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Abstract: We present a theoretical investigation into the expansion dynamics of Rydberg-
dressed ultracold Fermi gases. The effective interaction potential induced by Rydberg
dressing significantly modifies the intrinsic properties and dynamical behavior of the quan-
tum gas. The strength and range of these interactions can be precisely tuned by varying the
intensity and detuning of the applied laser field. By employing mean-field theory and utiliz-
ing the density distribution of the atomic cloud to describe the quantum system dynamics,
we theoretically describe the time-dependent evolution of the atomic cloud during the free
expansion process, encompassing both non-interacting and unitary Fermi gases. Notably,
the specific quantum states of the ground-state atoms play a pivotal role in shaping the
effective interaction potential within the Rydberg-dressed quantum system. We elucidate
how the interaction potential influences the rate and mode of the atom cloud’s expansion
by hydrodynamic expansion arising from Rydberg-dressed atoms in distinct spin hyperfine
states. This investigation may deepen our understanding of the behavior and interactions
in quantum many-body systems and offer broad potential for future applications like the
exploration of novel quantum phase transitions and emergent phenomena.

Keywords: Rydberg-dressed ultracold Fermi gases; mean-field theory; time-dependent
evolution

1. Introduction

Ultracold atomic gases provide a versatile platform for studying quantum many-body
physics. Controlling inter-particle interactions in such quantum systems is of paramount
importance for the exploration of novel phases of matter and the investigation of many-
body quantum dynamics [1-4]. Recently, efforts have been focused on the study of dipolar
physics, where strong non-local interactions ensure the realization of novel many-body
phases, like self-organization criticality [5], supersolidity [6], and superradiant quantum
phase transitions [7]. The regime of strong dipolar couplings is easily realized by exciting
atoms to Rydberg states, which have highly excited valence electrons with a principle
quantum number of n > 1 [8]. Typically, Rydberg atoms decay on a timescale of tens
of microseconds, which is very short relative to the overall millisecond timescale of mo-
tion. Rydberg dressing effectively addresses this issue by exciting only a small number
of atoms to Rydberg states. Rather than a direct excitation to the Rydberg state, Rydberg
dressing can be used to obtain both long-lifetime and large dipolar interactions [9,10].

Owing to the highly controllable and tunable long-range interactions inherent to Ryd-
berg atoms, it is possible to simulate quantum systems with a wide range of interaction
strengths. This capability also offers a novel and powerful approach to investigating quan-
tum information science and quantum computing [11-13]. Due to the interaction between
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Rydberg atoms and background gases, particular shell-shaped structures are formed in
the quantum state [14,15]. Additionally, bosons and fermions play significant roles in
quantum statistics, causing Rydberg-dressed ultracold bosonic and fermionic atomic gases
to exhibit extremely different many-body phenomena [16,17]. Experimental research on
Rydberg dressing has predominantly focused on the interaction between Rydberg bosonic
atoms [18-20]. For ultracold Fermi gases, due to the Fermi-Dirac exclusion principle,
the interaction between atoms can be stably controlled, which provides a powerful tool for
manipulating non-local Rydberg long-range interactions. In recent years, many theoreti-
cal works have examined Rydberg-dressed Fermi gases [21,22], while more experimental
research still needs to be conducted. In experiments, ultracold Fermi gases are typically
cooled to near absolute zero using laser cooling techniques with fermions (e.g., °Li and
40K). At low temperatures, the quantum properties of ultracold Fermi gases begin to
dominate, exhibiting Fermi-Dirac statistical behavior, phase transitions, and sensitivity
to external interactions. In particular, Rydberg-dressed Fermi gases combine the strong
dipolar interaction with the unique quantum statistical behavior of fermionic systems,
which provides a new perspective for people to explore the many-body physics related
to strongly correlated quantum phenomena and offers possibilities for research on exotic
phases [23,24]. Compared with the short-range interactions in traditional ultracold atomic
systems, a Rydberg-dressed ultracold Fermi gas can precisely control non-local interactions
by adjusting the intensity and range of Rydberg excitation. For Rydberg-dressed atomic
fermions in three-dimensional optical lattices, the existence of various topological density
waves has been predicted, and their topological properties and phase transition behaviors
have been analyzed [24]. This has provided a new platform for the study of topological
density waves, which has significant theoretical significance and experimental value. In a
recent experiment, 61i atoms were loaded into a two-dimensional optical lattice, where
they were excited to a Rydberg state by a single step with a UV laser. By adjusting the laser
intensity to control the non-local interaction in real time, it was experimentally observed
that this non-local interaction significantly slowed down the density relaxation dynamics of
the gas [25]. This provides new opportunities to explore the many-body phase transitions
associated with Rydberg-dressed fermions [21,23,26].

