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We incorporate the nuclear medium effect into α-decay calculation through a reformulation of the 
conventional double-folding model. The improved model enables the α cluster to simultaneously change 
its size at different nuclear density during the Coulomb penetration process, thus reflecting the effect 
from the variation of nuclear mean field and Pauli blocking at the nuclear surface. To evaluate the 
result of such a dynamic effect, we perform a systematic calculation of α-decay half-lives for even-even 
α-emitters within a deformed cluster model. We found that the medium effect optimises the shape of 
α-nucleus potential at the surface region, leading to a remarkable reduction in the deviations between 
the theoretical and experimental decay rates. The result implies the importance of the dynamic aspect of 
α clustering in describing a realistic α-nucleus interaction.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The mechanism of clustering in nuclei is an important subject 
in nuclear many-body physics. The single-particle characteristics of 
nuclear motion are described by the well-known shell model, in 
which the shell structure appears as a manifestation of the mean-
field effect. On the other hand, the vibrational and rotational bands 
observed from experimental excitation spectrums can be well ex-
plained within the collective model. The collective model serves as 
an important supplement to the shell-model description, reflect-
ing the global properties of a nucleus from a different perspective 
[1]. Compared with the two types of dynamics above, clustering 
characterizes another type of motion, seemingly as an in-between 
mode of the single-particle and the collective motions, which de-
scribes the competition of correlation dynamics within local nu-
cleons especially when one typical correlation becomes prominent. 
Research on the cluster states in light nuclei has revealed that clus-
tering leads to new degrees of freedom for nuclear motions, the 
relative motion and the intrinsic motion of clusters, which are es-
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sential to the interpretation for some unique excitation spectrums 
observed from experiments [2]. With clustering in light nuclei be-
ing well confirmed and studied, to explore the cluster structures in 
heavy nuclei is becoming increasingly important.

Unlike the situation for light nuclei, the knowledge of cluster-
ing phenomenon in heavy nuclei is very limited [3]. On one hand, 
there are very few experimental observations for the cluster states 
in heavy nuclei. In fact, even the most promising cluster states, 
i.e. the core + α states, are only observed or predicted for some 
special nuclei, such as 212Po which can be viewed as a double-
magic core plus an α cluster [4–8]. On the other hand, theoretical 
description of clustering in heavy nuclei poses a big challenge to 
the existing nuclear models. It is already confirmed that traditional 
shell-model calculations cannot produce sufficient α-clustering at 
the nuclear surface [9], and microscopic cluster models that work 
well for light nuclei, have encountered substantial difficulties for 
heavy nuclei while dealing with the antisymmetrized effects [10]. 
The physical connection between clustering in light nuclei and 
heavy nuclei is still ambiguous, which calls for new methods and 
models to understand the mechanism of clustering in heavy sys-
tems.

Alpha decay is a direct clue to the existence of α clustering 
in heavy nuclei. As one of primary decay modes of unstable nu-
clei, α decay has been well understood as a kind of quantum 
tunneling effect. Within the basic assumption of cluster models, 
there is a probability that the α cluster is preformed inside the 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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parent nucleus. Such probability is usually described by the so-
called α-preformation factor (Pα ), a quantity determined by the 
square overlap between the α-nucleus decaying state and the ini-
tial wavefunction of the α emitter. Obviously, the Pα factor is 
closely related to the α-cluster states in heavy nuclei because its 
magnitude directly reflects the amount of α clustering in the ini-
tial state of the α emitter. Therefore, studies of the α-preformation 
factor provides a path to investigate the cluster structure as well 
as other structural properties in heavy nuclei.

