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Abstract. Models that involve extra dimensions have introduced completely new ways of
looking up on old problems in theoretical physics. The aim of the present notes is to provide a
brief introduction to the many uses that extra dimensions have found over the last few years,
mainly following an effective field theory point of view. Most parts of the discussion are devoted
to models with flat extra dimensions, covering both theoretical and phenomenological aspects.
We also discuss some of the new ideas for model building where extra dimensions may play a role,
including symmetry breaking by diverse new and old mechanisms. Some interesting applications
of these ideas are discussed over the notes, including models for neutrino masses and proton
stability. The last part of this review addresses some aspects of warped extra dimensions, and
graviton localization.

1. Introduction: Why Considering Extra Dimensions?

Possible existence of new spatial dimensions beyond the four we see have been under
consideration for about eighty years already. The first ideas date back to the early works of
Kaluza and Klein around the 1920’s [1], who tried to unify electromagnetism with Einstein
gravity by proposing a theory with a compact fifth dimension, where the photon was originated
from the extra components of the metric. In the course of the last few years there has been some
considerable activity in the study of models that involve new extra spatial dimensions, mainly
motivated from theories that try to incorporate gravity and gauge interactions in a unique
scheme in a reliable manner. Extra dimensions are indeed a known fundamental ingredient for
String Theory, since all versions of the theory are naturally and consistently formulated only in
a space-time of more than four dimensions (actually 10, or 11 if there is M-theory). For some
time, however, it was conventional to assume that such extra dimensions were compactified to
manifolds of small radii, with sizes about the order of the Planck length, fp ~ 10733 cm,
such that they would remain hidden to the experiment, thus explaining why we see only four
dimensions. In this same pictures, it was believed that the relevant energy scale where quantum
gravity (and stringy) effects would become important is given by the Planck mass, which is
defined through the fundamental constants, including gravity Newton constant, as

1/2
] ~ 2.4 x 10" GeV ; (1)

from where one defines {p = h/Mp c. It is common to work in natural units system which
take ¢ = 1 = h, such that distance and time are measured in inverse units of energy. We
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will do so hereafter, unless otherwise stated. Since Mp is quite large, there was little hope for
experimentally probing such a regime, at least in the near future.

From the theoretical side, this point of view yet posses a fundamental puzzle, related to the
quantum instability of the Higgs vacuum that fixes the electroweak scale around mpgwy ~ 1 TeV.
Problem is that from one loop order corrections, using a cut-off regularization, one gets bare
mass independent quadratic divergences for the physical Higgs mass:

omi = # (/\H - A%) A% + (log. div.) + finite terms. (2)
where A is the self-couplings of the Higgs field H, and Ag is the Yukawa coupling to fermions.
As the natural cut-off A of the theory is usually believed to be the Planck scale, Mpy, or the
GUT scale, Mgyt ~ 106 GeV, this means that in order to get m%{ ~ mQEW we require to adjust
the counterterm to at least one part in 10'5. Moreover, this adjustment must be made at each
order in perturbation theory. This large fine tuning is what is known as the hierarchy problem.
Of course, the quadratic divergence can be renormalized away in exactly the same manner as it is
done for logarithmic divergences, and in principle, there is nothing formally wrong with this fine
tuning. In fact, if this calculation is performed in the dimensional regularization scheme, DR,
one obtains only 1/e singularities which are absorbed into the definitions of the counterterms, as
usual. Hence, the problem of quadratic divergences does not become apparent there. It arises
only when one attempts to give a physical significance to the cut-off A. In other words, if the SM
were a fundamental theory then using DR would be justified. However, most theorists believe
that the final theory should also include gravity, then a cut-off must be introduced in the SM,
regarding this fine tuning as unattractive. Explaining the hierarchy problem has been a leading
motivation to explore new physics during the last twenty years, including Supersymmetry [2]
and compositeness [3].

Recent developments, based on the studies of the non-perturbative regime of the Eg x Eg
theory by Witten and Horava [4], have suggested that some, if not all, of the extra dimensions
could rather be larger than fp. Perhaps motivated by this, some authors started to ask
the question of how large could these extra dimensions be without getting into conflict
with observations, and even more interesting, where and how would this extra dimensions
manifest themselves. The intriguing answer to the first question point towards the possibility
that extra dimensions as large as millimeters [5] could exist and yet remain hidden to the
experiments [6, 7, 8, 9, 10, 11]. This would be possible if our observable world is constrained to
live on a four dimensional hypersurface (the brane) embedded in a higher dimensional space (the
bulk), such that the extra dimensions can only be tested by gravity, a picture that resembles
D-brane theory constructions. Although it is fair to say that similar ideas were already proposed
on the 80’s by several authors [12], they were missed by some time, until the recent developments
on string theory provided an independent realization of such models [4, 13, 14, 15], given
them certain credibility. Besides, it was also the intriguing observation that such large extra
dimensions would accept a scale of quantum gravity much smaller than Mp, even closer to mgyw,
thus offering an alternative solution to the hierarchy problem, which attracted the attention of
the community towards this ideas.

To answer the second question many phenomenological studies have been done, often based on
simplified field theoretical models that are built up on a bottom-up approach, using an effective
field theory point of view, with out almost any real string theory calculations. In spite of being
quite speculative, and although it is unclear whether any of those models is realized in nature,
they still might provide some insights to the low energy manifestations of the fundamental theory,
since it is still possible that the excited modes of the string could appear on the experiments
way before any quantum gravity effect, in which case the effective field theory approach would
be acceptable.
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The goal for the present notes is to provide a general and brief introduction to the field for
the beginner. Many variants of the very first scenario proposed by Arkani-Hammed, Dimopoulos
and D’vali (ADD) [5] have been considered over the years, and there is no way we could comment
all. Instead, we shall rather concentrate on some of the most common aspects shared by those
models. This, in turn, will provide us with the insight to extend our study to other more
elaborated ideas for the use of extra dimensions.

The first part of these notes will cover the basics of the ADD model. We shall start discussing
how the fundamental gravity scale departs from Mp once extra dimensions are introduced, and
the determination of the effective gravity coupling. Then, we will introduce the basic field theory
prescriptions used to construct brane models and discuss the concept of dimensional reduction
on compact spaces and the resulting Kaluza-Klein (KK) mode expansion of bulk fields, which
provide the effective four dimensional theory on which most calculations are actually done. We
use these concepts to address some aspects of graviton phenomenology and briefly discuss some
of the phenomenological bounds for the size of the extra dimensions and the fundamental gravity
scale.

Third section is devoted to present some general aspects of the use of extra dimensions
in model building. Here we will review the KK decomposition for matter and gauge fields,
and discuss the concept of universal extra dimensions. We will also address the possible
phenomenology that may come with KK matter and gauge fields, with particular interest on the
power law running effect on gauge couplings. Our fourth section intends to be complementary
to the third one. It provides a short review on many new ideas for the use of extra dimensions
on the breaking of symmetries. Here we include spontaneous breaking on the bulk; shinning
mechanism; orbifold breaking; and Scherk-Schwarz mechanisms.

As it is clear, with a low fundamental scale, as pretended by the ADD model, all the particle
physics phenomena that usually invokes high energy scales does not work any more. Then,
standard problems as gauge coupling unification, the origin of neutrino masses and mixings
and proton decay; should be reviewed. Whereas the first point is being already addressed on
the model building section, we dedicate our fifth section to discuss some interesting ideas to
control lepton and baryon number violation in the context of extra dimension models. Our
discussion includes a series of examples for generating neutrino masses in models with low
fundamental scales which make use of bulk fields. We also address proton decay in the context
of six dimensional models where orbifold spatial symmetries provide the required control of this
process. The concept of fermion wave function localization on the brane is also discussed.

Finally, in section six we focus our interest on Randall and Sundrum models [16, 17, 18, 19]
for warped backgrounds, for both compact and infinite extra dimensions. We will show in detail
how these solutions arise, as well as how gravity behaves in such theories. Some further ideas
that include stabilization of the extra dimensions and graviton localization at branes are also
covered.

Due to the nature of these notes, many other topics are not being covered, including brane
intersecting models, cosmology of models with extra dimensions both in flat and warped bulk
backgrounds; KK dark matter; an extended discussion on black hole physics; as well as many
others. The interested reader that would like to go beyond the present notes can consult any
of the excellent reviews that are now in the literature for references, some of which are given in
references [20, 21]. Further references are also given at the conclusions.

2. Flat and Compact Extra Dimensions: ADD Model

2.1. Fundamental vs. Planck scales

The existence of more than four dimensions in nature, even if they were small, may not be
completely harmless. They could have some visible manifestations in our (now effective) four
dimensional world. To see this, one has first to understand how the effective four dimensional
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theory arises from the higher dimensional one. Formally, this can be achieve by dimensionally
reducing the complete theory, a concept that we shall further discuss later on. For the moment,
we must remember that gravity is a geometric property of the space. Then, first thing to
notice is that in a higher dimensional world, where Einstein gravity is assumed to hold, the
gravitational coupling does not necessarily coincide with the well known Newton constant Gy,
which is, nevertheless, the gravity coupling we do observe. To explain this more clearly, let us
assume as in Ref. [5] that there are n extra space-like dimension which are compactified into
circles of the same radius R (so the space is factorized as a My x T™ manifold). We will call the
fundamental gravity coupling G, and then write down the higher dimensional gravity action:

1 44+n
Sgrav = _167FG* /d ey \/ |g(4+n)| R(4+n) ) (3)

where g(44,,) stands for the metric in the whole (4 + n)D space, ds? = gyndax™Mdz?N, for which
we will always use the (+,—, —, —,...) sign convention, and M, N =0,1,...,n + 3. The above
action has to have proper dimensions, meaning that the extra length dimensions that come from
the extra volume integration have to be equilibrated by the dimensions on the gravity coupling.
Notice that in natural units S has no dimensions, whereas if we assume for simplicity that the

metric g(44n) is being taken dimensionless, so [R(44,)] = [Length]=2 = [Energy)®. Thus, the
fundamental gravity coupling has to have dimensions [G,] = [Energy]~("*?). In contrast, for
the Newton constant, we have [Gy] = [Energy]~2. In order to extract the four dimensional

gravity action let us assume that the extra dimensions are flat, thus, the metric has the form
ds? = G (z)dx!dx” — 5abdy“dyb, (4)

where g, gives the four dimensional part of the metric which depends only in the four
dimensional coordinates z#, for u = 0,1,2,3; and d,dy®dy® gives the line element on the
bulk, whose coordinates are parameterized by 3%, a = 1,...,n. It is now easy to see that

\/]g(4+n)| = \/]9(4)| and R(44n) = R(4), so one can integrate out the extra dimensions in Eq. (3)
to get the effective 4D action

Vi 4
Sg'rav = _167TG* /d Y ‘9(4)’ R(4) ) (5)

where V,, stands for the volume of the extra space. For the torus we simply take V,, = R".
Equation (5) is precisely the standard gravity action in 4D if one makes the identification,

Gy =G, [V, . (6)

Newton constant is therefore given by a volumetric scaling of the truly fundamental gravity scale.
Thus, Gy is in fact an effective quantity. Notice that even if G, were a large coupling (as an
absolute number), one can still understand the smallness of G via the volumetric suppression.

To get a more physical meaning of these observations, let us consider a simple experiment. Let
us assume a couple of particles of masses m; and me, respectively, located on the hypersurface
y® = 0, and separated from each other by a distance r. The gravitational flux among both
particles would spread all over the whole (4 +n) D space, however, since the extra dimensions
are compact, the effective strength of the gravity interaction would have two clear limits: (i) If
both test particles are separated from each other by a distance r» > R, the torus would effectively
disappear for the four dimensional observer, the gravitational flux then gets diluted by the extra
volume and the observer would see the usual (weak) 4D gravitational potential

m1ma

UN(T‘) = —GN .. (7)

r
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(ii) However, if r < R, the 4D observer would be able to feel the presence of the bulk through
the flux that goes into the extra space, and thus, the potential between each particle would
appear to be stronger: i

U, (r) = —G*le—ﬂ? (8)
It is precisely the volumetric factor which does the matching of both regimes of the theory. The
change in the short distance behavior of the Newton’s gravity law should be observable in the
experiments when measuring U(r) for distances below R. Current search for such deviations
has gone down to 160 microns, so far with no signals of extra dimensions [6].

We should now recall that the Planck scale, Mp, is defined in terms of the Newton constant,
via Eq. (1). In the present picture, it is then clear that Mp is not fundamental anymore. The
true scale for quantum gravity should rather be given in terms of G, instead. So, we define the
fundamental (string) scale as

7 9)

pl4n B4n 1/ (240)
871G

M,c? = l

where, for comparing to Eq. (1), we have inserted back the corresponding ¢ and & factors.
Clearly, coming back to natural units, both scales are then related to each other by [5]

M3 = M2V, | (10)

From particle physics we already know that there is no evidence of quantum gravity (neither
supersymmetry, nor string effects) well up to energies around few hundred GeV, which says that
M, > 1 TeV. If the volume were large enough, then the fundamental scale could be as low as the
electroweak scale, and there would be no hierarchy in the fundamental scales of physics, which
so far has been considered as a puzzle. Of course, the price of solving the hierarchy problem
this way would be now to explain why the extra dimensions are so large. Using V ~ R" one
can reverse above relation and get a feeling of the possible values of R for a given M,. This is
done just for our desire of having the quantum gravity scale as low as possible, perhaps to be
accessible to future experiments, although, the actual value is really unknown. As an example,
if one takes M, to be 1 TeV; for n = 1, R turns out to be about the size of the solar system
(R ~ 10" m)!, whereas for n = 2 one gets R ~ 0.2 mm, that is just at the current limit of short
distance gravity experiments [6]. Of course, one single large extra dimension is not totally ruled
out. Indeed, if one imposes the condition that R < 160um for n = 1, we get M, > 108GeV.
More than two extra dimensions are in fact expected (string theory predicts six more), but in
the final theory those dimensions may turn out to have different sizes, or even geometries. More
complex scenarios with a hierarchical distributions of the sizes could be possible. For getting
an insight of the theory, however, one usually relies in toy models with a single compact extra
dimension, implicitly assuming that the effects of the other compact dimensions do decouple
from the effective theory.

2.2. Brane and Bulk Effective Field Theory prescriptions

While submillimeter dimensions remain untested for gravity, the particle physics forces have
certainly been accurately measured up to weak scale distances (about 107'® c¢m). Therefore,
the Standard Model (SM) particles can not freely propagate in those large extra dimensions,
but must be constrained to live on a four dimensional submanifold. Then the scenario we have
in mind is one where we live in a four dimensional surface embedded in a higher dimensional
space. Such a surface shall be called a “brane” (a short name for membrane). This picture is
similar to the D-brane models [15], as in the Horava-Witten theory [4]. We may also imagine
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our world as a domain wall of size M ! where the particle fields are trapped by some dynamical
mechanism [5]. Such hypersurface or brane would then be located at an specific point on the
extra space, usually, at the fixed points of the compact manifold. Clearly, such picture breaks
translational invariance, which may be reflected in two ways in the physics of the model, affecting
the flatness of the extra space (which compensates for the required flatness of the brane), and
introducing a source of violation of the extra linear momentum. First point would drive us to
the Randall-Sundrum Models, that we shall discuss latter on. Second point would be a constant
issue along our discussions.