In this article, we studied the expansion dynamics of Rydberg-dressed Fermi gases
in a three-dimensional harmonic trap. The expansion dynamics of ultracold Fermi gases
is well described by time-dependent hydrodynamics [27,28], showing the well-known
anisotropic expansions [29]. Thanks to the scale invariance, the evolution of the cloud can
be simply tracked by scaling equations [30-32]. One can use time-dependent scaling factors
A(t) = o(t)/c(0) to describe the evolution of the system, where o (t) is the cloud size at
different times t. Here, we theoretically extended this method to a Rydberg-dressed Fermi
gas. We considered the Rydberg S states, shown in Figure 1, which exhibit isotropic dipolar
interactions. The Rydberg-dressed scheme enables a long lifetime for the observation of
hydrodynamics and, thus, could be treated as an increase in the interaction energy without
angular dependence. By checking the density distributions, we found that the expansions
were clearly anisotropic, even with Rydberg nS states, which is deeply associated with
hydrodynamics. By changing the principle number 7, a positive correlation between the
principal quantum number and anisotropy was identified. Moreover, a slightly broken scale
invariance was found during the expansion dynamics. Our results establish the possibility
of tailoring the dynamics of Rydberg-dressed quantum gases far from equilibrium.
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Figure 1. (a) Schematic figure of two-photon excitation with Rydberg dressing. By carefully selecting
the parameters, the intermediate (|e)) states could be adiabatically eliminated from the system. A,
and (), are the detuning and Rabi frequencies corresponding to (|g)) to (|e)) and (|e)) to (|r)),
respectively. The right panel is an effective figure, where () and A are the effective Rabi frequency
and detuning. (b) The evolution of the aspect ratio for a non-interacting Fermi gas in state |2) with
different Rydberg dressing schemes. The aspect ratio of the cloud would break the ballistic expansion
and gradually exceed 1 at high Rydberg states. A cloud dressed with a higher principle number
would show a larger aspect ratio.

2. Method: Mean-Field Hydrodynamical Description

We first consider the Hamiltonian of a balanced two-component Fermi gas with
Rydberg dressing [33,34]:

1’ . 1 chs s
D(r) + 5 / drdr' & (1) dF (¢ )V, (r — ¥ ) D(r) D(x), 1)

where V(1) is the external potential, and the mean-field potential V,, f(r — ') can be
divided into two parts:

me(r, ) = gn(r —l—/dr URyd(r —1)n(r,t), (2)

where the first term describes the inter-particle interaction, and the second term is the
induced energy with Rydberg excitation. The coupling constant g is related to the scattering
length a; by ¢ = 47agh? /m, where g is the strength of the interatomic interactions. By in-
troducing the Euler equations %n + V - (vn) = 0, we can derive the following equation of

the velocity field:
9 Hv?
mev = ~V (- 2mf+ +Vext+gn+/dr Ugya(r' — 1)n(r, 1)), 3)

Then, we introduce the phase space density of atoms f(t,7;,v;) = f(t,x,y,2,vx,vy,0;) to
predict the time evolution equation of Rydberg-dressed Fermi gases. The dynamics of gas
are described by the total time derivative of the phase space density [35,36]:

of | of ~ 10(Vext+Viur) of
ot TV T m or 3y = Leolfl @)

where I..;[f] is an integral associated with the gas collision process. In this paper, we
address the collision integral using the relaxation time approximation, I.,;(f) ~ %fTi;fl"),
where Ty is the relaxation time related to the average time between collisions, and f;, is the
local equilibrium density in the phase space.

