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Space from a Gauged Rotational Symmetry Theory
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Abstract: We demonstrate the emergence of an effective “time” axis in the ground state of a gauged

rotational symmetry theory in four-dimensional Euclidean space. In so doing, we remove the

necessity of Wick rotation to Lorentz spacetime, an arbitrary and sometimes ill-defined procedure,

especially for gravity-related theories. We begin by adapting the Cho-Duan-Ge decomposition to

the gauge theory of the four-dimensional rotational symmetry group SO(4), where it identifies the

maximal Abelian subgroup SO(2)⊗ SO(2) in a gauge covariant manner. We then find the one-loop

effective theory to have a stable condensate of monopoles corresponding to the reduction of SO(4)

symmetry to SO(2)⊗ SO(2). The construction of the condensate ensures that the four-dimensional

spatial direction of its field strength must coincide with that of this embedding, and that a magnetic

potential must be worked against to divert a trajectory away from this direction. Indeed, movement

along this direction represents minimal potential energy. We take it to be the time direction. The

gauge-dependent nature of the condensate is such that different gauge choices may lead to different

time axes and we show on very general grounds that these different coordinate systems must be

relatable by transformations of Lorentz form.

Keywords: monopole condensate; spacetime; gauge theory; Lorentz symmetry; QCD

1. Introduction

With the discovery of Einsteinian relativity [1] came the realisation that space and
time are both parts of a unified “spacetime” in which time is treated as a dimension in the
same way as the spatial dimensions. However, even in this picture and despite its axis also
rotating between observers, the time dimension is still distinguishable from the three space
dimensions. Momentum, for example, is limited to fall within a certain angle, the light
cone, of any observer’s time axis. Even the metric of spacetime distinguishes the time axis
from the spatial ones with a sign change. The conventional model of one time plus three
space dimensions may fit our intuition well but the existence of a distinguishable time
dimension is still ad hoc. Why is there a distinguishable direction, and if there must be,
then why only one? The metric of spacetime, in the absence of gravity, could just as well
have been diag(−1, −1, 1, 1).

The problematic nature of relativistic time goes beyond aesthetics. Attempts to formu-
late quantum gravity are typically brought low by ill-defined path integrals and indefinite
actions [2]. The problem is often avoided by working in Euclidean space where the negative
norm does not occur because the Lorentz group becomes the compact rotation group but
the negative norm arises upon transition to Minkowski space. Indeed, the reason for Wick
rotation between Minkowski and Euclidean space in the first place is because the path
integral, on which quantum field theory is based, is ill-defined in Minkowski space due
to the oscillatory nature of its integrand [3]. Some authors even argue that quantum field
theory should always be formulated in Euclidean space [4], especially asymptotically free
theories [5].

The fundamental problem with avoiding such problems this way is that the Wick
rotation is not well-defined for arbitrary metrics [6] and this is a curse on most approaches
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to quantising gravity [7]. We note in passing that dynamic triangulation [8] is an exception
to this, as it features a well-defined Wick rotation [9,10] and the unboundedness of its action
is cured nonperturbatively [11,12].

Unfortunately, gauged Poincaré symmetry theory is not so fortunate and is plagued
by the negative norm states originating in the non-compactness of the Lorentz group. Our
approach is to accept that spacetime is fundamentally locally Euclidean so that all field
theories must be formulated in Euclidean space for physical accuracy and not just for
mathematical consistency. We shall argue that a time axis consistent with special relativity
emerges from the vacuum condensate of SO(4) rotational gauge theory. We shall refer to
four-dimensional Euclidean space as “four-space” in this context, and sometimes describe
the properties of four-space as being “four-spatial”. Since this work is exclusively in
Euclidean space, we use latin letters i, j, . . . as four-spatial indices.

In our model the relativistic time axis emerges from a non-trivial vacuum state, itself
derived from the emergence of a favoured direction and dominant generator in a gauge
symmetry theory. The spontaneous dominance of a theory by its Abelian generators is
long-known from confinement studies in quantum chromodynamics (QCD) [13–16] in
which the QCD ground state was considered to be a condensate of (chromo)magnetic
monopoles dual to the superconducting ground state of Cooper pairs. Confinement is then
attributed to a dual-Meissner effect, with the (chromo)electric flux restricted to flux tubes
between colour charges. Early studies of this model in the N = 2 colour theory simply
assumed the dominance of one SU(N = 2) generator, typically ê3, in what is known as the
Maximal Abelian Gauge (MAG) because a single generator yields an Abelian subgroup,
and posited the associated magnetic flux to lie in a particular spatial direction, usually
ẑ [13–16]. While insights into the stability of the magnetic vacuum were available this way,
the arbitrary selection of a particular generator and spatial direction is a blatant violation
of isotropy and gauge covariance and furthermore gives no indication that the magnetic
ground state is due to magnetic monopoles. These weaknesses were addressed by Cho [17]
and by Duan and Ge [18], and later by Faddeev and Niemi [19], and Shabanov [20] by
allowing the MAG to vary arbitrarily throughout spacetime and defining a connection,
called the “Cho” connection, in such a way that its covariant derivative of the internal
direction is zero. The SU(2) gauge field is then decomposed into its Abelian component,
its monopole component, and its off-diagonal components. Correctly accounting for the
degrees of freedom (DOFs) and other mathematical subtleties took significant effort from
various independent groups [20–26], with some initial confusion regarding its dynamical
DOFs and gauge-fixing. This so-called “Cho-Duan-Ge” (CDG) decomposition has since
been applied to the complete N = 3 colour theory [27–29] and Kondo et al. have used it to
study the confinement under subgroups greater than the MAG via the non-Abelian Stoke’s
theorem [30–34].

