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Abstract

The process B̄ → Xsγ is known to provide important constraints on extensions of
the Standard Model (SM). The present SM prediction for its CP- and isospin-averaged
branching ratio reads B(B̄ → Xsγ)SM = (3.36± 0.23) · 10−4. It agrees very well with the
current experimental average B(B̄ → Xsγ)exp = (3.43 ± 0.22) · 10−4. The experimental
accuracy is expected to improve in a significant manner after the Belle-II experiment
begins collecting data within the next few years. Consequently, theoretical calculations
must also be upgraded to match the experimental precision.

A considerable contribution to the current theoretical uncertainty originates from
the fact that some of the Next-to-Next-to-Leading-Order strong interaction corrections
(called K

(2)
17 and K

(2)
27 ) have not yet been calculated for an arbitrary value of the charm

and bottom quark mass ratio mc/mb. Instead, known results for these corrections at
mc = 0 and for mc � mb/2 serve as a basis for an interpolation in mc, which introduces
around ±3% uncertainty into B(B̄ → Xsγ)SM.

In order to remove this uncertainty, determining the exact dependence ofK
(2)
17 andK

(2)
27

on the c-quark mass is necessary. In the language of Feynman diagrams with unitarity
cuts, four-loop diagrams with two mass scales (mc and mb) need to be evaluated. The
necessary ultraviolet counterterms involve three-loop two-mass-scale diagrams that must
be calculated up to O(ε) in the dimensional regularization parameter ε.

In the present thesis, we evaluate [1] the exact dependence on the c-quark mass of
all the necessary ultraviolet-counterterm diagrams that contribute to the yet-unknown
parts of K

(2)
17 and K

(2)
27 . These corrections originate from interferences of four-quark and

photonic dipole operators. They are currently responsible for the main uncertainty in the
perturbative contribution to B(B̄ → Xsγ)SM.

Apart from the calculation for arbitrary mc, we also evaluate many of the necessary
counterterm contributions at mc = 0, and present them to all orders in ε wherever
possible. Our results have contributed to the evaluation of the mc = 0 boundary for the
interpolation, and thus to the recently published updated phenomenological analysis of
B(B̄ → Xsγ)SM [2].

The thesis contains many technical details that have not been presented elsewhere,
namely explicit expressions for all the relevant quantities in terms of the master integrals,
as well as results for these integrals obtained using several different methods, involving
Mellin-Barnes techniques and differential equations.
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Chapter 1

Introduction

This thesis is based on the Standard Model (SM) [3–18] of elementary particle physics
which describes our current knowledge of the three fundamental non-gravitational forces:
strong, electromagnetic and weak. It is remarkable that all these three interactions are
based on a common principle of gauge invariance, and successfully described by a local
relativistic and renormalizable quantum field theory.1 The mechanism of Electroweak
Symmetry Breaking (EWSB) occurring at the scale v ∼ 248 GeV is a main component
of the SM. The scale v corresponds to the vacuum expectation value of the Higgs doublet
that gives masses to the weak bosons W± and Z0, leaving the spinless boson h0 as the
physical degree of freedom. In July 2012, the SM emerged as a complete theory in
the sense that its last missing particle h0 was experimentally found with mass around
126 GeV [20,21].

The SM is an impressive theoretical achievement and one of the best successfully
tested theories of contemporary physics. It has been investigated to a great precision at
dedicated particle accelerator facilities [22]. In particular, the gauge sector of the SM has
been extensively studied at the Large Electron-Positron (LEP) collider [23] at the Eu-
ropean Organization for Nuclear Research (CERN), at the Stanford Linear Accelerator
Center (SLAC), as well as at the Tevatron accelerator at the Fermi National Accelerator
Laboratory (FNAL). These experiments have tested many SM observables reaching the
accuracy of below per-mille level, becoming sensitive to loop quantum corrections of elec-
troweak origin. Also, loop corrections due to Quantum Chromodynamics (QCD) played
an important role in comparing theory predictions to the experimental results. Some of
the noteworthy examples of relevant higher-order electroweak corrections occur in the
case of the ρ-parameter [24–28], the muon decay and the Fermi constant GF [29,30], the
Weinberg mixing angle extracted from leptonic observables [31], as well as anomalous
magnetic moments of both the electron and the muon. In the anomalous magnetic mo-
ment cases, accuracies reaching one part in 109 [32] and one part in 106 [22] have been
reached for the electron and muon, respectively. With such an accuracy, the anomalous
magnetic moments (despite being leptonic quantities) become sensitive to strong inter-
action effects, which in the muonic case are the main limitation for further improving
the accuracy on the theory side. Other examples of observables allowing for very precise
comparisons between the SM predictions and data are the bound state spectra of positro-
nium [33] and muonium. At present, no clear contradiction between the SM predictions

1 See Ref. [19] for a sample list of textbooks on the SM and field theory.
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and experimental data is observed, after supplementing the SM with neutrino masses
stemming from dimension-five operators, as well as an extra weakly-interacting particle
to describe Dark Matter (DM) in the Universe. There are a few measurements in which
tensions with the SM predictions occur, but they either seem to be debatable or at least
statistically allowed given the large number of observables considered.

Despite its success, one should keep in mind that the SM is likely only an effective
theory that describes Nature at low energies, at or below the EWSB scale. At higher
energies, beyond-SM degrees of freedom may become dynamical. Their possible existence
could help us in better understanding the EWSB mechanism, neutrino masses and mix-
ings, or the observed asymmetry between baryons and anti-baryons in the Universe. In
general, a New Physics (NP) theory at the TeV scale or above is expected to satisfy the
following requirements: (i) its gauge group should contain the SU(3)C×SU(2)L×U(1)Y
of the SM, (ii) it should incorporate all the SM degrees of freedom either as fundamental
or composite fields, and (iii) it should reduce to the SM in the low-energy limit. A search
for Beyond-SM (BSM) theories is actively being carried out in two complementary ways,
namely via direct production searches (high energy frontier) and via indirect searches
(high intensity frontier). Both approaches require sincere theoretical predictions with
quantifiable error estimates. In both of them, an important issue is to keep quantum
effects under control, particularly the QCD ones. The main purpose of the Large Hadron
Collider (LHC) are the direct searches at the TeV scale and beyond. So far, no direct
evidence of NP has been found. At the same time, low energy measurements are becom-
ing progressively accurate, increasing their potential of indirect searches. This requires
higher precision on the theoretical side. In many cases, higher-order perturbative quan-
tum corrections need to be calculated. It is particularly relevant for processes where
virtual exotic particles might contribute to loop amplitudes. A well-known class of such
processes are Flavor Changing Neutral Current (FCNC) decays which arise only at the
one-loop level in the SM. An important difficulty in their case is that they involve quarks,
so a good control over QCD effects is required to reach a percent-level accuracy.

The flavor structure of the SM is dictated by the Higgs-quark-antiquark Yukawa in-
teractions which generate the quark masses when the Higgs field acquires its vacuum
expectation value. The Yukawa coupling matrices contain a sizeable number of indepen-
dent parameters. In the quark sector, these are the 6 physical masses of quarks and four
parameters (3 angles and one phase) of the Cabibbo-Kobayashi-Maskawa (CKM) ma-
trix [34, 35]. The CKM matrix describes the quark mass eigenstate mixing under weak
interactions. Numerical values of these parameters are not predicted by the SM but rather
have to be extracted from measurements before making any theoretical prediction.2

In the present thesis, we will focus on the quark flavor sector of the SM in the context
of a subclass of B-meson decays, specifically the weak radiative B-meson decay. For
definiteness, let us consider the mesons being bound states of the b quark and one of the
light antiquarks (ū or d̄). The bū bound state is called B−, and the bd̄ bound state is
called B̄0. Both of them will commonly be denoted by B̄. We shall consider their weak
radiative decays into a photon and any hadronic final state that contains no charmed
(C 6= 0) particles, and has nonvanishing strangeness (S 6= 0), i.e. contains an unbalanced
s quark. We shall sum over all the possible final states satisfying the above requirements,

2 Some standard reviews of heavy flavor physics can be found in Refs. [36, 37].
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which means considering an inclusive process. The branching ratio of this process is
denoted by B

(
B̄ → Xsγ

)
. Its evaluation and/or measurement involves taking an average

over B̄ = B− and B̄ = B̄0 (see Sec. 2.3 for more details).

Since the early 1990’s, the decay B̄ → Xsγ has been one of the most frequently con-
sidered processes in flavor physics. It is well known as an invaluable and-well established
means to constrain parameter spaces of BSM models. Being generated by the quark-level
b → sγ FCNC transition in the SM, it receives dominant contributions from loop dia-
grams involving the W boson and up-type quarks. Sample Leading Order (LO) diagrams
for B̄ → Xsγ in the SM, multi-Higgs doublet models and the Minimal Supersymmetric
Standard Model (MSSM) are shown in Fig. 1.1. One can see that the SM contribution

Figure 1.1: Sample LO diagrams for B̄ → Xsγ in the SM (a), multi-Higgs doublet model
(b) and MSSM (c), respectively.

is of the same perturbative order as the possible BSM ones. Comparable contributions
in the multi-Higgs doublet models can arise from loops with charged scalars as shown in
Fig. 1.1(b). In the supersymmetric theories, chargino-squark loops shown in Fig. 1.1(c)
often become important, even in scenarios with minimal flavor violation and moderate
tanβ. In the SM, the considered decay receives an additional chirality suppression by
a factor of mb/mW . Such a chirality suppression may be off-set in certain NP models
like the MSSM with large tanβ or left-right models. Therefore, constraints from b→ sγ
on such models are particularly severe [38, 39]. However, the power of B̄ → Xsγ for
indirectly testing NP models depends on the accuracy of its measurements and precision
of theoretical predictions.

Another application of B̄ → Xsγ that has frequently been discussed in the literature is
constraining the Heavy Quark Effective Theory (HQET) [40] parameters that matter for
extraction of the CKM elements |Vcb| and |Vub| from the semileptonic B-meson decays.
However, this application is now mostly of historical importance because of growing
accuracy in the determination of these parameters from the semileptonic decays alone [41],
and to intrinsic uncertainties generated by the charm-quark loop contributions to B̄ →
Xsγ.

As far as the measurements are concerned, the first observation of an exclusive
hadronic process that is generated by b → sγ, namely B → K∗γ, was performed by
the CLEO collaboration in 1993 [42]. Both at CLEO and at the so-called B-factories
that started their operation in the late 1990’s (Belle and Babar), electron-positron col-
lisions at the center-of-mass energy overlapping with the Υ(4S) resonance were used to
produce the B mesons. At Belle, a significant fraction of time was also spent at the
Υ(5S) resonance, where Bs production in addition becomes kinematically allowed.

The current measurements of the CP- and isospin-averaged branching ratio of B̄ →
Xsγ performed by CLEO [43], Belle [44,45] and Babar [46]- [50] contribute to the following
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(a) (b)

Figure 1.2: The measured photon energy spectra in B̄ → Xsγ as measured by the (a)
Babar [46] and (b) Belle [44] experiments. The peaks are centered around Eγ ' mb/2 '
2.35 GeV which corresponds to the photon energy in the two-body partonic decay b → sγ
with an approximately massless s quark.

world average [51]

B
(
B̄ → Xsγ

)exp

(E0=1.6)
= (3.43± 0.21± 0.07) · 10−4, (1.1)

where the last error (±0.07) originates from the photon spectrum modeling, while the first
one (±0.21) contains the remaining systematic errors together with the statistical one.
This average, performed by the Heavy Flavor Averaging Group (HFAG), corresponds to
including only photons whose energies Eγ are larger than E0 in the B-meson rest frame,
and E0 is set to 1.6 GeV. The averaging involves an extrapolation3 from measurements
performed at E0 ∈ [1.7, 2.0] GeV. A combination of the experimental results and their
extrapolation to E0 = 1.6 GeV are performed in the same step, to minimize model depen-
dence. The experimental cuts at E0 ∈ [1.7, 2.0] GeV are necessary due to rapidly growing
backgrounds at lower energies. On the other hand, theoretical predictions become less
precise with growing E0 (see below). Thus, an intermediate value of E0 must be chosen
for comparing theory with experiment. A conventional choice of E0 = 1.6 GeV was pro-
posed in Ref. [52], and it is being followed since then. The raw photon energy spectra
in the inclusive measurements are shown in Fig. 1.2. One can see that the uncertainties
grow for smaller photon energies in both plots. It is due to subtraction of a larger and
more uncertain background. The background originates from the so-called continuum
processes (i.e. e+e− collisions that produce no B mesons), as well as, e.g., radiatively
decaying π0 and η particles produced in purely hadronic B-meson decays.

It is worth to emphasize that at the LHCb (a hadronic collider) at CERN, only
measurements of exclusive b→ sγ decay modes are feasible. The advantage of B-factories
is that radiative B decays can be studied both inclusively and exclusively. An important
improvement in the accuracy of the inclusive B

(
B̄ → Xsγ

)
measurement is expected at

Belle II [53] which is being constructed at present, and scheduled to begin collecting data
in October 2017. It aims at collecting 50 times more e+e− → Υ(4S)→ BB̄ events than

3 Further comments on this extrapolation can be found in Sec. 2.1.3.
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Figure 1.3: A summary of the B
(
B̄ → Xsγ

)
measurements, and their comparison to the

current SM prediction [2].

the previous B-factories taken together. Much larger statistics will allow to efficiently
use the so-called hadronic tagging which practically removes the continuum background,
and thus leads to a reduction of systematic errors, too.

On the theoretical side, the flavor changing weak interactions are described by the
well-established Effective Field Theory (EFT) framework. Exploiting the Heavy Quark
Expansion (HQE) within this framework, one shows [54–61] that the inclusive decay rate
Γ
(
B̄ → Xsγ

)
is well approximated by the partonic decay rate4

Γ
(
B̄ → Xsγ

)
= Γ

(
b→ Xpartonic

s γ
)

+ δΓnonp. (1.2)

Here, Xpartonic
s stands for s, sg, sgg, sqq̄, . . . being partonic states with q = u, d, s only.

The detailed analysis of Ref. [61] results in an estimate of δΓnonp/Γ
(
B̄ → Xsγ

)
at the

level of 0.05 or below, which is often expressed as the statement that “nonperturbative
corrections” do not exceed 5% of the decay rate. The qualitative reason why the consid-
ered inclusive decay of the B meson can be very well described perturbatively is the fact
that the b-quark mass mb (or the B-meson mass mB ' 5.3 GeV) is much larger than the
QCD confinement scale Λ ∼ mB − mb ∼ 0.6 GeV, and that all the decay products are
much lighter than mb. It is also important that the numerically dominant contribution
comes from processes where the b-quark decay and the photon emission occur practically
at the same point, i.e. at distances much smaller than 1/Λ.

Nonperturbative corrections in the considered case can be studied using the framework
of HQET, as well as the Soft-Collinear Effective Theory (SCET). It is important to keep
in mind that some of the nonperturbative effects are not suppressed by Λ2/m2

b,c but only
by Λ2/(mb− 2E0)2 or Λ2/(m2

b − 2mbE0) (see, e.g., Ref. [62]). Such a behavior is precisely
the reason of the above-mentioned growth of theoretical uncertainties when E0 tends to

4 known also as the spectator model rate
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Nonperturbative 5% mostly O(αsΛ/mb)
Parametric 2% αs(MZ),CKM, . . .

Higher order 3% tested by varying renormalization scales
mc-interpolation 3% matrix elements of (s̄c)V−A(c̄b)V−A operators

Table 1.1: A breakdown of uncertainties in the current SM prediction for B(B̄ → Xsγ)SM in
Refs. [2, 64].

its perturbative kinematical endpoint of mb/2 ' 2.35 GeV. Therefore, extrapolating the
experimental results down to a relatively low value of E0 = 1.6 GeV (following the so-
called shape function models with parameters fit to data) is advantageous with respect
to performing the theory-experiment comparison directly at a higher value of E0.

Both the perturbative and nonperturbative contributions are suitably studied within
an effective theory obtained from the SM after decoupling the W boson and all the
heavier particles. The effective weak interaction Lagrangian takes the form Leff ∼ CiQi,
where Qi stand for operators containing the b quark and all the lighter fields, while Ci are
the Wilson coefficients. The Renormalization Group (RG) improved perturbation theory
is used to resum large logarithms of the form (αs lnm2

W/m
2
b)
n
, n = 0, 1, 2, . . ., which

provides sufficient accuracy in the Wilson coefficient evaluation. The partonic decay rate
(with Eγ > E0) can be written in the following form

Γ(b→ Xpartonic
s γ) ∼ Ci(µb)Cj(µb)Gij(E0, µb) (1.3)

where µb ∼ mb/2 is the scale at which the Wilson coefficients are renormalized, while
Gij describe interferences between amplitudes generated by the operators Qi and Qj (see
Chapter 2 for details). A summary of the Next-to-Leading Order (NLO) QCD calcula-
tions is given in Ref. [63], while the current status of the Next-to-Next-to-Leading Order
(NNLO) QCD calculations is summarized in Refs. [2, 64]. Some additional information
on the NNLO contributions can be found in Ref. [65].

The first NNLO estimate of the inclusive B
(
B̄ → Xsγ

)
within the SM was given in

2006, in Ref. [66]. Very recently, we have provided in Ref. [2] an updated NNLO QCD
prediction for the CP- and isospin-averaged branching ratio. The result reads

B
(
B̄ → Xsγ

)SM
= (3.36± 0.23) · 10−4 (1.4)

for E0 = 1.6 GeV. This SM prediction includes the NNLO QCD (O(α2
s )) corrections and

the O(αem) electroweak ones. Its total error amounts to around 7% which is obtained by
summing in quadrature four types of uncertainties shown in Tab. 1.1: (i) nonperturbative
(5%), (ii) parametric (2%), (iii) higher-order (O(α3

s )) perturbative (3%), (iv) the one
stemming from mc-interpolation ambiguity in the O(α2

s ) correction (3%). The present
status of B(B̄ → Xsγ) is summarized in Fig. 1.3, with all the individual measurements
extrapolated to E0 = 1.6 GeV following the HFAG method [51].

The current experimental world average in Eq. (1.1) agrees very well with the SM
prediction in Eq. (1.4). The SM result has moved towards the experimental value (as
compared to Ref. [66]). In effect, a new bound on the charged Higgs boson mass in the
two-Higgs-doublet-model II is now stronger. It reads M±

H > 480 GeV at 95%C.L. and
M±

H > 358 GeV at 99%C.L. Similarly severe restrictions arise on parameters of the MSSM
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and models alike. Such constraints can become particularly important when positive
signals for new particles are seen at the LHC but ambiguities in measurements of their
masses and couplings remain. For this reason, efforts towards improving accuracy of the
branching ratio determination are undertaken on both the experimental and theoretical
sides.

In the present thesis, we focus on a calculation that contributes to removing the
fourth type of uncertainty in Tab. 1.1, namely the one due to the interpolation in mc

of the dominant mc-dependent O(α2
s ) corrections to the perturbative decay rate Γ(b →

Xpartonic
s γ). These corrections are called K

(2)
17 and K

(2)
27 . They are due to interferences

of certain four-quark operators with the photonic dipole one.5 Their evaluation for an
arbitrary value of mc is a very difficult task. In the language of Feynman diagrams with
unitarity cuts, four-loop diagrams with two mass scales (mc and mb) need to be evaluated.
The necessary ultraviolet counterterms involve three-loop two-mass-scale diagrams that
must be calculated up to O(ε) in the dimensional regularization parameter ε.

So far, such calculations have been performed only for mc � mb/2 [67, 68] and for
mc = 0 [64]. They have served as a basis for the above-mentioned interpolation in mc.
The only way to remove the interpolation uncertainty is to perform these calculations
again, this time for an arbitrary value of the charm quark mass.

Here, we evaluate [1] the exact dependence on the c-quark mass of all the necessary

ultraviolet-couterterm diagrams that contribute to the yet-unknown parts of K
(2)
17 and

K
(2)
27 . Using the optical theorem, we express the relevant contributions to the decay rate

in terms of imaginary parts of three-loop two-scale propagator diagrams. Chapter 3 is
dedicated to presenting technical details of our calculations. One important element in our
procedure is an automatized reduction using Integration By Parts (IBP) [69,70] of O(103)
loop-integrals to a much smaller set of the so-called Master Integrals (MIs). We follow
the Laporta algorithm [71] that has been implemented by different authors in several
publicly available computer algebra codes, e.g., AIR [72], FIRE [73,74] or REDUZE [75]. We
have extensively used both the Mathematica and C++ versions of FIRE.

Once the master integrals are found, the calculation of the MIs is necessary, which
constitutes the most difficult task of the entire calculation. We mainly apply the Dif-
ferential Equation (DE) method [76–78], while other methods are used for cross-checks
only. In the DE method, the set of MIs is extended to make it closed under differentiation
with respect to z = m2

c/m
2
b , and a system of differential equations is numerically solved

starting from initial conditions at large z. It cannot be done along the real axis due to
presence of spurious singularities, but rather along an ellipse in the complex plane. The
initial conditions are found using asymptotic expansions, which effectively reduces our
three-loop two-scale problem to a two-loop single-scale one.

Apart from our arbitrary-mc calculation, we have confirmed and further extended
some of the counterterm contributions in the mc = 0 case to all orders in the Dimensional
Regularization (DR) [79] parameter ε. In this way, we have contributed to the analysis
of Ref. [2] where the interpolation in mc is still applied.

The thesis is organized as follows. Sec. 2.1 of Chapter 2 is devoted to a comprehensive
analysis of the theoretical framework for B-decays. In Secs. 2.2 and 2.3, the mc-dependent
matrix elements and the branching ratio formula are discussed, respectively. We dedicate

5 Definitions of the operators and details of the notation will be presented in the following chapters.

12



Chapter 3 to a presentation of techniques that have been applied for evaluation of our
loop integrals: the Feynman and Schwinger parameterizations, Mellin-Barnes techniques,
differential equations and the sector decomposition. Explicit results for the MIs we have
calculated are also presented there. Our final results for the O(α2

s ) counterterms are given
in Chapter 4, while the (ongoing) bare O(α2

s ) calculation is discussed in Chapter 5. We
conclude in Chapter 6. Finally, several useful formulae are provided in the Appendices.
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Chapter 2

Inclusive B̄ → Xs γ in the Standard
Model

In the present chapter, Sec. 2.1 covers the basic and technical aspects of setting up a low
energy effective theory that is valid below the electroweak scale. We focus on its elements
that are relevant to B̄ → Xs γ. Sec. 2.2 is devoted to discussing the phenomenological
role of the matrix elements that constitute the main topic of this thesis. In Sec. 2.3,
we present in more detail the current status of the considered process branching ratio
calculations.

2.1 Theoretical framework for radiative B-decays

The weak radiative B meson decays are generated by loop diagrams involving the electro-
weak-scale particles (notably the W boson and the top quark), while the external mo-
menta are of the order of the b-quark mass which is much smaller than the electroweak
scale. In consequence, in the perturbatively calculated partonic rate Γ

(
b→ Xpartonic

s γ
)

one encounters QCD corrections that are enhanced by powers of logarithms ln(m2
W/m

2
b).

In fact, the QCD perturbation series turns out to be a series in powers of
(αs(mb))

n (αs(mW ) ln(m2
W/m

2
b))

m
, with n,m = 0, 1, 2, . . . . Given the numerical values of

αs(mb) ∼ 0.22 and αs(mW ) ln(m2
W/m

2
b) ∼ 0.7, it makes sense to treat these quantities as

formally independent, and resum the series in the latter one, still working order-by-order
in αs(mb). It can most conveniently be achieved in the framework of an effective theory
where Renormalization Group Equations (RGE) [80] for the Wilson coefficients work as a
tool for the large logarithm resummation.1 In Sec. 2.1.1, the effective Lagrangian is con-
structed from the SM by decoupling the W boson and all the heavier degrees of freedom,
which is closely related to the Operator Product Expansion (OPE) [81, 82]. In pertur-
bation theory, such a procedure can be thought about as an extension of the so-called
decoupling theorem by Appelquist and Carazzone [83]. Once the effective Lagrangian is
defined, we discuss the three necessary steps for evaluation of the QCD corrections to
B(B̄ → Xs γ): determining the matching and mixing in Sec. 2.1.2, and calculating the
matrix elements in Sec. 2.1.3.

1 Construction of effective theories and using the RGE is a general method for resummation of all
sorts of large logarithms of scales that appear in physical amplitudes in Quantum Field Theory (QFT).
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Figure 2.1: The LO b→ cdū process in the SM and in the low energy effective theory. Gray
boxes show an insertion of one of the effective operators.

2.1.1 The effective Lagrangian and choice of the operators basis

The core idea of OPE [81, 82] is a factorization of long- and short-distance physics. In
weak decays, OPE allows to derive an effective low-energy theory for describing the weak
interactions of quarks. We shall begin with illustrating this idea using a simpler example
than b → sγ. Let us consider a tree-level b → cdū transition that is mediated by the
W boson, as depicted in Fig. 2.1 (left). There are two reasons why we have chosen this
very example for the sake of illustration. First, such a process is sensitive to QCD effects.
Second, it involves quarks of four different flavors, so the number of relevant effective
operators will be very limited. The amplitude corresponding to the LO Feynman diagram
of this process in the SM reads (in the ’t Hooft-Feynman gauge):

A =

(
−ig2√

2

)2

VcbV
∗
ud

(
d̄LγµuL

) igµν

m2
W − q2

(c̄LγνbL) (2.1)

where g2 = e/ sin θW , and the maximum momentum transfer squared is q2
max = (mb−mc)

2.
Throughout the thesis, we treat the three lightest (u, d and s) quarks as massless. For
brevity, we use identical notation for the quark fields and the corresponding Dirac spinors.
Their left- and right- handed projections are denoted in the standard manner, i.e. ψL,R =
PL,R ψ, where PL,R = (1∓ γ5)/2.

The W -boson mass mW ' 80 GeV is over 16 times larger than
√
q2 < mb ∼ 5 GeV,

i.e. q2/m2
W < 0.004. Thus, one can perform a Taylor expansion of the W -propagator

into an infinite sum of local terms using (1− x)−1 =
∑∞

n=0 x
n. Then the amplitude takes

the form

A = −i 2
√

2 GF VcbV
∗
ud

(
d̄ u
)
V−A (c̄ b)V−A

∞∑
n=0

q2n

m2n
W

(2.2)

where GF = g2
2/(4
√

2m2
W ) is the Fermi constant, and (2

√
2GF )−1/2 ' 174 GeV. The CKM

matrix elements are denoted by Vij, while
(
d̄ u
)
V−A stands for d̄LγµuL (and similarly for

other flavors).
It is easy to verify that the r.h.s. of Eq. (2.2) can equivalently be obtained from the

following LO effective weak interaction Lagrangian term:

Leff = −4GF√
2
VcbV

∗
ud

∞∑
n=0

1

m2n
W

Q(n), (2.3)
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where the operators Q(n) are given (in position space) by(
d̄ u
)
V−A [(−1)n2n] (c̄ b)V−A (2.4)

with 2 ≡ ∂α∂α denoting the d’Alembertian. The dimensionality of the operators Q(n)

in the units of mass is 6 + 2n, i.e. [Q(n)] = 6 + 2n. Due to the suppression of higher-
n operators by inverse powers of mW , the first term is a good approximation. In fact,
higher-dimensional operators are practically always negligible from the phenomenological
standpoint in the SM analyses of FCNC processes.

Our particular set of operators in Eq. (2.4) is sufficient only at the tree level, before
turning on the QCD and QED interactions. Other operators are expected to arise at
higher orders in perturbation theory. However, since the number of operators of a given
dimension is finite, we can always restrict to a finite basis after fixing the required level
of precision for evaluation of physical quantities. Consequently, we never have to deal
with explicit renormalization of an infinite tower of operators, and our effective theory is
predictive even though it could be called “nonrenormalizable” in the traditional sense.

From now on, we shall restrict to the dimension-six (n = 0) operators alone, assuming
that it is sufficient for the required precision in our example. Taking into account possible
generation of other operators at the dimension-six level, we write

Leff =
4GF√

2
VcbV

∗
ud

∑
m

CmQ
(0)
m (2.5)

where the summation is always finite, and we will drop the superscript (0) below. Eq. (2.5)
illustrates that the local operators are weighted by effective couplings Cm called Wilson
coefficients.

Let us now figure out explicitly what particular operators can arise from(
d̄ u
)
V−A (c̄ b)V−A after including effects of the strong interactions. Since these inter-

actions are chirality-conserving, they cannot produce anything but the (V −A)× (V −A)
structures at the dimension-six level. Moreover, the flavor content of all the operators
must remain the same. Thus, it is only the color structure (i.e. contraction of the color
indices) that may change with respect to our initial operator. We conclude that to all
orders in QCD we have the following form of the Lagrangian

Leff =
4GF√

2
VcbV

∗
ud

(
C1Q

ducb
1 + C2Q

ducb
2

)
, (2.6)

where Qducb
1 = (d̄iLγ

µujL)(c̄jLγµb
i
L), Qducb

2 = (d̄iLγ
µuiL)(c̄jLγµb

j
L), and i, j stand for color in-

dices of the quark fields. Such operators are traditionally called current-current operators.
Before turning on the QCD effects, we have C1 = 0 and C2 = −1.

Our operators can easily be rewritten in terms of products of color-singlet and color-
octet currents, thanks to the following identity for the SU(3) generators T a:

(T a)ij(T
a)kl = TF

(
− 1

Nc

δijδ
k
l + δilδ

k
j

)
(2.7)

where TF = 1/2, and Nc = 3 stands for the number of quark colors. Moreover, one can
show that no other operators arise because there are only two independent singlets in the
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tensor product 3̄⊗ 3⊗ 3̄⊗ 3 of the fundamental and anti-fundamental representations
of SU(3).

The two operators in Eq. (2.6) are chirality conserving. In four spacetime dimensions
the Dirac algebra is 16-dimensional, and 8 elements of the standard basis (γα, γαγ5)
conserve chirality while the remaining 8 (1, γ5, σµν) do not. In a generic spacetime
dimension D that must be considered in DR, we need to take into account the so-called
evanescent operators (see Sec. 2.1.2) which vanish in D = 4. Some of those operators are
shown below in Eq. (2.11) and Eq. (2.12). At higher loops, evanescent operators with
longer strings of γµ1γµ2γµ3 . . . appear. Furthermore, the choice of operator basis is not
unique, and different bases might be more useful for different physical processes. The
only necessary condition is that each basis contains all the possible linearly independent
operators that do not vanish by the equations of motion. The full set of operators in
each given example can be written without specifying nothing but the particle content
and symmetries of a given theory (see, e.g., Ref. [84]).

Now, let us specify the set of operators that are relevant for B̄ → Xsγ. An example
of the LO diagram in the SM has already been shown in Fig. 1.1. For this process, at
the leading order in the electroweak interactions,2 ten operators turn out to be necessary.
The relevant effective Lagrangian reads:

Leff = LQCD×QED(u, d, s, c, b) +
4GF√

2

[
VtbV

∗
ts

8∑
i

CiQi + VubV
∗
us

2∑
i

Ci(Qi −Qu
i )

]
(2.8)

The first term in the above equation is the QCD and QED Lagrangian for all the quarks
except the decoupled top.3 As far as the second term is concerned, the basis of ten
operators can be chosen as follows [86,87]:

Qu
1 = (s̄LγµT

auL)(ūLγ
µT abL), Q4 = (s̄LγµT

abL)
∑

q(q̄γ
µT aq),

Qu
2 = (s̄LγµuL)(ūLγ

µbL), Q5 = (s̄Lγµ1γµ2γµ3bL)
∑

q(q̄γ
µ1γµ2γµ3q),

Q1 = (s̄LγµT
acL)(c̄Lγ

µT abL), Q6 = (s̄Lγµ1γµ2γµ3T
abL)

∑
q(q̄γ

µ1γµ2γµ3T aq),

Q2 = (s̄LγµcL)(c̄Lγ
µbL), Q7 = e

16π2mb (s̄LσµνbR)F µν ,

Q3 = (s̄LγµbL)
∑

q(q̄γ
µq), Q8 = g

16π2mb (s̄LσµνT
abR)Gaµν ,

(2.9)

where the sums over q in Q3,...,6 run over all the active flavors q = u, d, s, c, b in the
effective theory. The electromagnetic and gluonic field strength tensors F µν and Gµν in
Q7 and Q8, respectively, are contracted with σµν = i

2
[γµ, γν ].

In Fig. 2.2, we show examples of Feynman diagrams that generate some of the ten
operators. Fig. 2.2(a) corresponds to the photonic dipole operator Q7. The gluonic
dipole operator Q8 is generated by analogous diagrams, but with the external photon
replaced by an external gluon. Fig. 2.2(b) corresponds to the current-current operators

2 The extra operators that are relevant for the electroweak corrections only can be found, e.g., in
Ref. [85].

3 We ignore the leptons because they do not matter for our process at the leading order in the
electroweak interactions.
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Figure 2.2: Examples of Feynman diagrams that generate the some of the operators in the
effective theory for b→ sγ. One needs to consider both the SM (left side) and the effective
theory (right side) diagrams.