Through a coordinate transformation, the initial coordinate 7; is converted to a time-

dependent coordinate R;. The phase space density function is rewritten as a scalar equation,

ft,ri,v) = mﬁ)(%, ﬁ(vi — ’rl))(] = x,y,z), where fj is the equilibrium distri-
] ] i
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bution function that satisfies the equation I.,;;[fo] = 0. The scaling parameter A; = A;(t)
gives the dilation along the ith direction, while 6; = 6;(t) gives the effective temperature
in the same direction. We define the following ansatz for the nonequilibrium distribution
function: f(r,v,t) = fo(R(t), V(t)), with R; = i, V; = A;u; — A;r;. This analysis incorpo-
rates the particle density distribution implicitly, while the dependence on time is included
in the free parameter A;. The dynamics of a non-interaction Fermi gas in a harmonic trap
can be expressed as

Vi 9fo i1 w2 oo § 9nmo 9fo

)le?l — AiR; (A +wi)\i)a—vi — mH]/\JTIQI . aivz =0,

©)

Considering an ultracold Fermi gas confined in a harmonic trap, the virial theorem
can be expressed as 2Ey;, — 2Ey, + 3E;;; = 0, where Ey;;,, Ej,, and Ej;;; are the kinetic
energy, harmonic potential, and interaction energy, respectively [27]. The applicability of
the virial theorem can help us understand how to control the quantum system’s properties
by controlling the interaction potentials. For simplicity, we can transform Equation (5) into

w? 3 SEpy, 1 1

Ai + WA — —k 4 Zw? ———)=0,(i=x,y, 2), (6)
1 17" )\13 2 lEho(A? /\IH]/\]) ( y )

where we can see that the expansion dynamics can be simply described by the interaction
energy. Equation (6) would fall back to ballistic expansion while the interaction energy
Eiyt is zero, which means that the cloud would eventually evolve into a sphere for a long
expansion time. A detailed theoretical description of the energy of this part of the quantum
system is provided in Appendix A.

3. Results and Discussion

Here, we consider the °Li Fermi gas confined in a cigar-shaped harmonic trap.
A schematic configuration of the Rydberg dressing can be seen in Figure 1a, where a
two-photon Rydberg excitation process with off-resonant coupling dresses the atoms to
Rydberg nS states. The |g) state is considered to be one of the lowest hyperfine states,
1) = |F = 1/2,Mp = +1/2) or |2) = |F = 1/2, M = —1/2). The ground-state
|g) = |251,2) is coupled to state |2P3/,) and then to |r) = [nSy,,) via ¢~ and ¢ tran-
sitions. The Rabi frequency and the detuning of the first photon transition are (); and
A1, respectively. For the second photon transition, we have the Rabi frequency (), and
the detuning A,. For |A1] > |()1], the intermediate state can be adiabatically eliminated.
This results in an effective two-level system with |g) and |r), which have effective Rabi
frequencies and detunings, () = (210, /2A; and A = Aj + A, respectively. The parameters
taken in this study are as follows: the trap frequencies are wy = w, = 27t x 200 Hz and
wy = 271 x 40 Hz, the effective Rabi frequency is fixed to 3 MHz, and the effective detuning
of the two-photon process is fixed to 80 MHz with respect to state |2). This leads to a
weaker coupling to the atoms in state |1) due to the larger detuning and thus exhibits
spin-dependent dynamics. For this experimental situation, the lifetime of Rydberg states
with a principle number # larger than 40 would be more than 100 ms, about one to two
orders larger than the typical time scale of the trap. Here, we neglected the dissipations
during the expansion.

We begin by studying the dynamical expansion of a Rydberg-dressed non-interacting
Fermi gas, where the two lowest hyperfine states |1) and |2) do not collide with each other.
This is quite a simple situation, and the excitation laser dresses the atoms with different
detunings. A Feshbach resonance is used to tune the interaction of the atoms either to
the non-interacting regime with a magnetic field of B = 528 G or to the unitary limit with
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B = 832 G. For the non-interacting case, the hyperfine splitting between the two hyperfine
states is 75.6 MHz, while the value is 76.3 MHz for the unitary limit.

We study the expansion dynamics by numerically solving the dynamic Equation (6)
for Rydberg-dressed atoms with different quantum numbers (n = 40 — 60), taking the
initial boundary conditions for the atoms as A; = 1, A; = 0. The results can be seen in
Figure 1b, where the atoms are released from the anisotropic harmonic trap, with the
initial aspect ratio set to 0.2. We change the interaction by exciting the cloud to different
Rydberg states with the same detuning and Rabi frequency. The aspect ratio of the cloud is
defined as 0 (t) /0% (t) = (wzAx(t))/(wxA;(t)) by taking the initial condition as a thermal
equilibrium state.

