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Now that the existence of the top quark is firmly established, attention turns to mea-

suring its properties. Because of its large mass, the top quark may be sensitive to physics

beyond the standard model. A promising candidate for this new physics is supersymme-

try. Hence, we calculate the supersymmetric QCD correction to top-quark production at the

Fermilab Tevatron, allowing for arbitrary left-right mixing of the squarks. We find that the

correction is significant for several combinations of gluino and squark masses, e.g.
�

33%

for m �g � 200 GeV, m�t � m �q � 75 GeV.

Single-top-quarkproduction at hadron colliders provides an opportunity to directly probe

the charged-current weak interaction of the top quark. We calculate the next-to-leading-

order corrections to single-top-quark production via W-gluon fusion at the Fermilab Teva-

tron, the CERN Large Hadron Collider, and DESY HERA. Using a b-quark distribution

function to sum collinear logarithms, we show that there are two independent corrections,

of order 1 � ln � m2
t � m2

b � and αs. This observation is generic to processes involving a pertur-

batively derived heavy-quark distribution function at an energy scale large compared with

the heavy-quark mass.

Using the next-to-leading-order results for the W-gluon fusion cross section, we analyze

the possibilities for studying single-top-quark production at the Tevatron and LHC. We find

that there may be evidence for single-top-quark production in Run I data. Run II at the Teva-

tron should allow the W-gluon fusion cross section to be measured to � 22% with 2 fb � 1 of
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data. The LHC will have a statistical resolution of � 2% with the first 1 fb � 1 of data. The

implications of these results for measuring Vtb and top-quark spin polarization are discussed.
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Chapter 1

Introduction

Our best understanding of the strong, weak, and electromagnetic forces of Nature is con-

tained in a theory called the standard model. This theory has been tested over a large range

of energies, and has been found to provide accurate predictions for physical processes over

distance scales of several orders of magnitude. One of these predictions was the existence of

a new particle, called the top quark. The top quark was discovered in 1995 by two separate

experimental collaborations at the Fermi National Accelerator Laboratory (Fermilab) [1,2].

According to the standard model, there are three types of fundamental particles: leptons,

quarks, and gauge bosons. There are six known leptons, which are paired into three families:��
νe

e

�� ��
νµ

µ

�� ��
ντ

τ

��
� (1.1)

These are the electron (e), muon (µ), tau (τ), and their associated neutrinos (ν). The leptons

interact through the electroweak force of Nature. The electric charge is 0 for the neutrinos,

and � 1 for the particles in the lower half of the doublets above. There are also six known

quarks, which are are paired: ��
u

d

�� ��
c

s

�� ��
t

b

��
� (1.2)

These are called the up (u), down (d), charm (c), strange (s), top (t), and bottom (b). The

1



electric charge is
�

2 � 3 for the particles in the upper half of the doublets above, and � 1 � 3

for the particles in the lower half. The weak force mixes these particle states through the

Cabibbo-Kobayashi-Maskawa (CKM) matrix [3]. The quarks also have a color charge quan-

tum number associated with the strong force. The leptons and quarks are fermions, which

have half-integer spin quantum number and obey Fermi-Dirac statistics.

The gauge bosons are the mediators of the forces of Nature. They have integer spin

quantum number and obey Bose-Einstein statistics. The gluon (g) mediates the strong force.

The W
�

, W � , and Z0 are associated with the weak force. The photon (γ) carries the electro-

magnetic force. These forces are described by a SU � 3 � C � SU � 2 � L � U � 1 � Y gauge theory,

where the SU � 3 � C Lie algebra describes the strong force interactions of quantum chromo-

dynamics (QCD), and the weak and electromagnetic forces are unified into an electroweak

force, described by the SU � 2 � L � U � 1 � Y Lie algebra. The standard model describes how

the SU � 2 � L � U � 1 � Y symmetry of the theory breaks down into the weak force, and quantum

electrodynamics (QED).

The fermions are massless until electroweak symmetry breaking occurs. The standard

model postulates that fermions acquire a mass proportional to their Yukawa couplings to

another fundamental boson, called the Higgs (H). As of yet, there is no evidence for the

existence of the Higgs boson. However, the most massive particles would interact the most

strongly with a Higgs. Hence, studying the interactions of the most massive particles may

provide a window into this area of physics.

Now that the top quark has been discovered, its properties are being accurately mea-

sured. The cross section for top-quark pair production has been measured to � 25%, and

the mass to � 3% [4]. Run II at the Fermilab Tevatron, and experiments at the CERN Large

2



Hadron Collider (LHC), will measure the top-quark cross section to � 6%, and the top-quark

mass to � 2 GeV [5].1 The current world-averaged value for the top-quark mass is mt �
174 � 1 � 5 � 4 GeV [6]. The Yukawa coupling Yt � mt � 2

�
2GF � 1 � 2 is 1 � 0 given the current

central value of the top-quark mass. This is a hint that new physics may couple strongly to

the top quark.

The purpose of this thesis is to examine the use of measurements of the properties of

the top-quark to test the standard model of physics. A compelling hypothesis for physics

beyond the standard model is provided by adding a symmetry to the theory called super-

symmetry. At hadron colliders, top-quark pairs are produced via the strong force. In Chap-

ter 2 [7], we present a study of how supersymmetric corrections to QCD would affect the t t̄

production cross section. Single-top-quark production proceeds via the charged weak inter-

action. Because it has the largest cross section, most single-top-quark events at the Fermilab

Tevatron, and the CERN LHC, will be produced via W-gluon fusion. In order to normal-

ize the data, we present the first complete and correct calculation of the next-to-leading-

order (NLO) cross section for single-top-production via W-gluon fusion in Chapter 3 [8].

In order to extract the properties of the top quark from single-top-quark production, exper-

imenters will have to do an accurate analysis of their detector acceptances, and the back-

grounds. Chapter 4 [9] describes an improved method for the detection of these single-top-

quark events. We discuss the theoretical issues that must be addressed, and give an indica-

tion of how well the electroweak properties of the top quark can be measured. Some of the

most important results in particle physics in the next decade may come from these studies

of the properties of the top quark.

1Note that here, and throughout the rest of this thesis, we work in units where h̄ � 1, and c � 1.
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1.1 Supersymmetric extensions of the standard model

Despite its remarkable success, the standard model is generally not considered to be very

satisfying. The model contains eighteen free parameters that comprise masses, mixing an-

gles, and coupling constants. The drive to reduce the number of free parameters, and the

observation that the coupling constants almost meet when their values are run to near the

Planck scale, has led to the introduction of many extensions to the standard model. One of

these classes of models is supersymmetry (SUSY). The symmetry of supersymmetry asso-

ciates fermionic and bosonic degrees of freedom. Though this may seem to be relating two

fundamentally different types of fields, very nice properties emerge in a supersymmetric

world (or in one where SUSY is softly broken).

The standard model postulates that electroweak symmetry breaking occurs when a fun-

damental scalar doublet obtains a vacuum expectation value (vev) v via the Higgs mecha-

nism. Supersymmetry modifies this model slightly by adding at least one more Higgs dou-

blet, and the associated fermionic partners. While at first this may seem to be a step in the

wrong direction, investigating the SUSY Higgs sector provides many of the reasons to take

supersymmetry seriously. Two of the more compelling reasons are that supersymmetry can

provide solutions to the “gauge hierarchy” and “naturalness” problems that plague the stan-

dard model.

In the standard model, the electroweak scale is characterized by the mass of the weak

particles, namely mZ of O(100 GeV). If the gauge symmetries SU � 3 � C � SU � 2 � L � U � 1 � Y

are unified, this will occur at some scale MX on the order of 1015–1019 GeV, the GUT or

Planck scale. The “hierarchy” problem consists of two parts. The first is that at tree level it

4



is expected that the ratio of the vev v to the breaking scale MX should be on the order of 1,

specifically Cv � MX � 1 for some constant C. Of course the Z boson mass is on the order of

v, so this implies that C must be enormous for the Higgs mechanism to still apply. Why this

constant is so large rather than equal to one is unexplained. The next question to arise is how

to stabilize this ratio against large radiative corrections. This is the “fine-tuning” problem

of how to consistently alter C at every order in perturbation theory.

In specific models of supersymmetry both of these questions are addressed naturally, but

the technical question of how to keep v � MX is answered in all reasonable SUSY models.

The Higgs mechanism occurs at tree level in a SUSY theory, and thus v is of O � MSUSY � . It

was proven by Witten [10] that if supersymmetry is not broken at the tree level, then it is

not broken at any order in perturbation theory. Hence perturbative radiative corrections will

not spoil the tree-level hierarchy of scales (i.e. v remains of O � MSUSY � ). Supersymmetry

must be broken, but this is achieved through non-perturbative effects that leave the tree-

level result unbroken. When soft SUSY breaking occurs at a scale MSUSY � 102–103 GeV,

the applicable ratio is Cv � MSUSY � 1, and C is of O(1). The non-perturbative mechanism

that produces this breaking scale is yet to be explained, and is a well motivated subject for

it own reasons.2

One of the original motivations for investigating supersymmetry was its solution to the

“naturalness” problem. The standard model has three types of particles: fermions, gauge

bosons, and Higgs-like scalars. The fermions are naturally light because their masses are

protected by a chiral symmetry. The gauge bosons are light because of their gauge symme-

tries. The scalars, however, do not have any associated symmetry, and so their renormalized

2Most models of SUSY breaking also produce a relationship to gravity.
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masses tend to be large. Therefore a light Higgs is unnatural.3 Explicitly, m2
H � m2

0
� δm2

H

diverges quadratically, where δm2
H is due to the self-coupling loop in the scalar propagator.

δm2
H �

� Λ d4k

k2
� m2

H
� Λ2 (1.3)

Supersymmetry adds a fermionic partner �H whose mass is degenerate with mH . Therefore

there is also a contribution due to the fermion loop of

δm2
H � � Tr

� Λ d4k
���k � m �H � ���k � �q � m �H � � � Λ2 (1.4)

that cancels the scalar piece.4 In unbroken supersymmetry this cancelation is exact, and the

mass of the fundamental scalars is not renormalized. Softly breaking supersymmetry splits

the masses of the particles and their superpartners, but the quadratic divergences still cancel.

The bare mass m0 is small, and the renormalized mass is of O � MSUSY � , or about 1 TeV.

Despite sufficient theoretical motivation, contact with experiment must still be made if

supersymmetry is to be anything more than a toy model. Unfortunately, there are over 100

free parameters in the most general supersymmetric theory. Therefore, in order to attain

any sort of predictive power, certain constraints are generally placed on the models studied.

The most practical model is the minimal supersymmetric standard model (MSSM). This is

a direct supersymmetrization of the standard model.

The particle spectrum of the MSSM contains three generations of chiral quark and lepton

superfields, the vector superfields for the SU � 3 � C � SU � 2 � L � U � 1 � Y gauge group, and two

chiral Higgs doublet superfields.5 An added assumption of unification at some scale MX is

3The t’ Hooft definition of “natural” is that if taking the mass of a particle to zero increases the symmetry
of the Lagrangian, it is “natural” for the particle to be light.

4The minus sign is for the closed fermion loop. The exact details depend on the interaction terms from a
particular model’s superpotential.

5Two doublets are needed to cancel the hypercharge anomalies between the higgsinos, and to give masses
to both up and down type fermions. The later arises because the Lagrangian may not be constructed out of
conjugate fields.
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generally included. This forces the masses of the scalar-quarks (squarks) and scalar-leptons

(sleptons), and the gauge partners (gauginos) to attain masses of m0 and m1 � 2, respectively,

at the unification scale. This also fixes the bilinear and trilinear breaking coefficients to some

unified values [11]. Likewise, gauge unification is assumed at MX � 1016 GeV, and this oc-

curs generally as long as m0 and m1 � 2 do not exceed � 10 TeV. Finally, R-parity is assumed

to be conserved, which implies sparticles are produced in pairs. This forces the lightest su-

persymmetric particle (LSP) to be stable.

1.1.1 Direct searches for supersymmetry

Assumptions about unification are useful for symmetry breaking arguments, but the low

energy phenomenology beckons for more directly observable quantities. As such, the pa-

rameters of the MSSM are usually chosen to be: the top squark and gluino masses, the ratio

of the vev’s of the two Higgs doublets tanβ � v2 � v1, the Higgs mass parameter µ, and the

charged Higgs mass. The LSP is almost always considered to be the lightest neutralino �χ0
1,

which is a mixture of mostly photino and some higgsino. Table 1.1 lists the spectrum of the

MSSM in terms of both mass and interaction eigenstates.

Direct experimental limits on supersymmetry are mostly based on data from the CERN

e
�

e � collider LEP and the Fermilab Tevatron. Searches for supersymmetry are generally

performed separately for top squarks �t, the light-quark superpartners �q, and gluinos �g. This

is motivated by the minimal supergravity models which argue that all scalar particles acquire

a mass on the order of the SUSY breaking scale (see Sec. 1.1 and [13, 14]). A heavy top-

quark loop dominates the running of the masses to low energies, forcing the mass of the two

top squarks below that of the rest of the squarks [11]. Additionally, mixing of the left-right
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Table 1.1: The MSSM physical spectrum in terms of both mass eigenstates and in-
teraction eigenstates. The nomenclature is chosen to be identical with that of Haber
and Kane [12].

Particles Weak Interaction Mass Eigenstates

Eigenstates

Symbol Symbol Name Symbol Name

q � u � d � s � � L � � � R scalar-quark � � 1 � � � 2 scalar-quark

c � b � t
� � e � µ � τ �� L � �� R scalar-lepton �� 1 � �� 2 scalar-lepton

ν � νe � νµ � ντ �ν scalar-neutrino �ν scalar-neutrino

g �g gluino �g gluino

W
� � � �

wino

H
�
1 ��

�
1 higgsino �χ

�

1 � 2 charginos

H �2 �� �
2 higgsino

γ �γ photino

Z0 �� 0
zino �χ0

1 � 2 � 3 � 4 neutralinos

H0
1 �� 0

1 higgsino

H0
2 �� 0

2 higgsino
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Table 1.2: Current experimental limits on superparticle masses from direct searches.

Sparticle Limit Notes Source

�t � 67 GeV Any θ�t ; Any decay ALEPH [16]

� 65 GeV channel OPAL [17]

� 70 GeV Preliminary ALEPH [18]

�q � 176 GeV m �g � 300 GeV; with D0 [19]

cascade decays

� 224 GeV m �g � m �q; with cascade CDF [20]

decays

� 74 GeV B � �q � q �g or q�γ � � 1 UA2 [6]

� 45 GeV Z � �q �q DELPHI [6]

�g � 154 GeV Any m �q; with cascade CDF [20]

� 144 GeV decays D0 [19]

weak eigenstates of the top squarks may result in the top squark � � 1 becoming the lightest

squark [15]. The most recent experimental limits on the masses of the top-squark, the light-

quark superpartners, and the gluino are presented in Table 1.2. Other regions of parameter

space have been eliminated [21,22], but these limits are highly model dependent [14]. Fur-

ther constraints on the mass spectrum are derived from cosmological considerations and

indirect searches, such as B0-B̄0 mixing [23].

The limits in Table 1.2 are currently the least model dependent results available. How-

ever, the remaining assumptions do leave room for the limits to be relaxed [24]. The most

important assumption in these searches is a value for tanβ. This ratio is between 2 and

mt � mb � 35,6 and is usually chosen to be between 2 and 4 at hadron colliders. It was shown

6See Drees and Martin [11] for motivation of these limits.
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[25] that the limits on the gluino �g, “heavy squark” �q, and other superparticle masses are

far less stringent for values of tanβ � 2 than for tanβ � 30. This is an important point

since we must choose appropriate values for the masses in Chapter 2. Since our calculation

does not depend on tanβ, and in order to allow for the widest range of allowed parameter

space, we use the most conservative limits of m�t � m �q � 50 GeV from the lepton colliders,

and m �g � 150 GeV.

The next generation of accelerators should cover a large region of the allowed supersym-

metry parameter space. The potential for discovery of Higgs bosons and the electroweak su-

perpartners (charginos, neutralinos, and sleptons) is greatest at e
�

e � colliders. For charged

particles, limits may be placed on the masses at roughly
�

s � 2 minus a few percent from

threshold effects. A Higgs can be discovered up to a mass of roughly
�

s � 100 GeV. Most

sparticles are expected to have masses below 1 TeV, but the unification bound only neces-

sitates that they be less than � 10 TeV. One notable exception is the lightest Higgs h0 which

cannot exceed � 125 GeV.7 If no Higgs is found below � 150 GeV, supersymmetry will ei-

ther have to be abandoned or some new physics will have to occur between the SUSY break-

ing scale and the GUT scale.

While the extraction of SUSY parameters is more model dependent at hadron colliders,

they are more suited to the search for squarks and gluinos because of the high masses of

colored superpartners and their strong coupling [26]. Exhaustive direct searches will reach

300 GeV for gluinos and 100 GeV for top squarks with 10 fb � 1 of data at the Tevatron [5].

The chargino/neutralino reach is 150–250 GeV [25]. Until the advent of the CERN Large

Hadron Collider, the presence of heavier SUSY particles will only be suggested by their

7Preliminary ALEPH results from the 183 GeV run at LEP indicate mh0 � 64 � 5 GeV [18].
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effects on standard model processes.

1.1.2 An indirect search for supersymmetry via top-quark
production

Given the model dependence and other limitations of doing a full direct search at current

energies, another approach to observing supersymmetry is desirable. One approach is to see

how quantum corrections due to superparticles change the standard model predictions. The

largest corrections would be expected to arise in the strong force since its coupling constant

at low energies is the highest. Measuring cross sections of strong processes might therefore

yield some interesting results.

Heavy scalar propagators tend to suppress radiative corrections by the square of the

scalar mass. Since the top squarks are expected to be the lightest squarks, we expect the

top-quark cross section to exhibit the largest supersymmetric corrections. (Prospects for

observing this are explored in detail in Chapter 2.) In contrast to the direct searches for su-

persymmetry of Sec. 1.1.1, the model dependence of these corrections is greatly reduced.

None of the assumptions about SUSY breaking, or unification, or values of tanβ are needed.

If R-parity is conserved, only the physical masses of the top squarks, the heavy squarks, and

the gluinos, and the mixing for the top squarks and the heavy squarks are required. This

leaves seven parameters, not dozens, to describe all of the SUSY QCD enhancement to the

tt̄ cross section.

1.2 Single-top-quark production

Single-top-quark production provides a unique opportunity to study the charged-current

weak-interactions of the top quark. Within the standard model, this process provides the best
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direct measurement of the Cabibbo-Kobayashi-Maskawa matrix element Vtb. The spin of

the top quark can be measured via its decay products, and compared with the standard model

prediction. Beyond the standard model, this process is sensitive to fourth generation quarks,

new top-quark decay channels, supersymmetry, technicolor, effective V
�

A interactions,

and more (see e.g. [27–35]).

The only diagonal Cabibbo-Kobayashi-Maskawa (CKM) matrix element which has not

been measured directly is Vtb. Despite this, in the context of three generations, Vtb is the

most constrained CKM element. The 90% confidence level constraint 0 � 9991 ���Vtb ���

0 � 9994 is the result of the small values of �Vub � and �Vcb � , combined with the unitarity require-

ment �Vub � 2 � �Vcb � 2 � �Vtb � 2 � 1 [6]. Limits from indirect measurements are currently much

weaker. CLEO measurements of B0–B0 mixing place a three generation limit of �Vtb � � 0 � 76,

assuming that no new physics occurs [6].

If the possibility of new physics at the Wtb vertex is considered, then the lower limit on

�Vtb � from unitarity is relaxed, and �Vtb � becomes almost entirely unconstrained, 0 � �Vtb ���

0 � 9994 [6]. A direct measurement of �Vtb � can therefore explore the possibility of new physics

(e.g. a fourth generation). Furthermore, a measurement of �Vtb � 2 � 0 � 5 will confirm that the

quark recently discovered at the Tevatron is indeed the SU(2) partner of the bottom quark.

The first analysis of Vtb, done by CDF, focused on tt̄ pairs, since they dominate the top-

quark data sample. In tt̄ production, �Vtb � determines the branching fraction B of top quarks

which decay into bottom quarks (t � Wb) compared with other kinematically-allowed quark

decays (t � Wq):

B �
�Vtb � 2

�Vtd � 2 � �Vts � 2 � �Vtb � 2
� (1.5)

The current result from CDF is B � 0 � 94 � 0 � 27 � stat � � 0 � 13 � syst � [36]. Unitarity of the
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CKM matrix requires that the denominator be less than or equal to one even if there are more

than three generations. Therefore the CDF measurement of B provides an upper bound on

Vtb of �Vtb � 2 � B. If B is measured to be a bit less than one this would be a major discovery,

since three generation unitarity requires �Vtb � � 0 � 9991. However, if B is measured to be

consistent with one, Vtb remains unconstrained, and could be significantly less than one.

