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Abstract
Laser-field emission, or optical field emission, is a process

that can produce electron beams with high charge density
and high brightness with ultrafast response times. Using an
extended nanostructure, such as a nanoblade, permits plas-
monic field enhancement up to 80 V/nm with an incident
ultrafast laser of wavelength 800 nm. Stronger ionizing fields
lead to higher current densities, so understanding how this
field is attained will aid in further increasing brightness. In
this paper we lay the framework to study the nanoblade sys-
tem thermomechanically and plasmonically. We show that,
in the moving frame following the laser driver, a steady state
is reached, allowing us to reduce the computational complex-
ity of the multiphysics calculation. We derive Maxwell’s
equations and the current dynamical equation for the steady
state in such a moving frame. We also derive the eigen-
problem for finding plasmonic modes in the structure with
a nonlinear dielectric. The planned calculations to come
will allow us to predict peak attainable fields and optimal
experimental parameters. We leave off with a discussion of
directions for numerical implementation.

INTRODUCTION
Nanostructured cathodes such as nanotips are common-

place in various devices, including electron microscopes [1]
and electron guns [2]. The benefit of using such cathodes
is that the applied electric or laser field is geometrically
or plasmonically enhanced at the apex, reducing the total
emission area and increasing the emitted current density.
The end result is a decreased emittance and increased beam
brightness. Another nanostructure, the nanoblade [3, 4],
promises a larger baseline brightness in part due to the lack
of curvature in one axis [5]. Perhaps even more impactful is
its ability to withstand strong fields – nanotips with ultrafast
THz illumination have reached transient surface fields of
40 V/nm [6] while nanoblades have reached 80 V/nm [4] un-
der similar conditions. In the image charge limited regime,
this two-fold improvement in field strength brings about a
four-fold increase in current density [3, 5].

The blade’s higher field tolerance is attributed to its geom-
etry: a blade uniformly illuminated along its apex has two
degrees of freedom to disperse thermal energy, while a nar-
row tip has only one [7]. This finding’s underlying analysis
was rather simplistic, using a thermalized two-temperature
model of solid gold structures and a simple surface heat-
ing model based on dielectric and vacuum heating losses.
These limitations meant that the comparison between two
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structures may be accurate, but absolute results (e.g., peak
temperatures and damage) must be more carefully inter-
preted. There are several aspects which must be improved
upon, as discussed in the paper. Here we will focus on
producing a holistic model including the temperatures (and
any non-thermal components), the Maxwell fields, vacuum
charge dynamics, nonlinearities, and temperature-dependent
dielectrics. Further, the blade is not only one material; it is
a metal-coated silicon wedge (see the diagram in Fig. 1a).

This is a computationally expensive prospect if we wish to
solve the system fully in 3-D and through time, particularly
considering that we will want to perform several calculations
for varying laser intensities, incident angles, and structure
properties. In this paper we first argue that the system reaches
a steady state, allowing us to remove the time dependence
and make the study more tractable. We then lay some of
the framework necessary to solve for the Maxwell fields
in the moving frame for which the steady state exists. We
finally discuss the next steps for modeling and numerical
implementation.

STEADY-STATE ARGUMENT
We treat the incident laser as a plane wave with infinite

extent transversely and with a non-zero incident angle, as
shown in Fig. 1b. Due to this incident angle, the phase front
moves faster than the speed of light along the blade’s edge.
Additionally, in a frame which moves along the blade at this
effective phase velocity, the free laser pulse is static.

We represent the state of the system as a state vec-
tor 𝑢(r, 𝑡), containing all relevant fields and space-time-
dependent properties. The state at any point in space-time
depends only on the solution in that point’s past light cone,
or domain of dependence (DOD), as stipulated by causality.
We may write the state at r, 𝑡 as a functional 𝐹 of the state
within the DOD of r, 𝑡

𝑢(r, 𝑡) = 𝐹 (r, 𝑡) [𝑢(r′, 𝑡′)] , (1)

such that 𝐹 only operates on 𝑢 within the DOD: (r − r′)2 −
𝑐2 (𝑡 − 𝑡′)2 ≤ 0 and (𝑡 − 𝑡′) > 0. This functional inverts the
dynamical equation for the state vector and is itself invariant
under space-time translations. The transformation to the
moving frame (without Lorentz boosting) is

𝜉 = 𝑧 − 𝑣𝐿𝑡, 𝑡 → 𝑡 , (2)

with the laser’s velocity along the blade 𝑣𝐿 = 𝑐 sec 𝜙 ≥ 𝑐.
Performing this transformation, the DOD is restricted to
𝜉 − 𝜉′ = Δ𝜉 ∈ [Δ𝜉− ,Δ𝜉+] with

Δ𝜉± = −𝑣𝐿Δ𝑡 ±
√︁
𝑐2Δ𝑡2 − Δ𝜌2 ≤ 0 , (3)
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(a) Diagram of a nanoblade with half-opening angle 𝜃 and
radius of curvature 𝑅. Labels include the apex A, the transition
from curved to sloped at T, the apex of the substrate 𝑂, the
substrate S and the coating C.
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(b) Top-down view of the blade (vertical line) and the laser
phase fronts (slanted lines). The laser has an incident angle 𝜙

(exaggerated here) leading to a phase velocity along the blade
axis, 𝑧, of 𝑣𝐿 = 𝑐 sec 𝜙.