In Figure 1b, we can see that the aspect ratio of the cloud in state |2) eventually
approaches 1 without Rydberg dressing, showing a typical ballistic expansion process.
Otherwise, as the Rydberg state increases, the asymptotic value of the aspect ratio after
evolution gradually exceeds 1, which could be regarded as hydrodynamical evolution [29].
When the principle number of the Rydberg states increases, the larger dipole interaction
certainly makes the system strongly interacting and leads to a higher aspect ratio.

We observe spin-dependent expansion dynamics for the Rydberg-dressed non-
interacting Fermi gas. As hyperfine splitting can be compared with the effective detuning
of Rydberg excitation, two-photon excitation would induce a spin-dependent interaction
strength, leading to spin-dependent expansion dynamics, as shown in Figure 2a. The ex-
pansion dynamics of the atoms in state |1) approach the ballistic expansion, indicating quite
a weak interaction strength. Nonetheless, the aspect ratio of the atoms in state |2) shows
quite different behavior, which is shown in Figure 2b. The Rydberg-dressed interaction
mainly reduces the expansion rate in the axial direction, making the ensembles anisotropic
for a long time of flight (TOF), which is similar to the expansion dynamics in strongly
interacting Fermi gases [29,37].

(a) (b)
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Figure 2. (a) The dynamical evolution of aspect ratios for different hyperfine states |1) and |2) when
dressed with n = 60 Rydberg states. (b) The density distribution of states |1) and |2) with different
times of flight (TOFs) in the unit of w,t. The atoms are partially excited to n = 60 Rydberg states,
with the Rabi frequency set to 3 MHz and an 80 MHz detuning from the |2) state.

Furthermore, we extend our study to the unitary regime. The strong scattering
between atoms redistributes the energy and momentum simultaneously, leading to the
strong coupling of the expansion dynamics for different spins. The expansion dynamics at
unitarity may thus be rewritten in the following formula:

w? 3 Eiu 1 1

A+ — — o S -
i i’M )\i H] )\]2./3 i Eho ()\1 H] )L]Z/3 )\i H] )\]

)=0,(i=xy2), @

However, quite a small deviation is found for the unitary Fermi gas with or without Rydberg
dressing, where both scenarios show obvious anisotropic expansion. This means that the
scattering interaction between two hyperfine states is sufficiently large and dominates the
expansion dynamics. Nonetheless, the Rydberg interaction would eventually increase the
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aspect ratio at sufficiently long TOFs due to the enhancement of the interaction, which can
be seen in Figure 3.
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Figure 3. The evolution of the aspect ratio for unitary Fermi gases with Rydberg dressing (red line)

and without Rydberg dressing (blue line), where the principal quantum number n of Rydberg atoms
is set to 60, with all other parameters unchanged.

To further analyze the anisotropic expansion dynamics of a Fermi gas with Rydberg
dressing, we test the scale invariance by tracking the mean square cloud size (r?) =
(x? +y? + z%). The scale invariance of the expanding gas can be determined by measuring
2(t) = m[(r*) — (r*)]/ (x - 7Uopt)o. For a scale-invariant system, the values of T2(t) are
independent of the initial density distribution and obey the formula T2(t) = #?, which has
already been demonstrated in Refs. [28,38].

However, the breaking of scale invariance symmetry was found in the Rydberg-
dressed Fermi gas, as shown in Figure 4. The emergence of a new length scale due to the
Rydberg dressing breaks the symmetry by slowing down the overall expansion dynamics.
After fitting the data for the Rydberg-dressed Fermi gas, we found x?t? scalings for both
the non-interacting and unitary Fermi gases. The expansion dynamics fell on the same
curve, with x? being about 0.91, which means that non-local Rydberg interactions break the
symmetry at a longer spatial scale with hardly any connections to the short-range scattering
interaction. This potentially offers a new method for manipulating many-body dynamics
with a high controllable interaction strength and diverse spatial dimensions.
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Figure 4. Scale-invariant expansion of a Rydberg-dressed Fermi gas. The blue and red dots represent
the non-interacting and unitary Fermi gases with Rydberg dressing, while the black solid line
represents scale-invariant expansion. The black dashed line is best fit with 12 = %242, where x?2
is 0.91.

