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Abstract
Although many theories locate hypothetical phenomena beyond the Standard Model at energy

scales far above the current experimental reach, tiny deviations from the Standard Model prediction
are expected to show in the tails of data collected with the Compact Muon Solenoid experiment at
the Large Hadron Collider at CERN. These deviations can be described through the insertion of
effective operators of mass dimension higher than four, treating the Standard Model as a low-energy
approximation of the hypothetical high energy theory.

In this thesis, we adopt novel machine learning techniques based on simulation (simulation-based
inference) to teach the machine the optimal test statistic according to the Neyman-Pearson lemma
for four-fermion operator insertions in four-top production and production of two top and two
bottom quarks. The centerpiece of this approach consists in exploiting the polynomial structure of
the effective field theory prediction as a function of the coefficients of the operators, i.e., the Wilson
coefficients. Hence, learning only a small number of coefficient functions allows to parametrize
an optimal classifier in the full parameter space. With the learned coefficient functions at hand,
we then set nuisance-free limits in an unbinned likelihood ratio test up to quadratic order in the
polynomial expansion. In this way, we investigate the neural network’s performance in learning the
yield- and shape-related modifications, thus probing new forces between four heavy quarks.

On the machine learning side, we combine Deep Neural Networks with Long Short Time Memory
layers to extract information not only from scaler observables, but also from the variable length
jet system in analogy to speech recognition. By also probing this Multivariate Analysis setup in
the simpler, more robust setting of multi-classification, we test, optimize and cross-validate the
configuration of the network.

In instantiating a complete workflow of sample generation, training with simulation-based in-
ference, and the limit setting procedure, we obtain projected limits on the Wilson coefficients of
four-fermion operators in tt̄tt̄ and tt̄bb̄ with and without tt̄ background. Thus, we demonstrate the
potential of these novel neural network architectures and machine learning techniques for future
analyses.
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Chapter 1

Introduction

In 2012, the discovery of the Higgs Boson at the Large Hadron Collider (LHC) [1] at CERN
marked a climax in the fulminant triumph of the Standard Model of Particle Physics (SM) [2, 3].
However, phenomena like dark matter or the baryon asymmetry, not to mention the fundamental
force of gravity, are not part of the SM explanation, just to name a few. Hence, the search for
a physics beyond the Standard Model (BSM) has long begun, both on the experimental and the
theoretical side.

As no traces of BSM physics are being found at the currently accessible energy scale of LHC,
many BSM theories locate the new physics at energy scales Λ, considerably higher than the current
LHC reach. Without investigating any specific of these vividly discussed approaches, the Stan-
dard Model Effective Field Theory (SMEFT) [4–9] provides a framework for parametrizing and
re-evaluating LHC data on the look-out for tiny BSM signatures. In treating the SM as an effec-
tive limit of the BSM theory at low energy scale, SMEFT predicts tiny deviations in the observed
quantities’ tails due to BSM physics at Λ. At the heart of this framework are so-called effective
field operators that modify the cross sections for SM processes while keeping the SM symmetries
and its particle content intact [6].

In this thesis, we exploit the simple polynomial structure that the SMEFT predicts for BSM
cross sections in the LHC energy range with a new, powerful Machine Learning approach. On
the side of the technical implementation, we use a novel combination of Deep Neural Networks
(DNNs) [10] and pair them with Long Short Term Memory (LSTM) [11–14] layers to optimally
extract the BSM nuisances from scalar event-level observables and the jet system. On the side of
the machine learning algorithm, we adapt the findings of Ref. [15–29] on simulation-based inference
techniques to make the machine learn the optimal test statistic – an intractable quantity – from
a tractable target. With four top quark production and production of two top and two bottom
quarks as our physics cases, we then investigate all effective field operators that affect interactions
between heavy quarks [9, 30, 31].

In chapter 2, we start by describing the LHC at CERN with a particular focus upon the technical
details of the Compact Muon Solenoid (CMS) - the detector at the center of our analysis [32].
Subsequently, in chapter 3, we introduce our physics cases in the SMEFT notation and characterize
the relevant four-fermion operators. In chapter 4, we derive the loss function in simulation-based
inference to teach the optimal test statistic to the machine, whereas in chapter 5 we describe the
technical details of our network. The optimization of the hyperparameters is subject of chapter 6,
together with the sample generation. Additional to simulation-based inference, we will also perform
multi-classification in tt̄tt̄ signal and tt̄ background with our network configuration, to probe the
implementation in a more sturdy setting and use it as a proxy. In the final chapter 7, we will evaluate
the network’s performance and compute the log likelihood ratio for single operator insertion.
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Chapter 2

CERN, LHC and CMS

2.1 CERN - The European Council for Nuclear Research
In 1954, the European Council for Nuclear Research (Conseil européen pour la recherche nu-

cléaire, CERN) was founded with the aim of performing world-class research in particle physics.
Located at the Franco-Swiss border near Geneva, it provides scientists from all over the world with
the tools to push the boarders of science and technology for the benefit of all [33]. Since then,
the numerous collaborations at CERN reported a number of significant discoveries in the physics
of fundamental particles – from which the discovery of the Higgs Boson in 2012 at Large Hadron
Collider (LHC) [1] might well be the most prominent [2, 3]. Other milestones include, e.g., the
discoveries of the W and Z bosons [34, 35] and CP-violation in the decays of neutral kaons [36].
Additionally, as experiments of this scale require an efficient and automated tool for sharing infor-
mation with collaborators all around the world, the invention of the World Wide Web marks yet
another groundbreaking developement at CERN [37].