In general, to characterize the clustering phenomenon in heavy 
nuclei from a microscopical level is very difficult. To obtain ade-
quate clustering features for the initial state at the nuclear sur-
face, within a shell-model approach, one has to employ a very 
large-scale bases and include the contribution from high-lying con-
figurations [11–14]. The calculation is so complicated and thus 
only valid for nuclei around shell closures. A combination of shell-
model and cluster-model bases can simplify the calculation to 
some extent [4], but such a hybrid model is inherently designed for 
those “core + α” nuclei. So it is difficult to generalize to nuclides 
with more valence nucleons included. To describe the α forma-
tion process in heavy nuclei, researchers also attempt to extend the 
α-clustering studies from nuclear matter to finite nuclei. Recently, 
the quartetting wavefunction approach based on such attempt 
was successfully applied to 212Po and its nearby isotopes [15–17]. 
Treating the four nucleons (α) in a fully quantum-mechanical for-
mulism, the formation of the α cluster was described as a transi-
tion from shell-model continuum states to a bound intrinsic cluster 
state, with an effective potential for the center-of-mass motion de-
rived. Despite the approach has assumed the daughter nucleus as 
a kind of nuclear medium to the four nucleons (α), the micro-
scopic calculation reveals more details inside the α emission pro-
cess. As one distinct feature, the α cluster is found to dynamically 
changes its size while tunnelling the Coulomb potential barrier. 
Such dynamics during the decay process can be viewed as a kind 
of nuclear medium effect, which emerges with the variation of the 
nuclear mean field and Pauli blocking at the nuclear surface.

Obviously, the nuclear medium effect should also appear in 
the α-nucleus potential. The size variation of the α cluster im-
plies the change of its density distribution and nucleon-nucleon 
interactions, which is not considered in previous cluster-model 
calculations. As for α decay, it is known that the calculation of 
decay half-lives and α-preformation factors is very sensitive to the 
adopted α-nucleus potential, especially the surface region where 
the nuclear medium effect is just evident. In a previous research, 
we attempted to incorporate this nuclear medium effect into the 
α-nucleus potential within the microscopic double-folding model 
[18]. Alternative to the quartetting wavefunction approach, the 
medium effect directly enters into the α-nucleus potential through 
a dynamical density distribution of the α cluster. Exploratory cal-
culations were performed for even-even spherical nuclei to eval-
uate its influence. With some positive results obtained, the con-
clusion reached is yet limited due to the absence of the nuclear 
deformation. In order to obtain a comprehensive view of the nu-
clear medium effect in α decay, the calculation should be carried 
out in wide range of the nuclide chart, for which the nuclear de-
formation has to be properly considered.

In this letter, we report the systematic study of the nuclear 
medium effect in α decay from the perspective of decay half-life, 
α-preformation factor (Pα ) and most importantly, the α-nucleus 
potential. The dynamic double-folding potential (DDFP) for de-
formed α-nucleus interactions is developed, which embodies the 
dynamic effect that the α cluster varies its size at different baryon 
density throughout the nuclear surface. The computation of de-
formed DDFP is extremely time consuming (about 1000 times 
more than the spherical case), but the improvement to the half-life 
Fig. 1. Schematic illustration of the deformed double-folding potential described by 
Eq. (1).

calculation is found to be very significant. The results clearly ad-
dress the importance of the dynamic effect of the α cluster during 
the decay process. In the next section, starting from the conven-
tional double-folding potential, we provide the theoretical deriva-
tion of the deformed DDFP. The method to embed the medium 
effect into the α-nucleus potential will be explained in details. In 
Section 3, we demonstrate the numerical results obtained with the 
DDFP, along with discussions based on comparisons with the con-
ventional calculations. Section 4 is a brief summary and outlook 
for the present study.

2. Theoretical description

In theories of α decay and α scattering, the α-nucleus interac-
tion is an essential ingredient which reflects the basic characteris-
tics of a theoretical model. In general, this α-nucleus potential can 
be generated through either a phenomenological or a microscopic 
procedure. The double-folding potential is a typical representative 
of the latter [19], which is based on realistic nucleon-nucleon (N N) 
interactions and the density distributions of the two-body interac-
tive nuclei. For an α-nucleus system where the daughter nucleus is 
of axial symmetry (Fig. 1), the deformed double-folding potential 
is given by [20],

V N(C)(R, θ) = λ

∫
dr1dr2ρ1(r1)ρ2(r2)υN(C)(s), (1)

where ρ1(r1) and ρ2(r2) are the charge or matter density distri-
butions of the daughter and α clusters, and the corresponding N N
interactions for the nuclear and Coulomb potentials are denoted by 
υN(C)(s). Usually, an additional parameter λ has to be introduced 
to renormalize the strength of υN (s) (λ ≡ 1 for the Coulomb po-
tential).

