima
locaux NLM = 1, 2 et NLM > 2.
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Figure 9.17: Fractions de π0, de photons et de hadrons contenues dans un échantillon de clusters
après application de la procédure d’identification des π0. La fraction est représentée
en fonction de l’énergie de π0 pour un nombre de maxima locaux NLM =1 (gauche)
et NLM = 2 (droite).
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9.3.2 Isolation des π0

Une procédure d’isolation identique à celle décrite dans la section 9.2.2 est alors appliquée
à l’échantillon de π0 sélectionnés. Comme pour les photons, seuls les π0 possédant l’impulsion
transverse la plus importante parmi l’ensemble des particules de l’événement sont sélection-
nés. Les π0 qui satisfont ce critère sont ensuite soumis à une procédure d’isolation identique
à celle présentée dans le cas des photons. Cette procédure revient à enrichir l’échantillon
avec des π0 à grand z (z = pπ

0

T /ppartonT ), comme l’indiquent les résultats de simulation re-
présentés sur la figure 9.18. Il apparaît que le z moyen des π0 isolés (< z >≈ 0.8) est plus
important que celui des π0 n’ayant pas satisfait le critère d’isolation (< z >≈ 0.5). Cela
revient finalement à sélectionner des événements π0-jet dont la cinématique est plus proche
de celle des événements gamma-jet, et donc d’obtenir une distribution en xE par mesure des
corrélations π0 isolé-hadron permettant de sonder la fonction de fragmentation partonique.
Il faut cependant noter que les partons sondés par les corrélations photon-hadron sont ma-
joritairement des quarks, alors que les corrélations π0-hadron sondent de manière à peu près
équivalente la fragmentation des quarks et des gluons.

EMCal γ-h and π0-h correlations 83

9 The measurement of the imbalance function xE859

The imbalance parameter xE = − ph
T

ptrig
T

cos∆Φ is used to study parton fragmentation since more than 40860

years ([6]). Recent results have shown that for simple hadron-hadron correlations, the xE parameter did861

not probe directly the fragmentation of the parton on the opposite side of the trigger particle due to some862

bias relative to the fragmentation of the trigger particle itself ([7]). To avoid this bias, one needs to863

select trigger particle with fragmentation parameter z =
ptrig

T
pparton

T
close to 1. This can be achieved both by864

selecting direct photons or by selecting isolated hadrons. In fact isolation criteria enables us to select865

trigger particles with a z parameter closer to 1 compare to non-isolated particles (9).866
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Fig. 74: z parameter of leading hadrons in jet with/without isolation (PYTHIA)

In order to show that xE is a relevant parameter to probe the parton fragmentation function, we have867

generated gamma-jets events in pp collisions at
√

s = 7TeV by using DIPHOX NLO generator [8]. The868

comparison of the xE with the fragmentation function (correctly normalized) used for the event genera-869

tion shows that xE distribution follows the fragmentation function in a large xE range as seen on Fig. 75.870

This study also gives us some information about the relevant range where xE can be used to probe the871

parton fragmentation. For xE < 0.15 the xE distribution is lower to the fragmentation function due to872

the kinematical cut used for the Diphox analysis (ptrig
T = 20GeV/c and pa

T > 3GeV/c). For xE > 0.8873

the xE distribution leaves the fragmentation function trend. This is mainly due to the contamination of874

fragmentation photons which becomes dominant at high value of xE . Figure also shows that for about875

0.2 < xE < 0.8 the fragmentation function follows an exponential trend.876

9.1 Inclusive Isolated Photons877

First results consist in studying the xE distribution of inclusive isolated photons. We have corrected data878

from underlying event contribution and detectors effects, and estimated systematics uncertainties relative879

to these corrections. Results are plotted for three pt bins : 8-12 GeV/c, 12-16 GeV/c and 16-25 GeV/c880

on Fig. 76.881

Figure 9.18: Fraction d’énergie du parton initial emportée par le π0 de plus haut-pT avec (rouge)
et sans (bleu) application d’un critère d’isolation.

9.4 Mesure des corrélations angulaires photon/π0-hadron

Après application des coupures de sélection (traces, clusters) et d’identification (pho-
ton, π0), l’étape suivante consiste à mesurer les corrélations angulaires photon/π0-hadron.
Cette observable permet de caractériser la distribution spatiale et énergétique des hadrons
produits par fragmentation du parton initial. Les corrélations angulaires sont étudiées à par-
tir de la différence angulaire normalisée par le nombre Ntrigger de particules de référence
(photon ou π0) :

d2N(∆φ∆η)

d∆φd∆η
=

1

Ntrigger

d2Nhadrons

d∆φd∆η
(9.5)
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où ∆φ = φhadron− φγ,π0 et ∆η = ηhadron− ηγ,π0 . Les distributions obtenues doivent ensuite
être corrigées des effets expérimentaux comme le bruit de fond combinatoire, les efficacités
de détection ou encore la pureté d’identification dans le cas des photons.

Bruit de fond combinatoire

Dans une collision proton-proton, la collision dure parton-parton n’est pas le seul pro-
cessus à l’origine des particules obtenues dans l’état final. D’autres collisions de plus faible
énergie, appelées communément "événements sous-jacents", peuvent se produire entre les
autres constituants du proton. Le bruit de fond combinatoire correspond alors aux corréla-
tions angulaires entre la particule de référence (photon, π0) et les hadrons produits par les
événements sous-jacents de la collision. Il doit être soustrait des distributions obtenues pour
extraire la fragmentation des partons produits par le processus dur.
La mesure du bruit de fond combinatoire se base sur une méthode de mélange d’évé-

nements (mixing). Elle consiste à mesurer les corrélations entre un photon ou un π0 d’un
événement déclenché par EMCal et les hadrons d’autres événements de biais minimum. En
plus de permettre la soustraction du bruit de fond combinatoire, cette méthode permet de
corriger des effets d’acceptance des détecteurs. Les corrélations angulaires sont obtenues par
application de l’équation 9.5. La figure 9.19 illustre les distributions obtenues dans le cas des
corrélations angulaires π0 non-isolé-hadron, des corrélations angulaires obtenues par mélange
d’événements et du résultat de la procédure de soustraction du bruit de fond combinatoire.
Comme chaque particule de référence est corrélée avec plusieurs événements indépendants
afin d’augmenter la statistique disponible pour la mesure du bruit de fond, les distributions
obtenues pour le bruit de fond combinatoire doivent être normalisées avant soustraction. La
normalisation consiste à déterminer le rapport entre la distribution obtenue par mélange et la
distribution réelle dans une région (∆η,∆φ) où les distributions sont "plates" (typiquement
1 < ∆φ < 2). Après normalisation, la correction permet d’obtenir la fonction de corrélation
C(∆φ,∆η) qui mesure le nombre de hadrons corrélé au photon/π0 relativement au nombre
de hadrons moyen dû au bruit de fond dans un événement :

C(∆φ,∆η) =

(
d2N(∆φ∆η)
d∆φd∆η

)
mesuree

−
(
d2N(∆φ∆η)
d∆φd∆η

)
mixing

d2N(∆φ∆η)
d∆φd∆η mixing

(9.6)

Cette correction permet de soustraire les corrélations liées au bruit de fond combinatoire tout
en corrigeant des biais d’acceptance dans la reconstruction des hadrons chargés. La figure
9.20, qui correspond à la projection dans le plan ∆φ de la figure 9.19, montre le résultat de
la normalisation du bruit de fond combinatoire (figure de gauche) ainsi que la distribution
obtenue après correction (figure de droite). Par construction cette distribution est nulle dans
les régions (∆η,∆φ) où aucune corrélation entre la particule de référence et les hadrons
produits par fragmentation du parton n’est mesurée.
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Figure 9.19: Corrélations angulaires π0-hadron sans isolation avant correction (gauche), et après
(bas) soustraction du bruit de fond combinatoire (droite).
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Figure 9.20: Corrélations azimuthales π0-hadron sans isolation avant (gauche) et après (droite)
application de la procédure de correction du bruit de fond.
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Résultats

La figure 9.21 compare les distributions obtenues dans le cas des corrélations π0, π0 isolés
et cluster isolés, ces derniers correspondant aux clusters de paramètre λ2

0 compris entre 0.1
et 0.27 (sélection des photons) avant soustraction de la contamination. La distribution des
corrélations π0-hadron montre que ces derniers appartiennent à un jet de particules contenant
des hadrons émis à des valeurs ∆Φ proche de 0. Les distributions des π0 et des clusters isolés
sont au contraire quasi nulles dans la région ∆Φ ≈ 0 à cause de l’application du critère
d’isolation. Comme le cône d’isolation (rayon R=0.4) ne couvre qu’une partie limitée de
l’acceptance en η (pour un φ donné), des corrélations peuvent cependant être mesurées pour
|∆Φ| < R. La distribution des corrélations π0 isolés-hadron est ainsi légèrement différente de
zéro dans cette région, ce qui peut s’expliquer par le fait que les π0 peuvent être accompagnés
d’autres particules produites par fragmentation (zπ0 6= 1). Autour de ∆Φ ≈ π, il apparaît
que la distribution des hadrons associés aux π0 (sans isolation) est plus importante que celle
des π0 et des clusters isolés. Cela peut s’expliquer à la fois par le fait qu’un π0 sans isolation
génère plus de jets de gluons que de jets de quarks, et qu’un π0 sans isolation est associé
à un jet d’énergie environ deux fois supérieure à l’énergie du π0 (< z >≈ 0.5) alors qu’un
π0 ou un photon isolé est corrélé avec un jet d’énergie semblable (< z >≈ 1). Un π0 (sans
isolation) est donc associé à un nombre plus important de hadrons (par événement) qu’un
π0 ou un photon isolé.
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Figure 9.21: Corrélations azimuthales π0-hadron, π0 isolé-hadron et cluster isolé-hadron.

Dans le cas des corrélations photon-hadron, il est nécessaire de soustraire la contamina-
tion présente dans l’échantillon de clusters isolés. Comme les π0 représentent une fraction
importante de cette contamination (de 5 à 70% selon l’énergie), la méthode utilisée consiste
à corriger les corrélations clusters isolés-hadron par soustraction de la contribution associée
aux corrélations π0 isolés-hadron. Cette contribution est déterminée à partir des études de
pureté présentées dans le paragraphe précédent. En convoluant la distribution de la pureté
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obtenue et le spectre en photon isolés, il est possible de déterminer une pureté moyenne
(p) dans la gamme d’énergie considérée (10-25 GeV). La distribution obtenue dans le cas
des corrélations photon-hadron (après soustraction du bruit de fond combinatoire) est alors
corrigée de la contamination selon la relation :

d2N(∆φ∆η)

d∆φd∆η

∣∣∣
photon iso.

=
1

p

d2N(∆φ∆η)

d∆φd∆η

∣∣∣
cluster iso.

− 1− p
p

d2N(∆φ∆η)

d∆φd∆η

∣∣∣
π0 iso.

(9.7)

La figure 9.22 montre le résultat de la procédure de correction des corrélations angulaires
photon-hadron. Les trois figures représentent respectivement les distributions obtenues avant
soustraction du bruit combinatoire (gauche), après correction de la contamination en π0

(centre) et après correction du bruit de fond (droite). La correction de la contamination
permet d’obtenir une distribution compatible avec 0 dans la région -1 < ∆Φ < 1 comme
attendue dans le cas des événements gamma-jets. Cependant les fluctuations statistiques
importantes limitent la possibilité d’étudier avec précision les différences éventuelles entre
les corrélations π0-hadron et photon-hadron.
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Figure 9.22: Corrélations azimuthales photon-hadron avant correction (gauche), après correction
de la contamination (centre) et après soustraction du mixing (droite).

9.5 Mesure de la fragmentation

L’étude de la fonction de fragmentation permet également d’accéder à la distribution en
énergie des hadrons issus de la fragmentation du parton. Celle-ci est accessible expérimen-
talement dans les corrélations à partir de la distribution du paramètre de balance xE :

f(xE) =
1

Ntrig

dN

dxE
avec xE =

−~p γ/π0

T · ~p hadron
T

|~p γ/π0

T |2
(9.8)

Comme pour les corrélations angulaires, les distributions obtenues doivent être corrigés
des effets de bruit de fond combinatoire, des efficacités de détection, et de la contamination
dans le cas des corrélations photon-hadron.
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9.5.1 Bruit de fond combinatoire

La distribution f(xE) doit être corrigée des corrélations entre la particule de référence
(photon, π0) et les hadrons produits par les événements sous-jacents de la collision. La mé-
thode utilisée consiste à mesurer la distribution f(xE) dans une région ∆Φ où les hadrons
des collisions sous-jacentes sont majoritaires. La cinématique du processus dur, tout comme
les résultats obtenus pour les corrélations azimuthales (figure 9.20), montrent que les deux
partons sont émis majoritairement à 180̊ l’un de l’autre dans le plan azimuthal. Il est donc
possible de définir une région ∆Φ où la probabilité de trouver un hadron produit par frag-
mentation du parton est très faible. La figure 9.23 représente les régions azimuthales utilisées
pour la mesure des corrélations photon/π0-hadron (rouge) et la mesure des corrélations de
bruit de fond combinatoire (bleu). Pour chaque hadron se situant dans une région de bruit
de fond, une valeur de xE est calculée en choisissant aléatoirement un angle ∆Φ entre 2π/3

et 4π/3 :

xE =
−~p γ/π0

T · ~p hadron
T

|~p γ/π0

T |2
=
p hadrons
T

p
γ/π0

T

cos(∆Φ) (9.9)

Le tirage aléatoire de l’angle ∆Φ permet d’estimer la distribution f(xE) du bruit de fond
combinatoire dans la région azimuthale utilisée pour la mesure des corrélations.

Figure 9.23: Illustration des régions azimuthales pour la mesure des corrélations (rouge) et du
bruit de fond combinatoire (bleu).

Afin de déterminer l’incertitude sur la mesure du bruit de fond combinatoire, une étude
systématique de la mesure des distributions f(xE) a été réalisée pour les quatre sous-régions
correspondant aux régions de bruit de fond combinatoire autour de ∆Φ = ±π/2 dans l’hé-
misphère de la particule de référence et dans l’hémisphère opposé. Cette étude permet de
s’assurer que le bruit combinatoire est uniforme dans les quatre sous-régions utilisées. La
figure 9.24 (gauche) représente la distribution obtenue pour chacune des sous-régions, ainsi
que le rapport avec la distribution totale (somme des quatre sous-régions). En tenant compte
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des fluctuations statistiques à grande valeur de xE , les différentes mesures sont compatibles
et ne permettent donc pas d’estimer une quelconque erreur systématique liée à la mesure du
bruit de fond.
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Figure 9.24: Gauche : distribution en xE du bruit de fond combinatoire déterminée dans quatre
sous-régions ; Droite : distribution en xE des corrélations π0-hadron sans isolation
(noir) et du bruit de fond combinatoire associé (rouge) (incertitudes statistiques uni-
quement).

