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Abstract. We describe the construction of the integrals of geodesic motions in the five-
dimensional Sasaki-Einstein space Y?'?. The complete integrability of geodesics makes possible
the construction of the action-angle variables. We find that the Hamiltonian involves only four
action variables which have the corresponding frequencies different from zero.

1. Introduction

Sasaki geometry, as an odd-dimensional counterpart of the K&ahler geometry, has become of
renewed interest in some modern developments in mathematics and physics [1, 2]. There has
been particular interest in Sasaki-Einstein (SE) manifolds in connection with the AdS/CFT
correspondence. The AdS/CFT correspondence conjectures that for a five-dimensional SE
manifold Ys, type IIB string theory on AdSs x Y5 is dual to a four-dimensional N' = 1
superconformal field theory. In dimension five, the SE YP¢ metrics have played a central role
as they provide an infinite class of dualities.

The purpose of this paper is to describe the construction of the action-angle variables for the
geodesics in SE space YP4. The description of the integrability of geodesics in Y?¢ space in
terms of action-angle variables gives us a comprehensive geometric description of the dynamics.
We find that one of the fundamental frequencies is zero giving way to chaotic behavior when
the system is perturbed.

The organization of the paper is as follows. In the next Section we give a brief presentation
of well-known results concerning Killing tensors and SE geometry. In Section 3 we describe the
complete integrability of geodesic motions in YP¢ space. In Section 4 we construct the action-
angle variables and the frequencies of the motions. The paper ends with conclusions in Section

D.

2. Preliminaries regarding Killing tensors and Sasaki-Einstein geometry
We consider a Riemannian manifold M with the metric gp; and let V be its Levi-Civita
connection.

A vector field field K, associated with an isometry, satisfies the Killing equation

VK, =0, (1)

where a round bracket denotes a symmetrization over the indices within.
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A Stéckel-Killing (SK) tensor is a rank r symmetric tensor defined on M such that
V(Ko owyy) = 0. (2)

In the presence of a SK tensor the system of a free particle with the Hamiltonian

1
H = §g'u'VPNPV B (3)
admits the conserved quantity
K=KM"HPp, P, (4)

commuting with Hamiltonian (3) in the sense of Poisson brackets. Here P, are canonical
momenta conjugate to the coordinates z*, P, = g,,2"” with overdot denoting proper time
derivative.

Another important generalization of Killing vector fields is given by Killing-Yano (KY) tensors
which are antisymmetric tensors and satisfy the equation

ViYuyvs.wr = 0. (5)

There is a remarkable connection between these two generalizations of the Killing vectors.
Namely, the partially contracted product of two KY tensors W' and ¥*»* generates a SK
tensor of rank 2:

Ki(;p’z) = Wiy 3, 5,200+ By, U2 (6)

In order to find the conserved quantities it is necessary to know the Killing vectors and
SK tensors. However the generalized Killing equations (2) and (5) are difficult to be solved.
Sometimes it is possible to find the KY tensors using the geometrical properties of the manifold.
Using (6) we are able to generate SK tensors and implicitly the conserved quantities (4). That
is the case of the SE manifolds for which it is possible to construct their complete set of KY
tensors.

A (2n — 1)-dimensional manifold M is a contact manifold if there exists a 1-form 7 (called a
contact 1-form) on M such that

n A (dn)" "t #0. (7)
The Reeb vector field & dual to n satisfies:

n¢)=1 and &1dn=20, (8)

where _| is the operator dual to the wedge product.
A contact Riemannian manifold (M, gar) is Sasakian if its metric cone is Kéhler [1]

C(M)=Ry xM , goun=dr*+r’gu. (9)

Here r € (0,00) may be regarded as a coordinate on the positive real line R .
If the Sasaki space is Einstein

Ricgn =2(n —1)gnr (10)

then the metric cone is Ricci-flat (Ric g = 0), i.e. Calabi-Yau manifold.
On a (2n — 1)-dimensional SE manifold with the contact 1-form 7 there are the following KY
tensors:
Up=nA(dn)* , k=0,1,---,n—1. (11)

Besides these KY tensors, there are two additional KY tensors connected with the real and
imaginary parts of the complex volume form of the Calabi-Yau metric cone C(M) [3].
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3. Complete integrability of geodesics in Sasaki-Einstein space YP¢
The metric of the Sasaki-Einstein space Y79 is given by the line element [4]

ds® = 1_?y(aléﬂ + sin? 0 d¢?) + w(y)lq(y)dy2 + Q(gy)(dw — cos 6 dop)?
a—2y+y? ? ()
+ U)(y) do + W[d¢ — COSHd(z)] s
where
)
wiy) = 28—
1Y (13)
_a—3y* +2y°
q(y) = -2

