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The enhancement of the spectrum of primordial comoving curvature perturbation R can
induce the production of primordial black holes (PBH) which could account for part of
present day dark matter. As an example of the effects of the modification of gravity on
the production of PBHs, we investigate the effects on the spectrum of R produced by
the modification of gravity in the case of G-inflation, deriving the relation between the
unitary gauge curvature perturbation ¢ and the comoving curvature perturbation R,
and identifying a background dependent enhancement function £ which can induce large
differences between the two gauge invariant variables.

When ( is not constant in time it is different from R, for example on sub-horizon
scales, or in models exhibiting an anomalous super-horizon growth of ¢, but since this
growth cannot last indefinitely, eventually they will coincide. We derive the general
condition for super-horizon growth of ¢, showing that slow-roll violation is not necessary.
Since the abundance of PBHs depends on the statistics of the peaks of the comoving
density contrast, which is related to the spectrum of R, it is important to take into
account these effects on the PBHs abundance in modified gravity theories.
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1. Introduction

The study of primordial perturbations is fundamental in any cosmological model,
since it allows to make predictions of the conditions which provided the seeds for the
anisotropies of the cosmic microwave background (CMB) radiation or for the process
of structure formation. Among the different theoretical scenarios proposed to explain
the accelerated expansion of the Universe, Horndeski’s theory! has received a lot of
attention, both in the context of inflation and dark energy.

The calculation of the equation for cosmological perturbations for these the-
ories have been so far performed in the so called unitary gauge, also known as
uniform field gauge. While the unitary gauge has some computational convenience
in general relativity when only a scalar field is present, in general it is not directly
related to observations, which depend on the comoving curvature perturbations
R. The production of PBHs? 6 is an example of phenomenon depending on R
and not on the unitary gauge curvature perturbations ¢. Another example are the
numerical codes developed for the solution of the Boltzman’s equations in a per-
turbed Friedman-Lemaitre-Robertson-Walker (FLRW) Universe, which are using
equations in the synchronous gauge,® which for adiabatic perturbations coincides
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approximately with the comoving gauge,’ justifying the use of the comoving slices
gauge for early Universe calculations.

The comoving gauge can differ from the unitary gauge in modified gravity theo-
ries because the effective energy momentum tensor arising from the modification of
gravity can produce some effective entropy terms, which are absent in K (X) theo-
ries, but are present in any more complicated Hordenski’s theory. In this letter we
compute the general relation between R and ¢ in G-Inflation.'® ! As an application
we use this relation to investigate the effects of the modification of gravity on the
power spectrum of R, and its implications on the production of PBHs.

2. G-inflation

In G-inflation the scalar field @ is minimally coupled to gravity according to the

actioni? 12

S— /d4x\/jg <MQ’2°ZR + L(<1>,X)) ,

where X = —¢"”0,90,®/2, R is the Ricci scalar and we use a system of units in
which ¢ = A = 1. The Lagrangian density of the scalar field corresponds to
L(®,X)=K(?,X)+ G2, X)0, (1)

where K and G are arbitrary functions. The corresponding effective stress-energy-
momentum tensor (EST) is given by

Ty =L xV,®V,® + Pyg, + VOV, G+ V, oV ,G, (2)

where
L’X:axL:Kx((I),X)+Gx(q),X)D(I), (3)
Py =L-V, (GV’M(I)) =K - g“”V,@VVG. (4)

3. The perturbed effective energy-stress-momentum tensor

The most general scalar perturbations with respect to a flat FLRW background can
be written as

ds? = a2{ — (1 4 24)dr? + 20; Bdz'dr + [6;;(1 — 2C) + 20,0, E) da:idxj} G

For the decomposition of the scalar field and the EST into their background and
perturbation parts we use the notation

(") = (1) +d9(z"), (6)
T, =T", +6T",. (7)
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The background components of the EST are