Another source of difficulty was the apparent existence of an imaginary part to the
one-loop effective action, attributable to interaction between any magnetic condensate
and gluon spin. Cho et al. argued this to be an artifact of subtleties concerning regulari-
sation [23,35,36], but other authors [25] also demonstrated the emergence of an effective
gluon mass sufficiently large to overcome this spin interaction.

The CDG decomposition has also been applied to studies of gravity, both to the
Einstein-Hilbert Lagrangian and to Lorentz gauge theory [37,38]. These studies Wick
rotated SO(1, 3) to SO(4), and then exploited the local isometry between that and SU(2)⊗
SU(2), where the SU(2) groups are generated by the complex linear combinations of
rotation and boost generators Jk ± iKk, where Jk and Kk represent, respectively, rotations
around and boosts along the k-axis. Cho et al. [37,38] applied this decomposition to the
Einstein-Hilbert Lagrangian with particular emphasis on representation theory, while the
author, together with a collaborator, applied the CDG decomposition to a SU(2)⊗ SU(2)
gauge theory in Euclidean space and found evidence for a nontrivial spacetime vacuum
due to quantum corrections [39]. The task of Wick rotating this work to Minkowski space
as a Lorentz gauge theory was deferred as the canonical approach leads to negative kinetic
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energy terms and, at first appearance, a non-positive definite Hamiltonian. We say “at
first appearance” because Kim and Pak made a similar decision in their initial study of
torsion confinement [40], where a low-energy topological background, analogous to the
QCD monopole background discussed above, yields a Rieman-Cartan geometry while
confining torsion. Their subsequent paper [41] demonstrated the existence of positive
energy propagators in the presence of the topological background and a positive semi-
definite Hamiltonian, neither of which were obvious initially.

In this paper we adapt the CDG decomposition from QCD gauge symmetry to the
rotational symmetries of Eucliden spacetime, though in a different manner to the author’s
earlier collaboration [39], and find that the lowest energy state of spacetime is a rotational
monopole condensate, henceforth called the “Minkowski condensate”, which selects a
local direction and interacts with momentum to produce the effects of Einsteinian relativity.
We establish our notation in Section 2, where we outline the application of the CDG
decomposition to SU(2) QCD, and in Section 3 we describe the SO(4) gauge theory used
in this paper, and we demonstrate that the lowest energy state of the theory has a finite,
non-zero field strength in Section 4. The main result of this paper is presented in Section 5
in which we argue for an emergent time direction corresponding to the field strength of the
rotation group’s MAG, and that any momentum vector in Euclidean four-space is dressed
by this background in such a way as to reproduce the effects of a Lorentz transformation.
The specific mathematical form of the Lorentz transforms is shown to follow from very
general and already known considerations [42] so that a detailed calculation is not needed.
We finish with a discussion of some the implications of this work, such as tachyon bound
states and the need for inflation in the early universe in Section 6.

2. The CDG Decomposition—A Review

The Cho Connection

To simplify the presentation, we first describe the CDG decomposition of SU(2) and
SO(3). It was first developed for SU(2) QCD in the context of confinement but local isomor-
phism between these groups means that the notation remains identical and that most results
transfer across. The confinement model is a magnetic monopole background confining
(chromo)electric flux by means of a dual-Meissner effect [23]. To respect gauge covariance
and to ensure that the corresponding magnetic field is of monopole origin, the MAG is
specified at each point in spacetime by the internal unit vector n̂(w) = U†(w)ê3U(w),
where U(w) is a spacetime-varying unitary operation and êi, where i ∈ {1, 2, 3}, represent
the group generators. Defining the Cho connection by

B⃗i(w) ≡ g−1∂in̂(w)× n̂(w), (1)

where g is the coupling constant, yields the covariant derivative

D̂i = ∂i + gV⃗i(w)×, (2)

where
V⃗i(w) = ai(w)n̂(w) + B⃗i(w), (3)

with ai(w) representing the gluon DOFs along the Abelian direction, so that

D̂in̂(w) = 0. (4)

The gluon field A⃗i(w) now decomposes into

A⃗i(w) = V⃗i(w) + X⃗i(w) = ai(w)n̂(w) + B⃗i(w) + X⃗i(w), (5)

where X⃗i(w) contains the DOFs orthogonal to n̂(w) not contained in the Cho connection.
The contribution of the Cho connection to the field strength, i.e., the monopole field strength,
is given by
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H⃗ij(w) = D̂i B⃗j(w)− D̂j B⃗i(w) = ∂in̂(w)× ∂jn̂(w), (6)

where the last equality can be derived by substituting Equation (1). It follows from
Equation (6) that the monopole field strength H⃗ij(w) is parallel to n̂(w), implicitly defining
Hij(w) by

H⃗ij(w) = (H⃗ij(w) · n̂(w)) n̂(w) ≡ Hij(w)n̂(w). (7)

The full field strength decomposes as an Abelian part Fij(w)n̂(w) + H⃗ij(w) with the

derivative terms of the valence gluons X⃗i(w).

F⃗ij(w) = Fij(w)n̂(w) + H⃗ij(w) + (D̂iX⃗j(w)− D̂jX⃗i(w)) + gX⃗i(w)× X⃗j(w), (8)

where
Fij(w) = ∂iaj(w)− ∂jai(w). (9)

We can now give the Lagrangian in terms of the decomposed gauge field, namely

Lgauge = −1

4
F⃗ij(w) · F⃗ij(w)

= −1

4

(

Fij(w)Fij(w) + H⃗ij(w) · H⃗ij(w) + g2(X⃗i(w)× X⃗j(w)) · (X⃗i(w)× X⃗j(w))
)

−1

4

(

D̂iX⃗j(w)− D̂jX⃗i(w)
)

·
(

D̂iX⃗j(w)− D̂jX⃗i(w)
)

−1

2
Fij(w)n̂(w) · H⃗ij(w)− 1

2
g
(

Fij(w)n̂(w) + H⃗ij(w)
)

· (X⃗i(w)× X⃗j(w)) (10)

If we restrict the theory to the Abelian field strength and exclude the valence gluons
then this so-called “restricted” theory still posseses the original symmetry of the complete
theory [17,23].