Since the measured branching fraction in t t̄ production is really a ratio of double b-

tagged events to single b-tagged events, it is possible that new physics might mimic both

signals, removing the sensitivity of B to Vtb. It has been shown that supersymmetric pro-

duction of top squarks, and decays of � t � � � 1 � , can pass the top-quark analysis [37]. In this

case, the measured branching fraction may not be used to extract �Vtb � , even if there are only

three generations.

The non-exotic case of a fourth generation poses a clearer problem with using t t̄ produc-

tion to extract �Vtb � . In this case, unitarity implies �Vtd � 2 � �Vts � 2 � �Vtb � 2 � �Vtb � � 2 � 1, and

the denominator of B can be anything less than one. Thus, if �Vtb � � 1, and Vtd � Vts � 1, B

will be one and provide no information about Vtb. This is familiar from b physics where the

branching ratio B � b � c � � 1, even though Vcb � 1. It is therefore important to study other

processes which can provide additional information on �Vtb � .

Single-top-quark production is the best process for measuring �Vtb � at hadron colliders.

The production cross section is proportional to �Vtb � 2 and therefore provides a direct mea-

surement of �Vtb � . Experiments actually measure σ � t � � B � t � Wb � . Since the branching

ratio is at most 1.0, measuring σ � t � � B � t � Wb � provides a lower bound on �Vtb � .

This lower bound can be improved to an equality by combining information from t t̄

production and single-top-quark events. The t t̄ cross-section experiments really measure
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σ � tt̄ � � B2 � t � Wb � . The branching ratio B � t � Wb � can be extracted by comparing the

calculated cross section with the observed cross section. Then this branching ratio can be

input into the single-top-quark analysis to obtain a direct measurement of �Vtb � . In addition

to strengthening the lower bound to an equality, this combination tends to reduce systematic

effects, such as uncertainties in the luminosity and the top-quark mass.

In order to perform the analyses required to extract information from single-top-quark

production, the experimenters will need to have accurate calculations of the cross sections.

There are three modes of single-top-quark production (these are shown in Fig. 4.1). The

cross section for s-channel production is known to � 6% [38], but only produces 25% of

the events at the Fermilab Tevatron, and less than 4% at the CERN Large Hadron Collider

(LHC). The cross section for Wt production accounts for less than 4% of the events at the

Tevatron, and 20% at the LHC. Most single-top-quark events at both machines will come

from W-gluon fusion. The LHC will measure the cross section to a few percent. Thus a full

next-to-leading-order (NLO) result with errors on the order of � 5% is presented in Chap-

ter 3.

In addition to the experimental need for an accurate single-top-quark cross section, W-

gluon fusion provides a wealth of theoretical challenges that we address in Chapter 3. In the

calculation itself, large logarithms of order ln � m2
t � m2

b � appear at every order in perturbation

theory. The resolution of this problem requires an investigation of factorization and parton

distribution functions. This leads to a reordering of perturbation theory, and two indepen-

dent types of corrections to the leading-order result of order αs and 1 � ln � m2
t � m2

b � .

Factorizing the W-gluon fusion cross section introduces two factorization scales into

the problem. At NLO, color conservation forbids strong interactions between the incom-
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ing gluon line and the light-quark that emits the W . Thus the problem reduces to one of

double deep-inelastic scattering (double DIS). Large logarithms are resummed in the fac-

torization process, and set the factorization scale µ in DIS for each incoming parton. This

scale is µ2 � Q2 �
m2

q, where Q2 is the virtuality of the W , and mq is the mass of the final

state quark. Hence, for a light quark final state, the scale is the usual DIS scale µ2 � Q2.

However, for a top-quark final state, the natural scale is µ2 � Q2 �
m2

t .

Measurement of the single-top-quark cross sections requires accurate analyses of the

experimental acceptances and backgrounds to each process. The rate to produce one top

quark is roughly half of the tt̄ production rate. Since both processes give a reconstructed top-

quark mass, we must cut out tt̄ events that mimic single top-quark production. In Ref. [5]

an analysis was presented that estimated how well the W-gluon fusion cross section can be

extracted from data at Run II of the Fermilab Tevatron. In Chapter 4 we improve on this

analysis by scaling the signal to the full NLO cross section calculated in Chapter 3, and

extending the analysis to the LHC. The large logarithms ln � m2
t � m2

b � mentioned above also

affect this calculation. Thus we discuss the correct way to integrate over the problem region,

and incorporate the NLO result. We discuss the tenability for discovering single-top-quark

production at Run I of the Tevatron. We also determine how accurately the CKM matrix

element Vtb can be directly measured at Run II, and the LHC.

Due to the V � A nature of the electroweak force, the top quark in single-top-quark pro-

duction is produced with a 100% polarization in the direction of the d-type quark in the

event [39]. Since the top quark decays before if hadronizes [40], this polarization informa-

tion is transferred to the top-quark decay products [41]. If there is any new physics that

produces an effective V
�

A interaction at the Wtb vertex, the polarization in this basis will
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be reduced proportional to the strength of the new interaction. Hence, a measurement of the

distribution of these particles could be a window into new physics. We suggest a method

for extracting this polarization from the data, and estimate how well it can be measured.
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Chapter 2

Supersymmetric QCD correction to
top-quark production at the Fermilab
Tevatron

The discovery of the top quark [2] provides a unique opportunity to search for effects

beyond the standard model. The top quark mass mt � 174 � 1 � 5 � 4 GeV has been measured

to 3%, and the cross section has been measured to � 25% [4,6]. With the copious production

of top quarks in Run II of the Fermilab Tevatron and future upgrades, the cross section will

be measured to within 6% with 10 fb � 1 of data [5]. Comparison of the theoretical t t̄ cross

section to that measured will test the standard model and may indicate the presence of new

physics.

Supersymmetry is a promising candidate for new physics. Currently, only lower bounds

on the masses of the superpartners have been set (see Sec. 1.1.1). Barring discovery, direct

searches for supersymmetry (SUSY) will eliminate a small range of parameter space, since

these searches depend strongly on the modeling of the decays of the supersymmetric parti-

cles [14]. In contrast, some effects of virtual supersymmetry are less model dependent, thus

extending the reach of experiment. If virtual SUSY effects are found to be large enough, an

indirect search may provide the first sign of supersymmetry. In this chapter we present the
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supersymmetric QCD correction to tt̄ production at the Fermilab Tevatron.

The next-to-leading-order (NLO) QCD cross section for t t̄ production with resummed

gluon emission at a
�

S � 2 TeV pp̄ collider has been calculated [42]. The dominant mecha-

nism of top-quark production at the Tevatron is qq̄ annihilation. It is expected that the dom-

inant SUSY contribution to top-quark production will be in the form of QCD corrections

to this process. We consider the SUSY correction to the cross section as a correction to the

dominant process as shown in Fig. 2.2.

The calculation of the supersymmetric correction to top-quark production is different

from typical SUSY calculations in that the number of assumptions about supersymmetry

necessary to predict phenomenologically interesting results is minimal. It is assumed that

R-parity is conserved so that the interaction terms in the Lagrangian are the simple super-

symmetrization of the standard model interactions. No assumptions about the mechanism

of SUSY breaking or of unification are required. In a strong-interaction process, the correc-

tion depends only on the observed masses of the gluino and squarks, and the mixing angle

that relates the squark mass eigenstates to their interaction eigenstates. For the purpose of

this calculation, and in order to cover the greatest range of models, we treat top squarks

� � separately from the light-quark superpartners � � . We present analytic and numerical re-

sults for degenerate squark masses, and for the case where the top squarks are light com-

pared to the light-quark superpartners, the “heavy squarks”. Results for m�t � m �q � 50 GeV,

m �g � 150 GeV, and arbitrary left-right mixing of the squarks are presented.

The SUSY QCD correction to top-quark production in e
�

e � annihilation was first stud-

ied in Ref. [43]. The correction in pp̄ annihilation has been presented in Refs. [44–46] for

the case of degenerate squark masses. The calculations of Refs. [44,45] neglect the contri-
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bution of the vacuum polarization and the crossed-box diagram, which arises because the

gluino is a Majorana particle. In addition, Ref. [45] assumes that the box contribution may

be ignored. We find that these contributions are numerically significant, as demonstrated

in Sec. 2.2.1. Our results are numerically comparable to Ref. [46], however there is an im-

portant sign discrepancy between the two box terms that we discuss in Sec. 2.1. There also

appears to be a misprint in the analytic results of that paper that we describe at the end of

Appendix A. We provide a complete calculation of the SUSY correction to the cross section

for arbitrary masses and top-squark mixing, and discuss the phenomenological significance

of the result. In addition, we discuss the tenability of finding SUSY thresholds in t t̄ invari-

ant mass distributions. Finally we address the issue of parity violation in a supersymmetric

strong force.

This chapter is organized as follows. In Sec. 2.1, we present the analytic form of the

O � αs � SUSY QCD correction to the pp̄ � tt̄ cross section. In Sec. 2.2.1, we remark on the

relative size of the terms in the correction. We present numerical results for the correction to

the pp̄ � tt̄ cross section in Sec. 2.2.2. In Sec. 2.2.3, we show t t̄ invariant mass distributions

for several choices of gluino mass. We discuss the size of the strong force parity-violating

left-right asymmetry in Sec. 2.2.4. Conclusions are presented in Sec. 2.3. We present an-

alytic expressions for the vacuum, vertex and box terms in Appendix A, and Fortran code

used in the numerical evaluations in Appendix B.

2.1 Analytic Supersymmetric QCD Correction

Supersymmetry replaces the fields in the QCD Lagrangian with sets of superfields. In

softly broken supersymmetry, this leads to additional interactions between the particles and
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their superpartners. These new interactions provide virtual corrections to the top-quark pro-

duction cross section.

The supersymmetric Feynman rules used in the calculation are derived from the La-

grangian [12],

L � � i gsA
A
µ �q

�
a � TA � ab

�
∂µ �qb

�
i
1
2

gs f ABC �gA
γµ �gBAC

µ

�
g2

s � TATB � abAA
µAµB

�
� � L

�
a � � Lb

� � � R
�
a � � Rb �

�

�
2gs � TA � ab

�
qaPR �gA � � Lb

� qaPL �gA � � Rb
� �gA

PLqb � � L
�
a

� �gA
PRqb � � R

�
a � � (2.1)

where PL � � 1 � γ5 � � 2, PR � � 1
� γ5 � � 2, gs is the strong coupling constant, TA are SU � 3 �

color generators, a, b, c are colors, and Aµ is the field for the gluon g. Figure 2.1 lists the

Feynman rules for the particle-sparticle interaction vertices. The direction of particle flow

is indicated via arrows for the fermions. In all cases, the momentum is assumed to be in

the direction of the arrows as well. The rules are shown for the physically-relevant mass

eigenstates of the squarks rather than the interaction eigenstates. Mixing of the squarks is

therefore explicit and parameterized by mixing angles θ�t and θ �q for the top squarks and light-

quark superpartners, respectively:��
� � 1

� � 2

��
�

��
cosθ�t sinθ�t

� sinθ�t cosθ�t

�� ��
� � L

� � R

��
(2.2)

��
� � 1

� � 2

��
�

��
cosθ �q sinθ �q

� sinθ �q cosθ �q

�� ��
� � L

� � R

��
�

The one-loop supersymmetric QCD contribution to the qq̄ � t t̄ cross section at lead-

ing order in αs is attributed to the cross term in the matrix element between the tree-level

diagram and the one-loop diagrams presented in Fig. 2.2. The general form of the vertex
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qa

gA

qa
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� i gs � p
�

k � µ � TA � ab

� gs f ABCγµ

2i g2
s � TATB � abgµν

� � 1: i gs
�

2 � TA � ab

�
� cosθ �qPR

�
sinθ �qPL �

� � 2: i gs
�

2 � TA � ab

�
sinθ �qPR

�
cosθ �qPL �

� � 1: i gs
�

2 � TA � ab

�
� cosθ �qPL

�
sinθ �qPR �

� � 2: i gs
�

2 � TA � ab

�
sinθ �qPL

�
cosθ �qPR �

Figure 2.1: Supersymmetric QCD Feynman rules.
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Figure 2.2: Feynman diagrams for the one-loop SUSY QCD correction to top quark
production at the Tevatron. The first row contains the tree-level diagram. The sec-
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to squarks and gluinos. The third row contains the final state vertex correction and
wave-function renormalization diagrams. The fourth row contains the initial state
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tains the box and crossed-box diagrams.
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corrections, consistent with current conservation, is

iū � p1 � Γµ � Av � p2 � � � i gs � ū � p1 � TAγµv � p2 �
�

αs

4π
ū � p1 � TA

�
Vγµ �

S � pµ
1

� pµ
2 � � mq

�
A � γµq2

� 2mqqµ � γ5 � v � p2 ��� � (2.3)

where p1 and p2 are the momenta of the quark and antiquark, q � p1
�

p2, and V , S, and A are

the vector, scalar, and anapole form factors, respectively. The analytic forms of V , S, A, the

gluon vacuum polarization Π, and the corrections due to the box and crossed-box diagrams,

B and C, are given in Appendix A. The anapole term A does not contribute to the total cross

section at this order in the expansion. It is used in Sec. 2.2.4, however, in determining the

parity-violating left-right asymmetry due to the squark mixing. The Dirac algebra and loop

integrals were evaluated using dimensional regularization. The analytic cross section was

derived in the modified minimal subtraction (MS) renormalization scheme.

The spin- and color-averaged parton-level differential cross section is given by

dσ̂
dz � β

32πŝ
�M � 2 � (2.4)

where z is the cosine of the angle between the incoming quark and the top quark,
�

ŝ is

the parton center-of-momentum energy, and β ��� 1 � 4m2
t � ŝ. The Born matrix element

squared is given by

�M0 � 2 � 32π2αs
2

9

�
2 � β2 � 1 � z2 � � � (2.5)

Integrating over � 1 � z � 1 readily yields the Born-level cross section

σ̂0 � 4πα2
s β

9ŝ
� 1 � β2 � 3 � � (2.6)

The correction arises from the cross term in the square of the amplitude. This correction
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is the sum of the terms:

2Re
�
M†

0MΠ � � �

αs

2π
�M0 � 2Re

�
Π � ŝ � � Π � 0 � � � (2.7)

2Re
�
M†

0MV � � �

αs

2π
�M0 � 2Re

�
V � �

2Re
�
M†

0MS � � 32πβ2α3
s

9
� 1 � z2 � Re

�
S � �

2Re
�
M†

0MBOX � � 32πα3
s

9ŝ
Re � 7

3
B

� 2
3

C � �

We renormalize the vacuum polarization correction Π � ŝ � so that it corresponds to the

known value of αs in the MS scheme at low energy. This is necessary, because perturbation

theory is invalid at low ŝ. Therefore, we explicitly employ a dispersion relation to integrate

out the non-perturbative regime from the calculation [47].

The integration over phase space is trivial except for the box and crossed-box matrix

elements, B and C, which depend implicitly on z. The relative sign between the box and

crossed-box terms should be noted. The color factor associated with C is � 2 � 3. However,

Fermi statistics provides a non-trivial relative sign difference between the two diagrams.

The net result is that the two contributions constructively interfere. Eq. 2.7 reflects this ex-

plicitly as 7
3B

� 2
3C. This disagrees with the calculation of Ref. [46], which claims that the

terms destructively interfere.

We should look carefully at the value of the sign between the box diagrams. When writ-

ing down the matrix element, the usual rule is to oppose the direction of fermion flow when

ordering the spinors. The implementation is obvious for Dirac spinors, but the gluinos are

Majorana particles. As may be seen in Fig. 2.3, the direction of particle flow is not clear in

the crossed-box diagram. This leaves a sign ambiguity between the box and crossed-box di-

agrams. In order to determine the relative sign between the box and crossed-box diagrams,
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Figure 2.3: The vertices are labeled with w–z, and the color indices a–d are asso-
ciated with each particle’s momentum for the box diagram (a), and the crossed-box
diagram (b).

we must derive the matrix elements, MB and MC, from a field theoretic point of view.

The matrix elements for the box terms are constructed by placing copies of the quark-

squark-gluino interaction terms from the Lagrangian between the initial and final states,

� p4 � p3 � and � p1 � p2 � . We first evaluate the color terms for both diagrams.

Before writing down the color factors for the box diagrams, we will need

Tr � TATBTC � � 1
2

Tr ��� TA
� TB � TC � �

TA
� TB � TC �

� 1
4

� dABC �
i f ABC � � (2.8)

The color factor from the tree-level diagram is � TC � ab � TC � dc, where a–d correspond to the

color indices for the momenta in Fig. 2.3.

The color factor for the box diagram is � TATB � cd � TBTA � ba. Therefore the total color

factor for B is

Tr � TATBTC � Tr � TCTBTA � � 1
16

� dABCdABC �
f ABC f ABC �

� 5 � 6
�

3 � 2 � 7 � 3 � (2.9)

The color factor for the crossed-box diagram is � TATB � cd � TATB � ba. Therefore the total
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color factor for C is

Tr � TATBTC � Tr � TATBTC � � 1
16

� dABC �
f ABC � 2

� 5 � 6 � 3 � 2 � � 2 � 3 � (2.10)

The portion of the matrix element that depends on the fields is

� p4 � p3 �
�
t i � PR� � L

� PL� � R � i j �gA
j �

x

�
�gA

k � PL� � L
� PR� � R � kltl �

z
��

qm � PR � � L
� PL � � R � mn �gA

n �
y

�
�gA

o � PL � � L
� PR � � R � opqp �

w
� p1 � p2 � � (2.11)

where we use the labels w, x, y, and z to denote the corresponding vertex (see Fig. 2.3). The

labels i–p keep track of the components of the non-commuting matrices.

In order to obtain the Dirac spinors and propagators, we contract the fields in the order

indicated by the lines below (from inside to out). The terms involving projection operators

are abbreviated by the first piece. For the box diagram,

� p4 � p3 �
�
t i � PR� � L � i j �g j �

x

�
�gk � PL� � L � kltl �

z

�
qm � PR � � L � mn �gn �

y

�
�go � PL � � L � opqp �

w
� p1 � p2 � �

� 1

(2.12)

If we denote the momentum of the gluino by p, we find for the contraction of two Ma-

jorana fermions,

ga �gb � ���p �
m �g � ab � (2.13)

gagb � � ���p �
m �g � abC �

�ga �gb � C � 1 ���p �
m �g � ab �

where C is the charge conjugation matrix satisfying [12]

C† � C � 1
� (2.14)
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CT � � C �

C � 1ΓiC � ΓT
i � for Γi � 1 � iγ5 � γµγ5 �

C � 1ΓiC � � ΓT
i � for Γi � γµ � σµν � 1

2
i
�
γµ � γν � �

The field component of the box matrix element is

MB � � 1 � u3 � PR� � L � ���p �
m �g � xw � PL � � L � u1v2 � PR � � L � ���p �

m �g � yz � PL� � L � v4 � (2.15)

For the crossed-box diagram,

� p4 � p3 �
�
t i � PR� � L � i j �g j � x

�
�gk � PL� � L � kltl � z

�
qm � PR � � L � mn �gn � y

�
�go � PL � � L � opqp � w

� p1 � p2 � �

� 1

(2.16)

We must choose which order to write down �gk �go. In order for the matrix multiplication to

line up in the matrix element, we must choose �go �gk which gives an overall
�

1 sign from

ordering the fields. The field component of the crossed-box matrix element is

MC � �
1 � u3 � PR� � L � � � �p � m �g � xyC � PR � � L � TvT

2 uT
1 � PL � � L � TC � 1 � �p �

m �g � wz � PL� � L � v4 � (2.17)

Combining the color and Fermi statistics results, we see that the overall sign between

the matrix elements is the same. If we multiply both matrix elements by the propagators

for the scalar particles, and use the correct momenta for the gluinos, we may reproduce the

full matrix elements. After crossing in the fields from the tree-level matrix element, we

reproduce the corrections B and C in Appendix A.1

We are now in a position to calculate the total cross section. The total cross section for

top-quark production in pp̄ annihilation is obtained by convolving the parton cross section

1Since the publication of these results, a paper has appeared that confirms the signs derived here [48].
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for annihilation into a tt̄ final state with the parton distribution functions of the proton and

antiproton. The integral may be parameterized as

σ �
� 1

4m2
t � S

dτ σ̂ � τS �
� � ln � τ � � 2

ln � τ � � 2
dηP � �

τeη
�

�
ŝ � P � �

τeη
�

�
ŝ � � (2.18)

where
�

S � 2 TeV, τ � ŝ � S and P � x1 � µ � , P � x2 � µ � are the proton and antiproton parton dis-

tribution functions (PDF’s).

In the following section, numerical results are presented for a top quark of mass mt �
175 GeV. Analytic expressions were reduced to scalar n-point integrals [49] and evaluated

with the aid of the code FF [50] in order to ensure numerical stability. For those cases that

FF does not handle, the analytic solutions to the integrals were substituted. The Fortran code

that performs these reductions is in Appendix B. The integrals were evaluated using both

the MRS(A
�
) [51] and CTEQ3M [52] PDF’s. The running of αs was evaluated using two-

loop renormalization group equations [53] and fixed in the PDF’s in order to be consistent.