T =~ 5= K@) + 296,00 - L K (6.0 + o6 . (®)
T, =T, =0, (9)
T'; =6';P,

P K600 - 6,000+ 2 [Gato0 + Laron] a0

where the primes stand for derivatives with respect to 7, x is given by x = ;5@2, and
the subscripts ¢ and x denote partial derivatives with respect to these quantities, i.e.
Go(d,x) = 05G(¢, x) and G (¢, x) = 0,G(¢, x). In order to define the comoving

slices gauge we need this component of the perturbed EST
3H¢, ¢/2 (;5/2
5TY; = (K +2G, — 2 ——G > —0i0¢ — e G0 (0¢' — ¢'A) (11)

where H = a’/a. The remaining components of the perturbed EST are not rele-
vant to the computations done in this letter, and we will give them in a future
work. Under a gauge transformation of the form (7,2°) — (7 + 07,2 + dz,") the
perturbations 6¢, A, B, C, and E transform according to'3

56— 56— ¢lor, (12)
A— A—Hor — o7, (13)
B — B+ 07 — 62’ (14)
C — C+Hor, (15)
E—E—éz. (16)

4. Evolution of curvature perturbations in the unitary gauge

In single scalar field models the unitary gauge is defined by the condition d¢, = 0.
From the gauge transformation in eq.(12) we can see that the time translation o7,
necessary to go to the unitary gauge is given by

o9

5’7—u == g . (17)
Using eq.(15) we can compute the curvature perturbation in the unitary gauge ¢
_ o
(=-Cy,=-C—-Hoér, =-C— HE . (18)

which is by construction gauge invariant. We can also define other gauge invariant
quantities such as the unitary gauge lapse function
op (09

!
A, =A—Hér, — o1, = A— Ha — (qS’) : (19)
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The second order action for ¢ in Horndeski’s theories was computed in'4
: F
5P = / dtd3za’ {gsg“‘ - 725 (8;0)% , (20)

where Gg and Fg are functions of K(¢,x) and G(¢,x) and their derivatives. The
Lagrange equations for this action give the equation of motion of ¢
Gs

<”+(2H+gs><'—cﬁ¢=o, (21)

where ¢2(7) = Fs/Gs.
For the Fourier transform of the above equation we use the notation
s

Y+ (27—[ + ) G+ Ak =0. (22)
Gs

5. Comoving slices gauge in G-inflation

The comoving slices gauge is defined by the condition §7°; = 0. In G-inflation,
combing egs.(12-13) with eq.(11) we have that under an infinitesimal time transla-
tion

/2
(STOi — (STOi + 0; (d;;D(ST) R (23)
where
D =a®(2Gy + Ky) + Gy (—4H¢' + ¢"), (24)
from which we get the time translation d7. required to go to the comoving slices
gauge
1
= 9D
Note that in the particular case in which G does not depend explicitly on Yy, i.e.
G(¢,x) = G(¢) the above transformation reduces to

0¢
(57'6 = g 5 (26)
and the comoving gauge coincides with the unitary gauge, since in this case the
system is equivalent to a K(X) theory.1% 16

The comoving curvature perturbation R is then defined as

R=-C,=—C—Hor. (27)

— § G (3HSD + ¢ A — 6¢) + a2(2G4 + K, )36| . (25)

0Te

Our goal is to derive the relation between ¢ and R, and we can achieve this by per-
forming the gauge transformation between the unitary and comoving slices gauge.
Using the general gauge transformation defined in eq.(25), when d¢ = 0 and
A=A, we get
_9'Gx

OTue = i) Ay, (28)
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from which we obtain

WG

R=(C+H (29)

The gauge invariant variable A, can be expressed in terms of ¢ using the perturbed
Einstein’s equation dG%; = 679 /M3, in the unitary gauge, which using eq.(11)
gives

¢5/3G
- 2M2,a?
We can then combine eq.(29) and eq.(30) to obtain the relation between R and ¢
only

(' +HA, = - XA, (30)

R=(+H

¢/GX ( ¢/3G

-1
o (s +1) ¢ =Crem, (31)

where we have defined the enhancement factor £(7), a quantity depending only on
the background, which can induce a significant difference between the curvature
perturbations on comoving and uniform field slices. The relation between the power
spectrum of ¢ and R is then given by

B, 3
PR:ﬁ”zH :PCJFﬁAv (32)
where
= e+ e+ e (33)

Note that the above relations are valid on any scale, since they are just based
on gauge transformations, without assuming any sub or super horizon limit. This
implies that the spectra of R and ¢ could be different due to a change in the evolution
of both sub-horizon and super-horizon modes during the time interval when £(n) is
large. On sub-horizon scales the effect is always present, since ( is oscillating and
¢’ # 0, while for super-horizon scales the effect could be suppressed if ¢ =~ 0, but
even for models conserving ( there could be an effect, since the freezing does not
happen immediately after horizon crossing. We will discuss later the implication on
the production of PBHs.