La figure 9.24 (droite) représente la distribution obtenue dans le cas des corrélations π0-
hadron (points noirs), ainsi que la distribution du bruit de fond combinatoire correspondant
(points rouge). Cette figure permet de constater que le bruit de fond combinatoire constitue
une fraction importante des corrélations mesurées à très faible valeur de xE (xE ≤ 0.2), alors
que sa contribution devient très faible par rapport au signal lorsque xE tend vers 1.

9.5.2 Effets de détecteurs

Les distributions obtenues doivent être corrigées des effets expérimentaux liés aux détec-
teurs utilisés (résolution en énergie, efficacité de reconstruction, acceptance, ...). Le facteur
de correction (αcorr) à appliquer à la distribution f(xE) est déterminé à partir d’une si-
mulation Monte-Carlo d’événements gamma-jet 2. Les données simulées sont séparées en un
échantillon correspondant aux événements générés par PYTHIA, et un échantillon corres-
pondant aux événements générés par PYTHIA puis propagés dans l’ensemble des détecteurs
par le logiciel GEANT. La procédure d’analyse des corrélations photon/π0-hadron est appli-
quée afin d’obtenir la distribution f(xE) pour les deux échantillons. Le facteur de correction
est alors calculé comme le rapport entre la distribution f(xE) générée (PYTHIA) et la
distribution f(xE) reconstruite (PYTHIA+GEANT). La figure 9.25 (gauche) représente la
distribution du facteur de correction en fonction du paramètre xE pour des clusters d’énergie

2. Comme les facteurs de correction déterminés à partir d’une simulation gamma-jet et jet-jet sont com-
patibles, un facteur identique est utilisé pour corriger les corrélations photon-hadron et π0-hadron.
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comprise entre 10 et 25 GeV. L’augmentation du facteur de correction en fonction de xE est
principalement due à la résolution en impulsion des traces reconstruites.
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Figure 9.25: Gauche : rapport entre la distribution en xE générée (PYTHIA) et reconstruite (PY-
THIA+GEANT). Le rapport permet de déterminer le facteur de correction à ap-
pliquer afin de tenir compte des effets expérimentaux ; Droite : distribution en xE
mesurée dans les périodes LHC11c (seuil de déclenchement de 4.5 et 5.5 GeV) et
LHC11d (seuil de déclenchement de 5.5 GeV), ainsi que le rapport à la distribution
moyenne.

Ce facteur ne peut cependant pas être appliqué indifféremment aux événements issus de
la période LHC11c et LHC11d. La simulation utilisée est en effet calquée sur les conditions
expérimentales de la période LHC11d. Or la sélection des traces de particules chargées a
mis en évidence une distribution en énergie différente en fonction de la période considérée
(figure 9.6). Le facteur de correction déterminé précédemment est donc valable pour la pé-
riode LHC11d, mais peut être différent pour les deux sous-périodes de LHC11c (seuil de
déclenchement à 4.5 GeV et 5.5 GeV). Face à l’absence de simulation calquée sur la période
LHC11c, ces différences peuvent seulement être incluses dans les incertitudes systématiques
associées au facteur de correction. La figure 9.25 (droite) représente les distributions f(xE)

obtenues pour les trois sous-périodes de prise de données, ainsi que le rapport entre chaque
distribution et la distribution moyenne. L’écart maximal entre les distributions est utilisé
comme incertitude systématique associée au facteur de correction pour chaque valeur du
paramètre xE . Les valeurs des erreurs systématiques associées au facteur de correction sont
présentées dans le tableau 9.3.

9.5.3 Contamination

L’identification des π0 permet d’obtenir un échantillon d’une pureté proche de 100% (sec-
tion 9.3), ce qui n’est pas le cas pour l’identification des photons prompts. En effet, nous
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xE ∆αcorr/αcorr (%)
[0-0.1] 8
[0.1-0.2] 15
[0.2-0.3] 20
[0.3-0.4] 24
[0.4-0.5] 25
[0.5-0.6] 29
[0.6-0.7] 27
[0.7-0.8] 35
[0.8-0.9] 35
[0.9-1.0] 38

Table 9.3: Incertitudes systématiques sur le facteur de correction αcorr.

avons vu précédemment que la pureté en photons prompts variait de 10 à 70% entre 10 et
25 GeV/c (figure 9.14). Il est donc nécessaire de corriger la distribution f(xE) de la contami-
nation résiduelle. Comme dans le cas des corrélations angulaires, la méthode de soustraction
consiste à utiliser la distribution f(xE) obtenue à partir des corrélations π0 isolé-hadron. Ce
choix se justifie à la fois par le fait que les π0 représentent la contribution dominante de la
contamination, et que la distribution f(xE) des autres types de particules, en particulier les
hadrons, devrait être très similaire à celle obtenue dans le cas des π0. La procédure utilisée
consiste à corriger la contamination par intervalle d’impulsion transverse de 1 GeV/c, en
utilisant pour cela la distribution de la pureté (p) obtenue sur la figure 9.14 :

fγ(xE) =
1

p
fcluster(xE)− 1− p

p
fπ0(xE) (9.10)

où p représente la pureté des photons dans l’intervalle d’énergie considéré. Les distributions
obtenues pour chaque intervalle en impulsion sont ensuite sommées (avec un poids statistique
proportionnel au nombre de photons isolés dans chaque classe d’énergie) entre 10 et 25 GeV/c.

9.5.4 Résultats et incertitudes

Dans le cas des corrélations π0-hadron, les sources d’incertitudes proviennent de la cor-
rection des effets de détecteurs et de la soustraction du bruit de fond. L’incertitude totale
sur la distribution f(xE)corr corrigée du bruit de fond (f(xE)UE) et des effets de détecteurs
(αcorr) s’exprime selon la relation :

∆f(xE)π
0

corr =

√
α2
corr∆f(xE)2

π0 + α2
corr∆f(xE)2

UE +
(
f(xE)π0 − f(xE)UE

)2
∆2αcorr

(9.11)
où ∆f(xE)UE et ∆αcorr représentent les incertitudes associées à la soustraction du bruit de
fond et aux corrections des effets de détecteurs.
Dans le cas des corrélations photon-hadron, il faut en plus tenir compte des incertitudes

liées à la soustraction de la contamination à partir de l’estimation de la pureté (p). L’incer-
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titude totale sur la distribution f(xE)corr est alors donnée par la relation :

∆f(xE)γcorr =

√
α2
corr∆f(xE)2

γ + α2
corr∆f(xE)2

UE +
(
f(xE)γ − f(xE)UE

)2
∆2αcorr (9.12)

avec :

∆f(xE)γ =

√
1

p4
(f(xE)π0 − f(xE)cluster)2∆2p+

1

p2
∆2f(xE)cluster +

(1− p
p

)2
∆2f(xE)π0

(9.13)
En combinant les équations 9.12 et 9.13, il est alors possible d’obtenir les différentes

contributions à l’incertitude totale qui s’expriment sous la forme :

1

p2
α2
corr∆f(xE)2

cluster (terme statistique) (9.14)

α2
corr∆f(xE)2

UE (bruit de fond) (9.15)

(f(xE)photon − f(xE)UE)2∆α2
corr (effets de détecteurs) (9.16)

α2
corr

1

p4
(f(xE)π0 − f(xE)cluster)∆p

2 (pureté) (9.17)

α2
corr

(1− p
p

)2
∆f(xE)2

π0 (distribution xE des π0) (9.18)

Les incertitudes finales (statistique et systématiques) sur la distribution f(xE) des corréla-
tions π0-hadron et photon-hadron sont présentées dans le tableau 9.4. Il apparaît que les
incertitudes systématiques dominent pour la mesure des corrélations π0-hadron pour toutes
les valeur de xE tandis que l’incertitude statistique est dominante pour les corrélations
photon-hadron (excepté à petit xE).

π0-hadron (%) photon-hadron (%)
xE statistique systématique totale statistique systématique totale

[0-0.1] 9 8 12 11 20 24
[0.1-0.2] 4 15 16 13 17 22
[0.2-0.3] 5 20 21 13 14 20
[0.3-0.4] 6 24 25 23 21 31
[0.4-0.5] 8 25 27 43 30 52
[0.5-0.6] 11 29 31 52 36 63
[0.6-0.7] 15 27 31 35 21 41
[0.7-0.8] 17 35 38 125 84 150
[0.8-0.9] 30 35 45 92 60 110
[0.9-1.0] 32 50 59 76 49 90

Table 9.4: Incertitudes systématiques totale sur les distributions f(xE) pour les corrélations
π0 isolé - hadron et photon - hadron.

Il est également possible d’estimer les incertitudes sur la soustraction de la contamination
en comparant les distributions f(xE) obtenues à partir des deux méthodes d’isolation (seuil
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individuel sur l’impulsion des particules dans le cône, seuil sur la somme en impulsion des
particules dans le cône). Ces deux méthodes ayant une efficacité de sélection différente, elles
conduisent à des échantillons de pureté différente. En comparant les distributions obtenues
après soustraction de la contamination, il est alors possible d’estimer la précision avec la-
quelle la correction de la contamination est réalisée. La figure 9.26 représente les distributions
obtenues pour les deux méthodes d’isolation, ainsi que le rapport des deux distributions. En
tenant compte des incertitudes statistiques, il apparaît que l’écart entre les deux distribu-
tions est inférieur aux incertitudes systématiques associées à l’estimation de la pureté. Cela
confirme que des échantillons de pureté différente conduisent à des résultats compatibles,
et que l’impact de la pureté sur la distribution en xE est négligeable devant l’incertitude
statistique.
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Figure 9.26: Distribution en xE des corrélations photon-hadron après soustraction de la contami-
nation en utilisant la coupure d’isolation sur l’impulsion des particules et celle sur la
somme en impulsion des particules dans le cône.

Les contributions relatives des différentes sources d’incertitudes sur les distributions f(xE)

des corrélations π0-hadron et photon-hadron sont présentées dans le tableau 9.5. Ces résultats
montrent que les incertitudes systématiques associées au bruit de fond et à la pureté ont un
impact faible sur l’erreur finale de la distribution en xE . Les incertitudes qui dominent sont
liées à la statistique et au facteur de correction αcorr. Cette contribution, importante pour
les faibles valeurs de xE , peut être diminuée en augmentant la statistique de la simulation
(utilisée pour déterminer le rapport) et par un meilleur contrôle des prises de données entre
les différentes périodes. La source principale d’incertitude pour la mesure des corrélations
photon-hadron reste cependant la statistique, qui intervient également sur les systématiques
associées à l’estimation du bruit de fond et de la distribution f(xE) des π0.
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π0-hadron (%) photon-hadron (%)
xE statistique UE αcorr statistique UE αcorr pureté π0

[0-0.1] 56 < 1 43 25 < 1 57 11 6
[0.1-0.2] 7 < 1 92 36 < 1 48 5 10
[0.2-0.3] 6 < 1 95 45 < 1 35 7 12
[0.3-0.4] 6 < 1 94 55 < 1 24 5 15
[0.4-0.5] 9 < 1 90 67 < 1 8 4 19
[0.5-0.6] 13 < 1 86 68 < 1 9 4 19
[0.6-0.7] 22 < 1 77 73 < 1 7 3 17
[0.7-0.8] 20 < 1 80 69 < 1 6 4 19
[0.8-0.9] 43 < 1 57 70 < 1 8 4 17
[0.9-1.0] 28 < 1 72 71 < 1 10 3 16

Table 9.5: Contributions relatives des différentes sources d’incertitudes sur l’incertitude totale des
distributions f(xE) pour les corrélations π0 isolé - hadron et photon - hadron.

Distributions f(xE)

Les résultats des corrélations π0-hadron, avec et sans isolation, sont présentés sur la figure
9.27 (gauche). Les distributions sont comparées à celle obtenue dans le cas des corrélations
cluster isolé-hadron (avec 0.16 λ2

0 60.27). Les distributions sont ajustées par une fonction
exponentielle dans la région xE = [0.2-0.8], région où les fonctions de fragmentation ont un
comportement quasi-exponentiel. La distribution associée aux π0 isolés possède une pente
plus importante que celle des π0 sans isolation, ce qui confirme que l’isolation sélectionne des
π0 emportant une fraction plus importante de l’énergie du parton initial. Afin de comparer
quantitativement la distribution obtenue dans le cas des corrélations π0 isolé-hadron avec la
fonction de fragmentation partonique, la distribution f(xE) est ajustée par une exponentielle
pour différents intervalles en énergie du π0. Les pentes ainsi obtenues sont comparées à
celles déterminées par ajustement des fonctions de fragmentation de quark et de gluon en
pion. Les fonctions de fragmentation utilisées sont les paramétrisations DSS [179] et KKP
[184], calculées à partir de l’interface développée par François Arleo et Jean-Philippe Guillet
[180]. La figure 9.28 présente les valeurs des pentes pour les différents intervalles en énergie
utilisés. Les incertitudes statistiques sont représentées sous forme de barres alors que les
incertitudes systématiques sont représentées sous forme de boîtes. Les valeurs sont comparées
à celles obtenues par ajustement des fonctions de fragmentation dans le cas d’une particule
de référence de paramètre z = 1 (bande bleue) et z = 0.5 (bande jaune), représentant
respectivement la fraction d’énergie moyenne portée par la particule de référence dans le cas
des événements gamma-jet et π0-jet (sans isolation) (voir figure 9.18). Les résultats montrent
que le critère d’isolation permet de sélectionner des π0 ayant un z proche de 1. La figure
9.27 (gauche) montre également que la pente obtenue dans le cas des corrélations cluster
isolé-hadron est très proche de celle obtenue dans le cas des corrélations π0 isolé-hadron 3.
Les résultats des corrélations photon-hadron sont présentés sur la figure 9.27 (droite).

Etant donnée la faible statistique et les incertitudes liées à la soustraction de la contamination

3. il faut cependant garder à l’esprit que la nature du parton sondé peut également être différente
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en π0, les incertitudes associées aux pentes obtenues par un ajustement exponentiel de la
distribution entre 0.2 et 0.8 sont trop importantes pour fournir une comparaison précise
avec celles mesurées dans les corrélations π0 isolé-hadron. Ce résultat représente néanmoins
la première mesure de la distribution f(xE) des corrélations photon-hadron entre 10 et 25
GeV/c.
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L’analyse des corrélations photon/π0-hadron dans les collisions Plomb-Plomb doit permettre d’éva-
luer l’impact de la perte d’énergie dans le milieu sur la fragmentation des partons.