The CDG decomposition naively appears to add two extra DOFs to the theory. Sha-
banov [22] sought to remove them by imposing the condition

D̂iX⃗i(w) = 0. (11)

However, Bae et al. [26] pointed out that the Cho connection carries only topological
DOFs and not dynamic ones, and that the condition (11) is simply a consistency condition
of X⃗i(w) which must be imposed as a gauge-fixing term:

L f ix = −1

2
(∂iai(w))2 − 1

2
(D̂iX⃗i(w))2. (12)

The corresponding ghost term is given by

Lghost =
¯⃗C(w)D̂2C⃗(w). (13)

We neglect the ghost fields for the Abelian component ai(w) because they disengage
from the dynamics and do not contribute to the final outcome [26].

3. Rotational Gauge Symmetry in Euclidean Space

3.1. The CDG Decomposition of SO(4) Gauge Theory

A Euclidean four-space has six independent rotation generators Mij where the axis
labels i, j have four possible values but are never equal. There is no unique way of writing
them so we use the skew-symmetric matrices whose entries are all zero except at the ith
row in the jth column, equal to +1 when i < j, and vice versa. As with the generators of
three-dimensional space, these generators specify a plane of rotation, but unlike a three-
dimensional space the orthogonal complement to this plane is another plane. For example,
if the four-space is spanned by the orthonormal axes ŵ1, ŵ2, ŵ3, ŵ4 then the generator M12

acts within a plane-of-rotation containing the ŵ1, ŵ2 axes, the orthogonal complement of
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which is the plane described by the ŵ3, ŵ4 axes, orthogonal planes intersecting at a point in
four-space. We advise that, unlike the approach taken in references [37,39,43], this paper
does not use the local isomorphism SO(4) ∼= SU(2)⊗ SU(2) to generate the condensate.

Specific embeddings of this subgroup are given by any Mij Mkl where i, j, k, l are all
different. We employ the CDG decomposition to specify the DOFs associated with this
subgroup in a gauge-covariant way. To apply the CDG decomposition to this rotation
group we must first identify the possible Abelian subgroups. We define the gauge covariant
generators of the MAG

⌈n̂⌉(w) ≡ U†(w)M12U(w), (14)

⌊n̂⌋(w) ≡ U†(w)M34U(w). (15)

For every available embedding of the MAG in SO(4), there is a two-dimensional space of
embeddings of SO(3), spanned by the pairs

{U†(w)M23U(w), U†(w)M13U(w)},

{U†(w)M14U(w), U†(w)M42U(w)}. (16)

The SO(3) embedding is then a linear combination of these pairs combined with ⌈n̂⌉.
It is useful to define

{⌈n̂1⌉(w), ⌈n̂2⌉(w)}, (17)

to represent the remaining two generators of the covariantly embedded SO(3). With the
observation

⌈n̂1⌉(w) = ⌈n̂2⌉(w)× ⌈n̂⌉(w),

⌈n̂2⌉(w) = ⌈n̂⌉(w)× ⌈n̂1⌉(w),

we can then define the unit vectors

⌊n̂1⌋(w) = ⌈n̂2⌉(w)× ⌊n̂⌋(w), ⌊n̂2⌋(w) = ⌈n̂⌉(w)× ⌊n̂1⌋(w), (18)

and the general notation

⌈⃗α⌉ = α1⌈n̂1⌉+ α2⌈n̂2⌉+ α3⌈n̂⌉, (19)

⌊⃗α⌋ = α1⌊n̂1⌋+ α2⌊n̂2⌋+ α3⌊n̂⌋, (20)

where α⃗ ∈ SO(3) and dependence on the spacetime coordinate w is suppressed for clarity
of expression until the end of this subsection so that we may focus on the algebra.

To complete this notation we state the following identities which are easily verified.
(Please note that M42 is used in Equation (16) and not M24).

⌈n̂i⌉ × ⌈n̂j⌉ = ϵijk⌈n̂k⌉ = ⌊n̂i⌋ × ⌊n̂j⌋
⌈n̂i⌉ × ⌊n̂j⌋ = ϵijk⌊n̂k⌋ = ⌊n̂i⌋ × ⌈n̂j⌉, (21)

where ⌈n̂3⌉, ⌊n̂3⌋ are taken to mean ⌈n̂⌉, ⌊n̂⌋, respectively.
The vectors in ceiling brackets identify the SO(3) embedding in a gauge covariant

manner which may vary throughout spacetime and change under local SO(4) gauge
transformations, so
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⌈R⃗⌉ × ⌈S⃗⌉ = ⌈R⃗ × S⃗⌉, (22)

for arbitrary R⃗, S⃗ ∈ SO(3). Combinations of operators not in this SO(3) subgroup are
indicated by the floor brackets ⌊ ⌋,

⌊R⃗⌋ × ⌊S⃗⌋ = ⌈R⃗ × S⃗⌉, (23)

while a mixed product yields a floor bracket,

⌈R⃗⌉ × ⌊S⃗⌋ = ⌊R⃗ × S⃗⌋ = ⌊R⃗⌋ × ⌈S⃗⌉ (24)