Figure 1: Diagrams of the nanoblade and incident laser front.

with 𝜌 the transverse (𝑥-𝑦) coordinate. Because both longi-
tudinal bounds on Δ𝜉 are less than zero, the entire DOD lies
ahead of r. This can be seen in Fig. 2.

Figure 2: Domains of dependence (DOD) (i.e. past light
cone) and causality for two points at the same transverse
coordinate 𝜌′ = 𝜌. The entire DOD for a particular point
𝜉 lies ahead 𝜉′ > 𝜉 and before 𝑡′ < 𝑡 that point, effectively
flushing any time-dependent component away. The laser
phase front lies as a horizontal line on this plot, with vertical
position depending on the relative position 𝜉.

Consider that the system does have an initial condition:
the laser front reaching the beginning of the finite blade. As
suggested, the material as a function of space-time is also
part of the state vector. We then write this as the state being
a combination of a piecewise constant externally applied
state beginning at 𝑧 = 0 and a general internal state

𝑢(𝑡) = Θ(𝜉 + 𝑣𝐿𝑡)𝑢ext + 𝑢int (𝑡) . (4)

For the blade system this 𝑢ext may be the material makeup
of the blade’s cross-section, and only existing for 𝑧 ≥ 0 as
indicated by the Heaviside theta. There is then a perturbation
at 𝜉 = −𝑣𝐿𝑡 which leads to time-dependence within its
domain of causality (future light cone). The forward-most

point for which this perturbation is within the DOD is

𝜉 = −(𝑣𝐿 − 𝑐)𝑡 . (5)

Thus, the unsteady part of the solution is “flushed” back-
wards at 𝑣𝐿 − 𝑐 relative to the moving frame. For a total
pulse width of 𝑇pulse a steady state is reached within this
width after

𝑇steady = 𝑇pulse (1 − cos 𝜙)−1 , (6)

where we have also considered the increased length of the
pulse along the 𝑧-axis with a factor of sec 𝜙.

For instance, with an incident angle of 7 deg and a pulse
width of 𝑇pulse = 8 fs (akin to the experiment of Ref. [3]) a
steady state within the pulse width is reached after 𝑇steady =
1.1 ps, or a length traveled of about 0.3 mm. For reference,
the blade has multi-mm extent. Further, we expect a steady
state to be reached far sooner as the system is lossy, with lin-
ear surface plasmon polaritons (SPP) on a gold surface hav-
ing a decay length of about 100 µm (with dielectric constants
for gold at 800 nm from Ref. [8]). This aids in analyzing ex-
periments with more shallow incident angles (e.g., 1 deg in
Ref. [4]). The remaining caveat is that of the Rayleigh length
𝑧𝑅: Ref. [3] has 𝑧𝑅 ≈ 20 µm which is too short for either
the causality-induced or loss-induced steady state. The goal
is to fully illuminate the blade [4], so in future experiments
this complication may vanish.

2-D MODAL EQUATIONS
Here we lay out the equations for the 2-D SPP modes. The

goal is to further understand the dispersion and behavior of
the underlying SPP enhancement when additional consid-
erations such as temperature and nonlinearities are at play.
We begin with Maxwell’s wave equations and assume that
we are finding a mode with frequency 𝜔 and wavenumber
𝑘 = k · 𝑧 (into the page in Fig. 1a):

𝜕𝑡 → −𝑖𝜔, 𝜕𝑧𝑢 = 𝑖𝑘𝑢, 𝜕𝑧𝜖 = 0 . (7)

The wave equation for the longitudinal 𝐸𝑧 and transverse
𝐸⊥ electric fields are
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∇ × ∇ × 𝐸⊥ + 𝑖𝑘∇𝐸𝑧 + 𝑘2𝐸⊥ =
𝜔2

𝑐2 𝜖 ( |𝐸 |)𝐸⊥

𝑖𝑘∇ · 𝐸⊥ =
𝜔2

𝑐2 𝜖 ( |𝐸 |)𝐸𝑧 .