Over the years, new accelerators have constantly been added to the accelerator complex at
CERN up to the current status shown in Fig. 2.1, increasing the energy of the particle beams to
a maximum of 6.5TeV each [38]. Starting from the least energetic, the chain of subsequent energy
boosts begins with the linear accelerator 4 (Linac4) that accelerates negatively charged hydrogen
ions to 160MeV. During injection into the subsequent machine, the Proton Synchrotron Booster
(PSB), two electrons are stripped from the hydrogen ions, leaving behind only the protons. After
reaching 2GeV in the PSB, the proton beam is boosted to 26GeV in the Proton Synchrotron (PS).
Finally, the Super Proton Synchrotron reaches 450GeV, leaving the proton beams ready to be
injected in heart of CERN’s accelerator chain, the LHC [1, 38]. There, protons reach 6.5TeV each,
as they are injected in two pipes and accelerated in opposite directions. Lastly, the two beams are
brought to collision at a center of mass energy of 13GeV, making the LHC the world’s largest and
most powerful particle accelerator [39].

Other facilities at CERN comprise, e.g., the Low Energy Ion Ring (LEIR), where the first
creation of antihydrogen succeeded in 1996 [40], the time-of-flight detector for neutrons (n_TOF)
and various other accelerators and decelerators.

2.2 LHC - The Large Hadron Collider
The heart of CERN’s accelerator complex is the Large Hadron Collider, a ring of superconducting

magnets and accelerating segments in a tunnel of 27 kilometer length. In ultra-high vacuum at
temperatures around 1.9K, protons travel in two separate beams in opposite directions to reach
6.5TeV each, before they are directed into collisions in the experiments of the LHC [41].

2



2.2. LHC - The Large Hadron Collider

Figure 2.1: The accelerator complex at CERN. The chain of LINAC4, PSB, PS, SPS and
finally LHC boosts protons to collision energies of 13 TeV. Image taken from Ref. [38].

The five main goals of the LHC are [41]:

1. Confirming the origin of mass as explained by Robert Brout, Francois Englert
and Peter Higgs in 1964. When CERN announced the discovery of the Higgs boson in
July 2012 [2, 3], this goal was partly achieved, whereas the detailled investigation of the
Higgs is still ongoing. An example of current efforts is found in Ref. [42].

2. Searching for a unified description of all four fundamental forces including
gravity. In this context, the theory of Supersymmetry (SUSY) is at the center of at-
tention, as well as other theories that go beyond the Standard Model (SM) explanations.
An overview over recent SUSY efforts in CMS and ATLAS is given in Ref. [43], whereas
Ref. [44] contains the LHC Working Group Report on Effective Field Theories (EFT).

3. Searching particles or phenomena responsible for dark matter and dark energy.
These searches are closely interconnected with the previously mentioned goals, as theories
BSM are investigated. For example, recent investigations are described in the Dark Matter
LHC Working Group Report [45].

4. Investigating the questions related to matter and antimatter, e.g., the proton
anti-proton production reported by LHCb in 2017 [46, 47]. The detector is described in
more detail below.

5. Studying the physics of heavy-ion collisions. The physics of strongly interacting
matter at very high energy densities, the so-called quark-gluon plasma, is at the core of
investigations at ALICE, one of the four main experiments at the LHC [48].
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2.3. CMS - The Compact Muon Solenoid

In addition to several fixed-target and antimatter experiments as well as other experimental
setups that use the LHC injector chain, nine experiments are located directly at the LHC. Among
these, the four main experiments are:

ATLAS (A Toroidal LHC Apparatus) is the largest general-purpose detector at LHC, designed
to cover a broad range of physical questions. A collaboration of more than 5500 scientists
from 245 institutes in 42 countries (March 2022) investigates topics reaching from the
discovery and subsequent study of the Higgs boson [2] to the search for extra dimensions,
BSM physics and hints for dark matter. With its length of 46m, height of 25m and width
of 25m, the 7000 tons of ATLAS are the largest volume of all particle detectors ever
constructed [49–51].

CMS The Compact Muon Solenoid is the second general-purpose detector at the LHC. As the
name suggests, a key task of the detector system is the reconstruction of muon tracks.
With a height of 15m and a length of only 21m, it is rather compact compared to e.g.,
ATLAS. The core of CMS consists of the largest solenoid magnet ever made, generating
a field of 3.8T. Although the research questions of CMS and ATLAS are similar (SM
and Higgs, search for BSM-physics, extra dimensions and dark matter), the technology
used is different, allowing results to be cross-validated among the two collaborations.
In May 2022, 5500 particle physicists, engineers, technicians, students and support staff
from 241 institutes in 54 countries were contributing to the experiment [32, 52, 53].

ALICE (A Large Ion Collider Experiment) is one of the two smaller experiments at LHC, fo-
cussing on the specific field of strongly interacting matter at extreme energy densities.
The detector is 26m long, 16m high and 16m wide and specifically designed to study the
so-called phase of quark-gluon plasma. In April 2022, almost 2000 scientists from 174 in-
stitutes in 40 countries were involved in the ALICE experiment [48, 54, 55].

LHCb The Large Hadron Collider beauty tackles another specific physical question: the inves-
tigation of the b-quark. The goal hereby is to investigate the tiny differences between
matter and antimatter. Contrarily to the other detectors, the LHCb is not built around
the collision point of the two beams, but consists of a row of subsequent components
with an overall length of 21m. In this configuration, it mainly detects decay products of
the collision that travel in forward direction. 1565 scientists, engineers and technicians
from 20 countries were part of the LHCb collaboration in March 2022 [46, 56, 57].

The location of the four largest experiments is schematically shown in Fig. 2.2.