Nearly identical results were obtained using both sets, therefore, only the results obtained

using the MRS(A
�
) PDF’s are presented.

2.2 Numerical results

2.2.1 Relative size of the correction terms

In Fig. 2.4 we show the correction to the total cross section as a function of common

squark mass m �Q � m �q � m�t , for m �g � 200 GeV. The contribution of the vacuum, vector,

scalar, and box terms are shown separately. The full correction is also shown for compari-

son. The box diagrams give the largest contribution to the cross section for m �Q � 110 GeV,

and are significant for m �Q � 400 GeV. This invalidates the assumption of Ref. [45] that the
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Figure 2.4: Contribution of each term to the correction for pp̄ � t t̄ as a function of
m �q � m�t , for m �g � 200 GeV.
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Figure 2.5: The contribution of the box B and crossed-box C terms to the correction
for pp̄ � tt̄ as a function of m �q � m�t , for m �g � 200 GeV. The sum of the corrections
is shown for comparison with Fig. 2.4.
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box terms may be neglected over the range of masses they investigated. Similarly it contra-

dicts the conclusion of Ref. [46] that the contribution of the box terms is small. The vacuum

correction, that was ignored in Refs. [44,45], also plays an important role. The gluino loops

in the vacuum polarization give a constant negative correction when the squarks decouple.

When m �Q � 1 TeV, the correction is seen to come almost entirely from the vacuum polar-

ization. The contribution of the scalar term S is negligible. It first appears at this order in

the final state correction, and is suppressed relative to the other terms by a power of the top-

quark mass. The decoupling of the vector, scalar, and box terms is evident in Fig. 2.4, as

the corrections decrease when the squark mass increases.

The correction due to the box B and crossed-box C terms is shown separately in Fig. 2.5.

The constructive interference between B and C is clearly non-negligible. At m �Q � 100 GeV,

Ref. [46] underestimates of the contribution of the box terms to the cross section by 1 � 2, by

assuming destructive interference. This explains the mis-statement that the box terms are

not important. The total correction in that paper is thus too small by 1 � 4 (a 17 � 8% correction

to tt̄ production instead of 24 � 4%).

2.2.2 tt̄ cross section

The correction to the pp̄ � tt̄ cross section is shown in Fig. 2.6 as a function of the

gluino mass for a wide range of degenerate squark masses m �Q, where m �Q � m �q � m�t . As

expected from decoupling, the magnitude of the correction decreases as the squark mass

increases. Squarks of mass 50 GeV set the range of the correction from � 11 � 8% for a gluino

of 150 GeV to
�

44% for a gluino of 200 GeV. The correction changes sign as m �g approaches

mt . The correction changes rapidly as the threshold for gluino production moves through the
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Figure 2.6: Change in the cross section for pp̄ � t t̄, as a function of gluino mass m �g,
for mt � 175 GeV. Curves of constant degenerate squark mass m �q � m�t are shown.

top-quark threshold. Note that the correction is very slowly dependent on gluino mass when

m �g � 500 GeV. In this region, the correction is entirely dominated by the squark vacuum

terms and, to a lesser extent, the box terms.

In Fig. 2.8 we show the correction to the total cross section as a function of degenerate

squark mass m �Q � m �q � m�t , for several gluino masses. Once m �Q � 400 GeV, the correction

becomes small and the squarks effectively decouple. In this region, the correction is dom-

inated by the gluino vacuum terms. In Figs. 2.7 and 2.8 there is a large jump in the cross

section when m2
t � m2�t �

m2�g. In Fig. 2.7, the correction is discontinuous at m �g � 168 GeV

when m �Q � 50 GeV, and at m �g � 158 GeV when m �Q � 75 GeV. In Fig. 2.8, the correc-

tion jumps from
�

6 � 5% to � 9 � 3% for m �g � 150 GeV, m�t � 90 � 1 GeV. These jumps corre-

spond to a discontinuity in the real part of the C0 scalar loop-integral in the final-state vertex

correction [54]. Such a discontinuity arises when the anomalous threshold crosses the real
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Figure 2.7: Enlargement of the discontinuous region of Fig. 2.6. The change in the
cross section for pp̄ � tt̄, as a function of gluino mass m �g, for mt � 175 GeV. Curves
of constant degenerate squark mass m �q � m�t are shown.
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Figure 2.8: Change in the cross section for pp̄ � t t̄, as a function of degenerate
squark mass m �q � m�t , for mt � 175 GeV. Curves of constant gluino mass m �g are
shown.

32



300 GeV
200 GeV
150 GeV
100 GeV
75 GeV

m�t � 50 GeV

m �q (GeV)

∆σ

� σ 0
(%

)

10008006004002000

45

40

35

30

25

20

15

10

5

0

Figure 2.9: Change in the cross section for pp̄ � t t̄, as a function of heavy-squark
mass m �q, for mt � 175 GeV, and m �g � 200 GeV. Curves of constant top-squark mass
m�t are shown.

threshold for superpartner production in the complex ŝ-plane [55].

The largest correction occurs when m �g � 200 GeV. This mass is used in Fig. 2.9 to show

the correction as a function of heavy-squark mass m �q, for a variety of top-squark masses.

This figure demonstrates that the correction is mostly influenced by the mass of the top

squark. For example, the correction is 21% for m�t � 50 GeV, and m �q � 300 GeV; whereas

the correction is 16% for m�t � 300 GeV, and m �q � 50 GeV. Even if the heavy squarks de-

couple, the correction remains significant as long as m�t � 150 GeV.

In general, the left and right eigenstates of the squarks receive different corrections to

their masses. This causes the mass of �� R to be less than the mass of �� L. Top-squark masses

are more effected by renormalization group running than the heavy-squark masses, because

of the direct coupling of the top quark to the top squarks. Many analyses assume that the
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Figure 2.10: The relative change to the correction is shown as a function of top-
squark mass difference ∆m�t � � m�t2 � m�t1 � , for various m�t1 , and mixing angles θ�t ,
with mt � 175 GeV, and m �g � 200 GeV.

only light squark is � � 1, and look for top quarks decaying into them [22]. In Fig. 2.10 we

show the ratio of the correction at ∆m�t � � m�t2 � m�t1 � to the correction at a common top-

squark mass ∆m�t � 0, for m �g � 200 GeV and m �q � 300 GeV. The ratio does not change by

more than 2% for different values of m �q. We present three mixing angles, θ�t � 45 � , 90 � ,

and 135 � that define the extremes of the mixing dependence of the correction.

The form of the correction is a
�

b sin � 2θ�t � , thus the contribution of any mixing angle

may be interpolated from the curves shown, where θ�t � 90 � is the central value. Note that

if θ�t � 135 � , then the correction is nearly independent of m�t2 . This is because the terms for
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the left- and right-handed squarks enter with different signs in the Lagrangian (Eq. 2.1),

and � � 2 � � � � L
� � � R � � �

2 (Eq. 2.3). Whereas if θ�t � 90 � , where the mass eigenstates are

the interaction eigenstates (� � 1 � � � R, � � 2 � � � L), the correction is roughly split between the

two top squarks. To evaluate the correction for non-degenerate top-squark masses and top-

squark mixing, multiply the ratio from Fig. 2.10 by the correction from Figs. 2.8 or 2.9.

For example, the correction to top-quark production is 7 � 7 � 0 � 1%, when m�t1 � 100 GeV,

m�t2 � 400 GeV, m �g � 200 GeV, m �q � 400 GeV, and θ�t � 90 � .

2.2.3 tt̄ invariant mass distributions

Since total cross section measurements are difficult to normalize, it is advantageous to

look for deviations from the line-shapes predicted by the standard model. A sampling of

the invariant mass of tt̄ events provides another avenue to search for supersymmetry. In

Fig. 2.11 we show the total differential cross section as a function of t t̄ invariant mass Mtt̄ ,

for gluinos of mass m �g � 150, 175, 200, and 225 GeV. Several choices of degenerate squark

mass m �Q � m �q � m�t , are presented. By looking for an excess in the invariant mass distri-

bution, a gluino of mass between 175 GeV and 225 GeV may be observable.

There are two types of enhancement to the cross section that appear in Fig. 2.11. If

m �g � mt , the maximum of the invariant mass distribution is shifted toward the common

threshold. This would also produce a steeper top-quark threshold region in the data. An in-

tegrable singularity at the threshold for gluino pair production causes a cusp at 2m �g. We can

understand this singularity by looking at the gluino-loop contribution to the gluon vacuum

polarization. If we cut the fermion loop (see Fig. 2.12), a dispersion relation relates the real

part of the vacuum polarization Π � s � to the imaginary part. This gives
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Figure 2.11: Differential cross section for pp̄ � t t̄, as a function of tt̄ invariant mass
Mtt̄ , for mt � 175 GeV. Figures are shown for m �g � 150, 175, 200, and 225 GeV.
Curves of constant degenerate squark mass m �q � m�t are shown.
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Figure 2.12: Cutting the (a) gluino loop, or (b) squark loop, in the vacuum polariza-
tion leads to a dispersion relation.

ReΠ � s � �
� ∞

4m2
ds
� β2� � 1

s
�

� s
� (2.19)

where β � � 1 � 4m2 � s
�

� 1 � 2. The s-channel gluon has spin S � 1. Hence, to produce two

S � 1 � 2 gluinos, L � 0, and m � m �g. Conservation of momentum tells us that s � M2
tt̄ .

Therefore,

ReΠ � M2
tt̄ � �

� ∞

4m2�g
ds
� � 1 � 4m2�g � s

�
� 1 � 2

s
�

� M2
tt̄

� (2.20)

When Mtt̄ � 2m �g, this looks like

ReΠ � M2
tt̄ � �

� ∞

4m2�g
ds
� 1

� s
� � 1 � 2 � s

�
� 4m2�g � 1 � 2

� (2.21)

which is integrable, but has a singularity at the lower limit of integration. Since the equation

is integrable, the value as a function of Mtt̄ is continuous. At threshold, however, this term

picks up negative contributions from the pole at s
� � M2

tt̄ . The total vacuum polarization

(and vertex corrections) will have a cusp at this point. The contribution due to the squarks

does not exhibit a cusp; since the squarks have spin S � 0, L � 1, and the integrand is finite

everywhere.

The largest cusp in Fig. 2.11 occurs when m �g � 200 GeV, and m �Q � 50 GeV. The am-
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plitude of the cusp is 112% of the Standard Model differential cross section at this point.

Despite the large normalization, the cusp will sit on a large continuum background. If we

assume purely statistical errors, this cusp would appear at the 3σ level with 3 fb � 1 of inte-

grated luminosity. For m �g � 200 GeV, the correction is most apparent for m �Q � 150 GeV.

If m �g � 225 GeV, then even with light squarks, the correction will be difficult to observe.

2.2.4 Strong force parity violation

In the standard model, the top quark decays before its spin flips [40]. The helicity of

the top quark is reflected in the angular distribution of the decay products of the W boson

in t � bW � b
� �

ν and t � bW � bd̄u decays. (See Ref. [41] for a detailed account of

the analyzing power of these decays.) The gt � � interaction term in the SUSY Lagrangian

treats left- and right-handed top squarks differently. This leads to the interesting possibility

of searching for parity violation in strong force interactions by analyzing the decay products

in top-quark production.

An asymmetry in the number of left and right-handed top quarks arises in the production

cross section when the top squarks have different masses. This asymmetry is given by

∆σ̂A � σ̂L
� σ̂R � 2β2α3

s

27ŝ
Re
�
A � � (2.22)

where σL, σR are the cross sections for the left and right helicities of the top quark. The

measured left-right asymmetry ALR is the ratio of the integrated ∆σ̂A to the total measured

cross section

ALR � ∆σA

σTOT
� nL

� nR

nL
�

nR
� (2.23)

where nL, nR are the number of left and right-handed top quarks respectively. Unfortunately,
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we find that ALR is always less than 1% for any choice of the SUSY parameters. There-

fore, if supersymmetric parity violation in the strong force exists, it will be very difficult to

measure.2

2.3 Conclusions

The supersymmetric QCD correction to the top-quark cross section, as measured at the

Tevatron, has been calculated. We present analytic results for a minimal supersymmetric

model that depends only on the masses of the superpartners and their mixing. We obtain

numerical results for the total correction for all masses m �g � 150 GeV, m �q � 50 GeV and

m�t � 50 GeV. The correction is found to be large for gluino masses near 200 GeV. The cor-

rection is greater than
�

10% for m �g � 200 GeV and m �q � m�t � 190 GeV. If light top squarks

m�t � 150 GeV exist, then the correction should be observable with 10 fb � 1 at the Tevatron

for m �g � 400 GeV, even if the heavy squarks decouple. If all of the squarks remain light,

then the correction is significant even if the gluinos decouple. When considering a mass

splitting between the top squarks, the mixing angle θ�t plays an important role. If θ�t is near

45 � , or 135 � , then the correction is almost entirely dependent on the mass of only one of the

top squarks.

Should the gluino mass turn out to be near the current experimental limits, a gluino-pair

threshold may be found near the top-quark production threshold. The advantage of looking

for a cusp in the tt̄ invariant mass distribution, is that the normalization of the top-quark

cross section is not necessarily a limiting factor. Detector resolution effects and smearings

will make this search very challenging. It is reasonable to expect that at least 10 fb � 1 of

2Since the publication of these results, a paper has appeared which confirms that the parity violationarising
from the box diagrams is negligible compared with the vertex correction [48].
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integrated luminosity would be required to find a cusp for the best case of m �g � 200 GeV,

and m �Q � 150 GeV. Virtual SUSY thresholds are common in quark production [56]. A full

detector-based analysis of these threshold regions would help determine the experimental

significance of our results.

Parity violation in a purely strong force interaction arises in a supersymmetric standard

model because the left- and right-handed top squarks interact differently. As long as the top-

squark masses are different, an asymmetry in the number of left and right-handed top quarks

will arise. Unfortunately, the effect is less than 1%, and will be very difficult to measure.
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Chapter 3

Single-top-quark production via
W-gluon fusion at next-to-leading order

Now that the existence of the top quark is firmly established [2], attention turns to testing

its properties. A powerful probe of the charged-current weak interaction of the top quark

at hadron colliders is single-top-quark production. The two primary processes are quark-

antiquark annihilation via a virtual s-channel W boson [57, 58] and W-gluon fusion, which

involves a virtual t-channel W boson (Fig. 3.1) [59–61]. Within the context of the standard

model, these processes provide a direct measurement of the Cabibbo-Kobayashi-Maskawa

(CKM) matrix element Vtb. Beyond the standard model, they are sensitive to new physics

associated with the charged-current weak interaction of the top quark [27–34].

Both the precise measurement of Vtb and the indirect detection of new physics require an

accurate calculation of the single-top-quark production cross section. The quark-antiquark-

annihilation cross section has been calculated at next-to-leading order in QCD, with a the-

oretical uncertainty of � 6% [38]. The purpose of this chapter is to calculate the next-to-

leading-order correction to the W-gluon-fusion cross section.

A complete calculation of the next-to-leading-ordercorrection to W-gluon fusion has al-

ready been presented in the literature [62]. However, we show that this calculation is incor-
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Figure 3.1: Single-top-quark production via W-gluon fusion.

rect, due to the factorization scheme used to subtract collinear divergences. We argue that

the CTEQ b-quark distribution function used in that calculation [63], although nominally in

the deep-inelastic scattering (DIS) scheme, is actually not compatible with that scheme, and

yields incorrect results. To avoid this problem, we perform our calculation entirely in the

modified minimal subtraction (MS) scheme [64]. Our numerical results differ significantly

from those of Ref. [62].

We make several other contributions to the calculation of the next-to-leading-order cor-

rection to the W-gluon-fusion process:

1. We show that there are two independent corrections, of order 1 � ln � m2
t � m2

b � and αs,

which are numerically comparable. The leading-order process is qb � q
�
t, as shown

in Fig. 3.2(a). The 1 � ln � m2
t � m2

b � correction is associated with the diagrams in Figs.

3.2(b), 3.2(c), while the αs correction arises from the diagrams in Figs. 3.3, 3.4. The

existence of a correction of order 1 � ln � µ2 � m2
Q � is a generic feature of calculations in-

volving perturbatively-derived heavy-quark distribution functions at an energy scale

µ large compared with the heavy-quark mass mQ.
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2. We perform the calculation in a simple and systematic way using a structure-function

approach [65, 66]. This allows the calculation to be organized in a straightforward

manner, making use of its similarity with deep-inelastic scattering.

3. We carefully analyze the appropriate scale in the parton distribution functions. We

show that the correct scale in the light-quark distribution function is µ2 � Q2 (Q2 is

the virtuality of the W boson), with essentially no scale uncertainty. However, the

appropriate scale in the b-quark distribution function is µ2 � Q2 �
m2

t .

The chapter is organized as follows. In Sec. 3.1 we show that the next-to-leading-order

corrections are of two types, 1 � ln � m2
t � m2

b � and αs. We then argue that these corrections

are most reliably calculated in the MS factorization scheme. In Sec. 3.2 we introduce the

structure-function approach to calculating these corrections. In Sec. 3.3 we give our numer-

ical results and draw conclusions. We give results for the Fermilab Tevatron pp̄ collider for

�
S � 1.8 and 2 TeV, the CERN Large Hadron Collider (LHC), a pp collider with

�
S � 14

TeV, and the DESY ep collider HERA with
�

S � 314 GeV. The analytic expressions for

the next-to-leading-order structure functions are gathered in Appendix C.

3.1 Next-to-leading-order corrections

3.1.1 1
�

ln � m2
t

�
m2

b � correction

The tree-level diagrams for W-gluon fusion are shown in Fig. 3.1. Since the b-quark

mass is small compared with mt , let us neglect it for the moment. If the b quark is massless,

the first of these diagrams is singular when the final b̄ quark is collinear with the incoming

gluon. This kinematic configuration corresponds to the incoming gluon splitting into a real
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Figure 3.2: (a) Leading-order process for single-top-quark production, using a b-
quark distribution function. (b) Correction to the leading-order process from an ini-
tial gluon. (c) Subtracting the collinear region from (b), corresponding to a gluon
splitting into a bb̄ pair. (b) and (c) taken together constitute a correction of order
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Figure 3.3: Order αs correction to the heavy-quark vertex in the leading-order pro-
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bb̄ pair. The propagator of the internal b quark in the diagram is therefore on-shell, and is

infinite.

In reality the b quark is not massless, and its mass regulates the collinear singularity

which exists in the massless case. The collinear singularity manifests itself in the total cross

section as terms proportional to αs ln
� � Q2 �

m2
t � � m2

b � � O � αs � , where Q2 � � q2 is the virtu-

ality of the W boson of four-momentum q. Since the virtuality of the W boson is controlled

by the W propagator, Q2 is typically less than or of order M2
W . For readability, we write the

logarithm as ln � m2
t � m2

b � in the following discussion (since m2
t � M2

W ), although we use the

exact expression in all calculations.

The total cross section for W-gluon fusion contains the logarithmically enhanced terms,

of order αs ln � m2
t � m2

b � , as well as terms of order αs (both terms also carry a factor of α2
W ,

which we suppress in the following discussion). Furthermore, logarithmically enhanced

terms, of order αn
s lnn � m2

t � m2
b � � n!, appear at every order in the perturbative expansion in

the strong coupling, due to collinear emission of gluons from the internal b-quark propaga-

tor. Since the logarithm is large, αs ln � m2
t � m2

b � � 0 � 7–0 � 8, and the perturbation series does

not converge quickly. Thus it appears difficult to obtain a precise prediction for the total

cross section.

Fortunately, this difficulty can be obviated. A formalism exists to sum the collinear log-

arithms to all orders in perturbation theory [67–69]. The coefficient of the logarithmically-

enhanced term is the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) splitting func-

tion Pqg, which describes the splitting of a gluon into a bb̄ pair. One can sum the logarithms

by introducing a b-quark distribution function b � x � µ2 � and calculating its evolution with µ

(from some initial condition) via the DGLAP equations. Thus the b-quark distribution func-
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tion can be regarded as a device to sum the collinear logarithms. Since it is calculated from

the splitting of a gluon into a collinear bb̄ pair, it is intrinsically of order αs ln � µ2 � m2
b � . We

elaborate on this point at the end of this section.

Once a b-quark distribution function is introduced, it changes the way one orders pertur-

bation theory. The leading-order process is now qb � q
�
t, shown in Fig. 3.2(a). This cross

section is of order αs ln � m2
t � m2

b � , due to the b-quark distribution function (µ � mt). The W-

gluon-fusion process, shown in Fig. 3.2(b), contains terms of both order αs ln � m2
t � m2

b � and

αs, as discussed above. However, the logarithmically enhanced terms have been summed

into the b-quark distribution function and thus are already present in Fig. 3.2(a). It is there-

fore necessary to remove these terms from theW-gluon fusion process to avoid double count-

ing. This is indicated schematically in Fig. 3.2(c); the double lines crossing the internal

b-quark propagator indicate that it is on-shell, which corresponds to the kinematic region

responsible for the large collinear logarithm [67–69].