(Qu
1 , Q

u
2 , Q1, Q2). Finally, the QCD penguin operators (Q3, Q4, Q5, Q6) receive contri-

butions from the diagrams in Fig. 2.2(c).
In Eq. (2.8), unitarity of the CKM matrix has already been used, which explains

why Qu
1,2 enter in a particular linear combination with Q1,2 into the term that gets

multiplied by VubV
∗
us. This term is included in the phenomenological analysis of Refs. [2,

64] but has only a tiny numerical effect on the CP-averaged branching ratio because
(VubV

∗
us)/(VtbV

∗
ts) ' −0.008 + 0.018i is numerically very small. However, it is the only

source of the CP asymmetry in the considered process [88].
The operator basis as it stands in Eq. (2.9) was introduced for the first time in

Refs. [86, 87] as a simple modification (in the four-quark operator sector only) of the
previously used basis from Ref. [89]. We shall call these bases “CMM” and “GW”,
respectively, after the article authors’ initials. The four-quark operators Q1, . . . , Q6 in
the GW basis read

Q1 = (s̄iLγµc
j
L)(c̄jLγ

µbiL), Q2 = (s̄iLγµc
i
L)(c̄jLγ

µbjL),

Q3 = (s̄iLγµb
i
L)
∑

q(q̄
j
Lγ

µqjL), Q4 = (s̄iLγµb
j
L)
∑

q(q̄
j
Lγ

µqiL),

Q5 = (s̄iLγµb
i
L)
∑

q(q̄
j
Rγ

µqjR), Q6 = (s̄iLγµb
j
L)
∑

q(q̄
j
Rγ

µqiR), (2.10)

The CMM-basis is more suitable for multiloop calculations because no traces involving
γ5 occur in the Feynman diagrams to all orders in QCD, provided we restrict to the leading
order of the expansion in m2

bGF , which is a very good approximation. Consequently, we
are allowed to use the so-called Naive Dimensional Regularization (NDR) where γ5 is
treated as fully anticommuting, i.e. it anticommutes with all the Dirac matrices γµ. This
feature makes the Dirac algebra computations rather straightforward and easier to render
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completely automatic than in the more general ’t Hooft-Veltman (HV) [79] scheme for
γ5 where {γ5, γµ} = 0 for µ = 0, 1, 2, 3 only, and [γ5, γµ] = 0 otherwise.

In our calculation, we shall use NDR with the (modified) Minimal Subtraction (MS)
scheme for the Wilson coefficient renormalization. In an effective theory with four-quark
operators, such a scheme is not completely specified before defining all the evanescent
operators that matter at the considered order in perturbation theory. For the purpose
of our considerations in Sec. 2.2, the CMM-basis needs to be supplemented with the
following two evanescent operators

Q11 = (s̄Lγµ1γµ2γµ3T
acL)(c̄Lγ

µ1γµ2γµ3T abL)− 16Q1, (2.11)

Q12 = (s̄Lγµ1γµ2γµ3cL)(c̄Lγ
µ1γµ2γµ3bL)− 16Q2. (2.12)

Verifying that they indeed vanish in four spacetime dimensions is easily achieved by using
the four-dimensional identity

γµγνγρ = gµνγρ + gνργµ − gµργν + iεµνρσγ
σγ5. (2.13)

However, in D dimensions, the above identity does not hold, and the evanescent operators
have to be treated on equal footing with the ones in Eq. (2.9).

2.1.2 Determination and renormalization of the Wilson coeffi-
cients

The Wilson coefficients Ci in the effective theory Lagrangian (2.8) can be treated as cou-
pling constants that undergo MS renormalization, similarly to the QCD gauge coupling
gs. Once they are fixed at a given renormalization scale µ0, their values at other scales
µ can be calculated using the RGE. However, contrary to the gauge coupling, the initial
conditions for the RGE (Ci(µ0)) do not need to be determined from experiment. In-
stead, they are fixed by the requirement that the effective theory in its region of validity
reproduces the full theory (SM) Green’s functions.

Instead of the SM, the role of the full theory could be played by any other model
whose beyond-SM degrees of freedom are not much lighter than the W boson. In such a
case, the operator basis in Eq. (2.8) might need to be extended. However, for definiteness,
we shall restrict to the SM in our discussion here.

Since the effective theory has been obtained from the SM via decoupling of the W
boson and heavier particles, its region of validity is restricted to Green’s functions in
which all the kinematical invariants (products of external momenta) are much smaller
than mW , and all the external particles are light (lighter than W ), i.e. they correspond
to the effective theory degrees of freedom. The Green’s functions of the full and effective
theories should be expanded in the ratios

(external momenta and light masses)/(mW and other heavy masses),

and then compared order-by-order in the above expansion to determine the Wilson coef-
ficients Ci. This procedure is called matching because one matches Green’s functions of
the full and effective theories.

The obtained Wilson coefficients are functions of the heavy masses (mW , mt, . . .)
and the renormalization scale µ0 at which the matching calculation has been performed.

19



However, they are independent of the light masses. Thus, one sets µ0 to be of order of the
electroweak scale to avoid appearance of large logarithms in the perturbative expressions
for the renormalized Wilson coefficients Ci(µ0).

On the other hand, the low-energy amplitudes we want to calculate in the effective
theory framework do depend on the light masses like mb or mc. They also depend on
the renormalization scale µb at which they are calculated. In this case, to avoid large
logarithms, we set µb ∼ mb/2. This scale is chosen to be of the same order as the
energy deposit into the hadronic system in the decay B̄ → Xsγ where the photon energy
spectrum in the decaying meson rest frame is peaked around Eγ ∼ mb/2 (see the caption
of Fig. 1.2).

Thus, one needs to use the RGE to evolve Ci(µ) from µ0 ∼ (mW ,mt) down to µb ∼
mb/2. The RGE are governed by the Anomalous Dimension Matrix (ADM) which is
derived from the effective theory renormalization constants (see Eq. (2.30) below). Since
the Wilson coefficients mix under renormalization, calculating the ADM and solving the
RGE goes under the name of determining the mixing. Finally, after solving the RGE, we
calculate the physical amplitudes which are given by matrix elements of the operators Qi

between the final and initial states.
Such a procedure is common for any FCNC process that takes place much below the

electroweak scale. It always consists of three steps in which one subsequently determines
the matching, mixing and matrix elements. In the remainder of this section, we shall
describe a few technical details of the first two steps. A discussion of the matrix elements
will follow in Sec. 2.1.3.

Matching

The first thing to note about this step is that the matched Green’s functions do not need
to correspond to physical external states. We can use perturbative calculations with
partonic external states and allow their momenta to acquire any off-shell configurations.
However, in the off-shell case, one needs to extend the effective theory Lagrangian by
including all the possible operators that vanish by the Equations of Motion (EOM).
Their number is always finite once we restrict to operators of a given dimension. An
example of such a calculation can be found, e.g., in Sec. 5 of Ref. [90]. The number
of encountered operators was quite limited there thanks to using the ’t Hooft-Feynman
version of the background field gauge [91] for the electroweak interactions and QCD [92],
and thus retaining gauge invariance at the level of the SM off-shell Green’s functions.

Secondly, in an off-shell matching calculation with arbitrary external momenta, one is
allowed to Taylor-expand the Feynman integrands in all the external momenta and light
masses prior to integration. Such an expansion is known to generate spurious infrared
(IR) divergences which manifest themselves as extra 1/εn poles in the DR. However,
all such spurious poles cancel out in each of the matching equations for the off-shell
amplitudes4

Afull = Aeff . (2.14)

The remaining poles are of ultraviolet (UV) origin, and they cancel out after including
all the necessary diagrams with UV counterterms on both sides of the matching equa-

4 i.e. amputated off-shell Green’s functions
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tion (2.14). In effect, we find relations that are finite in the limit ε → 0, and we can
extract the finite renormalized Wilson coefficients from them. However, one can see that
a calculation of the effective theory renormalization constants (a part of the mixing step)
must be done prior to the matching calculation.

When the above prescription is followed in the DR, an important simplification occurs.
The effective theory diagrams contain no massive particles, so expanding the integrands
in the external momenta and masses reduces them to scaleless tadpoles (vacuum diagrams
with no external momenta and only massless internal lines), so they vanish in the DR.
Their vanishing is due to cancellation of the UV and spurious IR divergences, as they are
both regulated dimensionally. Thus, the only diagrams to be included on the r.h.s. of the
matching equation (2.14) are tree-level diagrams, possibly multiplied by UV-divergent
renormalization constants. In effect, the cancellation of 1/εn takes place between the
UV counterterms on the r.h.s. and spurious IR divergences on the l.h.s. of Eq. (2.14).
Explicit examples of such cancellations at the two- and three-loop levels can be found in
the matching calculations of Refs. [90] and [93], respectively.

Once such an algorithm is followed, the only Feynman diagrams to be calculated
are massive tadpoles with as many different masses as there are massive particles to be
decoupled. Usually, when several particles are decoupled together, their masses are of the
same order of magnitude. We encounter such a case in the SM when the top quark, the
Higgs boson and the weak gauge bosons W and Z are being decoupled together. Keeping
all the heavy masses different is not a problem up to two loops, in which case all the
necessary integrals are known [94]. However, it may become an issue at three and more
loops. Then, Taylor expansions around the point where all the masses are equal leads
to a great simplification. One obtains single-scale partly massive tadpoles only, all of
which can be calculated up to three loops using the publicly available code MATAD [95].
Such a method has been applied for evaluation of the three-loop (NNLO QCD) matching
conditions for the photonic and gluonic dipole operators in Refs. [93,96].

Let us now quote some explicit matching results for the effective Lagrangian in
Eq. (2.8). In general, for the order αns matching computation of Ci(µ0), one needs to
consider n loops for the four-quark operators (i = 1, . . . , 6) and n+ 1 loops for the dipole
operators (i = 7, 8), which can be understood after having a look at Fig. 2.2(a) where no
internal gluons are present in the one-loop SM diagram.

The only Wilson coefficients Ci(µ0) that receive nonvanishing LO contributions are
C2 (tree) together with C7 and C8 (one-loop). They read [97]

C2 = 1 +O(α2
s )

C7 = −x(8x2 + 5x− 7)

24(x− 1)3
+

3x− 2

4(x− 1)4
x2 lnx+O(αs) (2.15)

C8 = −x(8x2 − 5x+ 2)

8(x− 1)3
− 3

4(x− 1)4
x2 lnx+O(αs),

where x = m2
t/m

2
W . At the NLO level, two other coefficients become nonvanishing in the
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CMM basis. In the MS scheme they read [87]

C1 =
15αs

4π
+O(α2

s )

C4 =
αs

4π
[E(x)− 2

3
] +O(α2

s ) (2.16)

(2.17)

where [97]

E(x) =
x(18− 11x− x2)

12(1− x)3
+
x2(15− 16x+ 4x2)

6(1− x)4
lnx− 2

3
lnx (2.18)

As far as the two-loop O(αs) (NLO) contributions to C7,8 are concerned, we shall
not quote them explicitly but only mention that they were first found in Ref. [98], and
then confirmed in Refs. [90, 99–101]. At the O(α2

s ) (NNLO) level, all the eight Wilson
coefficients receive nonvanishing matching contributions. They were found in Ref. [90]
for the four-quark operators, and in Ref. [93] for the dipole operators, which required
two- and three-loop calculations, respectively.

Mixing

Let us now discuss the Wilson coefficient renormalization in the effective Lagrangian (2.8).
Once we restrict to the leading order in electroweak interactions, such a renormalization
is due to the QCD only. In the standard QCD, we have the following relations between
the bare and renormalized gauge couplings (gs), masses (m), quark fields (ψ) and gluon
fields (A)

gb
s = Zg gs, mb = Zmm, ψb = Z

1
2
ψ ψ, Ab = Z

1
2
ψ A, (2.19)

where the superscript b denotes the bare quantities. In the effective theory, analogous re-
lations hold for the Wilson coefficients. However, they do not get renormalized separately
but rather mix under renormalization. We have

Cb
i =

∑
j

Cj(µ)Zji(αs(µ)) (2.20)

i.e. a matrix of renormalization constants has to be considered.
It is worth mentioning that the notion of bare and renormalized Wilson coefficients

became popular in the literature only in the 1990’s. In the earlier papers, the renor-
malization constants Zji were usually absorbed into the operator renormalization, which
is only a matter of using a somewhat less practical convention for the derivation of the
RGE.

If we follow our convention defined by Eq. (2.20), we can restrict the operator renor-
malization to the one that is induced by the usual QCD renormalization of fields, masses
and couplings contained in each of the operators. Our four-quark operators in Sec. 2.1.1
contain no masses or couplings in their definitions (contrary to the dipole operators), so
their renormalization reads Qb

i = Z2
ψQi. In the following, we shall restrict our discussion
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to the four-quark case, to make our expressions more compact. The renormalized Leff

then reads

Leff ∼
∑
i, j

Cj Zji Z
2
ψQi (2.21)

Each of the renormalization constants can be written as a sum of n-loop terms with
n = 0, 1, 2, . . . . In the case of Zji, such an expansion reads

Zji = δji + (Zji − 1)(1) + (Zji − 1)(2) + . . . (2.22)

Generally, in the MS scheme, the n-loop term has the following form:

(Zji − 1)(n) =
(αs

4π

)n n∑
k=0

1

εk
Znk
ji , (2.23)

where Znk
ji are some rational numbers which depend on no parameters.5

One may be surprised that the sum in the above equation goes from k = 0 rather
than k = 1, even though we consider the MS scheme. However, this is a necessary gener-
alization of this scheme in the presence of evanescent operators [102–104]. Nonvanishing
Zn0
ji are allowed (by the scheme definition) if and only if i corresponds to an evanescent

operator, and j corresponds to a physical operator. Moreover, its value is fixed by the
renormalization condition, namely that the renormalized matrix elements of evanescent
operators are equal to zero. Unless such a condition is chosen, an infinite set of evanescent
operators would need to be considered already for the LO RGE [102].

In Eqs. (2.11) and (2.12), we have already given two evanescent operators that appear
at one loop in the CMM basis. In an NNLO calculation of the ADM, several other
evanescent operators become important. They read [86]

Q15 = (s̄Lγµ1γµ2γµ3γµ4γµ5bL)
∑

(q̄γµ1γµ2γµ3γµ4γµ5q) + 64Q3 − 20Q5 (2.24)

Q16 = (s̄Lγµ1γµ2γµ3γµ4γµ5T
abL)

∑
(q̄γµ1γµ2γµ3γµ4γµ5T aq) + 64Q4 − 20Q6 (2.25)

Q21 = (s̄Lγµ1γµ2γµ3γµ4γµ5T
acL)(c̄Lγ

µ1γµ2γµ3γµ4γµ5T abL)− 256Q1 − 20Q11 (2.26)

Q22 = (s̄Lγµ1γµ2γµ3γµ4γµ5cL)(c̄Lγ
µ1γµ2γµ3γµ4γµ5bL)− 256Q2 − 20Q12 (2.27)

Q25 = (s̄Lγµ1γµ2γµ3γµ4γµ5γµ6γµ7bL)
∑

(q̄γµ1γµ2γµ3γµ4γµ5γµ6γµ7q)

+ 1280Q3 − 336Q5 (2.28)

Q26 = (s̄Lγµ1γµ2γµ3γµ4γµ5γµ6γµ7T
abL)

∑
(q̄γµ1γµ2γµ3γµ4γµ5γµ6γµ7T aq)

+ 1280Q4 − 336Q6 (2.29)

The RGE for the Wilson coefficients are derived from the fact that the bare ones in
Eq. (2.20)

(
~Cb = ẐT ~C

)
are independent of µ. One finds

d~C(µ)

d lnµ
= γ̂T (αs(µ))~C(µ), where γ̂ = −dẐ(µ)

d lnµ
Ẑ−1 = Ẑ

dẐ−1(µ)

d lnµ
. (2.30)

5 We assume that we have 3 colors and 5 flavors, i.e. these quantities are not considered as parameters.
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The anomalous dimension matrix γ̂(αs(µ)) in the MS and MS schemes has the following
block-triangular form

γ̂ =

[
γ̂PP γ̂PE

0 γ̂EE

]
(2.31)

where P and E correspond to the physical and evanescent operators. The vanishing entry
in the lower-left block is a consequence of defining the MS scheme conventions in such
a way that all the matrix elements of evanescent operators vanish after renormalization.
The block-triangular form of γ̂(αs(µ)) implies that the Wilson coefficients CE of the
evanescent operators do not affect the RG-evolution of the other Wilson coefficients CP .
Thus, we do not need to solve the RGE for CE. In the following, we focus on the physical
operators only, and we skip the index P , i.e. we set CP ≡ C and γ̂PP ≡ γ̂.

The RGE in Eq. (2.30) is a first-order differential equation, and it has the following
solution

~C(µ) = Tαs exp

 αs(µ)∫
αs(µ0)

dαs
γ̂T (αs)

β(αs)

 ~C(µ0) ≡ Û(µ, µ0) ~C(µ0), (2.32)

where the Tαs-ordering means that the ADM’s with higher αs stand to the left of those
with smaller αs in each of the monomials obtained after writing the exponent in terms of
a series.

In practice, one needs explicit expressions for several terms in the perturbative expan-
sion of our formal solution (2.32) to the RGE. Each of the quantities that occur in this
solution has its own expansion in αs. For the QCD beta function β(αs(µ)) ≡ dαs(µ)/d lnµ
and for the ADM, such expansions take the form

β(αs) = −2αs

∑
n=0

β(n)
(αs

4π

)n+1

, γ̂(αs) =
∑
n=0

γ̂(n)
(αs

4π

)n+1

. (2.33)

For the Wilson coefficients, we have

~C(µ) =
∑
n=0

~C(n)(µ)

(
αs(µ)

4π

)n
. (2.34)

Finally, the evolution matrix Û(µ, µ0) defined in Eq. (2.32) can be perturbatively ex-
panded as

Û(µ, µ0) =
∑
n=0

Û (n)(µ, µ0)
(αs

4π

)n
. (2.35)

To comment on the explicit form of the above evolution matrix, let us first assume that
we have only a single Wilson coefficient, i.e. the anomalous dimension is just a number
γ = γ(0) αs

4π
+ . . . . We can then ignore the Tαs-ordering in Eq. (2.32), and perform the

integration in the exponent. Once the ADM and the beta function are restricted to their
leading terms, the integration is very simple, and one finds

C(0)(µ) =

(
αs(µ0)

αs(µ)

)γ(0)/2β(0)

C(0)(µ0). (2.36)
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Order resummation of γ, β C(µ0)

LO LL:
(
αs ln

µ20
µ2

)n
one loop tree level

NLO NLL: αs

(
αs ln

µ20
µ2

)n
two loop one loop

NNLO NNLL: α2
s

(
αs ln

µ20
µ2

)n
three loop two loop

Table 2.1: Order-counting and loop levels for resummation of large logarithms in the four-
quark operator case.

In a more general case when we have many Wilson coefficients but the matrix γ̂(0) is
diagonalizable with real eigenvalues,6 we can write[

V̂ −1γ̂(0)T V̂
]
ij
≡ 2β(0) δij aj, (2.37)

where aj are real numbers, and V̂ is the diagonalizing matrix. Then the LO solution to
the RGE reads

Ci(µ) = Vij

(
αs(µ0)

αs(µ)

)aj
(V −1)jk Ck(µ0). (2.38)

It is interesting to observe explicitly that the obtained ratios of αs at different scales

really contain the resummed Leading Logarithms (LL)
(
αs ln

µ20
µ2

)n
. When the multiplica-

tive factor in Eq. (2.36) is expanded in αs, one finds(
αs(µ0)

αs(µ)

)γ(0)/2β(0)

'
(

1− β(0)αs(µ0)

4π
ln
µ2

0

µ2
+ . . .

)γ(0)/2β(0)

(2.39)

= 1− γ(0)

2

αs(µ0)

4π
ln
µ2

0

µ2
+O

[(
αs ln

µ2
0

µ2

)2
]

(2.40)

Similarly, solving the RGE at the NLO is equivalent to resumming the Next-to-Leading
Logarithms (NLL), and so forth. This is what is being meant by the RG-improved per-
turbation theory. Table 2.1 shows the nomenclature for resummation of large logarithms,
as well as indicates the necessary numbers of loops in the Feynman diagrams correspond-
ing to various quantities in the case where only the four-quark operators are considered.
The loop counting is somewhat different in the dipole operator case, which is due to the
fact that they receive no tree-level matching contributions, and that their mixing with
operators that do receive such contributions starts at two loops only.

Let us now make a few remarks concerning the practical calculations of the renormal-
ization constants that were needed to determine the necessary ADM’s up to the NNLO
in the case of B̄ → Xsγ. Although thousands of Feynman diagrams up to four loops
are relevant [105], the calculations were manageable thanks to applying a certain decom-
position of the propagator denominators [106]. It goes as follows. For any propagator

6 We are not aware of examples where the eigenvalues are not real or the matrix is not diagonalizable,
neither of a physical argument why it must be the case.
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denominator with loop momentum q, external momentum p and mass M , the following
identity holds

1

(q + p)2 −M2
=

1

q2 −m2
+
M2 − p2 − 2qp−m2

q2 −m2

1

(q + p)2 −M2
(2.41)

for an arbitrary mass parameter m. This mass parameter serves as a regulator of spurious
IR divergences. We cannot allow for such divergences in an evaluation of the renormal-
ization constants, contrary to the matching calculations. The very last term on the r.h.s.
of the above equation is identical to the initial propagator on the l.h.s. We can thus apply
this identity several times, finally obtaining a linear combination of terms that either: (i)
depend only on loop momenta and the regulator mass m, (ii) occur only in Feynman
integrals whose superficial degree of divergence is negative.

The terms satisfying the condition (ii) can be dropped in a renormalization constant
calculation because integrals with a negative superficial degree of divergence are UV-
finite after subtraction of subdivergences. Once they are dropped, we are left with only
single-scale fully massive tadpole integrals to calculate. Such tadpole integrals can be
evaluated according to a recursive algorithm up to three-loops [106], while at the four-
loop level they require an IBP reduction to less than 20 MI’s, all of which are already
known in an analytical manner [107]. Such a method, first applied in Refs [86, 108], is
more efficient for renormalization constant calculations than the previously used so-called
R∗-operation [109].

In the case of B̄ → Xsγ, the full 8× 8 NLO ADM in the CMM basis was computed
in Refs. [86,108]. Later, in Ref. [87], its two-loop four-quark part was found to agree the
earlier calculations in the GW basis. Its three-loop part (corresponding to the mixing
of the four-quark operators with the dipole ones) was later confirmed in Ref. [110]. At
the NNLO level, the three-loop mixing in the (Q1, . . . , Q6) and (Q7, Q8) sectors was
calculated in Refs. [111] and [112], respectively. Finally, the four-loop mixing between
the two sectors was found in Ref. [105].

In many of these cases, the published results for the ADM do not refer to the original
Wilson coefficients from Eq. (2.8) but rather to the so-called effective ones [113, 114]
that are given by certain linear combinations of them. The explicit form of these linear
combinations depends on the regularization scheme. In the NDR scheme, they read

Ceff
i = Ci, for i = 1, . . . , 6

Ceff
7 = C7 −

1

3
C3 −

4

3
C4 −

20

3
C5 −

80

9
C6

Ceff
8 = C8 + C3 −

1

6
C4 + 20C5 −

10

3
C6 (2.42)

These combinations are adjusted in such a way that the LO perturbative decay amplitudes
for b → sγ and b → sg are proportional to the LO terms in Ceff

7 (µb) and Ceff
8 (µb),

respectively. The ADM for the effective coefficients has an analogous expansion as the
one in Eq. (2.33)

γ̂eff(αs) =
∑
n=0

γ̂
(n)
eff

(αs

4π

)n+1

. (2.43)
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The matrix γ̂
(0)
eff is scheme-independent, contrary to the usual γ̂(0) that depends, in partic-

ular, on the treatment of γ5 in DR. Both the Wilson coefficients and the matrix elements
of the operators depend on the γ5-scheme. In the NDR scheme, the LO b→ sγ amplitude
receives contributions from the operators Q3, . . . , Q7, whereas in the HV scheme only Q7

matters. By introducing the effective Wilson coefficients as linear combinations of the
original ones, the scheme dependence is avoided. This is possible because the one-loop
b → sγ matrix elements of the four quark operators are actually proportional to the
tree-level matrix element of the dipole operator. An analogous situation occurs in the
b→ sg case and the operator Q8.

2.1.3 Matrix elements and the role of mc

After having described the determination and renormalization of the Wilson coefficients,
we now pass to the third step of the previously outlined procedure, namely to evaluating
the matrix elements of the operators Qi between the external states of interest. For the
B̄ → Xsγ decay, one needs to consider the matrix elements

∑
i〈Xs γ | Qi(µb) | B̄〉. For

example, the LO on-shell decay amplitude is completely governed by the photonic dipole
operator matrix element. It reads

4GF VtbV
∗
ts√

2
C

(0)eff
7 (µb)〈Xs γ | Q7(µb) | B̄〉. (2.44)

Due to the hadronic nature of the external states, nonperturbative QCD effects show
up at the stage of the matrix element evaluation. To overcome and/or control this
problem, one considers the heavy quark limits, exploiting the fact that the b-quark mass
is large compared to the QCD confinement scale Λ. For exclusive decays, the available
calculational frameworks are HQET [40], QCD sum rules, light cone sum rules and lattice
QCD. For the inclusive decays, HQE allows to express the hadronic matrix elements in
terms of the perturbative ones for the underlying quark-level process, e.g.,

∑
i〈s γ |

Qi(µb) | b〉, as already mentioned in Chapter 1. It turns out [54–61] that the considered
inclusive decay rate of the B meson can be well approximated by the perturbative b-quark
decay rate, as already spelled out in Eq. (1.2). Thus, the matrix elements of the operators
Qi(µ) in the inclusive case can be effectively evaluated in perturbation theory, in contrast
to the exclusive case.

Nonperturbative effects

Let us now make a few additional remarks about the nonperturbative correction δΓnonp in
Eq. (1.2). It receives contributions from many different sources, a classification of which
can be found, e.g., in Ref. [65]. Although that paper was published before the extensive
analysis of Ref. [61], the qualitative classification remains valid.

As already mentioned in the Introduction (Chapter 1), the size of nonperturbative
effects strongly depends on the cutoff E0 on the photon energy. The default choice of
E0 ∼ 1.6 GeV aims at minimizing this problem together with the problem of experimental
backgrounds. The photon energy spectrum in B̄ → Xsγ has been studied using several
different methods. While the most popular one is based on the so-called shape functions
(see, e.g., Refs. [115, 116]), other approaches include the Dressed Gluon Exponentiation
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Scheme Eγ < 1.7 Eγ < 1.8 Eγ < 1.9 Eγ < 2.0 Eγ < 2.242

Kinetic 0.986± 0.001 0.968± 0.002 0.939± 0.005 0.903± 0.009 0.656± 0.031
Neubert SF 0.982± 0.002 0.962± 0.004 0.930± 0.008 0.888± 0.014 0.665± 0.035

Kagan-Neubert 0.988± 0.002 0.970± 0.005 0.940± 0.009 0.892± 0.014 0.643± 0.033
Average 0.985± 0.004 0.967± 0.006 0.936± 0.010 0.894± 0.016 0.655± 0.037

Table 2.2: Rescaling factors used by HFAG [51] for an extrapolation of all the available
experimental results down to E0 = 1.6 GeV before computing their weighted average.

(DGE) model [117], as well as deriving constraints on the spectrum moments using fixed-
order calculations up to O(αs Λ2/m2

b) [62]. As far as such fixed-order corrections are
concerned, they are relatively straightforward to determine in those contributions to the
decay rate that are due to Q7 alone. In their case, one obtains a well-defined series in
powers of Λ/mb and αs, similarly to the semileptonic B-meson decays.

Series expansions of the identified nonperturbative contributions begin with with the
following suppression factors

αs Λ/mb,

µ2
π

m2
b

,
µ2
G

m2
b

,
ρ3
D

m3
b

,
ρ3
LS

m3
b

, . . .

αsµ
2
π

(mb − 2E0)2
,

αsµ
2
G

mb(mb − 2E0)
(2.45)

where µπ, µG, ρD, ρLS = O(Λ) are extracted from the semileptonic B̄ → Xceν̄ decay
spectra and the B-B∗ mass difference. The denominators in the last line of the above
list of suppression factors indicate loss of theoretical accuracy when E0 tends towards its
perturbative maximal value of mb/2 ∼ 2.35 GeV, at which the measured photon energy
spectra are peaked (see Fig. 1.2). As we have already mentioned, this is the reason
why the experimental results are rescaled by HFAG [51] down to E0 = 1.6 GeV before
computing their weighted average. The actual extrapolation factors used by HFAG are
listed in the last row of Tab. 2.2. They are obtained by using the measured photon
energy spectra for determining parameters of several shape function models, and then
averaging over the models. Such a procedure has often been criticized for leading to an
underestimation of uncertainties because the considered models do not allow for sufficient
freedom in the functional form of the expressions that are being fit to data. Nevertheless,
no alternative calculation of the extrapolation factors has so far become available, even
though efforts in this direction have been undertaken [118–120].

It has been stressed in Ref. [61] that the dominant nonperturbative uncertainty orig-
inates from the interference of the operators Q7 and Q1,2. Previous analyses of this
contribution [56–60] were based on an expansion that behaves like

Λ2

m2
c

∑
n=0

(
Λmb

m2
c

)n
wn (2.46)

Although the expansion parameter Λmb/m
2
c is close to unity, it was verified in Ref. [57]

that the coefficients wn of the expansion quickly tend to zero, so the leading n = 0
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term was claimed to give a reliable approximation. The leading term is parameterized in
terms of the nonperturbative quantity µG whose numerical value can be extracted from
the B-B∗ mass difference. The considered nonperturbative correction was found [56] to
enhance B(B̄ → Xsγ) by around 3%. However, according to Ref. [61], one needs to
worry about nonperturbative effects that are not described by the series (2.46) at all, i.e.
which correspond to the values of Λ that are beyond the radius of convergence of this
series. The authors of Ref. [61] advocated treating these effects as O(Λ/mb) ones and
estimated them using models of subleading shape functions, finding effects in the range
[−1.7%,+4.0%] of the B̄ → Xsγ branching ratio. Combining them linearly with the
other uncertainties, they estimated the overall nonperturbative uncertainty at the ±5%
level, which coincides with the previous rough estimate of Refs. [66, 67]. This value has
been adopted as it stands in the recent phenomenological update in Refs. [2, 64].

Perturbative contributions

Let us now proceed towards the main topic of the present thesis, namely the perturbative
matrix elements that contribute to the partonic rate Γ

(
b→ Xpartonic

s γ
)
. We shall very

closely follow the notation of the recent article [64], which in turn follows the notation
of Ref. [121]. The remainder of this section is devoted to introducing this notation and
beginning our discussion of the issue of interpolation in mc. This issue, further elaborated
upon in Sec. 2.3, serves as a main motivation for evaluating our original results to be
presented in Chapters 4 and 5.

Since we work at the leading order in the flavor changing electroweak interactions,
the partonic decay rate is a quadratic polynomial7 in the Wilson coefficients Ceff

i . It can
be written as follows:

Γ(b→ Xpartonic
s γ) =

G2
Fm

5
bαem|VtbV ∗ts|2

32π4

∑
i,j

Ceff
i (µb)C

eff
j (µb)G̃ij(E0, µb). (2.47)

where αem is the on-shell electromagnetic coupling constant. The reason for using the
on-shell scheme for the electromagnetic coupling is that the external photon is on shell,
and we do not include events where it is being replaced by an electron-positron pair, even
if it had the lowest possible invariant mass of 2me. Thus, if the overall factor of αem

was renormalized in the MS scheme at the scale mb (as it was done, e.g., in Ref [86]),
large logarithms lnm2

b/m
2
e would enhance the O(αem) QED corrections to around 5%

level [122], which would be an unnecessary complication.

The quantities G̃ij parameterize interferences between decay amplitudes generated
by Qi and Qj. They are assumed to be symmetric under i ↔ j. Their perturbative
expansions, as well as the corresponding expansions of the effective Wilson coefficients
read

G̃ij(E0, µb) =

[
G̃

(0)
ij (E0) +

αs

4π
G̃

(1)
ij (E0, µb) +

(αs

4π

)2

G̃
(2)
ij (E0, µb) +O(α3

s )

]
+ . . . (2.48)

Ceff
i (µb) =

[
C

(0)eff
i (µb) +

αs

4π
C

(1)eff
i (µb) +

(αs

4π

)2

C
(2)eff
i (µb) +O(α3

s )

]
+ . . . , (2.49)

7 The Wilson coefficients in the SM are real numbers.
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Figure 2.3: Renormalization scale dependence of B
(
B̄ → Xsγ

)
given in units 10−4, as pre-

sented in Fig. 6 of Ref. [64]. The LO, NLO and NNLO results are given by the dotted, dashed
and solid lines, respectively. The upper-left, upper-right and lower plots describe the depen-
dence on µc, µb and µ0 [GeV], respectively. When one of the scales is varied, the remaining
ones are set to their default values.

where ellipses stand for higher-order electroweak corrections. The tilde over G indicates
the overall normalization to m5

b,pole in Eq. (2.47). At the LO, the symmetric matrix G̃
(0)
ij

takes the form G̃
(0)
ij (E0) = δi7δj7 +T

(0)
ij , where T

(0)
ij describe small tree-level contributions

to b → sqq̄γ from Qu
1,2 and Q3,...,6 [123, 124]. Such contributions are small for three

reasons: (i) kinematical suppression by the four-body phase-space factors in the presence
of a relatively high cutoff E0 = 1.6 GeV on the photon energy, (ii) smallness of the CKM
factor (VubV

∗
us)/(VtbV

∗
ts), (iii) smallness of the Wilson coefficients C3(µb), . . . , C6(µb). The

latter two reasons allow for neglecting the penguin and Qu
1,2 operators at the NNLO,

and keeping them only to a linear approximation in the NLO contributions to b→ sqq̄γ.
Such approximations are present in the recent NNLO analysis of Refs. [2,64], and we shall

follow them here. Thus, at the NNLO we shall consider only G̃
(0)
ij with i, j ∈ {1, 2, 7, 8}.

