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Abstract: We present a theoretical investigation into the expansion dynamics of Rydberg-

dressed ultracold Fermi gases. The effective interaction potential induced by Rydberg

dressing significantly modifies the intrinsic properties and dynamical behavior of the quan-

tum gas. The strength and range of these interactions can be precisely tuned by varying the

intensity and detuning of the applied laser field. By employing mean-field theory and utiliz-

ing the density distribution of the atomic cloud to describe the quantum system dynamics,

we theoretically describe the time-dependent evolution of the atomic cloud during the free

expansion process, encompassing both non-interacting and unitary Fermi gases. Notably,

the specific quantum states of the ground-state atoms play a pivotal role in shaping the

effective interaction potential within the Rydberg-dressed quantum system. We elucidate

how the interaction potential influences the rate and mode of the atom cloud’s expansion

by hydrodynamic expansion arising from Rydberg-dressed atoms in distinct spin hyperfine

states. This investigation may deepen our understanding of the behavior and interactions

in quantum many-body systems and offer broad potential for future applications like the

exploration of novel quantum phase transitions and emergent phenomena.

Keywords: Rydberg-dressed ultracold Fermi gases; mean-field theory; time-dependent

evolution

1. Introduction

Ultracold atomic gases provide a versatile platform for studying quantum many-body

physics. Controlling inter-particle interactions in such quantum systems is of paramount

importance for the exploration of novel phases of matter and the investigation of many-

body quantum dynamics [1–4]. Recently, efforts have been focused on the study of dipolar

physics, where strong non-local interactions ensure the realization of novel many-body

phases, like self-organization criticality [5], supersolidity [6], and superradiant quantum

phase transitions [7]. The regime of strong dipolar couplings is easily realized by exciting

atoms to Rydberg states, which have highly excited valence electrons with a principle

quantum number of n ≫ 1 [8]. Typically, Rydberg atoms decay on a timescale of tens

of microseconds, which is very short relative to the overall millisecond timescale of mo-

tion. Rydberg dressing effectively addresses this issue by exciting only a small number

of atoms to Rydberg states. Rather than a direct excitation to the Rydberg state, Rydberg

dressing can be used to obtain both long-lifetime and large dipolar interactions [9,10].

Owing to the highly controllable and tunable long-range interactions inherent to Ryd-

berg atoms, it is possible to simulate quantum systems with a wide range of interaction

strengths. This capability also offers a novel and powerful approach to investigating quan-

tum information science and quantum computing [11–13]. Due to the interaction between
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Rydberg atoms and background gases, particular shell-shaped structures are formed in

the quantum state [14,15]. Additionally, bosons and fermions play significant roles in

quantum statistics, causing Rydberg-dressed ultracold bosonic and fermionic atomic gases

to exhibit extremely different many-body phenomena [16,17]. Experimental research on

Rydberg dressing has predominantly focused on the interaction between Rydberg bosonic

atoms [18–20]. For ultracold Fermi gases, due to the Fermi–Dirac exclusion principle,

the interaction between atoms can be stably controlled, which provides a powerful tool for

manipulating non-local Rydberg long-range interactions. In recent years, many theoreti-

cal works have examined Rydberg-dressed Fermi gases [21,22], while more experimental

research still needs to be conducted. In experiments, ultracold Fermi gases are typically

cooled to near absolute zero using laser cooling techniques with fermions (e.g., 6Li and
40K). At low temperatures, the quantum properties of ultracold Fermi gases begin to

dominate, exhibiting Fermi–Dirac statistical behavior, phase transitions, and sensitivity

to external interactions. In particular, Rydberg-dressed Fermi gases combine the strong

dipolar interaction with the unique quantum statistical behavior of fermionic systems,

which provides a new perspective for people to explore the many-body physics related

to strongly correlated quantum phenomena and offers possibilities for research on exotic

phases [23,24]. Compared with the short-range interactions in traditional ultracold atomic

systems, a Rydberg-dressed ultracold Fermi gas can precisely control non-local interactions

by adjusting the intensity and range of Rydberg excitation. For Rydberg-dressed atomic

fermions in three-dimensional optical lattices, the existence of various topological density

waves has been predicted, and their topological properties and phase transition behaviors

have been analyzed [24]. This has provided a new platform for the study of topological

density waves, which has significant theoretical significance and experimental value. In a

recent experiment, 6Li atoms were loaded into a two-dimensional optical lattice, where

they were excited to a Rydberg state by a single step with a UV laser. By adjusting the laser

intensity to control the non-local interaction in real time, it was experimentally observed

that this non-local interaction significantly slowed down the density relaxation dynamics of

the gas [25]. This provides new opportunities to explore the many-body phase transitions

associated with Rydberg-dressed fermions [21,23,26].