For clustering phenomena in heavy nuclei, α cluster tends to 
appear at the nuclear surface of low nuclear density [13,15,21–25]. 
After the formation of the α cluster, the effective interaction felt 
by the α cluster is mainly determined by the nuclear mean field 
produced by the residual nucleons and the Pauli blocking effect 
appearing at the nuclear surface. Since Pauli blocking suppresses 
the four-nucleon (α) occupations at the Fermi level, the N N inter-
actions within the α cluster would change accordingly at different 
nuclear density. As a result, the intrinsic α-cluster wavefunction 
changes simultaneously as the cluster is moving outside the nu-
clear surface. To exactly determine the dynamics of the α clus-
ter at different nuclear density, one has to solve the in-medium 
Schrodinger equation for the intrinsic motion of the α cluster. This 
was done in Ref. [15] with the recently proposed quartetting wave-
function approach. By employing a fully quantal treatment for the 
four-nucleon (α) cluster in homogeneous nuclear matter, the au-
thors successfully determined the intrinsic energy shift due to the 
Pauli blocking as a function of baryon density. Within a variational 
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approach, the quartetting wavefunction for the α cluster was de-
termined in local density approximation (LDA). It was found that 
due to the medium effect, the α cluster expands its density distri-
bution in finite density, which corresponds to a larger radius than 
that of a free α particle. On the other hand, as the nuclear density 
decreases at the nuclear surface, the variation of Pauli blocking will 
result in a dynamical transformation of the α-cluster density dis-
tribution, meaning that the α cluster will dynamically change its 
size while penetrating the Coulomb potential barrier.

Backing to the formulation of Eq. (1), one can recognize that 
both the density distributions of the daughter and α clusters are 
taken to be frozen. This implies that while calculating the double-
folding α-nucleus potential, the nuclear medium effect discussed 
above is not explicitly considered. As is known, the calculation of 
α-decay rates is very sensitive to the α-nucleus potential, espe-
cially its surface geometry between the inner and outer classical 
turning points. This is exactly the range where the nuclear medium 
effect is evident according to previous microscopic calculations [15,
16]. Hence, for a more realistic behavior of the α-nucleus poten-
tial, the dynamics of the α cluster during its emission has to be 
properly considered into the α-nucleus interaction.

In such attempt, we propose the dynamical double-folding po-
tential (DDFP) which is of the general form,

V C (R, θ) =
∫

dr1dr2ρ1(r1)ρ2(r2,ρ1(R))υC (s), (2)

V N(R, θ) = λ

∫
dr1dr2ρ1(r1)ρ2(r2,ρ1(R))t(s,ρ1,ρ2, Eα), (3)

with R ≡ {R, θ} in the above equations. To incorporate the nu-
clear medium effect, a simple idea is that the α-cluster density 
distribution should be treated dynamically, i.e., dependent on the 
density nB of the surrounding nuclear medium in LDA. There-
fore, the ρ2(r2) in Eq. (1) can be rewritten into ρ2(r2, nB). For an 
α-daughter system, the medium density is given by the density 
distribution of daughter nucleus, such that we have ρ2(r2, ρ1(R))

as in Eq. (3). In addition, with the α-cluster density distribu-
tion taken dynamically, one might also consider that the daugh-
ter’s density-distribution as well as the N N interaction should 
also change self-consistently from a many-body viewpoint. For the 
nuclear part of N N interactions, this can be achieved by replac-
ing υ(N)(s) in Eq. (1) with a density-dependent N N interaction. 
In the present study, the CDM3Y6 parameterized N N interaction 
t(s, ρ1, ρ2, Eα) is employed [26], in which the density dependence 
is characterized by

f (ρ1,ρ2) = C1[1 + C2e−C3(ρ1+ρ2) − C4(ρ1 + ρ2)], (4)

where Ci=1,2,3,4 are parameters determined through reproducing 
the saturation properties of normal nuclear matter within Hartree-
Fock calculations in [26].