The largest contributions to the branching ratio at the NLO (n = 1) and NNLO

(n = 2) originate from G̃
(n)
77 , G̃

(n)
17 and G̃

(n)
27 . These quantities at the NLO in QCD

were evaluated in Refs. [125–129]. The O(αem) electroweak corrections were calculated
in Refs. [85, 122, 130–133]. Their impact on the branching ratio is about 2.5% [85].
Uncertainties stemming from the unknown higher-order (O(α2

em)) electroweak terms are
thus certainly negligible.

The dependence of B
(
B̄ → Xsγ

)
on mc enters through the Q1,2 matrix elements

which start contributing at O (αs). The dominant mc-dependence comes from two-loop

b→ sγ amplitudes whose effects are contained in G̃
(1)
17 and G̃

(1)
27 . These NLO contributions

depend so strongly on mc that the induced dependence on the renormalization scale µc
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at which the charm quark mass is MS-renormalized causes a serious problem for the
precision of the NLO prediction. This is illustrated in Fig. 2.3 (adopted from Ref. [64])
where the NLO results are plotted with the dashed lines. The three plots illustrate the
dependence of the branching ratio on µc and the previously defined scales µb and µ0 that
correspond to the final and initial points of the Wilson coefficient RG-evolution. The
dashed lines in the first plot of Fig. 2.3 correspond to a variation of B

(
B̄ → Xsγ

)
at the

NLO by around ±8.6% when µc is varied in the interval between mc(mc) ' 1.27 GeV
and mb(mb) ' 4.16 GeV. At the latter scale we have mc(4.16 GeV) ' 0.92 GeV. Both
values of µc are reasonable for the considered process, so the only way to suppress the
µc-dependence is to evaluate the branching ratio at the NNLO. The NNLO result depends
on µc not only via mc(µc) but also contains an explicit logarithm of µc that compensates
the µc-dependence of the NLO contribution. Determining this logarithmic term is very
simple, but using it in a phenomenological analysis makes sense only after calculating the
full NNLO corrections G̃

(2)
17 and G̃

(2)
27 .

Although this problem was realized already in 2001, and became widely known soon
after the publication of Ref. [52], no complete calculation of G̃

(2)
17 and G̃

(2)
27 for an arbi-

trary value of mc is available until now. The reason is an extreme complexity of such a
calculation. It requires evaluating a few hundreds of four-loop propagator diagrams with
two mass scales. Our current calculation of the counterterm contributions (Chapter 4) is
only a first step towards achieving this goal (see Chapter 5).

As we have already mentioned, an interpolation in mc has been used so far in all the
NNLO calculations of B

(
B̄ → Xsγ

)
. To describe this point in more detail, we need to

introduce the quantities

Kij ≡
G̃ij

Gsemi
u

(2.50)

where Gsemi
u is related to the partonic b→ Xu`ν̄ decay rate as follows

Γ[b→ Xu`ν̄] =
G2
Fm

5
b

192π3
|Vub|2Gsemi

u . (2.51)

It was calculated in Ref. [134] up to the NNLO. Here, we only need the explicit NLO
expression

Gsemi
u = 1 + α̃sCF (25/2− 2π2) +O(α̃2

s ), (2.52)

where α̃s = αs/(4π) and CF = 4/3. The relation between G̃
(n)
i7 for i = 1, 2 and

Ki7 = α̃sK
(1)
i7 + α̃2

sK
(2)
i7 +O(α̃3

s ) is thus very simple

α̃sK
(1)
i7 + α̃2

sK
(2)
i7 +O(α̃3

s ) =
α̃s G̃

(1)
i7 + α̃2

s G̃
(2)
i7 +O(α̃3

s )

Gsemi
u

. (2.53)

The normalization to Gsemi
u was introduced in Ref. [52] for the purpose of considering

quantities that are insensitive to ambiguities (so-called renormalons) in the perturbative
definition of the b-quark pole mass mb,pole whose fifth power comes as a normalization

factor in Eqs. (2.47) and (2.51). Both G̃ij and Gsemi
u are sensitive to these ambiguities,

but their ratio is not. In consequence, the perturbative series for∑
i,j

Ceff
i (µb)C

eff
j (µb)Kij(E0, µb) ≡ P (E0) = P (0) + α̃sP

(1) + α̃2
sP

(2) +O(α̃3
s ) (2.54)
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shows much better convergence properties than the analogous expansion for the sum in
Eq. (2.47).

In the context of the mc-interpolation, we are interested in the NNLO correction P (2)

on the r.h.s. of Eq. (2.54). When the perturbative expansion of Kij is written in the same

way as the one for G̃ij in Eq. (2.48), one easily finds that.8

P (2) =
(
C

(1)
i C

(1)
j + 2C

(0)
i C

(2)
j

)
K

(0)
ij + C

(0)
i C

(0)
j K

(2)
ij + 2C

(0)
i C

(1)
j K

(1)
ij . (2.55)

Following the notation of Ref. [67], let us denote the three terms in the sum on the r.h.s.

of the above equation by P
(2)
1 , P

(2)
2 and P

(2)
3 , respectively. It is only P

(2)
2 that is not yet

fully known for arbitrary mc, and it needs to be discussed further.
The correction P

(2)
2 is the only one depending on the NNLO matrix elements K

(2)
ij .

Each of them can be split into two parts, in such a way that only the first one depends
on the number nf of the active flavors in our effective theory

K
(2)
ij = nfAij +Bij. (2.56)

All the contributions Aij for the operators relevant at the NNLO (i, j ∈ {1, 2, 7, 8})
are already known for arbitrary mc [135–138]. They can be used in the Brodsky Lepage
Mackenzie (BLM) (or large-β(0)) approximation [139] which relies on the assumption that
the numerically dominant NNLO corrections are proportional to β(0) = (11−2nf )/3. One
writes

nfAij +Bij = −3

2
β(0)Aij +Brem

ij , where Brem
ij =

(
33

2
Aij +Bij

)
, (2.57)

and then neglects the unknown remainder Brem
ij . In Ref. [67], an important step beyond

the BLM approximation was made. The correction P
(2)
2 was split into a sum of the BLM

and non-BLM terms
P

(2)
2 = P

(2)β(0)

2 + P
(2)rem
2 , (2.58)

where

P
(2)β(0)

2 = −3

2
β(0)

∑
i,j

C
(0)
i C

(0)
j Aij, (2.59)

P
(2)rem
2 =

∑
i,j

C
(0)
i C

(0)
j Brem

ij . (2.60)

Next, the non-BLM correction P
(2)rem
2 was calculated in the limit mc � mb/2 by per-

forming a formal decoupling of the charm quark in this limit [68]. Finally, P
(2)rem
2 was

interpolated downwards in mc using BLM assumptions at mc = 0. The functional form of
P

(2)rem
2 used for interpolation can be found in Eq. (6.4) of Ref. [67]. In Fig. 2.4 (adopted

from Ref. [64]), the (a), (b) and (c) cases of the interpolated P
(2)rem
2 correspond to vari-

ous assumptions for the boundary condition at mc = 0, as given in Eqs. (6.1), (6.2) and
(6.3) of the 2006 article [67], respectively. The two vertical dash-dotted lines mark the
1-sigma range for mc(mc)/mb. The dashed lines describe the leading terms in the large-
mc expansion. The thin solid lines show the small-mc expansions (up to O (m8

c/m
8
b)) of
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Figure 2.4: Interpolation of P
(2)rem
2 in mc as in Fig. 5 of [64]. It corresponds to Fig. 2b

of Ref. [67] but with updated input parameters and with renormalization scales shifted from
(µc, µb) = (1.5, 2.5) GeV to (µc, µb) = (2, 2) GeV. In addition, the thick solid (red) line shows
the case with the presently known boundary condition at mc = 0 imposed.

the interpolating functions. The shapes of the curves are quite sensitive to the choice of
renormalization scales.

The four-loop calculation presented in the 2015 article [64] provided us with the exact
form of the boundary conditions at mc = 0. The corresponding interpolation curve is
shown as a thick solid (red) line in Fig. 2.4. This line turns out to be very close to the
former curve (b), which means that the version (b) of the BLM approximation works
very well at mc = 0. It is quite understandable because (b) corresponds to the BLM
approximation for the full NNLO correction to the observable branching ratio, while
(a) was only the BLM approximation to P

(2)
2 that is not an observable. Moreover, one

concludes that the BLM approximation (b) (the one for the branching ratio) works very
well at mc = 0.

Although the red curve in Fig. 2.4 provides a comparison between Refs. [67] and [64], it
does not correspond to the final results of the latter paper where the actual interpolation
was not performed for the whole P

(2)
2 . Instead, it was done only for those parts of the

non-BLM contributions to K
(2)
17 and K

(2)
27 whose exact dependence on mc remains still

unknown. A more detailed description of this procedure will be given in Sec. 2.3.
Before closing this section, let us summarize what contributions to the NNLO matrix

elements G̃
(2)
ij are already known. As we have already mentioned, we neglect the penguin

operators at this level, so we are interested only in i, j ∈ {1, 2, 7, 8}. To make the
notation more compact, we shall represent the two current-current operators Q1,2 by Q2

alone. Then we are left with only six combinations of indices to consider. Three of them
(G̃

(2)
77 , G̃

(2)
78 , G̃

(2)
27 ) involve the photonic dipole operator, and the remaining three (G̃

(2)
22 ,

G̃
(2)
28 , G̃

(2)
88 ) do not.

The calculations of G̃
(2)
77 [121, 140–143] and G̃

(2)
78 [144, 145] have been already com-

pleted for an arbitrary value of mc. Two-body final state contributions to G̃
(2)
22 , G̃

(2)
28 and

G̃
(2)
88 are also known for arbitrary mc, as they are products of the formerly calculated

NLO corrections. On the other hand, for the remaining (three-body and four-body fi-
nal state) contributions to these quantities, only results in the BLM approximation are
available [135, 137, 138]. This situation is not likely to improve in the near future be-

8 We shall skip the superscript “eff” at the Wilson coefficients in the remainder of this subsection.
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(a) (b)

Figure 2.5: Sample Feynman diagrams contributing to the NNLO counterterms with possible
2-particle and 3-particle cuts (red dotted lines). The black solid, dashed and dotted lines
denote the b-quark, c-quark and s-quark propagators, respectively.

cause five-loop diagrams (with unitarity cuts) matter for G̃
(2)
22 . However, the unknown

non-BLM terms are not expected to cause a significant uncertainty because the known
NLO+(NNLO BLM) terms for the considered quantities affect the branching ratio by
less than 4%, which is partly due to phase-space suppression of the (n > 2)-body contri-
butions.

It remains to discuss G̃
(2)
27 that is numerically important but not yet known in a

complete manner. As we have already mentioned, the BLM corrections to this quantity
(for arbitrary mc) are already known [135, 136]. Moreover, effects of massive fermion
loops on the gluon lines were computed in Ref. [146]. The remaining non-BLM parts are
known in the heavy charm limit [67,68], and recently also in the mc = 0 case [64], which
has served as a basis for the interpolation, the discussion of which will be continued in
Sec. 2.3. However, before reaching that point, it is convenient to discuss certain aspects
of the NNLO calculations that are very similar in the mc = 0 and mc 6= 0 cases. This is
what the next section is devoted to.

2.2 Renormalization of the matrix elements and the

NNLO counterterms for arbitrary mc

Let us now discuss the UV renormalization in the calculation of G̃
(2)
27 for an arbitrary

value of mc. The case of G̃
(2)
17 is analogous. Examples of four-loop diagrams that need to

be calculated for the bare contribution G̃
(2)bare
27 are given in Fig. 5.1 in Chapter 5. Apart

from them, one needs to calculate the UV counterterm contributions, sample diagrams
for which are shown in Fig. 2.5. The latter diagrams represent interferences between the
b → sγ and b → sγg amplitudes generated by the operators Q2 and Q7. One needs
to consider a particular unitarity cut in each diagram (red dotted line) which tells us
which particles are the on-shell final-state ones. In the three-body final state cases, their
propagators are going to be treated with the reverse unitarity approach (see Sec. 3.2.2)
before applying the IBP reduction.

The diagrams in Fig. 2.5 are actually the same ones that have already been calculated
at the NLO in Refs. [125, 127]. However, one needs to extend these calculations to one
more order in ε because the UV-divergent renormalization constants are going to be
inserted in the vertices. Moreover, diagrams with squared b-quark propagators need to
be considered for the purpose of the b-quark mass renormalization. No such necessity
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occurs for the c and s quarks because the latter one is massless, while the renormalization
of mc can be accounted for by differentiation of the NLO results with respect to this mass
(see below).

Another set of contributions to be taken into account for the considered UV coun-
terterms are the diagrams with such operators Qj into which Q2 mixes at the LO and
NLO, i.e. the ones for which the renormalization constants Z2j are nonvanishing at orders
O(αs) and O(α2

s ).

Below, we present an explicit expression for obtaining the renormalized G̃
(1)
27 and

G̃
(2)
27 from a set of bare interference terms and the relevant renormalization constants.

It is a straightforward generalization of Eq. (2.10) of Ref. [64] to the case of arbitrary
mc. Actually, the only difference is an additive term involving the above-mentioned
differentiation with respect to mc. Moreover, all the necessary ingredients need to be
calculated for an arbitrary z = m2

c(µc)/m
2
b,pole. The expression reads

α̃sG̃
(1)
27 + α̃2

s G̃
(2)
27 = ZOS

b ZOS
m Z̄77

{
α̃2

ss
3εG̃

(2)bare
27 + (ZOS

m − 1)sε
[
Z̄24Ĝ

(0)m
47 + α̃ss

εG̃
(1)m
27

]
+ α̃s(Z

OS
G − 1)s2εG̃

(1)3P
27 + Z̄27Z

OS
m

[
G̃

(0)
77 + α̃ss

εG̃
(1)bare
77

]
+ α̃sZ̄28s

εG̃
(1)bare
78 +

∑
j=1,...,6,11,12

Z̄2js
ε
[
Ĝ

(0)
j7 + α̃ss

εZ̄2
g Ĝ

(1)bare
j7

]}

+ 2α̃s

(
µ2
b

µ2
c

)ε
s2ε(Z̄m − 1) z

d

dz
G̃

(1)bare
27 +O(α̃3

s ) (2.61)

where s =
4πµ2b
m2
b
eγ, and γ ' 0.5772 is the Euler-Mascheroni constant.

To explain the meaning of symbols in the above equation, we begin with the renor-
malization constants. The on-shell [147] renormalization constants of the b-quark field
and its mass are denoted by ZOS

b and ZOS
m , respectively, while ZOS

G stands for the on-shell
renormalization constant of the gluon field. The explicit one-loop expression for ZOS

G de-
pends on the number of massive quarks in the effective theory. In our case, the u, d and s
quarks are treated as massless. Moreover, we shall follow the approach of Ref. [64] where
the c-quark loops on the gluon lines together with the corresponding UV-counterterms
were skipped. Contributions from such loops to G̃

(2)
27 have been already evaluated up to

the NNLO in Ref. [146], and we shall not re-calculate them. Thus, for our purpose, the
one-loop expression for ZOS

G contains only the b-quark loop contributions, which we shall
mark by nb below (nb = 1). In such a case, one finds

ZOS
b = 1− 4

3
α̃s s

ε eγε Γ(ε)
3− 2ε

1− 2ε
+O(α̃2

s ),

ZOS
G = 1− 2

3
nb α̃s s

ε eγε Γ(ε) +O(α̃2
s ), (2.62)

and ZOS
m = ZOS

b + O(α̃2
s ). The s-quark field renormalization does not matter for our

purpose because ZOS
s = 1 + O(α̃2

s ). We use the on-shell scheme for the b-quark mass
renormalization to get the final results in terms of the pole mass only, including the
overall m5

b,pole in Eq. (2.47).

All the remaining renormalization constants correspond to the MS scheme, which is
marked in Eq. (2.61) by bars over the corresponding Z’s. For compactness, we present
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below their MS counterparts.9 The MS renormalization constants of the quark mass and
the gauge coupling are given by Zm = 1− 4α̃s

ε
+O(α̃2

s ) and Zg = 1+ α̃s

ε

(
−11

2
+ f

3

)
+O(α̃2

s ),
respectively, with f denoting the number of active flavors in the effective theory. Since we
have skipped the charm quark loops on the gluon lines, we shall substitute f = nb + nl,
where nl = 3 stands for the number of massless flavors.

The relevant MS renormalization constants for the Wilson coefficients have been col-
lected in Eq. (2.9) of Ref. [64]. They read

Z77 = 1 + 16 α̃s

3 ε
+O(α̃2

s ),

Z11 = 1− 2 α̃s

ε
+O(α̃2

s ), Z21 = 6 α̃s

ε
+O(α̃2

s ),

Z12 = 4 α̃s

3 ε
+O(α̃2

s ), Z22 = 1 +O(α̃2
s ),

Z13 = α̃2
s

(
10

81 ε2
− 353

243 ε

)
+O(α̃3

s ), Z23 = α̃2
s

(
− 20

27 ε2
− 104

81 ε

)
+O(α̃3

s ),

Z14 = −1
6
Z24 + α̃2

s

(
1

2ε2
− 11

12 ε

)
, Z24 = 2 α̃s

3 ε
+ α̃2

s

(−188+12f
27 ε2

+ 338
81 ε

)
+O(α̃3

s ),

Z15 = α̃2
s

(
− 1

81 ε2
+ 67

486 ε

)
+O(α̃3

s ), Z25 = α̃2
s

(
2

27 ε2
+ 14

81 ε

)
+O(α̃3

s ),

Z16 = α̃2
s

(
− 5

216 ε2
− 35

648 ε

)
+O(α̃3

s ), Z26 = α̃2
s

(
5

36 ε2
+ 35

108 ε

)
+O(α̃3

s ),

Z17 = −1
6
Z27 + α̃2

s

(
22

81 ε2
− 332

243 ε

)
, Z27 = 116 α̃s

81 ε
+ α̃2

s

(−3556+744f
2187 ε2

+ 13610−44f
2187 ε

)
+O(α̃3

s ),

Z18 = 167 α̃s

648 ε
+O(α̃2

s ), Z28 = 19 α̃s

27 ε
+O(α̃2

s ),

Z1(11) = 5 α̃s

12 ε
+O(α̃2

s ), Z2(11) = α̃s

ε
+O(α̃2

s ),

Z1(12) = 2 α̃s

9 ε
+O(α̃2

s ), Z2(12) = O(α̃2
s ), (2.63)

In the last two lines, we encounter renormalization constants corresponding to the evanes-
cent operators Q11 and Q12 defined in Eqs. (2.11) and (2.12), respectively. Without their
contributions, the result on the l.h.s. of Eq. (2.61) would not come out finite.

All the G-symbols on the r.h.s. of Eq. (2.61) stand for interference terms between

unrenormalized decay amplitudes. Some of them appear as Ĝij instead of G̃ij, which
indicates that they correspond to Eq. (2.47) written in terms of the original Wilson
coefficients (Eq. (2.8)) rather than the effective ones (Eq. (2.42)). Using Ĝij’s makes

Eq. (2.61) somewhat more compact, and Ĝij = G̃ij unless one of the indices belong to
the set {3, 4, 5, 6}, i.e. corresponds to the penguin operators. At present, we keep the
same notation for the interference terms in both the mc = 0 and mc 6= 0 cases. However,
we will discriminate between them while providing our results in Chapters 4 and 5.

The interference terms marked by “3P” originate from three-particle final states only.
Separating such contributions matters for the external gluon field renormalization. All
our interference terms are assumed to be calculated without pure-QCD loop corrections
on the external lines. This fact determines the way in which the on-shell renormalization
constants enter into Eq. (2.61).

The quantities Ĝ
(0)m
47 and G̃

(1)m
27 originate from diagrams with squared b-quark propa-

gators. As we have already mentioned, they matter for the renormalization of mb. Let us
explain in more detail why this is so. For a one-loop renormalization of any mass m, we

9 The renormalized G̃
(n)
27 remain unchanged after replacing the MS constants by the MS ones (Z̄g →

Zg, Z̄m → Zm, Z̄ij → Zij) simultaneously with replacing s → µ2
b/m

2
b on the r.h.s. of Eq. (2.61) and

inside the on-shell constants (2.62).
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can calculate diagrams with the bare mass mb, and then replace mb → m + δm, where
m is the renormalized mass. Finally, we Taylor-expand in δm to the first order. Thus,
we need a derivative of each diagram with respect to the explicit m (i.e. the one that is
explicitly present in the propagators, not the one that arises from the on-shell condition
(p2 = m2

b) in the case of mb-renormalization). For each fermionic propagator i
6p−m , one

has

i

6 p−m− δm
=

i

6 p−m
+

i δm

(6 p−m)2
+ . . . (2.64)

Similarly for bosonic propagators,

i

p2 −m2 − δm2
=

i

p2 −m2
+

i δm2

(p2 −m2)2
+ . . . . (2.65)

For the interferences involving Q1 and Q2, we could also consider diagrams with the
mc-propagators squared. However, there is a simpler method which can be applied for the
mc-renormalization, and which was not applicable to the mb-renormalization. Namely, we
can find the relevant counterterm contributions by just differentiating G̃

(1)
27 with respect

to mc. It could not have been done for mb, because mb in the final results comes both
from mb in the propagators and from the external momentum. Distinguishing the two
sources would make the IBP cumbersome, so it is much simpler to just calculate the
diagrams with squared propagators in the case of mb. On the other hand, mc comes
only from the propagators, so we can just differentiate. Now it is easy to understand the
last term in Eq. (2.61). We calculate G̃

(1)
27 with a bare charm quark mass, as mentioned

earlier. Only after getting the analytical result in mc, we substitute mb
c = Zmmc. Next,

we expand in αs, and we get the very last term in in Eq. (2.61). Another question is
whether the differentiation with respect to z can be easily performed in practice. For this
purpose, we shall calculate G̃

(1)bare
27 (z) to order O(ε) not only numerically but also using

a power-logarithmic expansion around z = 0 to a sufficient accuracy.
As a final remark in this section, let us note that Ĝ

(0)
j7 vanish for j = 1, 2, 11, 12, which

needs to be taken into account when computing the sum in the third line of Eq. (2.61).

2.3 The CP- and isospin-averaged branching ratio

In the present section, we discuss the actual formulae that were used for evaluation of the
most recent prediction for the CP- and isospin-averaged branching ratio in Refs. [2, 64].
The main expression used there to express the branching ratio in terms of experimentally
measured and theoretically calculated quantities has the following form [52]

B(B̄ → Xsγ)Eγ>E0 = B(B̄ → Xceν̄)exp

[
| VtbV ∗ts/Vcb |2

6αem

π C
[P (E0) +N(E0)]

]
. (2.66)

Here, the semileptonic phase space factor C [52] is defined as

C = |Vub/Vcb|2
B(B̄ → Xceν̄)

B(B̄ → Xueν̄)
. (2.67)
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The reason for using a normalization to the measured semileptonic branching ratio B(B̄ →
Xceν̄)exp and employing the factor C is to reduce the uncertainties stemming from the
CKM matrix elements and the bottom quark mass in the SM prediction for B(B̄ → Xsγ).
The factor C is calculated on the theoretical side using perturbative and nonperturbative
parameters determined from fits to the measured semileptonic decay rate and spectra [41].

The other two quantities in Eq. (2.66) to be calculated on the theoretical side are
P (E0) and N(E0). The former is numerically dominant. It is a perturbative object
defined by the equation

Γ[b→ Xpartonic
s γ]Eγ>E0

|Vcb/Vub|2Γ[b→ Xpartonic
u eν̄]

= | VtbV ∗ts/Vcb |2
6αem

π
P (E0). (2.68)

Its relation to the Wilson coefficients and the quantities Kij has been given in Eq. (2.54).
The nonperturbative correction N(E0) contains the contributions that were discussed in
Sec. 2.1.3.

Let us focus on the NNLO corrections to the perturbative part P (E0). Once the
penguin operators are neglected at the O(α2

s ) level, the only NNLO corrections involving
Q7 that are not yet known for arbitrary mc originate from the functions Fi(z, δ) in the

following expressions for the quantities K
(2)
17 and K

(2)
27 [64]

K
(2)
17 (z, δ) = −1

6
K

(2)
27 (z, δ) + A1 + F1(z, δ) +

(
94

81
− 3

2
K

(1)
27 −

3

4
K

(1)
78

)
Lb −

34

27
L2
b ,

K
(2)
27 (z, δ) = A2 + F2(z, δ)− 3

2
β(0), nl=3fq(z, δ) + fb(z) + fc(z) +

4

3
φ

(1)
27 (z, δ) ln z

+

[
(8Lc − 2xm) z

d

dz
+ (1− δ)xm

d

dδ

]
fNLO(z, δ) +

416

81
xm

+

(
10

3
K

(1)
27 −

2

3
K

(1)
47 −

208

81
K

(1)
77 −

35

27
K

(1)
78 −

254

81

)
Lb −

5948

729
L2
b . (2.69)

Here, δ = 1 − 2E0/mb, β(0), nl=3 = 9, Lb = ln(µ2
b/m

2
b) and Lc = ln(µ2

c/m
2
c). The

function φ
(1)
27 (z, δ) is given in Appendix B here. The relevant NLO quantities K

(1)
ij are

collected in Appendix C of Ref. [64].

There are several quantities on the r.h.s. of Eq. (2.69) which require to be specified
and discussed. We do it item-by-item below.

• The functions Fi(z, δ) are defined in such a manner that Fi(0, 1) = 0. Apart from
that, the only thing we know about them at present are the leading terms of their
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large-z asymptotic expansions. From the results of Refs. [67,68], one finds

F1(z, δ) =
70

27
ln2 z +

(
119

27
− 2

9
π2 +

3

2
φ

(1)
78 (δ)

)
ln z − 493

2916
− 5

54
π2 +

232

27
ζ(3)

+
5

8
φ

(1)
78 (δ)− A1 +O

(
1

z

)
,

F2(z, δ) = −4736

729
ln2 z +

{
−165385

2187
+

1186

729
π2 − 2π

9
√

3
+

2

3
Y1 +

4

3
φ

(1)
47 (δ) +

832

81
φ

(1)
77 (δ)

+
70

27
φ

(1)
78 (δ)

}
(ln z + 1)− 956435

19683
− 2662

2187
π2 +

20060

243
ζ(3)− 1624

243
φ

(1)
77 (δ)

− 293

162
φ

(1)
78 (δ)− A2 +O

(
1

z

)
. (2.70)

The necessary φ
(1)
ij functions are given in Appendix B here. The constant Y1 can be

found in Appendix B of Ref. [64].

• The remaining (known) mc-dependent quantities on the r.h.s. of Eq. (2.69) read

fNLO(z, δ) = Re r
(1)
2 (z) + 2φ

(1)
27 (z, δ),

fq(z, δ) = Re r
(2)
2 (z) − 4

3
h

(2)
27 (z, δ),

fb(z) ' −1.836 + 2.608 z + 0.8271 z2 − 2.441 z ln z,

fc(z) ' 9.099 + 13.20 z − 19.68 z2 + 25.71 z ln z. (2.71)

The function fq(z) describes the NNLO BLM terms. Explicit formulae for r
(1)
2 (z)

and Re r
(2)
2 (z) can be found, e.g., in Refs. [67, 129].

• The constants A1 and A2 are known only numerically. They read

A1 ' 22.605, A2 ' 75.603. (2.72)

These values are recovered from the mc = 0 calculation of Ref. [64], and from the
condition Fi(0, 1) = 0.

• In the evaluation of the analytical results for Kij, the pole mass of the b quark
is used first. Next, one shifts to any renormalon-free scheme using the one-loop
relation

mb,pole

mb,X

= 1 + α̃sxm +O(α̃2
s ). (2.73)

where mb,X denotes the renormalized mass in the new scheme. Only after such a
shift, a numerical value of mb,X is substituted. This explains the appearance of xm
in Eq. (2.69). For the so-called kinetic and 1S schemes, we have

xm =
64µkin

9mb

(
1 +

3µkin

8mb

)
, in the kinetic scheme, (2.74)

xm = 8
9
παΥ, in the 1S scheme. (2.75)
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Figure 2.6: The function Uinterp(z, 1) (solid line) and asymptotic behavior of the true function
U(z, 1) for mc � mb/2 (dashed line), as presented in Fig. 4 of Ref. [64]. The vertical line
corresponds to the measured value of mc/mb.

In the analysis of Refs [2, 64], the kinetic scheme was used. For the central value
of the SM prediction, the renormalization scales were set to µ0 = 160 GeV and
µb = µc = 2 GeV.

• In the 2015 version of the phenomenological analysis [2, 64], the mc-interpolation

is applied only to the functions Fi(z, δ). One takes K
(2)
17 and K

(2)
27 as they stand

in Eq. (2.69), and replaces the unknown Fi(z, δ) by F interp
i (z, 1) which are assumed

to be linear combinations of fq(z, 1), fNLO(z, 1), z d
dz
fNLO(z, 1) and a constant term.

The coefficients in these linear combinations are fixed in a unique manner once
we require that the interpolated functions satisfy the condition F interp

i (0, 1) = 0
and match the known large-z asymptotic behavior of Fi(z, 1) that follows from
Eq. (2.70). Explicitly, one finds

F interp
1 (z, 1) = −23.75 +

35

12
fq(z, 1) +

(
2129

936
− 9

52
π2 − 0.84 z

d

dz

)
fNLO(z, 1),

F interp
2 (z, 1) = −3.01 − 592

81
fq(z, 1) +

(
−10.34 − 9.55 z

d

dz

)
fNLO(z, 1). (2.76)

We note that the interpolation is performed for δ = 1, while all the known con-
tributions are evaluated at δ = 1 − 2E0/mb ' 0.3 for E0 = 1.6 GeV. Such an
approximation is enforced by the fact that the mc = 0 calculation of the full NNLO
corrections G̃17 and G̃27 in Ref. [64] was done only at δ = 1, for technical reasons.

However, the δ-dependence of the known parts of G̃17 and G̃27 is very weak, and the
same is expected for Fi(z, δ). In any case, the uncertainty due to interpolation (see
the next section) will also include the effect of setting δ to unity in the interpolated
functions.

Let ∆B(B̄ → Xsγ) denote the contribution from the interpolated F1,2(z, δ) to B(B̄ →
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Xsγ). We define the function U(z, δ) as follows

∆B(B̄ → Xsγ)

B(B̄ → Xsγ)
' U(z, δ) ≡ α2

s (µb)

8π2

C
(0)
1 (µb)F1(z, δ) +

(
C

(0)
2 (µb)− 1

6
C

(0)
1 (µb)

)
F2(z, δ)

C
(0)eff
7 (µb)

.

(2.77)
This function quantifies the relative effect of the interpolated corrections on the branching
ratio. For µb = 2.0 GeV, we have αs(µb) ' 0.293, C

(0)
1 (µb) ' −0.902, C

(0)
2 (µb) ' 1.073,

and C
(0)eff
7 (µb) ' −0.385. With these inputs, one finds the following interpolated expres-

sion for U(z, 1)

Uinterp(z, 1) = x1 + x2 fq(z, 1) +

(
x3 + x4 z

d

dz

)
fNLO(z, 1), (2.78)

where xi ' (−0.0502, 0.0328, 0.0373, 0.0309). It is plotted by the solid line in Fig. 2.6.
The dashed line shows the known asymptotic behavior for mc � mb/2. The boundary
at (0, 0) is fixed by the condition Fi(0, 1) = 0. One can read out that the interpolated
correction grows from 0 to around +5% when mc grows from zero to the measured value
(marked by the vertical line).

Before closing this section, let us comment on the relation of decay rates to the CP-
and isospin-averaged branching ratio in an untagged measurement at Υ(4S). The CP-
averaged decay rates are

Γ0 =
Γ(B̄0 → Xsγ) + Γ(B0 → Xs̄γ)

2
, Γ± =

Γ(B− → Xsγ) + Γ(B+ → Xs̄γ)

2
,

(2.79)
with their isospin average Γ = (Γ0 +Γ±)/2 and asymmetry ∆0± = (Γ0−Γ±)/(Γ0 +Γ±).
In the above equation, we have specified the final state strangeness (−1 for Xs and +1
for Xs̄) and the neutral B-meson flavors by ignoring the effects of the K0K̄0 and B0B̄0

mixing. Taking the K0K̄0 mixing into account is equivalent to replacing Xs and Xs̄ by
X|s| with an unspecified strangeness sign. It leaves Γ0 and Γ± invariant. Next, to take
the B0B̄0 mixing into account, one should use in Γ0 the time-integrated decay rates of
mesons whose flavor is fixed at the production time. Such a change has almost no effect
on Γ0 because mass eigenstates in the B0B̄0 system are very close to being orthogonal
(|p/q| = 1) and having the same decay width [22]. Thus the neutral meson mixing effects
can be ignored in our case.