In this article, we studied the expansion dynamics of Rydberg-dressed Fermi gases

in a three-dimensional harmonic trap. The expansion dynamics of ultracold Fermi gases

is well described by time-dependent hydrodynamics [27,28], showing the well-known

anisotropic expansions [29]. Thanks to the scale invariance, the evolution of the cloud can

be simply tracked by scaling equations [30–32]. One can use time-dependent scaling factors

λ(t) = σ(t)/σ(0) to describe the evolution of the system, where σ(t) is the cloud size at

different times t. Here, we theoretically extended this method to a Rydberg-dressed Fermi

gas. We considered the Rydberg nS states, shown in Figure 1, which exhibit isotropic dipolar

interactions. The Rydberg-dressed scheme enables a long lifetime for the observation of

hydrodynamics and, thus, could be treated as an increase in the interaction energy without

angular dependence. By checking the density distributions, we found that the expansions

were clearly anisotropic, even with Rydberg nS states, which is deeply associated with

hydrodynamics. By changing the principle number n, a positive correlation between the

principal quantum number and anisotropy was identified. Moreover, a slightly broken scale

invariance was found during the expansion dynamics. Our results establish the possibility

of tailoring the dynamics of Rydberg-dressed quantum gases far from equilibrium.
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Figure 1. (a) Schematic figure of two-photon excitation with Rydberg dressing. By carefully selecting

the parameters, the intermediate (|e⟩) states could be adiabatically eliminated from the system. ∆1,2

and Ω1,2 are the detuning and Rabi frequencies corresponding to (|g⟩) to (|e⟩) and (|e⟩) to (|r⟩),
respectively. The right panel is an effective figure, where Ω and ∆ are the effective Rabi frequency

and detuning. (b) The evolution of the aspect ratio for a non-interacting Fermi gas in state |2⟩ with

different Rydberg dressing schemes. The aspect ratio of the cloud would break the ballistic expansion

and gradually exceed 1 at high Rydberg states. A cloud dressed with a higher principle number

would show a larger aspect ratio.

2. Method: Mean-Field Hydrodynamical Description

We first consider the Hamiltonian of a balanced two-component Fermi gas with

Rydberg dressing [33,34]:

Ĥ =
∫

drΦ̂†(r)

[
− h̄2

2m
∇2 + Vext(r)

]
Φ̂(r) +

1

2

∫
drdr′Φ̂†(r)Φ̂†

(
r′
)
Vm f

(
r − r′

)
Φ̂
(
r′
)
Φ̂(r), (1)

where Vext(r) is the external potential, and the mean-field potential Vm f (r − r′) can be

divided into two parts:

Vm f (r, t) = gn(r, t) +
∫

dr′URyd(r
′ − r)n(r′, t), (2)

where the first term describes the inter-particle interaction, and the second term is the

induced energy with Rydberg excitation. The coupling constant g is related to the scattering

length as by g = 4πas h̄2/m, where as is the strength of the interatomic interactions. By in-

troducing the Euler equations ∂
∂t n +∇ · (vn) = 0, we can derive the following equation of

the velocity field:

m
∂

∂t
v = −∇ · (− h̄2∇2

√
n

2m
√

n
+

mν2

2
+ Vext + gn +

∫
dr′URyd(r

′ − r)n(r′, t)), (3)

Then, we introduce the phase space density of atoms f (t, ri, vi) = f (t, x, y, z, vx, vy, vz) to

predict the time evolution equation of Rydberg-dressed Fermi gases. The dynamics of gas

are described by the total time derivative of the phase space density [35,36]:

∂ f

∂t
+ v · ∂ f

∂r
− 1

m

∂(Vext + Vm f )

∂r
· ∂ f

∂v
= Icoll [ f ], (4)

where Icoll [ f ] is an integral associated with the gas collision process. In this paper, we

address the collision integral using the relaxation time approximation, Icoll( f ) ≈ −( f− fle)
τR

,

where τR is the relaxation time related to the average time between collisions, and fle is the

local equilibrium density in the phase space.