To cover all five goals of LHC mentioned above, there are five smaller experiments at LHC.
These experiments are listed below with references for detailled explanation:

• TOTEM (Total, elastic and diffractive cross-section measurement) [58, 59],

• LHCf (Large Hadron Collider forward) [60, 61],

• MoEDAL (Monopole and Exotics Detector at the LHC) and its upgrade MAPP (MoEDAL
Apparatus for Penetrating Particles) [62, 63], as well as the two newest facilities

• FASER (Forward Search Experiment) [64, 65], and

• SND@LHC (Scattering and Neutrino Detector at the LHC) [66, 67].
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2.3. CMS - The Compact Muon Solenoid

Figure 2.2: Sketch of LHC with the crossing points at IP1 (ATLAS), IP2 (ALICE), IP5 (CMS)
and IP8 (LHCb). The beams switch position between inside and outside to assure equal length
of the paths. Image taken from Ref. [68].

2.3 CMS - The Compact Muon Solenoid

Figure 2.3: CMS-detector opened for
maintenance in December 2022.

This subsection is intended as a brief overview on the
CMS detector and experiment. Further details regarding
the detector’s configuration and its components can be
found in Ref. [32, 69–71].

Located at Point 5 – IP5 in Fig. 2.2 –, the Compact
Muon Solenoid (CMS) detector is used as one of the two
multi-purpose detectors at the LHC. Unlike other detec-
tors, CMS was not build in-situ, but constructed in fifteen
single “slices” that were then lowered into the cavern [32].
This allows the detector to be opened for maintenance
and updates, for example during the winter shot-down in
December 2022, shown in Fig. 2.3.
The experiment was built and designed to study proton-
proton and lead-lead collisions at a centre-of-mass energy
of up to 14TeV and luminosities up to 1034 cm−2 s−1. In
particle physics, the luminosity L is given by

Lσ =
dN

dt
(2.1)

and describes the number of recorded events in a certain
time period given the cross section σ of the process.
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2.3. CMS - The Compact Muon Solenoid

Figure 2.4: Sketch of the CMS detector. The superconducting solenoid contains three sub-
detector systems: tracker, ECAL and HCAL. Outside the solenoid, the muon system is installed.
Image taken from Ref. [72].

2.3.1 CMS detection systems
To fulfil the various needs of different analyses, a multitude of sub-systems is located in concen-

tric cylinders around the collision point. The strongest magnet ever installed, a superconducting
solenoid, bends tracks of charged particles coming from the proton-proton collisions by producing
a field of 3.8T. As the path of charged particles changes its curvature in the magnetic field B
due to the Lorentz force F = q · (v × B), measuring the particle’s momentum is possible. For
superconductivity to be stable, the helium-cooled coil of 6m diameter and 12.5m length with a
stored energy of 2.6GJ is operated at 4.5K [32].

In order to detect the particles, trace back the path to possible secondary vertices and determine
their momentum, three detector subsystems are hosted inside the compact solenoid:

Inner tracking system: A system of silicon pixels and silicon microstrips is used to reconstruct
the tracks of charged particles. To gather accurate spatial information on primary and
displaced vertices, the most sensitive tracking layers allow resolution up to 23 µm for
single points, with the resolution decreasing to 100 µm for lower momenta. For muons,
the resolution of the momentum is within some percentages. The 200m2 of active silicon
area make the CMS tracker the largest silicon tracker ever build [32, 73].

Electromagnetic Calorimenter (ECAL): In this detector component, more than 65000 nio-
bium doped lead tungstate (PbWO4) crystals are used as scintillators to detect electrons
and photons while measuring their energy. As scintillators emit light when electrons and
photons pass through, an electrical current is generated in avalanche photodiodes and
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2.3. CMS - The Compact Muon Solenoid

Figure 2.5: Slice of the CMS experiment in the barrel region with some exemplar particles
and their path until detection. Image taken from Ref. [72].

vacuum phototriodes and passed on to the electronic system for readout. With the main
challenges being stochastic effects, noise and non-uniformities, intercalibration errors and
energy leakage, the energy resolution for, e.g., an electron of 120 GeV is 0.4% [32, 74].

Hadronic Calorimeter (HCAL) As the name suggests, the Hadronic Calorimeter is specially
designed to detect strongly interacting particles, e.g., hadronic jets. Furthermore, also
neutrinos or exotic particles can be indirectly detected via their missing transverse en-
ergy [69]. The calorimeter’s multiple layers of brass absorbers and plastic scintillators
lead to high rates of interaction with subsequent electronic readout of the particle shower
information. Again, the information is then transferred to the electronic readout by means
of quartz fibers [32, 75].

On the outside of the solenoid, the fourth detector system is installed. The Muon System is
a distinct feature of the CMS detector as the latter has been specifically designed to detect muons
over the full kinematic range of the LHC [32, 69]. In fact, due to muon having a significantly
higher mass than electrons, they penetrate matter much deeper, leaving only tiny signals in the
calorimeters. Hence, fairly all other particles of interest are already stopped before leaving the
solenoid.

Due to the large area that needs to be covered for efficient muon detection, different technologies
are used to fulfill the systems’s key tasks of muon identification, momentum measurement, and
triggering [32, 76]:

• Drift Tubes (DTs) are used in the so-called “barrel region”, i.e., the “cylindrical” walls
of CMS. When a muon passes the DT, the gas inside is ionized, with a subsequent electric
impulse being created at a charged wire in the DT’s center.

• Cathode Strip Chambers (CSCs) meet the demands of the endcap regions, i.e., the
front and back end of the CMS detector, as the magnetic field is no longer uniform. The
advantages of CSCs are their fast response time paired with fine segmentation, as well as
resistance to radiation in the regions of elevated muon flux.

7



2.3. CMS - The Compact Muon Solenoid

• Finally, Resistive Plate Chambers (RPCs) are used to complement DTs and CSCs in
both barrel and endcap regions. They consist of double-gap chambers and are operated in
avalanche mode. Hence, RPCs’ extremely fast response time allows quick readout, making
them an efficient trigger for determining the exact bunch crossing that at LHC take place
every 25 ns. However, their positional resolution is inferior to DTs and CSCs [32, 76, 77].