To consider the dynamics of the daughter’s density distribu-
tion means the dependence of the internuclear position R has to 
be introduced, which yields ρ1(r1, R). However, the determination 
of the dynamic features of ρ1(r1, R) is an extremely complicated 
problem which so far has not been well studied. Physically, be-
cause nucleons of the daughter nucleus are usually much more 
than of the α cluster, the variation of ρ1(r1) resulting from the 
change of the α-cluster density distribution is expected to be mi-
nor. Even in the many-body calculations of Ref. [15], a fixed den-
sity distribution for the daughter nucleus was accepted as a basic 
approximation. Hence, currently in Eq. (3) the frozen density dis-
tribution for the daughter nucleus can be retained.

The density-dependence of the α-cluster density distribu-
tion is a central problem for the representation of the nuclear 
Fig. 2. The medium effect on the α cluster described by Eqs. (6). The green dot-
dashed line and the blue solid line represent the peak density ρ2,s of the α-cluster 
density distribution and the corresponding root-mean-square charge radius Rrms . 
The width parameter β (red dashed line) slowly decreases with higher medium 
density nB , implying that the in-medium α cluster will smoothly increase its size 
while moving closer to the daughter nucleus.

medium effect. In calculations of the conventional double-folding 
α-nucleus potential, ρ2(r2) usually takes the typical Gaussian-type 
as ρ2(r2) = ρ2,s exp(−βr2

2), with the width parameter β = 0.7024
determined by reproducing the charge r.m.s radius 1.67 fm from 
experiments. Being aware of that this width parameter controls the 
size of the α cluster, we thus can embed the density-dependence 
into β such that the density distribution ρ2 becomes

ρ2(r2,ρ1(R)) = ρ2,s exp[−β(ρ1(R))r2
2]. (5)

In this way, the α cluster can simultaneously change its size at 
different baryon density through the variation of β . In order to de-
termine the density-dependence of β , in our previous study [18], 
we extracted the dynamic features of the α cluster from the ex-
isting research and transformed into mathematical constrains of 
β(nB). Through a couple of trails, we found the nuclear medium 
effect can be well described with a simple formula,

β(nB) = 0.7024

1 + a1nB
. (6)

Here, the only parameter a1 is not adjustable, but determined by 
the saturation density ρ1,s of the daughter nucleus, with a1 =

45
16ρ1,s

. While calculating the DDFP, both ρ1,s and ρ2,s are deter-
mined by normalization of the density distributions to the charge 
or mass number of the corresponding nuclei.

The medium effect described by Eqs. (6) is demonstrated in 
Fig. 2. One can find the variation of β automatically changes the 
size of the in-medium α cluster (characterized by peak density ρ2,s
and root-mean-square charge radius Rrms) at different medium 
density. Moreover, a qualified β(nB ) function should be able to re-
produce the critical characteristics suggested by both microscopic 
calculations and experiments. For instance, at zero density limits, β
automatically goes to the typical value 0.7024 fm−2 corresponding 
to the experimental charge r.m.s radius of a free α particle (1.67 
fm). Additionally, β(ρ1(R)) smoothly decreases at smaller internu-
clear distance, reflecting that at the nuclear surface, the α cluster 
gradually reduces its size while moving outside the Coulomb po-
tential barrier. In particular, the values reached by the square root 
of β at one-fifth the saturation density is 20% smaller than that 
at the zero density limit, consistent with the result of Refs. [15,
18]. These quantitative relations are used to determine the coeffi-
cient a1 in Eq. (6) [18]. Besides, while approaching the region of 
higher density into the daughter nucleus, the distribution ρ2 be-
comes flattened so that can simulate the shell-model continuum 
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states at the internal region. In short, the nuclear medium effect is 
embedded through the width parameter β of the α-cluster density 
distribution. Once the β(nB ) function is determined, the deformed 
DDFP potential can be calculated according to Eqs. (2) and (3).