After the subtraction of the terms of order αs ln � m2
t � m2

b � in Fig. 3.2(b) by the terms in

Fig. 3.2(c), the remaining terms are of order αs. Compared with the leading-order process

in Fig. 3.2(a), this is suppressed by a factor 1 � ln � m2
t � m2

b � . Thus the diagrams of Figs. 3.2(b)

and 3.2(c), taken together, correspond to a correction to the leading-order cross section of

1 � ln � m2
t � m2

b � , not of order αs. This is an essential point which has been previously over-

looked.

This observation is generic to any process involving a perturbatively derived heavy-

quark distribution function in the region µ2 � m2
Q. For example, the calculation analogous

to the diagrams in Figs. 3.2(b), 3.2(c) for charm production in neutral-current deep inelastic

scattering [69] corresponds to a correction of order 1 � ln � Q2 � m2
c � for Q2 � m2

c .
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Let us elaborate on our contention that the b-quark distribution function is intrinsically

of order αs ln � µ2 � m2
b � , rather than merely of order αs. If one neglects gluon bremsstrahlung

and the scale dependence of the gluon distribution function and the strong coupling, one

can solve the DGLAP equation for the b-quark distribution function analytically [with the

initial condition b � x � µ2 � � 0 at µ � mb] [67–69]:

b � x � µ2 � � αs � µ2 �
2π

ln

�
µ2

m2
b � � 1

x

dz
z

Pqg � z � g � x
z

� µ2 �
� (3.1)

where the DGLAP splitting function is given by

Pqg � z � � 1
2

�
z2 � � 1 � z � 2 � � (3.2)

Equation (3.1) shows that b � x � µ2 � is of order αs ln � µ2 � m2
b � compared with the gluon distri-

bution function. To support this, we show in Fig. 3.5 the ratio b � x � µ2 � � g � x � µ2 � � 2π � αs � µ2 �
as a function of µ for various fixed values of x, using the CTEQ4M parton distribution func-

tions [70]. Note that x � mt � �
S � 0 � 1 at the Tevatron, and x � 0 � 01 at the LHC. The

curves are approximately linear when µ is plotted on a logarithmic scale, indicating that

b � x � µ2 � ∝
�
αs � µ2 � � 2π � ln � µ2 � m2

b � g � x � µ2 � .

The b-quark distribution function is on a different footing from the light-quark distri-

bution functions. The light-quark distribution functions involve nonperturbative QCD, and

must be measured (or calculated nonperturbatively). The b-quark distribution function in-

volves energies of order mb and larger, so it can be calculated perturbatively; no measure-

ment is necessary. Given the gluon and light-quark distributions functions, perturbative

QCD makes a definite prediction for the b-quark distribution function.

3.1.2 αs correction

There are also bona fide αs corrections to the leading-order process qb � q
�
t. The di-
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Figure 3.5: The ratio of the b-quark distribution function to the gluon distribution
function, times 2π � αs � µ2 � , versus the factorization scale µ, for various fixed val-
ues of x. The curves are approximately linear when µ is plotted on a logarithmic
scale, indicating that b � x � µ2 � ∝

�
αs � µ2 � � 2π � ln � µ2 � m2

b � g � x � µ2 � , as suggested by the
approximation of Eq. (3.1).

agram in Fig. 3.3(a) is such a correction; it is of order α2
s ln � m2

t � m2
b � [including the factor

αs ln � m2
t � m2

b � from the b-quark distribution function], so it is suppressed by a factor of αs

with respect to the leading-order process.

The diagram of Fig. 3.3(b) contains terms of order α2
s ln2 � m2

t � m2
b � and α2

s ln � m2
t � m2

b � .

The former terms arise from the collinear emission of the gluon, which gives rise to another

factor of ln � m2
t � m2

b � (on top of the factor from the b-quark distribution function). Similar to

the discussion above, another power of this logarithm appears at every order in the strong

coupling, and summation is required to improve the convergence of perturbation theory.

The coefficient of this logarithmically enhanced term is the DGLAP splitting function Pqq,
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which describes the splitting of a quark into a quark and a gluon. The collinear logarithms

are summed by adding another term, corresponding to gluon emission, to the DGLAP evo-

lution equation for the b-quark distribution function. Once this is done, the collinear region

must be subtracted from Fig. 3.3(b); this is shown schematically in Fig. 3.3(c). The remain-

ing terms are of order α2
s ln � m2

t � m2
b � , so they are bona fide αs corrections to the leading-order

process.

Finally, there are the corrections to the light-quark vertex in the leading-order process,

as shown in Fig. 3.4. These are also bona fide αs corrections. Figs. 3.4(a), 3.4(b) contain

collinear logarithms ln � Q2 � m2
q � (where mq is a light-quark mass) which are absorbed by

the light-quark distribution functions in the usual way. Since the light-quark distribution

functions are intrinsically of zeroth order in αs, the remaining corrections are of order αs.

3.1.3 Higher orders

Consider the next-to-next-to-leading-order diagram in Fig. 3.6. This diagram generates

terms of order α2
s ln2 � m2

t � m2
b � , α2

s ln � m2
t � m2

b � , and α2
s . The term of order α2

s ln2 � m2
t � m2

b �
comes from the region in which the initial gluon splits into a collinear bb̄ pair, and the b

quark subsequently radiates a collinear gluon. This term is summed by the leading-order

DGLAP equation, which sums all leading logarithms αn
s lnn � m2

t � m2
b � � n!, as discussed in

Sec. 3.1.1. Thus this term is already present in the leading-order diagram, Fig. 3.2(a).

The terms of order α2
s ln � m2

t � m2
b � come from two sources. The first is when the initial

gluon splits into a collinear bb̄ pair, and the b quark subsequently radiates a noncollinear

gluon. This is associated with the diagrams in Figs. 3.3(b) and 3.3(c), taken together, which

correspond to noncollinear gluon radiation. The logarithm is summed via the leading-order
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DGLAP equation into the b-quark distribution function in Figs. 3.3(b), 3.3(c), so this term

is already accounted for.

The other term of order α2
s ln � m2

t � m2
b � is summed by extending the DGLAP splitting

function Pqg to next-to-leading order. This sums the first subleading logarithms, of order

αn
s lnn � 1 � m2

t � m2
b � (n

�
2) into the b-quark distribution function of the leading-order process,

Fig. 3.2(a). The remaining term, of order α2
s , is a correction of order αs � 1 � ln � m2

t � m2
b �

compared with the leading-order process of Fig. 3.2(a).

This analysis demonstrates that all collinear logarithms are ultimately summed into the

b-quark distribution function; no explicit collinear logarithms remain. The remaining terms

are all of order αn
s or, if the diagram has a b quark in the initial state, of order αn

s ln � m2
t � m2

b � .

These correspond to corrections of order αn � 1
s � 1 � ln � m2

t � m2
b � or αn � 1

s , respectively, com-

pared with the leading-order process. For a more detailed discussion of higher orders, see

Ref. [71].

3.1.4 Factorization scheme for heavy quarks

The factorization scheme used to eliminate the collinear divergences from the parton
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cross section must be the same as the scheme used to define the parton distribution functions

in order to yield a correct (and scheme-independent) result. In the MS scheme, the b-quark

distribution function b � x � µ2 � is defined to be zero at µ � mb, and is then evolved to higher

values of µ via the DGLAP equations [64]. This is the definition of the b-quark distribution

function employed in the CTEQ MS parton distribution functions [63,70].

Another popular factorization scheme is the DIS scheme. In this scheme, the neutral-

current structure function F2 � x � Q2 � is defined to have no radiative correction for light quarks.

For µ � mb, the b quark is essentially a light quark, so a natural interpretation of the DIS

scheme for the b quark is that its contribution to F2 � x � Q2 � has no radiative correction. This

is the interpretation that was made in Ref. [62], which adopted the DIS scheme for the parton

cross section and used the CTEQ DIS distribution functions [63]. However, the CTEQ DIS

b-quark distribution function is actually not in the DIS scheme as interpreted in Ref. [62].

Rather, the b-quark distribution function is again defined by the initial condition b � x � µ2 � � 0

at µ � mb, and evolved to higher values of µ via the DGLAP equations. There is no sense in

which this yields a b-quark distribution function which is formally equivalent to the usual

DIS scheme. As a consequence, it is not correct to calculate the parton cross section in the

usual DIS scheme when using the CTEQ DIS b-quark distribution function. The same is

true of the CTEQ DIS charm distribution function.

To avoid this problem, we calculate entirely in the MS scheme. This yields very different

numerical results from the calculation of Ref. [62] in the DIS scheme.

3.2 Structure-function approach

Inspecting the leading-order process in Fig. 3.2(a), qb � q
�
t, one observes that it is
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Figure 3.7: Single-top-quark production via W-gluon fusion from a structure-
function point of view. The W boson initiates deep inelastic scattering on both
hadrons.

analogous to charged-current deep-inelastic scattering. In fact, it is double deep-inelastic

scattering; the virtual W boson is probing both the hadron containing the b quark, and the

hadron containing the light quark, q. This is shown schematically in Fig. 3.7. We can ex-

ploit this analogy to calculate the corrections to this process in a compact way, in terms of

next-to-leading-order hadronic structure functions [65, 66]. This factorization of the pro-

cess is exact at next-to-leading order, because diagrams involving gluon exchange between

the light-quark and heavy-quark lines do not interfere with the tree diagram, due to color

conservation.1

The hadronic tensor describing a W boson of four-momentum q striking a hadron of

four-momentum P can be written in terms of five structure functions:

MWµν � x � Q2 � � F1 � x � Q2 �
�

� gµν
� qµqν

q2 � � F2 � x � Q2 �
P � q

�
Pµ �

P � q
q2 qµ � �

Pν �

P � q
q2 qν �

� i
F3 � x � Q2 �

2P � q
εµνρσPρqσ �

F4 � x � Q2 � qµqν
�

F5 � x � Q2 � � Pµqν
�

Pνqµ � � (3.3)

where Q2 � � q2. If the struck quark, and the quark into which it is converted, are both

massless, then the current with which the W interacts is conserved, and one has qµWµν �
1Since Tr � TA � � 0, terms in the square of the matrix element that involve only one internal gluon vanish.
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qνWµν � 0. This implies that the structure functions F4 � F5 vanish. The scaling variable x is

given by x � Q2 � 2P � q, as usual.

If the quark into which the struck quark is converted is massive, such as the top quark,

then the current is no longer conserved, and F4 � F5 are nonvanishing (although we will find

that they do not enter our calculation). Furthermore, the scaling variable is now given by

x � � Q2 �
m2

t � � 2P � q.

The hadronic cross section in Fig. 3.7 is obtained by contracting the hadronic tensors at

each vertex with the square of the W propagator connecting them. Due to current conserva-

tion of the light-quark tensor, the qµqν � M2
W term in the numerator of the W propagator does

not contribute, so one simply contracts the two tensors together. One finds

MWµν � x1 � Q2 � MWµν � x2 � Q2 � �
3F1 � x1 � Q2 � F1 � x2 � Q2 �

�
F1 � x1 � Q2 � F2 � x2 � Q2 � P2 � � � q �

q2
�

F2 � x1 � Q2 � F1 � x2 � Q2 � P1 � q
q2

�
F2 � x1 � Q2 � F2 � x2 � Q2 � 1

P1 � qP2 � � � q �
�

P1 � P2
�

P1 � qP2 � q
q2 � 2

� 1
2

F3 � x1 � Q2 � F3 � x2 � Q2 �
�

P1 � P2q2

P1 � qP2 � q
� 1 � � (3.4)

where

Q2 � � q2
� (3.5)

x1 � Q2

2P1 � q
� (3.6)

x2 � Q2 �
m2

t

2P2 � � � q � � (3.7)

The heavy-quark structure functions F4 � F5 do not contribute to this expression because they

are the coefficients of tensors which contain qµ, qν, or both. These tensors give vanishing
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contribution when contracted with the light-quark tensor, due to current conservation. The

W boson interacts with massless quarks in the hadron of four-momentum P1, and interacts

with a b quark in the hadron of four-momentum P2, as indicated in Fig. 3.7. Note that the

latter hadron is probed by a W boson of four-momentum � q, which results in P2 � � � q � ap-

pearing in several places in Eq. (3.4). One must also add the contribution where theW boson

interacts with massless quarks in the hadron of four-momentum P2 and with the b quark in

the hadron of four-momentum P1.

The differential hadronic cross section is given by [66]2

dσ � 1
2S

4

�
g2

8 � 2
1

� Q2 �
M2

W � 2
MWµν � x1 � Q2 � MWµν � x2 � Q2 � � 2π � 2 1

4S
dQ2dW2

1 dW2
2 � (3.8)

where W2
1 � � P1

�
q � 2 and W2

2 � � P2
� q � 2 are the squared invariant masses of the hadron

remnants (including the top quark), and S � 2P1 � P2 is the square of the hadronic center-of-

momentum energy. Using

2P1 � q � W2
1

�
Q2

� (3.9)

2P2 � � � q � � W2
2

�
Q2

� (3.10)

we can write Eq. (3.4) in terms of the integration variables Q2
� W2

1 � W2
2 :

MWµν � x1 � Q2 � MWµν � x2 � Q2 � �
3F1 � x1 � Q2 � F1 � x2 � Q2 �

�

1
2

F1 � x1 � Q2 � F2 � x2 � Q2 � W2
2

�
Q2

Q2
�

1
2

F2 � x1 � Q2 � F1 � x2 � Q2 � W2
1

�
Q2

Q2

�
F2 � x1 � Q2 � F2 � x2 � Q2 � 1

� W2
1

�
Q2 � � W2

2
�

Q2 �
�

S �

� W2
1

�
Q2 � � W2

2
�

Q2 �
2Q2 � 2

�
F3 � x1 � Q2 � F3 � x2 � Q2 �

�
SQ2

� W2
1

�
Q2 � � W2

2
�

Q2 �
�

1
2 � � (3.11)

2This equation is obtained from Eq. (2) of Ref. [66] by setting dΓ � 0 and integrating out the four-
dimensional Dirac δ function.
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where

x1 � Q2

W2
1

�
Q2

� (3.12)

x2 � Q2 �
m2

t

W2
2

�
Q2

� (3.13)

The physical region is given by

W1
�

0 � (3.14)

W2
�

mt � (3.15)

W1
�

W2 �
�

S � (3.16)

Q2
max
min

� 1
2

�
S � W2

1
� W2

2 � λ1 � 2 � S � W2
1 � W2

2 � � � (3.17)

λ � a � b � c � � a2 �
b2 �

c2
� 2ab � 2ac � 2bc � (3.18)

The next-to-leading-order expressions for the structure functions are given in Appen-

dix C. We use the MS scheme, for the reasons discussed in Sec. 3.1.4. After the subtraction

of the collinear logarithms ln
� � Q2 �

m2
t � � m2

b � , we set the b-quark mass to zero, since it is

small compared with the top-quark mass.3 When evaluating the next-to-leading-order con-

tribution to the cross section, we use the next-to-leading-order expression for the structure

function corresponding to the light quark or the heavy quark, but not both at the same time,

as this would yield a contribution of next-to-next-to-leading order.

3.2.1 Factorization scale

The similarity of the leading-order process qb � q
�
t with deep inelastic scattering sug-

gests that the relevant scale in the light-quark distribution function is µ2 � Q2. If the parton

3In practice, it is simpler to set the b-quark mass to zero from the outset, and evaluate the cross section
in N � 4 � 2ε dimensions. The collinear logarithms appear as terms proportional to 1

�
ε � γ � ln 4π, and are

subtracted in the MS scheme.
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distribution functions were extracted solely from deep-inelastic-scattering data at the same

values of x and Q2 relevant to this process, this statement would be exactly correct, because

the radiative corrections to deep-inelastic scattering are precisely the same as those to the

light-quark vertex in qb � q
�
t. The latter process has additional radiative corrections, both

to the heavy-quark vertex and between the two quark lines, but these are unrelated to the

scale in the light-quark distribution function.

The actual situation is not far from the situation described above. Most of the informa-

tion on the light-quark distribution functions does come from deep inelastic scattering, and

the relevant values of x and Q2 are within the range of the HERA ep collider: x � mt � �
S �

0 � 1 at the Tevatron and x � 0 � 01 at the LHC, with Q2 � � M2
W . We therefore set µ2 � Q2 in

the light-quark distribution function and refrain from varying the scale, as is usually done

to estimate the theoretical uncertainty from uncalculated higher-order corrections.

The situation is entirely different for the scale in the b-quark distribution function. The

collinear logarithm that results from the diagrams in Figs. 3.2(b) and 3.3(b) is ln
� � Q2 �

m2
t � � m2

b � . Upon subtraction of the collinear region via the diagrams in Figs. 3.2(c) and 3.3(c),

the remaining logarithm is ln
� � Q2 �

m2
t � � µ2 � (see Appendix C). The appropriate scale in the

b-quark distribution function is therefore µ2 � Q2 �
m2

t . Since the b-quark distribution is

obtained from an entirely theoretical calculation, we vary this scale in order to estimate the

uncertainty from uncalculated higher-order corrections.

The argument above shows that the appropriate scales in the light-quark and b-quark

distribution functions are different. Although it may seem unfamiliar to have different scales

in the parton distribution functions of a given hadronic process, we have shown that it is

appropriate in this case. The appropriate scale for the production of a quark of mass mQ
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via charged-current deep inelastic scattering is µ2 � Q2 �
m2

Q, which yields µ2 � Q2 for the

light-quark structure function and µ2 � Q2 �
m2

t for the top-quark charged-current structure

function.

3.3 Results and Conclusions

We evaluate the next-to-leading-order cross section for single-top-quark production via

W-gluon fusion using the latest CTEQ MS distribution functions, CTEQ4M [70]. The cross

sections at the Tevatron (1.8 and 2 TeV) and the LHC for the sum of t and t̄ production

for4 mt � 175 GeV are given in5 Table 3.1, assuming Vtb � 1. The leading-order cross sec-

tions are also evaluated with the CTEQ4M distribution functions. (When evaluated with

the CTEQ4L leading-order distribution functions, the leading-order cross sections are 1.61,

2.31, and 237 pb at the three machines.) The 1 � ln � m2
t � m2

b � and αs corrections are listed

separately. The 1 � ln � m2
t � m2

b � correction is � 20% at the Tevatron, and � 11% at the LHC.

This confirms previous calculations of this correction in the MS scheme [27,72,73]. The αs

correction is
�

12% at the Tevatron, and
�

2% at the LHC. The next-to-leading-order cross

section is the sum of the leading-order cross section and these two corrections. The fact that

the αs correction partially compensates the 1 � ln � m2
t � m2

b � correction is a numerical accident,

as these are two truly independent parameters.

Also given in Table 3.1 is the cross section for e � p � νet̄b or e
�

p � ν̄etb̄ at HERA [74–

76]. (The leading-order cross section is 1 � 21 � 10 � 4 pb when evaluated with the CTEQ4L

4The current world-average top-quark mass is 174 � 1 � 5 � 4 GeV [6].
5The numerical results in Table 3.1 were obtained by evaluating the weak coupling constant g in terms of

the Fermi couplingGF and theW-boson mass MW , via g2 � 8GFM2
W

���
2, where GF � 1 � 16639 � 10 � 5 GeV � 2

and MW � 80 � 4 GeV. These numerical results are approximately 2% less than the values which appear in the
published version of this chapter [Phys. Rev. D 56, 5919 (1997)].
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Table 3.1: Cross sections for single-top-quark production via W-gluon fusion at the
Tevatron, LHC, and HERA for mt � 175 GeV. The cross sections are the sum of t and
t̄ production at the Tevatron and the LHC, and either t (positron beam) or t̄ (electron
beam) at HERA. The first column gives the leading-order cross section [Fig. 3.2(a)];
the second column the correction of order 1 � ln � m2

t � m2
b � [Figs. 3.2(b), 3.2(c)]; the

third column the correction of order αs (Figs. 3.3, 3.4); and the last column the next-
to-leading-order cross section (the sum of the first three columns). All calculations
are performed in the MS scheme using CTEQ4M parton distributions functions with
µ2 � Q2 for the light-quark vertex and µ2 � Q2 �

m2
t for the heavy-quark vertex.

�
S LO (pb) 1 � ln � m2

t � m2
b � (pb) αs (pb) NLO (pb)

1.8 TeV pp̄ 1.84 -0.39 0.25 1.70

2 TeV pp̄ 2.67 -0.55 0.32 2.44

14 TeV pp 270 -31 6 245

314 GeV ep 1.02 � 10 � 4 -0.34 � 10 � 4 0.36 � 10 � 4 1.04 � 10 � 4

leading-order distribution functions.) The 1 � ln � m2
t � m2

b � correction is � 33%, and the αs

correction is
�

36%. An integrated luminosity of about 10 fb � 1 would be needed to pro-

duce a single event. This is unattainable given the design luminosity of the machine (L �
1 � 6 � 1031 � cm2 � s).