(8)

The dielectric constant may be moved to the left side to
reveal the eigenproblem for an eigenvalue 𝜔2

𝑐2 , with a given
𝑘 . We may approximate the third-order optical Kerr effect
with the modified field-dependent dielectric function [9]

𝜖 ( |𝐸 |) ≈ 𝜖 (1) + 3
4
𝜒 (3) |𝐸 |2 . (9)

For gold, 𝜒 (3) ≈ (2.2 V/nm)−2 [10], indicating a strong
nonlinearity in the V/nm regime. The field magnitude and
the temperature may be taken from a more whole 3-D calcula-
tion, delegating this as a tool for investigating the underlying
system once these quantities are known.

3D STEADY-STATE MODEL
Here we lay out the foundations for a moving-frame steady-

state calculation, with the aim of using the finite element
method (FEM) for solving. Ultimately we hope to include
the temperature (and/or some representation of the Boltz-
mann equation for non-thermal dynamics), vacuum charge
dynamics (resulting from quasi-static Fowler-Nordheim tun-
neling), and materials with temperature and field dependent
dielectrics. For now we focus on the Maxwell fields and lay
out the linear calculation.

Maxwell’s Equations
We will use the potential formulation of Maxwell’s equa-

tions in the Lorentz gauge:

𝜕2
¤𝑡 A − 𝑐2 ¤∇2A = −𝐽
𝜕2
¤𝑡 𝜙 − 𝑐2 ¤∇2𝜙 = −𝜌 ,

(10)

where the overdot signifies the untransformed coordinate.
Now we perform the coordinate transformation of Equation
2, and with steady state assumed in the resulting frame we
get

¤∇ → ∇, 𝜕¤𝑡 → −𝑣𝐿𝜕𝜉 , 𝜕𝑡 = 0 , (11)

and the wave equation becomes

(𝑣2
𝐿𝜕

2
𝜉 − 𝑐2∇2)A = −J

(𝑣2
𝐿𝜕

2
𝜉 − 𝑐2∇2)𝜙 = −𝜌 ,

(12)

𝜉 is a time-like coordinate here as 𝑣𝐿 > 𝑐. All material
properties will be embedded in the source terms J and 𝜌.

Charge Dynamics
We, of course, have the continuity equation

𝜕¤𝑡 𝜌 = ¤∇ · J , (13)

which transforms to

𝑣𝐿𝜕𝜉 𝜌 + ∇ · J = 0 . (14)

Additionally, the current will be driven by some function

𝜕¤𝑡J = −𝑣𝐿𝜕𝜉J = Q(E,B, 𝜌, J) , (15)

where the electric and magnetic fields may be calculated in
the moving frame

E = −∇𝜙 + 𝑣𝐿𝜕𝜉A
B = ∇ × A .

(16)

The microscopic driver Q embodies the properties of the
participating charges. In vacuum this would just be the
term resulting from the Lorentz force, or a boundary term
due to field emission at the surface. The first step in our
case, however, is to find the behavior for a linear dielectric.
Microscopically, and in the untransformed frame, the current
should be

𝜕¤𝑡J = Q𝜖 (1) =
𝜎

𝜔
E − 𝜏−1J , (17)

with 𝜎 the conductivity and 𝜏−1 the relaxation rate. After
assuming J ∝ E ∝ 𝑒𝑖k· ¤r−𝑖𝜔 ¤𝑡 we find that

Q𝜖 (1) = −(𝜖𝑟 − 1)−1E − 𝜔𝜖𝑖

𝜖𝑟 − 1
J , (18)

where 𝜖𝑟 and 𝜖𝑖 are the real and imaginary relative dielectric
functions, respectively, and are chosen at the primary driving
frequency. We also have the boundary condition 𝑛̂ ·J|surf = 0
binding the charge to the material. This is also where quasi-
static field emission may be applied.

DISCUSSION
With an argument for the inevitable steady state and the

equations laying the framework for such a calculation, the
next step is numerical implementation for the linear dielec-
tric. We intend to solve the system using the finite element
method (FEM), either solving in 3-D or in 2-D by treat-
ing 𝜉 as a time-like coordinate. We have yet to choose the
elements we will use – continuous 𝐻1 elements with the stan-
dard weak formulation seem natural for the potentials, but a
discontinuous Galerkin approach may be more effective for
this advection-type problem.

Subsequently we will add nonlinearity, thermodynam-
ics, and a temperature-dependent dielectric constant. We
hope this will ultimately produce realistic peak tempera-
tures and survivability predictions which we may then use to
find optimal experimental parameters for achieving a higher
brightness or stronger high-harmonic generation yields as
predicted by the field distribution. Lastly, we hope to in-
clude vacuum charge dynamics ensuing from quasi-static
field emission.
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