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Abstract. We describe the construction of the integrals of geodesic motions in the five-
dimensional Sasaki-Einstein space Y

p,q. The complete integrability of geodesics makes possible
the construction of the action-angle variables. We find that the Hamiltonian involves only four
action variables which have the corresponding frequencies different from zero.

1. Introduction

Sasaki geometry, as an odd-dimensional counterpart of the Kähler geometry, has become of
renewed interest in some modern developments in mathematics and physics [1, 2]. There has
been particular interest in Sasaki-Einstein (SE) manifolds in connection with the AdS/CFT
correspondence. The AdS/CFT correspondence conjectures that for a five-dimensional SE
manifold Y5, type IIB string theory on AdS5 × Y5 is dual to a four-dimensional N = 1
superconformal field theory. In dimension five, the SE Y p,q metrics have played a central role
as they provide an infinite class of dualities.

The purpose of this paper is to describe the construction of the action-angle variables for the
geodesics in SE space Y p,q. The description of the integrability of geodesics in Y p,q space in
terms of action-angle variables gives us a comprehensive geometric description of the dynamics.
We find that one of the fundamental frequencies is zero giving way to chaotic behavior when
the system is perturbed.

The organization of the paper is as follows. In the next Section we give a brief presentation
of well-known results concerning Killing tensors and SE geometry. In Section 3 we describe the
complete integrability of geodesic motions in Y p,q space. In Section 4 we construct the action-
angle variables and the frequencies of the motions. The paper ends with conclusions in Section
5.

2. Preliminaries regarding Killing tensors and Sasaki-Einstein geometry

We consider a Riemannian manifold M with the metric gM and let ∇ be its Levi-Civita
connection.

A vector field field Kµ, associated with an isometry, satisfies the Killing equation

∇(µKν) = 0 , (1)

where a round bracket denotes a symmetrization over the indices within.

http://creativecommons.org/licenses/by/3.0
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A Stäckel-Killing (SK) tensor is a rank r symmetric tensor defined on M such that

∇(µKν1···νr) = 0 . (2)

In the presence of a SK tensor the system of a free particle with the Hamiltonian

H =
1

2
gµνPµPν , (3)

admits the conserved quantity
K = Kµ1···µrPµ1 · · ·Pµr , (4)

commuting with Hamiltonian (3) in the sense of Poisson brackets. Here Pµ are canonical
momenta conjugate to the coordinates xµ, Pµ = gµν ẋ

ν with overdot denoting proper time
derivative.

Another important generalization of Killing vector fields is given by Killing-Yano (KY) tensors
which are antisymmetric tensors and satisfy the equation

∇(µΨν1)ν2...νr = 0 . (5)

There is a remarkable connection between these two generalizations of the Killing vectors.
Namely, the partially contracted product of two KY tensors Ψi1,...,ir and Σi1,...,ir generates a SK
tensor of rank 2:

K
(Ψ,Σ)
ij = Ψii2...irΣ

i2...ir
j +Σii2...irΨ

i2...ir
j . (6)

In order to find the conserved quantities it is necessary to know the Killing vectors and
SK tensors. However the generalized Killing equations (2) and (5) are difficult to be solved.
Sometimes it is possible to find the KY tensors using the geometrical properties of the manifold.
Using (6) we are able to generate SK tensors and implicitly the conserved quantities (4). That
is the case of the SE manifolds for which it is possible to construct their complete set of KY
tensors.

A (2n− 1)-dimensional manifold M is a contact manifold if there exists a 1-form η (called a
contact 1-form) on M such that

η ∧ (dη)n−1 6= 0 . (7)

The Reeb vector field ξ dual to η satisfies:

η(ξ) = 1 and ξ−| dη = 0 , (8)

where −| is the operator dual to the wedge product.
A contact Riemannian manifold (M, gM ) is Sasakian if its metric cone is Kähler [1]

C(M) ∼= R+ ×M , gC(M) = dr2 + r2 gM . (9)

Here r ∈ (0,∞) may be regarded as a coordinate on the positive real line R+.
If the Sasaki space is Einstein