Through a coordinate transformation, the initial coordinate ri is converted to a time-

dependent coordinate Ri. The phase space density function is rewritten as a scalar equation,

f (t, ri, vi) =
1

∏j (λjθ
1/2
j )

f0(
ri
λi

, 1

θ1/2
i

(vi − λ̇i
λi

ri))(j = x, y, z), where f0 is the equilibrium distri-
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bution function that satisfies the equation Icoll [ f0] = 0. The scaling parameter λi = λi(t)

gives the dilation along the ith direction, while θi = θi(t) gives the effective temperature

in the same direction. We define the following ansatz for the nonequilibrium distribution

function: f (r, v, t) = f0(R(t), V(t)), with Ri =
ri
λi

, Vi = λivi − λ̇iri. This analysis incorpo-

rates the particle density distribution implicitly, while the dependence on time is included

in the free parameter λi. The dynamics of a non-interaction Fermi gas in a harmonic trap

can be expressed as

Vi

λ2
i

∂ f0

Ri
− λiRi(λ̈i + ω2

i λi)
∂ f0

∂Vi
− g

m ∏j λj

∂n0

∂Ri
· ∂ f0

∂Vi
= 0, (5)

Considering an ultracold Fermi gas confined in a harmonic trap, the virial theorem

can be expressed as 2Ekin − 2Eho + 3Eint = 0, where Ekin, Eho, and Eint are the kinetic

energy, harmonic potential, and interaction energy, respectively [27]. The applicability of

the virial theorem can help us understand how to control the quantum system’s properties

by controlling the interaction potentials. For simplicity, we can transform Equation (5) into

λ̈i + w2
i λi −

w2
i

λ3
i

+
3

2
w2

i

Eint

Eho
(

1

λ3
i

− 1

λi ∏j λj
) = 0, (i = x, y, z), (6)

where we can see that the expansion dynamics can be simply described by the interaction

energy. Equation (6) would fall back to ballistic expansion while the interaction energy

Eint is zero, which means that the cloud would eventually evolve into a sphere for a long

expansion time. A detailed theoretical description of the energy of this part of the quantum

system is provided in Appendix A.

3. Results and Discussion

Here, we consider the 6Li Fermi gas confined in a cigar-shaped harmonic trap.

A schematic configuration of the Rydberg dressing can be seen in Figure 1a, where a

two-photon Rydberg excitation process with off-resonant coupling dresses the atoms to

Rydberg nS states. The |g⟩ state is considered to be one of the lowest hyperfine states,

|1⟩ = |F = 1/2, MF = +1/2⟩ or |2⟩ = |F = 1/2, MF = −1/2⟩. The ground-state

|g⟩ = |2S1/2⟩ is coupled to state |2P3/2⟩ and then to |r⟩ = |nS1/2⟩ via σ− and σ+ tran-

sitions. The Rabi frequency and the detuning of the first photon transition are Ω1 and

∆1, respectively. For the second photon transition, we have the Rabi frequency Ω2 and

the detuning ∆2. For |∆1| ≫ |Ω1|, the intermediate state can be adiabatically eliminated.

This results in an effective two-level system with |g⟩ and |r⟩, which have effective Rabi

frequencies and detunings, Ω = Ω1Ω2/2∆1 and ∆ = ∆1 +∆2, respectively. The parameters

taken in this study are as follows: the trap frequencies are ωx = ωy = 2π × 200 Hz and

ωz = 2π × 40 Hz, the effective Rabi frequency is fixed to 3 MHz, and the effective detuning

of the two-photon process is fixed to 80 MHz with respect to state |2⟩. This leads to a

weaker coupling to the atoms in state |1⟩ due to the larger detuning and thus exhibits

spin-dependent dynamics. For this experimental situation, the lifetime of Rydberg states

with a principle number n larger than 40 would be more than 100 ms, about one to two

orders larger than the typical time scale of the trap. Here, we neglected the dissipations

during the expansion.

We begin by studying the dynamical expansion of a Rydberg-dressed non-interacting

Fermi gas, where the two lowest hyperfine states |1⟩ and |2⟩ do not collide with each other.

This is quite a simple situation, and the excitation laser dresses the atoms with different

detunings. A Feshbach resonance is used to tune the interaction of the atoms either to

the non-interacting regime with a magnetic field of B = 528 G or to the unitary limit with
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B = 832 G. For the non-interacting case, the hyperfine splitting between the two hyperfine

states is 75.6 MHz, while the value is 76.3 MHz for the unitary limit.

We study the expansion dynamics by numerically solving the dynamic Equation (6)

for Rydberg-dressed atoms with different quantum numbers (n = 40 → 60), taking the

initial boundary conditions for the atoms as λi = 1, λ̇i = 0. The results can be seen in

Figure 1b, where the atoms are released from the anisotropic harmonic trap, with the

initial aspect ratio set to 0.2. We change the interaction by exciting the cloud to different

Rydberg states with the same detuning and Rabi frequency. The aspect ratio of the cloud is

defined as σx(t)/σz(t) = (ωzλx(t))/(ωxλz(t)) by taking the initial condition as a thermal

equilibrium state.

