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1 | INTRODUCTION AND

MOTIVATION

Abstract

Designing optimal measurement operators for quantum state discrimination (QSD) is an
important problem in quantum communications and cryptography applications. Prior
works have demonstrated that optimal quantum measurement operators can be obtained
by solving a convex semidefinite program (SDP). However, solving the SDP can repre-
sent a high computational burden for many real-time quantum communication systems.
To address this issue, a majorisation-minimisation (MM)-based algorithm, called Quan-
tum Majorisation-Minimisation (QMM) is proposed for solving the QSD problem. In
QMM, the authors reparametrise the original objective, then tightly upper-bound it at any
given iterate, and obtain the next iterate as a closed-form solution to the upper-bound
minimisation problem. Our numerical simulations demonstrate that the proposed
QMM algorithm significantly outperforms the state-of-the-art SDP algorithm in terms of
speed, while maintaining comparable performance for solving QSD problems in quantum
communication applications.

KEYWORDS
computational complexity, Hilbert spaces, matrix algebra, quantum communication, quantum information,
quantum optics, telecommunication channels

QSD problem for non-orthogonal quantum states. The
eavesdropper may employ QSD to attack the QKD systems
and steal some information of the shared key between the

Quantum communications and computing are emerging
disruptive technologies that are poised to shape the evolution
of next-generation information technologies [1]. Harnessing
the quantum mechanical properties for computation and
communication could bring significant improvements in the
security, data rates, and reliability of future information pro-
cessing technologies. Optimal quantum state discrimination
(QSD) is an important problem primarily encountered in
quantum communication system applications, which also has
applications in quantum sensing and cryptography [2—8]. The
security of quantum key distribution (QKD) is based on the

legitimate parties [9, 10]. Apart from the eavesdropper, the
legitimate party in a QKD system may also utilise optimum
state-discrimination receivers to improve the secret key rate of
QKD systems [8]. Therefore, QSD plays an important role
also in the security of QKD systems [2].

A schematic of the QSD application in quantum com-
munications is shown in Figure 1. In the quantum communi-
classical

cations transmitter encodes the

information into a quantum state represented as a pute state.

problem, the

The prepared quantum state is then transmitted to the receiver
through a noisy quantum-mechanical channel, which outputs a
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FIGURE 1 Schematic of QSD application in quantum
communications (the symbols used in the Figure are explained in
Section 2). QSD, quantum state discrimination.

mixed quantum state [11, 12]. At the receiver, a quantum
detection problem needs to be solved in order to detect the
transmitted information. This is accomplished by subjecting
the received quantum states at the output of the quantum
channel to a quantum measurement operation [13, 14]. In
general, the quantum states at the output of the quantum
channel are not orthogonal, which means that the states cannot
be distinguished or discriminated with certainty. In such a case,
the receiver designs a quantum measurement scheme that
minimises the probability of discrimination error.

The optimal measurement operator for QSD is given by a
generalised quantum measurement, also known as the positive
operator valued measure (POVM) [15]. Prior works on QSD
have derived the necessary and sufficient conditions that the
optimal measurement operators should satisfy [16, 17].
Although the optimal measurement set is completely charac-
terised by these conditions, analytical (or closed-form) ex-
pressions for the optimal measurement operators are not
available in general QSD applications [13].

Prior works have demonstrated that the optimal POVM for
QSD with minimum probability of error can be obtained by
numerically solving a convex semidefinite program (SDP) [18,
19]. However, the computational complexity of SDP can be
prohibitive for large problem dimensions, which hinders its
applicability in real-time quantum communication applications.
Therefore, designing efficient algorithms for QSD with the same
performance as that of SDP is an important open research
problem in the quantum communications literature. We address
this important quantum communications problem in this work.
We propose a Majorisation-Minimisation (MM) algorithm,
which is guaranteed to converge to a minimiser of the QSD
objective and which is also computationally much faster than
solving the SDP. The numerical simulation results demonstrate
that the performance of the proposed Quantum Majorisation-
Minimisation (QMM) algorithm matches the probability of er-
ror achieved by solving the SDP, while being more than two
orders of magnitude faster than the state-of-the-art SDP solver.