3. Results and discussions

In order to evaluate the influence due to the nuclear medium 
effect in α decay, we perform a systematic calculation of the 
α-decay half-lives among the known even-even α emitters. A total 
of 180 nuclei with 106�A�294 are studied, in which 135 nuclei 
are well-deformed. Most of these nuclei go through the favored 
α decays, with almost 100% intensity for the 0+ to 0+ ground-
state transition. Hence, it would be favorable for us to observe the 
pure manifestation of the nuclear medium effect, because addi-
tional factors such as the angular momentum transferred to the α
particle and the change of spin-parity between the initial and the 
final states can be excluded.

Besides, it should be noted that the consideration of nuclear de-
formation of the daughter nucleus is very important because the 
medium effect under study is strongly dependent on the density 
distribution ρ1(r1). However, the combined consideration of de-
formation and the medium effect along with a density-dependent 
N N interaction will considerably increase the computational in-
tense. For the daughter nucleus of axial-symmetrical deformation, 
ρ1(r1) can be described by the two-parameter Fermi function 
ρ1(r1, θ) = ρ1,s/(1 + exp[(r1 − R̃(θ))/ã]) [18,20]. The half-density 
radius R̃(θ) = R0[1 + β2Y20(θ) + β4Y40(θ)] is associated with the 
quadrupole and hexadecapole deformation parameters β2 and β4, 
and introduces the dependence on orientation θ . To obtain the 
deformed DDFP, one has to calculate numerically the Fourier trans-
formation of the term ρ2(r2, R, θ) exp[−C3ρ2(r2, R, θ)] at the full 
(R, θ) space. Combined with the multipole expansion of the de-
formed potential and the daughter’s density distribution, the time 
consumption for one nucleus is about one thousand times more 
than of the spherical case within the same calculation precision. 
This is a basic requirement before making any direct comparisons 
between the DDFP and the conventional double-folding potential. 
With both potentials determined, the penetrability P for a certain 
orientation θ can be evaluated through the well-known Wentzel-
Kramers-Brillouin (WKB) approximation,

P (θ) = exp(−2

R3(θ)∫
R2(θ)

√
2μ

h̄2
|V (R, θ) − Q α |dR). (7)

Then the total penetrability is obtained by averaging P (θ) in all 
directions [20],

P = 1

2

π∫
0

P (θ) sin(θ)dθ. (8)

Finally, the half-life is given by [18,20,27]

T1/2 = ln 2

Pα F h̄
4μ P

. (9)

In Fig. 3 the deviations of α-decay half-lives calculated by using 
the conventional double-folding potential and the DDFP are pre-
sented. Within the present half-life calculation, one should employ 
the Pα factor as a theoretical input. Since the Pα factor for a cer-
tain type (even-even/odd-A/odd-odd) of nuclei only varies slightly 
in the open-shell region [28,29], we adopt a constant Pα factor 
Fig. 3. Deviation between the calculated α-decay half-life and the corresponding 
experimental value. T Cal1.

1/2 and T Cal2.
1/2 denote the theoretical α-decay half-lives calcu-

lated with the conventional double-folding potential (without the nuclear medium 
effect) and the DDFP (with the nuclear medium effect), respectively. The inclusion 
of the nuclear medium effect significantly reduces the average deviation by about 
23%.

which is determined through a least square fitting of the half-life 
deviation. Moreover, the calculation is only conducted for the 135 
well deformed nuclei which are located far from the neutron or 
proton shell closure. In this way, one can ensure the obtained half-
life deviations are mainly due to the differences in the α-nucleus 
potential.

As can be observed from Fig. 3, after the nuclear medium effect 
is included into the α-nucleus potential, the deviation between the 
theoretical and the experimental α-decay half-lives reduces signifi-
cantly. To evaluate the improvement for the calculated decay rates, 
one can employ the scale factor S = 10σ , with the average devi-
ation factor σ obtained by σ = 1

N

∑N
i=1 | log10 T Cal.

1/2,i − log10 T Exp.