In Figure 1b, we can see that the aspect ratio of the cloud in state |2⟩ eventually

approaches 1 without Rydberg dressing, showing a typical ballistic expansion process.

Otherwise, as the Rydberg state increases, the asymptotic value of the aspect ratio after

evolution gradually exceeds 1, which could be regarded as hydrodynamical evolution [29].

When the principle number of the Rydberg states increases, the larger dipole interaction

certainly makes the system strongly interacting and leads to a higher aspect ratio.

We observe spin-dependent expansion dynamics for the Rydberg-dressed non-

interacting Fermi gas. As hyperfine splitting can be compared with the effective detuning

of Rydberg excitation, two-photon excitation would induce a spin-dependent interaction

strength, leading to spin-dependent expansion dynamics, as shown in Figure 2a. The ex-

pansion dynamics of the atoms in state |1⟩ approach the ballistic expansion, indicating quite

a weak interaction strength. Nonetheless, the aspect ratio of the atoms in state |2⟩ shows

quite different behavior, which is shown in Figure 2b. The Rydberg-dressed interaction

mainly reduces the expansion rate in the axial direction, making the ensembles anisotropic

for a long time of flight (TOF), which is similar to the expansion dynamics in strongly

interacting Fermi gases [29,37].

Figure 2. (a) The dynamical evolution of aspect ratios for different hyperfine states |1⟩ and |2⟩ when

dressed with n = 60 Rydberg states. (b) The density distribution of states |1⟩ and |2⟩ with different

times of flight (TOFs) in the unit of ωzt. The atoms are partially excited to n = 60 Rydberg states,

with the Rabi frequency set to 3 MHz and an 80 MHz detuning from the |2⟩ state.

Furthermore, we extend our study to the unitary regime. The strong scattering

between atoms redistributes the energy and momentum simultaneously, leading to the

strong coupling of the expansion dynamics for different spins. The expansion dynamics at

unitarity may thus be rewritten in the following formula:

λ̈i + ω2
i λi −

ω2
i

λi ∏j λ2/3
j

+
3

2
ω2

i

Eint

Eho
(

1

λi ∏j λ2/3
j

− 1

λi ∏j λj
) = 0, (i = x, y, z), (7)

However, quite a small deviation is found for the unitary Fermi gas with or without Rydberg

dressing, where both scenarios show obvious anisotropic expansion. This means that the

scattering interaction between two hyperfine states is sufficiently large and dominates the

expansion dynamics. Nonetheless, the Rydberg interaction would eventually increase the
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aspect ratio at sufficiently long TOFs due to the enhancement of the interaction, which can

be seen in Figure 3.

Figure 3. The evolution of the aspect ratio for unitary Fermi gases with Rydberg dressing (red line)

and without Rydberg dressing (blue line), where the principal quantum number n of Rydberg atoms

is set to 60, with all other parameters unchanged.

To further analyze the anisotropic expansion dynamics of a Fermi gas with Rydberg

dressing, we test the scale invariance by tracking the mean square cloud size ⟨r2⟩ =

⟨x2 + y2 + z2⟩. The scale invariance of the expanding gas can be determined by measuring

τ2(t) ≡ m[⟨r2⟩ − ⟨r2⟩0]/⟨x · ▽Uopt⟩0. For a scale-invariant system, the values of τ2(t) are

independent of the initial density distribution and obey the formula τ2(t) = t2, which has

already been demonstrated in Refs. [28,38].

However, the breaking of scale invariance symmetry was found in the Rydberg-

dressed Fermi gas, as shown in Figure 4. The emergence of a new length scale due to the

Rydberg dressing breaks the symmetry by slowing down the overall expansion dynamics.

After fitting the data for the Rydberg-dressed Fermi gas, we found χ2t2 scalings for both

the non-interacting and unitary Fermi gases. The expansion dynamics fell on the same

curve, with χ2 being about 0.91, which means that non-local Rydberg interactions break the

symmetry at a longer spatial scale with hardly any connections to the short-range scattering

interaction. This potentially offers a new method for manipulating many-body dynamics

with a high controllable interaction strength and diverse spatial dimensions.

Figure 4. Scale-invariant expansion of a Rydberg-dressed Fermi gas. The blue and red dots represent

the non-interacting and unitary Fermi gases with Rydberg dressing, while the black solid line

represents scale-invariant expansion. The black dashed line is best fit with τ2 = χ2t2, where χ2

is 0.91.