We argued in Sec. 3.1.3 that the CTEQ DIS b-quark distribution function is incompat-

ible with the usual DIS scheme, and yields incorrect results. To demonstrate this, we also

perform the calculation in the DIS scheme using CTEQ4D distribution functions. The next-

to-leading-order cross sections at the Tevatron (1.8 and 2 TeV) and the LHC are found to

be 2.24, 3.20, 290 pb. These differ from the results in the MS scheme by much more than

the theoretical uncertainty in that calculation, which we now estimate.

To estimate the uncertainty from uncalculated higher-ordercorrections, we vary the scale

in the b-quark distribution function about the central value µ2 � Q2 �
m2

t . The results are
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shown in Fig.3.8 at the Tevatron (2 TeV) and the LHC, for both the leading-order and next-

to-leading-order cross sections, using the CTEQ4M parton distribution functions. The next-

to-leading-order cross section is considerably less sensitive to µ, as expected. Varying µ be-

tween one-half and twice its central value yields an uncertainty in the next-to-leading-order

cross section of � 5% at the Tevatron and � 4% at the LHC. As discussed in Sec. 3.2, we

do not vary the scale in the light-quark distribution function, where µ2 � Q2. Although our

estimate of the theoretical uncertainty in the cross section from uncalculated higher orders

is rather small, it would be worthwhile to pursue the calculation to the next order in αs.

Another source of uncertainty stems from the uncertainty in the top-quark mass. The

cross section as a function of the top-quark mass is shown in Fig. 3.9 at the Tevatron (2

TeV) and the LHC. The cross section is relatively insensitive to the top-quark mass because

the decrease in the parton distribution functions with increasing mt is not augmented by a

decrease in the partonic cross section, which scales like 1 � M2
W instead of 1 � ŝ. The present

uncertainty of � 5 � 4 GeV in the top-quark mass [6] corresponds to an uncertainty of � 9%

in the cross section at the Tevatron and � 5% at the LHC. Anticipating an uncertainty of � 2

GeV in the top-quark mass from Run II at the Tevatron and/or from the LHC reduces the

uncertainty in the cross section from the top-quark mass to � 3% at the Tevatron and � 2%

at the LHC.

The most significant source of uncertainty is currently the uncertainty in the gluon distri-

bution function, which reflects itself as an uncertainty in the b-quark distribution function.

A recent paper by the CTEQ collaboration [77] has attempted to quantify this uncertainty

for the CTEQ4M [70] distribution functions. Specifically, they have made a very conserva-

tive estimate of the error in gluon-gluon, and gluon-quark initial states. The result is that for

59



NLO

LO

�
S � 2 TeV pp̄

σ
(p

b)
2.9

2.8

2.7

2.6

2.5

2.4

2.3

2.2

2.1

2.0

NLO

LO

�
S � 14 TeV pp

µ � � Q2 �
m2

t

σ
(p

b)

5.02.01.00.50.2

340

320

300

280

260

240

220

200

180

Figure 3.8: Cross section for single-top-quark production via W-gluon fusion at the
Tevatron and the LHC for mt � 175 GeV, versus the ratio of the factorization scale
µ to its natural value, µ � � Q2 �

m2
t . Both the leading-order and next-to-leading-

order cross sections are shown.
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Figure 3.9: Next-to-leading-order cross section for single-top-quark production via
W-gluon fusion at the Tevatron and the LHC as a function of the top-quark mass.
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single-top-quark production, given the relevant range of x � 0 � 01–0 � 1 and scale µ, the error

is less than 10% at both the Tevatron and the LHC. This is not as good an estimate of the er-

ror as having a parton distribution set with an associated error-correlation matrix. However,

Ref. [77] points out that there is currently no known way to quantify the theoretical uncer-

tainties in combining the experimental data sets. Also, only a few experiments themselves

have provided correlation information. Thus we shall have to use 10% as a benchmark for

the uncertainty due to parton distribution functions for now.

We present the first complete and correct calculation of the next-to-leading-order cor-

rections to single-top-quark production via W-gluon fusion. We estimate the uncertainty

due to uncalculated higher-order corrections to be about � 5% at the Tevatron and the LHC.

Assuming the uncertainty in the gluon distribution function can be further quantified and

reduced below 10%, single-top-quark production via W-gluon fusion will be an accurate

probe of the charged-current interaction of the top quark at the Tevatron and the LHC. In

conjunction with qq̄ � tb̄, it will yield an accurate measurement of Vtb and possibly indicate

the presence of new physics.

In this chapter, we resum large logarithms ln
� � Q2 �

m2
t � � m2

b � via DGLAP evolution which

leads to a reordering of perturbation theory. In Sec. 3.1 we show that there are two in-

dependent corrections, of order 1 � ln � m2
t � m2

b � and αs, which are numerically comparable.

Because this is double deep-inelastic scattering, a structure-function approach is used in

Sec. 3.2 to evaluate the cross sections listed in Table 3.1. In Sec. 3.2.1 we show that the

appropriate choice of scale µ in deep-inelastic scattering is µ2 � Q2 �
m2

q, where mq is the

mass of the final state quark. Finally, we argue in Sec. 3.1.4 that the CTEQ4D charm and

bottom-quark parton distribution functions are not actually in the DIS scheme. Therefore,
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we recommend the use of the MS scheme for calculations with heavy-quark initial states.
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Chapter 4

Single-top-quark production at hadron
colliders

Single-top-quark production at the Fermilab Tevatron and the CERN Large Hadron Col-

lider (LHC) provides an opportunity to study the charged-current weak-interaction of the

top quark [27, 57–61, 73]. Within the standard model, single-top-quark production offers

a means to directly measure the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vtb.

Beyond the standard model, it is sensitive to a non-standardWtb vertex, and to exotic single-

top-quark production processes involving new particles [27–35]. In order to be a useful

probe, the measurement of single-top-quark production must be accompanied by an accu-

rate calculation of the standard-model production cross section and experimental accep-

tance, as well as an analysis of the associated backgrounds.

It is useful to distinguish between three different types of single-top-quark production,

based on the virtuality of the W boson. Fig. 4.1(a) shows the leading-order Feynman di-

agram for s-channel1 single-top-quark production [57, 58]. This process has the theoreti-

cal advantage of proceeding via quark-antiquark annihilation, so the partonic flux can be

constrained from Drell-Yan data [78]. The next-to-leading-order calculation has been per-

1The s-channel process is sometimes referred to as the W � process; however, the W boson in the t-channel
process is also off-shell.
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Figure 4.1: Feynman diagrams for single-top-quark production at hadron colliders:
(a) s-channel production, (b) t-channel production (W-gluon fusion), and (c) asso-
ciated production with a W boson.

formed for this channel [38], as well as a study of the acceptance and backgrounds [5, 58].

Fig. 4.1(b) shows a Feynman diagram for t-channel single-top-quark production, often re-

ferred to as W-gluon fusion [27,59–61,73]. The primary advantage of this channel is statis-

tics. The cross section is almost three times larger than that of the s-channel process at the

Tevatron, and the cross section at the LHC is 100 times larger than at the Tevatron. The

production cross section was recently calculated by us at next-to-leading order (see Chap-

ter 3, [8, 62]), and the acceptance and backgrounds have been most completely studied in

Ref. [5]. Fig. 4.1(c) shows a Feynman diagram for Wt production, where an on-shell W is

produced [73, 79]. This process proceeds via a gluon-b interaction, which makes the cross

section negligible at the Tevatron. However, at the LHC it contributes about 20% of the to-

tal single-top-quark cross section. Neither the next-to-leading-order cross section,2 nor the

calculation of the acceptance and backgrounds for this process, are yet available.

In this chapter we calculate the acceptance and backgrounds for single-top-quark pro-

2The next-to-leading-order cross section is available for the identical process of Wc production [80].
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duction via W-gluon fusion at the Tevatron and LHC. There are a number of differences

with the analysis of Ref. [5]. The most significant improvement is that we perform an ac-

curate calculation of the acceptance, using our next-to-leading-order calculation of the total

cross section. This is an essential ingredient in the extraction of the cross section from ex-

periment, and can be used to normalize any future studies. The acceptance cannot simply

be calculated by comparing the cross section from Fig. 4.1(b) with and without cuts, be-

cause the total cross section is not obtained solely from Fig. 4.1(b), due to the breakdown

of perturbation theory in the region where the initial gluon splits into a nearly-collinear bb̄

pair. The correct way to treat the collinear region and calculate the acceptance is discussed

in detail in Sec. 4.1.

Our analysis of backgrounds differs from that of Ref. [5] in that we advocate the use

of one and only one b tag to isolate the signal, while Ref. [5] requires one or more b tags.

The main motivation for this is that we desire to separate single-top-quark production via

W-gluon fusion (which usually has only the b quark from top decay in the fiducial region)

from the s-channel process (which usually has a b and a b̄ in the fiducial region, and is found

by double b-tagging). This provides two independent measures of Vtb with different back-

grounds and theoretical uncertainties. Perhaps more importantly, the two processes are gen-

erally influenced by new physics in different ways, so looking for a deviation of each process

from the standard model would be a useful diagnostic [27–35]. For discovery of single-top-

quark production, and first measurements of Vtb, we also consider the total single-top-quark

production cross section with only one b tag.

Since the top quark is produced via the weak interaction in single-top-quark processes, it

has significant polarization [60]. An optimal basis for the measurement of this polarization,
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both for the s-channel process and for W-gluon fusion, was recently introduced in Ref. [39].

We quantify the integrated luminosity required to observe and measure this polarization,

including the effects of acceptance and jet reconstruction.

The chapter is organized as follows. In Sec. 4.1 we calculate the acceptance for single-

top-quark production via W-gluon fusion. We pay particular attention to the issues asso-

ciated with the splitting of the initial gluon into a nearly-collinear bb̄ pair. In Sec. 4.2 we

briefly discuss our calculational techniques. In Sec. 4.3 we present results for the signal and

backgrounds at the Tevatron and the LHC. Sec. 4.4 is concerned with the polarization of the

top quark in single-top-quark processes. We summarize our results in Sec. 4.5.

4.1 Acceptance for W-gluon fusion

In Chapter 3 (Ref. [8]), we calculated the inclusive next-to-leading-order cross section

for single-top-quark production via W-gluon fusion. The results are listed in the second

column of Table 4.1. Experimentally, only the cross section which lies within the geometri-

cal acceptance of the detector is measurable, so it is important to calculate this acceptance.

Normally this is straightforward; one simply compares the tree-level cross section with and

without cuts. However, the total cross section for W-gluon fusion cannot simply be cal-

culated from Fig. 4.1(b), because perturbation theory breaks down in the region where the

initial gluon splits into a nearly-collinear bb̄ pair. Thus we must first find the correct way to

calculate the acceptance.

The ET spectrum of the b̄ antiquark is shown with a solid line in Fig. 4.2. It is peaked at

small ET , because the internal b-quark propagator is close to being on shell when the initial

gluon splits into a nearly-collinear bb̄ pair. Since dσ � dp2
T � 1 � � p2

T
�

m2
b � , the cross section
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Table 4.1: Cross sections (pb) for single-top-quark production via W-gluon fusion
with mt � 175 GeV. The second column is the total next-to-leading-order cross sec-
tion (see Table 3.1, or Ref. [8]), and the third the cross section with the b̄ antiquark
below pTmax � 20 GeV. The uncertainty is estimated from the scale variation of the
cross section, and does not include the uncertainty in the parton distribution func-
tions nor the uncertainty in the top-quark mass.

�
S σNLO pTmax � 20 GeV

1.8 TeV 1.70 � 0.09 1.34 � 0.14

2 TeV 2.44 � 0.12 1.90 � 0.20

14 TeV 245 � 12 157 � 16

with the pT of the b̄ antiquark above pTmin is proportional to ln
�
m2

t � � p2
Tmin

�
m2

b � � . Another

power of this logarithm appears at every order in perturbation theory via collinear gluon

radiation from the internal b quark, so the expansion parameter is αs ln
�
m2

t � � p2
Tmin

�
m2

b � � .
Thus the calculation of the cross section is more accurate the larger the choice of pTmin.

Unfortunately, it is not practical to simply choose a large value of pTmin and measure the

cross section for Wbb̄ j ( j denotes the light-quark jet from the emission of the t-channel W

boson in Fig. 4.1(b); Wb are the decay products of the t quark). There is a large background

from tt̄ production, which yields the final state WWbb̄; this mimics the signal when the ad-

ditional W boson decays to two jets, and one jet is missed. To suppress this background we

search for the signal in the final state Wb j, i.e. we demand that the b̄ antiquark not appear

in the final state.

Fortunately, the cross section with the b̄ antiquark below pTmax can be calculated with

good accuracy, provided pTmax is sufficiently large. This is achieved via a two-step proce-

dure. In Chapter 3 we calculated the total cross section (pTmin � 0) and summed the loga-

rithmically-enhanced terms, αn
s lnn � m2

t � m2
b � � n!, to all orders [27,67,68,72,73]. To calculate
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Figure 4.2: Transverse energy distributions for the spectator b̄ antiquark (solid line),
the b quark from top-quark decays (dashed line), and the light-quark jet j (dotted
line), in single-top-quark production via W-gluon fusion at the Fermilab Tevatron.
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the cross section with the b̄ antiquark below pTmax, we simply take the total cross section

and subtract from it the cross section with the b̄ antiquark above pTmin � pTmax.

σ � pTb̄ � pTmax � � σNLO
� σ � pTb̄ � pTmax � � (4.1)

This amounts to integrating the momentum of the b̄ antiquark over all momenta below pTmax.

Since we do not want to detect this b̄ antiquark (due to the tt̄ background), it is not necessary

to know its pT spectrum below pTmax anyway.

We give in the third column of Table 4.1 the cross section for single-top-quark produc-

tion via W-gluon fusion with the b̄ antiquark below pTmax � 20 GeV. These numbers can be

used to normalize future studies. For example, Ref. [5] studied the signal for the final state

Wbq, using the process qb � qt to approximate the W-gluon fusion process, and normaliz-

ing to the total cross section. However, it is more accurate to normalize to the cross section

with the b̄ antiquark below some chosen pTmax (20 GeV in Ref. [5]).3 HERWIG [81] and

PYTHIA [82] also simulate single-top-quark production via W-gluon fusion using qb � qt.

Our strategy is therefore as follows. We use the process in Fig. 4.1(b) to calculate the

differential cross section for single-top-quark production via W-gluon fusion. If the pT of

the b̄ antiquark is below pTmax, we normalize to the cross section calculated as described

above. This yields most of signal cross section (Wbq in the fiducial region). If the pT of the

b̄ antiquark is above pTmax, we simply use the cross section obtained from Fig. 4.1(b). This

yields the final state Wbb̄q, which we reject if all three jets are in the fiducial region, but

which contributes to the signal if one jet is missed, one and only one of the two remaining

jets is b-tagged and it, with the W boson, reconstructs to the top-quark mass (within some

3Ref. [5] normalized to a cross section of 1.6 pb; we see from Table 4.1 that a more accurate cross section
is 1.90 pb.
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resolution). This strategy avoids the occurrence of powers of αn
s lnn � m2

t � m2
b � � n! at higher

orders in perturbation theory, which would degrade the accuracy of the calculation.

4.1.1 Theoretical uncertainties

In Sec. 3.3, we studied the uncertainty in the next-to-leading-order total cross section for

single-top-quark production via W-gluon fusion by varying the factorization scale in the b-

quark distribution function. This indicated an uncertainty in the total cross section of � 5%,

not including the uncertainty in the parton distribution functions, or in the top-quark mass.

However, to obtain the cross section with the pT of the b̄ antiquark below pTmax, we need to

subtract from the total cross section the cross section with the pT of the b̄ antiquark above

pTmin � pTmax, as discussed above. Since the latter is a tree-level calculation, its scale de-

pendence is relatively large.

Using the scale µ2 � p2
Tb̄

�
m2

b in the gluon distribution function and the strong cou-

pling, we find a � 30% uncertainty in the cross section with pTb̄ � 20 GeV at the Teva-

tron ( � 15% at the LHC) by varying µ between one half and twice its central value. Fortu-

nately, this only accounts for 22% of the cross section at the Tevatron (35% at the LHC).

Adding in quadrature the absolute uncertainty in the NLO cross section, and the cross sec-

tion with pTb̄ � 20 GeV, we find an uncertainty of about � 10% in the cross section with

pTb̄ � 20 GeV at both the Tevatron and the LHC. This uncertainty is reflected in the num-

bers in Table 4.1. To reduce this uncertainty would require the resummation of the large

logarithms αs ln
�
m2

t � � p2
Tmin

�
m2

b � � which appear in the calculation of the cross section with

the pT of the b̄ above pTmin.

Another source of uncertainty in the cross section is the uncertainty in the parton distri-
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bution functions, especially the gluon distribution function. This uncertainty has recently

been studied in Ref. [77], and it appears to be less than � 10% at both the Tevatron and the

LHC. This is comparable to the uncertainty stemming from the scale variation described

above. That study indicates that the uncertainty in the parton distribution functions could

potentially be pushed below � 10%.

The uncertainty in the top-quark mass also leads to an uncertainty in the cross section.

The present uncertainty of � 5 � 4 GeV [6] corresponds to an uncertainty in the cross section

of � 9% (see Sec. 3.3). Anticipating an uncertainty of � 3 GeV from Run II at the Tevatron

corresponds to an uncertainty in the cross section of � 5%, much less than the uncertainty

from the scale variation and the parton distribution functions. The uncertainty in the top-

quark mass at the Tevatron and the LHC will ultimately reach � 2 GeV or less, correspond-

ing to an uncertainty in the cross section of � 3% at the Tevatron, and � 2% at the LHC.

Combining all theoretical uncertainties in quadrature, we estimate a theoretical uncer-

tainty of about � 15% in the cross section at the Tevatron and the LHC, assuming an uncer-

tainty in mt of � 3 GeV or less.

4.2 Calculation

In this section we optimize our study for the dominant single-top-quarkproduction mech-

anism, W-gluon fusion. The final state, Wbb̄ j, consists of a recoiling light-quark jet from

the production of the t-channel W boson, a b̄ antiquark from the splitting of the initial gluon,

and the decay products of the top quark. As discussed in Sec. 4.1, the large t t̄ background

requires that we use Wb j as our signal, i.e. we wish to reject events in which the b̄ is de-

tected above some pTmax. Thus our signal is a leptonically-decaying W boson (to reduce
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QCD backgrounds) plus two jets, with one and only one b tag. In addition to the t t̄ back-

ground, the other principal backgrounds are Wbb̄ and W j j (with one jet mistagged), as well

as Wcc̄ and Wc j (with one c quark mistagged). The background WZ, with Z � bb̄, is small

and can be neglected.4 Requiring one and only one b tag helps reduce the t t̄ � WWbb̄, Wbb̄,

and Wcc̄ backgrounds, while maintaining almost all of the signal.

The signal and backgrounds for single-top-quark production are calculated using tree-

level matrix elements generated by MadGraph [84]. The normalization of the W-gluon-

fusion cross section is set by the next-to-leading-order cross section evaluated in Chapter 3,

as described in Sec. 4.1. The factorization scale used for the initial gluon in Fig. 4.1(b)

is µ2 � p2
Tb̄

�
m2

b. For the light-quark µ2 � Q2, the virtuality of the W , since this is deep-

inelastic scattering. The s-channel process is also normalized to the next-to-leading-order

cross section [38]. The tt̄ cross section is normalized to the next-to-leading-order result [85,

86],5 not including soft-gluon resummation [87–89]. The Wbb̄, W j j, Wcc̄, and Wc j cross

sections are calculated at leading order using the CTEQ4L [70] parton distribution functions

with the renormalization and factorization scales chosen to be µ2 � ŝ. Since their cross sec-

tions will be directly measured by experiment, theoretical uncertainties in the normaliza-

tion of these backgrounds will not limit the accuracy of the measurement of the signal cross

section. The gb � Wt cross section is also calculated at leading order using CTEQ4L and

µ2 � ŝ.

We use a Gaussian function of width ∆E j � E j � 0 � 80 � � E j
�

0 � 05 (added in quadrature)

to smear the jet energies in order to simulate the resolution of the hadron calorimeter. We do

4In contrast, WZ with Z � bb̄ is an important background to WH with H � bb̄, because MZ is near mH in
the Higgs mass range of interest [83].

5We use the central values given in the last paper of Ref. [87].
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Table 4.2: Cuts used to simulate the acceptance of the detector. The rapidity cover-
age for jets is taken to be 2.5 at the Tevatron and 4 at the LHC. The pT � threshold is
greater for charged leptons which are used as triggers (in parentheses).