Ce chapitre décrit les étapes principales de l’analyse, en mettant en avant les spécificités de l’ana-
lyse des collisions Plomb-Plomb par rapport aux collisions proton-proton. Les premières mesures
de corrélations photon/π0-hadron à une énergie

√
sNN = 2.76 TeV sont présentées. Ces résultats

préliminaires permettent une première mesure de la modification de la fragmentation en présence
d’un milieu dense. La dernière partie de ce chapitre est consacrée aux améliorations attendues après
le redémarrage du LHC (statistique, méthodes d’analyse).
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10.1 Sélection des données

L’analyse est réalisée à partir des données de collisions Plomb-Plomb d’énergie
√
sNN =

2.76 TeV collectées au LHC en 2011 (période LHC11h). Comme pour l’analyse des collisions
proton-proton, les données reconstruites au format AOD sont sélectionnées selon des critères
généraux de qualité (section 4.2.3) puis classées selon le mode de déclenchement utilisé : les
événements de biais minimum, et les événements sélectionnés par le système de déclenche-
ment de niveau 1 du calorimètre électromagnétique. Le nombre très important de collisions
nucléon-nucléon sous-jacentes dans une collision Plomb-Plomb requiert l’utilisation de seuil
de déclenchement variables en fonction de la centralité des collisions. Le déclenchement de
biais minimum est réalisé à l’aide du détecteur VZERO qui peut sélectionner les événements
les plus centraux (0-10%) et les événements semi-centraux (20-60%). La sélection des photons
et des π0 de haut-pT se fait à l’aide du système de déclenchement de niveau 1 du calorimètre
EMCal, avec un seuil proportionnel à la centralité de la collision (section 8.1.3). La courbe
d’efficacité de déclenchement pour la période LHC11h a été présentée sur la figure 8.8 de la
section 8.2.
Des critères de sélection propres à l’analyse des corrélations photon/π0-hadron sont ensuite

appliqués sur les clusters électromagnétiques (EMCal) et sur les traces de particules chargées
(ITS, TPC).

10.1.1 Particules neutres

La grande multiplicité de particules produites dans une collision Plomb-Plomb rend im-
possible l’utilisation d’une méthode de clusterisation classique de type V1 (section 5.3.3), qui
consiste à associer entres elles les tours ayant détectées un signal. Cela conduirait en effet
à reconstruire des clusters de particules composés d’un très grand nombre de tours pouvant
s’étendre sur plusieurs super-modules du calorimètre. Comme l’identification des photons
repose principalement sur la forme des clusters, il est également impossible d’utiliser une
méthode de clusterisation qui contraint trop fortement la forme des clusters (méthodes V2
et NxN). La méthode de clusterisation utilisée pour la reconstruction d’une particule neutre
doit donc permettre de limiter le nombre de tours incluses dans le cluster tout en reprodui-
sant au mieux la forme réelle de la gerbe électromagnétique. La méthode choisie consiste à
utiliser la clusterisation de type V1 en augmentant les seuils en énergie appliqués sur la tour
centrale (Eseed) et sur les tours périphériques (Ecell) du cluster. Pour les collisions Plomb-
Plomb, il est demandé pour une tour une énergie minimale de 150 MeV pour appartenir
au cluster (contre 50 MeV dans les collisions proton-proton), ce dernier étant construit au-
tour d’une tour centrale d’énergie minimale 300 MeV (contre 100 MeV dans les collisions
proton-proton).

10.1.2 Particules chargées

Afin d’éviter des biais trop importants dans l’étude des corrélations angulaires, une étude
systématique de la distribution des traces reconstruites dans le plan (η, φ) a été réalisée
pour chaque run de la période LHC11h. Cette étude a mis en évidence des fluctuations
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importantes de la distribution des traces dans certains secteurs de la TPC, probablement
liées à des problèmes de haute-tension. Les runs contenant plus d’un secteur problématique
dans la TPC ont alors été rejetés. Cette sélection permet finalement de classer les événements
en trois catégories correspondant respectivement aux runs sans problème apparent, et à ceux
présentant un secteur problématique dans la TPC (secteurs C08 et C13). Ces deux dernières
catégories nécessitent une analyse séparée afin de corriger les biais introduits. Ces derniers
auront en effet un impact différent sur les résultats de l’analyse car les secteurs concernés
sont situés soit dans le même hémisphère que le calorimètre EMCal (secteur C08) soit dans
l’hémisphère opposé (secteur C13), comme le montre la figure 10.1.

Figure 10.1: Distribution (η, φ) des traces de particules chargées pour les événements présentant
un problème dans le secteur C08 (gauche) et C13 (droite) de la chambre à projec-
tion temporelle (TPC). La position du calorimètre EMCal est représentée en ligne
pointillée.

10.1.3 Monte Carlo

La production Monte Carlo d’événements de type gamma-jet et jet-jet dans les collisions
Plomb-Plomb peut être réalisée à partir de logiciels spécifiques tel que HIJING [154]. Ces
productions, qui nécessitent des ressources de calculs très importantes, ne sont pas dispo-
nibles actuellement. Pour pallier à ce manque, les productions Monte Carlo utilisées pour
l’analyse des corrélations dans les collisions Plomb-Plomb ont été produites à partir d’une
technique qui consiste à mélanger un signal rare produit en simulation de collisions proton-
proton aux données réelles relatives aux collisions Plomb-Plomb. Cette technique, appelée
embedding, permet ainsi de reproduire l’environnement crée par les collisions nucléon-nucléon
sous-jacentes.
Les simulations PYTHIA gamma-jet et jet-jet utilisées pour l’analyse des collisions proton-

proton ont ainsi été incorporées aux événements de biais minimum des collisions Plomb-
Plomb. Pour les particules chargées, les traces reconstruites dans la simulation et dans les
données réelles sont simplement ajoutées les unes aux autres événement par événement. Au
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niveau du calorimètre EMCal, les signaux des tours sont ajoutés avant d’appliquer la mé-
thode de clusterisation. En comparant à la possibilité d’ajouter les clusters déjà reconstruits,
ce choix permet de mieux prendre en compte la superposition des événements en reconstrui-
sant des clusters contenant un mélange de signaux simulés et réels. Les productions sont
finalement classées en fonction de la centralité des événements de biais minimum utilisés
pour l’embedding.

10.2 Sélection des photons et des π0

10.2.1 Identification des photons

La sélection des photons repose sur des critères similaires à ceux présentés dans l’analyse
des collisions proton-proton, à savoir la condition de plus haute impulsion transverse, la
forme du cluster et l’isolation (section 9.2). En ce qui concerne la forme des clusters, il
est nécessaire de déterminer l’impact du bruit de fond sous-jacent sur la distribution du
paramètre λ2

0 (grand axe de la gerbe) des clusters produits par un photon direct. Il faut
également évaluer l’impact de la méthode de clusterisation utilisée, en particulier le seuil de
150 MeV sur l’énergie des tours qui peut biaiser la forme des clusters. L’étude des événements
simulés gamma-jet produits par embedding permet de constater que la forme des clusters n’est
que faiblement modifiée par rapport à celle obtenue dans le cas des collisions proton-proton.
La figure 10.2, qui représente la distribution du paramètre λ2

0 des photons directs dans les
collisions proton-proton (rouge) et Plomb-Plomb (bleu), montre que l’impact du bruit de fond
et de la clusterisation reste limité avec une légère différence entre les deux distributions pour
les valeurs de λ2

0 > 0.26. Le résultat obtenu permet finalement de conserver une coupure
d’identification des photons identique à celle utilisée pour l’analyse des collisions proton-
proton, à savoir 0.1 < λ2

0 < 0.27.
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proton (rouge) et embedding avec des collisions Plomb-Plomb (bleu).



Analyse des corrélations photon/π0-hadron dans les collisions Plomb-Plomb 181

Isolation

Contrairement à la sélection sur la forme des clusters, la méthode d’isolation ne peut pas
être transposée telle quelle de l’analyse des collisions proton-proton à celle des collisions
Plomb-Plomb. La méthode doit en effet être modifiée afin de prendre en compte le bruit
de fond constitué de particules produites par les collisions sous-jacentes au processus dur.
Comme le montre la figure 10.3 (droite), l’énergie totale mesurée dans un cône de rayon
R = 0.2 autour d’un photon direct est de l’ordre de 25 GeV/c pour les collisions les plus
centrales (0-10%). En comparant cette valeur à celle obtenue pour les collisions périphériques
(60-80%), il apparaît que la majorité de l’énergie mesurée provient du bruit de fond.
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Figure 10.3: Gauche : illustration de la méthode de soustraction du bruit de fond ; Droite : somme
en pT (GeV/c) dans un cône de rayon R = 0.2 pour des événements gamma-jets dans
les collisions Plomb-Plomb centrales (0-10%) et périphériques (60-80%).

Afin d’optimiser l’efficacité de sélection des photons directs, il est nécessaire de soustraire
la contribution du bruit de fond à la somme en énergie mesurée dans le cône avant d’appliquer
la coupure d’isolation. L’estimation de cette contribution est réalisée à partir d’une mesure
du bruit de fond moyen dans une bande de dimensions 2R en φ et [-0.7,0.7] en η (figure 10.3
gauche). Cette bande permet de déterminer l’énergie moyenne (par unité de surface) des
particules chargées et neutres en dehors du cône d’isolation. Les limites en η correspondent à
l’acceptance du calorimètre EMCal utilisé pour la reconstruction des particules neutres. Les
limites en φ permettent d’éviter les biais dus aux anisotropies de production des particules.
En effet, la forme elliptique de la zone d’interaction entre les deux noyaux de Plomb produit
des anisotropies dans la distributions spatiale des particules (section 2.3). Ces anisotropies,
en particulier le flot elliptique v2, conduisent à une distribution azimuthale non-uniforme
des particules qui imposent d’estimer le bruit de fond dans une région ∆φ identique à celle
du cône d’isolation. Une fois le bruit de fond moyen déterminé, celui-ci est normalisé par
rapport à l’acceptance du cône puis soustrait à la somme en énergie mesurée dans le cône.
La précision de la procédure de soustraction du bruit de fond est limitée par la distribution
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spatiale non-uniforme des particules produites par les collisions sous-jacentes au sein d’un
même événement. Cette non-uniformité va créer des fluctuations lors de l’estimation du bruit
de fond moyen utilisé pour soustraire la contribution du bruit à l’énergie totale mesurée dans
le cône. La somme en énergie obtenue après soustraction du bruit est alors une distribution
gaussienne de moyenne nulle dont la largeur est liée aux fluctuations du bruit. Pour un cône
de rayon R = 0.2, ces fluctuations sont de l’ordre de 5 GeV en collisions centrales (0-10%)
et 0.8 GeV en collisions périphériques (60-80%).
Une fois la soustraction du bruit de fond réalisée, il est possible d’estimer l’efficacité de

sélection des photons directs (simulation) et de réjection du bruit (clusters avec λ2
0 > 0.5) en

fonction du seuil appliqué sur la somme en pT des particules et de la taille (R) du cône d’isola-
tion. La figure 10.4 représente la distribution de la somme en impulsion transverse contenue
dans un cône de rayon R pour les échantillons de signal (photons directs) et de clusters
de bruit (photons de décroissance, hadrons) dans le cas des collisions centrales (0-10%) et
périphériques (60-80%). Les distributions obtenues permettent d’estimer la fraction d’événe-
ments sélectionnés par la coupure d’isolation en fonction du seuil appliqué sur la somme en
pT dans le cône. Alors que les collisions périphériques donnent des résultats comparables à
ceux obtenus en collision proton-proton (voir figure 9.9, section 9.2.2), les collisions les plus
centrales montrent que l’impact des fluctuations dans la procédure de soustraction des col-
lisions sous-jacentes dégrade la rejection des particules qui ne sont pas des photons directs.
Un seuil de 3 GeV et un rayon R = 0.2 sont finalement choisis pour la suite de l’analyse, ces
paramètres permettant de conserver environ 80% des photons directs et de rejeter environ
60% des clusters de bruit.
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Figure 10.4: Distribution normalisée de la somme totale en impulsion transverse (après soustrac-
tion du bruit) des particules contenues dans un cône de taille R = 0.1, 0.2 et 0.3. Les
symboles vides correspondent aux photons prompts obtenus par simulation PYTHIA
gamma-jet incorporée dans des événements de biais-minimum de collisions Plomb-
Plomb (embedding). Les symboles pleins correspondent aux clusters de forme non-
circulaire (λ2

0 > 0.5) sélectionnés dans les données pour les collisions Plomb-Plomb à√
sNN = 2.76 TeV.
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Pureté

L’échantillon de clusters obtenus après isolation ne contient qu’une fraction de photons
directs correspondant à la pureté de cet échantillon. Comme dans le cas des collisions proton-
proton, l’estimation de la pureté est basée sur une méthode d’ajustement de la forme des
clusters. Cette méthode consiste à déterminer la fraction de photons directs en ajustant la
distribution en λ2

0 des clusters isolés à partir des distributions obtenues pour les photons
directs (simulation embedding) et les clusters de bruit, ces derniers étant sélectionnés parmi
les clusters n’ayant pas passé la coupure d’isolation. La pureté est obtenue en intégrant la
distribution ajustée du signal dans l’intervalle de sélection de photons directs 0.1 < λ2

0 <

0.27. La figure 10.5 (gauche) représente l’ajustement obtenu en collisions Plomb-Plomb pour
des clusters d’énergie comprise entre 10 et 12 GeV. En appliquant la procédure d’ajustement
dans des intervalles de 2 GeV/c, il est finalement possible de déterminer la pureté des photons
directs en fonction de l’impulsion transverse des clusters entre 10 et 25 GeV/c (figure 10.5
droite).
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Figure 10.5: Gauche : ajustement des clusters isolés d’impulsion [10-25] GeV/c dans les collisions
Plomb-Plomb ; Droite : estimation de la pureté en fonction du pT du photon (erreurs
statistiques uniquement).