A detailed analysis of the SE metric Y74 [5] showed that for
0<a<l, (14)

one can take the range of the angular coordinates (0, ¢, 1) to be [0, 27|, while y lies between two
zeros of q(y), i.e. y1 <y < yo with ¢(y;) = 0. To be more specific, the roots y; of the cubic
equation

a—3y*+2y° =0, (15)

are real, one negative (y;) and two positive, the smallest being yso.
Finally, the period of « is chosen so as to describe a principal S' bundle over By = 5% x S2.
For any p and ¢ coprime, the space Y? is topologically S? x S3 and one may take [4, 5]

0<a<2rl, (16)
where

q
(= . 17
3¢2 — 2p? + p(4p? — 3¢%)1/? 1

The contact 1-form 7 is
-y
n = —2yda + — (dip — cosOdg) , (18)

and the Reeb vector field is [4]
o 10

o 20a’

In order to describe the conserved quantities for the geodesic motions we list the conjugate

K,=3 (19)
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momenta to the coordinates (0, ¢,y, a, 9):

— 1 y
Y op(y)”
P, = w(y) (a + f(y) (zb — cos %)) ;
Po = w1+ |12+ w0 (9 - cos0d) (20

1 )
Py = 5 Y sin? ¢ — cos 0P,

- ; Y $in2 04 — cos Ow(y) f(y)d — cosd [Q(Qy) + w(y)fZ(y)} W

oot |10 1w )| 6,

where we introduced the functions

a— 2
fly) = &l)} ) (21)
w a — 312 3

p(y) = (yéq(y) _ 3‘?1,1;_2 )2y 7 (22)

which simplify writing formulas.
Using the conjugate momenta (20), the Hamiltonian (3) governing the geodesic motions in
YP4 space is:

1 6 1 1—y
H="L6p(y)P?+ —(P}+ ——(P, 0P,)? —— 7 _p?
2{ P(y) y+1—y< 9+sin29( s+ cosOFy) +2(a—y2) @

9(a — 12 a—2y+y? 2
n (Qy)gpw_ A AN
a—3y%+2y 6(a —y?)
The integrals of motions associated with the isometry SU(2) x U(1) x U(1) of the metric

(23) are easily to find. First of all we observe that the angles (¢, %, «) are cyclic coordinates
and consequently the corresponding momenta are conserved:

(23)

P¢:C¢,
Py=cy. (24)
Py =cq,

where (cg, ¢y ,cq) are some constants. P, corresponds to the third component of the SU(2)
angular momentum and Py, P, are associated with the U(1) factors. Moreover the total SU(2)
angular momentum

- 1
J2=P}+ 5 (Po + cos 0Py)’ + Pj, (25)

sin?
is also conserved.

Other conserved quantities can be constructed using the KY forms of the SE space YP4
[6, 7, 8. However the maximum number of conserved quantities which are functionally
independent and in involution (their Poisson brackets are equal to zero) is five [6]. In what follows
we choose these functionally independent integrals to be the the set F = (H, Py, Py, Py, J .
The system is complete integrable and we can proceed to construct the action-angle variables.
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4. Action-angle variables
The construction of the action-angle variables starts with fixing a level surface F = ¢ [9, 10].
We search a generating function S for the canonical transformation (p,q) — (J, w) where p is
represented by the momenta (20) and q is the set of coordinates (6, ¢, y, a, ©).

The generating function S is

S~ [ pda. (20)

where p = p(q, c¢) by use of the equations of motion.
Since the Hamiltonian (23) has no explicit time dependence, we can write

S(q,c) =W(q,c) — Et, (27)

where W (q, c¢) is the Hamilton characteristic function

W= Z/pid%‘y (28)

and F is the energy H = E corresponding to the chosen level surface F = c.
In the case of the geodesics in SE space YP¢ the variables in Hamilton-Jacobi equation are
separable and consequently we seek a solution of the form

W(ya 07 ¢7 ¢7 Oé) = Wy(y) + Wg(e) + W(ﬁ(qb) + W¢(¢) + Wa(a) . (29)
The action variables J are given by
J; = fpidqi = % (Wia(qi;c)dqi (no summation) , (30)
4qi

where ¢ means an integration over one cycle. The J;’s form n independent functions of the
constants ¢ and can be taken as a set of new constant momenta.
Finally, the angle variables can be found from the equation

n

8W 8Wj(qj;J1,--- ,Jn)
7; = = 3 31
Y7 ; a.J; (31
having a linear evolution in time

with 3; other constants of integration and w; are frequencies associated with the periodic motion
of q;-

Applying the general prescriptions, we can manage to evaluate the action-angle variables
for geodesics in YP4. For the cyclic variables the task is easy as the Hamilton characteristic
functions (28) related to cyclic variables are

W¢ = P¢¢ = C¢¢,
Wy = Pha = cpo,

with the constants cg, ¢y, ¢o introduced in (24). The corresponding action variables are

Jp = 2mcy
J¢ = 27TC¢ s (34)
Jo = 2mle,, .
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For a fixed energy E and using (29), the Hamilton (23) can be written in the form:

2
(50) + dates - eoste?
_ 2 — )2
- e - (G2) - e (35)

C3a-y)A-y) [ a-2y+y’ ]
200 - 32+ 2% | " 6la—y?) °

We separated in the LHS the terms which depend only on 8, while the RHS depends only on y.
Therefore we may set

oWe\> 1
((,9;) + 9(c¢ + cosfcy)? = cj, (36)

with ¢y another constant.
The action variable Jy is given by the integral

0
Jy— %d@\/ c¢+c¢cos )2 . (37)

sin2 6

Denoting by 6+ the roots of the function appearing in the square root, the complete cycle of 6
involves going from 6_ to 64 and back to 6_. The most efficient way to evaluate the integral
(37) is to put cosf = t, extend ¢ to a complex variable z and interpret the integral as a closed
contour integral in the complex z-plane [11]. The turning points of the t-motions are

—CpCy £ Ch cg + ci — cé

ty = . 38
+ cg—i—ci (38)

They are real for
cg+ci—0220, (39)

and situated in the interval (—1,+1).

The contour of integration in the complex z-plane can be deformed to a large circular contour
plus two contour integrals about the poles at z = +1. The standard evaluation of the residues
and taking into account the contribution of the large contour integral finally gives

1/034—073 —c¢] : (40)

Concerning the angular variable wg we have

Jop =27

Wy = 2171- Jp + aaljzf (41)
Putting cos = t, and using (34), (36), (40), the second term is
Wy 1 /dt (Jg + Jo)t% + Jyt
oJs 2w - t2)\/—(J¢ + Jo)2t2 = 2yt + (JF +2Jo g — J3) (42)

_1/ dt  dt*+et
2 ) 1=t \a+ bt +ct2’
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where

a=J§+2JgJs— J7,

b=—2JpJy,

c=—(Jop+Jy)?, (43)
d=Jy+ J¢ ,

(& :Jw.

We need the following integrals [12]

Li(a,b,c;t

- / dt _ (2t d
“ ) Varwrar Ve VA ) "

dt 1 2a + bt
Iy(a,b,c;t) = = arctan ,
tva+bt+ct2  —a 2v/—ava + bt + ct?

evaluated for ¢ < 0, A = 4ac — b?> < 0 and for a < 0 respectively. That is the case of the
parameters a, b, ¢ taking into account the constraint (39).
Using these integrals we finally get for the angular variable wy

1 d
We :%(@) — %Il(a,b, ¢;cos )
d
— +eIg(a—i-b—i-c,b—i—2c,c;cos€—1) (45)
s
e—d

Iy(a—b+c,b—2c,c;cos6 +1).
T

For the action variable corresponding to y coordinate we have from (35)

8Wy _ 1 - y o 3 c2
oy | a—3y?+2y3 a—3y2+2y3°
Na—y)1—y) » 3la—2y+y°)(1—y)
2(a — 3y? + 2y3)2 ¥ 2(a — 3y? + 2y3)2

CyyCa (46)

1
(1 —19)(2a + a® — 6ay — 2y* + 2ay? + 63> — 3y*) 5 |
8(a— 3y +25°)2(a — ?) o

In contrast with the action variable Jy (37), the evaluation of the action variable J, involves
an intricate integral as can be seen from (46). After all, the closed-form of J, is not at all
illuminating. For our purposes, it is enough to observe that .J, depends only on four constants
of motion: FE,Jy, Jo,Jy. In consequence, the energy depends only on four action variables
Jy, Jo, Ja, Jy representing a reduction of the number of action variables entering the expression
of the energy of the system.

The explicit evaluation of the angular variables wg, wy, wq,w, is again intricate due to the
absence of a simple closed-form for the action variable J,. However, it is remarkable the fact
that one of the fundamental frequencies (32)

0H

— 4

W; =
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is zero, namely

_OH _
YO0,

since the action J, does not enter the expression of the energy.

Therefore the Hamiltonian (23) depends on that action variables for which the corresponding
frequencies are different from zero. The presence of a vanishing frequency refers to the degeneracy
of the system giving way to chaotic behavior when the system is perturbed [9] This fact was
observed in several recent studies of non-integrability and chaotic behavior of some classical
configurations of strings in the context of AdS/CFT correspondence (see e. g. [13, 14, 15]).

0, (48)

5. Conclusions
The existence of the conserved quantities are very important not only for the particle motions,
but also leading to the separation of Hamilton-Jacobi and quantum Klein-Gordon, Dirac
equations. The action-angle approach to the integrable geodesics represents a useful tool in
the study of near-integrable systems (Kolmogorov-Arnold-Moser (KAM) theory) and for the
quantization of integrable systems (Bohr-Sommerfeld rule).

It would be interesting to extend the action angle formulation to higher dimensional SE
metrics relevant for the predictions of the AdS/CFT correspondence.
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