The CP- and isospin-averaged width Γ (defined above) is related to the CP- and
isospin-averaged branching ratio of B(B̄ → Xsγ) as follows

B(B̄ → Xsγ) = τB0Γ

(
1 + rfrτ
1 + rf

+ ∆0±
1− rfrτ
1 + rf

)
. (2.80)

where rf = f+−/f 00 = 1.059 ± 0.027 [51] and rτ = τB+/τB0 = 1.076 ± 0.004 [51] are
the production rate ratios and the measured lifetime ratios of the charged and neutral B
mesons at Υ(4S). Since the measured value of ∆0± = −0.01±0.06 (for Eγ > 1.9 GeV) [22,
49,50] is small, the last term in Eq. (2.80) is practically negligible.
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B(B̄ → Xceν̄) 1.50% mkin
b 0.27%

αs(MZ) 0.75% mc(µc) 0.57%
mt,pole 0.19% mb/mq 0.37%
λ = s12 0.02% µ2

G 0.69%
A = s23/s

2
12 0.01% µ2

π 0.03%
ρ̄ 0.12% ρ3

D 0.74%
η̄ 0.01% ρ3

LS 0.05%

Table 2.3: A breakdown of parametric uncertainties in the SM prediction [2, 64] for B(B̄ →
Xsγ).

2.3.1 Theoretical uncertainties in the SM prediction for B(B̄ →
Xsγ)

The calculations described in the previous section give us the SM prediction for the
branching ratio. In Eq. (1.4) and below, as well as in Table 1.1, we quoted its central value
together with the estimated uncertainties of four different types. The nonperturbative
one has already been discussed in Sec. 2.1.3. Here, we shall comment on the remaining
three types.

Parametric uncertainties

A list of all the input parameters used for the branching ratio evaluation can be found in
Appendix D of Ref. [64]. Individual errors in their determination and the corresponding
correlation matrix lead to an overall parametric uncertainty in B(B̄ → Xsγ) of ±2.0%
(more precisely, ±2.04%). Contributions to this uncertainty from particular parameters
(before taking correlations into account) are summarized in Tab. 2.3.

The main parametric uncertainty (±1.5%) originates from the semileptonic branch-
ing ratio B(B̄ → Xceν̄), while the next one (±0.75%) comes from αs(MZ). Similarly
to B(B̄ → Xsγ), the semileptonic branching ratio B(B̄ → Xceν̄) is CP- and isospin-
averaged, and its isospin asymmetry is negligible. When Eq. (2.68) is used for evaluating
the SM prediction for the radiative decay, neither lifetimes nor production rates enter the
calculation, despite their presence in Eq. (2.80).

The influence of the b-quark mass mkin
b on the final parametric uncertainty is below

0.3%, i.e. it is subdominant with respect to that of B(B̄ → Xceν̄) or αs(MZ). The
nonperturbative parameters µ2

G, µ2
π, ρ3

D and ρ3
LS affect only N(E0) in Eq. (2.68). As far

as the CKM matrix is concerned, the Wolfenstein parameters (λ, A, ρ̄, η̄) are being used
(see, for example, Eq. (12.4) of Ref. [22] for their definitions). Their numerical values are
adopted from the most recent fit of the CKMfitter [148] collaboration. The ones of the
UTfit [149] collaboration are in agreement with them within the quoted errors.

The parameter mb/mq for q = u, d, s requires an extended discussion. It regulates
collinear divergences that would appear in the tree-level LO contributions, as well as in
some of the NLO terms (e.g., K

(1)
88 ) if the light quark masses were set to zero. Actually,

these masses are set to zero everywhere in the calculation except for the collinear log-
arithms ln(mb/mq). The presence of such logarithms in some of the interference terms
indicates that the perturbative expressions do not give good approximations for these

42



terms. In fact, one should use nonperturbative fragmentation functions (extracted from
experiment) to estimate the collinear effects. Such estimates have been worked out in
Refs. [137, 150, 151]. The overall conclusions are as follows: (i) The collinear logarithms
arise only in such contributions to B(B̄ → Xsγ) that receive strong suppression by ei-
ther small Wilson coefficients, small CKM angles and/or other factors like Q2

d = 1/9.
(ii) Those suppressed contributions are by themselves very uncertain because the frag-
mentation functions are not known precisely enough. (iii) The allowed (wide) ranges for
these contributions are quite well reproduced by the perturbative expressions whenmb/mq

is varied in the range [10, 50] which roughly corresponds to the range [mB/mK ,mB/mπ],
where mK ' 0.5 GeV and mπ ' 0.1 GeV are the kaon and pion masses, respectively.
Indeed, the latter masses serve as collinear regulators in the physical case. In the cal-
culation of Refs. [2, 64], the perturbative expressions with mb/mq ∈ [10, 50] were used,
and the corresponding uncertainty was treated as parametric. However, it could also be
treated as a nonperturbative one.

A reduction of the overall parametric uncertainty from ±3% in Refs. [66,67] to ±2%
in Refs. [2, 64] was possible mainly thanks to the recent semileptonic fits [41], as well as
to a more precise value of αs(MZ) [22]. In the future, a lower parametric uncertainty can
be achieved by using

Rγ =
B(B̄ → Xsγ) + B(B̄ → Xdγ)

B(B̄ → Xceν̄)
(2.81)

instead of B(B̄ → Xsγ) itself as an observable that provides constraints on new physics.
On the theory side, such a choice removes the dominant parametric uncertainty (±1.5%
from the semileptonic ratio) but at the same time increases sensitivity to mb/mq. How-
ever, the net effect is a noticeable decrease of the parametric uncertainty (from ±2.0%
to
(

+1.2
−1.7

)
%). On the experimental side, the division by B(B̄ → Xceν̄) has almost no

effect on the uncertainty, while including B(B̄ → Xdγ) has a positive effect because the
final-state flavor is not identified in the fully inclusive measurements. A prediction for
Rγ in the SM has been provided in Ref. [2]. It reads

Rγ = (3.31± 0.22)× 10−3. (2.82)

Uncertainties due to the interpolation in mc

The particular choice of the functions for the interpolation in Eq. (2.76) has been moti-
vated by the fact that these very functions multiply explicit logarithms of renormalization
scales in Eq. (2.69) and/or are relevant in the BLM approximation that is correlated with
the renormalization of αs. If the dominant effects among the unknown NNLO corrections
are due to renormalization (which often happens in perturbation theory) then the inter-
polating functions should reproduce the z-dependence of Fi(z, 1) quite well.

On the other hand, given that we know very little about the true functions Fi(z, δ),
the corresponding uncertainty estimate is extremely arbitrary. It is set to ±3% after
observing in Fig. 2.6 that the interpolated contribution follows roughly a straight line,
and it grows from 0 to 5% when mc grows from zero to the measured value (marked
by a vertical line). None of the functions of z that we know in this problem (fNLO(z),
z d
dz
fNLO(z), fq(z), fc(z), fb(z)) depends on z in a particularly strong manner. They are

all monotonous, without particularly steep slopes anywhere, which can be seen in the
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plots of Refs. [67, 146]. There is no reason to expect that the unknown NNLO function
U(z, δ) is going to be qualitatively different. Most probably, it starts somewhere around
0.1 at mc ' mb/2 and goes monotonically towards zero, crossing the vertical line at the
physical value of mc somewhere half-way. The ±3% uncertainty should be considered as
a “theoretical 1σ” error around the +5% central value, which means that the “2σ” range
is [−1%,+11%] and covers everything we might get from monotonous functions. Taking
“3σ” gives [−4%,+14%], which seems to be sufficiently conservative.

Uncertainties due to the higher-order O(α3
s ) corrections

At the time when only the LO results for B(B̄ → Xsγ) were known, perturbative un-
certainties due to the then-unknown O(αs) corrections were estimated at the ±25%
level [114]. Presently, uncertainties due to the unknown O(α3

s ) corrections are estimated
at the ±3% level. This estimate is based on studying the branching ratio dependence on
the renormalization scales. It is shown in Fig. 2.3. Since accidental cancellations in the
scale dependences might occur, one also takes into account that the O(αns ) corrections
should be given by (αs(µb)/π)n times a factor of order unity. For µb = 2 GeV one has

αs(µb)

π
' 0.093,

(
αs(µb)

π

)2

' 0.0087,

(
αs(µb)

π

)3

' 0.00081, (2.83)

which means that the ±3% estimate for the O(α3
s ) correction corresponds to the order-

unity number equal to around 37 for a “theoretical 1σ”. This number is actually sig-
nificantly larger than unity. Thus, both the scale-dependence in Fig. 2.3 and verifying
the size of (αs(µb)/π)3 point towards a conclusion that ±3% is an acceptable uncertainty
estimate, despite the fact that we deal with renormalization scales which are only a few
times larger than the confinement scale Λ.
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Chapter 3

A description of the calculational
methods

In the present chapter, we describe the calculational methods that have been used in
our evaluation of the interference terms G̃

(1)bare
27 , G̃

(1)3P
27 , G̃

(1)bare
7(12) and G̃

(1)m
27 defined in

Sec. 2.2. They constitute a complete1 set of mc-dependent objects that determine the
UV counterterms on the r.h.s. of Eq. (2.61). Apart from finding them for arbitrary

z = m2
c/m

2
b , we have also performed their and Ĝ

(1)bare
47 calculation in the z = 0 case from

the outset, i.e. performing a separate IBP reduction and calculation of the MIs. In this
way, we have cross-checked and confirmed the published results for these quantities in
Ref. [64]. Moreover, the z = 0 results provide tests for our arbitrary-z ones, except for
one object which diverges as ln z when z → 0, but contains an extra 1/ε divergence
when calculated at z = 0 from the outset.

As far as the arbitrary-z results are concerned, we will compare them with those of
Ref. [152] in the cases of G̃

(1)bare
27 and G̃

(1)3P
27 . The remaining two cases (G̃

(1)bare
7(12) and G̃

(1)m
27 )

are entirely new.

In the present chapter, apart from describing the methods, we shall present explicit
results for all the relevant master integrals. The final results for the interference terms
will be given in Chapter 4.

We have extensively used both the symbolic and numerical tools of Mathematica

under which most of our own codes have been written. Apart from them, numerical
routines in Fortran and C++ have been used.

Our introduction to multi-loop techniques is going to be brief and concentrated on our
particular needs. For more details on these techniques, we refer the reader to Ref. [153]
and references therein.

1 As in Sec. 2.2, we assume that bare diagrams with the charm loops on the gluon lines and all the
related UV counterterms are not included in our calculation, as they are already known from Ref. [146].
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3.1 Feynman integrals and methods of their evalua-

tion

When evaluating higher-order corrections in perturbation theory, one has to deal with
Feynman integrals contributing to the S-matrix2. In the momentum space, the generic
structure of a Feynman integral having L loops and N internal lines (propagators), in the
spacetime dimension D, with loop momenta ki and external momenta pi (all assumed to
be independent) can be cast into the following form:

FL =

∫ L∏
i=1

dDki
[Polynomials in (ki · kj) and (ki · pj)]

[Q2
1 −m2

1 + i0]n1 . . . [Q2
N −m2

N + i0]nN
(3.1)

where n1, . . . , nN ∈ Z. The products (ki ·kj) and (ki · pj) contain both reducible and irre-
ducible numerators. The number of such independent products is N = L(L+1)/2+LE,
where E is the number of external momenta. The momenta Qi are linear combinations
of loop momenta and external momenta. They can be written as

Qi =
L∑
j=1

αijkj +
E∑
j=1

βijpj, (3.2)

where αij, βij ∈ {−1, 0, 1}. We shall use the following convention: when the powers
of propagators are integers, we write them either as +k2 + i0 or −k2 − i0, but when
they are non-integer, we always use −k2 − i0. The latter choice is more natural if we
wish to obtain a Euclidean (−k2) form of the integrand. In the following, for brevity,
we shall drop indicating the Feynman “i0” prescription. Typically, divergences in the
Feynman integrals can be attributed to a specific semi-physical reason: in the UV (large
loop momenta) and in the IR (for massless particles, small loop momenta or collinear
configurations ki ∼ pj or ki ∼ kj). Because of this fact, one needs to give more precise
meaning to these integrals by means of regularization. An observation that the Feynman
integrals become finite if the dimension of spacetime D becomes non-integer leads to the
technique of Dimensional Regularization (DR) [79]. In DR, the basic defining property
is that the Feynman integrals F are analytic in the complex D-plane.

Due to the dimensionality shifting in the DR, one performs slight modifications in
the QCD Lagrangian L density which is polynomial in the fields, their derivatives and
masses. Since the action

∫
dDxL is a dimensionless quantity, it is straightforward to

extract the mass dimensionalities of the quark fields ([ψf,i] = (D − 1)/2), and gluon
fields ([Aαµ] = D/2− 1) from their respective kinetic energy terms (quadratic part of the
Lagrangian). The coupling constant dimensionality is then deduced from the interaction
terms (non-quadratic part of the Lagrangian). One finds [g] = 2 − D/2, which means
that in D = 4 the coupling constant g dimensionless. The following simple integral is
sufficient to illustrate the underlying concept of DR explicitly

I(n) =

∫
dDk

1

(−k2 +M2)n
= iπD/2

Γ(n−D/2)

Γ(n)
MD−2n (3.3)

where n is an integer. The above integrand has dimension [mass]−2n and the integration
volume dDk has dimension [mass]D. To keep the dimensionality in units of mass the

2Sample diagrams to be evaluated are given in Fig. 2.5.
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same as in the D = 4 case, one usually introduces the so-called renormalization scale
parameter µ. It comes as µ4−D in front of each integral measure.

There are important advantages of DR:

• The Feynman rules and all the symmetries (Lorentz invariance, gauge invariance,
unitarity, etc) of the theory do not depend on D. Thus, these symmetries remain
manifest at all stages of the calculation.

• The scaleless integrals vanish in DR.

• Integrals that diverge for D = 4 turn out to be well-behaved when D is not an
integer. Setting D = 4 − 2ε, where ε serves as regularization parameter, we find
them as meromorphic functions in ε. This means that only 1/εj poles and no
branch cuts in ε occur. Multiple 1/εj poles remain also after proper subtraction
of subdivergences by means of renormalization. However, an important theorem
of QFT (see the book by J.C Collins in Ref. [19]) states: An overall singularity
at D = 4 of a dimensionally regularized Feynman amplitude is a polynomial in
its external momenta after a subtraction of subdivergences corresponding to all its
genuine one-particle-irreducible subgraphs has been performed. There are additional
poles in the S-matrix elements if the IR divergencies are regularized dimensionally.
The Laurent expansion of Eq. (3.1) in DR reads

FL(ε) =
∞∑

j=−2L

fj,L ε
j (3.4)

where fj,L is function of kinematical invariants (constructed from the external mo-
menta, masses of the external particles and of the particles running in the loops).
It is well known that Feynman integrals may have discontinuities [154]. In general,
fj,L as a function of the products pi · pj is analytic everywhere besides its branch
cuts. Appendix A contains examples of functions that we have encountered in the
present project. A detailed discussion of analytic properties of Feynman integrals
can be found in Ref. [155].

In the case of putting massless propagators on-shell, the branch cuts may extend
between points where some of the kinematical invariants are zero or infinity. For
massive propagators we have thresholds, and the branch cut structure may not be
simple. For example, the b → s γ amplitude has a real threshold at m2

b = 4m2
c

which corresponds to opening of the b → cc̄s channel. To predict what classes
of functions may appear in a given calculation, it is important to think about the
asymptotic behavior of the integrals in (potentially) singular limits. In the Feynman
parameterization (to be discussed below), thresholds may be parameterized at the
integrand level, as a combination of kinematical invariants and Feynman parame-
ters. The full set of thresholds can be determined solving the Landau equations of
an integrand [156].

There are also some limitations of DR:

47



• Noncommutativity and nonuniqueness of limits in ε and kinematical invariants for
nonphysical quantities in massless theories3. For instance, the limits ε → 0 and
M → 0 do not commute for n = 2 in the integral (3.3). Moreover, to regularize
IR divergences, one may introduce a small cut-off mass for the massless particles,
except for nonabelian gauge bosons.4 The cut-off mass is sent to zero only after
evaluating the physical quantities which are IR-safe (either by themselves or thanks
to experimental IR cutoffs). Alternatively, one can use DR to regularize both the
IR and the UV divergences, but in that case the limit ε→ 0 can only be taken for
the above-mentioned physical quantities.

• Inclusion of chiral fermions generates the so-called γ5 problem that requires special
care in D dimensions. The γ5 matrix appears in our calculations due to weak
operator insertions. We encounter a single γ5 in the Q7,8 and Q3,...,6 vertices, and
two γ5’s Q1,2. Here, we apply the Naive Dimensional Regularization (NDR) scheme
where γ5 is treated as a completely anticommuting object, i.e. {γµ, γ5} = 0 for
all the Dirac matrices γµ. Despite the fact that such a scheme is algebraically
inconsistent in the general case [79], it is acceptable for our calculation because in
the CMM basis we avoid traces Tr(γµγνγργσγ5) ∼ εµνρσ in the physical amplitudes.

• Due to our use of DR, we have to consider nonphysical terms, called evanescent
operators [102–104], that algebraically vanish in D = 4. Examples of such terms
have already been given in Eqs. (2.11), (2.12) and (2.24)-(2.29).

At the end of this section, let us briefly mention a few more general facts about
Feynman integrals. The relation L = I − V + 1 holds for any L-loop integral (planar or
nonplanar) having I internal lines and V vertices. Its superficial degree of divergence R
in 4 dimensions is R = 4L + P , where P is an integer evaluated using power counting.
The counting goes as follows. Let all the loop momenta simultaneously become large
ki → Ω ki with Ω → ∞ in the integrand J of Eq. (3.1). Then J scales according to
J → ΩPJ , and we can read out P . The Weinberg theorem [157] states the following:
Suppose the degree of divergence of a given diagram is R, and for each of its subdiagrams
the degree of divergence is Rs. The considered diagram is absolutely convergent if all the
Rs together with R are negative. It is worth to mention that in some cases the divergence
may become weaker due to some symmetries. An example is the electron one-loop self-
energy diagram for which we have R = 1, but from explicit calculation it has only R = 0,
i.e. a logarithmic divergence.

3.2 Integration by parts, reverse unitarity and re-

duction to master integrals

In perturbation theory, as the number of loops, legs and scales increases, the number
of integrals grows very fast with increasing orders in the coupling constant. Thus, one
needs to deal with hundreds of multi-dimensional integrals. Such calculations are usually
performed with the help of symbolic computer algebra codes, according to algorithms

3 This issue has lead us to evaluate mc = 0 contributions in Sec. 4.2 from the outset.
4 For abelian ones it is acceptable but destroys the gauge invariance until the massless limit is taken.
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that can be rendered fully automatic, at least for particular steps of the procedure. The
algorithm we have followed is described in the present section.

3.2.1 Integration by parts

We have used FeynArts [158] for automatic generation of the necessary Feynman dia-
grams. The diagrams we deal with correspond to interference terms in the decay width,
and summing or averaging over polarizations is understood. Thus, performing the Dirac
algebra calculations amounts to evaluation of traces. It has been done with the help
of a self-written Mathematica code. As a result, the considered interference terms were
expressed as linear combinations of scalar integrals of the form (3.1).

Some of the momentum products in the numerator of Eq. (3.1) can be written as linear
combinations of denominators, and then simplified, which is called Passarino-Veltman
reduction [159]. Once it is performed, we are left only with numerators that are called
irreducible, and will be denoted by Si below. The integrals to be evaluated take then the
following form:

F (a1, . . . , aM ,−r1, . . . ,−rs) =
∑ ∫ L∏

i=1

dDki
Sr11 . . . Srss
Da1

1 . . . DaM
M

(3.5)

with ai being any integers, and ri being non-negative integers. These powers are of-
ten called indices of an integral. For instance, in the case of the Feynman diagram of
Fig. 2.5(a) with a two-body unitarity cut, we have obtained the following denominators
Di and irreducible numerators Si:

D1 = −(k1 + p2)2, D2 = −k2
1,

D3 = −k2
2 +m2

c , D4 = −(k2 + p1)2 +m2
c ,

D5 = −(k1 + k2)2 +m2
c ,

S1 = k1 · p1, S2 = k2 · p2, (3.6)

with O(102) different sets of indices. Here, p1 and p2 stand for the final-state photon and
s-quark momenta, respectively. A sample integral reads

F (0, 1, 1, 1, 1, 0,−2) =

∫ ∫
dDk1d

Dk2
(k2 · p2)2

D2D3D4D5

. (3.7)

After these preliminary steps, the main breakthrough in reducing the number of in-
tegrals is achieved via integration by parts. The IBP reduction method [69, 70, 160] is
based on the fact that the dimensionally regularized integral of a total derivative is equal
to zero. For example, denoting the integrand in Eq. (3.5) by J , and choosing any of its
loop momenta ki, we can write ∫

dDki
∂

∂kµi
(vµJ) = 0, (3.8)

where vµ stands for either kµj or pµj . Each such identity gives us a linear relation between
several integrals.
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Let us illustrate the above statement by considering only a single loop momentum kµ,
and choosing vµ = kµ. By the chain rule, we have∫

dDk
∂

∂kµ
(kµJ) =

∫
dDk kµ

(
∂

∂kµ
J

)
+D

∫
dDk J (3.9)

where we have used ∂
∂kµ

kµ = D. The D-dimensional volume integral on the l.h.s. of
Eq. (3.9) can be converted by the Gauss theorem to a surface integral that may be
dropped out whenever J vanishes sufficiently fast at infinity. Even if this is not the
case, the IBP reduction for dimensionally regularized integrals can be implemented with
ignoring the surface terms irrespective of the asymptotic behavior of the integrand. Thus,
in our example, we have

D

∫
dDk J = −

∫
dDk kµ

(
∂

∂kµ
J

)
(3.10)

Once Eq. (3.8) is used for a particular integral, we find linear relations involving many
different integrals. We can then apply Eq. (3.8) to them, bringing even more integrals
into the game, and so on. However, it turns out that the number of new integrals grows
slower than the number of generated identities, and at some point the system of generated
equations closes, allowing us to express all our initial integrals (as well as many other ones)
in terms of a few Master Integrals (MIs). While there exists a proof that the number of
MIs is finite [161], we never know before performing the actual IBP reduction how many
of them will be found for a particular topology that is defined by the denominators Di.

3.2.2 Reverse unitarity

Before continuing our discussion of the IBP, let us describe the so-called “reverse uni-
tarity” trick [162]. Our original Feynman diagrams contain unitarity cuts, which means
they involve (D− 1)-dimensional phase-space integrals that are inconvenient for the IBP
method in the (n > 2)-body final state cases. To avoid this problem, one first converts
them to D-dimensional ones using the well-known identity that holds for a particle with
mass m, and for any function J(k):∫

dD−1~k

2
√
~k2 +m2 (2π)D−1

J(k) =

∫
dDk

(2π)D
θ(k0)δ(k2 −m2)J(k). (3.11)

Next, one uses the relation

2πi δ(k2 −m2) =
1

k2 −m2 − i0
− 1

k2 −m2 + i0
. (3.12)

Once the above expressions are substituted, we obtain integrals that look as originating
from diagrams with no unitarity cuts at all (no phase-space integrals), except for the
factors θ(k0) and possibly different signs of the “i0” terms in some of the propagators.
However, neither the signs of the “i0” terms nor the factors of θ(k0) have any influence
on the linear relations between integrals that one obtains using the IBP. The integral
on the l.h.s. of Eq. (3.9) still vanishes even if the integrand is multiplied by θ(k0), while
the algebraic effect of differentiation with respect to momenta (raising or lowering the
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indices) is insensitive to the “i0” terms. Thus, the IBP can be performed as for the loop
integrals. Once the MIs are found, the above two identities are applied “backwards”, and
the phase-space integrals are re-introduced for the actual evaluation of the MIs.

In fact, there is an important simplification in the IBP when some of the propagators
are cut (i.e. they originate from using the reverse unitarity method). If we encounter
integrals where any of the cut propagators has a non-positive index, we can immediately
set them to zero. It follows from the fact that the difference on the r.h.s. of Eq. (3.12)
would give a null distribution if the propagators were raised to non-positive powers.

The code REDUZE [75] has a built-in option for using the reverse unitarity. It auto-
matically takes care of neglecting integrals with negative indices of the cut propagators.
Moreover, it avoids producing MIs with dots on the cut propagators, i.e. with their in-
dices larger than 1. Such integrals have no other meaning but being linear combinations
of the integrals that contain no such dots.

On the other hand, the code FIRE [73,74] (which we have extensively used) allows to
neglect cut propagators with negative indices, but has no automatic protection against
MIs with dots on the cut propagators. One needs to solve the problem “by hand” by
introducing explicit preferences for the MIs of various topologies. We shall return to this
issue below.

Let us stress that we have applied the reverse unitarity method only in the three-body
final state case. In the two-body case, the phase-space integrals are trivial due to Dirac
δ-functions. What they give for massless final state particles is a multiplication by a fixed
ε-independent number (the same as in D = 4) and, in addition, by

P2 =
Γ(1− ε)
Γ(2− 2ε)

eγε. (3.13)

In the following, the quantity P2 will be called a “two-body phase-space factor.”

3.2.3 Reduction to master integrals

Let us illustrate the action of the IBP using the one-loop integrals I(n) from Eq. (3.3).
If we did not know the result for arbitrary n, we could still find relations between those
integrals proceeding as follows:∫

dDk
∂

∂kµ

(
kµ

1

(−k2 +M2)n

)
= 0 ⇒ (D − 2n) I(n) + 2nM2 I(n+ 1) = 0

⇒ I(n+ 1) =
n−D/2
M2n

I(n). (3.14)

Moreover, I(n) = 0 for n ≤ 0. Thus, any I(n) for n > 1 is given by a recurrence relation
which allows to express it in terms of I(1) that serves as a master integral.

In more general cases, the IBP does not give us recurrences that are easy to solve.
Instead, one applies the so-called Laporta algorithm [71] which amounts to postulating
an order relation among the integrals. It specifies which integrals should be eliminated
first from the system of linear equations, and which ones should be retained and treated
as simpler. We shall not quote the postulated rules in full length but only mention that
integrals with lower numbers of denominators and lower absolute values of the indices in
Eq. (3.5) are treated as simpler. Since the IBP relations are linear, one can think about
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the reduction as expressing vectors of a linear space in terms of some basis that is given
by the MIs. The choice of the basis involves some arbitrariness that is limited by the
above-mentioned order relation but not totally eliminated.

Apart from the IBP relations, other sorts of identities have been considered in the lit-
erature, in particular the Lorentz Invariance (LI) [163] Gram [164] or quasi-Shouten [165]
ones. However, in our calculation, only the IBP relations and the Laporta algorithm have
been used, as implemented in the (already mentioned) code FIRE [73,74]. The other IBP
codes quoted in Chapter 1 have served us for certain cross-checks only.

The name FIRE stands for “Feynman Integral REduction”. It uses a special version
of the Gauss elimination method to solve the system of linear equations that is generated
by the application of the IBP relations. We have extensively used both the Mathematica

and C++ versions of the program. Its operation in the C++ case is divided into three steps:

1. In the first step, the input for the second step (reduction) is prepared within
Mathematica. This includes construction of all the generic IBP relations from which
the explicit IBP identities are derived by simple substitutions of indices. Moreover,
certain symmetry relations, as well as the co-called boundary conditions (sectors of
indices where the integrals vanish) are identified, too. Finally, configuration files
and lists of indices of the integrals to be reduced are prepared in a format that is
readable for the C++ part of the code.

2. The second step is the only one where the C++ code is being used. It is the main
part of the reduction, for which computing efficiency is an issue, as the number
of generated identities and redundant integrals is very large. In our case, the C++

code does the job in a short time (a few minutes), but its Mathematica counterpart
requires several hours.

3. In the third step, the output of the C++ code is read by Mathematica and converted
to a user-friendly format. It contains a table of the MIs, as well as coefficients with
which they come into expressions for the initial integrals.

After the reduction, each of the integrals (Eq. (3.5)) becomes a linear combination of
the master integrals Mi that is parameterized by known coefficients Ci

F =
∑
CiMi. (3.15)

In our case, it is convenient to normalize all the integrals with appropriate powers of
mb to make them dimensionless. Moreover, in our evaluation of the dimensionless bare
interference terms (G̃

(n)bare
ij , etc.), we set µ2 = eγm2

b/(4π) for the renormalization scale.5

Under such conventions, the bare interference terms, the MIs and the IBP coefficients
Ci are functions of only two variables: ε and z = m2

c/m
2
b . For instance, Eq. (3.7) after

reduction becomes

F (0, 1, 1, 1, 1, 0,−2) = C1 F (0, 0, 0, 1, 1, 0, 0) + C2 F (0, 1, 0, 1, 1, 0, 0)

+ C3 F (0, 1, 0, 1, 2, 0, 0) + C4 F (0, 1, 1, 1, 1, 0, 0) (3.16)

5 This fact has already been taken into account in Eq. (2.61) where an arbitrary scale µb is considered.
It enters only via the factors sε there.
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Figure 3.1: Master integrals for G̃
(1)bare
27 in the massless charm quark case (see the text).

These MIs together with the ones given in Fig. 4.1 form a compete MI set for our mc = 0
calculation.

where the F ’s on the r.h.s. are the master integrals. As far as the IBP coefficients are
concerned, we shall quote them explicitly for the complete interference terms in the next
chapter. At present, let us only give one simple example, namely Fig. 2.5(b) in the case
of a massless charm quark. Then we have

Fig. 2.5(b)
z=0
== Qd

[
8(1− ε)2(9− ε− 12ε2)

9(3− 2ε)
M0

2 −
2(1− ε)2(9− 4ε− 4ε2)

3(3− 2ε)
M0

3

]
, (3.17)

where the MIs denoted by M0
2 and M0

3 are drawn in Fig. 3.1.
In our drawing conventions for the MIs, the internal lines are shown as solid, dashed

or dotted ones when the corresponding masses in the propagators are equal to mb, mc or
zero, respectively. The external lines are solid or dotted when the corresponding external
momentum p satisfies p2 = m2

b or p2 = 0, respectively. Raising a propagator to a power
n is indicated by drawing n big dots on the corresponding line. A propagator with a
single dot can be seen, e.g., in M10 in Fig. 3.2. Such propagators are called “dotted
propagators”, which should not be confused with dotted lines that indicate massless
propagators. Let us recall that only in the three-body b → sγg case we use the reverse
unitarity and draw the integrals as three-loop ones with unitarity cuts. In the two-body
case, we perform the IBP reduction for the b → sγ amplitudes. In such a case, the
master integrals are two-loop only, and they are not necessarily three-particle vertex
ones. Actually, in Fig. 3.1, we encounter only propagator-type or tadpole diagrams.

The coefficients in Eq. (3.17) are regular in the ε → 0 limit. However, in a general
case, one often finds coefficients that are singular in this limit.6 The corresponding MIs
must then be calculated up to higher orders in ε to compensate the spurious 1/εn poles in
the IBP coefficients, which might lead to considerable difficulties in some cases. However,
since the choice of the MIs is not unique, one can take advantage of this fact, and search
for a basis in which all the Ci are finite in the ε→ 0 limit. Such bases are called ε-finite,
and their existence has been shown in Ref. [166]. The price to pay for using an ε-finite
basis is frequent appearance of MIs having either non-trivial irreducible numerators or
a few propagators raised to powers larger than unity (i.e. dotted propagators). We will
further comment on the ε-finite bases and pseudo-thresholds in Sec. 3.3.3.

The MIs we have obtained in the arbitrary mc case are shown in Fig. 3.2. An irre-
ducible numerator occurs only in one of them (M3), and it corresponds to a product of

6 Apart from that, singularities in the Ci might occur at particular values of z, e.g., at the pseudo-
threshold z = 1.
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Figure 3.2: Master integrals for G̃
(1)bare
27 , G̃

(1)bare
7(12) and G̃

(1)m
27 in the arbitrary mc case.

the b- and s-quark momenta that affects the phase-space integration.

The MIs in Fig. 3.2 are not exactly the ones that FIRE provided in an automatic
manner. First, the automatic reduction is performed topology-by-topology. However,
since many of the MIs have several vanishing indices, it very often happens that MIs
originating from different topologies are actually identical. Determining the set of truly
independent MIs was done “by hand” in our case. It was manageable because the number
of the original MIs was quite limited. Another problem is that FIRE sometimes fails to
figure out that some integrals are actually related and/or produces unwanted MIs with
dots on the cut lines. A set of several redundant integrals that we had to deal with is
displayed in Fig. 3.3. Expressions for them in terms of the true MIs read (skipping the
trivial R23):

R19 = −2(3− 4ε)(2− 2z − ε(5− 8z))

ε(1− 4z)2
M3 −

4(1− 3ε+ 2ε2)(2− 5z)

ε(1− 4z)2
M1

+
2(−3 + 6z − 6z2 + 3ε(4− 11z + 12z2) + ε2(−11 + 38z − 48z2))

ε(1− 4z)2
M2, (3.18)
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Figure 3.3: Redundant (reducible) integrals that required non-automatic treatment in the
arbitrary mc case.

R20 = − 1− ε
z (1− 2ε)

M6 (3.19)

R21 = −(2− 3ε)

2
M12 − zM13 −

(1− ε)2

2 z (1− 2ε)
M6 (3.20)

R22 =
2(1− ε)2

ε(1− 4z)
M6 +

(2− 7ε+ 6ε2)(1− 2z)

ε(1− 4z)
M9 +

4(1− 2ε)(1− z)z

ε(1− 4z)
M10 (3.21)

R24 = −1

2

(
(1− ε)
z

(M18 −M8) +
(2− 3ε)

z
M12 + 2M13

)
(3.22)

R25 = −(1− ε)2(1− z)

2 z2 (1− 2ε)
M6 + (1− ε)M8 −

(2− 3ε)(1 + z)

2 z
M12−

− (1 + z2)

z
M13 − (1− ε)M16 − zM17 (3.23)

We have determined the above expressions either by launching separate runs of FIRE in
a slightly different setup for particular integrals only, or by noticing that certain linear
relations follow from the differential equations (to be discussed below).