The main contributions of this paper can be summarised as
follows:

1) We propose an MM iterative algorithm (named QMM) for
finding the optimal quantum measurement operators for
the QSD problem in quantum communication applications.

2) We discuss the computational complexity, convergence
properties and initialisation of the proposed QMM
algorithm.

3) Through numerical simulations, we compare the perfor-
mance and average computation time when using QMM
and SDP to solve the QSD problem in quantum commu-
nications with pure and mixed states.

In Section 2, we state the QSD problem, and in Section 3
we present the proposed algorithm and discuss its computa-
tional complexity and convergence property. In Section 4, we
present the numerical simulation results. Finally, Section 5
concludes the papet.

Notations: The conjugate transpose and trace of a matrix A
are denoted A and Tr(A), respectively. A positive semi-
definite (PSD) matrix A is denoted as A > 0 and Re(2) de-
notes the real part of z. We use Dirac's bra-ket notation of
quantum mechanics for pure states, where a column vector in a
Hilbert space H is denoted by ‘ket’ |x), its conjugate transpose
vector is denoted by ‘bra’ (x|, and their outer product is
denoted (x| (x|. General mixed quantum states are denoted by
density matrices p.

2 | QSD PROBLEM STATEMENT

We consider the QSD problem for a quantum communications
application, see Figure 1. In a quantum communication system,
the classical message a € A (where A is alphabet) emitted by a
message source is encoded into a quantum state by the
transmitter and is then transmitted to the receiver over a noisy
quantum channel. The transmitter encodes the messages using
pute quantum states, which can be represented as |y,) for the
classical message 4. The pure quantum state emitted by the
transmitter |y,) is transformed into a mixed quantum state p,
at the output of the noisy quantum channel.

In quantum information processing, a general quantum
state is characterised by a unit trace, PSD density operator p in
a complex Hilbert space. In this work, we consider a finite-
dimensional complex Hilbert space H of dimension d. The
QSD problem is chatactetised by 72 PSD density operators {p;,
1<i<m}stVielll, .. m}Tep) =1 with prior
probabilities {p; > 0, 1 < i < m} st. y . ,pi=1. The
objective in QSD is to design 72 PSD Hermitian d X d mea-
surement operators {IT;, 1 < i < m} that resolve the identity
operator in H (ie. Y i II; = I) such that the probability of
correct decision is maximised. According to the Born's rule
([20], Equation (3.51)), the probability of correct detection for
the quantum state p; using the measurement operator {ITj
1 <j <mj is Tr(pIL). Then, the probability of error for QSD
is given by the following:

1= piTe(pT) (1)

Consequently, minimising the probability of QSD error
amounts to solving the following problem [18, 19]:
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m
min 1 — Zp,-Tr(piH,-)

{m;} P

st IL>0 V1<i<m, (2)
m
Zl‘li:I
=1

The problem in Equation (2) is an SDP [21] that can be
solved using off-the-shelf solvers, such as SeDuMi or
SDPT3 and CVX as a modelling framework [22]. However,
the computational complexity of solving the SDP in Equa-
tion (2) becomes prohibitive as the number of POVM
matrices and the dimension of each matrix increase. For
instance, solving Equation (2) via an SDP solver for the
choice of m = 100, d = 10, takes more than 10 s on a
standard desktop PC, which would constitute a significant
bottleneck in any practical quantum communications
application.

In this paper, we reformulate the problem in Equation (2)
and propose an MM-based iterative algorithm that is signifi-
cantly faster than an SDP solver.

3 | PROPOSED ALGORITHM

In this section, we present the proposed algorithm QMM for
solving the problem (2). Because QMM uses the principle of
majorisation-minimisation in the following, we briefly discuss
the core steps of the MM approach [23, 24].

3.1 | MM for a minimisation problem

Consider the following constrained minimisation problem:

min f (x) (3)

XEy

where f(x) is the objective function, x denotes the optimi-
sation variable and y is a constraint set. The MM algorithm
[23, 25] solves the problem in Equation (3) in two steps. In
the first step, it constructs a surrogate function g(x|xk) that
is a tight upperbound of f(x) at x". In the second step, the
surrogate function is minimised to get the next iterate
that is,

x**! € argmin g (x[xF) (4)

xEy
The aforementioned two steps are repeated until the sequence
iterates { f (xk)} , converges. The surrogate function con-

structed in the first step of the MM procedure g(x|xk) satisfies
the following conditions [23]:

g(xx)2f(x), V xex (5)

g ) = £ (") (6)

The sequence of iterates obtained via the MM algorithm
monotonically decreases the objective, that is, [23].