It is also useful to represent the sum,

[T] =

[

R⃗

S⃗

]

= ⌈R⃗⌉+ ⌊S⃗⌋, (25)

where any quantity [C], including the Cho connection [B]i defined in Equation (29), is
understood to have a ceiling component and a floor component. We may therefore take

⌈R⃗⌉ ≡
[

R⃗
0

]

, ⌊S⃗⌋ ≡
[

0

S⃗

]

(26)

We shall find it helpful in Section 4.2 to refer to specific SO(3) indices, shown in upper
case latin characters. Indices E = 1, 2 refer to the internal directions of the unit vectors
⌈n̂E⌉, ⌊n̂E⌋, as appropriate, while E = 3 refers to those of ⌈n̂⌉, ⌊n̂⌋, as appropriate. We
also define

[n̂] ≡ ⌈n̂⌉+ ⌊n̂⌋. (27)

Finally, we need to adapt the scalar product to this notation:

⌈⃗α⌉ · ⌈β⃗ ⌉ = α⃗ · β⃗,

⌊⃗α⌋ · ⌊β⃗ ⌋ = α⃗ · β⃗,

⌊⃗α⌋ · ⌈β⃗ ⌉ = 0,

⌈⃗α⌉ · ⌊β⃗ ⌋ = 0. (28)

3.2. Monopole Field Strength

We may now construct the Cho connection

[B]i(w) ≡ g−1∂i⌈n̂⌉(w)× ⌈n̂⌉(w) = g−1∂i⌊n̂⌋(w)× ⌊n̂⌋(w), (29)

with the defining property

g[B]i(w)× ⌈n̂⌉(w) = −∂i⌈n̂⌉(w), g[B]i(w)× ⌊n̂⌋(w) = −∂i⌊n̂⌋(w). (30)

Note that the Cho connection requires a complete square bracket because the derivative
of a pure ceiling bracket may contain a floor bracket component and vice versa. This
is different from the square bracket notation defined in references [37–39] whose Cho
connection was equivalent to a ceiling bracket. This is because those works had preselected
the timelike directions, whereas this work does not. Note too that the derivatives of the
mutually Abelian generators ⌈n̂⌉(w), ⌊n̂⌋(w) are sufficient to determine each other by the
group algebra. The parallel with SU(2) is now straightforward, where we identify the
DOFs of the MAG and identify the Abelian dynamics

[V]i(w) = āi(w)⌈n̂⌉(w) + ai(w)⌊n̂⌋(w) + [B]i(w), (31)

The covariant derivative is then
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[D̂]i = ∂i + g[V]i(w), (32)

which has the properties
[D̂]i⌈n̂⌉(w) = 0 = [D̂]i⌊n̂⌋(w).

The monopole field strength is given by

[H]ij(w) = [D̂]i[B]j(w)− [D̂]j[B]i(w) = ∂i[n̂](w)× ∂j[n̂](w), (33)

Denoting the complete gauge field by [A]i(w) we complete the CDG decomposition
with

[A]i(w) = [V]i(w) + ⌈X⌉i(w) + ⌊X⌋i(w), (34)

where [X]i(w) ≡ ⌈X⌉i(w) + ⌊X⌋i(w) are the remaining dynamic, also called valence, DOFs.
They are orthogonal to the Abelian directions ⌈n̂⌉(w), ⌊n̂⌋(w).

The decomposed full field strength is now,

[F⃗]ij(w) = F̄ij(w)⌈n̂⌉(w) + Fij(w)⌊n̂⌋(w) + [H⃗]ij(w)

+([D̂]i[X⃗]j(w)− [D̂]j[X⃗]i(w)) + g[X⃗]i(w)× [X⃗]j(w), (35)

where

F̄ij(w) = ∂i āj(w)− ∂j āi(w),

Fij(w) = ∂iaj(w)− ∂jai(w). (36)

We can now give the Lagrangian in terms of the decomposed gauge field, namely

Lgauge = −1

4
[F⃗]ij · [F⃗]ij

= −1

4

(

F̄ij F̄ij + FijFij + [H⃗]ij · [H⃗]ij + g2([X⃗]i × [X⃗]j) · ([X⃗]i × [X⃗]j)
)

−1

4

(

[D̂]i[X⃗]j − [D̂]j[X⃗]i

)

·
(

[D̂]i[X⃗]j − [D̂]j[X⃗]i

)

−1

2
F̄ij⌈n̂⌉ · ⌈H⃗⌉ij −

1

2
Fij⌊n̂⌋ · ⌊H⃗⌋ij

−1

2
g
(

F̄ij⌈n̂⌉+ Fij⌊n̂⌋+ [H⃗]ij

)

·
(

[X⃗]i × [X⃗]j

)

, (37)

where we have left out w dependence for the sake of clarity.
If we restrict the theory to the Abelian field strength and exclude the valence gluons

then this so-called “restricted” theory still posseses the original symmetry of the complete
theory [17,23]. The parallel result for our gauged SO(4) theory is discussed in Section 6.