Ric gM = 2(n− 1)gM , (10)

then the metric cone is Ricci-flat (Ric g = 0), i.e. Calabi-Yau manifold.
On a (2n−1)-dimensional SE manifold with the contact 1-form η there are the following KY

tensors:
Ψk = η ∧ (dη)k , k = 0, 1, · · · , n− 1 . (11)

Besides these KY tensors, there are two additional KY tensors connected with the real and
imaginary parts of the complex volume form of the Calabi-Yau metric cone C(M) [3].
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3. Complete integrability of geodesics in Sasaki-Einstein space Y p,q

The metric of the Sasaki-Einstein space Y p,q is given by the line element [4]

ds2 =
1− y
6

(dθ2 + sin2 θ dφ2) +
1

w(y)q(y)
dy2 +

q(y)

9
(dψ − cos θ dφ)2

+ w(y)

[

dα+
a− 2y + y2

6(a− y2) [dψ − cos θ dφ]

]2

,

(12)

where

w(y) =
2(a− y2)
1− y ,

q(y) =
a− 3y2 + 2y3

a− y2 .

(13)

A detailed analysis of the SE metric Y p,q [5] showed that for

0 < a < 1 , (14)

one can take the range of the angular coordinates (θ, φ, ψ) to be [0, 2π], while y lies between two
zeros of q(y), i.e. y1 ≤ y ≤ y2 with q(yi) = 0. To be more specific, the roots yi of the cubic
equation

a− 3y2 + 2y3 = 0 , (15)

are real, one negative (y1) and two positive, the smallest being y2.
Finally, the period of α is chosen so as to describe a principal S1 bundle over B4 = S2 × S2.

For any p and q coprime, the space Y p,q is topologically S2 × S3 and one may take [4, 5]

0 ≤ α ≤ 2πℓ , (16)

where
ℓ =

q

3q2 − 2p2 + p(4p2 − 3q2)1/2
. (17)

The contact 1-form η is

η = −2ydα+
1− y
3

(dψ − cos θdφ) , (18)

and the Reeb vector field is [4]

Kη = 3
∂

∂ψ
− 1

2

∂

∂α
. (19)

In order to describe the conserved quantities for the geodesic motions we list the conjugate
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momenta to the coordinates (θ, φ, y, α, ψ):

Pθ =
1− y
6

θ̇ ,

Py =
1

6p(y)
ẏ ,

Pα = w(y)
(

α̇+ f(y)
(

ψ̇ − cos θφ̇
))

,

Pψ = w(y)f(y)α̇+

[

q(y)

9
+ w(y)f2(y)

]

(

ψ̇ − cos θφ̇
)

,

Pφ =
1− y
6

sin2 θφ̇− cos θPψ

=
1− y
6

sin2 θφ̇− cos θw(y)f(y)α̇− cos θ

[

q(y)

9
+ w(y)f2(y)

]

ψ̇

+ cos2 θ

[

q(y)

9
+ w(y)f2(y)

]

φ̇ ,

(20)

where we introduced the functions

f(y) =
a− 2y + y2

6(a− y2) , (21)

p(y) =
w(y)q(y)

6
=
a− 3y2 + 2y3

3(1− y) , (22)

which simplify writing formulas.
Using the conjugate momenta (20), the Hamiltonian (3) governing the geodesic motions in

Y p,q space is:

H =
1

2

{

6p(y)P 2
y +

6

1− y

(

P 2
θ +

1

sin2 θ
(Pφ + cos θPψ)

2

)

+
1− y

2(a− y2)P
2
α

+
9(a− y2)

a− 3y2 + 2y3

(

Pψ −
a− 2y + y2

6(a− y2) Pα

)2
}

.

(23)

The integrals of motions associated with the isometry SU(2) × U(1) × U(1) of the metric
(23) are easily to find. First of all we observe that the angles (φ, ψ, α) are cyclic coordinates
and consequently the corresponding momenta are conserved:

Pφ = cφ ,

Pψ = cψ ,

Pα = cα ,

(24)

where (cφ , cψ , cα) are some constants. Pφ corresponds to the third component of the SU(2)
angular momentum and Pψ, Pα are associated with the U(1) factors. Moreover the total SU(2)
angular momentum

~J 2 = P 2
θ +

1

sin2 θ
(Pφ + cos θPψ)

2 + P 2
ψ , (25)

is also conserved.
Other conserved quantities can be constructed using the KY forms of the SE space Y p,q

[6, 7, 8]. However the maximum number of conserved quantities which are functionally
independent and in involution (their Poisson brackets are equal to zero) is five [6]. In what follows

we choose these functionally independent integrals to be the the set F = (H,Pφ, Pψ, Pα, ~J
2).