FE)<g (¢ xF) s g(Hxt) = ()

The first inequality and the equality follow from Equations (5)
and (6) and second inequality from Equation (4).

32 | QMM

We first reparametrise the measurement matrices as
II; = A,‘AZH to eliminate the PSD constraints in Equation (2).
Next, we reformulate the design problem in Equation (2) as
(leaving out a constant term):

?}11? {f({Ai}) =- in(PiAiA{{)}

(7)

m
s.t. Z AAT =1
i=1

where P; = p;p;. Let

and observe that the constraint in Eqaution (7) can be equiv-
alently expressed as APA =1 Using a trace property, the
objective function can be expressed as follows:

flAa) =— zm: Tr(AY P;A;) (9)

which is a concave quadratic function of {4;}.

As mentioned in Section 3.1, the first step of an MM
algorithm consists of devising a tight surrogate function g
(A|Ak) for f{A) at a given A = A®. Each of the terms in
Equation (9), that is, —Tr(Af{ PiAi) , is a concave quadratic
function, thus f{A) is concave quadratic function. Using first-
order Taylor series expansion at A* (tangent hyperplane pass-
ing through Ak), we get a tight upper bound (see ref. [23],
Equation (10)]):

f(4) = —zm:Tr(Af{PiAi) < 2Re<zm:Tr(AﬁBf)>

=1 =1

+ li:Tr((Af)Hpi (Af)) —g(4/4")

(10)
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where Bf depends on the current iterate Af via
Bt = pA* (11)

Alternatively, the bound in (10) can be verified as follows:

zm: (Ai - Af)Hpi (Ai — Af) >0 (12)

=1

since each of the matrices in the summation is positive
semidefinite. Taking the trace operation and expanding, we
obtain

m H
Tr| > APA; — AP AY - (Af) P;A;

i=1 (13)

H
+ (Af) P, (Af’) >0

Using Equation (11) and after some rearrangement of the
terms, we obtain the inequality:

o (4) e (4))

It follows from Equation (10) that the surrogate mini-
misation problem is defined as follows:

_ Zm:Tr(Af'PiAi) <- 2Re<f:Tr(AﬁB§)>

(14)

min  —2 Re(Tr(AHBk))

(15)

st ATA=T

H
where Bf = [(B{e),(B/;),,(Bﬁ,)} . The optimisation

problem in Equation (15) can be reformulated as follows:

min  ||B* — Al|}
4 (16)
st.  APA=T

Let B* = USV be the singular value decomposition of B
(where Uis a semi-unitary matrix of size md X d, £ is a di-
agonal matrix of size d X d and V'is a unitary matrix of size
d X d), then the next MM iterate can be obtained as the so-
lution of the orthogonal Procrustes problem in Equa-
tion (16) [20]:

A = pvH (17)

The pseudocode of the QMM algorithm for solving the
QSD problem is presented in Algorithm 1.

Algorithm 1 QMM.

Input: p;, p; Vie {l,...,m}
Output: IL; Vi e {1,...,m}
Set k=0
Initialize A° s.t. (A2)H A =T
repeat
Bf = P,A¥,
B =UxVH
Ak+1 — UVH
Setk=k+1
until sropping criteria
II; = A, AH

1=1,...,m

D =IEN--REEN B L7 T N S

3.3 | Computational complexity,
convergence, initialisation and stopping
criterion

We first discuss the computational complexity of QMM. Each
iteration of QMM requires computing 72 matrix multiplications

PiAf which has a computational complexity of O(md?)) flops,
the SVD of B® with complexity @(mds) flops and the matrix

multiplication UV with complexity @ (md") flops. Thetefore,
the computational complexity of each iteration of QMM is on
the order of O (mda). On the other hand, the computational
complexity of the SeDuMi SDP solver is @(mzdg) [27].
Therefore, the computational complexity of the proposed QMM
algorithm is several orders of magnitude lower than that of the
SeDuMi solvet, a fact that will be illustrated via several numerical
experiments in Section 4. Regarding the convergence of the
proposed algorithm, as QMM is based on the MM principle, the
objective in Equation (7) (and hence (2)) decreases mono-
tonically with the iteration; moreover, the objective is bounded
below, which guarantees that the QMM will converge in terms of
the objective [23].