3.3. Invariant Transformations of CDG Decomposition of Gauged Rotational Theory

Introducing the CDG decomposition to this theory leaves us with two gauge invariant
gauge transformations. The first is the “active” or “background” transformation, given by

δI [n̂](w) = g−1[n̂](w)× [⃗α](w),

δI āi(w) = g−1(∂i [⃗α](w)) · ⌈n̂⌉(w),

δI ai(w) = g−1(∂i [⃗α](w)) · ⌊n̂⌋(w),

δI [V]i(w) = g−1[D̂]i [⃗α](w),

δI [X]i(w) = g−1[X]i(w)× [⃗α](w). (38)

We see off-diagonal fields, sometimes called “valence” fields because they transform
as valence DOFs under the active transformation. They are not true valence fields, however,
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because giving them an explicit mass term would spoil the renormalisability of the theory.
The second, passive, transformation is given by

δI I [n̂](w) = 0,

δI I āi(w) = g−1(∂i [⃗α](w)) · ⌈n̂⌉(w),

δI I ai(w) = g−1(∂i [⃗α](w)) · ⌊n̂⌋(w),

δI I [V]i(w) = (δI I āi(w))⌈n̂⌉(w) + (δI I ai(w))⌊n̂⌋(w),

δI I [X]i(w) = g−1([D⃗i] [⃗α](w))⊥[n̂],

δI I [A]i(w) = g−1[D⃗]i [⃗α](w). (39)

These symmetries, of course, have their counterparts in QCD. We do not present them
in the main part of the text in order to minimise repetition but have presented them in
Appendix A. The rotational monopole DOFs are thought to provide a slow-moving passive
background to the fast-moving quantum DOFs provided by the fields ai, [X]i. The reader
will have observed that our notation has become quite involved so, for the sake of clearer
presentation, we shall no longer explicitly indicate dependence on the spacetime coordinate
w, trusting that the text leading up to this point has indicated where it is appropriate with
sufficient clarity.

We point out that the transform of [X]i rotates between ⌊Xi⌋ and ⌈Xi⌉ when [α]
contains a ⌊ ⌋ component, corresponding to the change in SO(3) embedding alluded to
earlier. The gauge fixing and ghost terms follow easily, with

L f ix = −1

2
(∂i āi)

2 − 1

2
(∂iai)

2 − 1

2
([D]i[X]i)

2, (40)

as the gauge fixing conditions and their corresponding ghost terms

Lghost =
[

⃗̄C
]

D̂2
[

C⃗
]

, (41)

where the ghost fields corresponding to the Abelian components do not contribute to the
final outcome [26] and are left out for the sake of clarity.

4. Vacuum State at One Loop

4.1. Magnitude of Monopole Condensate

The non-zero monopole condensate was demonstrated for SU(2) QCD at one loop via
the background field method using dimensional regularisation. In this calculation the Cho
connection provided the background rendered energetically favourable by the gluon and
ghost loops described by the Feynman diagrams in Figure 1. The corresponding one-loop
correction to the effective action, originally stated in references [35] (Equation (19)) and [36]
(Equation (6.2)) is

∆Se f f = − 11

96π2

∫

d4 pHij(p)Hij(−p)

[

2

ϵ
− γ − ln

(

p2

µ2

)]

, (42)

given in momentum space after dimensional regularisation. They went on to analyse the
imaginary part arising from the ln() term but since their argument rests on whether the
momenta are spacelike or timelike we cannot use it here since we are trying to construct a
time direction from first principles. We therefore defer the issue of stability to the following
Section 4.2.

The other calculation in those papers, based on Schwinger’s seminal paper [44],
calculates the functional determinants in the effective action by means of the identity

ln M = −
∫

∞

0

ds

s
exp (−iMs).
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Unfortunately, this calculation of the condensate’s magnitude relies on causality con-
siderations during infrared regularisation as well a Wick rotation, which makes it unsuitable
for the purposes of this paper. The interested reader is referred to references [35,36] for its
complete details.

Figure 1. Feynman diagrams of one-loop contributions to the effective action of SU(2) QCD.

The loops on the left of the figure are due to gluons, while those on right are due to ghosts. Note

that the contributions of the tadpole diagrams in the bottom row are removed by dimensional

renormalisation.

The corresponding calculation for perturbative SO(4) gauge theory is easily inferred
from that of SO(3) gauge theory, which can be lifted from perturbative SU(2) QCD at one
loop. The ceiling bracket portion of the rotational monopole field strength ⌈Hij⌉2 has twice
the contribution of the above QCD field monopole field strength, one gauge field loop
containing āi, ⌈X⃗⌉i, another ai, ⌊X⃗⌋i, plus their corresponding ghost loop contributions.

Similarly, ⌊Hij⌋2 receives contributions from one loop containing āi, ⌊X⃗⌋i and one contain-

ing ai, ⌈X⃗⌉i, in addition to corresponding ghost loop contributions. The corresponding
one-loop correction to the effective action is therefore

∆Se f f = − 11

48π2

∫

d4 p[H]ij(p) · [H]ij(−p)

[

2

ϵ
− γ − ln

(

p2

µ2

)]

. (43)

Defining

H2 ≡ 1

2
[H]ij · [H]ij, (44)

in the context of the SO(4) gauge theory, gives the real part of the effective potential as

P =
1

2

H2

g2

[

1 +
11g2

12π2

(

ln
H

µ2
− c

)]

. (45)

After defining the running coupling ḡ by [13,36,45]

∂P
∂H2

|H=µ̄2 =
1

ḡ2
. (46)

The renormalised potential is now given by

Pren =
1

2

H2

ḡ2

[

1 +
11ḡ2

12π2

(

ln
H

µ̄2
− c

)]

, (47)

for which the local minimum is

⟨H⟩ = µ̄2 exp

(

−12π2

11ḡ2
+ 1

)

. (48)
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Hence, the lowest energy state of SO(4) gauge theory has a non-zero monopole
condensate which we call the Minkowski condensate.

4.2. Stability of the Minkowski Condensate

Concerns about monopole condensate stability were raised early in the study of the
dual Meissner effect as a confinement mechanism [13–15], specifically that the interaction
between the condensate and the negative spin mode of the gluon might, at low energy,

render the gluon energy imaginary. The interaction term in question, [H⃗]ij ·
(

[X⃗]i × [X⃗]j

)

from Equation (37), generates an energy contribution such that a valence field whose energy
would otherwise be k instead has an energy mode of [13–15]

√

k2 ± g∥H∥/
√

2, (49)

where H2 was defined in Equation (44). A negative sign clearly leads to an imaginary part
at low k2.