What we have called a brane in our previous paragraph is actually an effective theory
description. We have chosen to think up on them as topological defects (domain walls) of almost
zero width, which could have fields localized to its surface. String theory D-branes (Dirichlet
banes) are, however, surfaces where open string can end on. Open strings give rise to all kinds
of fields localized to the brane, including gauge fields. In the supergravity approximation these
D-branes will also appear as solitons of the supergravity equations of motion. In our approach
we shall care little about where these branes come from, and rather simply assume there is some
consistent high-energy theory, that would give rise to these objects, and which should appear at
the fundamental scale M,. Thus, the natural UV cutoff of our models would always be given
by the quantum gravity scale.

D-branes are usually characterized by the number of spatial dimensions on the surface. Hence,
a p-brane is described by a flat space time with p space-like and one time-like coordinates. The
simplest model, we just mentioned above , would consist of SM particles living on a 3-brane.
Thus, we need to describe theories that live either in the brane (as the Standard Model) or in
the bulk (like gravity and perhaps SM singlets), as well as the interactions among these two
theories. For doing so we use the following field theory prescriptions:

(i) Bulk theories are described by the higher dimensional action, defined in terms of a

—»
9

Lagrangian density of bulk fields, ¢(z,¥), valued on all the space-time coordinates of the

bulk
Sputed] = / o d"y \/|gaem | L(6(2, 7)) | (11)

where, as before, x stands for the (3+1) coordinates of the brane and y for the n extra
dimensions.

(ii) Brane theories are described by the (34+1)D action of the brane fields, ¢(x), which is
naturally promoted into a higher dimensional expression by the use of a delta density:

Sbrane[(/)] = /d4.’IJ dny \/ |g(4)‘£(‘70(x)) 571(27_ Zj()) ) (12)

where we have taken the brane to be located at the position ¥ = ¢y along the extra
dimensions, and g4y stands for the (3+1)D induced metric on the brane. Usually we will
work on flat space-times, unless otherwise stated.

(iii) Finally, the action may contain terms that couple bulk to brane fields. Last are localized
on the space, thus, it is natural that a delta density would be involved in such terms, say
for instance

[z dy g 6.5 bays) 5~ o) (13)

2.8. Dimensional Reduction

The presence of delta functions in the previous action terms does not allow for a transparent
interpretation, nor for an easy reading out of the theory dynamics. When they are present it is
more useful to work in the effective four dimensional theory that is obtained after integrating
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over the extra dimensions. This procedure is generically called dimensional reduction. It also
helps to identify the low energy limit of the theory (where the extra dimensions are not visible).

A 5D toy model.- To get an insight of what the effective 4D theory looks like, let us consider a
simplified five dimensional toy model where the fifth dimension has been compactified on a circle
of radius R. The generalization of these results to more dimensions would be straightforward.
Let ¢ be a bulk scalar field for which the action on flat space-time has the form

Sl6) = 5 [t dy (946040 - m?6?) (1)

where now A = 1,...,5, and y denotes the fifth dimension. The compactness of the internal
manifold is reflected in the periodicity of the field, ¢(y) = ¢(y+ 2w R), which allows for a Fourier
expansion as

o) = (@) + 3 i [t () < dumpan ()] 09

The very first term, ¢g, with no dependence on the fifth dimension is usually referred as the zero
mode. Other Fourier modes, ¢, and ¢,; are called the excited or Kaluza-Klein (KK) modes.
Notice the different normalization on all the excited modes, with respect to the zero mode.
Some authors prefer to use a complex e™¥/f Fourier expansion instead, but the equivalence of
the procedure should be clear.

By introducing last expansion into the action (14) and integrating over the extra dimension
one gets

Sl¢] = i;o 5 [t (0700000, — m62) + i; > [dte (06006, —m282) . (16)

where the KK mass is given as m2 = m? + %22- Therefore, in the effective theory, the higher

dimensional field appears as an infinite tower of fields with masses m,,, with degenerated massive
levels, but the zero mode, as depicted in figure 1. Notice that all excited modes are fields with
the same spin, and quantum numbers as ¢. They differ only in the KK number n, which is also
associated with the fifth component of the momentum, which is discrete due to compatification.
This can be also understood in general from the higher dimensional invariant p4p4 = m?, which
can be rewritten as the effective four dimensional squared momentum invariant p*p, = m24+p) 2,
where p| stands for the extra momentum components.

n=3

n=2 [ R?

n=1 Figure 1. KK mass spectrum for a field
n=0 ————— on the circle.

Dimensionally reducing any higher dimensional field theory (on the torus) would give a similar
spectrum for each particle with larger level degeneracy (2" states per KK level). Different
compactifications would lead to different mode expansions. Eq. (15) would had to be chosen
accordingly to the geometry of the extra space by typically using wave functions for free particles
on such a space as the basis for the expansion. Extra boundary conditions associated to specific
topological properties of the compact space may also help for a proper selection of the basis.
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A useful example is the one dimensional orbifold, U(1)/Z2, which is built out of the circle, by
identifying the opposite points around zero, so reducing the physical interval of the original
circle to [0, 7] only. Operatively, this is done by requiring the theory to be invariant under the
extra parity symmetry Zs : y — —y. Under this symmetries all fields should pick up a specific
parity, such that ¢(—y) = +é(y). Even (odd) fields would then be expanded only into cosine
(sine) modes, thus, the KK spectrum would have only half of the modes (either the left or the
right tower in figure 1). Clearly, odd fields do not have zero modes and thus do not appear at
the low energy theory.

For m = 0, it is clear that for energies below % only the massless zero mode will be
kinematically accessible, making the theory looking four dimensional. The appreciation of the
impact of KK excitations thus depends on the relevant energy of the experiment, and on the
compactification scale }%:

(i) For energies E < % physics would behave purely as four dimensional.

(ii) At larger energies, % < E < M,, or equivalently as we do measurements at shorter distances,
a large number of KK excitations, ~ (ER)", becomes kinematically accessible, and their
contributions relevant for the physics. Therefore, right above the threshold of the first
excited level, the manifestation of the KK modes will start evidencing the higher dimensional
nature of the theory.

(iii) At energies above M,, however, our effective approach has to be replaced by the use of the
fundamental theory that describes quantum gravity phenomena.

Coupling suppressions.- Notice that the five dimensional scalar field ¢ we just considered
has mass dimension %, in natural units. This can be easily seeing from the kinetic part of the
Lagrangian, which involves two partial derivatives with mass dimension one each, and the fact
that the action is dimensionless. In contrast, by similar arguments, all excited modes have
mass dimension one, which is consistent with the KK expansion (15). In general for n extra
dimensions we get the mass dimension for an arbitrary field to be [¢] = d4 + 5, where dy is the
natural mass dimension of ¢ in four dimensions.

Because this change on the dimensionality of ¢, most interaction terms on the Lagrangian
(apart from the mass term) would all have dimensionful couplings. To keep them dimensionless
a mass parameter should be introduced to correct the dimensions. It is common to use as the
natural choice for this parameter the cut-off of the theory, M,. For instance, let us consider the
quartic couplings of ¢ in 5D. Since all potential terms should be of dimension five, we should
write down Mi*d)‘l, with A dimensionless. After integrating the fifth dimension, this operator will
generate quartic couplings among all KK modes. Four normalization factors containing 1/v/R
appear in the expansion of ¢*. Two of them will be removed by the integration, thus, we are
left with the effective coupling A/M R. By introducing Eq. (10) we observe that the effective
couplings have the form

M, \?
A <MP> Pk P1Om Pltim- (17)

where the indices are arranged to respect the conservation of the fifth momentum. From the last
expression we conclude that in the low energy theory (E < M,), even at the zero mode level, the
effective coupling appears suppressed respect to the bulk theory. Therefore, the effective four
dimensional theory would be weaker interacting compared to the bulk theory. Let us recall that
same happens to gravity on the bulk, where the coupling constant is stronger than the effective
4D coupling, due to the volume suppression given in Eq. (6), or equivalently in Eq. (10).
Similar arguments apply in general for brane-bulk couplings. Let us, for instance, consider
the case of a brane fermion, 1(z), coupled to our bulk scalar ¢ field. For simplicity we assume
that the brane is located at the position yy = 0, which in the case of orbifolds corresponds to
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a fixed point. Thus, as the part of the action that describes the brane-bulk coupling we choose
the term

/d4x d

Here the Yukawa coupling constant h is dimensionless and the suppression factor 1/ VM has
been introduce to correct the dimensions. On the right hand side we have used the expansion
(15) and Eq. (10). From here we notice that the coupling of brane to bulk fields is generically
suppressed by the ratio 57-. Also, notice that the modes c;Sn decouple from the brane. Through
this coupling we could not dlstmgulsh the circle from the orbifold compactification.

Let us stress that the couplings in Eq. (18) do not conserve the KK number. This reflects the
fact that the brane breaks the translational symmetry along the extra dimension. Nevertheless,
it is worth noticing that the four dimensional theory is still Lorentz invariant. Thus, if we reach
enough energy on the brane, on a collision for instance, as to produce real emission of KK
modes, part of the energy of the brane would be released into the bulk. This would be the case
of gravity, since the graviton is naturally a field that lives in all dimensions.

Next, let us consider the scattering process among brane fermions ¥y — 1 mediated by all
the KK excitations of some field ¢. A typical amplitude will receive the contribution

M = h2< _m2+ Z e mﬂ) D(g%), (19)

N b(x)p(x)p(a,y = /d4 ~——h -y <¢o + fz qbn) . (18)

where h = (M, /Mp)h represents the effective coupling, and D(q?) is an operator that only
depends on the 4D Feynman rules of the involved fields. The sum can easily be performed in
this simple case, and one gets

PV R .2 [WR\/@ - mQ} D). (20)

2 —m2

In more than five dimensions the equivalent to the above sum usually diverges and has to be
regularized by introducing a cut-off at the fundamental scale.

We can also consider some simple limits to get a better feeling on the KK contribution to
the process. At low energies, for instance, by assuming that ¢ < m? < 1/R? we may integrate
out all the KK excitations, and at the first order we get the amplitude

) 2
M=~ - (1 + %m2R2> D(q?). (21)

Last term between parenthesis is a typical effective correction produced by the KK modes
exchange to the pure four dimensional result.

On the other hand, at high energies, gR > 1, the overall factor becomes h2ZN, where
N=MR= MI%/M*2 is the number of KK modes up to the cut-off. This large number of modes
would overcome the suppression in the effective coupling, such that one gets the amplitude
M =~ h?D(q¢?)/q?, evidencing the 5D nature of the theory, that is there is actually just a single
higher dimensional field being exchange but with a larger coupling.

2.4. Graviton Phenomenology and Some Bounds
2.4.1. Graviton couplings and the effective gravity interaction law One of the first physical
examples of a brane-bulk interaction one may be interested in analyzing with some care is the
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effective gravitational coupling of particles located at the brane, which needs to understand the
way gravitons couple to brane fields. The problem has been extendedly discussed by Giudice,
Ratazzi and Wells [7] and independently by Han, Lykken and Zhang [8] assuming a flat bulk.
Here we summarize some of the main points. We start from the action that describes a particle
on the brane

5= [dady\/lge = 0)] £ 57)(y) . (22)

where the induced metric g(y® = 0) now includes small metric fluctuations hy;n over flat space,
which are also called the graviton, such that

gMN =NMN + e hyn. (23)

The source of those fluctuations are of course the energy on the brane, i.e., the matter energy
momentum tensor /g T" = §5/dg,, that enters on the RHS of Einstein equations:

1 14 n
Run = SRatnygun = - Toumy ko™ (y) -

ME™
The effective coupling, at first order in A, of matter to graviton field is then described by the
action

It is clear from the effective four dimensional pomt of view, that the fluctuations hj;n would
have different 4D Lorentz components. (i) h,, clearly contains a 4D Lorentz tensor, the true four
dimensional graviton. (ii) hq, behaves as a vector, the graviphotons. (iii) Finally, h., behaves
as a group of scalars (graviscalar fields), one of which corresponds to the partial trace of h (h%;)
that we will call the radion field. To count the number of degrees of freedom in hj;n we should
first note that h is a D x D symmetric tensor, for D = 4+n. Next, general coordinate invariance
of general relativity can be translated into 2n independent gauge fixing conditions, half usually
chosen as the harmonic gauge dyhy = 30nh3f. In total there are n(n — 3)/2 independent
degrees of freedom. Clearly, for n = 4 one has the usual two helicity states of a massless spin
two particle.

All those effective fields would of course have a KK decomposition,

h M@ agn 5
MN(xvy) _Z \/7 € ) ( 5)

where we have assumed the compact space to be a torus of unique radius R, also here
i = (n1,...,ny), with all n, integer numbers. Once we insert back the above expansion into
Sint, it is not hard to see that the volume suppression will exchange the M, /2+1 by an Mp
suppression for the the effective interaction with a single KK mode. Therefore, all modes couple
with standard gravity strength. Briefly, only the 4D gravitons, G, and the radion field, b(x),
get couple at first order level to the brane energy momentum tensor [7, 8]

1 e L[ 2
b e _ L |2 @ p 5
S [G V3t ] m (26)

Notice that GO is massless since the higher dimensional graviton hj;ny has no mass itself.
That is the source of long range four dimensional gravity interactions. It is worth saying that on
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the contrary () should not be massless, otherwise it should violate the equivalence principle,
since it would mean a scalar (gravitational) interaction of long range too. b should get a mass
from the stabilization mechanism that keeps the extra volume finite.

Now that we know how gravitons couple to brane matter we can use this effective field theory
point of view to calculate what the effective gravitational interaction law should be on the brane.
KK gravitons are massive, thus, the interaction mediated by them on the brane is of short range.
More precisely, each KK mode contribute to the gravitational potential among two test particles
of masses m, and my located on the brane, separated by a distance r, with a Yukawa potential

mimg _p, .

AU (r) o~ _GNTG =Un(r)e ™" . (27)

2

Total contribution of all KK modes, the sum over all KK masses mz = 2/ R, can be estimated

in the continuum limit, to get

mimsa

Ur(r) ~ —=GyVp(n —1)! eS|

~ U,(r) (28)

as mentioned in Eq. (8). Experimentally, however, for r just around the threshold R only the
very first excited modes would be relevant, and so, the potential one should see in short distance
tests of Newton’s law [6] should rather be of the form

U(r) = Un(r) (14 ae™"/R) . (29)

where a = 8n/3 accounts for the multiplicity of the very first excited level. As already mentioned,
recent measurements have tested inverse squared law of gravity down to about 160 pm, and no
signals of deviation have been found [6].