2.3.2 Trigger and Data Acquisition at CMS
As interaction rates in proton-proton collisions are high at LHC, the interval between two

subsequent beam crossings is only 25 ns long (an equivalent of 40MHz). At the nominal design
luminosity of 1034 cm−2 s−1, approximately 20 proton-proton collisions take place within one bunch
crossing. This entails the need for an efficient reduction of the recorded events, as such amounts of
data would be impossible to process and store [32].

To accomplish this task, CMS has a two staged trigger systems. First, Level-1 Trigger (L1)
of custom-designed, programmable electronics reduces the output rate from 40MHz to a maximum
of 100 kHz by using coarsely segmented data from the calorimeters and the muon system. The
high-resolution data is held back in pipelined memories in the front-end electronics [32]. In this
process, the L1 trigger has only a very short latent time of 3.2 µs. Then, the software-implemented
High-Level Trigger (HLT) is hosted in a computer farm of around 1000 processing units and has
access to the full data [32].

Based on this two-level trigger system, the CMS Data Acquisition (DAQ) system can cope
with maximum input rates of 100 kHz from the L1 trigger which result in approximately 100GB/s.
Additionally, it hosts enough computational power for the HLT’s software filter system [32, 78, 79].
The sketch of the triggers and the complete DAQ system of CMS are shown in Fig. 2.6.

Figure 2.6: Left: Sketch of Level-1 trigger and High Level Trigger at CMS. Right: Complex
of trigger and DAQ with respective working point frequencies. Images taken from Ref. [79].
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Chapter 3

The Standard Model and Standard
Model Effective Field Theory

3.1 The Standard Model and beyond
In the relatively short time span since its development, the SM of Particle Physics has proven

to be the most precise theory of particles and their respective forces that we have. With its precise
theoretical predictions at hand, subsequent discovery of a considerable number of new particles and
processes in accelerator facilities was just a matter of time. Finally, in 2012, the discovery of the
Higgs Boson at LHC marked the climax in a long series of spectacular discoveries [2, 3].

This incredible success can and will, however, not be the end of the line. In fact, significant
problems in particle physics are still up to be solved even with the SM at hand. This is because
there are already significant hints for BSM physics, i.e., for phenomena that outrun the explanation
and theoretical description provided by the SM. Among these are for example the existence of
dark matter (see e.g., Ref. [80, 81]), the excess of matter over antimatter – the so-called baryon
asymmetry (e.g., Ref. [82]) – or the lightness of the electroweak scale (e.g., Ref. [83]).

In more general terms, the phrase “BSM physics” is used in three slightly different ways [84]:
1. “BSM physics” refers to phenomena with existing experimental evidence, that are how-

ever not accomodated by the SM explanation. Examples are dark matter and neutrino
oscillations, as well as all phenomena concerning gravity. In fact, gravity – one of the four
fundamental forces – is not part of the SM explanation.

2. “BSM physics” can be used for phenomena that can be accomodated by the SM, but
only when some sort of ad hoc parametrization is introduced. Examples are the Yukawa
coupling and the strong CP angle.

3. In a third sense, “BSM physics” can be used to generally refer to any extension of the SM
that might or might not solve any of the puzzles mentioned above.

With this broad field of BSM physics at hand, it is no wonder that many novel theoretical
descriptions, models and frameworks are currently discussed. Among these are, e.g., supersymmetry
(SUSY) [85], composite models [86], two-Higgs doublet models [87] and models with extra spatial
dimensions [88], just to mention a few. Additionally, current experimental conditions limit the
accessible parameter space for probing new theories, which constrains the number of BSM models
competing in explaining the same result [89]. Nevertheless, a broad variety of BSM models remains,
and the search for the “new” physics – both experimentally and in terms of theoretical framework –
has long begun. However, no evidence for BSM physics has been reported in terms of new particles
or processes so far.
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3.2. Standard Model Effective Field Theory

3.2 Standard Model Effective Field Theory
Contrarily to what has just been said, Standard Model Effective Field Theory (SMEFT) [4–9]

does not directly probe any specific scenario of the BSM models mentioned before. Instead, the aim
of the SMEFT approach is to re-evaluate LHC data for tiny signatures and indirect effects of BSM
physics. In fact, the working hypothesis of SMEFT is that the BSM energy scale is much higher
than the reach of the LHC. Hence, the discovery of BSM particles or processes is not to be expected
within the LHC energy of 13TeV. Nevertheless, the spectra of kinematic observables recorded in
LHC collisions may still display subtle traces of the high-energy BSM phenomenon [4–9].

The SMEFT – the leading model in first and ongoing attempts to re-interpret collider results such
as, e.g., Ref. [90] – parameterizes these subtle traces and deviations by keeping the SM symmetries
and particle content intact. The SM, on the other hand, is treated merely as an effective theory
with a range of applicability up to a certain energy scale Λ. The field theory with validity above Λ
must then satisfy the following requirements [9]

1. The gauge group of SU(3)C × SU(2)L × U(1)Y of the SM must be part of the theory.

2. All SM degrees of freedom must be incorporated as fundamental or composite fields.

3. At energies below Λ, the field theory must reduce to the SM.

3.2.1 The SMEFT Lagrangian at mass dimension 6
Especially in fullfilling requirement 3, most approaches have used the decoupling of heavy par-

ticles with masses of order Λ or above to reduce to the SM at energies < Λ. This leads to an
extension of the SM Lagrangian at mass dimension 4 by operators of higher dimensions that are
suppressed by powers of Λ [9]. The SMEFT Lagrangian therefore reads (up to mass dimension 6):

LSM = L(4)
SM +

1

Λ

∑
k

C
(5)
k O(5)

k +
1

Λ2

∑
k

C
(6)
k O(6)

k +O

(
1

Λ3

)
(3.1)

Here, O(i)
k are operators and C

(i)
k are the so-called Wilson Coefficients, i.e., dimensionless coupling

constants at dimension i. The number of operators can be very large – at mass dimension dimension
6, e.g., there are as many as 59 [9]. Naturally, not all operators affect all processes. Hence, we now
look at our physics case first, before coming back to the relevant operators.