Regarding initialisation, we initialise the proposed algo-
rithm via a random choice of {A;}, which satisfies the
constraint in Equation (7). To do so, first, we generate a
random matrix (with the same dimension as A) whose entries
are independent and identically distributed random variables
with a standard normal distribution N'(0,1). Then, the matrix
A" in line 2 of Algorithm 1 is built from the left singular
vectors of the random matrix. Finally, the stopping criterion

-3

4 | NUMERICAL RESULTS

The numerical simulations are carried out using MATLAB on a
desktop computer with Intel i7 processor @ 2.5 GHz and
32 GB RAM. We first consider a QSD problem in quantum
communications consisting of pure states with 7 = 3 and
d = 2, similar to ref. [28]. The quantum states consists of rank-
one density mattices p; = |wi){yi|, ¢ € {1, 2, 3} whete
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cos (6) vy = 1 | cos @) ) = 1
sin(6) | Ve = V2 |=sin(0)| V= 0
(18)

with prior probabilities p; = p, = p and p3 = 1 — 2p where
0 < p < 1/2. In this example, we will use 8 = 7/16 and
p = 0.3. Figure 2 shows the objective in Equation (2) mini-
mised by the QMM algorithm as a function of the iteration
number for 10 different random initialisations (solid lines). For

|'I/1> =

comparison, the optimum value of the objective in Equa-
tion (2) obtained from the SeDuMi SDP solver is also shown
(dashed line). It can be observed that QMM quickly converges
to the optimum SDP solution from all initialisation points.
Furthermore, it was observed that the SeDuMi solver and
QMM return the same {Hi}?:l for all the 10 different random
initialisation points up to the numerical precision of MATLAB.
Further, the average runtime and mean squated error (MSE) of
the optimum objective value of QMM with respect to SDP is
shown in Table 1. It can be observed that the run time of
QMM is two orders of magnitude lower than that of the
SeDuMi SDP solver while achieving an MSE of the order
107°. The runtime of QMM is significantly lower than that of
the SeDuMi SDP solver since the theoretical computational

complexity for each iteration of QMM is O(mds) while the

075
| - - -SDP (SeDuMi)|
07 ]
S
i
5 0.65 1
Py
S
o
0.6 1
0.55
5 10 15 20 25

lteration

FIGURE 2 The objective function minimised by the proposed
algorithm as a function of iteration for 10 different initialisation points. The
results are for the QSD problem with the pure quantum states in
Equation (18). For compatison, the optimum objective value obtained from
the solution of the SDP using the SeDuMi solver is also shown. QSD,

quantum state discrimination.

TABLE 1 Performance compatison of QMM and SDP for QSD with
pure states.

Algorithm Average run time (s) MSE
QMM 0.0021 479 x 107°
SDP (SeDuMi) 0.36 -

computational complexity of the SeDuMi SDP solver is
O(m*d’) as discussed in Section 3.3.

Next, we consider a QSD problem with mixed quantum
states, which is usually encountered in a practical quantum
communication system. We consider the quantum m-PSK
modulation scheme, for which the entries of the k—th density
matrix are given by (for 1 < 7 <) [13]

%) T
N

¥ (=l i
1

| |”

NN +1)

where v = N'/(1 + N'), N denotes the average number of
thermal photons, |ag|* denotes the average number of signal
photons, and L]’ (x) are the generalised Laguerre polynomials.
The entties for i > j are obtained using the Hermitian property
pji(ag) = pi;(ax) . For m-PSK modulation, the parameter a
satisfies @ = Wmfl, k=1, ..., mwhere W,, = &>™/™
ag is assumed to be a positive real number without loss of
generality [13]. In general, the density matrices have infinite
dimensions. However, in practice, the dimension of the density