2.4.2. Collider physics As gravity may become comparable in strength to the gauge interactions
at energies M* ~ TeV, the nature of the quantum theory of gravity would become accessible to
LHC and NLC. Indeed, the effect of the gravitational couplings would be mostly of two types:
(i) missing energy, that goes into the bulk; and (ii) corrections to the standard cross sections
from graviton exchange [9]. A long number of studies on this topics have appeared [7, 8, 9],
and some nice and short reviews of collider signatures were early given in [21]. Here we just
briefly summarize some of the possible signals. Some indicative bounds one can obtain from the
experiments on the fundamental scale are also shown in tables 1 and 2. Notice however that
precise numbers do depend on the number of extra dimensions. At ete™ colliders (LEP,LEPII,
L3), the best signals would be the production of gravitons with Z,~ or fermion pairs ff. In
hadron colliders (CDF, LHC) one could see graviton production in Drell-Yang processes, and
there is also the interesting monojet production [7, 8] which is yet untested. LHC could actually
impose bounds up to 4 TeV for M, for 10 fb~! luminosity.

Graviton exchange either leads to modifications of the SM cross sections and asymmetries,
or to new processes not allowed in the SM at tree level. The amplitude for exchange of the
entire tower naively diverges when n > 1 and has to be regularized, as already mentioned. An
interesting channel is v scattering, which appears at tree level, and may surpasses the SM
background at s = 0.5 TeV for M, = 4 TeV. Bi-boson productions of vy, WW and ZZ may
also give some competitive bounds [7, 8, 9]. Some experimental limits, most of them based on
existing data, are given in Table 2. The upcoming experiments will easily overpass those limits.

Another intriguing phenomena in colliders, associated to a low gravity scale, is the possible
production of microscopic Black Holes [22]. Given that the (4 4+ n)D Schwarzschild radius

1
M Ttn 1
rs ~ ( MBH) i (30)
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Table 1. Collider limits for the fundamental scale M,. Graviton Production.

Process Background M, limit Collider
ete” -G ete” — v 1 TeV L3

515 GeV LEPII
+om +om >
eTe _—>ZG eTe _—>ZVV {600G€V L3
Z — ffG 7 — ffov 0.4 TeV LEP

Table 2. Collider limits for the fundamental scale M,. Virtual Graviton exchange

Process M, limit Collider
ete™ = ff 0.94 TeV Tevatron & HERA
0.7— -1TeV LEP
+ —
erer =y, WW, 22 { 0.8 TeV L3
All above 1 TeV L3
Bhabha scattering 1.4 TeV LEP
4= } 0.9 TeV CDF
99 — 7Y

may be larger than the impact parameter in a collision at energies larger than M,, it has been
conjecture that a Black Hole may form with a mass Mpy = /s. Since the geometrical cross
section of the Black Hole goes as o ~ 7T7“%v ~ TeV =2 400 pb, it has been pointed out that LHC
running at maximal energy could even be producing about 107 of those Black Holes per year, if
M, ~ TeV. However, such tiny objects are quite unstable. Indeed they thermally evaporate in
a life time

1/ My Gn+D/(n+1)
A ( M, )
by releasing all its energy into Hawking radiation containing predominantly brane modes. For

above parameters one gets 7 < 1072% sec. This efficient conversion of collider energy into thermal
radiation would be a clear signature of having reached the quantum gravity regime.

(31)

2.4.8. Cosmology and Astrophysics Graviton production may also posses strong constraints on
the theory when considering that the early Universe was an important resource of energy. How
much of this energy could had gone into the bulk without affecting cosmological evolution? For
large extra dimensions, the splitting among two excited modes is pretty small, 1/R. For n = 2
and M, at TeV scale this means a mass gap of just about 1073 eV. For a process where the
center mass energy is E, up to N = (FR)"™ KK modes would be kinematically accessible. During
Big Bang Nucleosynthesis (BBN), for instance, where E was about few MeV, this already means
more than 10'® modes for n = 2. So many modes may be troublesome for a hot Universe that
may release too much energy into gravitons. One can immediately notice that the graviton
creation rate, per unit time and volume, from brane thermal processes at temperature T' goes
* (TR"  T"
M]% - M}}+2 :

Ototal =
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The standard Universe evolution would be conserved as far as the total number density of
produced KK gravitons, ng4, remains small when compared to photon number density, n,. This
is a sufficient condition that can be translated into a bound for the reheating energy, since as
hotter the media as more gravitons can be excited. It is not hard to see that this condition
implies [5]
ng T Mp
Ty ~ M:}+2

Equivalently, the maximal temperature our Universe could reach with out producing to many
gravitons must satisfy

<1. (32)

1 Mf+2

< My (33)
To give numbers consider for instance M, = 10 TeV and n = 2, which means 7T, < 100 MeV,
just about to what is needed to have BBN working [23] (see also [24]). The brane Universe with
large extra dimensions is then rather cold. This would be reflected in some difficulties for those

models trying to implement baryogenesis or leptogenesis based in electroweak energy physics.
Thermal graviton emission is not restricted to early Universe. One can expect this to happen
in many other environments. We have already mention colliders as an example. But even the hot
astrophysical objects can be graviton sources. Gravitons emitted by stellar objects take away
energy, this contributes to cool down the star. Data obtained from the supernova 1987a gives

M, > 10%, which for n = 2 means M, > 30 TeV [10]. Moreover, the Universe have been
emitting gravitons all along its life. Those massive gravitons are actually unstable. They decay
back into the brane re-injecting energy in the form of relativistic particles, through channels like
Gk — vy; ete™; ..., within a life time
30Mev\°
7, ~ 10M yrs x <—€> . (34)
Mg

Thus, gravitons with a mass about 30 MeV would be decaying at the present time, contributing
to the diffuse gamma ray background. EGRET and COMPTEL observations on this window
of cosmic radiation do not see an important contribution, thus, there could not be so many of

such gravitons decaying out there. Quantitatively it means that M, > 500 TeV [24, 25].
Stringent limits come from th observation of neutron stars. Massive KK gravitons have small
kinetic energy, so that a large fraction of those produced in the inner supernovae core remain
gravitationally trapped. Thus, neutron stars would have a halo of KK gravitons, which is dark
except for the few MeV neutrinos, eTe™ pairs and v rays produced by their decay. Neutron
stars are observed very close (as close as 60 pc), and so one could observe this flux coming from
the stars. GLAST, for instance, could be in position of finding the KK signature, well up to a
fundamental scale as large as 1300 TeV for n = 2 [26]. KK decay may also heat the neutron star
up to levels above the temperature expected from standard cooling models. Direct observation
of neutron star luminosity provides the most restrictive lower bound on M, at about 1700 TeV
for n = 2. Larger number of dimensions results in softer lower bounds since the mass gap among
KK modes increases. These bounds, however, depend on the graviton decaying mainly into the
visible Standard Model particles. Nevertheless, if heavy KK gravitons decay into more stable
lighter KK modes, with large kinetic energies, such bounds can be avoided, since these last
KK modes would fly away from the star leaving no detectable signal behind. This indeed may
happen if, for instance, translational invariance is broken in the bulk, such that inter KK mode
decay is not forbidden [27]. Supernova cooling and BBN bounds are, on the hand, more robust.
Microscopic Black Holes may also be produced by ultra high energy cosmic rays hitting
the atmosphere, since these events may reach center mass energies well above 10° GeV.
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Black Hole production, due to graviton mediated interactions of ultra high energy neutrinos
in the atmosphere, would be manifested by deeply penetrating horizontal air showers with a
characteristic profile and at a rate higher than in the case of Standard interactions. Provided,
of course, the fundamental scale turns out to be at the TeV range [28]. Auger, for instance, may
be able to observe more than one of such events per year.

3. Model Building

So far we have been discussing the simple ADD model where all matter fields are assumed to
live on the brane. However, there has been also quite a large interest on the community in
studying more complicated constructions where other fields, besides gravity, live on more than
four dimensions. The first simple extension one can think is to assume than some other singlet
fields may also propagate in the bulk. These fields can either be scalars or fermions, and can
be useful for a diversity of new mechanisms. One more step on this line of thought is to also
promote SM fields to propagate in the extra dimensions. Although, this is indeed possible, some
modifications have to be introduced on the profile of compact space in order to control the
spectrum and masses of KK excitations of SM fields. These constructions contain a series of
interesting properties that may be of some use for model building, and it is worth paying some
attention to them.

3.1. Bulk Fermions

We have already discussed dimensional reduction with bulk scalar fields. Let us now turn our
attention towards fermions. We start considering a massless fermion, ¥, in (44+n)D. Naively
we will take it as the solution to the Dirac equation i0y '™ ¥ (z,y) = 0 where ') satisfies the

Clifford algebra {FM TN } = 29pMN " The algebra now involves more gamma matrices than in

four dimensions, and this have important implications on degrees of freedom of spinors. Consider
for instance the 5D case, where we use the representation

0 ot 1 0
It = (5# 0>, and I* =iy =777y (0_1>7 (35)
where as usual o = (1,5) and 6* = (1, —&), with o; the three Pauli matrices. With +° included
among Dirac matrices and because there is no any other matrix with the same properties of ~s,
that is to say which anticommutes with all v and satisfies (7)? = 1, there is not explicit
chirality in the theory. In this basis, ¥ is conveniently written as

\If=<Zf> (36)

and thus a 5D bulk fermion is necessarily a four component spinor. This may be troublesome
given that known four dimensional fermions are chiral (weak interactions are different for left
and right components), but there are ways to fix this, as we will comment below.

Increasing even more the number of dimensions does not change this feature. For 6D there
are not enough four by four anticummuting gamma matrices to satisfy the algebra, and one
needs to go to larger matrices which can always be built out of the same gamma matrices used
for 5D. The simplest representation is made of eight by eight matrices that be can be chosen as

" .
M =v"®o = ( VOH 70 ) ;D T =iysR0; = ( igs 135 ) LT = 1®ioy = ( _01 é ) .

(37)
6D spinor would in general have eight components, but there is now a I'" = I'T''...T® =
diag(1, —1) which anticommute with all other gammas and satisfy (I'")? = 1, thus one can
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define a 6D chirality in terms of the eigenstates of I'", however, the corresponding chiral states
W4 are not equivalent to the 4D ones, they still are four component spinors, with both left and
right components as given in Eq. (36).

In general, for 4 4+ 2k dimensions gamma matrices can be constructed in terms of those
used for (4 4+ 2k — 1) D, following a similar prescription as the one used above. In the simplest
representation, for both 4+ 2k and 4+ 2k + 1 dimensions they are squared matrices of dimension
2k+2 In even dimensions (4 + 2k) we always have a T oc T'0 - .. T3+2¥ that anticommutes with all
Dirac matrices in the algebra, and it is such that (I')2 = 1. Thus one can always introduce the
concept of chirality associated to the eigenstates of T', but it does not correspond to the known
4D chirality [29]. In odd dimensions (4 + 2k + 1) one may always choose the last T2k = T,
and so, there is no chirality.

For simplicity let us now concentrate in the 5D case. The procedure for higher dimensions
should then be straightforward. To dimensionally reduce the theory we start with the action for
a massless fermion,

S = / d*2dy VT4, 0 = / dzdy [i@wau\p + @7509\1:} , (38)

where we have explicitely used that I' = iy5. Clearly, if one uses Eq. (36), the last term on the
RHS simply reads v1,0y¥r — (L < R). Now we use the Fourier expansion for compactification
on the circle

1 ny 3 . ny
Y(z,y) = * { cos< >+w xsm(—)] ,
where L, R indices on the spinors should be understood. By setting this expansion into the
action it is easy to see that after integrating out the extra dimension, the first term on the

RHS of Eq. (38) precisely gives the kinetic terms of all KK components, whereas the last terms
become the KK Dirac-like mass terms:

/d4 (%) [Fnidur— (2= R (39)

Notice that each of these terms couples even (1,,) to odd modes (@n), and the two zero modes
remain massless. Regarding 5D mass terms, two different Lorentz invariant fermion bilinears
are possible in five dimensions: Dirac mass terms UW¥ and Majorana masses U7 CsW¥, where
Cs = 79245, These terms do not give rise to mixing among even and odd KK modes, rather
for a 5D Dirac mass term for instance, one gets

[dymuw = S i U, 1S mi, i, (40)

n=0 n=1

5D Dirac mass, however, is an odd function under the orbifold symmetry y — —y, under which
U — ++°¥, where the overall sign remains as a free choice for each field. So, if we use the
orbifold U(1)/Z, instead of the circle for compactifying the fifth dimension, this term should be
zero. The orbifolding also takes care of the duplication of degrees of freedom. Due to the way
Y1, r transform, one of this components becomes and odd field under Z> and therefore at zero
mode level the theory appears as if fermions were chiral.
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3.2. Bulk Vectors
Lets now consider a gauge field sited on five dimensions. For simplicity we will consider only
the case of a free gauge abelian theory. The Lagrangian, as usual, is given as

1 1 1
Lsp = —ZFMNFMN = —ZF,WF‘“’ + EFM5F“5 , (41)

where Fiyyny = Oy An — OnApr; and Ajpp is the vector field which now has an extra degree
of freedom, As, that behaves as an scalar field in 4D. Now we proceed as usual with the
compactification of the theory, starting with the mode expansion

\/21_R O +Z [A(” )cos(”—]g)JrAE(})(m)sin(%ﬂ. (42)

Upon integration over the extra dimension one gets the effective Lagrangian [30]

AM(x7y)

n v n n A(n 2 A
Lops = 2_:0{ 4Fﬁu)F&> [‘9 A5 (E) Aj )] } +(AeA). (43)

Notice that the terms within squared brackets mix even and odd modes. Moreover, the
Lagrangian contains a quadratic term in A,, which then looks as a mass term. Indeed, since
gauge invariance of the theory, Ayr — Apr + O A(z,y), can also be expressed in terms of the
(expanded) gauge transformation of the KK modes

AP AP 49 AM () ;AP - A ¢ <n> A () ; (44)

with similar expressions for odd modes. We can use this freedom to diagonalize the mixed
terms in the affective Lagrangian by fixing the gauge. We simply take A" = —(R/ n)Ag") (and
A = (R/n) ) to get

O N S AR PVINE SPRNONE
ﬁeff = Z% 4F;u/ F( ) 2 E AM A(n) + 5 (6#145 ) + (Odd modes) (45)

Hence, the only massless vector is the zero mode, all KK modes acquire a mass by absorbing the
scalars Aén). This resembles the Higgs mechanism with Aén) playing the role of the Goldston
bosons associated to the spontaneous isometry breaking [31]. Nevertheless, there remain a
massless U(1) gauge field and a massless scalar at the zero mode level, thus the gauge symmetry

at this level of the effective theory remains untouched. Once more, if one uses an orbifold, the

extra degree of freedom, A( ) , that appears at zero level can be projected out. This is because
under Zs, As can be chosen to be an odd function.