3.3 The physics cases: tt̄tt̄ and tt̄bb̄
In this thesis, we pay particular attention to the two physics cases of four-top production and

the simultaneous production of two top and two bottom quarks. In the SM, these processes can be
characterized as follows:

Four-top production The SM predicts the rare production of four top quarks (tt̄tt̄) with a small
cross section of 12.0+2.2−2.5 fb at next leading perturbative order (NLO) in quantum chromody-
namics (QCD) with electroweak corrections [93]. Recently, discovery has been reported by
CMS and ATLAS [91, 94]. Previous efforts that ultimately led to the discovery can be found
in Ref. [95–100]. After their, e.g., gluon induced production or production through a Higgs
boson, top quarks predominantly decay to a bottom quark and a W boson. Then, the W
boson decays either to leptons or to quarks, leading to a large number of different final states
[100]. Hence, the tt̄tt̄ process is characterized by tiny rates, but distinctive signatures in a
wealthy and energetic final state.
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3.4. Multi-classification in tt̄tt̄ and backgrounds
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Figure 3.1: Production of tt̄tt̄ through (a) gluon induced strong interaction, (b) the exchange of
a Z boson or (c) a Higgs boson. Production of tt̄bb̄ through (d) gluon induced strong interaction,
(e) the exchange of a Z boson or (f) a Higgs boson. Figure partially taken from [91] and [92]
with personal adaptions.

Production of 2 top and 2 bottom quarks Since Run 1, the production of two top and two
bottom quarks tt̄bb̄ has been studied mostly for “generator tuning”, as the extra bb is challeng-
ing to model and systematically limited. An overview over these efforts is given in Ref. [101].
In the last years, CMS and ATLAS measured various cross sections for different Nℓ and Nb-jets
in the hadronic/1ℓ/2ℓ and 1ℓ+ eµ selection, respectively. These efforts are found in Ref. [92,
102–104].

Feynman diagrams of tt̄tt̄ and tt̄bb̄ for gluon induced production, production through a Z boson
or through the Higgs are shown in Fig. 3.1.

3.4 Multi-classification in tt̄tt̄ and backgrounds

Figure 3.2: Branching ratios for tt̄tt̄ de-
cays into leptonic final states. Figure taken
from Ref. [98].

As stated in the introduction, we will use our MVA
architecture (to be described in detail in the following
chapters) not only for simulation-based inference, but
also for multi-classification in the tt̄tt̄ signal plus tt̄bb̄,
tt̄cc̄, tt̄+light jets backgrounds setting. This is mainly
because machine learning algorithms in this respect are
well-known and provide assured results. Hence, we
can use this classification task as a proxy for our net-
work’s configuration while relying only on sturdy ma-
chine learning algorithms, especially a simple loss func-
tion. Therefore, we only briefly describe the physical
background of multi-classification for the sake of com-
pleteness before moving on to the SMEFT effects and
the BSM physics – the key interest of this thesis.
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3.5. SMEFT in tt̄tt̄ / tt̄bb̄

In this work, a investigate specific final state of the tt̄tt̄ decay: The two lepton opposite sign
final state (2ℓOS). The branching ratio for 2ℓOS is 19%, as shown in Fig. 3.2. In this channel, large
production rates of tt̄ with a pair of heavy-flavour jets (tt̄bb, tt̄cc) require an efficient signal-to-
background separation for an adequate sensitivity for the tt̄tt̄ discrimination. Other backgrounds
such as tt̄Z and tt̄H will not be considered in this thesis, as we are not interested in the classification
itself, but more in its behaviour in the machine learning context. In this respect, the high jet
multiplicities of up to ten jets in the 2ℓOS channel make it a perfect set up to test LSTMs, that we
will introduce in chapter 5.

3.5 SMEFT in tt̄tt̄ / tt̄bb̄
Coming back to the SMEFT, it follows naturally from our physics cases that the main interest

of this thesis concerns new BSM forces among top quarks (tt̄tt̄) and, in a more general sense, heavy
quarks (tt̄bb̄). In fact, EFT effects are almost complementary in tt̄tt̄ and tt̄bb̄, as shown in the
Feynman diagrams of the effective interaction in Fig. 3.3, (b) and (d), based on Ref. [30] and [31].

(c) (d)

(a) (b)
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g

t
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b

t

t
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t

t

g

g

g

g
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t
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Figure 3.3: For tt̄tt̄ production, the SM interaction in (a) is replaced by an effective interaction
in (b) in SMEFT. An equivalent Feynman diagram of the effective interaction can be drawn for
tt̄bb̄ (d). The blue circle represents the insertion of one dimension-six operator which corresponds
to a short-distance interaction between four heavy quarks at an energy scale Λ. The production
for both tt̄tt̄ and tt̄bb̄ here is gluon induced.
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3.5. SMEFT in tt̄tt̄ / tt̄bb̄

As operators at mass dimension five only generate couplings that violate the baryon or lepton
number, the first expansion of the SM-Lagrangian in terms of SMEFT at mass dimension 6 is [31]

LSM = L(4)
SM +

1

Λ2

∑
k

C
(6)
k O(6)

k +O

(
1

Λ3

)
. (3.2)

Following Ref. [31], we impose a U(2)q × U(2)u × U(2)d flavor symmetry in the light quark sector.
Now, we consider all four-fermion operators that describe short-distance interactions between third
generation quarks at the energy scale Λ. The operators are mainly taken from Ref. [31], with addi-
tional tt̄tt̄-specific operators from previous SMEFT studies on this process in Ref. [90, 105–107] and
especially Ref. [30]. Since we train Re(O) and Im(O) for some operators, these are listed separately
in the table. Additionally, we indicate with a tick if the operator affects tt̄tt̄, tt̄bb̄ or both.