�ηb � � 2 ETb � 20 GeV

�η� � � 2 � 5 pT � � 10 GeV (20 GeV)

�η j � � 2 � 5 (4) ET j � 20 GeV

�∆Rbb̄ � � 0 � 7 �∆Rb � � � 0 � 7

�ET � 20 GeV

not smear the lepton energy, since this is a small effect compared with the smearing of the

jet energies. The two solutions for the neutrino momentum which satisfy the missing-pT

and W-mass constraints are reconstructed and the solution with the smallest magnitude of

rapidity is chosen. This reconstructed event must pass the cuts listed in Table 4.2 used to

simulate the acceptance of the detector. The rapidity and ET coverage are chosen to simulate

a generic detector. Most of the jets are central at the Tevatron, so it is only necessary to have

jet coverage to �η j � � 2 � 5, while the jets are distributed over a wider range of rapidities at

the LHC, necessitating coverage to �η j � � 4. Experimental results will be slightly modified

depending on actual detector capabilities. We assume a b-tagging efficiency of 60% (50%

at Run I) with a mistag rate of 15% for charm quarks and 0 � 5% for light quarks at both the

Tevatron [90] and the LHC [91]. As we shall see, the large charm background suggests it

may be advantageous to employ a strategy to reject charm (and light-quark) jets. Therefore

we estimate how well we may do in a scenario where the mistag rate for charm quarks is

reduced.

The ET spectrum of the b̄ antiquark, the b quark from the top decay, and the light-quark

jet j from the emission of the t-channel W boson, from single-top-quark production via W-
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gluon fusion, are shown in Fig. 4.2. The b-quark ET spectrum peaks at about 60 GeV. The

mean ET of the light-quark jet is about MW � 2 � 40 GeV. The b̄ antiquark is produced mostly

at low pT , and so the combination of b̄
� �

ν does not often reconstruct to a top-quark mass.

Hence the majority of our signal comes from tagging the b quark, with the light quark pro-

viding the second jet.6 However, we include in our signal any final state with two and only

two jets with pT � 20 GeV, with one and only one b tag.

4.3 Numerical results

Our results are summarized in Tables 4.3–4.5. The second column shows the total cross

section times the branching ratio for the top quark to decay semileptonically. The signal

cross section includes both t and t̄ production times the branching ratio 2
9 (we do not in-

clude the t � bτ̄ν semileptonic decay in the signal since τ is seen as a jet). Similarly, the

W j j, Wbb̄, Wcc̄, and Wc j backgrounds account for both W
�

and W � production times the

branching ratio 2
9 . The tt̄ background is multiplied by the branching ratio 4

9 to include the

possibility that either the t or the t̄ decays semileptonically (a tt̄ event can be a background

to either single t or single t̄ production).

The third column of Tables 4.3–4.5 shows the cross section for events which pass the

detector acceptance cuts listed in Table 4.2. These events have one and only one b-tagged

jet, and at least one other jet. We have used a b-tagging efficiency of 60% (50% in Table 4.3),

with a mistag rate of 15% for charm and 0 � 5% for light-quark jets [90, 91]. The detector

response is primarily important in reducing the W j j, Wbb̄, Wcc̄, and Wc j backgrounds. The

numbers in parentheses are the cross sections for events which have a reconstructed b
� �

ν
6After the veto cut and top-quark mass reconstruction described in Sec. 4.2, this is 94% of the signal at the

Tevatron, and 93% of the signal at the LHC.
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Table 4.3: Cross sections (fb) for single-top-quark production and a variety of back-
ground processes at Run I of the Fermilab Tevatron. The W-gluon-fusion signal is
denoted by tb̄ j, and the s-channel by tb̄. Listed in parenthesis are the cross sections
for events in which the reconstructed b

� �
ν invariant mass is within � 20 GeV of the

top-quark mass. The bottom two rows show the statistical sensitivity for discovery
and a cross section measurement, respectively, given 110 pb � 1 of data.

Tevatron 1.8 TeV pp̄

Total � BR Detector (peak) Veto (peak)

tb̄ j 378 79 (54) 64 (46)

tb̄ 162 40 (20) 40 (20)

Wt 16 8.3 (4.2) 1.9 (1.0)

W j j — 205 (40) 205 (40)

Wbb̄ 6500 128 (24) 128 (24)

Wcc̄ — 65 (12) 65 (12)

Wc j — 195 (37) 195 (37)

tt̄ 2160 606 (268) 53 (15)

S�
B

— 1.3 2.0
�

S � B
S — 0.81 0.63
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Table 4.4: Cross sections (fb) for single-top-quark production and a variety of back-
ground processes at Run II of the Fermilab Tevatron. The W-gluon-fusion signal is
denoted by tb̄ j, and the s-channel by tb̄. Listed in parenthesis are the cross sections
for events in which the reconstructed b

� �
ν invariant mass is within � 20 GeV of the

top-quark mass. The bottom two rows show the statistical sensitivity for discovery
and a cross section measurement, respectively, given 1 fb � 1 of data.

Tevatron 2 TeV pp̄

Total � BR Detector (peak) Veto (peak)

tb̄ j 542 133 (90) 107 (76)

tb̄ 196 48 (24) 48 (24)

Wt 26.5 16.6 (8.4) 3.8 (2.1)

W j j — 257 (54) 257 (54)

Wbb̄ 7420 146 (28) 146 (28)

Wcc̄ — 74 (14) 74 (14)

Wc j — 274 (53) 274 (53)

tt̄ 2980 838 (364) 80 (24)

S�
B

— 5.4 7.8
�

S � B
S — 0.21 0.16
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Table 4.5: Cross sections (fb) for single-top-quark production and a variety of back-
ground processes at the CERN LHC. The W-gluon-fusion signal is denoted by t b̄ j,
and the s-channel by tb̄. Listed in parenthesis are the cross sections for events in
which the reconstructed b

� �
ν invariant mass is within � 20 GeV of the top-quark

mass. The bottom two rows show the statistical sensitivity for discovery and a cross
section measurement, respectively, given 1 fb � 1 of data.

LHC 14 TeV pp

Total � BR Detector (peak) Veto (peak)

tb̄ j 54400 12500 (7510) 8930 (6110)

tb̄ 2270 470 (229) 470 (229)

Wt 13700 7510 (3610) 1650 (820)

W j j — 7000 (1460) 7000 (1460)

Wbb̄ 70700 1140 (230) 1140 (230)

Wcc̄ — 750 (150) 750 (150)

Wc j — 24200 (5070) 24200 (5070)

tt̄ 357000 95600 (40700) 9040 (2770)

S�
B

— 52 73
�

S � B
S — 0.021 0.018
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invariant mass within 20 GeV of the top-quark mass (to account for detector resolution).

Note that 70% of the single-top-quark events survive this cut, while only 43% of the t t̄ events

survive, and only 20% of the W j j, Wbb̄, Wcc̄, and Wc j events survive. The low acceptance

for W j j, Wbb̄, Wcc̄, and Wc j is easily understood since there is no kinematic preference

towards the top-quark mass. The tt̄ acceptance is only 43% because one half of the time

the tagged b quark will be associated with the other top quark in the event and thus has no

preference to reconstruct to the mass of the top quark.

It is evident from Tables 4.3–4.5 that the largest background is t t̄ � W
�

W � bb̄, and it

is much larger than the signal. This background is particularly worrisome because it pro-

duces a peak in the b
� �

ν invariant-mass spectrum at the top-quark mass, as does the signal.7

Hence it is important to apply additional cuts to reduce this background. Since this back-

ground has an additional W boson in the final state, we reject events which have an ad-

ditional charged lepton with pT � � 10 GeV, or additional jets8 with ET j � 20 GeV and

�η j � � 2 � 5 at the Tevatron9 ( �η j � � 4 at the LHC). This reduces the tt̄ background by more

than a factor of 15, while reducing the signal by a modest amount, since the signal rarely has

a third jet with ET j � 20 GeV. This “veto” yields the signal and background cross sections

listed in the fourth column of Tables 4.3–4.5.

We show in Figs. 4.3, 4.4 the b
� �

ν invariant-mass distribution for single-top-quark pro-

duction and the various visible backgrounds after the veto. The W-gluon-fusion process is

prominent at both the Tevatron and the LHC, but the backgrounds are non-negligible. The

7In contrast, the tt̄ background is not as problematic for the process WH with H � bb̄, because it does not
produce a peak in the bb̄ invariant mass near the Higgs mass [83].

8The τ lepton is treated as a jet.
9Since jets from the backgrounds are typically central, increasing the jet rapidity coverage to �η j ��� 4 at

the Tevatron does not decrease the backgrounds significantly.
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Figure 4.3: The b
� �

ν invariant-mass distribution for single-top-quark production
and backgrounds at the Run II of the Fermilab Tevatron. The W-gluon-fusion signal
is denoted by tb̄ j, and the s-channel by tb̄.
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Figure 4.4: The b
� �

ν invariant-mass distribution for single-top-quark production
and backgrounds at the CERN LHC. The W-gluon-fusion signal is denoted by t b̄ j.
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tt̄ background has been reduced to an acceptable level, but it is still significant, and because

it has the same shape as the signal it will be necessary to calibrate this background by mea-

suring it with looser cuts and then extrapolating it to the present cuts with the help of sim-

ulations. If we desire to separate single-top-quark production via W-gluon fusion from the

s-channel process, it will also be necessary to measure the latter and subtract it from the sig-

nal. This can be achieved by double b-tagging [58]. However, for an analysis of Vtb at the

Tevatron we want to use all single-top-quark data. This is unnecessary at the LHC, where

the s-channel process is negligible.

The remaining backgrounds — Wbb̄, W j j, Wcc̄, and Wc j — all yield continuous spec-

tra, and therefore can be calibrated by measuring them in the invariant-mass regions away

from the peak region. These backgrounds are significant and comparable to each other at

the Tevatron, but only Wc j is significant at the LHC. It may be desirable to reject more

strongly events in which a charm or light quark fakes a b jet, both at the Tevatron and the

LHC. This can be achieved by imposing the condition that the invariant mass of the sys-

tem which points to the secondary vertex exceed 2 GeV [92]. The VXD3 vertex detector in

SLD has achieved a b-tagging efficiency of 50%, with a mistag rate of 1 � 24% from charm

and 0 � 07% from light quarks. We use these mistag rates to estimate what might be achieved

with the vertex detectors at the Tevatron and LHC detectors.

The statistics for discovering a signal are different from those for measuring its cross sec-

tion. To claim a discovery, one needs to demonstrate that the signal is not consistent with

a fluctuation in the background. The discovery significance is therefore governed by the

number of signal events divided by the square root of the number of background events S�
B

.

Reducing the background can provide substantial improvement on the significance for dis-
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Figure 4.5: Required mistag rates for charm and the light-quark jets j in order to
reach a discovery significance of 2 � 5σ, or 3σ with data from Run I of the Fermilab
Tevatron.

covery. In the next-to-last row of Tables 4.3–4.5, we present the significance for discovery

of single-top-quark production (all modes) for Run I at the Tevatron, and for the first fb � 1 at

Run II and the LHC. Even though there were about 7–8 events in the top-quark mass-peak

region at Run I, the significance is only 2σ. If a discovery of single-top-quark production is

to be made from Run I data, the charm and light-quark-jet j mistag rates must be reduced.

In Fig. 4.5 we show 2 � 5σ, and 3σ discovery curves as functions of the rate to mistag charm

and light-quark jets, assuming a b-tagging of 50%. At Run II single-top-quark production

will be discovered at the 5σ level in the first 410 pb � 1 of data, and at the LHC in the first

5 pb � 1.

The last row of Tables 4.3–4.5 shows the statistical sensitivity for measurement of the
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total single-top-quark production cross section compared to the backgrounds. This corre-

sponds to measuring the total single b-tagged single-top-quark cross section. This provides

the best statistical result for extracting Vtb. Run II of the Tevatron will provide a measure-

ment of the cross section with a statistical uncertainty of � 11% (with 2 fb � 1 of data) which

combined in quadrature with the theoretical uncertainty of � 15% from the W-gluon fusion

NLO calculation gives a total estimated uncertainty of � 19%. Systematic uncertainties such

as the total luminosity are estimated to be on the order of 5%. Furthermore, these uncertain-

ties will tend to cancel in the ratio of single-top-quark production over t t̄ production. Since

this ratio is proportional to �Vtb � 2, the error on Vtb will be reduced by a factor of two, result-

ing in a measurement of � 10% with 2 fb � 1 of data at Run II. If VXD3 mistag rates can be

achieved [92], the statistical uncertainty on single-top-quark production improves to � 9%

with 2 fb � 1 of data at Run II. The LHC will have � 100 times the number of events per fb � 1

as Run II, which means Vtb can be extracted as accurately as theoretical and systematic ef-

fects can be controlled. Since many of the systematic effects cancel in the ratio, theory will

need to provide higher order corrections to both single-top-quark production and t t̄ produc-

tion.

Because new physics may affect the s-channel, and t-channel modes of single-top-quark

production independently, we also wish to know how well the t-channel cross section can

be measured separately. At Run II, the W-gluon-fusion cross section can be measured to

� 15%(stat) with 2 fb � 1 of data [ � 12%(stat) with VXD3 efficiencies]. After including the-

oretical and estimated systematic errors as above, we estimate the cross section will be mea-

sured to � 22% (with VXD3 rates, � 20%). A measurement of Vtb from this calculation will

be made to � 11%. At the LHC, again the theoretical uncertainties determine how well the

84



cross section can be measured.

The relatively simple set of cuts in Table 4.2 provides us with a measurement of the W-

gluon-fusion cross section within 60% of the theoretical limit (100% signal acceptance with

100% background rejection) at both machines. We therefore restrain ourselves from opti-

mizing our cuts without including a more realistic simulation of detector and hadronization

effects. However, we would like to remind the reader that another unique feature of single-

top-quark production is the forward jet associated with the production of the t-channel W

boson [73, 93]. Fig. 4.6 shows the rapidity η of the identified jet for W-gluon fusion, com-

pared with the rapidity of jets in the background processes at the Tevatron.

The tt̄ background naturally has several additional jets associated with the decay of the

second top quark. Although each of these decay products tends to be central, it is sufficient

for any one of the three jets to be forward which reduces the discriminating power of this

cut on the tt̄ background. Additionally, while the forward jet peaks at a rapidity η � 1 � 8 at

the Tevatron, one-third of the W-gluon-fusion cross section is at η � 1. Hence even a weak

forward tag η j � 1 does not improve the significance for measurement or discovery. The

situation at the LHC is shown in Fig. 4.7. The forward jet peaks at η � 2 � 5, and only 20% of

the W-gluon signal is at η � 1. However, all of the backgrounds also spread out in rapidity.

Thus it remains difficult to make any significant gain by tagging the forward jet. A forward

jet tag should be considered when determining a set of fully-optimized experimental cuts,

but it is unlikely to provide more than a small improvement to the what is achieved above.

4.4 Measuring the top-quark polarization

Single-top-quark production proceeds via the electroweak interaction, therefore, the top
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Figure 4.6: Rapidity distributions for the identified jet j in W-gluon fusion (solid
line) and background events (dashed line) at the Fermilab Tevatron.
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Figure 4.7: Rapidity distributions for the identified jet j in W-gluon fusion (solid
line) and background events (dashed line) at the CERN LHC.
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quarks produced are highly polarized in the direction of the spectator quark in the event [39].

Since the top quark decays before QCD interactions can flip the spin [40],10 the polarization

of the top quark may be observable in the distribution of its decay products. For semilep-

tonic top-quark decays, the lepton is particularly sensitive to the spin of the top quark.

1
σ

dσ
d
�
cos � θ j �

� � � � 1
2

�
1

�
cos � θ j �

� � � � (4.2)

Here, θ j �
� is the angle in the top-quark rest frame, between the spin direction of the top

quark, and the direction of the lepton [41].

Fig. 4.8 shows the normalized distribution versus cos � θ j �
� � for W-gluon fusion, where

θ j �
� is the angle of the lepton in the top-quark rest frame with respect to the direction of

the spectator jet j (identified as in Sec. 4.2). There are four different initial state configu-

rations for W-gluon fusion; u
�

g, g
�

u, d̄
�

g and g
�

d̄. At the Tevatron, the dominant

initial state is ug, providing 3/4 of the cross section. Single-top-quarks are 100% polarized

in the direction of the d-type quark in the event. In events where the d-type quark is the ini-

tial quark, the angle between this quark and the spectator jet is relatively small. Therefore

using the spectator jet as the direction is very efficient. Similarly, for s-channel single-top-

quark production, the direction of the b̄ is correlated with the initial state d̄ antiquark. The

dashed line in Fig. 4.8 shows the distribution versus cos � θ j �
� � after the detector acceptance,

jet smearing, and reconstruction of the neutrino’s momentum are taken in to account, and

the top-quark mass peak reconstructed. The suppression at cos � θ j �
� � � 1 is due to the δR

cut between the lepton and the spectator jet. The dotted line shows this same distribution

including the veto cuts.

10The revolution time T � 1
� � µα2

s
� for a bound state is less than the lifetime of the top quark τ � 1

�
1 � 5 GeV.

For a detailed calculation using potential models and heavy-quark effective theory see Ref. [94].
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Figure 4.8: Normalized distributions of reconstructed top-quark-mass events versus
cos � θ j �

� � , where θ j �
� is the angle between the decay lepton, and the spectator jet in

the top-quark rest frame for W-gluon fusion. The solid line shows events without
any cuts. Events which pass the detector cuts are shown with a dashed line. The
dotted line shows events which pass the veto.

89



tt̄
All W j j modes

tb̄
tb̄ j

cos � θ j �
� �

dσ

�
� σ

dc
os

� θ j

�
�

��

10.80.60.40.20-0.2-0.4-0.6-0.8-1

1

0.8

0.6

0.4

0.2

0

Figure 4.9: Normalized distributions of W-gluon fusion, s-channel production, and
backgrounds versus cos � θ j �

� � , where θ j �
� is the angle between the decay lepton,

and the spectator jet in the top-quark rest frame. These plots are for reconstructed
top-quark-mass events which pass the cuts listed in Table 4.2 in addition to the jet
veto.

In Fig. 4.9 we show the normalized distribution versus cos � θ j �
� � after the veto cuts, and

top-mass reconstruction, forW-gluon fusion, s-channel production, and the backgrounds. A

simple test to observe the top-quark spin polarization is to measure the asymmetry in this

plot. Since jet reconstruction cuts off the small angle region, we define an asymmetry be-

tween � 1 � 0 � cos � θ j �
� � � 0 � 8,

A �
N
�
cos � θ j �

� � � � 0 � 1 � � N
�

� 0 � 1 � cos � θ j �
� � � 0 � 8 �

N
�
cos � θ j �

� � � � 0 � 1 � �
N
�

� 0 � 1 � cos � θ j �
� � � 0 � 8 � � (4.3)

The standard model predicts an asymmetry of � 40% for W-gluon fusion, and � 23 � 5%

for s-channel single-top-quark production, from the reconstructed events after cuts. This
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gives a total single-top-quark asymmetry of � 36%. An unpolarized top quark would have a

zero asymmetry. A nonzero asymmetry measurement would therefore be observation of the

polarization of the top-quark in single-top-quark production. There is a slight positive bias

evident in the tt̄ background events in Fig. 4.9 due to the jet reconstruction algorithm. The

total background, tt̄ plus the various W j j backgrounds, however, is nearly flat in cos � θ j �
� � ,

with an asymmetry of less than
�

4%. If we treat the background as flat, the measured asym-

metry is AMeasured � � 13%. This can be observed at the 3σ level with 2 fb � 1 of data. An

observation of nonzero asymmetry at the 5σ level requires � 525 single-top-quark events

with a background of � 910 unpolarized events. This would require approximately 5.3 fb � 1

of luminosity.

The accuracy with which the top-quark polarization can be extracted from this asymme-

try is limited both by the statistical uncertainty in the asymmetry measurement, as well as

uncertainty in the ratio of the total number of events NTotal to the number of single-top-quark

events Nt . The extracted asymmetry At is:

At � AMeasured � � NTotal � Nt � � (4.4)

The fractional uncertainty is obtained by adding the fractional uncertainty of AMeasured, and

NTotal � Nt in quadrature. Given 2 fb � 1 of luminosity at Run II the experiments should be

able to measure an asymmetry of At � � 36 � 9%, giving the polarization to � 25%. The

large statistical uncertainty � 9% will be greatly improved at the LHC. Assuming the same

asymmetry at the LHC, with 2 fb � 1 of data the statistical uncertainty will be reduced to

� 3%, allowing the top-quark polarization to be measured to � 8%.
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4.5 Conclusions

Single-top-quark production will be an important tool for studying the Wtb vertex. The

W-gluon fusion channel offers large statistics, and therefore the possibility to study the ver-

tex with high precision. We have outlined a set of discovery cuts which may provide evi-

dence for single-top-quark production in the data from Run I at the Fermilab Tevatron, pro-

vided the rates for charm and light-quark jets to be misidentified as b quarks can be con-

trolled. In Run II, single-top-quark production, and W-gluon fusion specifically, will be ob-

served. The W-gluon-fusion cross section can be measured to � 22% or better with 2 fb � 1

of data, from which Vtb can be extracted to � 11% if it is close to unity. This is compa-

rable with the � 12% measurement possible with a double b-tagging analysis optimized to

find s-channel production [58]. Combining these independent measurements, Vtb may be

measured to � 8%. Using the full single-top-quark cross section in this analysis, Vtb can be

measured to � 10%.