It is interesting to note that our MI basis in the 3-body case is actually an ε-finite
basis, and one of the integrals does contain an irreducible numerator. The basis would
not be ε-finite if R19 had not been eliminated. However, getting rid of this integral was a
must because its appearance was due to the previously-mentioned incapability of FIRE to
automatically avoid integrals with dots on the cut propagators. Obviously, such integrals
cannot serve as MIs because they are meaningless (or, more precisely, their only meaning
is given by their IBP relations to integrals without such dots).

3.3 Evaluation of the master integrals

Among possible methods to evaluate master integrals, one should mention using the
Feynman and Schwinger parameterizations, Mellin-Barnes representation [167–169], dif-
ferential equations [76–78], sector decomposition [170], nested sums [171] and difference
equations [172]. In this section, we discuss evaluation of the MIs by the methods that
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we have used in our particular calculation. In order to cross-check the results, we have
always applied at least two independent methods to compute all the MIs.

3.3.1 The Feynman and Schwinger parameterizations

The Feynman parameterization is closely related to the Schwinger (alpha) parameteriza-
tion.7 This is why we discuss them simultaneously in the present subsection. Using the
Feynman parameters is by far the most standard “handbook” method. Unfortunately,
it is not sufficient for most of the MIs we had to deal with in our present calculation.
However, the simplest MIs could have been determined this way. We briefly describe
these methods for a few sample MIs, and present the final expressions for them.

The Feynman parameterization is based on the following formula

1

An1
1 . . . AnNN

=
Γ(N)

Γ(n1) . . .Γ(nN )

∫ 1

0

(
N∏
i=1

dxi

)
δ

(
1−

N∑
i=1

xi

)
×

xn1−1
1 . . . xnN−1

N

(x1A1 + . . .+ xNAN )N

(3.24)

where N =
∑N

i=1 ni, and ni do not need to be integers. The numbers Aj are going to
be substituted below by [−Q2

j + m2
j ]. In the case when all the Aj are equal to unity,

Eq. (3.24) reduces to∫ 1

0

(
N∏
i

dxi x
ni−1
i

)
δ

(
1−

N∑
i=1

xi

)
=

Γ(n1) . . .Γ(nN )

Γ(N)
. (3.25)

The Schwinger parametric representation is based on

1

An
=
einπ/2

Γ(n)

∫ ∞
0

dααn−1e−iAα. (3.26)

Using the above equation for each of the denominators in

F scalar =

∫ L∏
i=1

dDki
1

[−Q2
1 +m2

1]n1 . . . [−Q2
N +m2

N ]nN
, (3.27)

performing the integration over loop momenta, introducing an extra integrand over η via

1 =

∫ ∞
0

dη δ

(
η −

N∑
i=1

αi

)
, (3.28)

replacing αi by ηxi, and integrating8 over η, one finds [153, 173] that F scalar takes the
following form

F scalar =
(
iπD/2

)L Γ(N − D
2 L)

Γ(n1) . . .Γ(nN )

∫ 1

0

(
N∏
i

dxi x
ni−1
i

)
δ

(
1−

N∑
i=1

xi

)
U(x)N−

D
2

(L+1)

F (x)N−
D
2
L

.

(3.29)

7 In fact, any choice of the Feynman parameters can be achieved by starting from the Schwinger
representation and making certain changes of variables.

8 see, e.g., Eq. (6-90) in the book by Itzykson & Zuber in Ref. [19].
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The functions U(x) and F (x) are polynomials in xi that are homogeneous of degree L
and L + 1, respectively. We can also map xi ∈ [0, 1] to yi ∈ [0,∞] by yi = xi

1−xi i.e., by
xi = yi

yi+1
in Eq. (3.29).

The fact that U(x) and F (x) are polynomials in xi is important to obtain the Mellin-
Barnes (MB) representation and sector decomposition of Feynman integrals that we are
going to discuss in the next sections. From Eq. (3.29) it is clear that the integrand is
bounded in its limits by powers of xi with certain exponents, which means these integrals
have only non-essential singularities in the kinematical variables. The singularities can
be of removable type, poles or branch points.

All the MIs in Fig. 3.1 are simple enough to be evaluated using the Feynman parameter
method. Our results read

P2M0
1 = −e3γε cos(2πε)

Γ(−1 + 2ε)Γ4(1− ε)
Γ(3− 3ε)Γ(2− 2ε)

(3.30)

P2M0
2 = e3γεΓ(−1 + 2ε)Γ3(1− ε)Γ(ε)Γ(3− 4ε)

Γ2(2− 2ε)Γ(3− 3ε)
(3.31)

P2M0
3 = e3γεΓ(−1 + 2ε)Γ2(1− ε)Γ(ε)

(1− ε)Γ(2− 2ε)
(3.32)

P2M0
4 = −e

3γεΓ2(−1 + ε)Γ(1− ε)
Γ(2− 2ε)

(3.33)

M0
5 = −e3γε cos(πε)

Γ(ε)Γ4(1− ε)Γ(1− 2ε)

Γ2(2− 2ε)Γ(3− 4ε)
, (3.34)

where the two-body phase-space factor P2 has been defined in Eq. (3.13). We give the
explicit MIs (above and in the following) after removing the global normalization factor
of 1/(16π2) for each loop integration, while the integration measure dDk is assumed to be
normalized to 1/(2π)D. Let us recall, that we use µ2 = eγm2

b/(4π) for the renormalization
scale, and include a factor of µ2ε for each loop together with an appropriate integer power
of mb to make each integral dimensionless. The imaginary parts of the MIs are skipped
because they are irrelevant for evaluating the considered correction to the CP-averaged
branching ratio.

In the case of M0
2, the Feynman-parameter integral reads

M0
2 = −e2γε Γ(−1 + 2ε)

∫ 1

0
dx

∫ 1

0
dy
x−ε(1− x)−εy−1+ε

(1− y)−2+4ε
, (3.35)

after using Eq. (3.24) with N = 3 and n1 = n2 = n3 = 1 and a simple change of variables.
Next, we take into account that∫ 1

0

dt t−1+a(1− t)−1+b =
Γ(a)Γ(b)

Γ(a+ b)
, (3.36)
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which immediately gives us the final result (3.31).
In the case of M0

5, we encounter an integral over the three-body phase space

M0
5 = −eγε cos(πε)

Γ(ε)Γ2(1− ε)
Γ(2− 2ε)

128π3µ4ε

m2
b

∫
y−ε23 dPS3 (3.37)

where yij =
2pipj
m2
b

. This integration can be performed as follows:

128π3µ4ε

m2
b

∫
y−ε23 dPS3 =

e2γε

Γ(2− 2ε)

∫ 1

0
dy12

∫ 1−y12

0
dy23 (1− y12 − y23)−εy−ε12 y

−2ε
23

= e2γε Γ2(1− ε)Γ(1− 2ε)

Γ(2− 2ε)Γ(3− 4ε)
, (3.38)

where we have mapped a generic region x ∈ [a, b] to y ∈ [0, 1] by x = a+ (b− a)y using∫ b

a

f(x) dx =

∫ 1

0

f(a+ (b− a)y) (b− a) dy (3.39)

The main obstacle of the Feynman parameter method is due to presence of divergencies
that arise in the Feynman parameter integrations when the expansion in ε is performed
prior to integration. On the other hand, without such an expansion, numerical methods
are not applicable, while the analytical results are often difficult or impossible to deter-
mine in terms of known special functions. Overcoming this problem requires performing
a proper separation of poles by adding and subtracting suitable (analytically calculable)
terms before expansion in ε. After such a subtraction, an expansion of the remainder
can be performed prior to integration. In the resulting expressions (if evaluated analyti-
cally), one often needs to integrate polylogarithms multiplied by rational functions, which
frequently result in Harmonic PolyLogarithms (HPL) [174]. The integrals with kernels
involving polylogarithms have been studied, e.g., in Refs. [175] and [176].

Let us now confirm the relation (3.19) using the Feynman parameters. We begin with

1

256π4
M6 =

µ4ε

m4
b

∫
dDq1

(2π)D
dDq2

(2π)D
1

(m2
c − q2

1)(m2
c − q2

2)
. (3.40)

We know that

µ2ε

∫
dDk

(2π)D
1

(m2 − k2)α
=

i

16π2

(
4πµ2

m2

)ε
(m2)2−αΓ(α− 2 + ε)

Γ(α)
(3.41)

Thus,

M6 = −
(

4πµ2

m2
b

)ε(
m2
b

m2
c

)2ε
(m2

c)
2

m4
b

Γ2(−1 + ε) (3.42)

using, 1
Γ2(1+ε)

=
[

1
ε(−1+ε)Γ(−1+ε)

]2
and m2

c

m2
b
≡ z, we get,

M6(z, ε) = e2γε Γ2(1 + ε)
[ −z2−2ε

ε2(1− ε)2

]
(3.43)
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Now, let us consider R20. Using Eqs. (3.41) and (3.24), we find

1

256π4
R20 =

1

m2
b

µ4ε

∫
dDq1

(2π)D
dDq2

(2π)D
1

(m2
c − q2

1)(m2
c − (q1 − q2)2)

1

(−q2
2)

=
1

m2
b

µ4ε

∫
dDq2

(2π)D

∫ 1

0

dx

∫
dDq1

(2π)D
1

[m2
c − x(1− x)q2

2 − q2
1]2

1

(−q2
2)

=
1

m2
b

µ4ε

∫
dDq2

(2π)D

∫ 1

0

dx
1

(−q2
2)

i

16π2

(
4πµ2

m2
c − x(1− x)q2

2

)ε
× Γ(ε)

Γ(2)

=

∫ 1

0

dx
i

16π2

(4πµ2)ε

m2
b

Γ(ε)

[x(1− x)]ε
µ2ε

∫
dDq2

(2π)D
1

(−q2
2)

1

[ m2
c

x(1−x)
− q2

2]ε
,

where,

1

(−q2
2)

1

[ m2
c

x(1−x)
− q2

2]ε
=

∫ 1

0

dy
y−1+ε

[(1− y)(y m2
c

x(1−x)
− q2

2)]1+ε

Γ(1 + ε)

Γ(1)Γ(ε)
.

Thus,

R20 = e2γεΓ2(1 + ε)
1

Γ2(1 + ε)
(m2

b)
−1+2ε(−1)

Γ(ε)Γ(1 + ε)

Γ(ε)

Γ(−1 + 2ε)

Γ(1 + ε)
×∫ 1

0

dx

∫ 1

0

dy y−1+ε 1

xε(1− x)ε

[
y

m2
c

x(1− x)

]1−2ε

. (3.44)

Simplifying the above expression, we get

R20(z, ε) = e2γεΓ2(1 + ε)z1−2εΓ(−1 + 2ε)

∫ 1

0

dxx−1+ε(1− x)−1+ε

∫ 1

0

dyy−ε

= e2γεΓ2(1 + ε)

[
z1−2ε

ε2(1− ε)(1− 2ε)

]
= −1

z

1− ε
1− 2ε

M6(z, ε).

Hence, we have verified Eq. (3.19) using the Feynman parameters,
Next, we turn our attention to M8 and evaluate this integral using the Feynman

parameters for mc = 0. The final result reads

M8(0, ε) = e2γεΓ(ε)Γ(2ε)Γ(1− ε)
(1− 2ε)(1− ε)

= e2γε

[
1

2ε2
+

3

2ε
+
π2

4
+

7

2
+ ε

(
−4ζ(3)

3
+

3π2

4
+

15

2

)
+O(ε)

]
. (3.45)

We will see later in Sec. 3.3.3 that this result is important to get a full result for M8 at
large and small z.

The master integral M11 is a product of one-loop massive tadpole and vertex dia-
grams. It is easy to evaluate it exactly in ε using the Feynman parameters. The complete
result is given by

M11 =
e2γεz1−εΓ(−1 + ε)Γ(ε+ 1)(ψ(1− 2ε)− ψ(1− ε))

ε
, (3.46)
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where the ψ function definition is recalled in Eq. (A.15) in Appendix A. The above result
can alternatively be written as

M11 = e2γε z
1−εΓ(1 + ε)Γ(−1 + ε)

(1− ε) 3F2 (1, 1, 1 + ε; 2− ε, 2; 1) . (3.47)

The definition of the hypergeometric functions nFm and their relevant properties are also
recalled in Appendix A.

3.3.2 The Mellin-Barnes method

The Mellin-Barnes method [167–169] is based on transforming sums in the propagator
denominators (or in the denominators of the Feynman parameter integrals) into products
of simpler terms, at the cost of introducing extra Mellin integrations that involve Γ-
functions.9 The basic formula reads

1

(X + Y )N
=

1

2πi

∫ +i∞

−i∞
dξXξY −N−ξ

Γ(N + ξ)Γ(−ξ)
Γ(N)

(3.48)

where N > 1, while X and Y are complex numbers satisfying | arg(X) − arg(Y )| < π.
One can see that the integrand in the above expression has poles at ξ = m due to
Γ(−ξ), and at ξ = −N −m due to Γ(N + ξ). They are called right (or infrared) and left
(or ultraviolet) poles (using the nomenclature of Smirnov [153]), where m = 0, 1, 2, . . .∞.
One closes the integration contour to one side, and takes residues inside the contour
at the poles of all the Γ-functions. In the following, we are going to close the contour
of integration to the right, and sum the series of residues following the Cauchy residue
theorem ∮

f(z) dz = 2πi
∑
i

Res{f(zi)}. (3.49)

The Γ-function is holomorphic everywhere in the whole complex plane except at the
points −m = 0,−1,−2, . . . at which simple poles arise. The corresponding residues are

Res{Γ(x)}x=−m = Res{Γ(z −m)}z=0 = Res{ Γ(1 + z)

z(z − 1) . . . (z −m)
}z=0

= lim
z→0

Γ(1 + z)

(z − 1) . . . (z −m)
=

(−1)m

m!
. (3.50)

Summing up all the residues in Eq. (3.48), one reproduces the usual Taylor expansion

1

(X + Y )N
=

∞∑
m=0

XmY −N−m
Γ(N +m)

Γ(N)

(−1)m

m!
= Y −N

∞∑
m=0

Γ(N +m)

Γ(N)

(−X/Y )m

m!
. (3.51)

A similar result is obtained by summing up the left residues. By iteration, the for-
mula (3.48) gets generalized to

1

(X1 + . . .+Xn)N
=

1

(2πi)n−1

∫ +i∞

−i∞
dξ1 . . . dξn−1X

ξ1
1 . . . X

ξn−1

n−1 X
−N−ξ−...−ξn−1
n

× Γ(−ξ1) . . .Γ(−ξn−1)Γ(N + ξ1 + . . . ξn−1)

Γ(N)
. (3.52)

9 An early application of the MB technique to the Feynman parameter integrals dates back to Ref. [127]
where virtual O(αs) corrections to the inclusive b→ sγ decay were calculated.
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So long as we sum up the residues, the MB technique alone gives us only a series
which may either serve as an iterative approximation to the full Feynman integral (as in
Ref. [127]) or needs to be resummed. One can also make use of Eq. (3.36) whenever it
helps.

The sum on the l.h.s. of Eq. (3.52) can come from the function F (x) in Eq. (3.29).
For instance, in the case of the master integral M15, we find

U(x) = x1 + x2 + x3, (3.53)

F (x) = z U(x)2 − x1x3. (3.54)

By counting the terms in F (x), one expects a four-dimensional MB-representation. How-
ever, after application of the first Barnes lemma

1

2πi

∫ +i∞

−i∞
ds Γ(a+s)Γ(b+s)Γ(c−s)Γ(d−s) =

Γ(a+ c)Γ(a+ d)Γ(b+ c)Γ(b+ d)

Γ(a+ b+ c+ d)
. (3.55)

we are left with a one-dimensional MB-representation only

M15 =
e2γεΓ(1− ε)

2πi

∫ +i∞

−i∞
dξ

(−1)(−ξ)zξ Γ2(1− 2ε− ξ)Γ(−ε− ξ)Γ(1− ε− ξ)Γ(−ξ)Γ(2ε+ ξ)

Γ(1− 2ε− 2ξ)Γ(2− 3ε− ξ)Γ(2− 2ε− ξ)
.

(3.56)

In the case of constructing an MB-representation of the Feynman integral (3.27)
with an arbitrary number of propagators and arbitrary indices, a publicly available
Mathematica code AMBRE [177] provides the desired representation in the following form:

1

(2πi)N

∫ +i∞

−i∞
. . .

∫ +i∞

−i∞

N∏
l

dξl
∏
k

zdkk

∏
i Γ(ai + biε+

∑
j cijξj)∏

i Γ(a′i + b′iε+
∑

j c
′
ijξj)

. (3.57)

where ai, . . . , c
′
ij are rational numbers. Typically, cij = ±1. Here, zk are kinematical

variables, and dk are linear combinations of ε and ξl.
If our master integrals have phase-space cuts, extra integrals enter the calculation.

We may then have a mixture of Γ-functions involving MB-parameters in the arguments
and/or simple Euler-type integrals like the one in Eq. (3.36) that are easy to calculate.

For the evaluation of our present MIs in the three-body case, we have proceeded as in
the above description. For example, in the case ofM5, the phase-space integration gives

e3γεΓ2(1− ε)Γ(−2ε− ξ)
Γ(2− 2ε)Γ(−4ε− ξ + 2)

, (3.58)

and a full MB-representation of this integral reads

M5 =
e3γεΓ2(1− ε)

2πi

∫ +i∞

−i∞
dξ

(−1)−ε−ξzξΓ(−ξ)Γ(−2ε− ξ)Γ2(−ε− ξ)Γ(ε+ ξ + 1)

Γ(2− 2ε)Γ(−2ε− 2ξ + 1)Γ(−4ε− ξ + 2)
.

(3.59)

It may happen that one encounters mixtures of MB integrals and Euler-type integrals
involving hypergeometric functions with MB parameters in their arguments, as often
happens when four-body phase space integrals are considered. In such cases, it is useful
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not to apply the Euler representation (A.36) for hypergeometric functions but rather use
the following MB representation:

pFq (a1, . . . , ap; b1, . . . , bp; z) =
1

2πi

∫ α+i∞

α−i∞
dξ (−z)−ξ Γ(ξ)

[
p∏
i=1

Γ(ai − ξ)
Γ(ai)

][
q∏
i=1

Γ(bi)

Γ(bi − ξ)

]
.

(3.60)

Once we increase the number of Γ-functions by using the above formula, we have more
possibilities of applying the Barnes lemmas, Gauss’s identity (implemented in the code
barnesroutines.m [178]), and hypergeometric functions, to get a closed and compact
form of the result we are after.10. If obtaining a closed form in ε and z is not possible,
public packages MB.m [179] and/or MBresolve [180] can be used to resolve ε-singularities
and Laurent-expand the resulting integrals in ε. For example, for the case M4, we have
expanded up to O(1) in ε, and got 1/ε+ 7− ln(z) plus

1

2πi

∫ +i∞−1/4

−i∞−1/4

dξ
e−iπξzξΓ4(1− ξ)Γ(−ξ)Γ(ξ)

Γ(2− 2ξ)Γ2(2− ξ)
, (3.61)

which corresponds to expressingM4 in terms of an MB integral regularized at ξ = −1/4.
Similarly, for M15 expanded up to O(1) in ε, we have obtained the following MB

integral

P15 =
1

2πi

∫ +i∞+ξ1

−i∞+ξ1

dξ
e−iπξzξΓ3(1− ξ)Γ2(−ξ)Γ(ξ)

Γ(1− 2ξ)Γ2(2− ξ)
(3.62)

which gets regularized at, for instance, ξ1 ' −0.895075. Once the ε singularities are
resolved, the above description can be repeated to obtain ε-expanded MB integrals in a
closed form with respect to z.

We have encountered cases where casting a closed form with respect to z is not
straightforward. Then the code MB.m [179] was used to get asymptotic expansions. For
example, the MB integral in Eq. (3.62) has the following expansion up to O(z5)

P15 = −L
2

2
− 2L+ iπL+

π2

2
+ 2iπ − 3 +

1

3

(
− L3 + 3iπL2 + 3

(
2 + π2

)
L

− 6(2− 2ζ(3))− iπ3 − 6iπ
)
z + (−3L+ 3iπ + 4)z2 +

1

6
(−10L+ 10iπ + 1)z3

− 1

54
(105L− 105iπ + 37)z4 − 1

80
(252L− 252iπ + 149)z5 +O(z6), (3.63)

where L ≡ ln z.

3.3.3 Differential equations

The Differential Equation (DE) method has been worked out in Refs. [76–78]. Its nice
feature is that it can be applied to multiloop integrals with arbitrary scales, and it is
suitable to both analytical and numerical calculations. In the latter case, results for large
numbers of MIs can be obtained in an automated manner, and in the whole parameter

10 For useful MB identities and corollaries, see the books in Ref [153].
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space. As far as the analytical solutions are concerned, they may be given in terms of
elliptic integrals, as it is the case for a fully massive two-loop propagator-type topology
with different masses. In such cases, obtaining fully analytical solutions might be difficult
or impossible. Nevertheless, integrals of such kind can easily be treated numerically for
arbitrary kinematics, and in a fully automated manner. In our case, some of the integrals,
e.g.,M5 andM17, are hard to access analytically with the help of the previously described
methods. However, we have managed to obtain an analytical result (in terms of an
expansion in z) for M17 using the DE method.

The DE method is based on the fact that the IBP identities (and possibly other
identities) allow to write a closed system of first-order DEs (homogeneous and/or inho-
mogeneous) for the MIs in the kinematical invariants. In our case, we are interested in
the DEs in the variable z. A derivative of any MI with respect to z is given as a linear
combination of some Feynman integrals. They can be reduced to the MIs using the IBP,
and, in effect, we obtain a system of DEs of the following form

d

dz
Mn(z, ε) =

∑
m

Rnm(z, ε)Mm(z, ε). (3.64)

The coefficients Rnm(z, ε) are rational functions of z and ε. The above system of coupled
DEs is solved exactly whenever possible for a generic value of ε. In our case the method
of Euler’s variation of constants for an inhomogeneous linear equation has often been
sufficient. If an analytical solution for a generic ε is not feasible, the DEs and MIs are
Laurent-expanded around ε = 0, starting from the highest pole, up to the required order,
e.g.,

Mn(z, ε) =
1

ε2
Mn,−2(z) +

1

ε
Mn,−1(z) +Mn,0(z) + εMn,1(z) + . . . (3.65)

In this way, a system of coupled DEs for the coefficients of the ε-expansions is obtained

d

dz
Mn,k(z) =

∑
m,j

Rnkmj(z)Mm,j(z). (3.66)

The boundary conditions for the above DEs should be chosen at some value of z0 where
the calculation is simpler than at a general z. In our case, we have considered either z0

large enough for the asymptotic expansion in 1/z to be convergent, or z0 small enough
for the asymptotic expansion in z to be convergent. The corresponding series expansion
coefficients satisfy recurrence relations that follow from the DEs themselves. Thus, only
a few constants (z-independent numbers) in a given expansion need to be fixed using an
“external” method like the MB method or the expansion by regions implemented in the
code exp [181].11 In some cases, regularity conditions in certain limits supply additional
restrictions on the constants.

The DEs in Eq. (3.66) form a system of linear equations in which the coefficients are
rational functions of z only. The final results obtained with the DE method are insensitive
to z-independent but ε-dependent common global normalization factors. Such factors can

11 This code is not public. We have obtained the corresponding large-z expansions from M. Steinhauser.
We were able to verify them using other methods for all but one MI, namely M16.

63



be included either before or after solving the DEs. In our expressions below, we have
skipped the z-independent two-body phase-space factor P2 from Eq. (3.13). Thus, our
normalization of the two-body MIs in this subsection is consistent with the one of the
previous subsections.

The denominators of the functions Rnkmj(z) in Eq (3.66) have the following form

in the 3-body case: zp(1− 4z)q,

in the 2-body case: zp(1− 4z)q(1− z)r, (3.67)

where p, q, r are some nonnegative integer powers. This means that the points z = 0,
z = 1/4 (and also z = 1 for the 2-body case) are singular points of our system of
equations. The point z = 1/4 is a physical threshold for cc̄ production, the point z = 0 is
IR-singular (as we include no cc̄ production), while z = 1 is a pseudo-threshold. Choosing
an optimal basis for the MIs may considerably simplify the form of the systems of DEs,
and hence their solution. The guidance for the pursuit of suitable basis of MIs lies
in the qualitative properties of the solution, such as ε-finite basis and uniform weight
(homogeneous transcendentality). There is no general criteria for determining such an
optimal basis. However, recently, it has been proposed in Ref. [182] to solve the systems
of DEs for MIs with algebraic methods (transformation matrix, integral representations
manipulations, etc.) where the dependence on ε is factorized from the kinematics. This
issue was further explored in Ref. [183] where an iterative integration of the DEs was
proposed. With the such a “canonical” basis of the MIs, the formalism of Harmonic
Polylogarithms (HPLs) [174] turns out to be very useful.

Let us now discuss the evaluation of our master integrals using the DE method. One
can easily verify the relation 3.19 using this technique. The differential equations derived
from the IBP for M6 and R20 read

M′
6(z, ε) =

2− 2ε

z
M6(z, ε), (3.68)

R′20(z, ε) = − 1

z2
(1− ε)M6(z, ε), (3.69)

where prime denotes a derivative with respect to z. Differentiating Eq. (3.19) with respect
to z, and then substituting (3.68) and (3.69) there, we indeed verify that Eq. (3.19) is
correct up to an additive z-independent number. The fact that this number equals to zero
follows from the fact that both M6 and R20 vanish for z = 0, as they become scaleless
in this limit.

Next, let us consider the master integral M8. It satisfies the following DE:

M′
8 +

2− 4ε

1− 4z
M8 =

2− 2ε

z(1− 4z)
(M6 −M7). (3.70)

The solutions of the DEs for M7 and M6 are

M6(z, ε) = −e2γε Γ2(1 + ε)z2(1−ε)

ε2(1− ε)2
and M7(z, ε) = −e2γε Γ2(1 + ε)z1−ε

ε2(1− ε)2
. (3.71)

Solving the DE in Eq. (3.70) with the boundary condition at z = 0, we find

M8(z, ε) = (1− 4z)( 1
2
−ε)[M8(0, ε) + Φ8

]
, (3.72)
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where

Φ8(z, ε) = e2γε
Γ2(1 + ε)

ε2(1− ε)2

[
z1−2ε

(
− z2F1(2− 2ε,

3

2
− ε, 3− 2ε, 4z) + 2zε2F1(1− ε, 3

2
− ε, 2− ε, 4z)

)]
.

(3.73)

and M8(0, ε) is given in Eq. (3.45).
The above expression is convenient for expansions in z, but inconvenient for expansions

in 1/z. To derive an alternative expression for M8, we use the Euler transformation
identity

2F1(a, b, c, x) = (1− x)c−a−b2F1(c− a, c− b, c, x), (3.74)

and afterwards an analytic continuation12 to express all the hypergeometric functions in
terms of 1/z. After some manipulations, we get

M8(z, ε) = e2γε z1−2ε

(
Γ2(ε)

(1− ε)(1− 2ε)
2F1(1,−1 + 2ε,

1

2
+ ε,

1

4z
) +

Γ2(ε)

1− ε
z−1+ε

2F1(1, ε,
3

2
,

1

4z
)

)
+ (−1 + 4z)

1
2
−εM8(0, ε)

+ e2γε(−1 + 4z)
1
2
−ε Γ2(ε)

(1− ε)2Γ(3
2 − ε)

e−iπ(−1+ε)(4)−1+ε

(
2Γ(

1

2
)Γ(2− ε)

− Γ(3− 2ε)Γ(−1

2
+ ε)e−iπ(−1+ε)(4)−1+ε

)
. (3.75)

To show that the above result agrees with Ref. [94], it is sufficient to check that the last
three lines give zero, i.e. that

M8(0, ε) = e2γε Γ2(ε)

(1− ε)2Γ(3
2 − ε)

1

2

(√
πΓ(2− ε)4εe−iπε − 1

4

Γ(3− 2ε)Γ(1
2 + ε)

1− 2ε
42εe−2iπε

)
.

(3.76)

The above relation implies, of course, vanishing of the imaginary part on the r.h.s.

−
√
πΓ(2− ε)4ε sinπε+

1

4

Γ(3− 2ε)Γ(1
2 + ε)

1− 2ε
42ε sin 2πε = 0. (3.77)

Indeed, Eq. (3.76) holds due to the following two identities

Γ
(n

2
+ ε
)

=
Γ(n− 1 + 2ε)

Γ(n−1
2

+ ε)

√
π21−2(n

2
+ε− 1

2
) when n is an integer,

sin(πε) =
πε

Γ(1 + ε)Γ(1− ε)
, (3.78)

from which one derives that

Γ

(
1

2
± ε
)

=
Γ(1± 2ε)

Γ(1± ε)
√
π4∓ε,

cos(πε) =
Γ(1 + ε)Γ(1− ε)

Γ(1 + 2ε)Γ(1− 2ε)
=

π

Γ
(

1
2

+ ε
)

Γ
(

1
2
− ε
) . (3.79)

12 See Appendix A. At this point, the Feynman “i0” prescription becomes important for the branch
choice, and one must treat z as z − i0.
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Finally, our result for M8 that is convenient for expansions in 1/z reads

M8(z, ε) = e2γεz1−2ε

(
Γ2(ε)

(1− ε)(1− 2ε)
2F1(1,−1 + 2ε,

1

2
+ ε,

1

4z
) +

Γ2(ε)

1− ε
z−1+ε

2F1(1, ε,
3

2
,

1

4z
)

)
.

(3.80)

In the following, expressions like Eqs. (3.72) & (3.73) will be called “small-z” solutions for
a given MI, while expressions like Eq. (3.80) will be called “large-z” solutions. However,
one should remember that they are just different ways of writing an exact expression for
the same function of z. They are valid for any z up to branch choice ambiguities in the
analytic continuation.

The master integrals M12 and M13:

The coupled differential equations for these MI’s are given by

M′
12 = −2M13, (3.81)

M′
13 +

−1 + 4ε+ 3ε− 8εz

2z(1− z)
M13 = −2− 7ε+ 6ε2

4z(1− z)
M12 +

(1− ε)2

4z2(1− z)
(M6 − 2M7).

(3.82)

From them, it is easy to derive the following inhomogeneous hypergeometric differential
equation for the sunset integral M12:

z(1− z)M′′12 −
[1− 4ε

2
−
(3

2
− 4ε

)
z
]
M′12 −

(1− 2ε

2

)(
2− 3ε

)
M12 =

1

2
e2γε Γ2(ε)(z1−2ε − 2z−ε).