No. Operator tt̄tt̄ tt̄bb̄
1 O1

QQ = 1
2 (Q̄ γµ Q) (Q̄ γµ Q),

2 O8
QQ = 1

2 (Q̄ γµ TA Q) (Q̄ γµ TA Q),

3 O1
tb = (t̄ γµ t) (b̄ γµ b),

4 O8
tb = (t̄ γµ TA t) (b̄ γµ TA b),

5 O1
tt = (t̄ γµ t) (t̄ γµ t),

6 O1
bb = (b̄ γµ b) (b̄ γµ b),

7 O1
Qb = (Q̄ γµ Q) (b̄ γµ b),

8 O8
Qb = (Q̄ γµ TA Q) (b̄ γµ TA b),

9 O1
Qt = (Q̄ γµ Q) (t̄ γµ t),

10 O8
Qt = (Q̄ γµ TA Q) (t̄ γµ TA t),

11 Re(O1
QtQb) = Re((Q̄ t) ϵ (Q̄ b)),

12 Im(O1
QtQb) = Im((Q̄ t) ϵ (Q̄ b)),

13 Re(O8
QtQb) = Re((Q̄ TA t) ϵ (Q̄ TA b)),

14 Im(O8
QtQb) = Im((Q̄ TA t) ϵ (Q̄ TA b)),

15 Re(OtH) = Re((H†H) (Q̄ H̃ t))

16 Im(OtH) = Im((H†H) (Q̄ H̃ t))

Table 3.1: Collection of all EFT-operators in tt̄tt̄ and tt̄bb̄ probed in this thesis.

In the table above, Q denotes the left-handed SU(2) doublet of top and bottom quarks, t/b repre-
sents the right-handed top/bottom quark. TA is the generator of SU(3) and denotes the totally
antisymmetric Levi-Civitas tensor in SU(2) space [31]. We note that the operators O1

Qt,O8
Qt,O1

QQ

and O8
QQ affect both tt̄tt̄ and tt̄bb̄.

When it comes to how the individual operators affect the cross section, this effect can be ex-
pressed by means of the corresponding Wilson coefficients Ci. Again following Ref. [31], we absorb
the factor 1/Λ2 into Ci, and write the SMEFT cross section as

σtt̄bb̄(tt̄tt̄) = σSM
tt̄bb̄(tt̄tt̄)

((1 +
∑
i

pi1Ci +
∑
j

∑
i≤j

pij2 CiCj .

)) (3.3)

The coefficients of the fit to the cross section from the theory paper Ref. [31] can be found in
Fig. 3.4. There, the EFT operators have been turned on one after the other:

σOi
= σSM (

1 + p1Ci + p2C
2
i

)
. (3.4)
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3.5. SMEFT in tt̄tt̄ / tt̄bb̄

Figure 3.4: Coefficients of the fit to the cross section σ = σSM(1 + p1Ci + p2C
2
i ) for the EFT

operators affecting tt̄bb̄ turned on one by one. Figure taken from Ref. [31].

Figure 3.5: Interference strength of the EFT operators affecting tt̄tt̄. The top row shows the
effect in the total inclusive prediction with all contributions from QCD and electro-weak force.
The subsequent rows show the effects at different powers of αs. Figure taken from Ref. [30].
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Chapter 4

Learning the SMEFT with
Simulation-based Inference

4.1 Simulation based inference
4.1.1 The optimal test statistic

With what has been discussed on SM and BSM physics so far, it is clear that the target of our
analysis is to decide between two hypotheses θ and θ0 – the first being a BSM model, the latter the
SM. From a statistical viewpoint, this can be done by computing the test statistic. At the heart
of simulation-based (or likelihood-free) inference is the Neyman-Pearson lemma, that gives us the
optimal test statistic for discriminating between two hypotheses θ and θ0 [108, 109]. It states that
the negative log-likelihood ratio

qθ(D) = −log
L(D|θ)
L(D|θ0) (4.1)

is the most powerful test statistic available. Here, D denotes a data set of N events, each with a
feature vector xi,

D = {xi}Ni=1. (4.2)

The likelihood function L(D|θ) therefore gives the probability to observe D under the hypothesis
indicated by θ.

With the Neyman-Pearson lemma as a starting point, many efforts have been made to teach
the BSM effects to the machine. Among these are, e.g., Ref. [15–29]. The following derivations use
the just mentioned references. Especially, our general nomenclature and the limit setting procedure
follow Ref. [24], while the derivation of the loss function is explicitly based on Ref. [15, 22, 27–29].