Gauge couplings.- We have already mention that, for bulk theories, the coupling constants
usually get a volume suppression that makes the theory looking weaker in 4D. With the gauge
fields on the bulk one has the same effect for gauge couplings. Consider for instance the covariant
derivative of a U(1), which is given by Dj; = 0y — igAps. Since mass dimension of our gauge

n

field is [Ap] = 1+ 5, thus gauge coupling has to have mass dimension [g] = —§. We can

explicitely write down the mass scale and introduce a new dimensionless coupling, g., as

g«

S

(46)
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To identify the effective coupling we just have to look at the zero mode level. Consider for
instance the gauge couplings of some fermion ¥ for which the effective Lagrangian comes as

Jx

A"y i VT Dy = — —25
/ v M LM,

AOW g + - (47)
where on the RHS we have used the generic property that the zero mode always comes with a
volume suppression, ¥ = ¥(/y/V,, + ---. Thus, if the effective coupling gesr = g+/\/MIV}, is of
order one, we are led to the conclusion that g, must be at least as large as \/ M2V,,.

We must stress that this effective theories are essentially non renormalizable for the infinite
number of fields that they involve. However, the truncated theory that only considers a finite
number of KK modes is renormalizable. The cut-off for the inclusion of the excited modes will
be again the scale M,.

Non abelian bulk gauge theories follow similar lines, although they involve the extra well
known ingredient of having interaction among gauge fields, which now will have a KK equivalent,
where vector lines can either be zero or excited modes, only restricted by conservation of the
extra momentum (when it is required) at each vertex.

3.3. Short and large extra dimensions

SM fields may also reside on the extra dimensions, however, there is no experimental evidence
on the colliders of any KK excitation of any known particle, that is well up to some hundred
GeV. If SM particles are zero modes of a higher dimensional theory, as it would be the case in
string theory, the mass of the very first excited states has to be larger than the current collider
energies. According to our above discussion, this would mean that the size of the compact
dimensions where SM particle propagate has to be rather small. This do not mean, however,
that the fundamental scale has to be large. A low M, is possible if there are at least two different
classes of compact extra dimensions: (i) short, where SM matter fields can propagate, of size
r; and (ii) large of size R, tested by gravity and perhaps SM singlets. One can imagine the
scenario as one where SM fields live in a (34 )D brane, with 0 compact dimensions, embedded
in a larger bulk of 4 + § +n dimensions. In such a scenario, the volume of the compact space is
given by V;, = r’ R", and thus, one can write the effective Planck scale as

M2 = M2Hotnpogn (48)

Keeping M, around few tenths of TeV, only requires that the larger compactification scale
M. = 1/r be also about TeV, provided R is large enough, say in the submillimeter range. This
way, short distance gravity experiments and collider physics could be complementary to test the
profile and topology of the compact space.

A priori, due to the way the models had been constructed, there is no reason to belive that
all SM particles could propagate in the whole 4 + § dimensions, and there are many different
scenarios considering a diversity of possibilities. When only some fields do propagate in the
compact space one is force to first promote the gauge fields to the bulk, since otherwise gauge
conservation would be compromised. When all SM fields do feel such dimensions, the scenario
is usually referred as having Universal Extra Dimensions (UED).

Phenomenology would of course be model dependent, and rather than making an exhaustive
review, we will just mention some general ideas. Once more, the effects of an extra dimensional
nature of the fields can be studied either on the direct production of KK excitations, or through
the exchange of these modes in collider processes [11, 21, 32, 33]. In non universal extra
dimension models KK number is not conserved, thus single KK modes can be produced directly
in high energy particle collisions. Future colliders may be able to observe resonances due to KK
modes if the compactification scale 1/r turns out to be on the TeV range. This needs a collider
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energy /s > M. = 1/r. In hadron colliders (TEVATRON, LHC) the KK excitations might be
directly produced in Drell-Yang processes pp(pp) — £~ €T X where the lepton pairs (£ = e, 1, T)
are produced via the subprocess q¢ — ¢T¢TX. This is the more useful mode to search for
Z™ /(™) even W), Current search for Z’ on this channels (CDF) impose M. > 510 GeV.
Future bounds could be raised up to 650 GeV in TEVATRON and 4.5 TeV in LHC, which with
100 fb~! of luminosity can discover modes up to M, ~ 6 TeV .

In UED models, due to KK number conservation, things may be more subtle since pair
production of KK excitations would require more energy to reach the threshold. On the other
hand, the lighter KK modes would be stable and thus of easy identification, either as large
missing energy, when neutral, or as a heavy stable particles if charged. It can also be a candidate
for dark matter [34]

Precision test may be the very first place to look for constraints to the compactification scale
M. [11, 32, 21]. For instance, in non UED models, KK exchange contributions to muon decay
gives the correction to Fermi constant (see first reference in [11])

Gl eM T wr o,
E_ZF 14— ; 49
NV A T ()

which implies that M. > 1.6 TeV. Deviations on the cross sections due to virtual exchange of
KK modes may be observed in both, hadron and lepton colliders. With a 20 fb~! of luminosity,
TEVATRONII may observe signals up to M, =~ 1.3 TeV. LEPII with a maximal luminosity of
200 fb~! could impose the bound at 1.9 T'eV, while NLC may go up to 13 TeV, which slightly
improves the bounds coming from precision test.

SUSY.- Another ingredient that may be reinstalled on the theory is supersymmetry. Although
it is not necessary to be considered for low scale gravity models, it is an interesting extension.
After all, it seems plausible to exist if the high energy theory would be string theory. If the
theory is supersymmetric, the effective number of 4D supersymmetries increases due to the
increment in the number of fermionic degrees of freedom [29]. For instance, in 5D bulk fields
come in N = 2 supermultiplets [33, 35]. The on-shell field content of the a gauge supermultiplet
is V.= (Vyu, Vs, A, X) where A (i = 1,2) is a symplectic Majorana spinor and ¥ a real scalar in
the adjoint representation; (V,, A!) is even under Z; and (Vs, ¥, \?) is odd. Matter fields, on the
other hand, are arranged in N = 2 hypermultiplets that consist of chiral and antichiral N =1
supermultiplets. The chiral N = 1 supermultiplets are even under Zs and contain massless
states. These will correspond to the SM fermions and Higgses.

Supersymmetry must be broken by some mechanisms that gives masses to all superpartners
which we may assume are of order M, [33]. For some possible mechanism see Ref. [35]. In
contrast with the case of four dimensional susy, where no extra effects appear at tree level after
integrating out the superpartners, in the present case integrating out the scalar field ¥ may
induces a tree-level contribution to My, [32], that could in principle be constraint by precision
tests.

3.4. Power Law Running of Gauge Couplings

Once we have assumed a low fundamental scale for quantum gravity, the natural question is
whether the former picture of a Grand Unified Theory [36] should be abandoned and with it
a possible gauge theory understanding of the quark lepton symmetry and gauge hierarchy. On
the other hand, if string theory were the right theory above M, an unique fundamental coupling
constant would be expect, while the SM contains three gauge coupling constants. Then, it seems
clear that, in any case, a sort of low energy gauge coupling unification is required. As pointed
out in Ref. [30] and later explored in [37, 38, 39, 40, 41], if the SM particles live in higher
dimensions such a low GUT scale could be realized.
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For comparison let us mention how one leads to gauge unification in four dimensions. Key
ingredient in our discussion are the renormalization group equations (RGE) for the gauge
coupling parameters that at one loop, in the M .S scheme, read

i mUh

(50)

where t = Inu. «; = g?/4m; i = 1,2,3, are the coupling constants of the SM factor
groups U(1l)y, SU(2)r and SU(3). respectively. The coefficient b; receives contributions
from the gauge part and the matter including Higgs field and its completely determined by
Amb; = Y Ci(vectors) — 2C;(fermions) — 3Ci(scalars), where Cy(---) is the index of the
representation to which the (---) particles are assigned, and where we are considering Weyl
fermion and complex scalar fields. Fixing the normalization of the U(1) generator as in the SU(5)
model, we get for the SM (b1, b2, b3) = (41/10,—19/6, —7) and for the Minimal Supersymmetric
SM (MSSM) (33/5,1,—3). Using Eq. (50) to extrapolate the values measured at the My
scale [42]: a7 (Mz) = 58.97 + .05; ay ' (Mz) = 29.61 + .05; and ag ' (Myz) = 8.47 + .22, (where
we have taken for the strong coupling constant the global average), one finds that only in the
MSSM the three couplings merge together at the scale Mgyr ~ 10' GeV. This high scale
naturally explains the long live of the proton and in the minimal SO(10) framework one gets
very compelling and predictive scenarios.

A different possibility for unification that does not involve supersymmetry is the existence
of an intermediate left-right model [36] that breaks down to the SM symmetry at 1011713 GeV'.
It is worth mentioning that a non canonical normalization of the gauge coupling may, however,
substantially change above pictures, predicting a different unification scale. Such a different
normalization may arise either in some no minimal (semi simple) unified models, or in string
theories where the SM group factors are realized on non trivial Kac-Moody levels [43, 44]. Such
scenarios are in general more complicated than the minimal SU(5) or SO(10) models since they
introduce new exotic particles.

It is clear that the presence of KK excitations will affect the evolution of couplings in gauge
theories and may alter the whole picture of unification of couplings. This question was first
studied by Dienes, Dudas and Gherghetta (DDG)[30] on the base of the effective theory approach
at one loop level. They found that above the compactification scale M, one gets

b; — b A by (WM gy it \°
w22 E L))
a; (M) =a; (A) + or oz toam e U3 ) (51)

with A as the ultraviolet cut-off and § the number of extra dimensions. The Jacobi theta function
I(r) = 22 ™™ reflects the sum over the complete tower. Here b; are the beta functions
of the theory below M,, and b; are the contribution to the beta functions of the KK states
at each excitation level. The numerical factor w depends on the renormalization scheme. For
practical purposes, we may approximate the above result by decoupling all the excited states
with masses above A, and assuming that the number of KK states below certain energy pu

between M, and A is well approximated by the volume of a §-dimensional sphere of radius MLC
1)
given by N(u, M.) = X5 (—](j—c> ; with X5 = 7%/2/T'(1+6/2). The result is a power law behavior

of the gauge coupling constants [45]:
é
i
— ] =1 52
() ] , (52)

_ _ bi — b; m b Xs
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(W) =ai (M) - == n (M) 2r 0
which accelerates the meeting of the a;’s. In the MSSM the energy range between M, and A
—identified as the unification (string) scale M— is relatively small due to the steep behavior in

(67
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the evolution of the couplings [30, 38|. For instance, for a single extra dimension the ratio A/M,
has an upper limit of the order of 30, and it substantially decreases for larger §. This would, on
the other hand, requires the short extra dimension where SM propagates to be rather closer to
the fundamental length.

This same relation can be understood on the basis of a step by step approximation [39] as
follows. We take the SM gauge couplings and extrapolate their values up to M. then we add to
the beta functions the contribution of the first KK levels, then we run the couplings upwards up
to just below the next consecutive level where we stop and add the next KK contributions, and
so on, until the energy u. Despite the complexity of the spectra, the degeneracy of each level
is always computable and performing a level by level approach of the gauge coupling running
is possible. Above the N-th level the running receives contributions from b; and of all the KK
excited states in the levels below, in total f5(N) = S-_ gs(n), where gs(n) represent the total
degeneracy of the level n. Running for all the first IV levels leads to

. T. N
o ) = a0~ 5ot () - 5t lfa(N) in (1) - %Z gs(m)In n] RNEEY

A numerical comparison of this expression with the power law running shows the accuracy of
that approximation. Indeed, in the continuous limit the last relation reduces into Eq. (52).
Thus, gauge coupling unification may now happen at TeV scales [30].

Next, we will discuss how accurate this unification is. Many features of unification can be
studied without bothering about the detailed subtleties of the running. Consider the generic
form for the evolution equation

b; M b; M.
-1 R | i * Vi *
a, (Mz) =« to In <MZ) +27rF5 <Mc>’ (54)

where we have changed A to M, to keep our former notation. Above, « is the unified coupling
and Fjs is given by the expression between parenthesis in Eq. (53) or its correspondent limit
in Eq. (52). Note that the information that comes from the bulk is being separated into two
independent parts: all the structure of the KK spectra M. and M, are completely embedded
into the Fs function, and their contribution is actually model independent. The only (gauge)
model dependence comes in the beta functions, b;. Indeed, Eq. (54) is similar to that of
the two step unification model where a new gauge symmetry appears at an intermediate
energy scale. Such models are very constrained by the one step unification in the MSSM.
The argument goes as follows: let us define the vectors: b = (b1,be,b3); b = (b1, b2, b3); a =
(a7 (Myz), a5t (Mz), a5 (Mz)) and u = (1,1,1), and construct the unification barometer [39)]
Aa = (u x b) - a. For single step unification models the unification condition amounts to the
condition Aa = 0. As a matter of fact, for the SM Aa = 41.13 £ 0.655, while for the MSSM
Aa = 0.928 £ 0.517, leading to unification within two standard deviations. In this notation Eq.
(54) leads to

-1
Aa = b) - b] —F5.
o= [(uxb)- B ;- (55)
Therefore, for the MSSM, we get the constrain [46]
(Tbs — 12by + 5b1)F5 = 0. (56)

There are two solutions to the this equation: (a) Fj(M,./M.) = 0, which means M, = M.,
bringing us back to the MSSM by pushing up the compactification scale to the unification
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scale. (b) Assume that the beta coefficients b conspire to eliminate the term between brackets:
(Tbg — 12b2 + 5b1) = 0, or equivalently [30]

Bis Bz
— = —=1; where B;; =
B3 Bag “

(57)

The immediate consequence of last possibility is the indeterminacy of Fjs, which means that we
may put M. as a free parameter in the theory. For instance we could choose M, ~ 10 TeV
to maximize the phenomenological impact of such models. It is compelling to stress that this
conclusion is independent of the explicit form of F5. Nevertheless, the minimal model where
all the MSSM particles propagate on the bulk does not satisfy that constrain [30, 38]. Indeed,
in this case we have (7bs — 12by + 5b;) = —3, which implies a higher prediction for a; at low
M.. As lower the compactification scale, as higher the prediction for a;. However, as discussed
in Ref. [38] there are some scenarios where the MSSM fields are distributed in a nontrivial
way among the bulk and the boundaries which lead to unification. There is also the obvious
possibility of adding matter to the MSSM to correct the accuracy on as.

The SM case has similar complications. Now Eq. (54) turns out to be a system of three
equation with three variables, then, within the experimental accuracy on «;, specific predictions
for M, M. and « will arise. As A« # 0, the above constrain does not apply, instead the matter
content should satisfy the consistency conditions [39]

Sign(Aa) = Sign[(u x b) - b] = —Sign(Aa) ; (58)

where Aa = (u x B) -a. However, in the minimal model where all SM fields are assumed to
have KK excitations one gets Aa = 38.973 4 0.625; and (u x b) - bSM = 1/15. Hence, the
constraint (58) is not fulfilled and unification does not occur. Extra matter could of course
improve this situation [30, 38, 39]. Models with non canonical normalization may also modify
this conclusion [39]. A particularly interesting outcome in this case is that there are some cases
where, without introducing extra matter at the SM level, the unification scale comes out to
be around 10! GeV (for instance SU(5) x SU(5), [SU(3)]* and [SU(6)]*). These models fit
nicely into the new intermediate string scale models recently proposed in [47], and also with the
expected scale in models with local B — L symmetry. High order corrections has been considered
in Ref. [40]. It is still possible that this aside to the threshold corrections might also correct this
situation improving the unification, so one can not rule it out on the simple basis of one-loop
running. Examples of he analysis for the running of other coupling constants could be found
in [30, 41]. Two step models were also studied in [39].