1/2,i |. 
In our calculation, the S factor given by the conventional double-
folding potential is 1.88, which means that the theoretical half-
lives are statistically within the range 47% smaller to 88% larger 
than the experimental values. As is known to α-decay calculations, 
this is already a very good agreement in practice. However, after 
the nuclear medium effect is included into the α-nucleus poten-
tial, the DDFP yields a factor S = 1.62, with the average deviation 
σ further reduced by up to 23%, which is a very significant im-
provement for half-life calculations. More interestingly, it is found 
that such reduced deviation is not a monotonic improvement. For 
example, the calculated half-life of 250Cf increases from 6.00 y to 
9.79 y, whereas that of 222Th decreases from 5.29 ms to 2.87 ms. In 
both cases the theoretical half-lives are getting closer to their ex-
perimental values (T Exp.

1/2 (250Cf) = 13.08 y, T Exp.
1/2 (222Th) = 2.24 ms) 

but from opposite directions. The good agreement achieved by the 
DDFP strongly confirms the importance of the nuclear medium ef-
fect in describing a realistic α-nucleus interaction.

Encouraged by the above results, we extract the empirical 
α-preformation factors from experimental decay rates by using 
both potentials. In previous calculations for the spherical α emit-
ters near the shell closures [18], it was found that the nuclear 
medium effect generally reduces the magnitude of the Pα factor, 
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Fig. 4. The variation of α-preformation factors along different isotopic chains. Pα obtained by the DDFP and the conventional double-folding potential are denoted by the red 
and dark lines, respectively. The results are divided into three categories (rows) according to different manifestations of the nuclear medium effect. The crossovers between 
Pα variations in the second-row subfigures are marked by the blue arrows.
whereas the trend of the Pα variation with the nucleon number 
is maintained. In the present study, such calculations are extended 
to mid-shell nuclei whose deformation cannot be ignored, so there 
probably exist different manifestations of the nuclear medium ef-
fect on α-preformation factors. Fig. 4 shows the variation of Pα

factors along different isotopic chains. It is found that the medium 
effect does not significantly change the trend of Pα factors. But ac-
cording to different manifestations of the nuclear medium effect, 
the results can seemingly be divided into three categories (see the 
separated three rows of the subfigures in Fig. 4). After including 
the nuclear medium effect, the Pα factors can be either smaller 
(the first row) or larger (the third row) than before. However, while 
looking into the Pα variation of W, Os, Pt, Hg isotopes (the second 
row), one can find that as the neutron number increases, there are 
crossovers between the results of the two potentials, which seems 
to imply a transition of the nuclear medium effect between the 
above two cases.

One probable reason for such transition to appear is the vari-
ation of nuclear deformation. This variation changes the surface 
behavior of the density distribution of the daughter nucleus and 
thus the α-nucleus potential. It is well known that the penetra-
tion probability is extremely sensitive to the α-nucleus potential, 
especially at the nuclear surface where the nuclear medium effect 
is important. Therefore, the penetration probability could be en-
hanced or suppressed by the nuclear medium effect through the 
variation of the daughter’s deformation. In order to illustrate its 
underlying correlations, we plot in Fig. 5 the ratio of penetrabili-
ties obtained by the two potentials as a function of the quadrupole 
and hexadecapole deformation parameters of the daughter nucleus. 
Note that the color map shows the value of ξ = log10(Pmed/Pno)

which reflects the change of penetration probability at different 
deformation parameters. As can be observed from Fig. 5, near the 
center of the parameter space, ξ is a positive value which means 
that for spherical and less deformed nuclei, the included medium 
effect will increase the tunnelling probability of the alpha clus-
Fig. 5. The ratio of penetration probabilities as a function of deformation parameters 
of the daughter nucleus. Pmed and Pno denote the penetrability obtained by the 
DDFP and the conventional double-folding potential, respectively.

ter. In consequence, the extracted Pα factor decreases accordingly, 
which exactly agrees with the results from previous study [18]. 
When moving away from the center, ξ gradually reduces and be-
comes a negative value towards the up-right corner of the param-
eter space. Such behavior certainly indicates that there would be 
a transition for the variation of penetrability (so does Pα ) when 
ξ changes its sign. If one refers to the deformation parameters of 
the isotopes studied in Fig. 4, it becomes easy to understand the 
existence of three types of behaviors for the Pα variation.