6. Conservation of R and ¢
From eq.(31) we can reach the important conclusion that
¢ =const = ( =R = const; (34)
however the opposite is not true, i.e.
R = const # ¢ = const, (35)

which can have important implications for conservation laws of R and non-
Gaussianity consistency conditions.!” As explained previously, R is the quantity
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related to observations, so it would be inconsistent to infer constraints on ¢ from
CMB observations for example, since the latter depend on R. From a theoretical
point of view the models approximately conserving ¢ on super-horizon scales may
be incompatible with observations for large enhancement functions £(7), because
R could be not conserved, implying for example a violation of the non-Gaussianity
consistency condition or a miss-estimation of PBHs abundance.

Nevertheless it should be noted that the super-horizon growth of perturbations
cannot last indefinitely, or the entire perturbative treatment of the problem would
breakdown, leading to inhomogeneities much larger than those imprinted in the
CMB for example. For this reason it is expected that for any model compatible
with observations the super-horizon growth of ¢ should be only temporary, and
according to eq.(34), at some time after horizon crossing ¢ ~ R. This simplifies the
calculation of R, whose evolution can be then traced during and after reheating,
too, contrary to (.

The only exception to this argument could be very small scales ( modes which
leave the horizon very late, and whose super-horizon growth could continue until
horizon re-enter, without affecting the validity of the perturbative treatment of the
problem. For these small scale modes the difference between R and ¢ could be
important, but it would still be computationally convenient to solve the equation
for ¢ and then obtain R using the gauge transformation given in eq.(31).

7. Enhancement of curvature perturbations

As already observed for comoving curvature perturbation R in general relativity
for standard kinetic term single field models,'® a temporary violation of slow-roll
conditions can lead to the anomalous growth of what would normally be a decaying
mode. A similar mechanism can induce the growth of (, as we will show in this
section. We can re-write eq.(22) in the form

d d k2
— (a?’HQs(fk) + U«]:Sng =0, (36)

da a

from which it is possible to find a super-horizon scale solution of the form

1
a?HGs’

where A and B are constants. For standard slow-roll models the function f decreases
as the scale factor increases, implying that ( tend to a constant value, i.e. the second
term in eq.(37) is a decaying mode. If the function f is a growing function of a then
the second term in eq.(37) becomes a growing mode, and there can be a super-
horizon growth. It follows that the general condition for super-horizon growth of (j
is then

G=avn [Crg- (37)

(38)
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or equivalently

df 1df 1,
A YD
da o dr a?—[f =0 (39)

During inflation aH > 0 and this condition reduces to

f=0. (40)

In the case of a minimally coupled single scalar field the unitary gauge and the
comoving gauge coincide, and the general condition given above takes the form!'®

3—e+n<0, (41)

where the slow-roll parameters are defined according to

a (H\ @+ P) €
=——|—) = —5—+ =—. 42
2 (a) oMZH2 T eH (42)
In G-Inflation the condition given in eq.(40) implies that
d 1 3—e+Gs/HGs v
/ = — f— S = — < 4
/ dr <a27-lgs> a?Gs o~ 0, (43)

which gives the general condition for super-horizon growth in an expanding Uni-
verse. For a contracting Universe the inequality would be inverted.

As can be seen from the above equation the super-horizon growth can be
achieved in different cases, corresponding to v and ¢ having opposite signs, con-
trary to what happened for the standard kinetic term single field scenario, in which
¢ sign is fixed. Note also that contrary to standard kinetic term single field mod-
els, the super-horizon growth does not depend only on the slow-roll parameters,
implying that it can occur also during slow-roll.

The anomalous super-horizon growth of ¢, and consequently of R, can increase
the abundance of PBHs, since it affects the statistics of the density perturbations
peaks which can seed the PBHs.

8. Production of primordial black holes

The super-horizon growth of Ry could produce primordial black holes which could
possibly account for part of dark matter?% 719726 and produce gravitational waves
(GW) detectable with future GW detectors such as LISA.%7 In this session we will
show how to obtain some approximate estimation of the effetcs of the modification
of gravity on the PBH production, without considering any specific model, leaving
this to a future work.