4. Symmetry Breaking with Extra Dimensions

Old and new ideas on symmetry breaking have been revisited and further developed in the
context of extra dimension models by many authors in the last few years. Here we provide
a short overview of this topic. Special attention is payed to spontaneous symmetry breaking,
and the possible role compactification may play to induce the breaking of some continuous
symmetries. An extended review can be found in the lectures by M. Quiros in reference [20].

4.1. Spontaneous Breaking

The simplest place to start is reviewing the spontaneous symmetry breaking mechanism as
implemented with bulk fields, as it would be the case in a higher dimensional SM. Let us
consider the usual potential for a bulk scalar field

A
V(g) = —%m%ﬁ + qu‘* : (59)
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First thing to notice is the suppression on the quartic coupling. Minimization of the potential
gives the condition ,
n

(o7 = (60)
RHS of this equation is clearly a constant, which means that in the absolute minimum only
the zero mode is picking up a vacuum expectation value (vev). As the mass parameter m is
naturally smaller than the fundamental scale M,, this naively implies that the minimum has
an enhancement respect to the standard 4D result. Indeed, if one considers the KK expansion
¢ = ¢o/\/Vp + -+ +; is easy to see that the effective vacuum as seen in four dimensions is

2 n 2
o m*V, M, m
= = . 1
(¢0) 3 N7 (61)

The enhancement can also be seen as due to the suppression of the effective A.¢s coupling.
The result can of course be verified if calculated directly in the effective theory (at zero mode
level) obtained after integrating out the extra dimensions. Higgs mechanism, on the other hand,
happens as usual. Consider for instance a bulk U(1) gauge, broken by the same scalar field we
have just discussed above. The relevant terms contained in the kinetic terms, (Dys$)?, are as
usual g2¢? Ay (z, y)AM (2,y). Setting in the vev and Eq. (46) one gets the global mass term

2
T (000 Anr(w 9) A (2,) = 627 (00) Ani e, ) AV (2, ) (62)

Thus, all KK modes of the gauge field acquire a universal mass contribution from the bulk
vacuum.

4.2. Shinning vevs

Symmetries can also be broken at distant branes, and the breaking be communicated by the
mediation of bulk fields to some other brane [48]. Consider for instance the following toy model.
We take a brane located somewhere in the bulk, let say at the position ¢ = 4y, where there is
a localized scalar field, ¢, which couples to a bulk scalar y, such that the Lagrangian in the
complete theory is written as

o1 1
Lap(9)d" (7 = §o) + 50mx0" X — 5mix* = V(e X) - (63)

For the brane field we will assume the usual Higgs potential V(¢) = —%mig@Q + %cp‘l, such that
© gets a non zero vev. For the interaction potential we take

2

Vg, x) = ©x 6" (¥ — o) ; (64)

Mn/2
with g a mass parameter. Thus, (p) acts as a point-like source for (x)(%),
2 2 p
(VE+m) (0@ = =00 8"~ 7o) - (65)
*

The equation has the solution
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with A(my; %o — ¢) the physical propagator of the field. Next we would be interested in what a
second brane localized in y = 0 would see, for which we introduce the coupling of the bulk field
to some fermion on the second brane, \/ALJ_n@DCi/J X 0"™(%). If we assume that all those fields carry

a global U(1) charge, this last coupling will induce the breaking of such a global symmetry on
the second brane, by generating a mass term

[A(mj‘ﬁ”] h (o) (67

*

Since this requires the physical propagation of the information through the distance, the second
brane sees a suppressed effect, which results in a small breaking of the U(1) symmetry. This
way, we get a suppressed effect with out the use of large energy scales. This idea has been used
where small vevs are needed, as for instance to produce small neutrino masses [49, 50]. It may
also be used to induce small SUSY breaking terms on our brane [51].

4.83. Orbifold Breaking of Symmetries
We have mentioned in previous sections that by orbifolding the extra dimensions one can get
chiral theories. In fact, orbifolding can actually do more than that. It certainly projects out part
of the degrees of freedom of the bulk fields via the imposition of the extra discrete symmetries
that are used in the construction of the orbifold out of the compact space. However it gives
enough freedom as to choose which components of the bulk fields are to remain at zero mode
level. In the case of fermions on 5D, for instance, we have already commented that under Z,
the fermion generically transform as ¥ — =£~51, where the 4 sign can be freely chosen. The
complete 5D theory is indeed vector-like since chirality can not be defined, which means the
theory is explicitely left-right symmetric. Nevertheless, when we look up on the zero mode level,
the theory would have less symmetry than the whole higher dimensional theory, since only a
left (or right) fermion do appears. This can naturally be used to break both global and local
symmetries [52, 53] and so, it has been extendedly exploited in model building. Breaking of
parity due to the projection of part of the fermion components with well defined 4D chirality
is just one of many examples. A nice model where parity is broken using bulk scalars was
presented in Ref [52], for instance. In what follows we will consider the case of breaking non
abelian symmetries through a simple example.

Toy Model: Breaking SU(2) on U(1)/Z,.- Consider the following simple 5D model. We take

a bulk scalar doublet 5
o = , 68
(%) L

and assume for the moment that the SU(2) symmetry associated to it is global. Next, we
assume the fifth dimension is compactified on the orbifold U(1)/Z,, where, as usual, Z; means
the identification of points y — —y. For simplicity we use y in the unitary circle defined by the
interval [—m, 7] before orbifolding. Z5 has to be a symmetry of the Lagrangian, and that is the
only constrain in the way ® should transforms under Zs. As the scalar part of the Lagrangian
goes as L = %(8]\4(1))2, the most general transformation rule would be

P, ; (69)

where P satisfies PgT = Pg_l, thus, the simplest choices are P; = +1; $ 03 up to a global phase,
that we will neglect for the moment. Clearly the first option only means taking both fields
on the doublet to be simultaneously even or odd, with no further implication for the theory.
However, the second choice is some what more interesting. Taking for instance P, = o3, this



247

selection explicitely means that under Zy

(4)-(2).

That is, x is force to be an odd field . Therefore, at the zero mode level, one would only see
the ¢ field, and thus, the original SU(2) symmetry would not be evident. In fact, the lack of
the whole symmetry would be clear by looking at the whole KK spectrum, where at each level
there is not appropriate pairing of fields that may form a doublet. Either ¢, or x, is missing.

The effect of this non trivial Z» transformation can also be understood via the boundary
conditions. Whereas ¢ has been chosen to be an even field, whose KK expansion only contains
cosine functions which are non zero at both ends of the space, located at y = 0 and y = ;
X vanishes at those points, x(0) = x(m) = 0. Hence the boundaries are forced to have less
symmetry than the bulk, in fact only a residual U (1) symmetry, which is reflected in the effective
theory. Thus, the selection of the orbifold condition (70) results in the effective breaking of SU(2)
down to U(1). We should notice that the transformation (69) is an inner automorphism which
triggers a breaking that preserves the range of the original group. If fact all inner automorphism
do. To reduce the rank of the group one can use outer automorphism (see for instance Hebecker
and March-Russell in Ref. [53] and Quirés in Ref. [20]).

Let us now see what happens if SU(2) is assumed to be a local symmetry. In this case we
should ask the covariant derivative Dy;® to have proper transformation rules:

D,®, — P;D,®, and Ds®, — —P,D5®, . (71)
This fixes the way the gauge fields, Ay = A%, 0?/+/2, should transform:
Ay — PyAP! and  As; = —PgAsP; ! (72)

Now, for P, = o3 we get the following assignment of parities: W3(+); W:E(—); W3(—) and
WZE(+). Clearly, as only even modes are non zero at the boundaries, only the U(1) associated
to Wﬁ’ remains intact, as expected.

Notice that we are projecting out the zero mode of the charged vector bosons to the price
of leaving instead two massless charged scalars W5i in the effective theory. These extra fields
can be removed by a further orbifolding of the compact space. Indeed if one uses instead the
orbifold U(1)/Z5 x Z}, where the second identification of points is defined by the transformation
Zy :y — —y', where ¥ = y 4 7, one can freely choose another set of parities for the field
components in the doublet, corresponding to the transformation properties of the doublet under
Zy : ® — P,®. Therefore, the KK wave functions along the fifth dimensions will be now
classified under both these parities. We will then have,

£(+7+) ~ COS(2’I’L y/R) €(+’_) ~ COS[(Q’I’L — 1) y/R]

(73)

%) ~sin(2ny/R) ¢(=7) ~sin[(2n — 1) y/R]
up to a normalization factor. Clearly, only the completely even function, £(+1), do contain a
zero mode. If we now take the transformations to be given by P, = 1 and Pg’ = o3 for Z5 and
7} respectively, then, we then get the parity assignments Wg(—i—, +); Wj(—, +); but W3(—, )
and W;E(—i—, —). Therefore, at zero mode level, only WS would appear.

4.4. Scherk-Schwarz mechanism
When compactifying, one assumes that the extra dimensions form a quoting space C' = M/G,
which is constructed out of a non compact manifold M and a discrete group G acting on M,
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with the identification of points y = 7,(y) for 74 a representation of G, which means that
Tg1Tgs = Tgy * Tgo- G should be acting freely, meaning that only 7. has fixed points in M, where
e is the identity in G. M becomes the covering space of C. After the identification physics
should not depend on individual points in M but only on on points in C' (the orbits), such
that L{¢(y)] = L{¢(14(y))]. To satisfy this, in ordinary compactification one uses the sufficient
condition ¢(y) = ¢(14(y)). For instance, if we use 7,(y) = y + 2nm for y € R and n an integer
number, the identification leads to the fundamental interval (y,2x] that is equivalent to the
unitary circle. The open interval only states that both the ends describe the same point. One
usually writes a close interval with the implicit equivalence of ends. Any choice of y leads to a
equivalent fundamental domain in the covering space R. One can take for example y = —m so
that the intervale becomes (—m, 7).

There is, however, a more general necessary and sufficient condition for the invariance
of the Lagrangian under the action of G, which is given by the so called Scherk-Schwarz
compactification [54]

o(14(y)) = Tyo(y) (74)

where Ty, is a representation of G acting on field space, usually called the twist. Unlike ordinary
compactification, given for a trivial twist, for Scherk-Schwarz compactification twisted fields are
not single value functions on C. T must be an operator corresponding to a symmetry of the
Lagrangian. A simple example is the use the Z5 symmetry for which the twisted condition would
be ¢(—) = To(r) = —(r).

Notice that the orbifold is somewhat a step beyond compactification. For orbifolding we
take a compact manifold C and a discrete group H represented by some operator ( acting non
freely on C. Thus, we mode out C' by identifying points on C' such that y = (3 (y), for some
h on H, and require that fields defined at these two points differ by some transformation Zj,
o(x,Ch(y)) = Znp(z,y), which is a symmetry of the theory. The resulting space C'/H is not a
smooth manifold but it has singularities at the fixed points.

Scherk-Schwarz boundary conditions can change the properties of the effective 4D theory and
can also be used to break some symmetries of the Lagrangian. Consider the simple toy model
where we take M = R, and the group G = Z, as for the circle. Thus we use the identification
on R, 7(y) = y + 2nmR, with R the radius of the circle as before. The group Z has an
infinite number of elements, but all of them can be obtained from just one generator, the simple
translation by 27. Thus, there is only one independent twist, ¢(y + 2nR) = T'¢(y) and other
elements of Z are just given by T, = T". We can then choose the transformation to be

d(y +27R) = ¥ Po(y) (75)

where 3 is called the Scherk-Schwarz charge. Thus, with this transformation rule instead of the
usual Fourier expansion for the fields we get

ba,y) = PR S () eI (76)

n=—oo

At the level of the KK excitations we see that fifth momentum is less trivial than usual,

indeed, acting ps = —i0, on the field one sees that the KK mass is now given as
n+
- Rﬂ . (77)

Therefore, in this model all modes are massive, including the zero mode. This particular property
can be used to break global symmetries. For instance, if we assume a Global SU(2), and consider
a doublet representation of fields

o= (%) (78)

X
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one can always choose the non trivial twist

eBy/ Ry \
) ( v ) (79)

which explicitely breaks the global symmetry. Whereas the zero mode of x appears massless,
this does not happen for ¢. Moreover, the effective theory does not present the SU(2) symmetry
at any level.

Similar Scherk-Schwarz mechanism can be used to break local gauge symmetries. The result is
actually equivalent to the so called Wilson/Hosotani mechanism [55, 56] where the A2 component
of the gauge vector, A%J, may by some dynamics acquire a non zero vev, and induce a mass
term for the 4D gauge fields, Af,, through the term (A3)2 (Ant AL + Ar2 Ai), which is contained
in Tr Fyyn FMN. Thus SU(2) would be broken down to U(1). Another interesting use of this
mechanism could be the breaking of supersymmetry [57]. For more discussions see M. Quirds
in Ref. [20] and references therein.

5. Z and B in Low Gravity Scale Models

Baryon number (B) and Lepton number (L) are conserved quantities in the SM. However, it
is believe that such global symmetries may not be respected by the physics that lays beyond
electroweak scale. Well known examples are GUT theories, which contain new quark-lepton
interactions that violate baryon number. R parity breaking terms in supersymmetric theories
usually include lepton and baryon number violation too. It is also believe that quantum gravity
would not conserve any global symmetry.

Regarding lepton number, several experiments have provided conclusive evidence for the
oscillation of neutrinos, and this only takes place if neutrinos are massive [58]. The most
appealing four dimensional mechanisms which generates masses for the SM left handed neutrino
is see-saw, which also introduce right handed Majorana masses that violate lepton number. The
generated mass appears effectively through the non renormalizable operators

(LH)
A 9

(80)

where L is the lepton doublet and H the Higgs field. In order to get the right order for the mass
one has to invoke high energy physics with scales about A ~ 10'3 GeV or so. That should be
the mass scale for right handed neutrinos.

Possible evidence of the violation of baryon number can be found in the baryon domination
in the universe. The simplest effective operator that would produce proton decay, for instance,

has the form L
QRQQL
A2 ’
where @ stands for the quark representations and color index sum is implicit. Since the proton
has a life time larger than 1033 yrs., (for the decay into a pion and a positron), this implies that
the suppression on this operator has to be large enough, in fact A < 10'® GeV.

Obviously, with a fundamental scale at the TeV range, understanding the small neutrino
masses and controlling proton decay poses a theoretical challenge to the new theories. The
problem seems worsen because, given that the SM has to be treated only as an effective theory,
one is in principle entitled to write all operators that are consistent with the known symmetries
of the theory. However, because now the non renormalizable operators can only be suppressed
by powers of 1/M,, the effects of this operators may be greatly enhanced. Particularly, neutrino
mass would be large, of order (H)2/M, whereas proton decay may be too fast.