Run II may also provide an opportunity to observe the V � A nature of the Wtb vertex by

observing the distribution of the lepton from the semileptonic decay of the top quark. With

2 fb � 1 of data, the polarization of the top quark can be seen at the 3σ level. A measurement

of the polarization can be made to � 25%.

Unlike s-channel single-top-quark production, the W-gluon-fusion cross section grows

rapidly with collider energy. The CERN LHC will provide a measurement of the cross sec-

tion accurate to 2%(stat) with the first fb � 1 of data. In principle this will allow for detailed

studies of the Wtb vertex, provided systematic uncertainties can be controlled.

We describe an improved method for measuring single-top-quark production via W-
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gluon fusion at hadron colliders. With simple cuts, the cross section can be measured to

within a factor of 1 � 6 of the maximum statistical sensitivity. This study looks for only two

jets, with one and only one b tag, and a W that decays leptonically. It also incorporates the

correct method for scaling the differentialW-gluon cross section to the full NLO result. Be-

cause perturbation theory breaks down in the region of where b̄ antiquarks are collinear with

the b quarks, we avoid results that are sensitive to the distribution of the b̄ at low transverse

momenta. Our choice of signal, Wb j, integrates over much of the problem region. Thus the

uncertainty from this effect is reduced from 30% to 10%.

If we wish to obtain smaller errors for the Run II data, or reach high sensitivities at the

LHC, there are a few theoretical issues that need to be resolved. While it is possible to re-

duce the uncertainty due to the collinear region by raising the ET cuts to 40 GeV, the huge

tt̄ background returns since the extra jets escape detection. Hence, a full NLO cross section

that is differential in the pT spectrum of the b̄ antiquark needs to be calculated. The other

main uncertainty is due to the parton distribution function for the gluon. Hopefully, this will

become more constrained when data from the relevant region of x and Q2, is incorporated.
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Appendix A

Supersymetric QCD form factors

The form factors for the one-loop matrix elements in Eq. 2.7 of the supersymmetric QCD

correction to top-quark production are given below. The integrals are written in terms of n-

point integrals [49], in the notation of FF [50]. The code used to evaluate the tensor integrals

is listed in Appendix B. For each appearance of a heavy squark � � , or top squark � � , the term

should be summed with � � 1 or � � 1 first, and then � � � 2 or � � � 2 as indicated. The vacuum po-

larization is separated into terms proportional to the top squarks � � and the heavy squarks � � .

With ∆ � 1 � ε � γE
�

ln4π,

Π � 1
s

�
� 4m2�g �

2s � B0 � m2�g � m2�g � s � � 4A0 � m2�g � � 2
3

�
A0 � m2�t � �

5A0 � m2�q � �
� 1

6
� s � 4m2�t � B0 � m2�t � m2�t � s � � 5

6
� s � 4m2�q � B0 � m2�q � m2�q � s �

� 4s∆ �
4m2�g � 2

3
� s � m2�t � 5m2�q � � � (A.1)

The initial- and final-state vertex correction form factors have the same functional form.

For the initial state, mq � 0, and m �Q � m �q. For the final state, mq � mt , and m �Q � m�t . The

two squarks �� 1 and � �� 2 are summed as before. Arbitrary mixing is allowed for both the
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top squarks and the heavy squarks. The three-point integrals have the form

C � m2
1 � m2

2 � m2
3 � � C � m2

1 � m2
2 � m2

3 � m2
q � m2

q � s � � (A.2)

V � �

3
2

�
m2

qC21 � m2�g � m2�Q � m2�g � �
m2

qC22 � m2�g � m2�Q � m2�g � � � s � 2m2
q � C23 � m2�g � m2�Q � m2�g �

�
2C24 � m2�g � m2�Q � m2�g � � 1

�
2m2

qC11 � m2�g � m2�Q � m2�g � � � s � 2m2
q � C12 � m2�g � m2�Q � m2�g �

� m2�gC0 � m2�g � m2�Q � m2�g � � 2mqm �g sin � 2θ �Q � C0 � m2�g � m2�Q � m2�g � � � 1
3

C24 � m2�Q � m2�g � m2�Q �
� 4

3

�
� B1 � m2�Q � m2�g � m2

q � � � m2
q

�
m2�g � m2�Q � B

�
0 � m2�Q � m2�g � m2

q �
� 2mqm �g sin � 2θ �Q � B

�
0 � m2�Q � m2�g � m2

q � � � (A.3)

S � 3
�
m2

qC22 � m2�g � m2�Q � m2�g � � m2
qC23 � m2�g � m2�Q � m2�g � � mqm �g sin � 2θ �Q � C12 � m2�g � m2�Q � m2�g � �

�

1
3

�
� m2

qC22 � m2�Q � m2�g � m2�Q � �
m2

qC23 � m2�Q � m2�g � m2�Q �
� mqm �g sin � 2θ �Q �

�
C12 � m2�Q � m2�g � m2�Q � � 1

2
C0 � m2�Q � m2�g � m2�Q � � � � (A.4)

A � � 3
2s

cos � 2θ �Q �
�
m2

qC21 � m2�g � m2�Q � m2�g � �
m2

qC22 � m2�g � m2�Q � m2�g �
� � s � 2m2

q � C23 � m2�g � m2�Q � m2�g � �
2C24 � m2�g � m2�Q � m2�g � �

sC12 � m2�g � m2�Q � m2�g �
� m2�gC0 � m2�g � m2�Q � m2�g � �

2
9

C24 � m2�Q � m2�g � m2�Q � � 8
9

B1 � m2�Q � m2�g � m2
q � � � (A.5)

The four-point integrals in the box terms are

D � D � m2�g � m2�q � m2�g � m2�t � 0 � 0 � m2
t � m2

t � s � m2
t

� 2p1 � p3 � � (A.6)

Dc � Dc � m2�g � m2�q � m2�g � m2�t � 0 � 0 � m2
t � m2

t � s � m2
t

� 2p2 � p3 � �

where p1 � p3 � s � 1 � βz � � 4 and p2 � p3 � s � 1
� βz � � 4. The box and crossed-box terms are

summed over each combination of squarks � � i� � j, where i � j � 1 � 2. The mixing of the squarks
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is parameterized as

ac
�

bd � � 1
4

sin � 2θ�t � � (A.7)

for � � 1 and � � 2 respectively, and, for � � i� � j,

a2 �
b2 � 1

4

�
cos2 � θ�t � θ �q � �

cos2 � θ�t � θ �q � � � i � j � (A.8)

c2 �
d2 � 1

4

�
sin2 � θ�t � θ �q � �

sin2 � θ�t � θ �q � � � i � j �

a2 �
b2 � 1

4

�
sin2 � θ�t � θ �q � �

sin2 � θ�t � θ �q � � � i �� j �

c2 �
d2 � 1

4

�
cos2 � θ�t � θ �q � �

cos2 � θ�t � θ �q � � � i �� j �

B � mtm �gs2 � ac
�

bd �
�
D11

� D12
�

D13
�

D0 � �
m2

t s2 � a2 �
b2 �
�

� D12
� D23

� D24

�
D26

� 2D27 � s � �
4s � p2 � p3 � 2 � a2 �

b2 �
�

� D12
�

D13
� D24

�
D25

� 2D27 � s �
� �

m2
t s

�
4 � p1 � p3 � 2 � �m2

t � a2 �
b2 � D23

�
m2�g � c2 �

d2 � D0
� 2mtm �g � ac

�
bd � D13 � �

(A.9)

C � mtm �gs2 � ac
�

bd �
�
Dc

11
� Dc

12
�

Dc
13

�
Dc

0 � �
m2

t s2 � c2 �
d2 �
�

� Dc
12

� Dc
23

� Dc
24

�
Dc

26
� 2Dc

27 � s � �
4s � p1 � p3 � 2 � c2 �

d2 �
�

� Dc
12

�
Dc

13
� Dc

24
�

Dc
25

� 2Dc
27 � s �

� �
m2

t s
�

4 � p2 � p3 � 2 � �m2
t � c2 �

d2 � Dc
23

�
m2�g � a2 �

b2 � Dc
0

� 2mtm �g � ac
�

bd � Dc
13 � �

(A.10)

A few equations in the appendix of Ref. [46] appear to be misprinted. As written they

lead to divergent behavior that does not match Fig. 8 in that paper. With the following re-

placements, our analytic results agree up to the sign discrepency discussed in Sec. 2.1.

FDB
12 � αs

π
� � ŝ � 2A†

5A†
5 �
�
2ŝm2

t
�

2 � û � m2
t � 2 � � m �gmt � 2A†

5A5x �
�
2ŝ2 � � D12

FDB
13 � αs

π
� ŝ � 2A†

5A†
5 �
�
2 � û � m2

t � 2 � �
m �gmt � 2A†

5A5x �
�
2ŝ � ŝ � 2m2

t � � 4 � t̂ � m2
t � 2 � � D13
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FCB
12 � αs

π
� � ŝ � 2A†

5A†
5 �
�
2ŝm2

t
�

2 � t̂ � m2
t � 2 � � m �gmt � 2A†

5A5x �
�
2ŝ2 � � D12

FCB
13 � αs

π
� ŝ � 2A†

5A†
5 �
�
2 � t̂ � m2

t � 2 � �
m �gmt � 2A†

5A5x �
�
2ŝ � ŝ � 2m2

t � � 4 � û � m2
t � 2 � � D13
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Appendix B

Numerical evaluation of tensor loop
integrals

This appendix reproduces the Fortran subroutines in the file zffbcd.f. These subrou-

tines extend the package FF [50] (which numerically evaluates scalar n-point integrals) to

allow for numerical evaluation of n-point tensor integrals up through n � 4 and rank 2. The

notation used in the subroutines is identical to that of FF, except where noted.

The tensor n-point integrals are analytically reduced to sets of scalar n-point integrals

before numerical evaluation. The routines are based on the work of Passarino and Veltman

in Ref. [49] with a few modifications:

1. In order to be consistent with FF, the functions are evaluated in the Minkowski metric

� �
� � � � .

2. As was first pointed out in Ref. [38], on p. 199 in Appendix E of Ref. [49], C22 and C23

were transposed. All reductions were rederived for this work, and the correct ordering

is used below.

3. The numerical solutions to B
�
0 in the subroutine zffb0p were derived analytically,

and checked with the results of Aeppli [95] and Djouadi [43] where possible.

98



The tensor integrals used in the code below are defined as

A � m2 � � 1
iπ2

�
dnq

1
� q2

� m2 � � (B.1)

B0;Bµ � k2
� m2

1 � m2
2 � � 1

iπ2

�
dnq

1;qµ

� q2
� m2

1
� � � q

�
k � 2

� m2
2
� � (B.2)

B
�
0 � k2

� m2
1 � m2

2 � � d
dk2 B0 � k2

� m2
1 � m2

2 � (B.3)

C0;Cµ;Cµν � p2
1 � p2

2 � m2
1 � m2

2 � m2
3 � � 1

iπ2

�
dnq

�
1;qµ;qµν

� q2
� m2

1
� � � q

�
p1 � 2

� m2
2
� � � q

�
p1

�
p2 � 2

� m2
3
� � (B.4)

D0;Dµ;Dµν � 1
iπ2

�
dnq

�
1;qµ;qµν

� q2 � m2
1
� � � q

�
p1 � 2

� m2
2
� � � q

�
p1

�
p2 � 2

� m2
3
� � � q

�
p1

�
p2

�
p3 � 2

� m2
4
� �

(B.5)

where

Bµ � kµB1 � (B.6)

Cµ � p1µC11
�

p2µC12 � (B.7)

Cµν � p1µp1νC21
�

p2µp2νC22
� � p1p2

�
µνC23

�
gµνC24 � (B.8)

Dµ � p1µD11
�

p2µD12
�

p3µD13 � (B.9)

Dµν � p1µp1νD21
�

p2µp2νD22
�

p3µp3νD23
� � p1p2

�
µνD24

� � p1 p3
�

µνD25
� � p2p3

�
µνD26

�
gµνD27 � (B.10)

and � p � k � µν � pµkν
�

kµpν.

C File: zffbcd.f
C
C This is a set of subroutines that evaluates B(mu), C(mu), C(mu,nu)
C D(mu), or D(mu,nu) given the appropriate entries. The analytic
C substitutions are from Passarino & Veltman pp. 196+.
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C NOTE: These functions are evaluated in the Minkowski metric.
C
C NOTE: In dimensional regularization, terms appear as epsilon*fnc,
C let epsilon == e
C then: e*A0(mˆ2) = mˆ2
C e*B0(kˆ2,m1ˆ2,m2ˆ2) = 1
C e*B0p(kˆ2,mqˆ2,m2ˆ2) = 0
C e*B1(kˆ2,m1ˆ2,m2ˆ2) = -1/2
C e*C0(p1ˆ2,p2ˆ2,m1ˆ2,m2ˆ2,m3ˆ2) = 0
C e*C1(p1ˆ2,p2ˆ2,m1ˆ2,m2ˆ2,m3ˆ2) => C11 = C12 => 0
C e*C2(p1ˆ2,p2ˆ2,m1ˆ2,m2ˆ2,m3ˆ2) => C21 = C22 = C23 => 0
C C24 => 1/4
C e*D0(piˆ2,miˆ2) = 0
C e*D1(piˆ2,miˆ2) = 0
C
C Subroutine zffb0p(cb0p,xk,xma,xmb,ier) calculates the value of B0p
C for all cases except B0p(0;0,0).
C
C Subroutine zffb1(cb1,ca0(2),cb0,d0,xmm,xk,xma,xmb,ier) calculates
C the coefficients for B(mu) = k(mu)*cb1.
C
C Subroutine zffc1(cc11,cc12,d0,xmm,xpi,ier) calculates the
C coefficients for C(mu).
C
C Subroutine zffc2(cc21,cc22,cc23,cc24,d0,xmm,xpi,ier) calculates
C the coefficients for C(mu,nu).
C
C Subroutine zffd1(cd1,xpi,ier) calculates the coefficients for D(mu).
C
C Subroutine zffd2(cd2,d0,xmm,xpi,ier) calculates the coefficients
C for D(mu,nu).
C
C The subroutines call: ffxa0
C ffxb0
C ffxc0
C ffxd0
C
C The file ’ff.h’ is included.
C
C

SUBROUTINE ZFFB0P(cb0p,xk,xma,xmb,ier)
C
C Input: (xk=kˆ2), (xma=maˆ2), (xmb=mbˆ2)
C
C Returns: cb0p, ier
C
C NOTE: Integral in FF-format
C
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C Most results are from the dissertation of Aeppli, ’Radiative
C Corrections in the Electroweak Theory’, Zurich 1992. ALL were
C rederived by hand as a check. B0p(k,ma,mb) non-zero is from
C Djouadi, PRD 48,7 p. 3088.
C

implicit none
integer ier
double precision xk,xma,xmb
double precision k,ma,mb
double complex cp,cm
double complex cb0p

C
k = xk
ma = xma
mb = xmb

C ** If xi < 1d-12 then xi = 0d0 **
if (xk .lt. 1d-12) then

k = 0d0
endif
if (xma .lt. 1d-12) then

ma = 0d0
endif
if (xmb .lt. 1d-12) then

mb = 0d0
endif

C
C ** k = 0 **

if (k .lt. 1d-12) then
C ** ma .eq. mb > 0 **

if ((ma .eq. mb) .and. (ma .gt. 1d-12)) then
cb0p = 1d0/6d0/ma

else
C ** ma .ne. mb , ma .or. mb = 0 **

if ((ma .ne. mb) .and. (ma .lt. 1d-12)) then
cb0p = 1d0/2d0/mb

else
if ((ma .ne. mb) .and. (mb .lt. 1d-12)) then

cb0p = 1d0/2d0/ma
else

C ** ma .ne. mb , > 0 **
if (ma. ne. mb) then
cb0p = (ma+mb-2d0*ma*mb/(ma-mb)*log(ma/mb))/2d0/(ma-mb)**2
else

C ** ma = mb = 0 **
print *, ’ERROR> B0p (0,0,0) is not defined here.’
ier = 999
cb0p = 0d0
return
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endif
endif
endif

endif
else

C
C ** k .ne. 0 **
C ** ma = mb = 0 **

if ((ma .lt. 1d-12) .and. (mb .lt. 1d-12)) then
cb0p = -1d0/k

else
C ** ma .ne. mb, one is = 0, k .gt. other

if (((k .gt. ma) .and. (mb .lt. 1d-12)) .or.
1 ((k .gt. mb) .and. (ma .lt. 1d-12))) then

print *,’ERROR> B0p(k,m,0), k > m is not defined here.’
ier=999
cb0p = 0d0
return

endif
C ** ma .ne. mb , one is = 0, k .le. other **

if ((ma .lt. 1d-12) .and. (k .le. mb)) then
cb0p = -(1d0+mb/k*log(1d0-k/mb))/k

else
if ((mb .lt. 1d-12) .and. (k .le. ma)) then

cb0p = -(1d0+ma/k*log(1d0-k/ma))/k
else

C ** ma .ne. mb > 0 **
C ** p = m1+m2 is singular **

if (abs(sqrt(k)-sqrt(ma)-sqrt(mb)) .lt. 1d-12) then
print *,’ERROR> B0p(p,m1,m2) is singular at p=m1+m2.’
cb0p =0d0
ier=999
return
endif

C ** m2 = p-m1 or m1 = p-m2 is special **
if ((abs(sqrt(ma)-sqrt(k)-sqrt(mb)) .lt. 1d-12) .or.