La dépendance en fonction du pT est différente pour les collisions Plomb-Plomb comparé
au résultat obtenu pour les collisions proton-proton (voir figure 9.14, section 9.2.3), avec une
pureté plus grande à bas-pT mais du même ordre de grandeur à haut-pT . Plusieurs effets
peuvent être à l’origine de cette différence, comme par exemple l’efficacité de réjection du
bruit par isolation ou encore la suppression des π0 par perte d’énergie des partons dans le
milieu. L’estimation de la pureté présentée sur la figure 10.5 (droite) constitue un résultat
préliminaire encourageant, qui nécessite cependant des études complémentaires sur les effets
systématiques pouvant biaiser le résultat obtenu (forme des clusters en simulation, région
d’ajustement, échantillon de clusters de bruit).
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10.2.2 Identification des π0

L’identification des π0 suit une procédure similaire à celle utilisée pour l’analyse des col-
lisions proton-proton. Cette procédure débute par une classification des clusters en fonction
de leur nombre de maximum local (NLM) défini comme une tour d’énergie supérieure à celle
des tours voisines. Seuls les clusters possédant 1 ou 2 maxima sont conservés pour la suite de
l’analyse. La procédure d’identification se décompose ensuite en quatre étapes consistant à
sélectionner les clusters dont la forme (λ2

0) appartient à la bande définie pour les π0 (voir fi-
gure 7.8, section 7.2), à séparer chaque cluster en deux sous-clusters censés correspondre aux
deux photons de décroissance, puis à calculer la masse invariante et l’asymétrie en énergie
des deux sous-clusters. Les coupures de sélection sur ces deux paramètres ont été optimisées
pour les collisions Plomb-Plomb. La figure 10.6 représente l’efficacité de sélection des π0,
obtenue par simulation, en fonction du nombre de maxima locaux présents dans le cluster
pour les collisions Plomb-Plomb centrales (gauche) et périphériques (droite). À une énergie
de 15 GeV, l’efficacité d’identification des π0 est comparable pour les collisions périphériques
et les collisions proton-proton (figure 9.16, section 9.3), mais elle est nettement inférieure
pour les collisions les plus centrales. La simulation d’événements jet-jet dans les collisions
Plomb-Plomb (embedding) permet d’estimer la fraction de π0 contenue dans l’échantillon de
clusters après application de la procédure d’identification. La figure 10.7 montre la pureté
des π0 dans les collisions centrales (haut) et périphériques (bas) pour des clusters possédant
1 ou 2 maxima locaux. Comme pour l’efficacité, la pureté obtenue est comparable entre
les collisions périphériques et les collisions proton-proton (figure 9.17, section 9.3) mais elle
est plus faible pour les collisions les plus centrales. Contrairement à l’analyse des collisions
proton-proton pour laquelle la pureté, proche de 100%, ne nécessitait pas de correction de la
contamination, une étude systématique de l’impact de la contamination (jusqu’à 20%) sera
nécessaire pour l’analyse des collisions Plomb-Plomb (centrales). Il est cependant possible
que l’impact sur la mesure des corrélations reste limité car une fraction importante de la
contamination provient de décroissances asymétriques pour lesquelles un des deux photons
emporte la majorité de l’énergie du π0 et peut donc être lui-même considéré comme un π0.

EMCal π0 identification via cluster splitting 65
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Figure 10.6: Efficacité de sélection en fonction de l’énergie du π0 pour un nombre de maxima
locaux NLM = 1, 2 et NLM > 2 dans les collisions Plomb-Plomb centrales (gauche)
et périphériques (droite).
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Fig. 55: Ratio of clusters identified as π0 but in reality being produced by a π0 (2 merged γ , blue squares), a single
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Figure 10.7: Fraction de π0, de photons et de hadrons contenue dans un échantillon de clusters
après application de la procédure d’identification des π0. La fraction est représentée
en fonction de l’énergie de π0 pour un nombre de maxima locaux NLM = 1 et NLM
= 2 dans les collisions Plomb-Plomb centrales (haut) et périphériques (bas).

Après la procédure d’identification, les clusters sélectionnés sont soumis à une procédure
d’isolation identique à celle utilisée dans le cas des photons. Cette procédure permet de
créer un échantillon contenant les candidats π0 isolés ayant satisfaits au critère d’isolation.
Comme dans l’analyse proton-proton, l’isolation permet de sélectionner préférentiellement
les π0 transportant une fraction importante de l’énergie du jet auquel ils appartiennent. Dans
le cas des collisions Plomb-Plomb la distinction entre π0 non-isolé et isolé peut également
permettre de sélectionner des particules produites plus ou moins profondément dans le milieu.
Un π0 isolé a en effet une probabilité plus faible d’avoir subi des pertes d’énergie importante
(car les gluons rayonnés doivent dans ce cas être détectés dans le cône d’isolation) et donc il
est plus probable qu’il ait été émis proche de la surface du milieu.

10.3 Mesure des corrélations photon/π0-hadron

Les procédures de sélection décrites dans les paragraphes précédents sont appliquées afin
de mesurer les corrélations photon/π0-hadron. Ces résultats constituent la première mesure
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des corrélations angulaires et de la fragmentation dans les collisions Plomb-Plomb à une
énergie

√
sNN = 2.76 TeV à l’aide de l’expérience ALICE.

Corrélations angulaires C(∆η,∆φ)

Les corrélations angulaires entre la particule de référence (photon, π0) et les hadrons du
même événement sont mesurées dans des collisions Plomb-Plomb de centralité 0-40%. Afin
de mieux évaluer la redistribution de l’énergie, les corrélations sont mesurées pour différents
intervalles d’impulsion transverse des hadrons. La procédure utilisée pour la correction des
corrélations liées au bruit de fond de la collision est identique à celle utilisée pour les collisions
proton-proton (section 9.4)). Cette procédure consiste à déterminer les corrélations entre la
particule de référence et les hadrons produits par les collisions sous-jacentes dans plusieurs
événements indépendants de biais minimum (mixing). Dans le cas des collisions Plomb-
Plomb, il est cependant nécessaire de classer les événements mélangés en fonction de la
centralité et de la position du plan de réaction de la collision.
La figure 10.8 représente la fonction de corrélation C(∆η,∆φ) entre un π0 d’impulsion

transverse comprise entre 10 et 25 GeV/c et les hadrons chargés d’impulsion transverse com-
prise entre 4 et 5 GeV/c, ainsi que la projection dans le plan ∆φ. En comparant avec les
résultats obtenus dans les collisions proton-proton (section 9.4), il apparaît que les corréla-
tions avec les hadrons émis à 180◦ de la particule de référence sont quasiment supprimées
dans cet intervalle en énergie. Cette suppression peut-être interprétée comme le résultat des
effets de perte d’énergie associés aux hadrons de haut-pT dans le milieu. Du fait de la perte
d’énergie, la particule de référence (π0) est émise majoritairement proche de la surface du
milieu. Il est alors attendu que le parton émis à 180◦ subisse une perte d’énergie plus grande
à cause d’un parcours supérieur dans le milieu. Les hadrons associés à ce parton ont ainsi
une plus grande probabilité d’être supprimés par le milieu (section 2.4).
L’énergie perdue par le parton devrait être redistribuée à plus bas pT , ce qui semble être

mis en évidence par la figure 10.9 (droite) qui réprésente les corrélations azimuthales entre
un π0 (sans isolation) et des hadrons chargés d’impulsion comprise entre 0.2 et 2 GeV/c. Le
résultat observé indique que des corrélations azimuthales sont à nouveau visibles lorsque le
pT des hadrons diminue, ce qui peut être interprété comme une redistribution de l’énergie
perdue par le parton. La compréhension précise de l’origine physique de ces corrélations né-
cessite cependant des études complémentaires.

Fragmentation

L’estimation du bruit de fond représente également une difficulté pour la mesure de la
fonction de fragmentation f(xE) dans les collisions Plomb-Plomb. La méthode de soustrac-
tion du bruit de fond, identique à celle utilisée dans le cas des collisions proton-proton,
consiste à utiliser deux régions angulaires ∆φ ∈ [π/3, 2π/3] et ∆φ ∈ [4π/3, 5π/3]. La figure
10.10 (gauche) montre que l’estimation du bruit de fond est équivalente dans les quatre
sous-régions de contrôle en tenant compte des incertitudes statistiques.
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Figure 10.9: Corrélations azimuthales ∆φ entre un π0 (sans isolation) de pT 10-25 GeV et des
hadrons chargés de pT 4-5 GeV (gauche) et de pT 0.2-2 GeV (droite) dans les collisions
Plomb-Plomb de centralité 0-40%.

Par ailleurs, la figure 10.10 (droite) montre que la contribution du bruit de fond par
rapport au signal est beaucoup plus importante pour les collisions Plomb-Plomb comparées
aux collisions proton-proton (voir figure 9.24, section 9.5). Le rapport de la distribution
f(xE) associée au bruit de fond sur celle du signal, représenté sur la figure 10.11 (gauche),
permet de constater que la contribution du bruit de fond est maximale pour les faibles xE
avec des valeurs pouvant atteindre près de 99%. Une erreur même minime sur l’estimation
du bruit de fond peut ainsi avoir des conséquences très importantes sur la distribution f(xE)

obtenue après correction.
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Figure 10.11: Gauche : rapport de la distribution f(xE) du bruit de fond combinatoire sur celle du
signal dans les collisions Plomb-Plomb d’énergie

√
sNN = 2.76 TeV et de centralité

0-40% ; Droite : rapport des distributions f(xE) du bruit de fond combinatoire
associées aux corrélations cluster-hadron (noir) et π0-hadron (rouge) avec isolation
sur celle des corrélations π0-hadron sans isolation dans les collisions Plomb-Plomb
d’énergie

√
sNN = 2.76 TeV et de centralité 0-40%.

La figure 10.11 (droite) montre que la distribution f(xE) associée au bruit de fond n’est
pas identique pour les corrélations cluster (isolé), π0 (isolé) et π0 (sans isolation). Le fait que
le bruit de fond associé aux π0 isolés soit très proche de celui des π0 sans isolation semble
montrer que le bruit de fond est bien décorrélé du processus dur, sinon le biais sur l’énergie
du parton associé au π0 aurait une influence visible. Alors que l’hypothèse d’un bruit de fond
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similaire parait réaliste, les différences importantes entre le bruit de fond associé aux photons
et aux π0 peuvent être interprétée comme l’indice d’un biais dans l’estimation du bruit de
fond. La mesure du bruit de fond peut être biaisée par deux effets : la perte d’énergie du
parton dans le milieu et les anisotropies azimuthales. En fonction de l’angle d’émission des
gluons rayonnés par le parton, une fraction des hadrons pourrait en effet se retrouver dans
les régions angulaires utilisées pour l’estimation du bruit de fond. Dans ce cas, la mesure
du bruit de fond revient à soustraire de la fonction de fragmentation une partie de l’énergie
des hadrons de bas pT (faible valeur de xE ≈ 0.2-0.3) et à l’associer au bruit de fond. Le
second biais provient de l’anisotropie azimuthale des hadrons qui est une conséquence de
l’anisotropie spatiale du milieu (maximale pour les collisions de centralité intermédiaire).
L’anisotropie est décrite par la relation (section 2.3) :

E
d3N

d3p
=

d2N

2πpTdpTdy
(1 +

∞∑

n=1

2vncos[n(Φ−Ψr)]) (10.1)

20 ALICE Collaboration / Physics Letters B 719 (2013) 18–28

Fig. 1. (Color online.) v2, v3, and v4 measured for unidentified charged particles as a function of transverse momentum for various centrality classes. The dashed line
represents the WHDG model calculations for neutral pions v2 [43] extrapolated to the LHC collision energy. For clarity, the markers for v3 and v4/Ψ2 results are slightly
shifted along the horizontal axis. Note that the highest pT data point for v4/Ψ4 in 5–10% centrality is out of the plotting range. Error bars (shaded boxes) represent the
statistical (systematic) uncertainties.

Fig. 2. (Color online.) Comparison of the ALICE results on vn(pT) obtained with the event plane method to the analogous measurements from ATLAS [26] and CMS [27]
collaborations, as well as v2 measurements by STAR [44]. Only statistical errors are shown.

plane. The difference between the two, indicative of flow fluctua-
tions, persists at least up to pT = 8 GeV/c.

Fig. 2 compares our results obtained with the event plane
method for 30–40% centrality to the analogous measurements by
ATLAS [26] and CMS [27] collaborations, and results obtained at
RHIC by the STAR Collaboration [44]. An excellent agreement is
observed between results from all three LHC experiments. v2(pT)
at top RHIC energy has a peak value about 10% lower than at LHC
although it is very similar in shape.

To investigate further the role of flow fluctuations at differ-
ent transverse momenta we study the relative difference between
v2{EP} and v2{4}, [(v2{EP}2 − v2{4}2)/(v2{EP}2 + v2{4}2)]1/2,
which for small non-flow is proportional to the relative flow fluc-

tuations σv2/〈v2〉 [1]. Fig. 3 presents this quantity as a function of
transverse momentum for various centrality classes. The relative
flow fluctuations are minimal for mid-central collisions and be-
come larger for peripheral and central collisions, similar to those
observed at RHIC energies [1]. It is remarkable that in the 5–30%
centrality range, relative flow fluctuations are within errors in-
dependent of momentum up to pT ∼ 8 GeV/c, far beyond the
region where the flow magnitude is well described by hydrody-
namic models (pT < 2–3 GeV/c). This indicates a common origin
for flow fluctuations, which are usually associated with fluctua-
tions of the initial collision geometry, at least up to the regime
where hard scattering and jet energy loss are expected to dom-
inate. The ratio develops a momentum dependence, starting to

Figure 10.12: v2, v3, et v4 mesurés pour des particules chargée non-identifiées, en fonction de l’im-
pulsion transverse, pour différentes classes de centralité. La ligne pointillée repré-
sente la prédiction du modèle WHDG pour des pions neutres, extrapolée à l’énergie
de collision du LHC [185].

Le flot elliptique (v2) induit une distribution anisotrope des hadrons dans le plan azimu-
thal, ce qui peut conduire à biaiser l’estimation du bruit de fond. Dans le cas des corrélations
photon-hadron, il est attendu que le biais soit nul car le photon n’est pas sensible aux ani-
sotropies et peut être émis dans toutes les directions par rapport au plan de réaction. Les
corrélations π0-hadron sont en revanche sensibles au flot elliptique tant du point de vue de
la particule de référence (π0) que de celui des hadrons chargés. La combinaison des deux
effets (π0 et hadrons) peut conduire à sous-estimer le bruit de fond car l’impact du flot
elliptique sera différent entre la région de signal (2π/3 < ∆φ < 4π/3) et les régions utilisées
pour déterminer le bruit de fond (π/3 < ∆φ < 2π/3 et 4π/3 < ∆φ < 5π/3). Une étude
préliminaire, basée sur les valeurs des coefficients v2, v3 et v4 mesurés au LHC (figure 10.12),
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permet d’estimer que ce biais devrait être inférieur à 5% dans la gamme d’énergie considérée
pour l’analyse des corrélations. Un tel biais reste cependant non-négligeable dans l’intervalle
des xE compris entre 0.2 et 0.5.