4. Conclusions

In conclusion, we found that the long-range interactions induced by Rydberg dress-

ing continued to influence particle interactions during the free expansion of the atomic

ensemble. The effective interaction potential induced by Rydberg dressing significantly

modified the intrinsic properties and dynamical behavior of the quantum gas. Although the
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atomic gas was dressed with isotropic nS Rydberg states, these interactions generated an

anisotropic expansion during the TOF of a non-interacting Fermi gas with Rydberg dressing.

Additionally, we observed spin-dependent anisotropic expansion, which could be used

to manipulate different states with long-range interactions. In the unitary regime, where

the scattering length diverged, the expansion times with the Rydberg-dressed interaction

barely changed the evolution of the aspect ratio. By checking the scale invariance during

the TOF, we found clear symmetry breaking for both non-interacting and unitary Fermi

gases with Rydberg dressing.

Compared with the short-range interactions in ultracold Fermi atom systems, the use

of Rydberg dressing technology allows for ground-state atoms to be excited into a superpo-

sition state composed of the ground state and a highly excited Rydberg state, exhibiting

strong long-range interactions. Experimentally, by adjusting the optical field, the non-local

long-range interactions between Fermi atoms can be precisely controlled, thereby influ-

encing the nonequilibrium dynamical behavior of the atomic gas. Our results provide

predictions for the evolution of the density in different hyperfine states and enable theoreti-

cal investigations of the strength and form of dressed interactions, which may offer a new

experimental method for testing the hydrodynamics of Rydberg-dressed quantum gases

and benefit the understanding of long-range interactions in quantum many-body systems.

This would enable the exploration of strongly correlated quantum phenomena in regimes

that are otherwise challenging to access.
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Appendix A. Description of Energy in Quantum Systems

To study the energy expression of the Rydberg-dressed Fermi quantum system,

the Gross–Pitaevskii (GP) equation can also be derived using a variational procedure

ih̄ ∂
∂t Φ = δE

δΦ∗ [39], where the energy functional E is given by

E[Φ] =
∫

dr[
h̄2

2m
|∇Φ|2 + Vext(r)|Φ|2 + g

2
|Φ|4], (A1)

The first term on the right side of Equation (A1) is the kinetic energy of the quantum

system Ekin, the second part is the harmonic energy Eho, and the last one is the mean-field

interaction energy Eint. Note that the mean-field term Eint corresponds to the first correction

in the virial expansion for the energy of the gas. The quantum system wave function can be

written as Φ(r, t) = φ(r)exp(−iut/h̄), where u is the chemical potential, and φ is real and

normalized to the total number of particles,
∫

φ2dr = N. Then, the GP equation becomes

(− h̄2∇2

2m
+ Vext(r) + Vm f (r))φ(r) = uφ(r), (A2)
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The equation takes the form of a ‘nonlinear Schrödinger equation’, with the nonlinearity

arising from the mean-field term, which is proportional to the particle density n(r) = φ2(r).

By taking advantage of the tunability of Rydberg-dressed interactions, the interaction

potential between the ground-state atoms is significantly enhanced by adjusting the Rabi

frequency and detuning the laser field, allowing for the precise control of the dressed

interactions over a wider range of parameters.

Rydberg dressing enables the Fermi gas to form both short-range and long-range

interactions, thereby modifying the effective interaction potential of the quantum system.

In this case, the density distribution depends not only on the external potential field and

the properties of the Fermi gas but also on the dressed effects of the Rydberg-state electrons.

According to the mean-field Thomas–Fermi (TF) approximation, the density distribution is

given by n(r) = 4
3π2 (

m
h̄2 )

3/2(u − Vho(r))
3/2. The Rydberg-dressed effect introduces a new

long-range interaction potential to the density distribution of a non-interacting Fermi gas,

thereby modifying the shape of its central region. In the edge region, the density distribution

decreases and approaches zero as r reaches the TF radius RTF =
√

2a2
ho

√
mu
h̄2 . The mean-

field interaction potential energy term for this quantum system is Eint =
∫

1
2 gn(r)2d3r,

and the harmonic potential energy term is Eho =
∫

Vho(r)n(r)d
3r. As the electron wave

function of the nS Rydberg state is isotropic, the electron cloud exhibits spherical symmetry.

The crucial parameters are Eint/Eho = 1.140681
N1/6aRyd

aho
, where aRyd = mπ2

24
Ω4

h̄|∆|3 R3
C and

aho = (h̄/mwho)
1/2. By systematically adjusting variables such as the interaction strength,

harmonic trap frequency, and particle density, we can optimize the expansion dynamics

model to simulate the role of long-range interactions in atomic gases, revealing the impact

of Rydberg dressing on the behavior of atomic gases.
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