The mass M of PBHs produced by the mode Ry, re-entering the horizon during
the radiation domination can be approoximated as”

M =~Mpy| (44)
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where v ~ 0.2 is a correction factor, and MH’ is the horizon mass My =
F

(47/3)p(aH)~3 at the time of PBH formation, corresponding to the horizon crossing
time

k= (agH)‘F . (45)

Note the above is just a rough estimation, and a more accurate treatment would
involve the use of a scaling relation.?” 28
The present time fraction fppy of PBHs of mass M against the total dark

matter component can then be approximated as’

r=sran ()" () ()

where g, is the number of relativistic degrees of freedom at formation, the quantity
B is the energy density fraction of PBHs at formation time

p=teE| | (46)
p IF

which can be written in terms of the probability of the density contrast P(§) as2°

B(M) =~ /5 P(8)ds (47)

where §; is the threshold for PBH formation. Assuming the density perturbations
follow a Gaussian distribution S is given by

B~ e [—”“24 ) ] | (13)

where v(M) = 6;/0(M), and (M) is an estimation of the standard deviation of
the density contrast on scale R from the variance

o2(M) = / dIn kW2 (kR)Ps (k) = / dInkW2(kR) (;‘f) (kR)*Pr(k),  (49)

where W (kR) is a window function smoothing over the comoving scale R(M) =
(a*H)~t ‘F =2GM/apv~!, and the relation between § and R has been used in the

second equality. It should be mentioned that eq.(48) can be used as a guideline,
but more accurate calculations would involve the use of the results of numerical

30,31 The choice of the window function could also affect32 33 the results

simulations.
of the calculation.

Our aim here is not make an accurate estimation of the PBHs abundance for a
specific model, but to show why in general it can be impacted by the modification
of gravity, and the approximations adopted so far are enough to serve this general

purpose. According to the equations above, the PBH fraction g is affected by the
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power spectrum of R since this can increase the standard deviation of the density
field o(M). Note that the above approximations to estimate the PBHs abundance
can receive important corrections depending on the shape of power spectrum, on
non- gaussianity, and non-linear statistics.>* 3% Due to the importance of all these
different effects it is difficult to find a general model independent analytical for-
mula to estimate the PBHs abundance for a generic G-inflation theory, but any
enhancement of the power spectrum is expected, according to eq.(32), to affect the
probability of production of PBHs. Beside this, numerical relativity simulations of
the PBHs formation are based on general relativity, so the effects of the modifica-
tion of gravity on the process of gravitational collapse are at the moment not fully
understood and would require investigations beyond the scope of this paper.3”

At the end of its anomalous super-horizon growth, ¢ will coincide with R, and the
consequent enhancement of the spectrum will lead to an increased PBH abundance.
Contrary to what happens for standard kinetic term single field models in general
relativity,'® in the case of G-inflation this power spectrum enhancement can be
achieved also during slow-roll, as long as the condition in eq.(43) is satisfied, which
can be attained by an appropriate choice of the function Gg. We expect a similar
behavior for more complex modified gravity theories as well.

9. Conclusions

We have computed the effective energy-stress-tensor for G-inflation theories in the
comoving slices gauge and have used it to derive a general relation between the
unitary gauge curvature ¢ and the comoving curvature perturbation R, involving
an enhancement function which depends on the evolution of the background, and
which can cause a large difference between the two gauge invariant quantities.

When ( is not constant in time it differs from R, for example on sub-horizon
scales, or in models exhibiting an anomalous super-horizon growth of ¢, but since
this growth cannot last indefinitely, eventually they will coincide. We have derived
the general condition for super-horizon growth of ¢, showing that slow-roll violation
is not necessary, and discussed how the the enhancement of the spectrum of R can
affect the PBH abundance.

We expect similar results to hold for other modified gravity theories such as other
! since also for these theories there can be effective entropy or
anisotropy terms which can modify the evolution of curvature perturbations. In the

Horndeski’s theories,

future it will be interesting to extend this study to other modified gravity theories or
to multi-fields systems, and to use observations to constraints the different types of
theories. It would also be important to perform numerical simulations of the PBHs
formation taking into account the non perturbative effects of the modification of
gravity on the process of black hole formation.
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