À titre indicatif, les distributions f(xE) associées aux corrélations cluster(isolé)-hadron,
π0(isolé)-hadron et π0(sans isolation)-hadron sont déterminées après correction de la contri-
bution du bruit de fond, et comparées aux distributions respectives obtenues par l’analyse
des collisions proton-proton. La figure 10.13 représente les distributions f(xE) mesurées
dans les collisions proton-proton et Plomb-Plomb ainsi que le rapport de ces distributions.
Les résultats obtenus montrent une suppression des hadrons de haut-pT (grand xE) et une
augmentation du nombre hadrons de bas-pT (petit xE). Bien que ces résultats soient très
encourageants pour la suite du travail, ils ne constituent qu’une mesure très préliminaire de
la modification de la fragmentation dans les collisions Plomb-Plomb. Des études complémen-
taires, portant en particulier sur l’estimation du bruit de fond, sont indispensables afin de
confirmer les résultats obtenus.
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Figure 10.13: Rapport (bas) des distributions f(xE) associées aux corrélations cluster-hadron
(noir), et π0-hadron avec (rouge) et sans (bleu) isolation, mesurées dans les colli-
sions Pb-Pb

√
sNN = 2.76 TeV de centralité 0-40% (haut-droit), sur les distributions

correspondantes mesurées dans les collisions pp
√
s = 7 TeV (haut-gauche).



Analyse des corrélations photon/π0-hadron dans les collisions Plomb-Plomb 191

10.4 Conclusions et perspectives

L’étude de la perte d’énergie des partons dans le plasma de quarks-gluons est réalisée
en deux étapes présentées dans les chapitres 9 et 10 de ce manuscrit. La première étape
consiste à mesurer la fragmentation des partons dans le vide en analysant les données des
collisions proton-proton. Les observables associées à la mesure de la fragmentation portent
sur les corrélations angulaires et le paramètre de balance xE mesurés dans les corrélations
photon/π0-hadron. Cette première étape est indispensable pour obtenir la référence à partir
de laquelle les modifications de la fragmentation en présence d’un milieu dense et déconfiné
doivent être évaluées. La seconde étape correspond à la mesure de ces mêmes observables
dans les collisions Plomb-Plomb. Le travail réalisé permet une identification robuste des
photons prompts et des π0 dans un environnement de haute multiplicité. Cependant l’analyse
des premières données indique une contribution importante du bruit de fond provenant des
nombreuses collisions sous-jacentes nucléon-nucléon. La méthode actuellement utilisée pour
l’estimation de ce bruit de fond possède des biais potentiels dont il est difficile d’estimer
l’impact sur la mesure de la fragmentation. Dans l’avenir, il est envisagé d’utiliser une autre
méthode d’estimation semblable à celle appliquée à la mesure des corrélations angulaires.
Cette méthode dite de mixing, qui permet d’estimer le bruit de fond en mélangeant des
événements indépendants, ne devrait pas être sensible au biais provenant de la perte d’énergie
des partons dans le milieu.
Les résultats obtenus montrent également, tant au niveau des collisions proton-proton que

Plomb-Plomb, que l’analyse est dominée par les incertitudes statistiques. Ces incertitudes
peuvent être réduites de deux manières complémentaires : en améliorant l’efficacité et la pu-
reté de sélection des photons prompts, et en augmentant la quantité de données enregistrées.
Ces deux types de perspectives sont développées dans la fin de ce chapitre.

10.4.1 Sélection des photons

L’analyse présentée dans ce manuscrit utilise une méthode de sélection des photons prompts
basée sur des coupures fixes appliquées aux critères tels que la forme des clusters (λ2

0) ou
le critère d’isolation. Le choix de la coupure a été déterminée individuellement pour chacun
des critères dans le but d’optimiser la sélection en trouvant un compromis entre l’efficacité
de sélection et la réjection du bruit (π0, hadron, ...). Les résultats de l’analyse étant dominés
par l’incertitude statistique, il peut être intéressant de chercher à optimiser le mieux pos-
sible la sélection des photons prompts et la réjection du bruit. Une des possibilités envisagées
consiste à appliquer une méthode de sélection multivariées utilisant simultanément les diffé-
rentes variables de sélection. Parmi les différentes méthodes disponibles (test de Fischer, test
du rapport de vraisemblance, ...), une étude préliminaire basée sur les arbres de décision a été
réalisée. L’arbre de décision est une technique d’analyse permettant d’étendre la sélection
basée sur des coupures simples en une sélection multivariée. Cette sélection est réalisée à
l’aide de deux échantillons de référence (lots d’entraînement) correspondant respectivement
à l’hypothèse signal (HS) et bruit (HB). Dans un arbre de décision, des régions de signal et
de bruit sont définies dans l’espace des phases formé par les différentes variables de sélection
utilisées. Elles sont déterminées en identifiant le meilleur jeu de variables et de coupures
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permettant de discriminer les hypothèses HS et HB. L’arbre de décision permet finalement
de prédire si un objet particulier appartient à l’hypothèse HS ou HB à partir d’un ensemble
de variables discriminantes.
L’étude est réalisée à partir du package TMVA (Toolkit for Multivariate Data Analysis

[186]). Le lot d’entraînement est constitué d’un mélange équitable d’événements de simulation
gamma-jet et jet-jet d’impulsion transverse comprise entre 10 et 25 GeV/c. Dans cette étude
préliminaire, cinq variables de sélection associés aux clusters électromagnétiques ont été
utilisés :

- les paramètres λ2
0 et λ2

1

- le nombre de tour (par unité d’énergie)
- la somme en énergie des particules dans un cône de rayon R=0.4
- le nombre de particules dans un cône de rayon R=0.4

Pour chacune des variables, les distributions de signal et de bruit ont été obtenues res-
pectivement à partir d’une simulation Monte-Carlo d’événements gamma-jet et jet-jet en
collisions proton-proton (figure 10.14). L’arbre de décision permet de classer les variables
selon leur pouvoir discriminant. Dans l’étude réalisée, les variables les plus discriminantes
sont la somme en énergie des particules dans le cône d’isolation et le paramètre λ2

0.

Figure 10.14: Distributions des variables de sélection dans les simulations gamma-jet (rouge) et
jet-jet (bleu) de pT compris entre 10 et 25 GeV/c utilisées pour l’entraînement de
l’arbre de décision.

La figure 10.15 représente la distribution du paramètre de sortie de l’arbre de décision
obtenu par combinaison des différentes variables de sélection. Cette distribution permet de
déterminer la coupure optimale à appliquer afin de maximiser la statistique des photons
prompts sélectionnés. En partant d’une pureté initiale de 4% (estimée à partir du rapport de
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la section efficace de production des photons prompts sur celle des π0), la sélection permet
d’obtenir une pureté proche de 70% pour la coupure offrant la significance la plus favorable.
Ce résultat encourageant doit maintenant être appliqué aux données de collisions proton-
proton et Plomb-Plomb afin d’évaluer le gain apporté par l’analyse multivariée. Avant d’être
appliquée à la mesure de la fragmentation, ce type d’analyse fortement dépendante de la
simulation nécessite cependant de comprendre plus en détail les biais présentés dans la
deuxième partie de ce manuscrit (non-linéarité en énergie, forme des clusters).
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Figure 10.15: Efficacité de sélection du signal (photons prompts) et du bruit (π0, hadrons) en
fonction du paramètre de sortie de l’arbre de décision.

10.4.2 LHC Run II

Durant l’arrêt du LHC en 2013-2014, une extension du calorimètre EMCal va être installée.
Ce calorimètre, appelé DCal (Di-jet Calorimeter), vient compléter le spectromètre à photon
(PHOS) offrant ainsi une acceptance totale ∆φ = 60◦ et ∆η = 1.4 (figure 10.16 gauche).
La technologie et l’électronique utilisées sont communes aux calorimètres EMCal et DCal.
Son positionnement partiel face au calorimètre EMCal (figure 10.16 droite) permettra à la
fois d’augmenter la statistique des corrélations photon/π0-hadron et d’étudier de nouvelles
corrélations entre un photon(π0) et un jet de particules contenant les particules chargées
et neutres. La statistique en photons et π0 inclusifs devrait ainsi augmenter d’environ 60%
grâce à l’acceptance du calorimètre DCal.
Après le Run II, un nouvel arrêt est prévu en 2017 permettant une amélioration de certains

détecteurs de l’expérience ALICE. La stratégie est basée sur l’augmentation de la luminosité
du LHC en 2018 jusqu’à un taux d’interaction de 50 kHz en collisions Plomb-Plomb (Lint =
6×1027 cm−2s−1). L’objectif de la mise à niveau est de permettre une utilisation maximale
de la haute-luminosité du LHC. Un des facteurs les plus limitant est le taux de lecture de la
chambre à projection temporelle (TPC), actuellement de l’ordre de 520 Hz pour les collisions
Plomb-Plomb. Cette limite est imposée à la fois par l’électronique de lecture de la TPC et
par le temps de dérive qui contraint d’arrêter la lecture durant 200 µs à chaque collision.



194 Analyse des corrélations photon/π0-hadron dans les collisions Plomb-Plomb

ALICE DCal Addendum to the EMCal TDR June 2010

  

 

 27 

all readout and trigger electronics are identical and interchangeable between EMCal and 

DCal.  The details of the module and strip module construction, optical read out, electronics 

and cosmic ray calibration are explained in detail in the EMCal Technical Design Report 

(CERN-LHCC-2008-014, ALICE-TDR-014, 1 September 2008) and will not be repeated 

here.   

 

As noted above, because of the presence of the PHOS modules centered at zero rapidity, the 

DCal super modules are shorter such that the full DCal will subtend the same overall 

rapidity coverage as EMCal.  Figure VI.3 shows a comparison of DCal and EMCal super 

modules.  The construction is identical except that the full DCal super module will contain 

only 16 strip modules compared to 24 in EMCal.   

 

 

 

 

  

 

 

 

 

 

VI.2  Perspective view of the DCal and PHOS integrated on a common support.  The 

PHOS charged particle veto detectors are in place in front of the PHOS modules.  As 

discussed in the text, the support structure is a component of the full international project 

scope.  Four PHOS modules are shown although only three, those contiguous with the 

DCal, are installed in ALICE at the moment and considered part of DCal.  Also shown 

on the support structure, to the left of DCal, are five super modules of a hypothetical 

Very High Momentum Particle Detector (VHMPID) which is currently under discussion 

in ALICE. 
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PHOS is a high-resolution, highly segmented, electromagnetic calorimeter based on PbWO4 

crystals.  It shares with the EMCal and DCal common readout and trigger electronics. Like 

the DCal super modules, each PHOS module subtends !"=20 degrees.   The presence of the 

PHOS detector at the center of the DCal acceptance shortens the DCal super module to 

exactly 2/3 the length of the standard EMCal super module.  This is illustrated in Figure 

VI.3 where an EMCal super module is compared to a DCal super module. 

 

The use of two different detector technologies in the assembly of DCal creates some extra 

“cracks” in the acceptance compared to EMCal.  These cracks between PHOS and DCal 

super modules are very small compared to the area of a jet of R=0.4 and detailed 

simulations verify that they have negligible impact on di-jet or inclusive jet measurements 

with DCal (see chapter II).  In the case of inclusive or - triggered hadron correlation 

measurements the presence of the extra crack requires a small additional fiducial cut which 

slightly reduces the total acceptance. The  or - associated hadron yields are so large, 

however, that the additional fiducial cut has no impact on physics. 

 

DCal super modules are built up exactly as they are in EMCal, out of strip modules with 

each strip containing 12 modules of 4 towers each.   All of these building blocks including 

VI.1   Beam view of EMCal (above mid-plane) and DCal (below mid plane). 

Figure 10.16: Gauche : vue en perspective de DCal et de PHOS intégré sur un support commun
(le détecteur veto de particules chargées de PHOS est placé à l’avant du détecteur,
bien qu’il ne soit pas installé actuellement) ; Droite : vue en tranche des calorimètres
EMCal et DCal.

Afin d’atteindre le taux prévu de 50 kHz, il est nécessaire de lire en continu les signaux
de la TPC (tout en conservant une très bonne qualité de reconstruction des traces). Pour
cela il est prévu de remplacer les chambres de lecture multi-fils par des GEM (Gas Electron
Multiplier). L’autre amélioration concerne le trajectographe silicium (ITS) dont le taux de
lecture est limité à 1 kHz. Outre la modification de l’électronique de lecture, l’objectif consiste
à diminuer le budget de matière pour chaque couche en utilisant une nouvelle technologie
pour les pixels de silicium et à positionner la première couche plus proche du faisceau (rayon
de 20 mm contre 39 mm actuellement) afin d’améliorer la résolution des mesures de vertex.
L’ensemble des améliorations, ainsi que l’installation du calorimètre DCal, devraient aug-

menter significativement la statistique disponible, tout en améliorant la qualité de recons-
truction des traces de particules chargées. Le Run II (2015-2017) devrait ainsi permettre
d’augmenter d’un facteur 10 la statistique des collisions Plomb-Plomb, faisant passer la lu-
minosité d’environ 150 µb−1 (2011) à environ 1 nb−1. Après le deuxième arrêt en 2017, la
statistique devrait encore être multipliée par un facteur 10, permettant ainsi une mesure dé-
taillée de la perte d’énergie des partons en segmentant l’analyse des corrélations en différents
intervalles d’impulsion transverse des photons/π0 et de centralité des collisions.
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L’étude comparée de la fragmentation des partons de haut-pT dans les collisions proton-proton et
Plomb-Plomb est utilisée comme sonde du plasma de quarks-gluons car elle permet d’accéder aux
caractéristiques de perte d’énergie du parton lors de la traversée du milieu. L’objectif de ce dernier
chapitre est de replacer les résultats expérimentaux des chapitres 9 et 10 dans le contexte théorique
de la perte d’énergie des partons.