(81)
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To exclude or properly suppress these operators one has to make additional assumptions,
or work out explicit models. Unfortunately, it is not possible to elaborate here on all ideas in
the literature. Thus, we will rather just comment some interesting possibilities, given particular
examples in the case of neutrino masses. For proton decay, on the other hand, we shall discuss
the two ideas we believe are the most promising: 6D orbifolded theories [59] and wave function
localization [60].

5.1. Neutrino Mass Models

Regarding neutrino mass, the simplest way to control the unwanted operators is by adding lepton
number as a real symmetry, whose eventual breaking should generate only small masses. We
can classify the models into two classes depending on whether lepton number, or equivalently
B — L, is a global or local symmetry.

5.1.1. Models with global L symmetry In the context of models that have a global U(1)f,
symmetry, one can get small neutrino masses by introducing isosinglet neutrinos in the bulk [61]
which carry lepton number. As this is a sterile neutrino, it comes natural to assume that it
may propagate into the bulk as well as gravity, while the SM particles remain attached to the
brane. These models are interesting since they lead to small neutrino masses without any extra
assumptions.

Let vp(x*, y) be a bulk neutrino, living on the U(1)/Z, orbifold, which we take to be massless
since the Majorana mass violates conservation of Lepton number and the five dimensional Dirac
mass is forbidden by the orbifold symmetry. This neutrino couples to the standard lepton
doublet and to the Higgs field via ﬁI}H vpr 0(y). Once the Higgs develops its vacuum, this

coupling generates the four dimensional Dirac mass terms
o
mur, <VOR +V2) VnR> ; (82)
n=1

where the mass m is given by [62]

M KM
—h—~102 eV x —— .
m=nen VX100 Tev

(83)

Therefore, if M, ~ 100 TeV we get just the right order of magnitude on the mass as required
by the experiments. Moreover, even if the KK decouple for a small R, we will still get the same
Dirac mass for v, and vyg, as far as M, remains in the T'eV range. The general result is actually
R independent, provided the bulk neutrino propagates in the whole bulk. After including the
KK masses, we may write down all mass terms in the compact form [63]

(PeL 1) ( o \/3:1 ) ( 2 ) (84)

/
VBR

where the notation is as follows: v/; represents the KK excitations. The off diagonal term v/2m
is actually an infinite row vector of the form v/2m(1,1,---) and the operator ds stands for the
diagonal and infinite KK mass matrix whose n-th entrance is given by n/R. Using this short hand
notation it is straightforward to calculate the exact eigensystem for this mass matrix [64]. Simple
algebra yields the characteristic equation 2\, = 7&2 cot(m\,), with A\, = m, R, £ = v2mR, and
where m,, is the mass eigenvalue [61, 62]. The weak eigenstate is given in terms of the mass
eigenstates, Uy, as

> 1 B
vy = Z FI/nL, (85)

n=0"""
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where the mixing N, is given by N2 = (A2 + f(€)) /&2, with f(&) = £2/2+n2¢* /4 [64]. Therefore,
vy, is actually a coherent superposition of an infinite number of massive modes. As they evolve
differently on time, the above equation will give rise to neutrino oscillations, v — vp, even
though there is only one single flavor. This is a totally new effect that was thought it may be
an alternative to explain neutrino anomalies, unfortunately it does not seem to be detectable
in current neutrino experiments. An analysis of the implications of the mixing profile in these
models for solar neutrino deficit was presented in [62]. Implications for atmospheric neutrinos
were discussed in [65], and some early phenomenological bounds were given in [65, 66]. A
comprehensive analysis for three flavors is given in [67]. Overall, the non observation of any
effects attainable to extra dimensional oscillations means that the first excited level (so the
tower) is basically decoupled from the zero mode, which means that 1/R > 10eV, or equivalently
R <1072 pm.

The extension of this model to three brane generations, v, , -, is straightforward. However, to
give masses to the three standard generations three bulk neutrinos are needed [64]. This comes
out from the fact that with a single bulk neutrino only one massless right handed neutrino is
present (the zero mode), then, the coupling to brane fields will generate only one new massive
Dirac neutrino. After introducing a rotation by an unitary matrix U on the weak sector, the
most general Dirac mass terms with three flavors and arbitrary Yukawa couplings may be written
down as

3
—L=3" {maVaLV%R(y =0)+ /dy U8 058k + hac.|, (86)
a=1
where v,;, = Ujalar, with a = e, u,7 and a = 1,2,3. The mass parameters m, are the

eigenvalues of the Yukawa couplings matrix multiplied by the vacuum v, and as stated before
are naturally of the order of eV or less. This reduces the analysis to considering three sets of
mixings given as in the previous case. Each set (tower) of mass eigenstates is characterized by
its own parameter &, = v2mqoR. When this is small only the mass terms that involve zero
mode would be relevant, and one indeed gets three Dirac massive neutrinos, v,, with the mixing
angles given by Ugq.

5.1.2. Models for Majorana masses Some extended scenarios that consider the generation
of Majorana masses from the spontaneous breaking of lepton number either on the bulk or
on a distant brane have been considered in Refs. [50, 68]. Shinning vevs have been already
mentioned above. With spontaneous breaking by a bulk scalar field one can introduce a y field
that carries lepton number 2. It develops a small vacuum and gives mass to the neutrinos which
are generically of the form
m. ~ (H)? X)B .
Y M2 g

(87)

then, for n=2 and M, of the order of 100 TeV, we need (x)p ~ (10 GeV)? to get m, ~ 10 eV.
Such small vacuums are possible in both this models, though it is usually needed a small mass
for x. Obviously, with Majorana masses, a bulk neutrino is not needed but new physics must
be invoked. We should notice the there is also a Majoron field associated to the spontaneous
breaking of the lepton number symmetry. Its phenomenology depends on the details of the
specific model. In the simplest scenario, the coupling (LH)?y is the one responsible for
generating Majorana masses. It also gives an important contribution for neutrinoless double
beta decay which is just right at the current experimental limits [68].

5.1.3. Models with local B — L symmetry Here we give an example of a simple model that uses
the spontaneous breaking of a local B — L symmetry to generate neutrino masses [69]. Consider



252

a 5D model based in the gauge group SU(2) x U(1); x U(1)p—r, built, as usual, on the orbifold
U(1)/Zs, with the matter content

v

£(2,0,—1) = ( . ); B(1,-1/2,-1) . (88)
The scalar sector is chosen to contain a doublet, H(2,—1/2,0), and a singlet x(1,1/2,1), which
are used to break the symmetry down to the electromagnetic U(1)ey,. Particularly (x) produce
the breaking of U(1); x U(1)p_r down to the hypercharge group U(1)y. Also, electric charge
is given by the linear combination

Q:T3+I+%(B—L). (89)

As for the Z5 parities of the fermion sector, we take the following fields L = Ly, and egr = ER,
to be even, and thus Lg, and E} should be odd fields. Thus, at zero mode level we get usual
SM lepton content. With this parities, since there is no right handed zero mode neutrino, the
theory has not Dirac mass terms LHvg.

Next we look for the simplest non-renormalizable operator that can generate neutrino masses.
It is the dimension 10 operator in 5D [69, 70] (£LH)?x?; which in the effective theory, after setting
in the scalar vevs, generates the Majorana mass term

h (LHx)?
(M.r)? M3

(90)

If one takes (x) ~ 800 GeV, assuming that M,r ~ 100 as suggested from the running of gauge
couplings, and M, ~ 100 TeV one easily gets a neutrino mass in the desired range, m, ~ h- eV.

5.2. Proton Stability in 6D models

Keeping under control proton stability is more subtle. One might of course invoke global
symmetries again, but this is less natural since baryogenesis seems to require some degree of
violation of the baryon number, thus, without the knowledge of the theory above M, it is difficult
just to assume that such operators are not being induced.

In a recent paper [59] a solution to the proton decay problem was proposed in the context
of the so called universal extra dimension models (UED) [71] where the number of space-time
dimensions where all standard model (SM) fields reside is six and the fundamental scale of
nature is in the TeV range. The main observation of [59] is that in six dimensional UED models,
the extra space-time dimensions (the fifth and sixth dimensions) provide a new U(1) symmetry
under which the SM fermions are charged and enough of this symmetry survives the process
of orbifold compactification that it suppresses proton decay to a very high degree. Besides, 6D
SM have the remarkable property of being and anomaly free theory only if the model contains
a minimum of three generations [72].

5.2.1. Aspects of 6D SM Let us consider a six dimensional model [72] based on the standard
gauge group SU(3). x SU(2)r x U(1)y, with the following fermion content

Q7(37271/3) ; ‘C*(1727_1) ; Z/[+(3,1,4/3) ) D+(3717_2/3) ; EJr(]-a]-a_Q) ; NJr(]-’]-aO) ;

(91)
where the numbers within parentheses are the gauge quantum numbers. Here the subscripts
+ denote the six dimensional chirality. The corresponding six dimensional chirality projection
operator is defined as Py = %(1 + I'"), where I'7 is itself given by the product of the six Dirac
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matrices already presented in Eq. (37). As shown, these are are eight by eight matrices built
out of the well known +* of the four dimensional representation. In that representation one gets
I = diag(lyx4, —1ax4)

With the above assignments the model describes chiral interactions that should be made
anomaly free to be consistent. There are two classes of anomalies: local and global anomalies (for
a discussion see [72, 73]). Local anomalies are related to infinitesimal gauge and/or coordinate
transformations, whereas global anomalies are essentially nonperturbative.

Each of above fermion fields is a four component field with two 4-dimensional 2 component
spinors with opposite 4D chirality e.g. Q— has a left chiral ()_ ;, and a right chiral field Q_ g.
As such the effective 4D theory is vector like at this stage and we will need orbifold projections
to obtain a chiral theory. This is reflected in the fact that the theory contains no triangular
anomalies. In six dimensions, local anomalies arise from box one-loop diagrams where the
external legs are either gauge bosons or gravitons. Diagrams with only gauge bosons in the
external legs correspond to the pure gauge anomaly, whereas those with only gravitons give
the pure gravitational anomaly. Diagrams with both gauge bosons and gravitons correspond to
mixed anomalies.

Cancellation of local anomalies- In the present model SU(3) is vector-like due to the
replication of representations with opposite chiralities. U(1) and SU(3). x U(1)p_1, anomalies
do cancel within each generation. Same holds for the subgroup U(1)g. In fact, the model has no
irreducible local gauge anomalies. The only possible anomalies of this kind, which are [[/(1)]* and
[SU(3)]3U(1) vanish identically. All other anomalies associated to: [SU(2)]%; [SU(3)]?[SU(2)]?;
and [SU(2)]2[U(1)]?; are reducible. They are not a matter of concern, because they can be
canceled through the Green-Schwarz mechanism [74] by the introduction of an appropriate set
of two index antisymmetric tensors. The presence of reducible anomalies is rather generic in
six dimensional chiral theories, thus, antisymmetric tensor are likely to be an ingredient of any
six dimensional model (see for instance the models in Refs. [71, 73, 75]). Notice that in fact all
local gauge anomalies completely cancel.

As the total number of fermions with chirality 4+ is equal to the number of fermions with
chirality —, there is no pure gravitational anomaly. Regarding mixed anomalies, only those
associated to diagrams with two gravitons in the external legs can be non zero [76]. Again, such
anomalies do vanish for U(1) and SU(3). Mixed anomalies that involve SU(2) are all reducible,
and canceled by the same tensors that take care of the reducible pure gauge anomalies.

Global anomalies and the number of generations.- Global anomalies are, on the other hand,
more restrictive for the fermion content of the model. These anomalies are related to local
symmetries that can not be deduced continuously from the identity. Cancellation of the of global
gravitational anomalies in six dimensions, however, is automatically insured by the cancellation
of the local gravitational anomaly. Therefore, only global gauge anomalies are possible. In
general, they are associated to a non trivial topology of the gauge group. Particularly, they arise
in six dimensional theories when the sixth homotopy group, 7g, of the gauge groups is non trivial.
Cancellation of such an anomaly needs an appropriate matter content. As a matter of fact, they
may occur for SU(3) as well as SU(2) gauge theories [77, 78]. Given that m[SU(3)] = Zs and
76[SU(2)] = Z12, the cancellation of the global gauge anomalies constrains the number of chiral
triplet color representations in the model, N.(31), to satisfy:

No(34) — No(3_) =0 mod 6 (92)

As SU(3) is vector like this condition is naturally fulfilled. For the number of SU(2) chiral
doublets, N(24), it also requires that

N(24) = N(2-)=0 mod 6 . (93)
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Last condition indicates that the global anomaly does not cancel within a single family, because
all doublets are all of the same chirality. One easily sees that the above constraint can be
written in a unique way in terms of the number of generations, n,, which is the number of exact
replications of our matter content, as follows [72]

ng =0 mod 3 . (94)

Hence, 3 is the minimal number of generations for which the theory is mathematically consistent.
This is a remarkable result that survives even in some extensions, as in some left-right
models [79], which also account for the generation of neutrino mass with the same fermion
content.

5.2.2. Lorentz invariance and Baryon non conservation As in the standard 4D theory, to
consider which processes are possible we will require all renormalizable and non renormalizable
operators to obey all symmetries of the theory. Apart from SM gauge transformations, the
theory now has to be invariant under a larger Lorentz group given by SO(1,5). Of course
usual 4D Lorentz transformations are included in this extended Lorentz group as the SO(1,3)
subgroup. If we denote the six space-time coordinates by (2%, 2!, 22, 23, 2%, 2°), we can identify
the transformation group associated to pure rotations in the plane formed by the fifth and sixth
extra dimensions by U(1)45, which is contained in SO(1,5). The generator of this group in the
representation given above [see Eq. (37)] is X45 = $[I'*,T°] = 75 ® 03. Since X4 is diagonal it
is a well defined quantum number for the left and right components of the fermions. In general,
one can easily see that

Yus Wy = 250y . (95)

Hence 4D chiral parts have indeed an explicit Y45 charge. Particularly we get that ¥, and
¥ _ 7 have both ¥45 = 1. Looking at the fermion sector given in Eq. (91), we straightforwardly
identify this components as those containing the zero mode part of the theory such that the
matter content at low energy would be precisely that of the SM. Thus, 45 = —1 fields should
only appear at the excited level.