The system is complete integrable and we can proceed to construct the action-angle variables.
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4. Action-angle variables

The construction of the action-angle variables starts with fixing a level surface F = c [9, 10].
We search a generating function S for the canonical transformation (p,q)→ (J,w) where p is
represented by the momenta (20) and q is the set of coordinates (θ, φ, y, α, ψ).

The generating function S is

S(q, c) =

∫

F=c

p dq , (26)

where p = p(q, c) by use of the equations of motion.
Since the Hamiltonian (23) has no explicit time dependence, we can write

S(q, c) =W (q, c)− Et , (27)

where W (q, c) is the Hamilton characteristic function

W =
∑

i

∫

pidqi , (28)

and E is the energy H = E corresponding to the chosen level surface F = c.
In the case of the geodesics in SE space Y p,q the variables in Hamilton-Jacobi equation are

separable and consequently we seek a solution of the form

W (y, θ, φ, ψ, α) =Wy(y) +Wθ(θ) +Wφ(φ) +Wψ(ψ) +Wα(α) . (29)

The action variables J are given by

Ji =

∮

pidqi =

∮

∂Wi(qi; c)

∂qi
dqi (no summation) , (30)

where
∮

means an integration over one cycle. The Ji’s form n independent functions of the
constants c and can be taken as a set of new constant momenta.

Finally, the angle variables can be found from the equation

wi =
∂W

∂Ji
=

n
∑

j=1

∂Wj(qj ; J1, · · · , Jn)
∂Ji

, (31)

having a linear evolution in time
wi = ωit+ βi , (32)

with βi other constants of integration and ωi are frequencies associated with the periodic motion
of qi.

Applying the general prescriptions, we can manage to evaluate the action-angle variables
for geodesics in Y p,q. For the cyclic variables the task is easy as the Hamilton characteristic
functions (28) related to cyclic variables are

Wφ = Pφφ = cφφ ,

Wψ = Pψψ = cψψ ,

Wα = Pαα = cαα ,

(33)

with the constants cφ, cψ, cα introduced in (24). The corresponding action variables are

Jφ = 2πcφ ,

Jψ = 2πcψ ,

Jα = 2πℓcα .

(34)
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For a fixed energy E and using (29), the Hamilton (23) can be written in the form:

(

∂Wθ

∂θ

)2

+
1

sin2 θ
(cφ + cos θψ)

2

=
1− y
3

E − p(y)(1− y)
(

∂Wy

∂y

)2

− (1− y)2
12(a− y2)c

2
α

− 3(a− y2)(1− y)
2(a− 3y2 + 2y3)

[

cψ −
a− 2y + y2

6(a− y2) cα

]2

.

(35)

We separated in the LHS the terms which depend only on θ, while the RHS depends only on y.
Therefore we may set

(

∂Wθ

∂θ

)2

+
1

sin2 θ
(cφ + cos θcψ)

2 = c2θ , (36)

with cθ another constant.
The action variable Jθ is given by the integral

Jθ =

∮

dθ

√

c2θ −
(cφ + cψ cos θ)2

sin2 θ
. (37)

Denoting by θ± the roots of the function appearing in the square root, the complete cycle of θ
involves going from θ− to θ+ and back to θ−. The most efficient way to evaluate the integral
(37) is to put cos θ = t, extend t to a complex variable z and interpret the integral as a closed
contour integral in the complex z-plane [11]. The turning points of the t-motions are

t± =
−cφcψ ± cθ

√

c2θ + c2ψ − c2φ
c2θ + c2ψ

. (38)

They are real for
c2θ + c2ψ − c2φ ≥ 0 , (39)

and situated in the interval (−1,+1).
The contour of integration in the complex z-plane can be deformed to a large circular contour

plus two contour integrals about the poles at z = ±1. The standard evaluation of the residues
and taking into account the contribution of the large contour integral finally gives