Après une introduction sur la fragmentation dans le vide, nous commencerons par décrire les
caractéristiques générales des modèles théoriques actuels de perte d’énergie. Nous discuterons ensuite
les différentes approches permettant une estimation de la modification des fonctions de fragmentation
partonique en présence d’un milieu déconfiné. La dernière partie de ce chapitre est consacrée à une
étude phénoménologique comparant les modifications théoriques des fonctions de fragmentation à la
précision actuelle des mesures expérimentales.
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Le processus de fragmentation décrit la transition entre les partons primaires de haute vir-
tualité produits par le processus dur (Q2 � Λ2

QCD) et l’ensemble des hadrons stables acces-
sibles expérimentalement dans l’état final. La fonction de fragmentationDh

i (x,Q2) représente
la probabilité pour un parton i de virtualité Q2 de fragmenter en un hadron h transportant
une fraction x de l’impulsion du parton. Comme dans le cas des fonctions de distributions de
partons (section 1.3), les fonctions de fragmentation sont non-perturbatives et doivent être
extraites directement des mesures expérimentales. Ce caractère non-perturbatif provient à
la fois du processus d’hadronisation (ayant lieu à une échelle Q2

0 ≈ Λ2
QCD) et des divergences

dans le calcul des processus de fragmentation collinéaires. Tant que la virtualité des partons
est grande devant ΛQCD, il est cependant possible de factoriser les divergences collinéaires qui
apparaissent dans le calcul des sous-processus de fragmentation. Les corrections conduisent
alors à une violation d’échelle caractérisée par l’équation d’évolution (DGLAP) :

∂

∂lnµ2
Di(x, µ

2) =
αs
2π

∑

j

∫ 1

x

dz

z
Pi→j(z, αs(µ2))Dj→h(

x

z
, µ2) (11.1)

Les fonctions de division (splitting) Pi→j(z) représentent la probabilité qu’un parton i se
fragmente en un parton j transportant une fraction z de l’impulsion. Ces fonctions sont
calculables de manière perturbative en puissance de αs, les valeurs à l’ordre dominant étant
données par les relations :

Pq→gq(z) = 4/3
1 + z2

1− z , Pg→gg(z) = 3
[1− z(1− z)]2

z(1− z) ,

Pg→qq̄(z) =
nF
2

[z2 + (1− z)2]

(11.2)

où nF correspond au nombre de saveurs de quark.
Le processus de fragmentation peut ainsi être décomposé schématiquement en trois étapes :
1) Gerbe partonique : les partons primaires fragmentent en une gerbe partonique do-

minée par l’émission de gluons et de paires de quarks légers. L’évolution de la gerbe est
déterminée de manière perturbative par les équations DGLAP jusqu’à une échelle de
virtualité de l’ordre de Q0 ≈ 1 GeV (figure 11.1 gauche).

2) Hadronisation : les partons de la gerbe s’assemblent pour produire des hadrons
neutres de couleur. L’hadronisation étant un processus non-perturbatif, il est déter-
miné à l’aide de modèles phénoménologiques dont les plus connus sont le modèle des
cordes [187] et le modèle des clusters [188].

3) Décroissance : les hadrons instables décroissent en un ensemble de hadrons stables,
de leptons et de photons accessibles expérimentablement.

En présence d’un milieu dense et déconfiné, le parton primaire va interagir avec les partons
du milieu durant le processus de fragmentation. Ces interactions, qui peuvent être de type
collisionnelles et/ou radiatives (rayonnement de gluons), vont alors modifier la fragmenta-
tion en changeant les caractéristiques du parton primaire (énergie-impulsion, direction, ...).
Les gluons rayonnés dans le milieu peuvent également conduire à une modification plus ou
moins importante de la fonction de fragmentation en fonction de leur énergie et de l’angle
avec lequel ils sont émis (figure 11.1 droite). Une caractérisation précise des modifications
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Figure 11.1: Vue schématique du processus de fragmentation dans le vide (gauche) et en présence
d’un milieu dense (droite).

de la fragmentation en présence d’un milieu dense et déconfiné peut finalement permettre
de mieux comprendre les interactions partoniques dans le milieu et de remonter ainsi aux
caractéristiques du milieu lui-même.

11.1 Perte d’énergie des partons

Les modèles phénoménologiques sont indispensables pour relier les observables expérimen-
tales aux propriétés du milieu telles que la densité de gluons, la température ou encore le
coefficient de transport q̂ qui caractérise le pouvoir de diffusion du milieu (section 2.3.2).
Les calculs théoriques des mécanismes de perte d’énergie dépendent à la fois des variables
d’échelle partonique (énergie-impulsion, virtualité Q2) et des caractéristiques du milieu (cou-
plage, profil spatio-temporel, évolution hydrodynamique, ...).

11.1.1 Modèles perturbatifs

La majorité des modèles théoriques actuels utilisent une approche de QCD perturbative
basée sur des pertes d’énergie par émission de gluons (gluonstrahlung). Il existe quatre mo-
dèles principaux 1 qui ont été développés afin de déterminer le spectre de gluons émis par
diffusions multiples de partons. Le modèle GLV (Gyulassy-Levai-Vitev) [191][192][193] mo-
délise le milieu comme un ensemble de N centres de diffusion statiques (N=opacité) avec
lesquels le parton interagit en rayonnant des gluons de basse-énergie. Dans ce modèle, la
distribution en énergie des gluons rayonnés est calculée dans le cas d’une diffusion parton-
milieu (N=1) puis propagée de manière récursive afin d’obtenir le spectre dans le cas de
diffusions multiples (N � 1). Le modèle BDMPS (Baier-Dokshitzer-Mueller-Peigné-Schiff)
[194][195][196][197] modélise également le milieu par des centres de diffusion statiques, mais
contrairement au modèle GLV la distribution en énergie des gluons rayonnés est estimée en
prenant en compte directement des diffusions multiples parton-milieu. Le modèle BDMPS
est équivalent au modèle ASW (Armesto-Salgado-Wiedemann) [198][199] généralisé pour un
nombre arbitraire de diffusions. Une fois le spectre en énergie des gluons obtenu, le calcul
de la perte d’énergie du parton est réalisé de manière similaire pour ces trois modèles (GLV,

1. La référence d’un modèle correspond en général à l’acronyme du nom de ses auteurs. Nous renvoyons
le lecteur intéréssé vers les références citées dans le texte ainsi que vers les deux revues générales suivantes
traitant de la perte d’énergie des partons et de la fragmentation [189] [190]
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BDMPS, ASW). Dans le modèle Higher-Twist [200][201], les diffusions multiples sont décrites
comme des corrections à la section efficace leading-twist des interactions parton-milieu. Ces
corrections sont proportionnelles à la taille caractéristique du milieu (L) et inversement pro-
portionnelles à la virtualité du parton Q2. Le modèle AMY (Arnold-Moore-Yaffe) [202][203]
utilise quant à lui une approche de théorie des champs à température finie pour décrire
la perte d’énergie des partons dans un milieu à très haute température. Outre les modèles
de QCD perturbative, il existe également d’autres approches dont la plus connue est l’ap-
proche AdS/CFT [204] (qui est basée sur la dualité entre une théorie quantique des champs
à couplage fort et une théorie gravitationnelle classique à couplage faible).
Les différents modèles peuvent être comparés à l’aide du coefficient de transport q̂ déter-

miné par ajustement de données expérimentales. Selon le modèle considéré, le paramètre q̂
peut être un paramètre direct de l’ajustement ou bien dériver d’un des paramètres utilisés
(densité de gluon dN/dy pour les modèles GLV et HT, température du milieu T pour le mo-
dèle AMY). La perte d’énergie est par exemple calculée dans les modèles BDMPS et GLV
suivant les relations :

∆E ∝ α3
sCR

1
AT

dNg

dy L (GLV), ∆E ∝ αsCR < q̂ > L2 (BDMPS)

où CR représente le facteur de Casimir (4/3 pour les quarks, 3 pour les gluons), AT = πR2
A

la taille transverse du milieu, L l’épaisseur du milieu et dNg/dy la densité de gluons. La
comparaison entre les différents modèles est cependant rendue difficile à cause des approxi-
mations utilisées dans le calcul des interactions parton-milieu (en particulier la constante de
couplage α), les processus pris en compte (avec ou sans perte d’énergie collisionnelle) et le
profil spatio-temporel du milieu (statique, expansion à une dimension, expansion 3D hydro-
dynamique). Nous nous concentrerons dans la suite de ce chapitre sur la perte d’énergie des
partons dans les modèles GLV et BDMPS, qui sont les modèles les plus fréquemment utilisés
pour l’étude de la fragmentation.

11.1.2 Fraction d’énergie perdue P(ε,q̂)

Les modèles GLV et BDMPS déterminent la perte d’énergie du parton en se basant sur
une estimation du spectre de gluons rayonnés. Chaque émission de gluon étant considérée
comme indépendante, la fraction d’énergie perdue ε en n interactions suit une distribution
poissonnienne :

Pn(ε, q̂) =
∞∑

n=0

1

n!

[ n∏

i=1

∫
dωi

dI(ωi)

dωi

]
δ(ε−

n∑

i=1

ωi)exp

[
−
∫
dω

dI

dω

]
(11.3)

Le paramètre dI/dω représente la distribution des gluons rayonnés en fonction de leur énergie
ω, cette distribution dépendant directement du coefficient de transport q̂. En sommant sur
l’ensemble des interactions, il est alors possible d’estimer la fraction totale d’énergie perdue
par le parton initial dans le milieu P(ε,q̂) [205].

La fraction d’énergie perdue P(ε,q̂) est calculée dans l’hypothèse d’un milieu statique et
uniforme. Afin de tenir compte de l’expansion du milieu dans les collisions noyau-noyau, le
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coefficient de transport q̂ est modifié selon la relation :

q̂(L) =
2

L2

∫

τ0

dτ(τ − τ0)q̂(τ) (11.4)

Une dépendance en loi de puissance de la densité du milieu sous la forme ρ(τ) ∝ τ−α conduit
à une expression du coefficient de transport q̂(τ) = q̂(τ0)(τ0/τ)α. Cette dépendance 2 permet
de reproduire de manière approximative les effets de l’expansion du milieu en modifiant la
valeur de q̂ au cours de la propagation du parton. Des développements récents cherchent à
inclure une description hydrodynamique complète de l’expansion du milieu afin de décrire le
plus précisément possible le lien entre les effets collectifs et les effets de pertes d’énergie au
niveau partonique.

11.1.3 Approches analytiques des fonctions de fragmentation modifiées

Les modèles de perte d’énergie décrits précédemment permettent d’inclure la totalité des
effets du milieu dans la modification de la fonction de fragmentation partonique. Les mo-
dèles GLV et BDMPS-ASW déterminent la fonction de fragmentation modifiée comme la
convolution de la fonction de fragmentation dans le vide et de la fraction d’énergie perdue
dans le milieu P(ε,q̂) :

Dmilieu
i→h (x′, Q2) ≈ P (ε; q̂)⊗Dvide

i→h(x,Q2) (11.5)

Il existe deux grandes approches analytiques pour le calcul des fonctions de fragmentation
modifiées. La première approche, proposée par Wang Huang et Sarcevic [206], considère la
perte d’énergie comme une simple diminution de l’énergie initiale du parton. La dépendance
de la fragmentation en fonction de la virtualité Q2 est identique au cas du vide, et la fonction
de fragmentation d’un parton d’énergie initiale E est donnée par la relation :

xDmilieu
i→h (x,Q2) =

∫ (1−x)Ei

0
dεP (ε)x∗Dvide

i→h(x∗, Q2) +

∫ Ei

xEi

dεP (ε)
xEi
ε
Dvide
g→h(

xEi
ε
,Q2)

(11.6)
Le premier terme correspond à la fragmentation dans le vide d’un parton d’énergie E en un
hadron transportant une fraction d’énergie x∗ = x/(1−ε/E), où ε représente l’énergie perdue
par le parton intial, alors que le second terme prend en compte la fragmentation du gluon
rayonné par le parton. Les limites de cette approche proviennent finalement du fait qu’elle
ne considère l’émission que d’un seul gluon d’énergie ω = ε au lieu d’un ensemble de gluons
d’énergie totale

∑
i ωi = ε. Cette approximation ne permet pas d’intégrer les modifications de

la fonction de fragmentation liées aux gluons rayonnés eux-mêmes, ainsi que les interactions
secondaires pouvant se produire entre les gluons rayonnés et le milieu.
Le seconde approche analytique modifie la dépendance en Q2 des fonctions de fragmen-

tation. La modification de la fragmentation revient à reformuler les équations d’évolution
DGLAP pour inclure les effets de la perte d’énergie du parton [102]. Elle consiste en une

2. Le terme α = 1 correspond à une expansion purement longitudinale, ce qui est le cas dans la plupart
des modèles théoriques de perte d’énergie.
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modification des fonctions de splitting P(z) qui déterminent les probabilités de fragmenta-
tion des partons. Deux modèles ont été proposés pour déterminer les fonctions de splitting
modifiées par les pertes d’énergie radiatives 3 :

P (z)milieu ∝ P (z)vide(1 + fmilieu) où fmilieu détermine le nombre de gluons rayonnés ([102])

P (z)milieu = P (z)vide + ∆P (z,Q2) avec ∆P (z,Q2) = 2πQ2

αs
dImilieu

dzdq2
([207])

La figure 11.2 montre une comparaison des fonctions de fragmentation modifiées obtenues
à partir des deux modèles analytiques décrits précédemment. Les écarts entre les deux pré-
dictions théoriques sont d’autant plus faibles que l’énergie du parton est importante. Pour
les valeurs de Q2 = 2 GeV2, l’écart est supérieur à un ordre de grandeur pour les grandes
valeurs de z.
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Figure 7: Left: Fragmentation function for gluons onto pions computed with our medium-modified

evolution (solid lines) and through the standard convolution with the quenching weights (dashed

lines), for Ejet = 40 GeV, q̂ = 1 GeV2/fm, L = 6 fm, and different Q2 = 2, 300 and 1600 GeV2.

Right: Ratio of the fragmentation function for gluons onto pions in a medium with the same

characteristic as for the plot on the left, over the fragmentation function in the vacuum, for the

same values of Q2.

splitting as well as on secondary emissions, which are included automatically . The explicit

dependence of the virtuality in the evolution makes it possible to study its effects for the

first time in the case of medium-induced gluon radiation. As expected, we obtain a softening

of the fragmentation function. This softening increases with increasing virtuality, and with

increasing medium length and density. In our implementation any effect on the initial

non-perturbative condition is neglected since we do not expect it to change if large enough

virtualities and parton energies are studied. The limited momentum range of applicability

of the DGLAP fits [33] makes not possible to predict with reliability the crossing point

between parton suppression at large-z and parton enhancement at small-z, which also

depends on the initial conditions chosen for the evolution [33, 35]. This limitation will be

circumvented in future works.

One of the interests of our formalism is the simplicity to be included into a Monte Carlo

code by implementing a medium-induced splitting probability ∆P (z, t) into the parton

shower evolution routines. Work along this direction is in progress. In particular, it

will allow to compute observables beyond single inclusive production, like two-and three-

particle correlations, and compare the results with other approaches [41]. It will also allow

to study the possible interplay between the finite formation time of the partons radiated

in subsequent emissions and the length of the medium, which has been ignored here as it

is ignored in existing formalisms of energy loss [11 – 14].

Finally, we have provided an independent check on the quality of the Poisson approx-

imation for the calculation of inclusive particle production at high pT . We have presented

analytical and numerical checks of this approximation, and shown the agreement between

both approaches for large values of the fraction of momentum. These are precisely the rel-

evant values for the calculation of the inclusive particle suppression in heavy-ion collisions.