Following references [25,27,46], we observe at the classical level that the monopole
condensate gives the off-diagonal gluons an effective mass via

1

2
([D̂]i[X]j − [D̂]j[X]i)

2 IBP−−→ ([X]i[D̂]j) · ([D̂]i[X]j)− ([X]i[D̂]j) · ([D̂]j[X]i). (50)

The latter term gives

g2[BD]j[X
E]i[B

B]j[X
C]i fABC fADE, (51)

which provides the effective gauge field mass matrix

M2
EC = g2[BD]j[B

B]j fABC fADE. (52)

So, the tachyon mode becomes

√

k2 + M2
X ± g∥H∥/

√
2, (53)

where the off-diagonal modes have mass eigenvalues

M2
X = ∥H∥, (54)

which is a stronger result than its QCD counterpart, especially for larger numbers of
colours [27]. Dudal et al. have studied the implications of the tachyon mode with a focus
on gluon [47] and even ghost [48] related condensates, but we do not consider those in
this paper.

The arguments for monopole condensate stability in QCD primarily pursued by Cho
and collaborators [23,35,35] argue the tachyonic modes to be an artefact of poorly chosen
renormalisation and take special care in handling singularities. These methods then find
that it is the electric background and not the magnetic one which generates an imaginary
part. Unfortunately for this work, these derivations are either based on causality or include
considerations of whether the momentum is spacelike or timelike, which makes them
unsuitable for work seeking to construct a relativistic time axis from base principles.

5. The Emergence of Effective Minkowski Space

5.1. Identifying the Local Time Axis

The monopole field strength, where from now on we intend monopoles from the
MAG embedded in SO(4) rather than SU(2), points along the internal Abelian directions
described in Equation (27) by the construction in Section 3.2. Since the field strength
components are built from the derivatives of [n̂] with respect to orthogonal axes, it follows
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that [n̂] must be constant in the four-spatial direction of the monopole field strength. We
take that four-spatial direction to be a time axis, which renders the background purely
magnetic, as expected from a monopole condensate, since an electric component to the
field strength requires [n̂] to have a non-zero time derivative.

From the form of the Cho connection, given in Equation (29), any field strength
component is proportional to the derivative of ⌈n̂⌉ (equivalently ⌊n̂⌋) in the corresponding
direction, so in the coordinate system constructed here the time component must vanish.
Since the Cho connection in this theory provides the connection coefficient, we see that
any object being transported in the time direction is unaffected by it. However, a trajectory
deviating from this direction is undergoing geodesic acceleration which, consistently, leads
to greater interaction with the condensate, elevating the potential by pi[B]i, where p is the
Euclidean four-momentum in four-space.

The corresponding monopole field strength tensor [H]ij constructed in this frame has,
by the construction in Equation (33), all zero entries at every component with a time index.
This indicates vanishing “electric” components and non-zero “magnetic” components,
consistent with the background being generated by a monopole condensate. Observers
differing by an active gauge choice, corresponding to different inertial frames, will have
different time and space coordinates. We shall show soon that they are related by a Lorentz
transformation, but first we must establish an invariant speed of light.

5.2. The Constant Speed of Light

A feature unique to and universal among massless field particles such as the photon is
that the phase change with time is proportional to the phase change with distance travelled,
whereas a massive field particle can be stationary or slow-moving but still demonstrate
a rapid phase change with respect to time. Currently, all known massless particles are
spin one gauge fields with circularly polarised states, with the rotation of polarisation
locked to the phase and therefore to motion along both time and space axes. Since the
time direction in this model coincides with the generators of both ⌈n̂⌉ and ⌊n̂⌋, a massless
spin one field, which we shall call the “gauge field” or “gauge boson”, might couple to
the ⌊n̂⌋ components of the condensate’s field strength through its linear momentum and
to the ⌈n̂⌉ component via the angular momentum of its spin, remembering that the two
MAG generators correspond to orthogonal planes. If it is travelling though the Minkowski
condensate at a suitable angle between the t̂ and ẑ directions, then the coupling described in
Section 5.1 with the ⌊n̂⌋ component may equal in magnitude but exactly cancel the coupling
between the ⌈n̂⌉ component with the angular momentum arising from its spin, so that the
additional magnetic dressing of a massive particle described above does not occur for this
massless one. This is not mere wishful thinking as this angular momentum is proportional
to the frequency of the gauge particle, as is the ẑ component of the momentum. This
lockstepping of angular momentum with the rate of phase change with ẑ, and equivalently
t̂, strongly suggests that this outcome is common to all observers. Hence, observers in
relative motion in four-space, implying different t̂ and possibly x̂, ŷ, ẑ axes, should still
observe the massless particle to have no net coupling effects with the monopole condensate.
Exact proof eludes us but this seems simpler if the angle of the gauge particle’s motion
through four-space has the same angle between the ẑ and t̂ axes for all observers.