That all SM fields are equally charged under >45 has important consequences for the non
renormalizable operators responsible of proton decay. Consider for instance Q°QQ°L, where
6D charge conjugation is defined by ¢ = CUT, where C = I'°’T?I'%. One immediately notice
that this operator has AX45 = 4, thus it is non Lorentz invariant in 6D, and so it is forbidden.
Clearly, all operators of this sort have same fate. The first non renormalizable operators that
may account for baryon number violation one can write are dimension 16 operators [59], as
(LD) (Q°N)(D¢ DN). Notice the operator involve only bilinears that are Lorentz invariant
already, and since for proton decay one needs to involve at least three quarks, six different
fermions are needed to built up the operator. Therefore the simplest proton decay processes
should involve three leptons in the final states (see references [59, 79] for some explicit examples).
For instance, for the nucleon decay N — 7wv.vsvs one estimates the life time to be

1074 M* 10 M* 12
7~ 6 x 103 yr- l 1 (WT > < > , (96)

d, 10 10 TeV

which is large enough as to be consistent with the experiment even with a fundamental scale as
low as 10 TeV. For comparison, searches for the decays p — e~ w7~ ; and n — e~ 7" set limits in
about 7, > 3- 103! yrs. [80] and 7,, > 6.5- 103! yrs. [81] respectively. In above equation v, stands
for the sterile neutrino contained in N, ; and we have explicitly introduced the contribution of
the kinematical phase space factor, ®,,, which depends in the specific process with n final states.
Also a possible order one form factor which enters in the case of two pion production has not
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been written. As usual, r represents the size of the compact space. Among other baryon number
violating processes, there is also an intriguing invisible decay for the neutron n — vev,vs [59, 79],
that is still above current experimental limits for which a life time 7,, > 2-10%° yrs. applies [82].

x5

Figure 2. Fixed points of the Z5 orbifolding
4 of the torus, here represented by the whole
squared in the z*-z% plane. For simplicity,
the coordinates are given in units of . The
shadowed region corresponds to the actual
fundamental space.

2
T/Z,

It is certainly impressive that the extra symmetries of the space are just enough as to provide
us with an understanding of proton stability. However, the argument has a weakness. It relies
on a symmetry which is usually broken by compactification. It is then important to know up
to what extent the argument holds on compact space. It actually does, provided the rotational
symmetry U(1)45 is not completely broken. Consider for instance the orbifold T?/Z,, where
T? is the torus and Zo the identification § — —¢, where ¢ = (2%, 2%). As it can be seen from
Fig. 2, where we have represented the physical compact space on the covering space R?, the
compactification breaks the SO(1,5) group down to SO(1,3) x Z4, where Z4 is the group of
discrete rotations in the z* — 2° plane around the origin by 7/2, a subgroup of U(1)45. Clearly,
this rotation maps fixed points into themselves. For fermions Z4 rotations become Zg rotations.
Any operator in the effective theory should be invariant under these transformations generated
by the same Y45 matrix. Therefore, any fermionic operator should satisfy the selection rule

AZ45 =0 mod 8 . (97)

Usual dimension 10 operators LQQQ (dimension 6 in 4D), do not fulfill this rule, and thus,
they remain forbidden. The dimension 16 operators mentioned above do remain, and so does a
suppressed proton decay.

It is worth noticing that because charge conjugation operator, C', is such that it commutes
with 6D chiral operator, I'7, which implies that (¥1)¢ = (UL, and also because C
anticommutes with 45, there are not Majorana mass terms for neutrinos in these theories.
The neutrino should rather be a Dirac field. In the SM presented above, if Ng is the even
part of the field, then Dirac mass terms, LH Ng, are indeed possible. Smallness is, however,
unnatural, One should relay in very small Yukawa couplings. On the other hand, if one rather
choose Np to be and odd field, so that Ny, is even, and extend the gauge sector to contain B— L,
a solution may be at hand [79]. In such a case LH Ng does not give neutrino masses (Ng has
only KK modes), but these may be introduced via non renormalizable operators.

5.8. Split Fermions. Hierarchies without Symmetries

Another interesting mechanism that explain how proton decay could get suppressed at the
proper level appeared in [60]. It relays on the idea that the branes are being formed from
an effective mechanism that traps the SM particles in it, resulting in a wall with thickness
L ~ M, where the fermions are stuck at different points. Then, fermion-fermion couplings
get suppressed due to the exponentially small overlaps of their wave functions. This provides
a framework for understanding both the fermion mass hierarchy and proton stability without
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imposing extra symmetries, but rather in terms of a higher dimensional geography [83]. Note
that the dimension where the gauge fields propagate does not need to be orthogonal to the
millimetric dimensions, but gauge fields may be restricted to live in a smaller part of that extra
dimensions. Here we briefly summarize those ideas.

5.8.1.  Localizing wave functions on the brane Let us start by assuming that translational
invariance along the fifth dimension is being broken by a bulk scalar field ® which develops
a spatially varying expectation value (®)(y). We assume that this expectation value have the
shape of a domain wall transverse to the extra dimension and is centered at y = 0. With this
background a bulk fermion will have a zero mode that is stuck at the zero of (®(y)). To see this
let us consider the action

S = / d'z dy T [iTV0y + (@)(y)] v, (98)
in the chiral basis given by Eqgs. (35) and (36) . By introducing the expansions

Z fn(Y)nr(z and Z In(Y)Ynr (T (99)

where v, are four dimensional spinors, we get for the y-dependent functions f, and g, the
equations

(05 + (@) fr + mpgn = 0; and (=05 + (®)) gn + mnfrn =0; (100)

where now m?2 = pup* stands for the 4D mass parameter. Therefore, the zero modes have the

profiles [60]
folw) ~ep |- [Cas@)e)]  and g ~ew | [Cas@pe)]s o

up to normalization factors. Notice that when the extra space is supposed to be finite, both
modes are normalizable. For the special choice (®)(y) = 2udy, we get fo centered at y = 0 with
the gaussian form
,u1/2
__Ho 2,2
foly) = /2 P —13v?] (102)

The other mode has been projected out from our brane by being pushed away to the end of the
space. Thus, our theory in the wall is a chiral theory. Notice that a negative coupling among ¥
and ¢ will instead project out the left handed part.

The generalization of this technique to the case of several fermions is straightforward. The
action (98) is generalized to

5 — /d5 SOT[iTM O+ MDY — m]i T (103)

2%

where general Yukawa couplings A and other possible five dimensional masses m;; have been
considered. For simplicity we will assume both terms diagonal. The effect of these new
parameters is a shifting of the wave functions, which now are centered around the zeros of
Ai(®) — m;. Taking A\; = 1 with the same profile for the vacuum leads to gaussian distributions
centered at y; = m;/2u3. Thus, at low energies, the above action will describe a set of non
interacting four dimensional chiral fermions localized at different positions in the fifth dimension.
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Localization of gauge and Higgs bosons needs extra assumptions. The explanation of this
phenomena is close related with the actual way the brane was formed. A field-theoretic
mechanism for localizing gauge fields was proposed by Dvali and Shifman [84] and was later
extended and applied in [5]. There, the idea is to arrange for the gauge group to confine outside
the wall; the flux lines of any electric sources turned on inside the wall will then be repelled by
the confining regions outside and forced them to propagate only inside the wall. This traps a
massless gauge field on the wall. Since the gauge field is prevented to enter the confined region,
the thickness L of the wall acts effectively as the size of the extra dimension in which the gauge
fields can propagate. In this picture, the gauge couplings will exhibit power law running above
the scale L™!.

5.3.2. Fermion mass hierarchies and proton decay Let us consider the Yukawa coupling among
the Higgs field and the leptons: «HLT E¢; where the massless zero mode [ from L is localized
at y = 0 while e from E° is localized at y = r. Let us also assume that the Higgs zero mode is
delocalized inside the wall. Then the zero modes term of this coupling will generate the effective
Yukawa action

Sy = [d'e kh@I@)e"(w) [dy o(a) ee(w) (104)

where ¢; and ¢.c represent the gaussian profile of the fermionic modes. Last integral gives the
overlap of the wave functions, which is exponentially suppressed [60] as

[y auw) dusly) = e (105)

This is a generic feature of this models. The effective coupling of any two fermion fields is
exponentially suppressed in terms of their separation in the extra space. Thus, the explanation
for the mass hierarchies becomes a problem of the cartography on the extra dimension. A more
detailed analysis was presented in [83].

Let us now show how a fast proton decay is evaded in these models. Assume, for instance,
that all quark fields are localized at y = 0 whereas the leptons are at y = r. Then, let us consider
the following baryon and lepton number violating operator

5 (QTCsL) (U CsD°)
S ~ /d T VE

. (106)

In the four dimensional effective theory, once we have introduced the zero mode wave functions,
we get the suppressed action [60]

Sw/#xAxQ%%gﬂ (107)

3
where A\ ~ [dy {e‘“?ﬂﬂ] e MW= o e=3/4ugr?, Then, for a separation of ugr = 10 we obtain
A ~ 10733 which renders these operators completely safe even for M ~ 1 TeV. Therefore, we
may imagine a picture where quarks and leptons are localized near opposite ends of the wall so

that » ~ L. This mechanism, however, does not work for suppressing the another dangerous
operator (LH)?/M responsible of a large neutrino mass.

6. Warped Extra Dimensions

So far we have been working in the simplest picture where the energy density on the brane does
not affect the space time curvature, but rather it has been taken as a perturbation on the flat
extra space. However, for large brane densities this may not be the case. The first approximation
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to the problem can be done by considering a five dimensional model where branes are located
at the two ends of a closed fifth dimension. Clearly, with a single extra dimension, the gravity
flux produced by a single brane at y = 0 can not softly close into itself at the other end the
space, making the model unstable, just as a charged particle living in a closed one-dimensional
world does not define a stable configuration. Stability can only be insured by the introduction
of a second charge (brane). Furthermore, to balance branes energy and still get flat (stable)
brane metrics, one has to compensate the effect on the space by the introduction of a negative
cosmological constant on the bulk. Hence, the fifth dimension would be a slice of an Anti de-
Siter space with flat branes at its edges. Thus, one can keep the branes flat paying the price of
curving the extra dimension. Such curved extra dimensions are usually referred as warped extra
dimensions. Historically, the possibility was first mentioned by Rubakov and Shaposhnikov in
Ref. [12], who suggested that the cosmological constant problem could be understood under this
light: the matter fields vacuum energy on the brane could be canceled by the bulk vacuum,
leaving a zero (or almost zero) cosmological constant for the brane observer. No specific model
was given there, though. It was actually Gogberashvili [16] who provided the first exact solution
for a warped metric, nevertheless, this models are best known after Randall and Sundrum
(RS) who linked the solution to the the hierarchy problem [17]. Later developments suggested
that the warped metrics could even provide an alternative to compactification for the extra
dimensions [18, 19]. In what follows we shall discuss a concrete example as presented by Randall
and Sundrum.

6.1. Randall-Sundrum Background and the Hierarchy Problem

6.1.1. Randall-Sundrum background Lets consider the following setup. A five dimensional
space with an orbifolded fifth dimension of radius r and coordinate y which takes values in the
interval [0, 7r]. Consider two branes at the fixed (end) points y = 0, 7r; with tensions 7 and
—7 respectively. For reasons that should become clear later on, the brane at y = 0 (y = nr)
is usually called the hidden (visible) or Planck (SM) brane. We will also assign to the bulk a
negative cosmological constant —A. Contrary to our previous philosophy, here we shall assume
that all parameters are of the order of the Planck scale. Next, we ask for the solution that
gives a flat induced metric on the branes such that 4D Lorentz invariance is respected. To get a
consistent answer, one has to require that at every point along the fifth dimension the induced
metric should be the ordinary flat 4D Minkowski metric. Therefore, the components of the 5D
metric only depend on the fifth coordinate. Hence, one gets the ansatz

ds* = gapdada® = W (y)ndaida” — dy? | (108)

where we parameterize w(y) = e ¥, The metric, of course, can always be written in different
coordinate systems. Particularly, notice that one can easily go to the conformally flat metric,
where there is an overall factor in front of all coordinates, ds® = w?(z) [y dz*dz” — dz?], where
the new coordinate z is a function of the old coordinate y only.

Classical action contains S = Syrqv + Si + Sy; where

1
Sgrav = /d4w dy./9(5) (WRE) + A) , (109)
gives the bulk contribution, whereas the visible and hidden brane parts are given by

Spn=+T /d4x1/—gv7h , (110)

where g, 5 stands for the induced metric at the visible and hidden branes, respectively. Here
2 _ _ /-3
ke =8rG, = M_°.
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Five dimensional Einstein equations for the given action become

Gun = —ka gMN + ka ;—ghéf\ﬂ[é]”\fgw,é(y) - kET ;gv 53‘455’\,9#1,5(34 —7r) (111)
\V 965) (5)

where the Einstein tensor Gy = Runy — %gMNR(g)) as usual. They are easily reduced into

two simple independent equations. First, we can expand the Gjsn tensor components on last
equation, using the metric ansatz (108), to show

Guw = =39 (—6"+2(8)?) i Gus=0; and Gsp=—6g55(3)°.  (112)
Next, using the RHS of Eq. (111), one gets that 6(3')% = k2A, and
36" = K27 [6(y) — 0(y — 7). (113)

Last equation, clearly, defines the boundary conditions for the function 3'(y) at the two branes
(Israel conditions). Clearly, the solution is 5(y) = p|y|, where

2
o _ kA A (114)

H=76 ~6Mm3

with the subsidiary fine tuning condition

7_2

= G (115)

obtained from the boundary conditions, that is equivalent to the exact cancellation of the
effective four dimensional cosmological constant. The background metric is therefore

ds* = 672“‘y|nuydx“dx” —dy* . (116)

The effective Planck scale in the theory is then given by

M2 = J\zg (1 - 6—2%“"”) . (117)

Notice that for large r, the exponential piece becomes negligible, and above expression has the
familiar form given in Eq. (10) for one extra dimension of (effective) size 1/pu.

6.1.2. Visible versus Hidden Scales Hierarchy The RS metric has a peculiar feature. Consider
a given distance, ds3, defined by fixed intervals dx,dz" from brane coordinates. If one maps
the interval from hidden to visible brane, it would appear here exponentially smaller than what
is measured at the hidden brane, i.e., ds3|, = w?(wr)ds3|,. This scaling property would have
interesting consequences when introducing fields to live on any of the branes. Particularly, let
us discuss what happens for a theory defined on the visible brane.

The effect of RS background on visible brane field parameters is non trivial. Consider for
instance the scalar field action for the visible brane at the end of the space given by

Sy = /d4$w4(7rr) [w2(7rr)8“H8uH - A (H2 - 63)2] .
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As a rule, we choose all dimensionful parameters on the theory to be naturally given in terms
of My, and this to be close to Mp. So we take 9y ~ M,. After introducing the normalization
H — w™Y(mr)H = e*"™H to recover the canonical kinetic term, the above action becomes

Sy = /d4x [a“HauH — A (H? - UQ)Q} , (118)

where the actual vacuum v = e #""¢y. Therefore, by choosing ur ~ 12, the physical mass of the
scalar field, and its vacuum, would naturally appear at the TeV scale rather than at the Planck
scale, without the need of any large hierarchy on the radius [17]. Notice that, on the contrary,
any field located on the other brane will get a mass of the order of M,. Moreover, it also implies
that no particles exist in the visible brane with masses larger than TeV. This observation has
been consider a nice possible way of solving the scales hierarchy problem. For this reason, the
original model proposed that our observable Universe resides on the brane located at the end of
the space, the visible brane. So the other brane really becomes hidden. This two brane model
is sometimes called RSI model.

6.2. KK Decomposition on RS
As a further note, notice that since there is everywhere 4D Poincaré invariance, every bulk field
on the RS background can be expanded into four dimensional plane waves ¢(x,y) o e« p(y).
This would be the basis for the Kaluza Klein decomposition, that we shall now discuss. Note
also that the physical four momentum of the particle at any position of the brane goes as
pl‘;hy .(y) = w(y)p". Therefore, modes which are soft on the hidden brane, become harder at
any other point of the bulk.