In our context of particle physics, it is possible to write the likelihood function as a product of
the Poisson contribution

PLσ(θ)(N) = p(N |θ) ∼ N, (4.3)

i.e., the observation of N events, and a second contribution of the normalized probability density
function, that event-wise reads [110]

p(x|θ) = 1

σ(θ)

dσθ(x)

dx
. (4.4)

In the two equations above, σ(θ) is the inclusive cross section and dσθ(x)/dx is the detector-level
differential cross section. L denotes the integrated luminosity. Hence, we can write the likelihood

15



4.1. Simulation based inference

function L(D|θ) as

L(D|θ) = PLσ(θ)(N)×
N∏
i=1

p(xi|θ) = e−Lσ(θ)

N !
×

N∏
i=1

Lσ(θ)p(xi|θ) (4.5)

We then inject this expression for the likelihood function in equation Eq. 4.1

qθ(D) = −log

(
e−Lσ(θ) ×∏N

i=1 Lσ(θ)p(xi|θ)
e−Lσ(θ0) ×∏N

i=1 Lσ(θ0)p(xi|θ)

)

= L(σ(θ)− σ(θ0))−
N∑
i=1

log R(xi|θ,θ0)
(4.6)

with
R(x|θ,θ0) = dσθ(x)/dx

dσθ0(x)/dx
=

σ(θ)p(x|θ)
σ(θ0)p(x|θ0) , (4.7)

i.e., the differential cross section ration for the two hypotheses θ and θ0.

As the first term in Eq. 4.6 – L(σ(θ) − σ(θ0)) – is independent from the feature vector x, it
can be retrieved from simulation or analytical calculation. What is therefore left to compute is the
(negative logarithm) of the differential cross section ratio based on the feature vector x. As the
inclusive cross section is a known value for both SM and BSM processes, R(x|θ,θ0) is equivalent
to the detector level likelihood ratio multiplied by a known factor

R(x|θ,θ0) ∝ p(x|θ)
p(x|θ0) = r(x|θ,θ0). (4.8)

Consequently, we only need to know the detector level likelihood ratio to have the most powerful
test statistic at hand.

4.1.2 Learning EFT effects from simulation
With the SM-EFT extension of the SM Lagrangian LSM at hand [9, 31],

LSM = L(4)
SM +

1

Λ2

∑
k

C
(6)
k O(6)

k +O

(
1

Λ3

)
, (4.9)

we know that the insertion of a single EFT operator Ok influences the differential cross section at
parton level, which we write by adopting the nomenclature from Ref. [24] as

dσ(θ) ∝ |MSM(z) + θkMk
BSM(z)|2dz (4.10)

where θ denotes the respective insertion of the Wilson Coefficient. Hence, we see from Eq. 4.10
that the two leading EFT contributions enter in the form of a second order polynomial, with the
leading BSM effect being the interference term between SM and BSM amplitudes,

2θkRe(M∗
SM(z)Mk

BSM(z)), (4.11)

and the quadratic term containing the BSM effects only,

θ2k|Mk
BSM(z)|. (4.12)
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4.1. Simulation based inference

The polynomial dependence of both σ(θ) and dσ(θ)/dz also enters in the parton level likelihood,
that in analogy to Eq. 4.4 reads

p(zi|θ) = 1

σ(θ)

dσθ(zi)

dz
. (4.13)

When we then simulate at parton-level in perturbation theory, what we get is a sample of events
with parton-level configurations zi distributed according to p(zi|θref), where θref might or might
not be the SM point in the θ-space.

Given the polynomical structure of σ(θ) and dσ(θ)/dz, once the θ-independent terms MSM(z)
and Mk

BSM(z) are known for a specific set of zi, we know the dσ(θ) for all θ. In fact, the polynomial
structure allows to infer the information on the full θ-dependence of every z when a sufficient number
of linearly independent θ values is at hand. With this procedure, we can obtain analytic expressions
for wi(θ), i.e., the per-event weight function describing the θ-dependence over the whole range of
θ values [27].

Next, we scale the sample to the expected luminosity L and approximate the differential cross
section at parton-level in a small section ∆z of the phase space∫

∆z

dσθ(z)

dz
dz ≈ dσθ(z)

dz
∆z ≈ 1

L
∑

zi∈∆z

wi(θ), (4.14)

which approximately holds if the differential cross section in ∆z does not vary excessively and we
consider a large number of events [24]. Integrating over all ∆z allows us to tie the weights to the
generator-level likelihood p(zi|θ):

Nevents∑
i=1

wi = Lσ(θ). (4.15)

How can we exploit this relations when it comes to our simulated samples? First, we consider
the sampling of events with probability p(x|θ). We can factorise p(x|θ) as p(x, zd, zs, zp|θ) and
integrate out the latent space in Eq. 4.16 below. Here, x denotes the per-event features after full
simulation in forward mode, zd denotes the feature vector at detector level, zs at shower level and
zp at parton level. The true likelihood at detector, shower and parton level is intractable

p(x|θ) =
∫

dzddzsdzpp(x, zd, zs, zp|θ)

=

∫
dzddzsdzpp(x|zd)p(zd|zs)p(zs|zp)p(zp|θ).

(4.16)

The huge latent space spanned by the integrals over dzd, dzp and dzs is the true crux of the
EFT measurement problem, as it can involve millions of random numbers. As simulation is always
run in forward mode, this immense latent space makes it impossible to trace back the likelihood
function from a set of observables x to their parton-level configuration z. An evaluation of the
theory parameters given a certain observation is therefore impossible [15, 22, 27–29].

However, in the differential cross section ratio, we can exploit the simplicity of the joint space,
as all intractable factors cancel1:

r(x, z|θ,θ0) = p(x, zd, zs, zp|θ)
p(x, zd, zs, zp|θ0) =

p(x|zd)p(zd|zs)p(zs|zp)p(zp|θ)
p(x|zd)p(zd|zs)p(zs|zp)p(zp|θ0) =

p(zp|θ)
p(zp|θ0) (4.17)

We can relate this expression to the per-event weights wi(θ) by combining Eq. 4.13 and 4.14 to

wi(θ)

Lσ(θ) =
1

σ(θ)

dσθ(z)

dz

||||
z=zi

= p(zi|θ) (4.18)

1This is not true for all cases. Some EFT insertions also affect the parton shower [24].
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4.1. Simulation based inference

and injecting this into Eq. 4.17

r(xi, zi|θ,θ0) = p(zi|θ)
p(zi|θ0) =

σ(θ0)

σ(θ)

wi(θ)

wi(θ0)
. (4.19)

It must be emphasized that this does not in any way allow to evaluate the likelihood p(x|θ) in the
cross section ratio R(x|θ,θ0), as the integral over the latent space is still intractable. A collection
of all relevant quantities is given in Tab. 4.1, following the color code of Ref. [27].