(3.83)

The large-z result for M12 reads

M12 = e2γε Γ2(ε)

[
z1−2ε

(1− ε)(1− 2ε)
3F2

(
1

2
, 1,−1 + 2ε; 2− ε, 1

2
+ ε;

1

z

)

+
z−ε

1− ε 3F2

(
1,

3

2
− ε, ε; 3

2
, 3− 2ε;

1

z

)]
. (3.84)

Eq. (3.84) is in agreement with the Appendix of Ref. [184]. Our explicit result for small
z is

M12 = e2γε

[
π224−8εz

3
2
−2εΓ(1 + 4ε)2F1

(
1− ε, ε− 1

2 ; 5
2 − 2ε; z

)
ε(1− 2ε)(3− 4ε)(1− 4ε)Γ2(ε)

+
z1−εΓ2(ε)

2(1− ε)

(
z1−ε

3F2 (1, 3/2− ε, ε; 3/2, 3− 2ε; z) +
4 3F2

(
1
2 , 1, 2ε− 1; 2− ε, ε+ 1

2 ; z
)

(1− 2ε)

)
−

2π3 csc(πε) csc(2πε) csc(4πε)(1− 4ε)Γ(−ε) 2F1

(
ε− 1

2 , 3ε− 2; 2ε− 1
2 ; z
)

(1− 2ε)Γ2(−2ε)Γ(3− 3ε)Γ(1 + 4ε)

]
. (3.85)

In the derivation of the above equation, we have used the second identity from Eq. (3.79).
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As far as M13 is concerned, our large-z result reads

M13 = e2γε

[
− z−2εΓ2(1 + ε)

4ε2(1− ε)

(
2 3F2

(
1

2
, 1, 2ε− 1; 2− ε, ε+

1

2
;

1

z

)
+

z−1

(2− ε)
(

1
2 + ε

)
× 3F2

(
3

2
, 2, 2ε; 3− ε, ε+

3

2
;

1

z

))
+
z−ε−1Γ2(1 + ε)

6ε(1− ε)

(
3 3F2

(
1,

3

2
− ε, ε; 3

2
, 3− 2ε;

1

z

)

+ z−1
3F2

(
2,

5

2
− ε, ε+ 1;

5

2
, 4− 2ε;

1

z

))]
, (3.86)

while the explicit small-z result is

M13 = e2γε

[
− z(1/2−2ε)ε π241−4εΓ(1 + 4ε)

(3− 4ε)(1− 4ε)Γ2(1 + ε)

(
2(1− ε) 2F1

(
2− ε, ε− 1

2 ; 5
2 − 2ε; z

)
(1− 2ε)

+ 2F1 (1− ε, ε− 1/2; 5/2− 2ε; z)

)
− z−εΓ2(ε)

(1− ε)(1− 2ε)

(
3F2

(
1

2
, 2, 2ε− 1; 2− ε, ε+

1

2
; z

)

− ε 3F2

(
1

2
, 1, 2ε− 1; 2− ε, ε+

1

2
; z

))
− z(1−2ε)Γ2(ε)

4(1− ε)

×

(
(1− 2ε) 3F2

(
1,

3

2
− ε, ε; 3

2
, 3− 2ε; z

)
+ 3F2

(
2,

3

2
− ε, ε; 3

2
, 3− 2ε; z

))

+
π321−2ε csc(πε) csc(4πε) 2F1

(
ε+ 1

2 , 3ε− 1; 2ε+ 1
2 ; z
)

Γ(2− 3ε)Γ
(

1
2 − ε

)
Γ
(
2ε+ 1

2

) ]
. (3.87)

The master integral M14:

Our differential equation for M14 is

M′
14 +

3ε− 1

z
M14 =

(1− ε)2

z2(1− 2ε)
M6 +

1− ε
z
M8. (3.88)

Its solution for large z is given by

M14 = e2γε Γ(ε)2

ε(1− 2ε)

(
z1−2ε

[
3F2

(
1,−ε, 2ε− 1; 1− ε, ε+

1

2
;

1

4z

)
− 1
]

− z−ε ε 3F2

(
1, 1− 2ε, ε;

3

2
, 2− 2ε;

1

4z

))
, (3.89)

and an analytic continuation of M14 to small z reads

M14 = e2γε
[
z1−εΓ2(ε)

ε(1− ε)

(
3F2 (1/2, 1, 2ε; 2− ε, 1 + 2ε; 4z)−

z1−ε ε 3F2

(
1, 3

2
− ε, ε+ 1; 3− 2ε, 2 + ε; 4z

)
(1 + ε)

)
−
z1−2εΓ2(ε)

ε(1− 2ε)
−
z1−3επ csc(2πε)Γ(ε)Γ(2ε)Γ(3ε− 1)

Γ(4ε)
−
π2 csc(πε) csc(2πε) 2F1

(
ε− 1

2
, 3ε− 1; 3ε; 4z

)
(1− 3ε)Γ(2− 2ε)

]
. (3.90)
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The master integrals M9 and M10:

The coupled differential equations for this set of sunset integrals are

M′
9 = −2M10,

M′
10 +

ε+ 6ε− 16εz

z(1− 4z)
M10 = −2− 7ε+ 6ε2

z(1− 4z)
M9 +

(1− ε)2

z2(1− 4z)
M6. (3.91)

For M9, the inhomogeneous hypergeometric differential equation is

x(1− x)M′′9 +
[(
ε+

(3

2
− 4ε

)
x
]
M′9 −

(1− 2ε

2

)(
2− 3ε

)
M9 − 2e2γε Γ2(ε)

(
1

4

)2−2ε

x1−2ε = 0,

(3.92)

where x = 4 z. The large-z result for M9 takes the form

M9 = e2γε Γ2(ε)
z1−2ε

(1− ε)(1− 2ε)
3F2

(
1, ε,−1 + 2ε; 2− ε, 1

2
+ ε;

1

4z

)
. (3.93)

Eq. (3.93) is in agreement with Eq.(4.26) of Ref. [185]. Our explicit small-z solution for
M9 reads

M9 = e2γε
[

z2−2εΓ(ε)23F2

(
1, 3

2
− ε, ε; 3− 2ε, 2− ε; 4z

)
(1− ε)2

+
2 z1−εeiπεΓ2(ε)Γ2(1− ε)2F1

(
1
2
, 2ε− 1; 2− ε; 4z

)
(1− ε)(1− 2ε)Γ(1− 2ε)

−
e2iπεΓ3(1− ε)Γ(1 + 2ε)2F1

(
ε− 1

2
, 3ε− 2; ε; 4z

)
2ε(2− 3ε)(1− 2ε)(1− 3ε)Γ(1− 3ε)

.

]
(3.94)

Now, from M9 we can easily derive the result for M10, using the first equation in
Eq. (3.91). The large-z solution for M10 reads

M10 = −e2γε z−2εΓ2(1 + ε)

[
3F2

(
1, ε, 2ε− 1; 2− ε, ε+ 1

2
; 1

4z

)
2ε2(1− 2ε)

+
z−1

3F2

(
2, 2ε, ε+ 1; 3− ε, ε+ 3

2
; 1

4z

)
8ε(1− ε)(2− ε)

(
ε+ 1

2

) ]
, (3.95)
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and the small-z solution is given by

M10 = e2γε

[
−
iπεz−εΓ(1− ε)Γ(ε) 3F2

(
1
2
, ε+ 1, 2ε− 1; 2− ε, ε; 4z

)
(2ε2 − 3ε+ 1) Γ(1− 2ε)

−
ε2z−εΓ(1− ε)3Γ(ε)3

3F2

(
1
2
, ε+ 1, 2ε− 1; 2− ε, ε; 4z

)
(2ε2 − 3ε+ 1) Γ(1− 2ε)2Γ(2ε+ 1)

+
iπΓ(1− ε)3

2F1

(
ε− 1

2
, 3ε− 2; ε; 4z

)
2 (9ε2 − 9ε+ 2) zΓ(1− 3ε)Γ(1− 2ε)

+
Γ(1− 2ε)Γ(1− ε)3Γ(2ε+ 1)2

2F1

(
ε− 1

2
, 3ε− 2; ε; 4z

)
4ε (9ε2 − 9ε+ 2) zΓ(1− 4ε)Γ(1− 3ε)Γ(4ε+ 1)

−
iπΓ(1− ε)3

3F2

(
ε− 1

2
, 2ε, 3ε− 2; ε, 2ε− 1; 4z

)
2 (9ε2 − 9ε+ 2) zΓ(1− 3ε)Γ(1− 2ε)

−
Γ(1− 2ε)Γ(1− ε)3Γ(2ε+ 1)2

3F2

(
ε− 1

2
, 2ε, 3ε− 2; ε, 2ε− 1; 4z

)
4ε (9ε2 − 9ε+ 2) zΓ(1− 4ε)Γ(1− 3ε)Γ(4ε+ 1)

+
iπz−εΓ(1− ε)Γ(ε) 2F1

(
1
2
, 2ε− 1; 2− ε; 4z

)
(ε− 1)Γ(1− 2ε)

+
εz−εΓ(1− ε)3Γ(ε)3

2F1

(
1
2
, 2ε− 1; 2− ε; 4z

)
(ε− 1)Γ(1− 2ε)2Γ(2ε+ 1)

+
εz1−2εΓ(ε)2

3F2

(
1, 3

2
− ε, ε; 3− 2ε, 2− ε; 4z

)
(ε− 1)

]
(3.96)

The master integral M15:

The differential equation for M15 is

M′
15 −

1− 2ε

z
M15 = −1

z
M10. (3.97)

The large z solution reads

M15 = e2γε Γ2(1 + ε) z−2ε

2ε2(1− ε)(1− 2ε)

[
3F2

(
1, ε, 2ε− 1; 2− ε, ε+

1

2
;

1

4z

)
− 2(1− ε)4F3

(
1, 1, ε, 2ε− 1; 2, 2− ε, ε+

1

2
;

1

4z

)]
. (3.98)

In order to get a small-z solution for M15, an analytic continuation of

4F3

(
1, 1, ε, 2ε− 1; 2, 2− ε, ε+

1

2
;

1

4z

)
(3.99)

is required. However, the above hypergeometric function does not fulfill the requirements
given in the text below Eq. (A.32) in Appendix A. Fortunately, we have been able to
obtain the small-z solution of this MI using the MB method. Our explicit expression for
the expansion of M15 around z = 0 will be given below, in Eq. (3.106).
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The master integral M18:

The large z result is

M18 = e2γε

[
−

2−2ε
√
πΓ(ε)2Γ(2ε+ 1) 3F̃2

(
1, 2ε− 1, ε; ε+ 1

2
, ε+ 1; 1

4z

)
z1−2ε

ε(2ε− 1)

+
2−2ε
√
πΓ(2− ε)Γ(ε+ 1)2Γ(2ε+ 1) 4F̃3

(
1
2
, 1, 2ε− 1, ε; 2− ε, ε+ 1

2
, ε+ 1; 1

z

)
z1−2ε

ε3(2ε− 1)

+
2−2ε
√
πΓ(1− ε)Γ(ε+ 1)2Γ(2ε+ 1) 4F̃3

(
3
2
, 2, 2ε, ε+ 1; 3− ε, ε+ 3

2
, ε+ 2; 1

z

)
z−2ε

2ε2

+ z−εΓ(ε)2

(
3F2(1, 1, ε;

3

2
, 2;

1

4z
) +

3F2

(
1, 3

2
− ε, ε; 3

2
, 3− 2ε; 1

z

)
ε− 1

+
(1− 2ε) 4F3

(
1, 1, 3

2
− ε, ε; 3

2
, 2, 3− 2ε; 1

z

)
ε− 1

)]
. (3.100)

Again, due to two troublesome hypergeometric functions, one of which is 2F1

(
1, 1, ε; 3

2
, 2; 1

4z

)
,

we are not able to analytically continue to small z. Instead, an expansion around z = 0
obtained using the MB method will be given in Eq. (3.109).

The master integrals M16 and M17:

These are the most complicated MIs in our problem. The corresponding system of DEs
is given by

d

dz
M16 +

ε

z
M16 =

(1− ε)2

2z2(1− 2ε)
M6 +

1− ε
z
M8 −

2− 3ε

2z
M12 −M13 −M17,

d

dz
M17 +

2ε

z
M17 =

(1− ε)2

2z2(1− z)(1− 4z)

[
2M7 −

2− 3z + 4z2

2z
M6

]
+

2− 6ε+ 4ε2

z(1− 4z)
M8

− 2− 7ε+ 6ε2

4z(1− z)
M12 −

(1− 2ε)(1 + z)

2z(1− z)
M13. (3.101)

All the MIs in the above DEs except for M16 and M17 are already known from our
previous calculations. Nevertheless, we are not able to solve this system exactly in ε.
Thus, we need to expand in this parameter, and consider a system of sub-DEs, as in
Eq. (3.66). For M16 they read

d

dz
M16,−2 =

M6,−2

2z2
+
M8,−2

z
−
M12,−2

z
−M13,−2 −M17,−2

d

dz
M16,−1 = −

M8,−2

z
+

3

2z
M12,−2 −

M16,−2

z
+
M6,−1

2z2
+
M8,−1

z
−
M12,−1

z
−M13,−1 −M17,−1,

d

dz
M16, 0 =

M6,−2

2z2
−
M8,−1

z
+

3

2z
M12,−1 −

M16,−1

z
+
M6,0

2z2
+
M8,0

z
−
M12,0

z
−M13,0 −M17,0,

d

dz
M16,+1 =

M6,−2

z2
+
M6,−1

2z2
−
M8,0

z
+

3

2z
M12,0 +

M6,+1

2z2
+
M8,+1

z
−
M12,+1

z
−M13,+1 −M17,+1. (3.102)

In our first approach, we have solved the system of sub-DEs numerically using the routine
ZVODE [186] based on the ODEPACK package [187] and upgraded [146] to quad-double
precision with the help of the QD library [188]. In these codes, the rational functions
Rnkmj(z) are treated using the Horner form to speed up the calculation, and the DEs are
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Figure 3.4: (a) An illustration of our method for solving the DE numerically. The solid (blue)
line shows the path in the complex plane along which the numerical solution was carried out.
The initial point at z � 1 and the final point at z � 1 are inside the red blobs where power-
logarithmic expansions can be used (see the text). (b) The O(ε) part of M16 (i.e. M16,+1)
as a function of z obtained from small-z expansions (solid green line), large-z expansions
(solid blue line) and the numerical solutions of the DEs (red dots).

solved using a double-exponential integration method. Since the DEs in Eq. (3.101) have
singularities on the real axis, at z ∈ {0, 1

4
, 1}, we have solved the sub-DEs along various

ellipses in the complex plane, whose shapes depended on the initial and final values of z.
This is illustrated in Fig. 3.4(a).

As an example, let us quote the numerical value of M16 at z = 1 that we have
obtained using the initial conditions for our DEs at z = 20. Despite the fact that z = 1
is a singular point of our DEs (3.101), ZVODE was able to give us a value of M16 at this
point quite precisely, namely

M16(1, ε) ' −0.499999943 + 0.000000001 i

ε2
− 0.500000340− 0.000000018 i

ε

− (0.235586819− 0.000000013 i) ε0 − (1.634399507 + 0.000000122 i) ε1 +O(ε2).
(3.103)

The above result should be compared to what we have obtained by calculating M16

directly at z = 1 using the Feynman parameters

M16(1, ε) ' − 1

2ε2
− 1

2ε
− 0.235585368− 1.634395361 ε+O(ε2). (3.104)

One concludes that the accuracy in both cases is better than 10−5, and most probably
limited by the accuracy of the numerical integration in the latter case. Obviously, the
non-vanishing imaginary parts in Eq. (3.103) arise only due to the numerical inaccuracy
of ZVODE in the process of solving the DEs along an ellipse in the complex plane.

Let us now comment on our determination of the boundary conditions for the DEs at
some large value of z (e.g., z = 20). In this case, a large-mass asymptotic expansions [181]
have been applied first to get a few leading terms of the expansion in w = 1/z of each
Mn,k that is relevant for our sub-DEs (3.66). The expansions have the following power-
logarithmic form

Mi(w, ε) =
∑
n,m,k

cinmkε
nwm lnk(w). (3.105)
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For each n, there exists a maximal power kmax of the logarithm in the above expression. It
is related to the maximal power of 1/ε in a given integral (see Eq. (3.4)). Once Eq. (3.105)
is substituted to the DEs, one obtains recurrence relations among the coefficients cinmk.
Thus, even if we did not know our leading terms, we could use the DEs to parameterize
the expansions (up to a fixed order in ε) in terms of a finite number of unknown constants.
Since we knew the leading terms, we could determine the expansions in a complete manner
to as many terms as we wanted. We have chosen to expand all our MIs up to w15 and
w30 in the two- and three-body cases, respectively.13 This is more than sufficient for the
numerical accuracy we need. Of course, for most (but not all) the MIs, we were able to
cross-check these expansions against the exact results that have already been presented
in the preceeding parts of this section.

A similar method has been applied for the small-z power-logarithmic expansions. We
began with using the DE (and the known exact results) to express the expansions in terms
of as small number of unknown constants as possible. Next, we used a combination of
various methods (asymptotic expansions, Feynman parameterization and MB techniques)
to determine these constants either analytically or numerically. We have managed to
obtain exact results for all but two constants whose numerical determination follows
from the DE method with boundary conditions at z = 20.

As an independent check, we have evaluated our MIs numerically using the method
of sector decomposition implemented in the codes FIESTA [173], SecDec [189], as well as
several others. FIESTA stands for Feynman Integral Evaluation by a Sector decompo-
siTion Approach. It is a Mathematica code for numerical evaluation of the MIs, based
on Eq. (3.29) and using the CUBA library [190].

Let us now present our final results for the small-z expansions ofM15-M18. Although
we need these MIs up to O(ε2), our explicit expressions below terminate at O(ε) for
brevity reasons. This is why all the presented expansion coefficients are exact. The two
above-mentioned constants that we have determined only numerically will show up in our
final results in the next chapter. Our expansions read (with L ≡ ln z):

M15 = − 1

2ε2
− 1− 2L

2ε
− L2

2
+ 3L− 7π2

12
+

5

2
+

(
L3

3
+
(
−2− π2

)
L− 4ζ(3) + 4

)
z

+ (3L− 4)z2 +

(
5L

3
− 1

6

)
z3 +

(
35L

18
+

37

54

)
z4 +

(
63L

20
+

149

80

)
z5

+

[
L3

6
− 3L2

2
+ 7L− π2L

2
− 8ζ(3)

3
− 47π2

12
+

35

2

+

(
−5L4

12
+
L3

3
+

1

3

(
6 + π2

)
L2 + 2L(ζ(3)− 4)− π2L− 4ζ(3) +

83π4

180
+

7π2

3
+ 10

)
z

+

(
−5L

2
− 13π2

2
− 1

4

)
z2 +

(
97L

18
− 65π2

18
− 91

9

)
z3 +

(
2143L

216
− 455π2

108
− 8387

864

)
z4

+

(
7927L

400
− 273π2

40
− 132691

12000

)
z5

]
ε+O(z6, ε2), (3.106)

13 Actually, the three-body case is simple enough to get all the expansions from the Feynman-parameter
method only.
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M16 = − 1

2ε2
− 1− 2L

2ε
+−L

2

2
+ 3L− π2L

6
− 2ζ(3) +

π2

12
+

5

2
+

(
−L

3

6
+ L+ 4ζ(3)− 2

)
z

+

(
−3L2

2
+

7L

4
− π2

2
+ 1

)
z2 +

(
−5L2

3
− 43L

36
− 5π2

9
+

157

36

)
z3

+

(
−35L2

12
− 569L

144
− 35π2

36
+

3281

432

)
z4 +

(
−63L2

10
− 4231L

400
− 21π2

10
+

37183

2400

)
z5

+

[
L3

6
− 3L2

2
+
π2L2

12
− 3Lζ(3) + 7L− 8ζ(3)

3
− 41π4

180
+

13π2

12
+

35

2

+

(
63L3

10
− 221L2

100
− 271179L

14000
+

63ζ(3)

5
− 7217π2

1200
+

124002463

3920000

)
z5

+

(
35L3

12
− 53L2

48
− 59983L

8640
+

35ζ(3)

6
− 167π2

72
+

6210137

518400

)
z4

+

(
5L3

3
− 8L2

9
− 97L

36
+

10ζ(3)

3
− 89π2

108
+

2879

648

)
z3

+

(
3L3

2
− 7L2

4
− 35L

8
+ 3ζ(3) +

2π2

3
+

189

16

)
z2

+

(
5L4

24
− L3

6
− L2 − 2Lζ(3) + 4L+ 4ζ(3) +

17π4

180
− 5

)
z

− 128π2z9/2

3969
− 96π2z7/2

1225
− 64

225
π2z5/2 − 32

9
π2z3/2

]
ε

+O(z6, ε2), (3.107)

M17 =
L3

6
− 4ζ(3) +

(
2L2 − L+

2

3

(
π2 − 3

))
z +

(
3L2 +

15L

4
+ π2 − 29

4

)
z2

+

(
20L2

3
+

107L

9
+

4

27

(
15π2 − 104

))
z3 +

(
35L2

2
+

1709L

48
+

35

288

(
48π2 − 311

))
z4

+

(
252L2

5
+

2749L

25
+

84π2

5
− 77137

750

)
z5

+

[
− 5L4

24
+ 2Lζ(3)− 17π4

180
+
(
−2L3 + 8L− 4ζ(3)− π2 − 14

)
z

+

(
−252L3

5
− 5L2 +

5935891L

31500
− 504ζ(3)

5
+

3997π2

75
− 10008906931

39690000

)
z5

+

(
−35L3

2
− 43L2

12
+

139793L

2520
− 35ζ(3) +

2387π2

144
− 326907481

4233600

)
z4

+

(
−20L3

3
− 2L2 +

4517L

270
− 40ζ(3)

3
+

47π2

9
− 188609

8100

)
z3

+

(
−3L3 − L2 +

17L

3
− 6ζ(3) +

17π2

12
− 443

72

)
z2

+
4

81
π2z9/2 +

4

49
π2z7/2 +

4

25
π2z5/2 +

4

9
π2z3/2 + 4π2√z

]
ε

+O(z6, ε2), (3.108)

73



M18 = − 1

2ε2
− 1

2ε
+

1

72

((
180− 42π2

)
+
(
−24π2L− 288ζ(3) + 24π2

)
z

+
(
72L2 − 144L+ 24π2 + 72

)
z2 +

(
72L2 + 36L+ 24π2 − 180

)
z3

+
(
120L2 + 152L+ 40π2 − 314

)
z4 +

(
252L2 + 411L+ 84π2 − 626

)
z5

)
+

[
35

2
− 26ζ(3)

3
− 11π2

12
+

(
π2L2

6
− 6Lζ(3)− π2L

3
+ 6ζ(3)− 41π4

90
+
π2

3

)
z

+

(
−7L3

2
+

271L2

120
+

580121L

50400
− 7ζ(3) +

647π2

180
− 422670601

21168000

)
z5

+

(
−5L3

3
+

47L2

36
+

1483L

360
− 10ζ(3)

3
+

79π2

54
− 540971

64800

)
z4

+

(
−L3 +

7L2

6
+

5L

4
− 2ζ(3) +

5π2

9
− 841

216

)
z3

+

(
−L3 +

5L2

2
+
L

2
− 2ζ(3)− 2π2

3
− 45

4

)
z2

+
16

441
π2z9/2 +

16

175
π2z7/2 +

16

45
π2z5/2 +

16

3
π2z3/2

]
ε

+O(z6, ε2), (3.109)

To summarize, the presented collection of our results for all the two-body MIs (M6-
M18) for arbitrary z includes closed small-z and large-z forms forM6-M14, and small-z
expansions for M15-M18. In addition, closed forms at large z were given for M15 and
M18.

Let us now summarize our results for the three-body MIs M1-M5. The differential
equations for them read

M′1 =
(1− ε)
z
M1,

M′2 −
2(−1 + ε− z + 2εz)

z(1− 4z)
M2 = 2

(ε− 1)M1 − (3− 4ε)M3

z(1− 4z)
,

M′3 −
(3− 4ε)

z
M3 =

(1− ε)
z
M2,

M′4 −
(1− 3ε− 4z + 12εz)

z(1− 4z)
M4 =

2(ε− 1)M1 + (−4 + 6ε+ 6z − 12εz)M2 − (6− 8ε)M3

z(1− 4z)
,

M′5 +
ε

z
M5 = −(1− ε)M1 + (1− ε+ z − 2εz)M2 + (3− 4ε)M3

z2(1− 4z)
.

(3.110)

Below, we present a closed form for M1 and small-z expansions for M2-M5. They
read

M1 = −e
3γεz1−εΓ3(1− ε)Γ(ε− 1)

Γ(3− 3ε)Γ(2− 2ε)
, (3.111)

M2 =
1

2ε
− 5 +

(
−L2 + π2 − 2

)
z +

(
L2 − L+

1

2

(
−3− 2π2

))
z2 +

(
2L− 4

3

)
z3

+

(
5L

3
+

1

4

)
z4 +

(
7L

3
+

17

15

)
z5 +

[
− 32 +

7π2

8
+
(
L3 − 6L2 − 2L+ 6ζ(3) + 6π2 − 20

)
z
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+

(
−L3 +

7L2

2
− 3L

2
− 6ζ(3)− 2π2 − 13

4

)
z2 +

(
L2 + 2L− 4π2 − 15

2

)
z3

+

(
5L2

6
+

37L

4
− 10π2

3
− 1553

144

)
z4 +

(
7L2

6
+

179L

10
− 14π2

3
− 39943

3600

)
z5

]
ε

+

[(
−35L3

18
+

111L2

20
− 7π2L

4
+

184843L

3600
− 42ζ(3)− 2063π2

60
− 2500861

36000

)
z5

+

(
−25L3

18
+

31L2

8
− 5π2L

4
+

2621L

144
− 30ζ(3)− 291π2

16
− 6319

192

)
z4

+

(
−5L3

3
+ 5L2 − 3π2L

2
+

49L

6
− 36ζ(3)− 17π2

3
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18

)
z3

+

(
7L4

12
− 19L3

6
− 3π2L2

4
+

31L2

4
− 12Lζ(3) +

3π2L

4
− 15L

4
− 6ζ(3) +

47π4

60
− 23π2

8
− 65

8

)
z2

+

(
−7L4

12
+ 6L3 +

3π2L2

4
− 23L2 + 12Lζ(3)− 20L+ 36ζ(3)− 47π4

60
+

59π2

2
− 134

)
z

+
23ζ(3)

2
+

35π2

4
− 168

]
ε2 +O(z6, ε3), (3.112)

M3 =
1

6ε
+

31

18
+

1

180

(
90L2 + 90L− 90π2 + 225

)
z +

1

180

(
−180L2 − 180L+ 180π2 + 90

)
z2

+
1

180

(
180L2 − 240L− 180π2 − 250

)
z3 +

1

180
(300L− 255)z4 +

1

180
(210L− 3)z5

+

[
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27
− 7π2

24
+

(
−L

3

2
+

11L2

4
+

19L

4
− 3ζ(3)− 7π2

2
+

111

8

)
z

+

(
L3 − 7L2

2
− 21L

2
+ 6ζ(3) + 5π2 − 27

4

)
z2 +

(
−L3 +

8L2

3
− 11L

18
− 6ζ(3)− 2π2

3
− 44

27

)
z3

+

(
5L2

6
− 3L

4
− 10π2

3
− 665

144

)
z4 +

(
7L2

12
+

73L

15
− 7π2

3
− 61303

7200

)
z5

]
ε

+
1

648000

[ (
−630000L3 + 1609200L2 − 567000π2L+ 2919870L− 13608000ζ(3)− 6320700π2 − 9338274

)
z5

+
(
−900000L3 + 2511000L2 − 810000π2L+ 2722500L− 19440000ζ(3)− 175500π2 − 5090625

)
z4

+

(
378000L4 − 1440000L3 − 486000π2L2 + 2790000L2 − 7776000Lζ(3) + 648000π2L− 1968000L

+ 2592000ζ(3) + 507600π4 − 621000π2 − 2989000

)
z3

+

(
− 378000L4 + 2484000L3 + 486000π2L2 − 4374000L2 + 7776000Lζ(3) + 486000π2L− 34506000L

+ 23328000ζ(3)− 507600π4 + 14013000π2 − 48843000

)
z2

+

(
189000L4 − 1890000L3 − 243000π2L2 + 6237000L2 − 3888000Lζ(3)− 243000π2L+ 18225000L

− 15552000ζ(3) + 253800π4 − 12271500π2 + 64030500

)
z

+−2484000ζ(3) + 39136000− 1953000π2

]
ε2 +O(z6, ε3), (3.113)
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M4 = −1

ε
− 11 +

(
1

3
(L− 3)L2 − π2L+ 2L− 4ζ(3) + π2 − 2

)
z + (2L− 3)z2 +
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L− 1
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)
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+

(
10L

9
+
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)
z4 +

(
7L

4
+
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)
z5 +
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− 77 +
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4

+
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1

6
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3π2L2

2
− 8L2 + 2(3L− 7)ζ(3)− 5π2L+ 16L+

2π4

5
+ 5π2 − 16

)
z

+

(
L2 − 5L− 4π2 +

13

2

)
z2 +

(
L2

2
+ 4L− 2π2 − 43

6

)
z3

+

(
5L2

9
+

403L

54
− 20π2

9
− 4285

648

)
z4 +

(
7L2

8
+

1751L

120
− 7π2

2
− 17059

2400

)
z5

]
ε

+

[
+ 23ζ(3) +

77π2

4
− 439 +

(
1

12
(5L− 37)L4 − 7π2L3

4
+

41L3

3
+

33π2L2

4
− 41L2

+ 3(14− 5L)Lζ(3)− 5π4L

12
− 41π2L

2
+ 82L− 76ζ(5) + 13π2ζ(3)− 58ζ(3) +

73π4

60

+
41π2

2
− 82

)
z +

(
−5L3

3
+

13L2

2
− 3π2L

2
+

23L

2
− 36ζ(3) +

25π2

4
− 191

4

)
z2

+

(
−5L3

6
+

5L2

2
− 3π2L

4
+

55L

12
− 18ζ(3)− 197π2

24
− 791

72

)
z3

+

(
−25L3

27
+

289L2

108
− 5π2L

6
+

11537L

648
− 20ζ(3)− 1043π2

72
− 229979

7776

)
z4

+

(
−35L3

24
+

517L2

120
− 21π2L

16
+

221213L

4800
− 63ζ(3)

2
− 26821π2

960
− 5428877

96000

)
z5

]
ε2

+O(z6, ε3), (3.114)

M5 = −1 + 2ζ(3) +
π2

2
− L+

π2L

2
− L2

2
− L3

6
+
(
L2 − 2L− π2

)
z +

(
3L

2
− 5

4

)
z2

+

(
10L

9
+

2

27

)
z3 +

(
35L

24
+

61

96

)
z4 +

(
63L

25
+

202

125

)
z5

+

[
L4

6
− L3

3
− 3L2 − π2L2

4
+ Lζ(3)− 10L+

5π2L

2
+ 13ζ(3)− 13π4

60
+

9π2

2
− 14

+
(
−L3 + 4L2 − 4L− 6ζ(3)− π2

)
z +

(
3L2

4
+
L

2
− 3π2 − 19

4

)
z2

+

(
5L2

9
+

154L

27
− 20π2

9
− 409

54

)
z3 +

(
35L2

48
+

43L

4
− 35π2

12
− 4345

576

)
z4

+

(
63L2

50
+

5533L

250
− 126π2

25
− 16889

2000

)
z5

]
ε (3.115)

+

[
− 11L5

120
+

13L4

24
+

5π2L3

24
+
L3

6
+

5L2ζ(3)

2
− 7π2L2

8
− 23L2

2
+ 11Lζ(3)

− 7π4L

40
+

41π2L

4
− 63L+ 20ζ(5)− 15π2ζ(3)

2
+ 71ζ(3)− 59π4

40
+

113π2

4
− 119

+

(
7L4

12
− 10L3

3
− 3π2L2

4
+ 9L2 − 2L(6ζ(3) + 5) +

3π2L

2
+ 6ζ(3) +

47π4

60
− 3π2

)
z

+

(
−5L3

4
+ 4L2 − 9π2L

8
+

35L

8
− 27ζ(3) +

1

16

(
−169− 41π2

))
z2

+

(
−25L3

27
+

71L2

27
− 5π2L

6
+

1583L

162
− 20ζ(3) +

1

486

(
−9545− 5499π2

))
z3
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+

(
−175L3

144
+

111L2

32
− 35π2L

32
+

33473L

1152
− 105ζ(3)

4
+
−195277− 95412π2

4608

)
z4

+

(
− 21L3

10
+

3109L2

500
− 189π2L

100
+

2240339L

30000
− 1134ζ(3)

25

−
179

(
46109 + 23600π2

)
100000

)
z5

]
ε2 +O(z6, ε3). (3.116)
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Chapter 4

Results for the NNLO QCD
counterterm contributions

In this chapter, we present our final results for the considered interference terms G̃
(1)bare
27 ,

G̃
(1)bare
7(12) and G̃

(1)m
27 . We write them as

G̃
(1)bare
27 = G̃

(1)2P
27 + G̃

(1)3P
27 ,

G̃
(1)bare
7(12) = G̃

(1)2P
7(12) + G̃

(1)3P
7(12) ,

G̃
(1)m
27 = G̃

(1)m,2P
27 + G̃

(1)m,3P
27 , (4.1)

where the superscripts 2P and 3P indicate the two- and three-body final state contri-
butions, respectively. These quantities enter the renormalization formula (2.61) for the
Q2-Q7 interference where the nc-terms (the charm-quark loops on the gluon lines together
with the corresponding UV-counterterms) were skipped, as they are already known [146].
Of course, an analogous formula for the Q1-Q7 interference will also be necessary. In
both expressions, we also encounter G̃

(1)bare
17 = −1

6
G̃

(1)bare
27 , G̃

(1)bare
7(11) = −1

6
G̃

(1)bare
7(12) , and

G̃
(1)m
17 = −1

6
G̃

(1)m
27 , where the color factor of −1

6
comes from the relation T aT bT a = −1

6
T b

for the SU(3) generators. After taking this color factor into account, it is sufficient to
restrict our considerations to the quantities from Eq. (4.1). They give us a complete set

of z-dependent counterterms for the renormalization of G̃
(2)
17 and G̃

(2)
27 . Apart from them,

we shall present our results for Ĝ
(1)bare
47 with skipped nc-terms, which is z-independent.

Below, in Sec. 4.1, our z-dependent results will be given in terms of expansions. Next,
in Sec. 4.2, all the considered NNLO QCD counterterms for z = 0 are summarized.
Sec. 4.3 is devoted to presenting plots of the involved functions of z, and their interpre-
tation. Finally, in Sec. 4.4, we write our results as linear combinations of the MIs where
the coefficients are given exactly in z and ε. This may become convenient if an extension
of our calculation to higher orders in ε becomes necessary in the future. All our results
in the present chapter contain the necessary D-dimensional phase-space factors, and are
given for the renormalization scale µ2 = eγm2

b/(4π).
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4.1 Final results for an arbitrary charm quark mass

We have evaluated the small-z expansions of all the three-body and two-body contri-
butions up to O(z30) and O(z15), respectively. Similarly, the large-z expansions were
calculated up to O(1/z30) and O(1/z15) in the three- and two-body cases, respectively.
All these terms are included in the plots of Sec. 4.3. However, the analytical expressions
will be given only up to O(z5) and O(1/z5), as it is perfectly sufficient for phenomeno-
logical purposes. The abbreviation L stands for ln z.