Lets consider again a bulk scalar field, now on the RS background metric. The action is then

S16] = 5 [t dyyaiey (oM Oroon — m?e?) (119)

By introducing the factorization ¢(z,y) = e»*" () into the equation of motion, one gets that
the KK modes satisfy

=0} + 4u sen(y)d, +m® + w7 (y) P wly) = 0, (120)

where p? = p*p, can also be interpreted as the effective four dimensional invariant mass, m2. Tt
is possible, through a functional re-parameterization and a change of variable, to show that the
solution for ¢ can be written in terms of Bessel functions of index v = /4 + m?2/u? [85, 86], as

follows
enly) = m [JV (%(Z)) + b Yy (uzl—(ny)ﬂ : (121)

where NN, is a normalization factor, n labels the KK index, and the constant coefficient b,, has
to be fixed by the continuity conditions at one of the boundaries. The other boundary condition
would serve to quantize the spectrum. For more details the reader can see Ref. [85]. Here we
will just make some few comments about. First, for w(mr) < 1, the discretization condition
that one gets for x,, = my/pw(y) looks as

20 (Tpp) + Topd), (Tny) =0 . (122)

Therefore, the lowest mode satisfies z1, ~ O(1), which means that m; ~ pe™™. For the same
range of parameters we considered before to solve the hierarchy problem, one gets that lightest
KK mode would have a mass of order TeV or so. Next, for the special case of a originally
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massless field (m = 0), one has ¥ = 2, and thus the first solution to Eq. (122) is just xz12 = 0,
which indicates the existence of a massless mode in the spectrum. The next zero of the equation
would be of order one again, thus the KK tower would start at ue™"". The spacing among two
consecutive KK levels would also be of about same order. There is no need to stress that this
would actually be the case of the graviton spectrum. This makes the whole spectrum completely
distinct from the former ADD model. With such heavy graviton modes one would not expect
to have visible deviations on the short distance gravity experiments, nor constrains from BBN,
star cooling or astrophysics in general. Even colliders may not be able to test direct production
or exchange of such heavy gravitons.

6.3. Radius Stabilization

The way RSI model solves the hierarchy problem between mpgy and Mp depends on the
interbrane spacing mr. Stabilizing the bulk becomes in this case an important issue if one is
willing to keep this solution. The dynamics of the extra dimension would give rise to a running
away radion field, similarly as it does for the ADD case. A simple exploration of the metric
(116), by naively setting a slowly time dependent bulk radius r(t), shows that

ds? — 72Ok, datde” — 2 (t)do* ; (123)

with 6 the angular coordinate on the half circle [0, 71]. This suggest that if the interbrane distance
changes the visible brane expands (or contracts) exponentially. The radion field associated to the
fluctuations of the radius, b(t) = r(t) — r, is again massless and thus it violates the equivalence
principle. Moreover, without a stabilization mechanism for the radius, our brane could expand
forever. Some early discussions on this and other issues can be found in Refs. [87, 88, 89].

The simplest and most elegant solution for stabilization in RSI was proposed by Goldberger
and Wise [87]. The central idea is really simple: if there is a vacuum energy on the bulk,
whose configuration breaks translational invariance along fifth dimension, say (E)(y), then, the
effective four dimensional theory would contain a radius dependent potential energy

Vi) = [dyo') (E)y) -

Clearly, if such a potential has a non trivial minimum, stabilization would be insured. The
radion would feel a force that tends to keep it at the minimum. The vacuum energy (F)(y) may
come from many sources. The simplest possibility one could think up on is a vacuum induced
by a bulk scalar field, with non trivial boundary conditions,

(9)(0) = vn and (@) (mr) = vy . (124)

The boundary conditions would amount for a non trivial profile of (¢)(y) along the bulk. Such
boundary conditions may arise, for instance, if ¢ has localized interaction terms on the branes, as
)\h,v(ng - 0,21 U)Q, which by themselves develop non zero vacuum expectation values for ¢ located
on the branes. The vacuum is then the z independent solution to the equation of motion (120),
which can be written as (¢)(y) = w™(y) [Aw™"(y) + Bw”(y)], where A and B are constants to
be fixed by the boundary conditions. One then obtains the effective 4D vacuum energy

Vi(r) = p(v +2)A% (w2 (zr) = 1) + p(v = 2) B2 (1 = w® (7)) (125)

After a lengthly calculation, in the limit where m < u one finds that above potential has a non

trivial minimum for )
4
pr = <—> 'u—21n [v—h} . (126)
T) m Uy
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Hence, for In(vp/v,) of order one, the stable value for the radius goes proportional to the
curvature parameter, u, and inversely to the squared mass of the scalar field. Thus, one only
needs that m?/u? ~ 10 to get pur ~ 10, as needed for the RSI model.

One can get a bit suspicious about whether the vacuum energy (¢)(y) may disturb the
background metric. It actually does, although the correction is negligible as the calculations for
the Einstein-scalar field coupled equations may show [87, 89].

6.4. RSII: A Non Compact Extra Dimension

The background metric solution (116) does not actually need the presence of the negative tension
brane to hold as an exact solution to Einstein equations. Indeed the warp factor w(y) = e 1l
has been determined only by the Israel conditions at the y = 0 boundary. That is, by using
w" = p?w — pwd(y) in Einstein equations, which implies equations (114) and (115). It is then
tempting to ‘move’ the negative tension brane to infinity, which renders a non compact fifth
dimension. The picture becomes esthetically more appealing, it has no need for compactification.
Nevertheless, one has to ask now the question of whether such a possibility is at all consistent
with observations. It is clear that the Newton’s constant is now simply

Gn = uG, (127)

—just take the limit » — oo in Eq. (117)—-, this reflects the fact that although the extra dimension
is infinite, gravity remains four dimensional at large distances (for pr > 1). This is, in other
words, only a consequence of the flatness of the brane. We shall expand our discussion on this
point in following sections. Obviously, with this setup, usually called the RSIT model [18], we are
giving up the possibility of explaining the hierarchy between Planck and electroweak scales. The
interest on this model remains, however, due to potentially interesting physics at low energy,
and also due to its connection to the AdS/CFT correspondence [90].

Although the fifth dimension is infinite, the point y = oo is in fact a particle horizon.
Indeed, the first indication comes from the metric, since w(y — oo) = 0. The confirmation
would come from considering a particle moving away from the brane on the geodesics y4(t) =
i In(1 + p?t?) [91]. The particle accelerates towards infinity, and its velocity tends to speed of
light. The proper time interval is then

dr? = Wi (y,(t))dt* — (%)2 dt? . (128)

Thus, the particle reaches infinity at infinite time ¢, but in a finite proper time 7 = 7/2u.

6.5. Graviton Localization

In order to understand why gravity on the brane remains four dimensional at large distances,
even though the fifth dimension is non compact, one has to consider again the KK decomposition
for the graviton modes, with particular interest on the shape for the zero mode wave function [18].
Consider first the generic form of the perturbed background metric

ds?* = W2 (y)gupdatds” + A,datdy — b*dy? .

Due to the orbifold projection y — —y, the vector component A, has to be odd, and thus it does
not contain a zero mode. Therefore at the zero mode level only the true four dimensional graviton
and the scalar (radion) should survive. Let us concentrate on the 4D graviton perturbations
only. Introducing the small field expansion as g, = N + w_QhW, and using the gauge fixing
conditions 9,ht =0 = hl;, one obtains the wave equation

m2

w?(y)

85 —4p® —4pdé(y)| h=0; (129)
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where the Lorentz indices should be understood. In the above equation the mass m? stands for
the effective four dimensional mass p*p, = m?2. It should be noticed that the mass spectrum
would now be continuous and starts at m = 0. In this situation the KK are normalized to a
delta function, [dy w=2(y) hm(y) hp = §(m —m/).

Introducing the functional re-parameterization z = sgn(y) (w™'(y) — 1) /p and ¥(z) =
w™2(y) h(y); one can write the equation of motion for the KK modes as the Scrhodinger
equation [18]

[_%ag + v@)} U(z) = m* V() (130)

with a ‘volcano potential’
1542 3
Viz)= ——" 205z, 131
which peaks as |z| — 0 but has a negative singularity right at the origin. It is well known from
the quantum mechanics analog that such delta potential has a bound state, whose wave function
is peaked at z = 0, which also means at y = 0. In other words, there is a mode that appears
as to be localized at the brane. Such a state is identified as our four dimensional graviton. Its
localization is the physical reason why gravity still behaves as four dimensional at the brane.
Indeed, the wave function for the localized state goes as

1
Vol) = L+ 1P

whereas KK mode wave functions in the continuum are written in terms of Bessel functions, in
close analogy to Eq. (121), as

(132)

1 42 1
U, ~ s(2) [Yg <m]z\ + —) + LQJQ <m|z| + —)
p)  wm [

where s(z) = (|z| +1/u)"/2. By properly normalizing these wave functions using the asymptotic
for of Bessel functions, it is possible to show that for m < u the wave function at brane has the
value
Ry — . 1

han (0) . (133)
The coupling of gravitons to the brane is therefore weak for the lightest KK graviton states.
The volcano potential acts as a barrier for those modes. The production of gravitons at low
energies would then be negligible.

The immediate application of our last calculations is on the estimation of the effective
gravitational interaction law at the brane. The reader should remember that the effective
interaction of brane matter to gravitons goes as h,,, (0)T"". So, it does involve the evaluation of
the graviton wave function at the brane position. Graviton exchange between two test particles
on the brane separated by a distance r then gives the effective potential [92]

Unsii(r) ~ Uy (r) {1 + /Oood;n Tze—m} Un(r) {1 + u21r2] . (134)

Notice that the correction looks exactly as in the two extra dimensional ADD case, with 1/u as
the effective size of the extra dimensions. Thus, to the brane the bulk should appear as compact,
at least from the gravitational point of view. The conclusion is striking. There could be non
compact extra dimensions and yet scape to our observations!.
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6.6. Beyond RSII: More Infinite Extra Dimensions

The RSII model, which provides a serious alternative to compactification, can immediately be
extended to have a larger number of dimensions. First, notice that the metric (116) came
out of the peculiar properties of co-dimension one objects in gravity. Thus, it is obvious that
the straightforward generalization should also contain some co-dimension one branes in the
configuration. Our brane, however should have a larger co-dimension. Lets consider a system
of n mutually intersecting (2 + n) branes in a (4 + n) dimensional AdS space, of cosmological
constant —A. All branes should have a positive tension 7. Clearly, the branes intersection is a 4
dimensional brane, where we assume our Universe lives. Intuitively, each of the (2 + n) branes
would try to localize the graviton to itself, just as the RSII brane does. As a consequence, the
zero mode graviton would be localized at the intersection of all branes. This naive observation
can indeed be confirmed by solving the Einstein equations for the action [19]

. ! .
s= [dady \flowen] (55 Ram +8) = X 7 [daay flagl (139
* all branes

If the branes are all orthogonal to each other, it is straightforward to see that the space consist
of 2" equivalent slices of AdS space, glued together along the flat branes. The metric, therefore,
would be conformally flat. Thus, one can write it down using appropriate bulk coordinates as

ds(24+n) =Q(z) (nwdx“dx” — Ol dzkdzl) (136)
with the warp factor Q(2) = (13, |2¢| + 1)1, where the p curvature parameter is now

2 2k2A _
H e am+2)(n+3)

(137)

which is a generalization of the relation given in Eq. (114). Similarly, the fine tuning condition
(115), now looks as

n(n +3)
= m#ki : (138)
Effective Planck scale is now calculated to be
N pn/2
M}QD _ M£n+2) /anQ(Q—HL) — (ni 1)' £n+2)Ln 7 (139)

for L = 1/y/nu. Notice this expression resembles the ADD relationship given in Eq. (10), with
the effective size of the extra dimensions proportional to L.

Graviton localization can be now seen by perturbing the metric with 71, — 1., + hy in
Eq. (136), and writing down the equation of motion for h,,, in the gauge h#*, = 0 = 9,h*", and

in conformal coordinates, to get for ¥ = Q("+2/2], the linearized equation
1 2 1 2 ol
—5m + _sz +V(z))|¥=0, (140)
which is again nothing but a Schrédinger equation with the effective potential
2 4)p? 2 :
v(y = Mt O, 02 5 ) (141)

J

Indeed, the spectrum has a massless bound state localized around the intersection of all delta
function potentials (z = 0), which goes as Wygung ~ Q" 12/2(2). Since the potential falls off to
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zero at large z, there would also be a continuum of modes. Since the height of the potential near
the origin goes as ;?, all modes with small masses, m < p will have suppressed wave functions,
whereas those with large masses will be un-suppressed at the origin. Therefore, the contribution
of the lightest modes to gravitational potential for two test particles at the brane would again
come suppressed as in the RSII case. The correction to Newton’s law goes as [19]

AU(r) ~ U (1) (é)n , (142)

which again behaves as in the ADD case, mimicking the case of compact dimensions, thought
there are not so.

7. Concluding remarks

Along the present notes we have introduced the reader to some aspects of models with extra
dimensions where our Universe is constrained to live on a four dimensional hypersurface. The
study of models with extra dimensions has become a fruitful industry that has involved several
areas of theoretical physics in matter of few years. It is fair to say, however, that many of the
current leading directions of research obey more to speculative ideas that to well established
facts. Nevertheless, as it happens with any other physics speculation, the studies on the brane
world are guided by the principle of physical and mathematical consistency, and inspired on
the possibility of connecting the models with a more fundamental theory, perhaps String theory
from where the idea of extra dimensions and branes had been borrowed. Further motivation
also comes from the possibility of experimentally testing these ideas within the near future,
something that was just unthinkable in many old models where the fundamental gravity scale
was the Planck scale.

It is hard to address the too many interesting topics of the area in detail, as we would have
liked, without facing trouble with the limiting space of this short notes. In exchange, we have
concentrated the discussion to the construction of the main frameworks (ADD, and RS models),
paying special attention to dimensional reduction and some of the interesting phenomenology
of quantum gravity in colliders as well as in BBN and astrophysics. We have also discussed at
some extend the calculation of the effective gravity interactions on the brane. Some applications
and uses in model building for the extra dimensions have also been addressed, including the
promotion of SM fields to the bulk and the consequent power law running of couplings as well as
some ideas on symmetry breaking with extra dimensions. We have also commented some ideas
to get a small neutrino mass and a very stable proton despite the possibility of having a low
fundamental scale. The basis of RS models have also been discussed in some detail.

I hope these notes could serve the propose of been a brief introducing to this area of
research. The list of topics we have been unable to cover is extensive, it includes many issues
on cosmology of models with flat and warped extra dimensions [93, 94]; the discussions on the
cosmological constant problem [95], higher dimensional warped spaces [96]; dark matter from
KK modes [97], many ideas on Black Holes in both ADD and RS models [22, 98], deconstruction
of extra dimensions [99], and the list go on. We hope the interested readers could consult other
reviews [20] and hunt for further references.
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