Besides the different behaviors mentioned above, another strik-
ing feature of Fig. 4 is that the magnitude of Pα for isotopes 
Z ≥ 94 are obviously larger after the medium effect is included. 
This implies there exists an obvious variation in the geometry 
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Fig. 6. Impact on the α-nucleus potential due to the nuclear medium effect. The 
figure shows the total α-nucleus potential at orientation angle θ = 0◦ and θ = 90◦
for 240Pu (the 236U + α system), of which the daughter nucleus is of well prolate 
deformation (β2 = 0.226, β4 = 0.108). The blue and red dash lines with data la-
bels denote the locations of the second classical turning points, which divides the 
potentials into the internal and the surface regions.

of the corresponding α-nucleus potential. To figure out how the 
medium effect functions in the α-nucleus interaction, we plot the 
α-nucleus potentials for the α emitter 240Pu in Fig. 6. Due to 
the large deformations of its daughter nucleus 236U (β2 = 0.226, 
β4 = 0.108), the resulting α-nucleus potential is obviously depen-
dent on the orientation angle θ . In contrast to the spherical cases 
[18], the medium effect significantly changes the shape of the po-
tential at the surface region. As can be seen that, at θ = 0◦ the 
Coulomb potential barrier is much higher and inside the core re-
gion whereas it becomes slightly lower and outside at θ = 90◦ . 
Note that such shape variation would be even more evident when 
the daughter nucleus is of larger deformations. As a direct con-
sequence, the shift of the second classical turning point signif-
icantly influences the penetrability and thus, the extracted Pα

factor. Comparatively, the effect from the shape variation in the 
internal region is found to be less evident. It is known that the in-
terior of the potential is mostly associated with the number of the 
internal nodes of the quasi-bound decaying state, which is cho-
sen according to the Wildermuth rule to account for the Pauli 
exclusion inside the daughter nucleus. For 240Pu, the change of 
the internal geometry of the potential contributes to 17% increase 
in the normalization factor F in Eq. (9), while the penetrability 
P increases by 65% due to shape variation in the surface region. 
This indicates the surface transformation from the medium effect 
is more prominent for α decay, which also holds for the spherical 
case [18]. Therefore, Fig. 6 is a direct manifestation of the nuclear 
medium effect in the α-nucleus potential.
4. Summary

In the present study, we propose the dynamic double-folding 
α-nucleus potential (DDFP) which naturally embodies the nuclear 
medium effect that the α cluster dynamically changes its size 
while tunnelling the Coulomb potential barrier. To evaluate the 
influence due to this medium effect, we perform a systematic cal-
culation of α-decay rates for known even-even α emitters and 
compare the results with those by the conventional double-folding 
potential. It is found that the medium effect optimises the sur-
face geometry of the α-nucleus interaction and is highly associated 
with the nuclear deformations. In consequence, the obtained av-
erage deviation between the theoretical and experimental decay 
rates is about 23% less than before, which indicates a very signif-
icant improvement for half-life calculations. The result reveals the 
important role of the dynamic clustering effect in describing the 
α-nucleus interaction.

In addition, as an alternative to the microscopic quartetting
wavefunction approach [15], the present study presents an semi-
classical method to include the nuclear medium effect into the 
effective α-nucleus interaction. We show the medium effect can 
directly enter into the potential through the dynamic α-cluster 
density distribution, thus avoiding the complexity in solving the 
many-body in-medium equation for the α cluster. However, one 
should still remember the approximation for the density distribu-
tion of the daughter nucleus, where a frozen Fermi distribution 
is employed. This means the daughter’s structural details as well 
as its correlations with the α cluster is currently absent in DDFP. 
Therefore, to consider the dynamics of the daughter’s density pro-
file is one promising way to improve the present approach. To go 
beyond the present study, one can further improve the density-
dependence in the β function, by using distinguished dependen-
cies on neutron and proton densities, so that the neutron skin 
(halo) structure at the surface of the daughter nucleus can also 
be included.
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