Three-body contributions

Our three-body results are evaluated for δ = 1, i.e. for E0 = 0, which means that no cut
on the photon energy is imposed in the considered NNLO corrections.1 We need to know
the first two terms in their ε-expansion, which we denote as follows

G̃
(1)3P
27 (z, ε) = g0(z) + ε g1(z) +O(ε2), (4.2)

G̃
(1)3P
7(12) (z, ε) = 0 + ε h1(z) +O(ε2), (4.3)

G̃
(1)m,3P
27 (z, ε) = j0(z) + ε j1(z) +O(ε2). (4.4)

Our exact expression for the function g0(z) is

g0(z)
z≤ 1

4=== − 4

27
− 14

9
z +

8

3
z2 +

8

3
z(1− 2z) sL+

16

9
z(6z2 − 4z + 1)(π2/4− L2),

g0(z)
z> 1

4=== − 4

27
− 14

9
z +

8

3
z2 +

8

3
z(1− 2z) t A+

16

9
z(6z2 − 4z + 1)A2, (4.5)

where s =
√

1− 4z, L = ln(1 + s) − 1
2

ln4z, t =
√

4z − 1 and A = arctan(1/t). From
among the functions occurring on the r.h.s. of Eqs. (4.2)-(4.4), the function g0(z) is the
only one for which we have a result in a closed form. For the remaining functions, we
shall present only their small- and large-z expansions. For g1(z) they read

g1(z) = −106

81
+

2

27

(
4L3 − 30L2 + 6

(
π2 − 27

)
L+ 60ζ(3) + 57π2 − 291

)
z

+
4

27

(
−16L3 + 18L2 + 6

(
25 + 2π2

)
L− 24ζ(3)− 54π2 + 93

)
z2

− 4

81

(
−54L3 + 27L2 + 174L− 324ζ(3) + 27π2 − 97

)
z3

+
2

243

(
−360L2 + 804L+ 1440π2 + 1625

)
z4

+
1

2430

(
−6300L2 − 43950L+ 25200π2 + 83401

)
z5 +O(z6), (4.6)

g1(z) =

(
− L

162
+

61

1944

)
1

z
+

(
− L

2025
+

94

30375

)
1

z2
+

(
− L

18900
+

209

567000

)
1

z3

+

(
− 2L

297675
+

1574

31255875

)
1

z4
+

(
− L

1047816
+

6661

880165440

)
1

z5
+O

(
1

z6

)
. (4.7)

1 This does not lead to any IR divergence thanks to the fact that the photon interaction in Q7 is via
the electromagnetic field strength tensor Fµν .

79



Our exact expression for g0(z) agrees with the results of Refs. [125, 152] where only
expansions and/or unintegrated expressions were given. As far as g1(z) is concerned, a
calculation of the corresponding diagrams up to O(ε) was done in Ref. [152]. However,
the three-body phase space integration there was performed in D = 4, so our g1(z) cannot
be derived from their results. Performing the phase-space integration for arbitrary D is
essential when the reverse unitarity trick is applied, which is hard to avoid in the future
bare NNLO calculation (see the next chapter).

All the other three-body results in this section are new, i.e. they have not been
considered in the literature before (apart from the z = 0 case in Ref. [64]). As far as
h1(z) is concerned, we have found a simple relation

h1(z) = −20 g0(z), (4.8)

which can be determined without calculation of any MIs but only by comparing the coeffi-
cients at them in the three-body contributions to G̃

(1)3P
27 (z, ε) and G̃

(1)3P
7(12) (z, ε) interference

terms. All the coefficients get rescaled by the factor

−4ε(5 + ε) = −20ε+O(ε2), (4.9)

which implies that the relation (4.8) holds.
Our results for the small- and large-z expansions of the functions j0(z) and j1(z) read

j0(z) =
302

81
+

20L

27
+

1

135

(
10L4 − 20L3 − 30

(
2π2 − 5

)
L2

− 30
(
16ζ(3) + 3− 2π2

)
L+ 240ζ(3) + 2π4 − 150π2 + 315

)
z

+
4

9

(
−2L2 + 6L+ 2π2 − 11

)
z2 − 4

81

(
−9L2 + 12L+ 9π2 + 8

)
z3

+
10

729
(60L− 43) z4 +

1

54
(35L+ 3) z5 +O(z6), (4.10)

j0(z) =
5

324

1

z
+

17

36450

1

z2
+

13

453600

1

z3
+

37

14883750

1

z4
+

5

18860688

1

z5
+O

(
1

z6

)
, (4.11)

j1(z) =
11225

243
− 20π2

27
+

52L

9
− 10L2

27
+

1

135

(
− 14L5 + 90L4 + 40

(
2π2 − 9

)
L3

+
(
600ζ(3) + 660− 450π2

)
L2 +

(
−120(27ζ(3) + 26) + 630π2 + 46π4

)
L

+ 3
(
5π2(8ζ(3)− 35) + 90(6ζ(3) + 8ζ(5) + 1)− 4π4

))
z

+
4

9

(
−4L3 − 6L2 + 6

(
1 + 3π2

)
L+ 84ζ(3)− 3π2 − 71

)
z2

− 2

243

(
54L3 − 603L2 + 2292L+ 324ζ(3) + 495π2 − 2132

)
z3

+
1

1458

(
600L2 + 1260L− 2400π2 − 8371

)
z4

+
1

3240

(
1050L2 + 7920L− 4200π2 − 16771

)
z5 +O(z6), (4.12)
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j1(z) =

(
− 5L

324
+

119

1296

)
1

z
+

(
− 17L

36450
+

3271

1093500

)
1

z2
+

(
− 13L

453600
+

5269

27216000

)
1

z3

+

(
− 37L

14883750
+

611

34728750

)
1

z4
+

(
− 5L

18860688
+

31001

15842977920

)
1

z5
+O

(
1

z6

)
.

(4.13)

Two-body contributions

By analogy to Eqs. (4.2)-(4.4), the two-body contributions can be written as

G̃
(1)2P
27 (z, ε) = − 92

81ε
+ f0(z) + ε f1(z) +O(ε2), (4.14)

G̃
(1)2P
7(12) (z, ε) =

2096

81
+ ε e1(z) +O(ε2), (4.15)

G̃
(1)m,2P
27 (z, ε) = − 1

3ε2
+

1

ε
r−1(z) + r0(z) + ε r1(z) +O(ε2). (4.16)

Our results for f0(z) and f1(z) read

f0(z) = −1942

243
− 8

27

(
−L3 − 3L2 + 9

(
π2 − 4

)
L+ 36ζ(3) + 5π2 − 48

)
z +

32

27
π2z3/2

+
8

27

(
L3 − 6

(
π2 − 2

)
L+ 2

(
9 + π2

))
z2 − 4

81

(
126L2 − 182L+ 14π2 + 9

)
z3

− 4

6075

(
9900L2 + 12405L+ 3300π2 − 27937

)
z4

− 1

23814

(
335160L2 + 555828L+ 111720π2 − 816731

)
z5

− 1

546750

(
19731600L2 + 37900890L+ 6577200π2 − 44551813

)
z6

−
(

4592L2

45
+

316568L

1485
+

4592π2

135
− 5577659732

25727625

)
z7

−
(

19360L2

63
+

11650480L

17199
+

19360π2

189
− 218830877266

352149525

)
z8 +O(z9), (4.17)

f0(z) = − 58

243
+

208L

81
+

(
2069

6075
+

38L

135

)
1

z
+

(
2029

23814
+

86L

945

)
1

z2
+

(
3080267

107163000
+

673L

17010

)
1

z3

+

(
39148379

3241680750
+

9626L

467775

)
1

z4
+

(
1813338739

306792666180
+

2927L

243243

)
1

z5
+O

(
1

z6

)
, (4.18)

f1(z) = −26231

729
+

259π2

243
+

2

405

(
− 75L4 + 60L3 + 30

(
7π2 − 18

)
L2

− 60
(
54ζ(3)− 168 + 37π2

)
L− 2

(
90(62ζ(3)− 117) + 1770π2 + 23π4

) )
z

− 64

81
π2(3L− 26 + 12 ln(2)) z3/2 +

2

81

(
− 15L4 + 60L3 + 24

(
π2 − 3

)
L2

− 24
(
8π2 − 3

)
L+ 432ζ(3) + 40π4 + 60π2 + 1332

)
z2 − 1120

81
π2z5/2

+
1

729

(
4536L3 − 7020L2 + 6

(
192π2 − 691

)
L+ 8208ζ(3)− 6540π2 + 22381

)
z3

81



+
1232π2z7/2

2025
+

2

91125

(
297000L3 − 202500L2 − 235530L+ 594000ζ(3)

− 279150π2 + 813599
)
z4 − 544π2

99225
z9/2 +

(380L3

27
− 191L2

27
− 975313L

26460

+
760ζ(3)

27
− 29447π2

1701
+

7328120063

100018800

)
z5 +O(z6), (4.19)

f1(z) = −901

243
+

23π2

243
+

116L

243
− 220L2

81
+

(
−19L2

45
+

962L

6075
+

62797

182250

)
1

z
+

(
− 43L2

315

+
11842L

59535
+

55026787

250047000

)
1

z2
+

(
−673L2

11340
+

1739092L

13395375
+

13428353551

135025380000

)
1

z3

+

(
−4813L2

155925
+

271244357L

3241680750
+

1108455907039

22464847597500

)
1

z4

+

(
−2927L2

162162
+

17211154537L

306792666180
+

186599590161437

6909737824039050

)
1

z5
+O

(
1

z6

)
. (4.20)

The function f0(z) is related to a(z) and b(z) that parameterize the z-dependence of

the NLO interference term G̃
(1)
27 , namely

f0(z) = −1942

243
+ 2 Re [a(z) + b(z)] . (4.21)

This interference term was first determined in Ref. [127] in terms of an expansion around
z = 0 up to O(z3). In Ref. [128], this result was confirmed using a different method and
extended up to O(z6). The actual functions a(z) and b(z) were defined in Ref. [129] where
they were given not only as power-logarithmic expansions but also in terms of relatively
simple ε-independent two- and three-fold Feynman parameter integrals. Their explicit
large-z expansions up to O(1/z2) were given in Ref. [67]. Here, we have confirmed f0(z)
both for small and large z, and provided expansions up toO(z8) andO(1/z5), respectively.

As far as f1(z) is concerned, we now confirm the findings of Ref. [152], and extend
their small-z expansion up to O(z5). All the other two-body results in this section are
entirely new.

For the function e1(z), we have found the following relation

e1(z) =
39112

243
− 8 Re [5 a(z) + b(z)] . (4.22)

Similarly to the three-body case, one can derive it without calculating any MI but just
observing common rescaling factors in the coefficients that multiply the MIs in the ex-
pressions for G̃

(1)bare
7(12) and G̃

(1)bare
27 . More precisely, the rescaling factors are different in

the contributions that are proportional to Qu and Qd, i.e. the up-type and down-type
quark charges. The functions a(z) and b(z) correspond to the Qu- and Qd-parts of G̃

(1)
27 ,

respectively.
As far as the functions ri(z) are concerned, our results read

r−1(z) = −1− 4π2

81
− 2z +O(z8), (4.23)

r−1(z) = −1− 4π2

81
− 2z +O

(
1

z14

)
, (4.24)
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r0(z) =
35

9
− 161π2

972
− 40ζ(3)

27
− 64π2

9
z1/2 +

1

135

(
5L4 − 160L3 + 20

(
18 + π2

)
L2

− 40
(
63 + 10π2

)
L+ 8

(
−120ζ(3) + 285 + 20π2 + π4

) )
z +

208π2

81
z3/2

+
2

81

(
288L2 − 93L+ 117π2 − 151

)
z2 +

1

36450

(
428400L2 + 802770L+ 142800π2

− 968803
)
z3 +

(
884L2

27
+

1219637L

17010
+

884π2

81
− 6421768

99225

)
z4

+

(
4616L2

45
+

27419831L

113400
+

4616π2

135
− 1077816623

5715360

)
z5 +O(z6), (4.25)

r0(z) =
L2

3
+

(
4π2

81
+

20

9

)
L+

10

9
+

π2

324
− 8ζ(3)

9
+

(
4L− 4

3

)
z +

(
101L

135
+

1937

4050

)
1

z

+

(
181L

486
+

8437

34020

)
1

z2
+

(
41803L

204120
+

28038091

257191200

)
1

z3

+

(
28309L

222750
+

335697253

6174630000

)
1

z4
+

(
174632L

2027025
+

33421938911

1095688093500

)
1

z5

+O
(

1

z6

)
, (4.26)

r1(z) =
2521

54
+

2135π2

2916
− 7π4

81
− 65ζ(3)

81
+

64π2

9
(2L− 7 + 8 ln(2)) z1/2

+
1

2835

[
420(−6N1 + 6N2 + 156ζ(5) + 164ζ(3) + 81)− 168L5
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(
42 + π2

)
L3 + 420L2

(
24ζ(3) + 195 + 17π2

)
+ 14L
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− 180(76ζ(3) + 69)
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)

+ π2

(
2520ζ(3) +
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100785118005794722500

)
− 7694π4
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− 32π2

81
(13L− 122 + 52 ln(2)) z3/2 +
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− 8L3 +

163L2

9
− 1273L

81
+ π2

(
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27
− 8L

9

)

+ 12ζ(3)− 4535

243
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z2 − 10672π2

6075
z5/2 +

1

546750
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− 6426000L3 + 2434500L2

+ 21040935L− 12852000ζ(3) + 6877050π2 − 29395538
)
z3 +

12232π2

165375
z7/2

+

(
−884L3

27
+

2039L2

243
+

339179431L

2381400
− 1768ζ(3)

27
+

984643π2

25515
− 559021904543

3000564000

)
z4

+
415936π2

3750705
z9/2 +

[
− 4616L3

45
+

67127L2

2700
+

72559774859L

142884000
− 9232ζ(3)

45

+
1627121π2

12600
− 54916240328153

90016920000

]
z5 +O(z6), (4.27)
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r1(z) = −L
3

3
−
(

2π2

81
+

7

3

)
L2 +

(
8ζ(3)

9
+

2π2

81
− 76

27

)
L+

5ζ(3)

9
− 23π4

1215
+

π2

108
− 194

81

+

(
−4L2 +

8L

3
+
π2

6
− 104

9

)
z −

(
101L2

90
− 1678L

2025
+

601

13500

)
1

z

−
(

181L2

324
− 4273L

5103
− 18757763

42865200

)
1

z2

−
(

41803L2

136080
− 86836613L

128595600
− 96323169497

324060912000

)
1

z3

−
(

28309L2

148500
− 802815799L

1543657500
− 15945714976267

85580371800000

)
1

z4

−
(

87316L2

675675
− 443812747943L

1095688093500
− 11960939601604831

98710540343415000

)
1

z5
+O

(
1

z6

)
. (4.28)

A careful reader has noticed that the expression for the small-z expansion of r1(z) is
not free of yet-undefined constants. These are the very two constants which, as mentioned
in the previous chapter, we were able to determine only numerically. Their values are
N1 ' 16.6256 and N2 ' −116.775.

Let us note that the O(z8) and O
(

1
z14

)
remainders in r−1(z) do not vanish. Aston-

ishingly, it is precisely at these orders when some nonvanishing terms begin to appear.

4.2 Results for mc = 0

In this section, we present results of our calculation performed at z = 0 from the outset,
i.e. with a separate IBP reduction and calculation of the MIs. We confirm the results of
Ref. [64] for G̃

(1)bare
27 (0, ε), G̃

(1)3P
27 (0, ε), G̃

(1)bare
7(12) (0, ε), G̃

(1)m
27 (0, ε), and Ĝ

(1)bare
47 (ε). We also

extend them to all orders in ε, except for the latter case. As before, all the three-body
results are calculated for δ = 1.

The z = 0 calculation from the outset provides cross-checks for most of our arbitrary-z
results because, as we verify, for n = 2, 3

lim
z→0

G̃
(1)nP
27 (z, ε) = G̃

(1)nP
27 (0, ε),

lim
z→0

G̃
(1)nP
7(12) (z, ε) = G̃

(1)nP
7(12) (0, ε),

lim
z→0

G̃
(1)m,2P
27 (z, ε) = G̃

(1)m,2P
27 (0, ε). (4.29)

However,

lim
z→0

G̃
(1)m,3P
27 (z, ε) 6= G̃

(1)m,3P
27 (0, ε), (4.30)

due to the logarithmic divergence at z → 0 of the functions j0(z) and j1(z) in Eqs. (4.10)

and (4.12). These divergences manifest themselves as an extra 1/ε pole in G̃
(1)m,3P
27 (0, ε),

as it often happens in the dimensional regularization for IR-limits of quantities that are
not IR-safe. Since the contributions to G̃

(1)m
27 alone do not form physical quantities by

themselves, it is hard to find an argument why it is only in the three-body case that such
a phenomenon occurs.
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Extensions to all orders in ε

Let us now list all the contributions that we have calculated to all orders in ε. The
three-body ones read

G̃
(1)3P
27 (0, ε) = −Que

3γε cos(πε)
8 (1− ε2) Γ(1 + ε)Γ4(1− ε)
3(2− 3ε)Γ(4− 4ε)Γ(1− 2ε)

, (4.31)

G̃
(1)3P
7(12) (0, ε) = −4ε (5 + ε) G̃

(1)3P
27 (0, ε), (4.32)

G̃
(1)m,3P
27 (0, ε) = −Que

3γε cos(πε)

× 4 (20ε6 − 36ε5 + 17ε4 + 6ε3 − 27ε2 + 30ε− 10) Γ(ε)Γ4(1− ε)
3(2− 3ε)(1− 3ε)Γ(4− 4ε)Γ3(1− 2ε)

. (4.33)

As far as the two-body contributions are concerned, our results can be written as

G̃
(1)2P
27 (0, ε) = G̃

(1)2P
27 (0, ε)u + G̃

(1)2P
27 (0, ε)d, (4.34)

G̃
(1)2P
7(12) (0, ε) = −4ε

[
(5 + ε) G̃

(1)2P
27 (0, ε)u + (1 + ε)G̃

(1)2P
27 (0, ε)d

]
, (4.35)

G̃
(1)m,2P
27 (0, ε) = G̃

(1)m,2P
27 (0, ε)u + G̃

(1)m,2P
27 (0, ε)d, (4.36)

where

G̃
(1)2P
27 (0, ε)u = Qu

4e3γε(1 + ε)Γ3(1− ε)Γ(2ε− 1)

3(1− 2ε)(2− 3ε)Γ(3− 3ε)Γ2(2− 2ε)Γ(2− ε)
T 1
ε ,

G̃
(1)2P
27 (0, ε)d = Qd

8e3γε(1− ε)2Γ3(1− ε)Γ(2ε− 1)

9(3− 2ε)Γ(3− 3ε)Γ2(2− 2ε)Γ(2− ε)
T 2
ε ,

G̃
(1)m,2P
27 (0, ε) = Qu

−2e3γεΓ3(1− ε)Γ(2 + ε)Γ(2ε− 1)

3(1− 2ε)(2− 3ε)(1− 3ε)(1− 4ε)Γ(3− 3ε)Γ2(2− 2ε)Γ(2− ε)
T 3
ε ,

G̃
(1)m,2P
27 (0, ε)d = Qd

2e3γε(ε− 1)2Γ(1− ε)3

3ε(2ε− 3)Γ(3− 3ε)Γ(2− 2ε)2Γ(2− ε)
T 4
ε , (4.37)

and

T 1
ε =

(
−24ε3 + 37ε2 − 17ε+ 2

)
Γ(3− 4ε)Γ(2− ε)Γ(1 + ε)− 2(1− ε)Γ(2− 2ε)

×
( (

2ε2 − 1
)

Γ(3− 3ε)Γ(1 + ε) + cos(2πε)
(
6ε3 − 10ε2 + 7ε− 2

)
Γ(1− ε)Γ(2− ε)

)
,

T 2
ε = (11− 16ε)εΓ(3− 4ε)Γ(2− ε)Γ(ε)− 2(1− ε)Γ(2− 2ε)

(
3Γ(3− 3ε)Γ(1 + ε)

+ cos(2πε)(1 + ε)Γ(1− ε)Γ(2− ε)
)
,

T 3
ε = 2

(
192ε6 − 512ε5 + 356ε4 + 140ε3 − 270ε2 + 107ε− 13

)
Γ(3− 3ε)Γ(2− 2ε)

+
(
−1728ε6 + 5256ε5 − 6036ε4 + 3124ε3 − 607ε2 − 33ε+ 18

)
Γ(3− 4ε)Γ(2− ε),

T 4
ε =

(
32ε4 − 52ε3 + 8ε2 + 17ε− 4

)
Γ(3− 3ε)Γ(2− 2ε)Γ(ε)Γ(2ε− 1)

− 2
(
32ε4 − 46ε3 + 15ε2 + 3ε− 2

)
Γ(3− 4ε)Γ(2− ε)Γ(ε)Γ(2ε− 1). (4.38)
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It remains to discuss Ĝ
(1)
47 (ε). We can write it as a sum of several contributions as

follows:2

Ĝ
(1)bare
47 (ε) = X3s + κnlXκ + nlXl + nbXb +X4 +X5 +XT

− 1

6

[
G̃

(1)bare
27 (0, ε) + G̃

(1)bare
27 (1, ε) + G̃

(1)bare
27 (1, ε)L→R

]
Qu→Qd

, (4.39)

where nl = 3, nb = 1 and κ = 1. The four-body final state contributions are given by
X3s and Xκ, while the remaining terms multiplied by nl or nb originate from two-body
contributions with closed (involving Dirac traces) massless or b-quark loops, respectively.
Such loops give no three-body contributions due to the Furry theorem.

All the nonvanishing three-body contributions are contained inside G̃
(1)bare
27 (0, ε),

G̃
(1)bare
27 (1, ε), G̃

(1)bare
27 (1, ε)L→R, and X4 which originate from diagrams where the s-quark

and b-quark loops are open (involve no Dirac traces). The notation for the first two
of these symbols are self-explanatory, while the third one corresponds to the Q2 opera-
tor where the (c̄b)V−A current was replaced by the (c̄b)V+A one. Finally, X4 originates

from the two- and three-body diagrams with open b-quark loops where Ĝ
(0)
47 comes as a

multiplicative factor.
The last two terms in the first line of Eq. (4.39) (X5 and XT ) originate only from

two-body contributions involving the open b-quark loops. The first one corresponds to
the diagrams denoted by G5 in Fig. 1 of Ref. [129]. The second one originates from the
diagrams involving tadpole loops of the b quark.

Among all the terms on the r.h.s. of Eq. (4.39), there are only three which we have

evaluated exactly in ε. They include
[
G̃

(1)
27 (0, ε)

]
Qu→Qd

(cf. Eqs. (4.31) and (4.34)), as

well as

X5 = −e3γεπ csc(πε)
32(1− ε)2Γ(1 + ε)

27(2− ε)Γ(1− 2ε)
,

Xl = − 4e3γε(1− ε)Γ3(1− ε)
27ε(3− 2ε)Γ(3− 3ε)Γ2(2− 2ε)Γ(2− ε)

T 5
ε , (4.40)

where

T 5
ε = 2 cos(2πε)εΓ(2− ε)Γ(2ε− 1)

(
2
(
ε2 − 1

)
Γ(2− 2ε)Γ(1− ε) + (11− 16ε)εΓ(3− 4ε)Γ(ε)

)
+ Γ(3− 3ε)Γ(2− 2ε)Γ(ε)

( (
12ε3 − 16ε2 + 8ε− 3

)
Γ(2ε− 1) + (2ε− 3)Γ(2ε)

)
. (4.41)

Before discussing the remaining terms in Eq. (4.39), let us quote all the LO quantities
from Eq. (2.4) of Ref. [64] which we have re-evaluated exactly in ε

G̃
(0)
77 =

Γ(2− ε)
Γ(2− 2ε)

eγε, (4.42)

Ĝ
(0)bare
47 = −4

9
Γ(1 + ε)eγεG̃

(0)
77 , (4.43)

Ĝ
(0)
37 =

3

4
Ĝ

(0)
47 , (4.44)

2 Let us recall that the nc-terms have been skipped.

86



Ĝ
(0)
67 = 4(5− 3ε− ε2)Ĝ

(0)
47 , (4.45)

Ĝ
(0)
57 =

3

4
Ĝ

(0)
67 . (4.46)

Results calculated only to a finite order in ε

The final ε-expanded expression for Ĝ
(1)bare
47 (ε) in Eq. (2.4) of Ref. [64] reads

Ĝ
(1)bare
47 (ε) =

16

3ε2
+

3674

243ε
+ 43.76456245573869 + 94.9884724116 ε

+ κnl

(
− 16

243ε
+

44π2 − 612

243
ε

)
+ nl

(
16

81ε
− 4

243
+

264π2 − 2186

729
ε

)
+ nb

(
16

81ε
+ 0.04680853247986 + 0.3194493123 ε

)
+O(ε2) (4.47)

We have verified all the contributions to this expression (cf. Eq. (4.39)), except for

XT =
16

3ε2
+

152

9ε
+

1288

27
− 4π2

9
+ 90.432090762728134858947 ε+O(ε2), (4.48)

the four-body ones which were cross-checked by M. Poradziński [191]

X3s = − 10

729
+ ε

(
157

729
− 31π2

729

)
+O(ε2),

Xκ = − 16

243
+ ε

(
44

243
π2 − 68

27

)
+O(ε2), (4.49)

and except for [121,144]

G̃
(1)
77 =

4

3ε
+

124

9
− 16

9
π2 + ε

(
212

3
− 58

9
π2 − 64

3
ζ(3)

)
+O(ε2),

G̃
(1)3P
78 =

100

27
− 8π2

27
+ ε

(
−112ζ(3)

9
+

70

3
− 4π2

9

)
+O(ε2) (4.50)

which enter into the formula

X4 = Ĝ
(0)
47

G̃
(1)
77 + 3

8
G̃

(1)3P
78

G̃
(0)
77

. (4.51)

The latter expression includes the two-body contribution from the diagramG6 of Ref. [129],
as well as the corresponding three-body contribution. One determines the sum of these
terms by using G̃

(1)
77 (both two- and three-body) together with ỹ4 = Ĝ

(0)
47 /G̃

(0)
77 which is a

generalization of ỹ4 from Eq. (6.8) of Ref. [129] to all orders in ε. There is also another
contribution for which we need z̃4, which is an analogue of ỹ4 but coming for a one-loop
diagram with an external gluon. The diagram with the gluon differs from the one with
the photon only by some charge and color factors, namely z̃4 = 3

8
ỹ4.
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Figure 4.1: Master integrals for the b-quark loop contributions to Ĝ
(1)
47 .

To complete listing the explicit expressions for the r.h.s. of Eq. (4.39), it remains to

quote our own results for Xb, G̃
(1)bare
27 (1, ε) and G̃

(1)bare
27 (1, ε)L→R, all of which originate

from diagrams with the b-quark loops. They read

Xb =
16

81ε
+ 0.04680856 + 0.31944943 ε+O(ε2),

G̃
(1)bare
27 (1, ε) = G̃

(1)2P
27 (1, ε) + G̃

(1)3P
27 (1, ε),

G̃
(1)bare
27 (1, ε)L→R = G̃

(1)2P
27 (1, ε)L→R + G̃

(1)3P
27 (1, ε)L→R, (4.52)

where[
G̃

(1)2P
27 (1, ε) + G̃

(1)2P
27 (1, ε)L→R

]
Qu→Qd

= −214

81ε
+ 8.07696 + 1.84113 ε+O(ε2),

[
G̃

(1)3P
27 (1, ε) + G̃

(1)3P
27 (1, ε)L→R

]
Qu→Qd

=
13 + 2π2 − 6π

√
3

9
− 0.0056863 ε+O(ε2).

(4.53)

Their evaluation involved the MIs depicted in Fig. 4.1. Apart from one trivial case (M6),
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Figure 4.2: The functions fi(z) defined in Eq. (4.14).

Figure 4.3: The functions ri(z) defined in Eq. (4.16).

all of them can be obtained from Fig. 3.2 by setting mc = mb. Thus, no new evaluation of
the MIs was necessary. Moreover, in the z = 1 case, the Feynman parameter integration
(analytical or numerical) was sufficient to determine all the MIs that were not yet available
from the literature.

4.3 Plots and their interpretation

In this section, we present plots of the functions fi(z), ri(z), gi(z) and ji(z) that have
been defined in Eqs. (4.2)-(4.4) and (4.14)-(4.16). They are displayed in Figs. 4.2–4.5.

In each of these plots, our results obtained with the help of a numerical solution to
the DE are shown by (blue) dots. Some of these dots are slightly bigger and red, which
indicates either the z = 0 limit or the physical point used as a central value in the
phenomenological analysis of Refs. [2, 64], namely z ' 0.05672. The numerical solutions
of the DE were obtained using an initial condition at z = 20 evaluated using our large-
z expansions. The curves describing these expansions for z ≥ 20 are displayed by the
solid (blue) lines. The remaining solid (green) lines show either the large-z expansions
for 1

4
< z < 20 or the small-z expansions for 0 < z < 1

4
. The physical cc̄ production

threshold at z = 1
4

defines the convergence radii of both expansions. In the two-body
cases (f0(z), f1(z), r0(z) and r1(z)), there are visible regions around z = 1

4
where the

expansions are not plotted, as they would become very inaccurate there. Only the dots
from the numerical solutions are present in these regions. In the three-body cases (g0(z),
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Figure 4.4: The functions gi(z) defined in Eq. (4.2).

Figure 4.5: The functions ji(z) defined in Eq. (4.4).

g1(z), j0(z) and j1(z)), our expansions are sufficiently deep that the inaccuracies near
z = 1

4
are invisible in the plots.

The points z = 1
4

and z = 0 are singular points of our differential equations for the
MIs. We may expect that the decay amplitudes at these points in the complex plane of the
variable z are not meromorphic functions but rather have branch-point singularities. The
decay rate is finite and continuous at z = 1

4
, but its n-th derivative with respect to z along

the real axis is likely to diverge for some n. We cannot prove that this is the case in our
particular example because only certain parts of our results are known in a closed form.
However, we can see that the exact expression for the function g0(z) in Eq. (4.5) involves√
|1− 4z|, which signals non-analyticity at z = 1/4. A similar property is observed in the

two-body contribution from the diagram denoted by G1 in Fig.1 of Ref. [129], in which
case an analytical result in a closed form is known. As an another example, one might
mention the dilepton invariant mass spectrum in b→ s e+e− where a visible kink at the
cc̄ production threshold arises (see, e.g., Figs. 8-10 in Ref. [192]).

Our plots are presented in a logarithmic scale for z, for the purpose of illustrating
nice convergence to the (independently calculated) values at z = 0 for all the functions
except j0(z) and j1(z). As we have already mentioned, the latter two functions exhibit
logarithmic divergences when z tends to 0. This fact manifests itself as an extra 1/ε pole

when the corresponding interference term G̃
(1)m,3P
27 is calculated at z = 0 from the outset.

One can see this by comparing Eq. (4.4) which is finite when ε→ 0, and Eq. (4.33) that
contains a 1/ε pole.
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4.4 Exact coefficients at the master integrals

In the current section, we give our results for various interference terms as linear com-
binations of the master integrals that are retained as symbols. The coefficients in these
linear combinations are presented exactly in z and ε. Such a presentation is aimed at pos-
sible future extension of the calculation to even higher orders in ε, which would certainly
become necessary beyond the NNLO.

4.4.1 Coefficients for an arbitrary charm quark mass

Let us begin with our three-body results for arbitrary z, and for δ = 1. They can be cast
as follows:

G̃
(1)3P
27 (z, ε) =

5∑
i=1

A3P
i Mi, (4.54)

G̃
(1)3P
7(12) (z, ε) = −4ε(5 + ε) G̃

(1)3P
27 (z, ε), (4.55)

G̃
(1)m,3P
27 (z, ε) = A3P

6 M1 +A3P
7 M2 +A3P

8 M3 +A3P
9 M4 +A3P

10M5, (4.56)

where the coefficients in the above linear combinations are given by

A3P
1 = 32ε(1−ε2)(1−ε)2

Dε
, A3P

2 = −16(1−ε2)(2ε2(6z+1)−2ε(3z+1)+1)
Eε

,

A3P
3 = 16

Eε
(4ε4 − 6ε3 − ε2 + 6ε− 3) , A3P

4 = −32ε
Eε

(4ε3 − ε2 − 4ε+ 1) z,

A3P
5 =

16ε(1−ε2) z
Eε

,

A3P
6 =

4
(
1− ε2

)
3Eε(1− 2ε)2z

(
96ε5z − 36ε4(12z + 1) + 48ε3(14z + 3)− ε2(444z + 191) + 4ε(27z + 26)− 20

)
,

A3P
7 =

8(1 + ε)

Dε

(
16ε6(6z + 1)− 4ε5(96z + 7) + ε4(504z − 4)− 3ε3(92z − 9) + ε2(54z − 7)− 6ε+ 2

)
,

A3P
8 = − 8ε

Dε

(
64ε6 − 184ε5 + 96ε4 + 134ε3 − 160ε2 + 49ε− 1

)
,

A3P
9 = −4(ε+ 1)

Dε

(
16ε6(8z + 3)− 32ε5(15z + 4) + 112ε4(5z + 1)− 32ε3(8z + 1) + ε2(36z + 3)− 5ε+ 2

)
,

A3P
10 =

8

Dε

(
8ε5 − 4ε4 − 13ε3 + 6ε2 + 5ε− 2

)
z, (4.57)

with the following short-hand notation: Dε = 9ε (6ε2 − 7ε+ 2), and Eε = 9(2− 3ε).