5.3. Emergence of Lorentz Transformations

We now have that the t̂ and ẑ axes differ between observers after a suitable active gauge
transform of the MAG generators, but do they obey the Lorentz transform? In fact, there is
very little flexibility in the form of coordinate transformations once certain, quite general,
criteria are met. These criteria have been reduced and summarized in chapter 6.4 (page 224)
of reference [42], which uses them to derive the form of the Lorentz transformations without
requiring that the transformation necessarily be between observers in relative motion.
Einstein’s original paper [1] needed only (i) linearity, (ii) invariance of the speed of light in
vacuum, (iii) the existence of a composition law, (iv) the existence of a neutral element, and
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(v) reflection invariance. This was reduced to four conditions by Levy-Leblond [49] and
since reduced further by Nottale [42] (chapter 6 section 4) to

1. Linearity;
2. An internal composition law;
3. Reflection invariance.

An outline of the proof is given in Appendix B, although the reader is referred to
reference [42] for the full details. Here we merely note that these conditions are met
so that the coordinate axes of observers in relative motion vary according to Lorentz
transformations while they all observe the same speed of light, so that special relativity
holds in the low energy effective theory.

We have avoided equating the active gauge transform with the Lorentz transform
because they are not the same thing. The active gauge transform rotates the internal
direction of the MAG but not, directly, the t̂ axis. However, the t̂ axis is determined by
the four-spatial derivative and is therefore affected by the active transformation because
it acts locally and may vary throughout spacetime. The exact relationship between them
has not yet been determined but we can provide some insights. Given the time direction
as described in Section 5, we have ∂t[n̂] = 0. Performing an active gauge transformation,
this becomes

∂t(δ[n̂]) = ∂t[n̂]× α⃗ + [n̂]× ∂t⃗α ̸= 0, (55)

indicating that the emergent time axis may change after an active gauge transformation
whose parameter has a non-zero time derivative. The transformed time axis t̂′ is the one
whose derivative makes this equation vanish, so

∂t′(δ[n̂]) = ∂t′ [n̂]× α⃗ + [n̂]× ∂t′⃗α = 0. (56)

We might then hope to find some restrictions using

∂t′ =
∂t

∂t′
∂t +

∂x

∂t′
∂x +

∂y

∂t′
∂y +

∂z

∂t′
∂z. (57)

The details of this relationship will be the subject of further investigation in the
near future.

6. Discussion

We have shown that locally Minkowski spacetime need not be taken as fundamen-
tal but can be seen as a low energy model arising from perturbative quantum effects.
The advantage of such a model is that it naturally avoids the mathematical inconsistencies
inherent to Minkowski spacetime. The most fundamental would be that the path integral is
ill-defined because of oscillating integrands. It is now textbook procedure to work around
the issue in Euclidean space via the Wick rotation. This works well with non-gravitational
theories, even if the issue still remains in principle [4,5], but not for most quantum theories
of gravity [2,6,7]. This includes gauge theories of the Lorentz group where its non-compact
nature leads to non-positive definite Hamiltonians. This can be temporarily worked around
in Euclidean space using SO(4), but we must then return to Lorentz symmetry in physical
Minkowski space and no Wick rotation is known in continuum gravity for general metrics
(See reference [6] and also page 34 of reference [7] which is a summary of issues relevant to
quantum gravity). In our model, gauged rotational symmetry leads to a non-trivial vacuum
whose interaction with matter and four momentum mimics the effects of special relativity.
The fundamental theory is still in Euclidean space, however, so it is not necessary to Wick
rotate to Minkowski space and incur these issues.

Our construction is challenging, however, in its own ways. The effective spacetime
axes x̂, ŷ, ẑ, t̂ experienced by observers are unlikely to be linear in the underlying Euclidean
axes ŵi, probably requiring a complicated mapping when considering fundamental theories.
We would also like to address the complications of relating an active gauge transformation
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to its emergent Lorentz transform discussed earlier. Also, our construction of an invariant
lightspeed is dependent on all known massless fields having a spin of one. If a more
general construction is not found then this would predict that masslessness, or perceived
masslessness with the effective spacetime axes, requires this property so that the model
fails if an exception is found.

The Minkowski condensate, being a vacuum state, is not present above some critical
temperature, probably the Planck temperature since this is a fundamental theory of space-
time symmetry. Such temperatures are thought to have occurred in the early stages of the
universe, and we predict the lack of a time axis in its absence. It would follow that particle
content at such temperatures is not confined to move within light cones but move in four,
independent space dimensions. Note that without a Minkowski condensate there is no
relativistic speed limit so there is no need for inflationary physics to explain the observed
uniformity of the early universe. The dynamics in this regime would seem to indicate
Newtonian concepts of space and time with dynamics playing out in a spatial arena, though
with four dimensions rather than three, while some universal time linearly passes. How-
ever, as matter and energy spread, the temperature falls until the Minkowski condensate
forms and motion along the emergent local time axis correlates with this Newtonian time.

Tachyons are not forbidden by the equations of special relativity, though they are
assumed not to exist because they generate issues with causality and are associated with
instability in quantum field theories. They are not required by our model but perhaps
a condensate coupling to momentum offers a causally acceptable way to accommodate
them? We expect from the construction in Section 5.1 that the coupling between superlu-
minal momenta and the Minkowski condensate is stronger than for subluminal momenta.
Guidance is provided by the Yang-Mills theories for which the CDG decomposition was
originally constructed, with weak colour coupling at low momentum but confinement from
some critical coupling at smaller length scales. By analogy, tachyons with superluminal
momenta may exist but are confined and never directly observed, just as quarks with colour
are confined and never directly observed. This suggests Planck-scale massive composite
particles composed of tachyons whose net momentum is subluminal, just as quarks make
up baryons with no net colour charge.

Movement, expansion and changing temperature all suggest the passing of something
akin to what we consider time. This paper has focussed on the low-energy steady state,
but meaningful discussion of dynamics without a relativistic time axis will require some
broadening of how we understand time. The elucidation of such a variable is beyond the
scope of this paper but should be the subject of future consideration.