This provides a connection with all the previous phenomenology and further supports the

– 12 –

Figure 11.2: Fonction de fragmentation des gluons en pions calculées à l’aide des fonctions de
splitting modifiées (ligne solide) et à l’aide de la fraction d’énergie perdue P(ε; q̂)
(ligne pointillée) pour Ejet = 40 GeV, q̂ = 1 GeV2/fm, L = 6 fm, et différents
Q2 = 2, 300 and 1600 GeV2 [207].

Les calculs analytiques des fonctions de splitting modifiées P (z) permettent ainsi de prédire
l’effet de la perte d’énergie sur la fragmentation partonique. La fragmentation est générale-
ment représentée via la distribution du paramètre ξ = log(Eparton/Ehadron). Dans le vide, la
distribution dN/dξ présente une structure caractéristique appelée "Hump-Back Plateau" 4.
Les calculs théoriques prédisent une modification de cette structure due aux pertes d’énergie
du parton dans le milieu. La figure 11.3 représente la distribution en énergie des hadrons
pour un parton d’énergie initiale E = 7 GeV et E = 100 GeV. Les distributions dans le vide
sont comparées aux données expérimentales obtenues par les expériences TASSO et OPAL

3. Dans ces deux approches, il est également possible d’inclure les effets des pertes d’énergie collisionnelles
en intégrant les processus de diffusion parton-parton.

4. Cette structure est liée à l’approximation du logarithme dominant modifié (MLLA) permettant de
resommer les divergences logarithmiques qui apparaissent dans le calcul des équations d’évolution DGLAP.
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afin de confirmer la validité des approches analytiques en l’absence de milieu, puis à celles
obtenues dans le cas d’un milieu déconfiné de quarks et de gluons. Il apparait alors que l’in-
teraction du parton dans le milieu se traduit par une augmentation du nombre de hadrons
de basse énergie (grand ξ) et par une diminution du nombre de hadrons de haute énergie
(bas ξ). Cela s’explique par la radiation de nombreux gluons mous lorsque le parton initial
perd son énergie dans le milieu.
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Fig. 42. – Left: Medium over vacuum ratio of the gluon fragmentation functions plotted for a medium with

q̂ = 10 GeV2/fm (green) and q̂ = 50 GeV2/fm (red), and for two different medium lengths: L = 2 fm (solid)

and 6 fm (dashed). Figure taken from Ref. [304]. Right: Single inclusive hadron distribution as a function

of ξ = log
(
Ejet/p

)
. e+e− data from TASSO [307] and OPAL [308] compared to vacuum-FFs (solid curves)

and to medium-FFs (dashed/dotted curves, obtained with fmed = 0.8 in the LO splitting functions). Figure
taken from Ref. [303].

functions defined by the quenching weights, Eq. (45) is formally recovered. In the approach of

Borghini and Wiedemann [303], the medium effect is argued to modify the splitting functions by

enhancing its singular part; for example, the quark splitting function is

Pqq(z) = CF

(
2(1 + fmed)

(1 − z)+ − (1 + z)
)
,(51)

where fmed = 0 gives back the vacuum Pvac. An interesting application is the medium mod-

ification of the single-inclusive energy distribution of hadrons inside a jet, dN/dξ, where ξ =
log(Ejet/Eh). This leads to a distortion of the usual hump-back plateau, predicted within the
Modified Leading Logarithmic Approximation (MLLA) of QCD and observed experimentally

in e+e−, DIS and hadronic collisions (for a review see e.g. [309]). As can be seen in Fig. 42
(right), the number of highly-energetic particles (small ξ) is suppressed while the soft gluon
yield is enhanced at large ξ due to energy-momentumconservation. The inclusion of 2→ 2 elas-

tic rescatterings, which accounts for elastic energy loss, can be accomplished by supplementing

the DGLAP evolution equations with a gain and loss term, which describes partons scattered into

and away from a given kinematic variable bin, and is also suitable for a Monte Carlo interpreta-

tion [305].

Several parton showers in the medium have been recently developed [310-314]. As com-

pared to analytic calculations, parton showers have many advantages such as conserving energy-

momentum throughout the evolution. They allow one to directly compare their multiple-differential

hadronic distributions to experimental data, and thus give a better access to the microscopic dy-

namics. They also allow to study the particle and energy flow inside a jet. As an example,

first results from the JEWEL parton shower [310], indicate that the distribution of 1, 2 and 3

jets events (reconstructed using a given granularity parameter, ycut) is sensitive to the elastic or

inelastic nature of parton rescatterings.

Applications of modified DGLAP equations have been studied only in the context of A +

A collisions (see, e.g., [215, 315]) testable at RHIC and LHC. It would be very interesting to

also study jet modifications in e + A collisions, which would be accessible at the Electron-Ion

Figure 11.3: Distribution inclusive des hadrons en fonction de ξ. Les données de collisions e+e−
de TASSO et OPAL sont comparées aux fonctions de fragmentation dans le vide
(ligne solide) et aux fonctions de fragmentation modifiées par le milieu (ligne poin-
tillées/tiretées, obtenues avec fmilieu = 0.8 dans le calcul des fonctions de splitting
[102].

11.2 Approches Monte Carlo de la fragmentation

Les approches de type Monte Carlo présentent un certain nombre d’avantages comparées
aux méthodes analytiques développées dans la section précédente. Elles permettent notam-
ment de satisfaire les règles de conservation d’énergie-impulsion durant toute l’évolution de
la fragmentation partonique. En tenant compte du bruit de fond de la collision, les approches
Monte Carlo fournissent également des résultats plus facilement comparables aux résultats
expérimentaux, en particulier pour les observables multi-hadroniques telles que les jets. Les
modèles Monte Carlo développés pour l’étude de la perte d’énergie des partons sont princi-
palement basés sur les algorithmes de développement des gerbes partoniques utilisé par les
générateurs de type PYTHIA ou HERWIG.

11.2.1 Gerbe partonique dans le vide

La fragmentation des partons dans le vide est modélisée par une approche logarithmique à
l’ordre dominant (leading-log (LL)) considérant uniquement des fragmentations élémentaires
du type a→ b+ c (ou a, b et c sont des partons). La cinématique de chaque fragmentation
est caractérisée par la virtualité Q2 et par la fraction d’énergie z portée par le parton b.
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Dans le générateur PYTHIA, la virtualité Q2 est associée à la masse invariante carrée du
parton (Q2 = m2

a) 5. Il est alors d’usage d’introduire la variable t dans le calcul de la gerbe
partonique :

t = ln(
Q2

ΛQCD
)⇔ dt = dln(Q2) (11.7)

À une valeur de virtualité t donnée, la probabilité qu’une division a → b + c se produise
est déterminée à partir de l’intégrale des fonctions de splitting sur l’ensemble des valeurs de
z autorisées :

Ia→bc(t) =

∫ z+(t)

z−(t)
dz
αs
2π
Pa→bc(z) (11.8)

Le domaine accessible à la fraction d’énergie z (z− < z < z+) est dans ce cas directement
reliée à la masse des partons produits :

z± =
1

2

[
1 +

M2
b −M2

c

M2
a

± | ~pa|
Ea

√
(M2

a −M2
b −M2

c )2 − 4M2
bM

2
c

M2
a

]
(11.9)

où M2
i = Q2

i + m2
i avec mi la masse nue du quark (ou zéro pour un gluon). La densité de

probabilité qu’une division se produise à la virtualité t est finalement donnée par la relation :

dPa
dt

=

[∑

b,c

Ia→bc(t)
]
exp

[
−
∫ t

t0

dt′
∑

b,c

Ia→bc(t
′)
]

(11.10)

Le premier terme de l’équation 11.10 correspond à la probabilité qu’une division se produise
à la virtualité t, alors que le second terme assure la conservation de la probabilité totale
(aucune division avant la virtualité t). L’équation est résolue de manière itérative par un
algorithme de développement de gerbe (type PYSHOW dans PYTHIA) afin de décrire la
gerbe partonique. À chaque division, la virtualité du parton initial diminue jusqu’à atteindre
la virtualité limite t0 = Q2

0 à laquelle le parton est extrait de la gerbe. Cette valeur limite
correspond à l’échelle d’apparition des divergences dans les calculs perturbatifs (Q0 ≈ 1

GeV). Dans le cas où la virtualité est associée à la masse invariante, Q0 est utilisé pour
dériver les masses effectives des partons produits par la fragmentation :

meff,g =
1

2
Q0, meff,q =

√
m2
q +

1

4
Q2

0 (11.11)

Un parton n’est alors autorisé à se diviser que lorsque sa masse est supérieure à la somme
des masses effectives des particules les plus légères qu’il puisse produire.
L’approche logarithmique à l’ordre dominant comporte cependant des effets d’interférences

destructives dans les régions d’émission pour lesquelles l’angle d’émission du parton secon-
daire (θb) est supérieur à celui avec lequel le parton primaire a lui-même été émis (θa). Pour
tenir compte de ces effets les générateurs Monte-Carlo applique un classement angulaire dé-
croissant pour l’émission des partons. Ce classement peut-être obtenu soit directement par la
résolution des équations d’évolution (HERWIG), soit par ajout d’un veto lorsque le parton

5. Il est également possible d’utiliser l’impulsion transverse partonique pT,a comme variable cinématique.
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émis ne respecte pas le classement angulaire (PYTHIA). L’angle d’émission est dans ce cas
calculé à partir de l’approximation :

θa ≈
pT,a
Eb

+
pT,b
Eb
≈
√
za(1− za)ma

( 1

zaEa
+

1

(1− za)Ea
)

=
1√

za(1− za)
ma

Ea
(11.12)

11.2.2 Gerbe partonique dans un milieu déconfiné

La majorité des programmes Monte Carlo modélisant la perte d’énergie des partons sont
basés sur l’approche de gerbe partonique développée précédemment. Plusieurs effets peuvent
venir affecter la cascade partonique en présence d’un milieu dense QCD. Parmi ces effets,
les plus importants sont le rayonnement de gluons (perte d’énergie radiative), les diffusions
parton-parton (perte d’énergie collisionnelle), l’échange de charges de couleur avec le milieu
et l’évolution spatio-temporelle du milieu. Les effets liés à la perte d’énergie dans le milieu
sont généralement pris en compte soit par le biais d’une modification des fonctions de divi-
sion Pa→bc(z) (JEWEL [208][209], Q-PYTHIA [210][211][212]), soit par une modification de
la virtualité des partons (YaJEM [213][214]). Nous nous concentrerons dans ce chapitre sur
la première approche en présentant deux programmes Monte-Carlo différents : JEWEL et
Q-PYTHIA.

Jet Evolution With Energy Loss

JEWEL modélise l’évolution de la cascade partonique en présence d’un milieu QCD dense.
Les pertes d’énergie du parton dans le milieu sont modélisées à la fois par des diffusions
(perte collisionnelle) et par un rayonnement de gluons (perte radiative). La gerbe partonique
obtenue est finalement interfacée avec un modèle d’hadronisation (variante du modèle des
cordes) en faisant l’hypothèse que l’hadronisation a lieu en-dehors du milieu. La particularité
de JEWEL réside dans la prise en compte des pertes d’énergie collisionnelles dont l’impact
sur la fragmentation des partons est différent de celui des pertes d’énergie radiative.
La fragmentation des partons dans le vide est similaire à celle proposée par PYTHIA. Le

milieu est quant à lui décrit comme un ensemble de partons sous la forme d’un gaz parfait
de température constante T. Les pertes d’énergie radiatives sont modélisées en modifiant les
fonctions de splitting dans le vide P videa→bc(z) sous la forme (section 11.1.3) :

Pmilieua→bc (z) = (1 + fmilieu)P videa→bc(z) (11.13)

Les pertes d’énergie collisionnelles sont quant à elles modélisées par une fonction de diffusion
K(z,Q2) qui dépend de la densité du milieu et de la section efficace de diffusion parton-
parton. Il est ainsi possible de définir une équation d’évolution DGLAP modifiée qui tient
compte à la fois des diffusions parton-parton et du rayonnement de gluons [215] :

∂D(x,Q2)

∂lnQ2
=

∫ 1

x

dz

z

[
αs(Q

2)

2π
2P (z)D(

x

z
,Q2) + α2

s(Q
2)K(z,

x

z
E,Q2)D(

x

z
,Q2)

]

−
∫ 1

0
dz

[
αs(Q

2)

2π
2P (z)D(x,Q2) + α2

s(Q
2)K(z, xE,Q2)D(x,Q2)

] (11.14)
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Q-PYTHIA

Le programme Monte-Carlo Q-PYTHIA modélise également les effets de perte d’énergie
via une modification des fonctions de division Pa→bc(z). Contrairement à JEWEL, seules les
pertes d’énergie radiatives sont prises en compte. Les fonctions de splitting sont dans ce cas
modifiées par l’ajout d’un terme supplémentaire ∆P relié aux paramètres cinématiques du
parton (z,E,t) et aux caractéristiques du milieu (q̂,L) (section 11.1.3) :

Pmed(z) = P vide(z) + ∆P (z, t, q̂, L,E) (11.15)

L’estimation du terme ∆P se base principalement sur la distribution en énergie des gluons
rayonnés dI/dω, déterminé de manière analytique à l’aide du modèle BDMPS. Les effets
d’interférence entre la variable d’évolution de la gerbe partonique (virtualité t) et le dévelop-
pement spatio-temporel du milieu (L) sont pris en compte par une correction supplémentaire
basée sur le temps (longueur) de formation du gluon émis lg = 2ω/k2

T . Le parton initial in-
teragit avec un milieu de dimension L puis, après la première émission de gluon, le parton
interagit avec un milieu de dimension corrigée L − lg. Cela permet de modifier à chaque
interaction la variable L dans le calcul de la fonction de splitting modifiée ∆P (z, t, q̂, L,E).