As far as our two-body results are concerned, we write them as

G̃
(1)2P
27 (z, ε) = G̃

(1)2P
27 (z, ε)u + G̃

(1)2P
27 (z, ε)d, (4.58)

G̃
(1)2P
27 (z, ε) = −4ε

[
(5 + ε) G̃

(1)2P
27 (z, ε)u + (1 + ε)G̃

(1)2P
27 (z, ε)d

]
, (4.59)

G̃
(1)m,2P
27 (z, ε) = G̃

(1)m,2P
27 (z, ε)u + G̃

(1)m,2P
27 (z, ε)d. (4.60)
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The quantities on the r.h.s. of the above expressions are given by the following linear
combinations of the MIs:

G̃
(1)2P
27 (z, ε)d = A1M7 +A2M6 +A3M8 +A4M12 +A5M13 +A6M10 +A7M9, (4.61)

G̃
(1)2P
27 (z, ε)u = A8M7 +A9M6 +A10M8 +A11M14 +A12M12 +A13M13

+A14M15 +A15M10 +A16M9 +A17M16 +A18M17, (4.62)

G̃
(1)m,2P
27 (z, ε)d = A19M7 +A20M6 +A21M8 +A22M12 +A23M13 +A24M18 +A25M11,

(4.63)

G̃
(1)m,2P
27 (z, ε)u = A26M7 +A27M6 +A28M8 +A29M14 +A30M12 +A31M13

+A32M16 +A33M17. (4.64)

The coefficients Ai in the above equations read

A1 =
2(1−ε)(4ε2+ε−3)

3ε(3−2ε)
, A2 =

(1−ε)(16ε4z+ε3(12−56z)+ε2(38z−18)+29εz−3z)
3ε(3−2ε)(1−2ε)(2ε+1)z

,

A3 = −4(1−ε)3(ε(2z−1)+3z)
3−2ε

, A4 = − (1−ε)2(8ε3(5z−4)+2ε2(4z+11)−41εz+6z)
3ε(3−2ε)

,

A5 =
2(1−ε)2(16ε2+4ε−3)(z−1)z

3ε(3−2ε)
, A6 = −4(1−ε)2(ε2(10z−1)+11εz−14z+1)

9−6ε
,

A7 = 8(1−ε)2(ε+1)z(4z−1)
9−6ε

,

A8 = −4(1−ε)3ε(ε+1)
6ε2−7ε+2

, A9 = − (1−ε)2(1+ε)(16ε3z+ε2(3−12z)−6εz+ε+4z−2)
(1−2ε)2(2−3ε)z

,

A10 = −2(1−ε2)(ε3(8z−2)−10εz+ε+4z)
6ε2−7ε+2

, A11 = −4ε(4ε3−ε2−4ε+1)z
2−3ε

,

A12 = − (1+ε)(8ε3−ε2(12z+7)+14εz+ε−4z)
1−2ε

, A13 = −2(1+ε)z(ε(4z−7)−2z+3)
1−2ε

,

A14 = −2(1−ε2)(2εz+ε−z−1)

1−2ε
, A15 = −2(1−ε2)(1−4z)

1−2ε
,

A16 = −2(1−ε)2(2ε2−ε−3)
1−2ε

, A17 = 6 (1− ε2) z,

A18 = −2(1+ε)(ε(4z−1)−2z+1)z
1−2ε

,

A19 = −(1− ε)2

3

(
12(1− ε)2

1− 4z
− (2− ε)(1− ε)

z(1− 2ε)
+

13− ε(ε(24ε2 + 10ε− 107) + 89)

ε(3− 2ε)

)
,

A20 =
(1− ε)2

6

(
13− ε

(
ε
(
48ε3 − 102ε− 5

)
+ 78

)
ε(4ε(2− ε) + 3)

+
ε
(
8ε2 − 22ε+ 19

)
+ 2

z(1− 4ε2)
+

24(1− ε)2

1− 4z

)
,

A21 = − (1− ε)
6(3− 2ε)z(1− 4z)

×
(

96ε4(1− 2z)2z + ε3
(
−192z3 + 704z2 − 268z + 2

)
− ε2

(
896z3 + 104z2 − 256z + 9

)
+ ε

(
816z3 − 368z2 − 95z + 13

)
− 88z3 + 146z2 + 11z − 6

)
,

A22 = − (1− ε)
6ε(3− 2ε)z

×
(

48ε5z(3z − 4)− 6ε4
(
16z2 − 80z + 1

)
+ ε3

(
−366z2 − 422z + 25

)
+ ε2

(
505z2 + 161z − 32

)
+ ε

(
−213z2 − 26z + 12

)
+ 26z2

)
,
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A23 =
(1− ε)

3ε(3− 2ε)

×
(

48ε4(z − 2)z + 4ε3(40z − 1)− 2ε2
(
61z2 + 27z − 7

)
+ 3ε

(
29z2 − 7z − 4

)
− 13(z − 1)z

)
,

A24 = −(2− ε)(1− ε)2

6z
,

A25 =
(2− ε)(1− ε)2

3z
= −2A24,

A26 = 4Fε
(
ε4(4z − 6) + ε3(19− 6z) + ε2(3z − 22) + 11ε− 2

)
,

A27 = −Fε
(

4ε5(26z − 9) + ε4(114− 320z) + ε3(374z − 141) + ε2(81− 197z)

+ ε(41z − 21)− 2z + 2
)
,

A28 = −Gε (1− ε)
(

48ε5 − 8ε4(22z + 9) + 8ε3(48z + 1)− 4ε2(73z − 5) + ε(78z − 1)− 4z − 2
)
,

A29 = Gε
(

48ε6 − 64ε5(z + 2) + 112ε4(z + 1)− 8ε3(9z + 4) + 3ε2(4z + 1)− 5ε+ 2
)
,

A30 = Hε
(

48ε5 − 4ε4(18z + 23) + 2ε3(84z + 29)− ε2(134z + 23) + ε(39z + 14)− 2(z + 2)
)
,

A31 = −2Hε
(

16ε4z + 4ε3
(
−6z2 + z + 1

)
+ 2ε2

(
20z2 − 18z − 5

)
+ ε

(
−18z2 + 16z + 8

)
+ z2 + z − 2

)
,

A32 = −
(
24ε5 − 40ε4 − 6ε3 + 39ε2 − 18ε+ 1

)
z

ε(1− 2ε)
,

A33 = 2zHε
(

4ε3(6z − 1) + ε2(8− 40z) + 6ε(3z − 1)− z + 1
)
, (4.65)

where the following short-hand notation has been used

Fε =
(1−ε2)

2ε(1−2ε)2(2−3ε)z
, Gε = (1+ε)

2ε(6ε2−7ε+2)
, Hε = (1+ε)

2ε(1−2ε)
. (4.66)

4.4.2 Coefficients for the case of a vanishing charm quark mass

Our expressions become much more compact in the z = 0 case, which the current sub-
section is devoted to. The corresponding MIs are given in Figs. 3.1 and 4.1. Here, we
split our results into the terms that are proportional to the quark charges Qu and Qd.
Starting from the quantities defined in in Eqs. (4.34)– (4.36), we write

G̃
(1)2P
27 (0, ε)d = Qd

(
A1M0

1 + A2M0
2 + A3M0

3

)
,

G̃
(1)2P
27 (0, ε)u = Qu

(
A4M0

1 + A5M0
2 + A6M0

3

)
,

G̃
(1)3P
27 (0, ε) = QuA7M0

5,

G̃
(1)m,2P
27 (0, ε)d = Qd

(
A8M0

2 + A9M0
3

)
,

G̃
(1)m,2P
27 (0, ε)u = Qu

(
A10M0

2 + A11M0
3

)
,

G̃
m(1)3P
27 (0, ε) = QuA12M0

5, (4.67)
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where the coefficients Ai are given by

A1 = 16(1+ε)(1−ε)3
9(3−2ε)

, A2 = 8ε(11−6ε)(1−ε)2
9(3−2ε)

,

A3 = −16ε(1−ε)3
3(3−2ε)

, A4 = −8(1−2ε+ε2+2ε3−2ε4)
3−6ε

,

A5 = 4(1−6ε+ε2+8ε3)
3−6ε

, A6 = 8ε(1−3ε2+2ε4)
3(2−7ε+6ε2)

,

A7 = 96ε(1−ε)2(1−2ε)2

(2−3ε)(3−4ε)
,

A8 = −4(1−ε)2(2−3ε−15ε2+46ε3−32ε4)
3ε(3−2ε)

, A9 = 2(1−ε)2(4−17ε−8ε2+52ε3−32ε4)
3ε(3−2ε)

,

A10 = −2ε(9+33ε−212ε2+156ε3+200ε4−192ε5)
3(1−6ε+8ε2)

, A11 = 4ε(13−42ε−5ε2+110ε3−56ε4−68ε5+48ε6)
3(1−2ε)(2−3ε)(1−3ε)

,

A12 = 48(1−ε2)(10−30ε+37ε2−36ε3+20ε4)
(2−3ε)(1−3ε)(3−4ε)

, (4.68)

In addition, we give the IBP coefficients for three quantities that matter for Ĝ
(1)
47 ,

namely[
G̃

(1)3P
27 (1, ε)L→R

]
Qu→Qd

= A13M1 + A14M2 + A15M3 + A16M4 + A17M5,[
G̃

(1)2P
27 (1, ε)L→R

]
Qu→Qd

= A18M6 + A19M7 + A20M9 + A21M10 + A22M8 + A23M11

+ A24M12 + A25M15 + A26M16 + A27M14 + A28M13,

Xb = A29M7 + A30M9 + A31M10 + A32M8 + A33M11

+ A34M15 + A35M16 + A36M17 + A37M18, (4.69)

where Mi denote the master integrals from Fig. 4.1. The coefficients Ai read

A13 = −ε (−180ε5 + 60ε4 + 623ε3 − 624ε2 + 30ε+ 92)

243(1− 2ε)2(2− 3ε)
,

A14 = −2 (222ε6 + 23ε5 − 487ε4 + 88ε3 + 322ε2 − 174ε+ 24)

81 (6ε3 − 13ε2 + 9ε− 2)
,

A15 =
2 (216ε6 − 278ε5 − 473ε4 + 1207ε3 − 1002ε2 + 404ε− 72)

81 (6ε3 − 13ε2 + 9ε− 2)
,

A16 = −4ε (32ε5 − 70ε3 + 41ε2 + 2ε− 2)

27(1− ε)(1− 2ε)(2− 3ε)
,

A17 =
2ε (6ε4 + ε3 − 22ε2 + 40ε− 24)

81 (6ε2 − 7ε+ 2)
,

A18 = 2
27
ε (ε3 + ε2 − 4ε+ 2) , A19 = −36ε7−180ε6+455ε5−301ε4+178ε3−186ε2+52ε+16

54(1−2ε)2(3ε−2)
,

A20 =
2(6ε5+ε4−38ε3+48ε2−22ε+4)

27(1−ε) , A22 =
4(12ε6−23ε5−58ε4+122ε3−69ε2+17ε−4)

27(6ε2−7ε+2)
,

A21 = −2ε(ε3−6ε+4)
9(1−ε) , A23 =

ε(−36ε5+24ε4+147ε3−230ε2+122ε−24)
54(1−ε)(1−2ε)

,

A24 = − 4
27
ε (ε3 − 3ε+ 2) , A25 =

2ε2(6ε2+2ε−5)
54ε−27

,

A26 =
2(4ε5−11ε3+2ε2−6ε+8)

27(2ε2−3ε+1)
, A27 = 4

27
ε (2ε2 + 2ε− 3) ,

A28 =
4ε(32ε5−70ε3+41ε2+2ε−2)

27(1−ε)(1−2ε)(2−3ε)
,
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A29 = −80ε7−176ε6+1200ε5−1556ε4+411ε3+457ε2−292ε+36
27(1−2ε)2ε(2ε−3)(2ε+1)

, A30 =
16(ε−1)(9ε2+11ε−13)

81−54ε
,

A31 = 32(ε−1)(ε+1)
9(2ε−3)

, A32 = −2(72ε4−364ε3+570ε2−339ε+63)
9(4ε2−8ε+3)

,

A33 = −136ε6+4ε5+902ε4−1445ε3+872ε2−224ε+24
27ε(4ε3−12ε2+11ε−3)

, A34 = −2(8ε4−4ε3−14ε2+5ε+6)
9(4ε2−8ε+3)

,

A35 =
4(8ε4−4ε3−14ε2+5ε+6)

9(ε−1)(2ε−3)(2ε−1)
, A36 = 8ε− 10,

A37 = 2
27

(1− ε).
(4.70)
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Chapter 5

Outlook: bare NNLO QCD
contributions for arbitrary mc

Our counterterm calculation at z = 0 has served for cross-checking the inputs for the
phenomenological analysis in Refs. [2,64]. However, its extension to arbitrary z, which is
the main topic of this thesis, cannot be used for any phenomenological purpose until the
corresponding bare NNLO interference terms G̃

(2)bare
17 and G̃

(2)bare
27 are also determined for

arbitrary z, or at least in the vicinity of its physical value z ' 0.057. Such a calcula-
tion involves diagrams like the ones shown in Fig. 5.1. Their computation at z = 0 in

(a) (b)

Figure 5.1: Sample Feynman diagrams contributing to the bare NNLO interference term
G̃

(2)bare
27 with possible two-, three- and four-particle cuts (red dotted lines). The black solid,

dashed and dotted lines denote the b-quark, c-quark and s-quark propagators, respectively.

Refs. [64] is already considered an achievement due to the large number of difficult MIs
that had to be determined. An extension to arbitrary z is thus an ambitious task which,
unfortunately, has not come close to being completed in the time scale of the current
PhD work.

Although the author of the present thesis has not been involved himself in the bare
NNLO calculations, the issue deserves a brief description which the current chapter is de-
voted to. The calculation was first attempted by the authors of Ref. [146] (R. Boughezal,
M. Czakon and T. Schutzmeier) who began with considering the two-particle cut contri-
butions. They generated the relevant diagrams, preformed the Dirac algebra calculation
that produced 19469 scalar integrals to compute, and identified the relevant 473 master
integrals. However, their IBP routine [193] was unable to determine coefficients at these
MIs because the database it used had a 20 GB size restriction. Shifting to the use of
another database would require a total reconstruction of the code, which has not been
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attempted due to involvement of the authors in other, LHC-oriented physics projects. In
the end, their calculation was restricted to the nc-terms alone [146] and to the z = 0 case,
both of which were accessible with their IBP codes. The z = 0 calculation was completed
only recently [64], with participation of several other researchers.

Another attempt to perform the IBP reduction for arbitrary z was undertaken by
M. Misiak, A.V. Smirnov, V.A. Smirnov and M. Steinhauser in 2011 when the C++ version
of the code FIRE [73,74] became available. Even though the code was not yet public at the
time, the involvement of its author and the hospitality of the CERN IT team allowed to
complete the IBP reduction of the two-particle-cut diagrams in around two months. The
most difficult diagrams required over 74 GB RAM for intermediate results, and the cluster
nodes had to be protected against jobs submitted by other users. That IBP reduction
was considered to be just a test of whether completing the project was feasible at all with
the scalar integral set generated previously by the authors of Ref. [146]. The result of
the test was positive, but too little attention was paid to notational details, namely to
making the outputs automatically accessible to the code exp [181] that needs to be used
for evaluating the large-z expansions of the MIs.

In 2012, M. Steinhauser alone performed another calculation of the two-body contri-
butions from the outset, namely generation of the diagrams, performing the Dirac algebra
and reduction of the scalar integrals to the MIs using FIRE. His final results are now exp-
compatible. However, proceeding with the calculation was postponed due to involvement
of the team members in other projects, including completing the z = 0 calculation and
the phenomenological analysis of B̄ → Xs,dγ that could not wait any longer for getting
updated.

Once the arbitrary-z bare NNLO calculations are re-started in the near future, the
first step will be to perform the IBP reduction also for the three- and four-body final
state contributions. Next, all the MIs need to be treated using the same method as in
Ref [146]. This method has been followed in the present thesis for the numerical solution
of the DEs. It amounts to using asymptotic expansions at large z and extending them
with the help of DEs to obtain high-accuracy approximations to the MIs at some finite
value of z (e.g., z = 20). Next, the sub-DEs (see Eq. (3.66)) are solved numerically
along an ellipse in the complex plane to reach the desired value on the real axis below
the cc̄ threshold z = 1

4
. Let us note that our current numerical solution of the sub-DEs

involved a set of O(102) functions. Enlarging the number of functions by one or two
orders of magnitude for the bare NNLO case should not lead to technical problems given
the experience gained in the z = 0 case [64].

The boundary conditions for the MIs at large z will be given in terms of single-scale
MIs. The latter MIs are going to be much simpler than the original ones, which is the
purpose of using the DEs at all. However, even those simpler MIs may not be completely
trivial and the number of them may be sizeable. In such a case, they are going to
be treated in the same manner as the single-scale propagator MIs were treated in the
z = 0 calculation [64]. The external momentum was assumed to be arbitrary rather
than given by p2 = m2

b , and another set of DEs was formed and numerically solved.
The new boundary conditions were given in terms of a manageable (smaller) set of much
simpler integrals, namely tadpoles and massless propagator integrals. A similar method
is expected to work in the case of arbitrary z, and it should actually lead to a simpler set
of propagator integrals, i.e. three-loop rather than four-loop ones.
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Once the bare NNLO calculations are completed, the counterterms evaluated in the
present thesis will become useful for a phenomenological analysis. Such a new analysis is
going to be free of the mc-interpolation issue, which will definitely improve the accuracy
of the SM prediction for the branching ratio of B̄ → Xsγ. However, there will still
remain some uncertainty stemming from the fact that the calculations of G̃

(2)
17 and G̃

(2)
27

are preformed at δ = 1. An extension to the default value of δ = 1− 2E0/mb ' 0.3 will
require repeating the three- and four-body calculations of the bare NNLO terms and the
counterterms with an explicit cut on the photon energy. Such a calculation is feasible
using the method of Ref. [140]. However, the δ = 1 calculation must be completed first,
as it is a necessary step for including the two-body contributions.

Given the complexity of the project and the fate of the previous attempts, it is hard to
predict the time scale of the bare NNLO calculation. However, one can realistically hope
for its completion before Belle-II starts collecting data in 2017. Improving the theory
accuracy in B̄ → Xsγ will become an urgent issue then.
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Chapter 6

Conclusions

In the present thesis, we evaluated [1] the exact dependence on the charm-quark mass
of all the necessary ultraviolet-counterterm diagrams that contribute to the yet-unknown
parts of the NNLO QCD corrections K

(2)
17 and K

(2)
27 to the weak radiative B-meson decay

branching ratio. These corrections originate from interferences of the four-quark and
photonic dipole operators. At present, they are estimated using an interpolation in mc,
which generates one of the the main uncertainties in the perturbative contribution to
B(B̄ → Xsγ)SM. Our calculation is a step towards removing this uncertainty. However,
a phenomenological use of our results will be possible only after future determination of
the bare NNLO contributions to the considered interference terms.

Apart from our calculation for arbitrary mc, we evaluated many of the necessary
counterterm contributions at mc = 0, and presented them to all orders in ε wherever
possible. Our results contributed to the evaluation of the mc = 0 boundary for the
interpolation, and thus to the recently published updated phenomenological analysis of
B(B̄ → Xsγ)SM [2].

The thesis contains many technical details that have not been presented elsewhere,
namely explicit expressions for all the relevant quantities in terms of the master integrals,
as well as results for these integrals obtained using several different methods, involving
Mellin-Barnes techniques and differential equations.

At present, the experimental determination of B(B̄ → Xsγ) agrees with the SM pre-
diction within uncertainties that are similar on the experimental and theoretical sides,
and amount to around 7% each. A factor-of-two reduction of each of them is feasible in
the near future. On the experimental side, it is likely to come from high-statistics mea-
surement using the hadronic tag for the recoiling B-meson, which essentially eliminates
the so-called continuum background. Such measurements have been statistics-limited
so far. On the theory side, the two main issues are re-considering the estimates of
non-perturbative effects, and eliminating the mc-interpolation in the perturbative NNLO
contributions. Our calculation has contributed to a future resolution of the latter issue.
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Appendices

Appendix A: Dirac algebra, Feynman rules and spe-

cial functions

Dirac traces in D dimensions

A convenient recursive formula for evaluating traces of even numbers of γ matrices reads

tr(γν1γν2 . . . γνn) =
n∑
k=2

(−1)k gν1νk × tr(γν2 . . . γ̂νk . . . γνn), (A.1)

tr(γν1γν2) = 4gν1ν2 , (A.2)

gνν = D, (A.3)

where γ̂νk in Eq. (A.1) means that one has to omit γνk in the product under the trace.

Effective theory Feynman rule for the Q7-operator insertion

The operator Q7 defined in Eq. (2.9) contains the product σµνFµν , where

σµν =
i

2
[γµ, γν ], (A.4)

Fµν = ∂µAν − ∂νAµ. (A.5)

The corresponding Feynman rule can be obtained by a mnemotechnic replacement
∂µ → +iqµ, where qµ is the outgoing photon momentum. Thus, one gets

σµνFµν → +2[6 ε, 6 q], (A.6)

where εµ is the photon polarization vector.

Logarithm

We follow the conventions in which the default Riemann sheet for the logarithm is defined
with a branch cut on the negative real axis. This means that for a real positive x, we
have

ln(−x± i0) = ln x± iπ.
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Gamma and Beta functions

The Γ and B functions are defined by

Γ(x) =

∫ ∞
0

tx−1e−tdt, B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

∫ 1

0

tx−1(1− t)y−1dt. (A.7)

The function Γ(z) is meromorphic and different from 0 in the whole complex plane. It
has simple poles at z = −n, where n ∈ N ∪ {0}.

The Feynman integrals in D = 4 − 2ε dimensions typically contain Γ functions with
arguments (n + mε), where n is an integer. For an expansion in ε of such Γ functions,
one first reduces them to Γ(1 + mε) using the identity Γ(1 + z) = zΓ(z), from which it
follows that

Γ(n+ x) = Γ(1 + x)×
{

(1 + x)n−1, when n ≥ 1,
1/(n+ x)1−n, when n ≤ 0,

(A.8)

where (z)k denotes the Pochhammer symbol

(z)k ≡
Γ(z + k)

Γ(z)
= z(z + 1) . . . (z + k − 1), for k ∈ N. (A.9)

Next, one uses the following formula:

Γ(1 + ε) = exp
[
− γε+

∞∑
n=2

(−1)nζ(n)

n
εn
]
, (A.10)

where γ ' 0.5772 is the Euler-Mascheroni constant, and ζ(x) =
∑∞

l=1
1
lx

is the Riemann
ζ-function. A useful identity reads

Γ(1− z)Γ(z) =
π

sin(πz)
, (A.11)

from which it follows that

Γ(z)

Γ(z − n)
= (−1)n

Γ(n+ 1− z)

Γ(1− z)
(A.12)

for any integer n. The following relation that holds for a positive integer n is also useful:

Γ(nz) = (2π)
1−n
2 nnz−

1
2

n−1∏
k=0

Γ

(
z +

k

n

)
. (A.13)

For n = 2, it gives

Γ(2z) =
22z−1

√
π

Γ(z)Γ

(
z +

1

2

)
. (A.14)
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The ψ function

The function ψ(z) (denoted by PolyGamma[z] under Mathematica) can be defined by

ψ(z) =
d

dz
ln Γ(z) or ψ(z) =

∫ 1

0
dξ

(
ξz−1

ξ − 1
− 1

ln ξ

)
. (A.15)

It satisfies the following identities:

ψ(z + n) = ψ(z) +
n−1∑
i=0

1

z + i
and ψ(1− z)− ψ(z) = π cot(πz). (A.16)

The n-th derivative of the ψ function, namely

ψ(n)(z) =
dn

dzn
ψ(z) (A.17)

is denoted by PolyGamma[n,z] under Mathematica. It satisfies an identity which becomes
useful when applying the MB method

ψ(n)(z) =
(−1)n+1n!

2πi

∫ α+i∞

α−i∞
ds

Γ(s)Γ(1− s)Γ(z − s)n+1(−1)−s

Γ(1 + z − s)n+1
, for 0 < α < 1 ∧ n ∈ N.

(A.18)

In Sec. 3.3.2, we mentioned transforming the MB integral into a multiple series and
then subsequently summing up the series. For instance, for a sum of the form

Si(n) =
n∑
j=1

1

ji
(A.19)

we can use (cf. Eqs. (A.10) and (A.16))

ψ(n) = S1(n− 1)− γ, (A.20)

ψ(k)(n) = (−1)kk!(Sk+1(n− 1)− ζ(k + 1)), k = 1, 2, . . . (A.21)

Polylogarithms

The classical polylogarithms are recursively defined by

Li1(z) = − ln(1− z) and Lin+1(z) =

∫ z

0

dξ

ξ
Lin(ξ), for n ∈ N. (A.22)

They are generalized by the Euler polylogarithms defined (for a ∈ C, Re a > 1 and
|z| < 1) as

Lia(z) =
∞∑
n=1

zn

na
, (A.23)

which satisfy the following identities:

Lia(z) = − 1

Γ(a)

∫ 1

0

dξ
lna−1(1/ξ)

ξ − 1
z

and Lia+1(z) =

∫ z

0

dξ

ξ
Lia(ξ). (A.24)
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A useful MB formula for Li2(z) reads

Li2(z) = − 1

2πi

∫
L
ds (−z)−s

Γ(1 + s)Γ3(−s)
Γ2(1− s)

, when |arg(−z)| < π. (A.25)

The Nielsen (generalized) polylogarithms are defined as

Sa,b (z) =
(−1)a+b−1

(a− 1)! b!

∫ 1

0

dξ
lna−1(ξ) lnb(1− zξ)

ξ
, (A.26)

where a and b are positive integers. For some additional integrals that are not yet
implemented in default Mathematica, see Appendix A.2 of Ref. [194] devoted to the
package HypExp.

Hypergeometric differential equation and functions

The hypergeometric functions [195] frequently appear in the Feynman integral calcula-
tions. In our case, several of the relevant DE systems were reducible to a single second-
order inhomogeneous hypergeometric DE

z(1− z)f ′′(z) + [c− (a+ b+ 1)z]f ′(z)− abf(z)︸ ︷︷ ︸
homogeneous part

+
kmax∑
k=1

dkz
pk

︸ ︷︷ ︸
inhomogeneous part

= 0, (A.27)

where a, b, c, dk and pk are some parameters which may in general be complex, but we
have encountered only real ones.

A general solution to Eq. (A.27) is a sum of any specific solution to this equation
and an arbitrary linear combination of two independent solutions to the homogeneous
hypergeometric equation. From among many possible ways of writing such a general
solution, we choose the following two ones:

f(z) = N 2F1(a, b; c; z) + Mz1−c
2F1(1 + a− c, 1 + b− c; 2− c; z)

−
kmax∑
k=1

dkz
pk+1

(pk + 1)(pk + c)
3F2 (1, pk + a+ 1, pk + b+ 1; pk + c+ 1, pk + 2; z) ,

f(z) = Az−a 2F1

(
a, 1 + a− c; 1 + a− b; 1

z

)
+ Bz−b 2F1

(
b, 1 + b− c; 1 + b− a;

1

z

)
+

kmax∑
k=1

dkz
pk

(pk + a)(pk + b)
3F2

(
1,−pk, 1− pk − c; 1− pk − a, 1− pk − b;

1

z

)
, (A.28)

where N , M , A and B are arbitrary complex constants. The first (second) form is more
convenient for small-z (large-z) expansions that are performed according to

pFq (a1, . . . , ap; b1, . . . , bq; y) =
∞∑
n=0

(a1)n . . . (ap)n
(b1)n . . . (bq)n

yn

n!
, (A.29)

where we take either y = z or y = 1/z. The first solution is valid provided c /∈
Z and −pk,−pk + c /∈ N. The second solution is valid provided a − b /∈ Z and pk +
a, pk + b /∈ N ∪ {0}.
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We demand that f(z) is analytic in the fourth quadrant where Re z > 0 and Im z ≤ 0.
It is motivated by the fact that our DEs in the variable z = m2

c/m
2
b could equivalently be

written as DEs in the variable m2
c , i.e. m2

b serves only as a real rescaling factor that makes
our variables dimensionless. The variable m2

c , when extended to the complex plane, must
be treated according to the Feynman “i0” prescription for the propagator, which means
taking “m2

c − i0”. This defines the quadrant in which our function must be analytic.
Once the region of analyticity is specified, the relations between the constants (N,M)

and (A,B) become unique. We find

A = N
Γ(b− a)Γ(c)

Γ(b)Γ(c− a)
e−iπa −M Γ(b− a)Γ(2− c)

Γ(1− a)Γ(1 + b− c)
eiπ(c−a)

+
Γ(b− a)

Γ(1− a)Γ(c− a)

kmax∑
k=1

dk
Γ(−pk − a)Γ(pk + c)Γ(pk + 1)

Γ(pk + b+ 1)
e−iπ(pk+a), (A.30)

B = A(a↔ b), (A.31)

after substituting (−z)κ = e+iπκ|z|κ into the handbook expression for an analytic contin-
uation of the hypergeometric function [195,196]

p+1Fp

(
a1, a2, . . . , ap+1

b1, b2, . . . , bp
; z

)
=

∏p
l=1 Γ(bl)∏p+1
l=1 Γ(al)

p+1∑
m=1

Γ(am)
∏p+1
l=1,l 6=m Γ(al − am)∏p
l=1 Γ(bl − am)

(−z)−am ×

p+1Fp

(
am, 1 + am − b1, 1 + am − b2, . . . , 1 + am − bp

1 + am − a1, . . . , 1̂, . . . , 1 + am − ap+1
;

1

z

)
. (A.32)

In the above equation, 1̂ indicates that (1 + am − am) should not be included among the
arguments.

Eq. (A.32) holds provided none of the differences (al− am) for l 6= m is an integer.
If some of these differences is an integer, some arguments of the Γ functions as well as
the parameters of the hypergeometric functions may contain nonpositive integers, which
may give rise to divergences. To get rid of them (i.e., to regularize our expression) one
can introduce new auxiliary parameters. However, other than hypergeometric special
functions usually enter the calculation when the regulator is released, and the problem
of analytic continuation becomes nontrivial.

Another useful formula for the analytic continuation is

2F1 (a1, a2; b1; z) = (1− z)−a1 2F1

(
a1, b1 − a2; b1;

z

z − 1

)
. (A.33)

From Eq. (A.29), one easily derives identities for derivatives and integrals of the
hypergeometric functions

∂

∂z
pFq ({ai}; {bj}; z) =

∏p
i=1 ai∏q
j=1 bj

pFq ({ai + 1}; {bj + 1}; z)

∫
dz pFq ({ai}; {bj}; z) =

∏q
j=1 (bj − 1)∏p
i=1 (ai − 1)

pFq ({ai − 1}; {bj − 1}; z) ,∫
dz zα−1

pFq ({ai}; {bj}; z) =
zα

α
p+1Fq+1 (α, {ai};α + 1, {bj}; z) . (A.34)

105



In the evaluation of phase-space integrals and in the Feynman parameter method, one
encounters an integral representation of 2F1 function of the form [195]

2F1 (a1, a2; b1; z) =
Γ(b1)

Γ(a2)Γ(b1 − a2)

∫ 1

0

dξ
ξa2−1(1− ξ)b1−a2−1

(1− zξ)a1
, (A.35)

where Re a2 > 0 and Re(b1 − a2) > 0.
Let us also note a recursive integral relation between the hypergeometric functions

pFq (a1, . . . ap; b1, . . . bq; z) =
Γ(bq)

Γ(ap)Γ(bq − ap)

∫ 1

0
dξ ξap−1(1− ξ)bq−ap−1 (A.36)

× p−1Fq−1 (a1, . . . ap−1; b1, . . . bq−1; zξ) .

The MB representation for a hypergeometric function reads

pFq (a1, . . . , ap; b1, . . . , bp; z) =
1

2πi

∫ α+i∞

α−i∞
dξ (−z)−ξ Γ(ξ)

[
p∏
i=1

Γ(ai − ξ)
Γ(ai)

][
q∏
i=1

Γ(bi)

Γ(bi − ξ)

]
.

(A.37)

Appendix B: The φij functions

In this Appendix, we list explicit expressions for the φij functions that have appeared in
Eqs. (2.69) and (2.70).

When z < (1− δ)/4 (which is the phenomenologically relevant region), we have [64]

φ
(1)
27 (z, δ) = − 2

27
δ(3− 3δ + δ2) +

4

3
zδsδLδ +

12− 8π2

9
z2δ +

4

3
z(1− 2z)(s0L0 − sδLδ)

+
2π2 − 7

9
zδ(2− δ)− 8

9
z(6z2 − 4z + 1)(L2

0 − L2
δ)−

8

9
zδ(2− δ − 4z)L2

δ , (B.1)

with sδ =
√

(1− δ)(1− δ − 4z), s0 =
√

1− 4z, Lδ = ln
√

1−δ+
√

1−δ−4z
2
√
z

and L0 = ln1+
√

1−4z
2
√
z

.
The other relevant φij functions describe the NLO three-body contributions that are

independent of z. They read

φ
(1)
77 (δ) = −2

3
ln2δ − 7

3
lnδ − 31

9
+

10

3
δ +

1

3
δ2 − 2

9
δ3 +

1

3
δ(δ − 4)lnδ, (B.2)

φ
(1)
78 (δ) =

8

9

[
Li2(1− δ)− 1

6
π2 − δlnδ +

9

4
δ − 1

4
δ2 +

1

12
δ3
]
, (B.3)

and

φ
(1)
47 (δ) = φ

(1)A
47 (δ) + φ

(1)B
47 (δ), (B.4)

where

φ
(1)A
47 (δ) =

1

54
π
(

3
√

3− π
)

+
1

81
δ3 − 25

108
δ2 +

5

54
δ +

2

9

(
δ2 + 2δ + 3

)
arctan2

√
1− δ
3 + δ

− 1

3

(
δ2 + 4δ + 3

)√1− δ
3 + δ

arctan

√
1− δ
3 + δ

, (B.5)

φ
(1)B
47 (δ) =

34δ2 + 59δ − 18

486

δ2lnδ

1− δ
+

433δ3 + 429δ2 − 720

2916
. (B.6)
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