4. Conclusions

In conclusion, we found that the long-range interactions induced by Rydberg dress-
ing continued to influence particle interactions during the free expansion of the atomic
ensemble. The effective interaction potential induced by Rydberg dressing significantly
modified the intrinsic properties and dynamical behavior of the quantum gas. Although the
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atomic gas was dressed with isotropic 1S Rydberg states, these interactions generated an
anisotropic expansion during the TOF of a non-interacting Fermi gas with Rydberg dressing.
Additionally, we observed spin-dependent anisotropic expansion, which could be used
to manipulate different states with long-range interactions. In the unitary regime, where
the scattering length diverged, the expansion times with the Rydberg-dressed interaction
barely changed the evolution of the aspect ratio. By checking the scale invariance during
the TOF, we found clear symmetry breaking for both non-interacting and unitary Fermi
gases with Rydberg dressing.

Compared with the short-range interactions in ultracold Fermi atom systems, the use
of Rydberg dressing technology allows for ground-state atoms to be excited into a superpo-
sition state composed of the ground state and a highly excited Rydberg state, exhibiting
strong long-range interactions. Experimentally, by adjusting the optical field, the non-local
long-range interactions between Fermi atoms can be precisely controlled, thereby influ-
encing the nonequilibrium dynamical behavior of the atomic gas. Our results provide
predictions for the evolution of the density in different hyperfine states and enable theoreti-
cal investigations of the strength and form of dressed interactions, which may offer a new
experimental method for testing the hydrodynamics of Rydberg-dressed quantum gases
and benefit the understanding of long-range interactions in quantum many-body systems.
This would enable the exploration of strongly correlated quantum phenomena in regimes
that are otherwise challenging to access.
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Appendix A. Description of Energy in Quantum Systems

To study the energy expression of the Rydberg-dressed Fermi quantum system,
the Gross—Pitaevskii (GP) equation can also be derived using a variational procedure

iha%@ = 6‘31}5* [39], where the energy functional E is given by

hZ
E[®] = /dr[ﬂ|v¢|2 Vit (1) 2 + §|c1>\4}, (A1)

The first term on the right side of Equation (A1) is the kinetic energy of the quantum
system Ej;,,, the second part is the harmonic energy Ej,, and the last one is the mean-field
interaction energy Ej,;. Note that the mean-field term E;;;; corresponds to the first correction
in the virial expansion for the energy of the gas. The quantum system wave function can be
written as ®(r, t) = ¢(r)exp(—iut/h), where u is the chemical potential, and ¢ is real and
normalized to the total number of particles, [ ¢?dr = N. Then, the GP equation becomes

n2v2
 2m

(

+ Vext (1) + Ving (£))¢(x) = u(r), (A2)
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The equation takes the form of a ‘nonlinear Schrédinger equation’, with the nonlinearity
arising from the mean-field term, which is proportional to the particle density n(r) = ¢?(r).
By taking advantage of the tunability of Rydberg-dressed interactions, the interaction
potential between the ground-state atoms is significantly enhanced by adjusting the Rabi
frequency and detuning the laser field, allowing for the precise control of the dressed
interactions over a wider range of parameters.

Rydberg dressing enables the Fermi gas to form both short-range and long-range
interactions, thereby modifying the effective interaction potential of the quantum system.
In this case, the density distribution depends not only on the external potential field and
the properties of the Fermi gas but also on the dressed effects of the Rydberg-state electrons.
According to the mean-field Thomas-Fermi (TF) approximation, the density distribution is
given by n(r) = ﬁ (;”—2)3/ 2(u — Vj(r))3/2. The Rydberg-dressed effect introduces a new
long-range interaction potential to the density distribution of a non-interacting Fermi gas,
thereby modifying the shape of its central region. In the edge region, the density distribution

decreases and approaches zero as r reaches the TF radius Rrp = v/242 0 % The mean-

field interaction potential energy term for this quantum system is E;; = [ % gn(r)2d3r,
and the harmonic potential energy term is Ej, = [ Vj,(r)n(r)d°r. As the electron wave

function of the nS Rydberg state is isotropic, the electron cloud exhibits spherical symmetry.

N! /6aRyd
ho

apo = (h/mwy,)'/?. By systematically adjusting variables such as the interaction strength,

2 4
The crucial parameters are E;,;;/Ep, = 1.140681 , where ag,; = - h?AP R?(’: and
harmonic trap frequency, and particle density, we can optimize the expansion dynamics
model to simulate the role of long-range interactions in atomic gases, revealing the impact
of Rydberg dressing on the behavior of atomic gases.
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