Jθ = 2π

[

√

c2θ + c2ψ − cφ
]

. (40)

Concerning the angular variable wφ we have

wφ =
1

2π
Jφ +

∂Wθ

∂Jφ
. (41)

Putting cos θ = t, and using (34), (36), (40), the second term is

∂Wθ

∂Jφ
= − 1

2π

∫

dt
(Jφ + Jθ)t

2 + Jψt

(1− t2)
√

−(Jφ + Jθ)2t2 − 2JφJψt+ (J2
θ + 2JθJφ − J2

ψ)

=
1

2π

∫

dt

1− t2
dt2 + et√
a+ bt+ ct2

,

(42)
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where

a =J2
θ + 2JθJφ − J2

ψ ,

b =− 2JθJψ ,

c =− (Jθ + Jφ)
2 ,

d =Jθ + Jφ ,

e =Jψ .

(43)

We need the following integrals [12]

I1(a, b, c; t) =

∫

dt√
a+ bt+ ct2

=
−1√−c arcsin

(

2ct+ b√
−∆

)

,

I2(a, b, c; t) =

∫

dt

t
√
a+ bt+ ct2

=
1√−a arctan

(

2a+ bt

2
√−a

√
a+ bt+ ct2

)

,

(44)

evaluated for c < 0, ∆ = 4ac − b2 < 0 and for a < 0 respectively. That is the case of the
parameters a, b, c taking into account the constraint (39).

Using these integrals we finally get for the angular variable wφ

wφ =
1

2π
Jφ −

d

2π
I1(a, b, c; cos θ)

− d+ e

4π
I2(a+ b+ c, b+ 2c, c; cos θ − 1)

− e− d
4π

I2(a− b+ c, b− 2c, c; cos θ + 1) .

(45)

For the action variable corresponding to y coordinate we have from (35)

∂Wy

∂y
=

{

1− y
a− 3y2 + 2y3

E − 3

a− 3y2 + 2y3
c2θ

− 9(a− y2)(1− y)
2(a− 3y2 + 2y3)2

c2ψ +
3(a− 2y + y2)(1− y)
2(a− 3y2 + 2y3)2

cψcα

− (1− y)(2a+ a2 − 6ay − 2y2 + 2ay2 + 6y3 − 3y4)

8(a− 3y2 + 2y3)2(a− y2) c2α

}
1

2

.

(46)

In contrast with the action variable Jθ (37), the evaluation of the action variable Jy involves
an intricate integral as can be seen from (46). After all, the closed-form of Jy is not at all
illuminating. For our purposes, it is enough to observe that Jy depends only on four constants
of motion: E, Jθ, Jα, Jψ. In consequence, the energy depends only on four action variables
Jy, Jθ, Jα, Jψ representing a reduction of the number of action variables entering the expression
of the energy of the system.

The explicit evaluation of the angular variables wθ, wψ, wα, wy is again intricate due to the
absence of a simple closed-form for the action variable Jy. However, it is remarkable the fact
that one of the fundamental frequencies (32)

ωi =
∂H

∂Ji
, (47)
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is zero, namely

ωφ =
∂H

∂Jφ
= 0 , (48)

since the action Jφ does not enter the expression of the energy.
Therefore the Hamiltonian (23) depends on that action variables for which the corresponding

frequencies are different from zero. The presence of a vanishing frequency refers to the degeneracy
of the system giving way to chaotic behavior when the system is perturbed [9] This fact was
observed in several recent studies of non-integrability and chaotic behavior of some classical
configurations of strings in the context of AdS/CFT correspondence (see e. g. [13, 14, 15]).

5. Conclusions

The existence of the conserved quantities are very important not only for the particle motions,
but also leading to the separation of Hamilton-Jacobi and quantum Klein-Gordon, Dirac
equations. The action-angle approach to the integrable geodesics represents a useful tool in
the study of near-integrable systems (Kolmogorov-Arnold-Moser (KAM) theory) and for the
quantization of integrable systems (Bohr-Sommerfeld rule).

It would be interesting to extend the action angle formulation to higher dimensional SE
metrics relevant for the predictions of the AdS/CFT correspondence.
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