,and

matrix is truncated to a finite value in order to apply the SDP
or the QMM algorithms. We consider a 4-PSK modulation
(m = 4) with prior probabilities p; = 0.2, p, = 0.2, p; = 0.1,
pa =05, 00 =1, N =2, and with density matrices of trun-
cated dimension d = 10 [13]. Figure 3 shows the objective in
Equation (2) minimised by the QMM algorithm as a function
of iteration for 10 different random initialisation points. As in
the previous example, the QMM algorithm quickly converges
to the optimal SDP solution from all initialisation points. As
mentioned earlier, it was observed that the optimum {TT;};_,

0.8 ‘
- - -SDP (SeDuMi)/|
0.7 1
S
L]
5 0.6 -
o
S
o
05 -
04— ‘ ‘ ‘
2 4 6 8 10
Iteration

FIGURE 3 The objective function minimised by the proposed
algorithm as a function of iteration for 10 different initialisations. The
results are for the QSD problem with mixed quantum states corresponding
to a 4-PSK modulation scheme. For comparison, the optimum objective
value obtained from the solution of the SDP is also shown. QSD, quantum

state discrimination.
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obtained from the SeDuMi solver and QMM are the same for
all the 10 different random initialisation points up to the nu-
merical precision of MATLAB. Furthermore, the average
runtime and MSE of the optimum objective value of QMM
with respect to SDP is shown in Table 2. As mentioned earlier,
it can be observed that the run time of QMM is two orders of
magnitude lower than that of the SeDuMi SDP solver while
achieving an MSE of the order 107"

TABLE 2 Performance compatison of QMM and SDP for QSD with
mixed states in 4 — PSK.

Algorithm Average run time (s) MSE
QMM 0.0026 5.06 x 1077
SDP (SeDuMi) 0.2133 -
102 e
g
0l g 1
= 10 — QMM
g —m——— s SDP (SeDuMi)
i)
I
31072 ¢ 3
€
(@]
o
107
20 40 60 80 100
d
(a) Comput. time vs d (m = 5)
@ ”"_’ "
2 a7
-1t |
i= 10 — QMM
g """ SDP (SeDuMi)
i)
5|
31072} ]
S
@]
O
107
0 20 40 60 80 100
m

(b) Comput. time vs m (d = 5)

FIGURE 4 The plots compare the average computation time of the
proposed QMM algorithm with that of the SeDuMi SDP solver for varying
(a) Hilbert space dimension d and (b) number of states 72. QMM, quantum

majorisation-minimisation.

Next, we compare the average computation time (in
seconds) of the QMM algorithm with that of the SDP for
varying problem dimensions. We consider a simulation
setting where the density matrices and the prior probabilities
are randomly generated for varying 7 and d. Figure 4a plots
the average computation time as a function of d (for m = 5),
and Figure 4b plots the average computation time as a
function of m (for d = 5). It can be observed that the
average computation time of the proposed QMM algorithm
is more than two orders of magnitude smaller than that of
the SDP. The MSE of the QMM objective with respect to
the optimum SDP objective as a function of d, m for the
two examples considered in Figure 4 is shown in Figure 5. It
can be observed that the MSE of the QMM objective and
the optimum SDP objective is of the order 107 for each (m,
d) test case in Figure 4. Although not shown, the difference
between the QMM and SDP optimal solution of the mea-
surement matrices is of the order of numerical precision of
MATLAB.

5 | CONCLUSION

In this paper, we have proposed a computationally efficient
algorithm (called QMM) for solving the QSD problem, which
has applications in quantum communications. The proposed
algorithm is based on the technique of majorisation-
minimisation that monotonically decreases the design objec-
tive. In order to derive the QMM algorithm, we reparametrised
the original objective, tightly upper-bounded it at any given
iterate, and then obtained the next iterate as a closed-form
solution to the upper-bound minimisation problem. Our nu-
merical simulations demonstrate that the proposed QMM al-
gorithm  significantly outperforms the state-of-the-art SDP

9 %107 ‘

——(m =5, varying d)
(d =5, varying m)|

oo
T

~
T

D
T

MSE of QMM
& o

0 20 40 60 80 100

FIGURE 5 The plots show the MSE of the QMM objective with
respect to the optimum SDP objective as a function of d, m for the two
examples considered in Figure 4. MSE, mean squared error; QMM,

quantum majorisation-minimisation.
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algorithm in terms of speed, while maintaining comparable
performance for solving QSD problems in quantum commu-
nication applications.
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