Since the gauged symmetry is ultimately one of spacetime symmetry, we hope that
coupling the Minkowski condensate to the stress-energy tensor in a suitable fashion might
reproduce general relativity as a low energy, topological model. It is encouraging that the
restricted theory without valence fields enjoys the original gauge symmetry of the full
theory, as noted in Section 2.

Other authors have supported the notion that general relativity is a topological theory
with quantum dynamics playing out at higher energies. Pursuit of this program to include
a complete description of gravity would include the derivation of an effective metric and
the introduction of tetrads for the inclusion of spinors [38]. The occurence of a positive
semidefinite Hamiltonian, at least as perceived by observers within the Minkowski con-
densate, will also need to be demonstrated. All this may well prove to be very difficult
as the effective axes x̂, ŷ, ẑ, t̂ are likely to be curvilinear with respect to the underlying
Euclidean ŵi.

A complete understanding of gravity in the context of quantum field theory requires
that we be able to transfer other field theories on to the Minkowski condensate in a
mathematically consistent manner. Finally, of course, any quantum gravity program must
include translation as a fundamental symmetry.
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Abbreviations

The following abbreviations are used in this manuscript:

QCD Quantum ChromoDynamics

MAG Maximal Abelian Gauge

DOFs Degrees of Freedom

CDG Cho-Duan-Ge

Appendix A. Gauge Degrees of Freedom in SU(2)

Under the CDG decomposition SU(2) QCD is invariant under two gauge transforma-
tions [23]. The first, described by Cho et al. [23] as the “active” or “background” transfor-
mation, is given by

δI n̂(w) = g−1n̂(w)× α⃗(w),

δI ai(w) = g−1(∂i⃗α(w)) · n̂(w),

δIV⃗i(w) = g−1D̂i α⃗(w),

δI X⃗i(w) = g−1X⃗i(w)× α⃗(w). (A1)

We see here why the off-diagonal gluons are sometimes called “valence” gluons, be-
cause they transform as valence DOFs under the active transformation. However, they are
not true valence fields because giving them an explicit mass term would spoil renormal-
isability. The second transformation, sometimes called the “passive” transformation, is
given by

δI I n̂(w) = 0,

δI I ai(w) = g−1(∂i⃗α(w)) · n̂(w),

δI IVi(w) = (δI I ai(w))n̂(w)

δI I X⃗i(w) = g−1(D⃗i⃗α(w))⊥n̂(w),

δI I A⃗i(w) = g−1D⃗i⃗α(w), (A2)

where D⃗i is the QCD covariant derivative

D⃗i = ∂i + gA⃗i(w)× . (A3)

The active transform is also known as the background transform because it con-
tains the gauge freedom of the MAG and therefore monopole field, expected to provide
a slow-moving background to the fast-moving quantum DOFs provided by the fields
ai(w), X⃗i(w). It is on this basis that the passive gauge symmetry is fixed against the
monopole background.

Appendix B. General Derivation of Lorentz Transformation

In Section 5.3 we skipped the details of why the Lorentz transformation specifically
relates the observed four momenta between different active gauge choices, equivalent to
reference frames. Our claim is based on a very general argument with application outside
of changes in velocity [42]. Here we sketch an outline of this argument, though the reader
is still referred to pages 224–229 of reference [42] for complete details.

The required conditions are:

1. Linearity;
2. An internal composition law;



Symmetry 2024, 16, 4 15 of 17

3. Reflection invariance.

We begin with the linearity of the transformation:

z′ = γ(v)z − λ(v)t,

t′ = α(v)t − β(v)z, (A4)

where z and t refer to position and time, respectively in our work, but may be interpreted
more broadly. We may define v = λ

γ to gain the general form

z′ = γ(v)(z − vt),

t′ = γ(v)(A(v)t − B(v)z), (A5)

where A(v), B(v) are new functions. Performing a successive transformation of the same
form yields,

z′′ = γ(u)(z′ − ut′),

t′′ = γ(u)(A(v)t′ − B(u)z′), (A6)

leading to the transformation

z′′ = γ(v)γ(u)[1 + B(v)u]

[

z − v + A(v)u

1 + B(v)u
t

]

,

t′′ = γ(v)γ(u)[A(v)A(u) + B(u)v]

[

t − A(u)B(v) + B(u)

A(v)A(u) + B(u)v
z

]

, (A7)

The combined transform is required to be of the same form as the initial one in
Equation (A5) by the principle of relativity, or gauge covariance for our purposes, yielding
the four conditions:

W =
v + A(v)u

1 + B((v)u
, (A8)

γ = γ(v)γ(u)[1 + B(v)u], (A9)

γ(W)A(W) = γ(v)γ(u)[A(v)A(u) + B(u)v], (A10)

B(W)

A(W)
=

A(u)B(v) + B(u)

A(v)A(u) + B(u)v
. (A11)

Combining Equations (A8)–(A10) yields the relation

A

(

v + A(v)u

1 + B(v)u

)

=
A(v)A(u) + B(u)v

1 + B(v)u
. (A12)

We now invoke the postulate of reflection invariance, that changes in spatial ori-
entation should not affect the form of the transformations, to find parity relations on
γ(v), A(v), B(v):

γ(−v) = γ(v), A(−v) = A(v), B(−v) = −B(v). (A13)

Combining Equations (A13) and (A12) and considering the special cases u = 0 and
v = 0 eventually restricts A(v), B(v) to yield to the Einstein-Lorentz form [42]:

w =
v + u

1 + κvu
. (A14)
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Similarly, considering the special case v = −u restricts γ(v) to the form

γ(v) =
1√

1 − κv2
, (A15)

where κ is easily redefined to the inverse of the square of the speed of light for the purposes
of Section 5.3 but can also be taken to zero for a Galilean transformation.
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