1 (abs(sqrt(mb)-sqrt(k)-sqrt(ma)) .lt. 1d-12)) then
cb0p = -(2d0+(mb-ma)/k*log(ma/mb)+2d0*(k-ma-mb)*(1d0/

1 (k+ma-mb)+1d0/(k+mb-ma)))/2d0/k
return
endif

C ** otherwise **
cp = k-ma-mb+sqrt(dcmplx(k**2-2*k*(ma+mb)+(ma-mb)**2))
cm = k-ma-mb-sqrt(dcmplx(k**2-2*k*(ma+mb)+(ma-mb)**2))
cb0p = -(2d0+(mb-ma)/k*log(ma/mb)+2d0/k*((ma-mb)**2-k*

1 (ma+mb))/(cp-cm)*log(cm/cp))/2d0/k
C

endif
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endif
endif

endif
C
C

return
end

C
C

SUBROUTINE ZFFB1(cb1,ca0,cb0,d0,xmm,xk,xma,xmb,ier)
C
C Input: (ca0(2)=a0(maˆ2),a0(mbˆ2)), (cb0=b0(xk,xma,xmb)), d0, xmm,
C (xk=kˆ2), (xma=maˆ2), (xmb=mbˆ2)
C Returns: cb1, ier
C
C NOTE: Integral in FF-format
C

implicit none
integer ier
double precision d0,xmm,xk,xma,xmb
double complex ca0(2),cb0
double complex cb1

C
include ’/home/theorist/theory/ff/ff.h’

C
C ** xk < 1d-12 then xk = 0 **
C

if (xk .lt. 1d-12) then
if (xma .eq. xmb) then

cb1 = -(d0 - log(xma/xmm))/2d0
else

C ** xma .neq. xmb **
cb1 = -(d0 + 1d0/2d0 - xma/(xmb-xma) - xma**2*log(xma/

1 xmb)/(xmb-xma)**2 - log(xmb/xmm))/2d0
endif

else
C

cb1 = (ca0(1)-ca0(2)-(xk-xmb+xma)*cb0)/(2d0*xk)
C

endif
return
end

C
C

SUBROUTINE ZFFC1(cc11,cc12,d0,xmm,xpi,ier)
C
C Input: d0,xmm, (xpi=m1ˆ2,m2ˆ2,m3ˆ2,p1ˆ2,p2ˆ2,p3ˆ2)
C Calls: ffxb0, ffxc0

103



C Returns: cc11, cc12, ier
C

implicit none
integer ier, i
double precision d0,xmm,xpi(6)
double complex cc11,cc12
double complex cb012,cb013,cb023,cc0,r1,r2
double precision f1,f2,xxdet,x12,xx(2,2)

C
include ’/home/theorist/theory/ff/ff.h’

C
C Simple error trapping: Uncomment to debug.
C
C do 10 i=1,6
C if (xpi(i) .lt. 0) then
C print *, ’xpi’,i,’ < 0 needs to be handled another way.’
C cc11 = 1d0
C cc12 = 1d0
C return
C endif
C 10 continue
C
C Call B0 functions
C

call ffxb0(cb012,d0,xmm,xpi(4),xpi(1),xpi(2),ier)
call ffxb0(cb013,d0,xmm,xpi(6),xpi(1),xpi(3),ier)
call ffxb0(cb023,d0,xmm,xpi(5),xpi(2),xpi(3),ier)

C
C Call C0
C

call ffxc0(cc0,xpi,ier)
C

f1 = -xpi(1) + xpi(2) - xpi(4)
f2 = -xpi(2) + xpi(3) - xpi(6) + xpi(4)

C
r1 = (cc0*f1 + cb013 - cb023)/2d0
r2 = (cc0*f2 + cb012 - cb013)/2d0
x12 = (xpi(6) - xpi(4) - xpi(5))/2d0
xxdet = xpi(4)*xpi(5) - x12**2
xx(1,1) = xpi(5)/xxdet
xx(2,2) = xpi(4)/xxdet
xx(1,2) = -x12/xxdet
xx(2,1) = xx(1,2)

C
cc11 = xx(1,1)*r1 + xx(1,2)*r2
cc12 = xx(2,1)*r1 + xx(2,2)*r2

C
return
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end
C
C

SUBROUTINE ZFFC2(cc21,cc22,cc23,cc24,d0,xmm,xpi,ier)
C
C Input: d0,xmm, (xpi=m1ˆ2,m2ˆ2,m3ˆ2,p1ˆ2,p2ˆ2,p3ˆ2)
C Calls: ffax0, ffxb0, ffxc0, zffb1
C Returns: cc21, cc22, cc23, cc24, ier
C

implicit none
integer ier, i
double precision d0,xmm,xpi(6)
double complex cc21,cc22,cc23,cc24
double complex ca01,ca02,ca03,cc23b,temp23
double complex cc11,cc12,ca0(2)
double complex cb012,cb013,cb023,cc0,r1,r2
double complex cb112,cb113,cb123,r3,r4,r5,r6
double precision f1,f2,xxdet,x12,xx(2,2)

C
include ’/home/theorist/theory/ff/ff.h’

C
C Simple error trapping: Uncomment to debug.
C
C do 10 i=1,6
C if (xpi(i) .lt. 0) then
C print *, ’xpi’,i,’ < 0 needs to be handled another way.’
C cc21 = 1d0
C cc22 = 1d0
C cc23 = 1d0
C cc24 = 1d0
C return
C endif
C 10 continue
C
C Call A0 functions
C

call ffxa0(ca01,d0,xmm,xpi(1),ier)
call ffxa0(ca02,d0,xmm,xpi(2),ier)
call ffxa0(ca03,d0,xmm,xpi(3),ier)

C
C Call B0 functions
C

call ffxb0(cb012,d0,xmm,xpi(4),xpi(1),xpi(2),ier)
call ffxb0(cb013,d0,xmm,xpi(6),xpi(1),xpi(3),ier)
call ffxb0(cb023,d0,xmm,xpi(5),xpi(2),xpi(3),ier)

C
C Call C0
C
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call ffxc0(cc0,xpi,ier)
C
C Define B1 functions
C

ca0(1) = ca01
ca0(2) = ca02
call zffb1(cb112,ca0,cb012,d0,xmm,xpi(4),xpi(1),xpi(2),ier)
ca0(2) = ca03
call zffb1(cb113,ca0,cb013,d0,xmm,xpi(6),xpi(1),xpi(3),ier)
ca0(1) = ca02
call zffb1(cb123,ca0,cb023,d0,xmm,xpi(5),xpi(2),xpi(3),ier)

C Note:
C cb112 = (ca01-ca02-(xpi(4)-xpi(2)+xpi(1))*cb012)/(2d0*xpi(4))
C cb113 = (ca01-ca03-(xpi(6)-xpi(3)+xpi(1))*cb013)/(2d0*xpi(6))
C cb123 = (ca02-ca03-(xpi(5)-xpi(3)+xpi(2))*cb023)/(2d0*xpi(5))
C

f1 = -xpi(1) + xpi(2) - xpi(4)
f2 = -xpi(2) + xpi(3) - xpi(6) + xpi(4)

C
r1 = (cc0*f1 + cb013 - cb023)/2d0
r2 = (cc0*f2 + cb012 - cb013)/2d0
x12 = (xpi(6) - xpi(4) - xpi(5))/2d0
xxdet = xpi(4)*xpi(5) - x12**2
xx(1,1) = xpi(5)/xxdet
xx(2,2) = xpi(4)/xxdet
xx(1,2) = -x12/xxdet
xx(2,1) = xx(1,2)

C
C Define C1 functions
C

cc11 = xx(1,1)*r1 + xx(1,2)*r2
cc12 = xx(2,1)*r1 + xx(2,2)*r2

C
C Define C2 functions
C

cc24 = 0.25d0 + cc0*xpi(1)/2d0 + (cb023 - f1*cc11 - f2*cc12)/4d0
C

r3 = (f1*cc11 + cb113 + cb023)/2d0 - cc24
r4 = (f1*cc12 + cb113 - cb123)/2d0
r5 = (f2*cc11 + cb112 - cb113)/2d0
r6 = (f2*cc12 - cb113)/2d0 - cc24

C
cc21 = xx(1,1)*r3 + xx(1,2)*r5
cc22 = xx(2,1)*r4 + xx(2,2)*r6
cc23 = xx(2,1)*r3 + xx(2,2)*r5

C
C Check C23
C
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cc23b = xx(1,1)*r4 + xx(1,2)*r6
temp23 = (cc23+cc23b)/2d0
cc23 = temp23

C if (abs(1d0-cc23b/cc23) .ge. 1d-2) then
C print *,’ERROR in C23-C23b =’,abs(1d0-cc23b/cc23)
C endif
C

return
end

C
C

SUBROUTINE ZFFD1(cd1,xpi,ier)
C
C Input: (xpi=m1ˆ2,m2ˆ2,m3ˆ2,m4ˆ2,p1ˆ2,p2ˆ2,p3ˆ2,p4ˆ2,
C (p1+p2)ˆ2,(p2+p3)ˆ2)
C NOTE: All momenta are positive coming in,
C labelled as in FF.
C Calls: ffxc0, ffxd0
C Returns: cd1(1), cd1(2), cd1(3), ier
C

implicit none
integer ier, i
double precision xpi(13),xpj(6)
double complex cd1(3)
double complex cd0,cc0134,cc0234,cc0124,cc0123,r20,r21,r22
double precision f1,f2,f3,xxdet,xxinv(3,3)
double precision m1,m2,m3,m4,p1,p2,p3,p4,p12,p13,p23,p5,p6

C
include ’/home/theorist/theory/ff/ff.h’

C
C Simple error trapping: Uncomment to debug.
C
C do 10 i=1,8
C if (xpi(i) .lt. 0) then
C print *, ’xpi’,i,’ < 0 needs to be handled another way.’
C cd1(1) = 1d0
C cd1(2) = 1d0
C cd1(3) = 1d0
C return
C endif
C 10 continue
C

m1 = xpi(1)
m2 = xpi(2)
m3 = xpi(3)
m4 = xpi(4)
p1 = xpi(5)
p2 = xpi(6)
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p3 = xpi(7)
p4 = xpi(8)
p5 = xpi(9)
p6 = xpi(10)
p12 = (p5 - p1 - p2)/2d0
p23 = (p6 - p2 - p3)/2d0
p13 = (p2 + p4 - p5 - p6)/2d0

C
C Call C0
C

xpj(1) = m1
xpj(2) = m3
xpj(3) = m4
xpj(4) = p5
xpj(5) = p3
xpj(6) = p4
call ffxc0(cc0134,xpj,ier)

C
xpj(1) = m2
xpj(4) = p2
xpj(5) = p3
xpj(6) = p6
call ffxc0(cc0234,xpj,ier)

C
xpj(1) = m1
xpj(2) = m2
xpj(4) = p1
xpj(5) = p6
xpj(6) = p4
call ffxc0(cc0124,xpj,ier)

C
xpj(3) = m3
xpj(4) = p1
xpj(5) = p2
xpj(6) = p5
call ffxc0(cc0123,xpj,ier)

C
C Call D0
C

ier=0
call ffxd0(cd0,xpi,ier)

C
C
C Define D11,D12,D13
C

xxdet = p1*p2*p3-p3*p12**2-p2*p13**2-p1*p23**2+2d0*p12*p13*p23
xxinv(1,1) = (p2*p3 - p23**2)/xxdet
xxinv(1,2) = (p23*p13 - p3*p12)/xxdet
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xxinv(1,3) = (p12*p23 - p2*p13)/xxdet
xxinv(2,1) = xxinv(1,2)
xxinv(2,2) = (p1*p3 - p13**2)/xxdet
xxinv(2,3) = (p12*p13 - p1*p23)/xxdet
xxinv(3,1) = xxinv(1,3)
xxinv(3,2) = xxinv(2,3)
xxinv(3,3) = (p1*p2 - p12**2)/xxdet

C
f1 = m2 - m1 - p1
f2 = m3 - m2 + p1 - p5
f3 = m4 - m3 - p4 + p5

C
r20 = (f1*cd0 + cc0134 - cc0234)/2d0
r21 = (f2*cd0 + cc0124 - cc0134)/2d0
r22 = (f3*cd0 + cc0123 - cc0124)/2d0

C
cd1(1) = xxinv(1,1)*r20 + xxinv(1,2)*r21 + xxinv(1,3)*r22
cd1(2) = xxinv(2,1)*r20 + xxinv(2,2)*r21 + xxinv(2,3)*r22
cd1(3) = xxinv(3,1)*r20 + xxinv(3,2)*r21 + xxinv(3,3)*r22

C
return
end

C
C

SUBROUTINE ZFFD2(cd2,d0,xmm,xpi,ier)
C
C Input: d0,xmm, (xpi=m1ˆ2,m2ˆ2,m3ˆ2,m4ˆ2,p1ˆ2,p2ˆ2,p3ˆ2,p4ˆ2,
C (p1+p2)ˆ2,(p2+p3)ˆ2)
C NOTE: All momenta are positive coming in,
C labelled as in FF.
C Calls: zffc1, ffxc0, ffxd0
C Returns: cd2(1), cd2(2), cd2(3), cd2(4), cd2(5), cd2(6),
C cd2(7), ier
C

implicit none
integer ier, i
double precision xpi(13),xpj(6),d0,xmm
double complex cd1(3),cd2(7)
double complex cd0,cc0134,cc0234,cc0124,cc0123,r20,r21,r22
double complex c11134,c12134,c11234,c12234,c11124,c12124
double complex c11123,c12123
double complex r30,r31,r32,r33,r34,r35,r36,r37,r38
double precision f1,f2,f3,xxdet,xxinv(3,3)
double precision m1,m2,m3,m4,p1,p2,p3,p4,p12,p13,p23,p5,p6
double complex temp,cd24,cd25,cd26

C
include ’/home/theorist/theory/ff/ff.h’

C
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C Simple error trapping: Uncomment to debug.
C
C do 10 i=1,8
C if (xpi(i) .lt. 0) then
C print *, ’xpi’,i,’ < 0 needs to be handled another way.’
C cd2(1) = 1d0
C cd2(2) = 1d0
C cd2(3) = 1d0
C cd2(4) = 1d0
C cd2(5) = 1d0
C cd2(6) = 1d0
C cd2(7) = 1d0
C return
C endif
C 10 continue
C

m1 = xpi(1)
m2 = xpi(2)
m3 = xpi(3)
m4 = xpi(4)
p1 = xpi(5)
p2 = xpi(6)
p3 = xpi(7)
p4 = xpi(8)
p5 = xpi(9)
p6 = xpi(10)
p12 = (p5 - p1 - p2)/2d0
p23 = (p6 - p2 - p3)/2d0
p13 = (p2 + p4 - p5 - p6)/2d0

C
C Call C0
C

xpj(1) = m1
xpj(2) = m3
xpj(3) = m4
xpj(4) = p5
xpj(5) = p3
xpj(6) = p4
call ffxc0(cc0134,xpj,ier)
call zffc1(c11134,c12134,d0,xmm,xpj,ier)

C
xpj(1) = m2
xpj(4) = p2
xpj(5) = p3
xpj(6) = p6
call ffxc0(cc0234,xpj,ier)
call zffc1(c11234,c12234,d0,xmm,xpj,ier)

C
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xpj(1) = m1
xpj(2) = m2
xpj(4) = p1
xpj(5) = p6
xpj(6) = p4
call ffxc0(cc0124,xpj,ier)
call zffc1(c11124,c12124,d0,xmm,xpj,ier)

C
xpj(3) = m3
xpj(4) = p1
xpj(5) = p2
xpj(6) = p5
call ffxc0(cc0123,xpj,ier)
call zffc1(c11123,c12123,d0,xmm,xpj,ier)

C
C Call D0
C

ier=0
call ffxd0(cd0,xpi,ier)

C
C
C Define D11,D12,D13
C

xxdet = p1*p2*p3-p3*p12**2-p2*p13**2-p1*p23**2+2d0*p12*p13*p23
xxinv(1,1) = (p2*p3 - p23**2)/xxdet
xxinv(1,2) = (p23*p13 - p3*p12)/xxdet
xxinv(1,3) = (p12*p23 - p2*p13)/xxdet
xxinv(2,1) = xxinv(1,2)
xxinv(2,2) = (p1*p3 - p13**2)/xxdet
xxinv(2,3) = (p12*p13 - p1*p23)/xxdet
xxinv(3,1) = xxinv(1,3)
xxinv(3,2) = xxinv(2,3)
xxinv(3,3) = (p1*p2 - p12**2)/xxdet

C
f1 = m2 - m1 - p1
f2 = m3 - m2 + p1 - p5
f3 = m4 - m3 - p4 + p5

C
r20 = (f1*cd0 + cc0134 - cc0234)/2d0
r21 = (f2*cd0 + cc0124 - cc0134)/2d0
r22 = (f3*cd0 + cc0123 - cc0124)/2d0

C
cd1(1) = xxinv(1,1)*r20 + xxinv(1,2)*r21 + xxinv(1,3)*r22
cd1(2) = xxinv(2,1)*r20 + xxinv(2,2)*r21 + xxinv(2,3)*r22
cd1(3) = xxinv(3,1)*r20 + xxinv(3,2)*r21 + xxinv(3,3)*r22

C
C Define D21,D22,D23,D24,D25,D26,D27
C
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cd2(7) = m1*cd0 - (f1*cd1(1)+f2*cd1(2)+f3*cd1(3)-cc0234)/2d0
C

r30 = (f1*cd1(1) + c11134 + cc0234)/2d0 - cd2(7)
r31 = (f2*cd1(1) + c11124 - c11134)/2d0
r32 = (f3*cd1(1) + c11123 - c11124)/2d0
r33 = (f1*cd1(2) + c11134 - c11234)/2d0
r34 = (f2*cd1(2) + c12124 - c11134)/2d0 - cd2(7)
r35 = (f3*cd1(2) + c12123 - c12124)/2d0
r36 = (f1*cd1(3) + c12134 - c12234)/2d0
r37 = (f2*cd1(3) + c12124 - c12134)/2d0
r38 = (f3*cd1(3) - c12124)/2d0 - cd2(7)

C
cd2(1) = xxinv(1,1)*r30 + xxinv(1,2)*r31 + xxinv(1,3)*r32
cd2(4) = xxinv(2,1)*r30 + xxinv(2,2)*r31 + xxinv(2,3)*r32
cd2(5) = xxinv(3,1)*r30 + xxinv(3,2)*r31 + xxinv(3,3)*r32
cd24 = xxinv(1,1)*r33 + xxinv(1,2)*r34 + xxinv(1,3)*r35
cd2(2) = xxinv(2,1)*r33 + xxinv(2,2)*r34 + xxinv(2,3)*r35
cd2(6) = xxinv(3,1)*r33 + xxinv(3,2)*r34 + xxinv(3,3)*r35
cd25 = xxinv(1,1)*r36 + xxinv(1,2)*r37 + xxinv(1,3)*r38
cd26 = xxinv(2,1)*r36 + xxinv(2,2)*r37 + xxinv(2,3)*r38
cd2(3) = xxinv(3,1)*r36 + xxinv(3,2)*r37 + xxinv(3,3)*r38

C
temp = (cd2(4) + cd24)/2d0
cd2(4) = temp
temp = (cd2(5) + cd25)/2d0
cd2(5) = temp
temp = (cd2(6) + cd26)/2d0
cd2(6) = temp

C
return
end

C
C End of file: zffbcd.f
C
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Appendix C

Next-to-leading order structure
functions

The structure functions for the charged-current production of a heavy quark were cal-

culated at next-to-leading order many years ago in Ref. [96]. This calculation was recently

repeated in Ref. [97], which discovered a misprint in the previous result, and also adopted

the modern convention of treating the gluon as having N � 2 helicity states in N dimensions.

We verified the structure functions, and present them below for completeness.

Our calculation utilizes the charged-current structure functions for top-quark produc-

tion, Fi � x � Q2 � (i � 1 � 2 � 3), calculated in the MS scheme. The bottom-quark mass is ne-

glected throughout. To make contact with Refs. [96,97] we define a related set of structure

functions, Fi � x � Q2 � , via F1 � F1, F2 � 2xF2, and F3 � 2F3. These structure functions are

related to the parton distribution functions by

F q
i � x � Q2 � � q � x � µ2 � � αs � µ2 �

2π

� 1

x

dz
z

�
Hq

i � z � Q2
� µ2

� λ � q � x
z

� µ2 �
�

Hg
i � z � Q2

� µ2
� λ � g � x

z
� µ2 � � � (C.1)

where

λ � Q2

Q2 �
m2

t
� (C.2)
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Table C.1: Coefficients in the expression for hq
i � z � λ � .

i Ai B1 � i B2 � i B3 � i

1 0 1 � 4z
�

z2 z � z2 1
2

2 KA 2 � 2z2
�

2
z

2
z

� 1 � z 1
2

3 0 � 1 � z2 1 � z 1
2

The coefficient function for real and virtual gluon emission (Fig. 3.3) is

Hq
i � z � Q2

� µ2
� λ � � Pqq � z � ln

Q2 �
m2

t

µ2
�

hq
i � z � λ � � (C.3)

where1

Pqq � z � � 4
3

�
1

�
z2

1 � z � �
� (C.4)

hq
i � z � λ � � 4

3

�
hq �

Aiδ � 1 � z � �
B1 � i

1
� 1 � z � �

�
B2 � i

1
� 1 � λz � �

�
B3 � i � 1 � z

� 1 � λz � 2 � ��� � (C.5)

hq � �

�
4

� 1
2λ

� π2

3
� 1

�
3λ

2λ
KA � δ � 1 � z �

�

� 1
�

z2 � lnz
1 � z

� � 1
�

z2 � � 2 ln � 1 � z � � ln � 1 � λz �
1 � z � � � (C.6)

KA � 1
λ

� 1 � λ � ln � 1 � λ � � (C.7)

The coefficients in the expression for hq
i � z � λ � are given in Table C.1.

1The expression for hq corrects a misprint in Ref. [97], where the π2 �
3 term was written as π3 �

3.

114



Table C.2: Coefficients in the expression for hg
i � z � λ � .

i C1 � i C2 � i C3 � i C4 � i

1 4 � 4 � 1 � λ � � 1 � λ � z
1 � λz

� 1 2 � 4

2 8 � 18 � 1 � λ ��
12 � 1 � λ � 2

1 � λ
1 � λz

� 1 6λ � 12λ

3 2 � 1 � λ � 0 � 2 � 1 � z � 2

The coefficient function for initial gluons [Figs. 3.2(b), 3.2(c)] is

Hg

i �
1 � 2
3

� z � Q2
� µ2

� λ � � Pqg � z �
�

� Lλ
�

ln
Q2 �

m2
t

µ2 � �
hg

i � z � λ � � (C.8)

where

Pqg � z � � 1
2

�
z2 � � 1 � z � 2 � � (C.9)

Lλ � ln
1 � λz

� 1 � λ � z
� (C.10)

hg
i � z � λ � � C0

�
C1 � iz � 1 � z � �

C2 � i
� � 1 � λ � zLλ � C3 � i

� λzC4 � i � � (C.11)

C0 � Pqg � z �
�
2 ln � 1 � z � � ln � 1 � λz � � ln z � � (C.12)

The coefficients in the expression for hg
i � z � λ � are given in Table C.2.

The explicit logarithms in Hq
i � z � Q2

� µ2
� λ � and Hg

i � z � Q2
� µ2

� λ � show that the appropriate

scale for the process is µ2 � Q2 �
m2

t , as discussed in Sec. 3.2.

The structure functions for light quarks (Fig. 3.4) in the MS scheme can be obtained

from these expressions by taking mt
� 0 � λ � 1 � . This limit is unambiguous, except for
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the factor Lλ; the correct substitution is

Lλ
� ln

1 � z
z

� (C.13)
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