11.3 Applications numériques

Les approches Monte-Carlo permettent d’estimer les pertes d’énergie du parton dans le
milieu et de quantifier ainsi les modifications des fonctions de fragmentation partonique.
En utilisant les prédictions du programme Q-PYTHIA, il peut être intéressant d’estimer
la sensibilité de la mesure des corrélations photon-hadron dans le cas d’interactions parton-
milieu plus ou moins importantes. L’idée de cette étude consiste donc à déterminer le rapport
des fonctions de fragmentation en présence ou non d’un milieu de type plasma de quarks-
gluons, et d’estimer la sensibilité de la mesure des corrélations en se basant pour cela sur
les incertitudes expérimentales sur la distribution f(xE) obtenues à partir de l’analyse des
collisions proton-proton.
La première étape de cette étude est de reproduire la fonction de fragmentation partonique

à partir d’une simulation PYTHIA gamma-jet dans un intervalle pγT = 10-20 GeV/c. Un
algorithme de cône de rayon R = 1 permet de reconstruire la distribution en énergie des
hadrons produits par fragmentation du parton initial puis de déterminer la fonction de
fragmentation zT telle que :

zT =
−~p parton

T · ~p hadron
T

|~p parton
T |2

(11.16)

L’algorithme est ensuite appliqué sur des simulations d’événements gamma-jet produites
dans Q-PYTHIA. Dans Q-PYTHIA, l’intensité de la perte d’énergie du parton (quenching)
est déterminée par deux paramètres : le coefficient de transport q̂ et la longueur de milieu
L. Les simulations utilisées dans cette étude correspondent à une longueur L = 5 fm et à
un coefficient de transport q̂ = 1, 5 et 10 GeV2/fm. Les fonctions de fragmentation obtenues
dans le vide (PYTHIA) et en présence d’un milieu (Q-PYTHIA) sont représentées sur la
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figure 11.4 (gauche), tandis que la figure 11.4 (droite) représente le rapport des fonctions de
fragmentation du milieu sur celle dans le vide. Elle indique une augmentation des hadrons de
bas-pT et une diminution des hadrons de haut-pT , avec un effet d’autant plus important que
la valeur de q̂ est grande (notons que l’écart est plus marqué entre q̂ = 1 et q̂ = 5 GeV2/fm
qu’entre q̂ = 5 et q̂ = 10 GeV2/fm).
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Figure 11.4: Gauche : fonctions de fragmentation de hadrons inclusifs dans le vide et dans le mi-
lieu pour une longueur de milieu L = 5 fm et différents coefficients de transport q̂ :
Droite : rapport des fonctions de fragmentation de hadrons inclusifs dans le milieu
sur celle dans le vide pour une longueur de milieu L = 5 fm et différents coefficients
de transport q̂. Les incertitudes sont obtenues par propagation des incertitudes ex-
périmentales déterminées dans l’analyse des corrélations photon-hadron en collision
proton-proton.

Afin d’évaluer la sensibilité de la mesure aux prédictions théoriques, les incertitudes expé-
rimentales déterminées à partir de l’analyse des collisions proton-proton ont été utilisées pour
évaluer l’incertitude sur le rapport des fonctions de fragmentation. Il s’agit cependant d’une
estimation approximative puisque les incertitudes sur la fonction de fragmentation dans les
collisions Plomb-Plomb ont été considérées identiques à la mesure en proton-proton et qu’au-
cune analyse précise n’a été réalisée concernant les éventuelles corrélations. La figure 11.4
(droite) indique que la mesure de ce rapport avec les données actuelles devrait être sensible
aux modifications de la fragmentation dues au milieu même pour des valeurs de q̂ faibles (q̂ >
1 GeV2/fm), bien que cette mesure ne permette pas d’accéder à une caractérisation précise
du milieu. En augmentant la statistique d’un facteur 10, il est alors réaliste d’espérer pouvoir
apporter des contraintes supplémentaires sur l’intensité de la perte d’énergie du parton dans
le milieu ainsi que sur les caractéristiques de la redistribution de l’énergie perdue.



206 Perte d’énergie et fragmentation des partons



Conclusion

Le travail de thèse présenté dans ce manuscrit s’est déroulé dans le contexte particulier du
démarrage du Large Hadron Collider (LHC). Un long chemin a été parcouru depuis les pre-
mières données de collisions proton-proton et Plomb-Plomb enregistrées au CERN au cours
de l’année 2010. Les expériences ALICE, ATLAS, et CMS ont produit de nombreux résultats
qui ont permis de préciser les propriétés générales du plasma de quarks-gluons (température,
viscosité, comportements collectifs, perte d’énergie des partons (RAA, jets, quarkonia), ...).
Les mesures réalisées au LHC et au Relativistic Heavy Ion Collider (RHIC) ont ainsi permis
en quelques années des avancées majeures dans la compréhension du PQG et de l’interaction
forte dans son ensemble. Au niveau théorique, l’objectif principal est la modélisation d’un
scénario complet de l’évolution du milieu allant des fluctuations initiales à la production des
hadrons dans l’état final. Pour atteindre cet objectif, il reste cependant à affiner les mesures
afin de pouvoir comparer le plus précisément possible les observables expérimentales aux pré-
dictions théoriques de la QCD sur réseau et des modèles phénoménologiques. Beaucoup de
questions restent en effet encore en suspens. Parmi elles, le transport des partons de haut-pT
dans le milieu déconfiné de quarks et de gluons fait l’objet de recherches intensives. Malgré
les progrès impressionnants réalisés depuis la mise évidence du phénomène de perte d’énergie
des partons au RHIC, les caractéristiques de l’interaction parton-milieu restent encore mal
connues à ce jour. Une meilleure compréhension de ce phénomène passe par la multiplica-
tion des observables expérimentales accessibles grâce à la complémentarité des différentes
expériences s’intéressant à la physique des ions lourds. Parmi ces différentes expériences, les
performances du détecteur ALICE permettent d’étudier la perte d’énergie des partons dans
une gamme en énergie intermédiaire comprise entre 2 et 50 GeV. Cette gamme en énergie,
pour laquelle les effets de la perte d’énergie doivent théoriquement être les plus importants,
est l’une des plus difficile d’accès expérimentalement.

Durant cette thèse, nous nous sommes intéressés à la mesure de la fragmentation des
partons dans les collisions proton-proton et Plomb-Plomb auprès de l’expérience ALICE.
La modification de la fragmentation, étudiée à partir de la mesure des corrélations entre
une particule de référence (photon, π0) et les hadrons chargés d’un même événement, doit
permettre d’accéder à la manière dont le parton interagit avec le milieu. Ce manuscrit pré-
sente l’ensemble des aspects relatifs à l’étude des corrélations photon/π0-hadron, à savoir la
reconstruction des données expérimentales, l’identification des photon/π0 et enfin l’analyse
des corrélations permettant d’obtenir les observables physiques associées à la mesure de la
fragmentation. L’étude des corrélations photon-hadron nécessite l’utilisation conjointe des
méthodes de détection de particules chargées (ITS, TPC) et neutres (calorimètre EMCal).
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Le calorimètre EMCal, détecteur central dans ce travail de thèse, est utilisé à la fois pour
la sélection des particules neutres de haut-pT , la mesure de leur énergie et leur identifica-
tion. Son installation tardive a fortement réduit la possibilité d’avoir une bonne connaissance
intrinsèque de ce détecteur avant le démarrage du LHC. C’est pourquoi une grande partie
de cette thèse a été consacrée à une étude détaillée des performances du calorimètre. Un
effort important a été fourni pour la caractérisation du détecteur EMCal à partir des tests
sous faisceau d’électrons réalisés au CERN en 2010. Les performances du détecteur ont été
déterminées à partir de l’étude de la répartition spatiale de l’énergie déposée par les gerbes
électromagnétiques. Les tests sous faisceau ont également permis une validation de la simu-
lation du détecteur EMCal réalisée à l’aide des logiciels Geant3 et Geant4. Cette validation
a mis en évidence des différences encore non-expliquées entre les performances simulées et
réelles, en particulier au niveau de la non-linéarité en énergie et de la forme des gerbes élec-
tromagnétiques. L’ensemble de ce travail a finalement permis de mieux prendre en compte
les biais expérimentaux dans l’analyse des corrélations photon/π0-hadron.

La suite du manuscrit est consacrée à la mesure des corrélations photon/π0-hadron, dont
l’analyse a tout d’abord porté sur les collisions proton-proton avant d’être appliquée aux
collisions Plomb-Plomb. Un des points clés de cette analyse repose sur l’identification des
photons prompts, qui est rendue difficile par la faible section efficace de production des pro-
cessus photon-jet et par l’importance de la contamination constituée principalement de pho-
tons de décroissance provenant des mésons π0. L’identification des photons et des π0 repose
sur deux critères principaux que sont la forme des clusters électromagnétiques et l’isolation
des photons. La méthode d’ajustement utilisée pour l’estimation de la pureté, développée
pour cette analyse, a permis de corriger les mesures de corrélations de la contamination
résiduelle après l’identification des photons prompts. L’analyse des collisions proton-proton
a abouti à une étude détaillée des sources d’incertitudes qui a permis d’affiner la stratégie
future. Cette analyse a finalement démontré la validité de l’approche utilisée pour la mesure
de la fragmentation partonique à partir des corrélations photon-hadron, et mis également
en évidence la possibilité d’utiliser les corrélations π0-hadron sachant que le π0 possède une
sensibilité différente au milieu. Ce résultat représente une première mesure de la fragmen-
tation par corrélations photon-hadron dans cette gamme d’énergie, bien que le manque de
statistique empêche une comparaison précise des résultats expérimentaux avec les modèles
théoriques.
Pour les collisions Plomb-Plomb, une étude préliminaire a montré que l’important bruit

de fond provenant des collisions nucléon-nucléon sous-jacentes impose de mettre en oeuvre
une stratégie d’analyse plus complexe. En effet la procédure d’isolation des photons nécessite
d’évaluer au préalable le bruit de fond moyen avant l’application du critère d’isolation. De
plus, la production de particules par les collisions sous-jacentes représente une contribution
importante au spectre en énergie des hadrons produits, qu’il convient de soustraire pour
accéder à la fonction de fragmentation associée à la collision dure. Il est ainsi nécessaire de
mettre en oeuvre à court terme une méthode d’estimation précise et non-biaisée de la contri-
bution du bruit de fond en tenant compte de différents effets (fluctuations, flot elliptique,
perte d’énergie à grands angles, ...). Les mesures préliminaires des collisions Plomb-Plomb
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de centralité 0-40% démontrent cependant la possibilité d’identifier les photons prompts
dans un environnement à haute multiplicité. Les mesures de corrélations angulaires et de
fragmentation, bien que très préliminaires, ont permis de définir une stratégie d’analyse des
corrélations photon-hadron dans l’expérience ALICE. Dans l’avenir, une augmentation de
la statistique sera indispensable pour accéder aux fonctions de fragmentation partonique et
à leur modification en présence du plasma de quarks-gluons. Les futures prises de données
prévues entre 2015 et 2018, ainsi que l’installation du calorimètre DCal, devraient permettre
d’augmenter la statistique d’un facteur 10 et d’atteindre ainsi une précision suffisante pour
une confrontation des mesures expérimentales aux modèles théoriques. D’autres améliora-
tions sont également envisageables, en particulier avec l’utilisation de méthodes multivariées
permettant d’optimiser les critères de sélection des photons prompts.

Au-delà de 2018, les perspectives de l’expérience ALICE devraient apporter une statis-
tique suffisante pour permettre une analyse différentielle de la fragmentation en fonction de
différents paramètres tels que l’énergie ou la centralité des collisions. L’identification des par-
ticules, atout majeur de l’expérience ALICE, rendra vraisemblablement possible une étude de
la dépendance de la perte d’énergie en fonction de la nature du parton considéré, en particu-
lier pour les saveurs lourdes. Le niveau de précision des mesures qui seront réalisées, associé
à la complémentarité des expériences du LHC et du RHIC, devrait finalement permettre
de discriminer efficacement les différents modèles de perte d’énergie et contraindre les para-
mètres qui y sont associés, améliorant ainsi notre compréhension du plasma de quarks-gluons
et de la matière nucléaire dans son ensemble.
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Résumé
La théorie de l’interaction forte, ou Chromodynamique Quantique (QCD), prédit l’existence d’une

nouvelle phase de la matière nucléaire à très haute température et/ou très haute densité. Cet état est
composé de quarks et de gluons déconfinés connu sous le nom de plasma de quarks-gluons (PQG).
La mesure de sa composition et de ses propriétés est un enjeu important pour la physique nucléaire
du XXIème siècle afin de parvenir à une meilleure compréhension des symétries et des mécanismes
fondamentaux à l’origine du confinement des quarks au sein des hadrons et de l’interaction forte
dans son ensemble.

L’accélérateur LHC (Large Hadron Collider) au CERN (Organisation Européenne pour la Re-
cherche Nucléaire) permet d’atteindre les conditions thermodynamiques nécessaires à la formation
du plasma de quarks-gluons à l’aide de collisions d’ions lourds (Pb) ultra relativistes. L’expérience
ALICE (A Large Ion Collider Experiment) permet d’accéder à un grand nombre d’observables pour
caractériser le PQG à partir de la reconstruction et de l’identification des particules produites lors des
collisions. Parmi ces observables, la perte d’énergie des partons (quarks, gluons) de haute impulsion
transverse permet une étude des caractéristiques du milieu telle que sa densité et sa température.
La perte d’énergie des partons est mise en évidence par la modification de la distribution en énergie
des hadrons produits par fragmentation.

Cette thèse s’articule autour de l’analyse des corrélations photon-hadron dans le but d’étudier
la modification de la fragmentation partonique par le plasma de quarks-gluons. La première partie
de cette thèse est consacrée à la caractérisation du calorimètre électromagnétique EMCal, détec-
teur central pour la mesure en énergie et l’identification des photons. La seconde partie est dédiée
à la mesure des corrélations photon-hadron, dont l’analyse a portée sur les collisions proton-proton
d’énergie

√
s = 7 TeV, avant d’être appliquée aux collisions Plomb-Plomb d’énergie

√
sNN = 2.76

TeV. Un effort particulier a été fourni pour optimiser l’identification des photons prompts, un des
points clés de cette analyse.

Abstract
The strong interaction theory, Quantum Chromodynamic (QCD), predicts a new phase of nuclear

matter at very high temperature and/or very high density. This state is composed of deconfined
quarks and gluons known as the quark-gluon plasma (QGP). The measurement of its composition
and properties is a challenge for the nuclear physics of the 21st century and should lead to a better
understanding of the fundamental symetries and mechanisms related to the quarks confinement inside
hadrons and the strong interaction generally.

The Large Hadron Collider (LHC) accelerator at CERN (European Organization for Nuclear
Research) allows to reach the thermodynamic conditions required to create the quark-gluon plasma
using ultra-relativistic heavy ion collisions (Pb). The ALICE experiment (A Large Ion Collider
Experiment) allows to access several probes to characterize the QGP through particles reconstruction
and. Among these probes, high energy parton energy loss is used to access medium characteristics
such as density or temperature. Parton energy loss is estimated from the modification of the energy
distribution of hadrons produced by fragmentation.

This thesis is dedicated to the photon-hadron correlations analysis in order to study the modifica-
tion of the parton fragmentation due to the quark-gluon plasma. First part of this thesis is devoted
to the characterization of the electromagnetic calorimeter (EMCal), the central detector for energy
measurement and photon identification. The second part is dedicated to the photon-hadron corre-
lation measurement, for the 7 TeV proton-proton collisions and 2.76 TeV Lead-Lead collisions. An
important work has been done to improve the prompt photon identification, one of the key point of
this analysis.