Quantity tractable?

p(x|θ) =
∫

dz p(x|z)p(z|θ) No
p(xi|θ) = 1

σ(θ)
dσθ(xi)

dx No
R(x|θ,θ0) = σ(θ)p(x|θ)

σ(θ0)p(x|θ0)
No

r(x|θ,θ0) = p(x|θ)
p(x|θ0)

No
p(zi|θ) = 1

σ(θ)
dσθ(zi)

dz Yes
R(x, z|θ,θ0) = σ(θ)p(z|θ)

σ(θ0)p(z|θ0)
Yes

r(x, z|θ,θ0) = p(z|θ)
p(z|θ0)

Yes
r(xi, zi|θ,θ0) = p(zi|θ)

p(zi|θ0)
= σ(θ0)

σ(θ)
wi(θ)
wi(θ0)

Yes

Table 4.1: Tractable and intractable quantities. Following Ref. [27], we mark intactable
quantities red. Consequently, tractable quantities are marked blue.

How can we now make our network learn the optimal test statistic qθ(D) according to the
Neyman-Pearson lemma Eq. 4.1, when the quantity p(x|θ) and therefore R(x|θ,θ0) are intractable?
According to Ref. [15, 22, 27–29], the trick now consists in using the L2 squared loss functional for
functions ĝ(x) that only depend on x but try to approximate the target g(x, z),

L[ĝ(x)] =

∫
dxdz p(x, z|θ) |g(x, z)− ĝ(x)|2 (4.20)

For variation calculus for ĝ(x) based on the derivation in Ref. [27], we write the integral as∫
dxdz p(x, z|θ) |g(x, z)− ĝ(x)|2 =∫
dx

(
ĝ2(x)

∫
dz p(x, z|θ)− 2ĝ(x)

∫
dz p(x, z|θ) g(x, z) +

∫
dz p(x, z|θ)g2(x, z)

)
. .. .

:=F (x)

(4.21)

and search for the function g∗(x) so that L[ĝ(x)] is extreme

δF

δĝ

||||
ĝ=g∗

= 0. (4.22)

This condition yields

0 =

(
−2ĝ

∫
dz p(x, z|θ) + 2

∫
dz p(x, z|θ)g(x, z)

) ||||
ĝ=g∗

. (4.23)

After calculating the first integral (which evaluates to p(x|θ)) we solve for g∗

g∗ =
1

p(x|θ)
∫

dz p(x, z|θ)g(x, z). (4.24)
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4.1. Simulation based inference

We can now substitute the target with the tractable (!) function r(x, z|θ0,θ), which is the coefficient
of two intractable functions p(x, z|θ0) and p(x, z|θ)

g∗ =
1

p(x|θ)
∫

dz p(x, z|θ)r(x, z|θ0,θ)

=
1

p(x|θ)
∫

dz /////p(x, z|θ) p(x, z|θ0)
/////p(x, z|θ)

=
p(x|θ0)
p(x|θ) = r(x|θ0,θ).

(4.25)

Hence, we conclude that by minimizing the squared loss of r(x, z|θ0,θ),

L[r̂(x|θ0,θ)] =
Nevents∑

(xi,zi)∼p(x,z|θ)
p(x, z|θ)|r(x, z|θ0,θ)− r̂(x|θ0,θ)|2, (4.26)

we can regress on the true likelihood ratio!

4.1.3 Learning the polynomial dependence
Next, we exploit that Eq. 4.10 implies a polynomial dependence of the likelihood ratio at

detector level R(x|θ,θ0) because of the polynomial dependence of dσ(θ), even if the detector-level
likelihood itself is intractable. By slightly adapting what has been done in Ref. [24] to our use case,
we write

R(x|θ,θ0) = dσθ(x)/dx
dσθ0

(x)/dx
=

σ(θ)p(x|θ)
σ(θ0)p(x|θ0)

= 1 + (θ − θ0)
∂(σ(θ)p(x|θ))
σ(θ)p(x|θ) + (θ − θ0)

2 ∂
2(σ(θ)p(x|θ))
σ(θ)p(x|θ)

= 1 + (θ − θ0)Rlin(x) + (θ − θ0)
2Rquad(x).

(4.27)

When choosing an equivalent ansatz for the tractable joint likelihood ratio R(x, z, |θ,θ0) as the
ansatz for our training target,

R(x, z, |θ,θ0) = 1 + (θ − θ0)
∂(σ(θ)p(x, z|θ))
σ(θ)p(x, z|θ) + (θ − θ0)

2 ∂
2(σ(θ)p(x, z|θ))
σ(θ)p(x, z|θ) (4.28)

we find with Eq. 4.252

g∗ =
1

p(x|θ)
∫

dz p(x, z|θ)R(x, z|θ0,θ)

=
1

p(x|θ)
∫

dz p(x, z|θ)
(
1 + (θ − θ0)

∂(σ(θ)p(x, z|θ))
σ(θ)p(x, z|θ) + (θ − θ0)

2 ∂
2(σ(θ)p(x, z|θ))
σ(θ)p(x, z|θ)

)
=

1

p(x|θ)
(
p(x|θ) + (θ − θ0)

∂(σ(θ)p(x|θ))
σ(θ)

+ (θ − θ0)
2 ∂

2(σ(θ)p(x|θ))
σ(θ)

)
= 1 + (θ − θ0)

∂(σ(θ)p(x|θ))
σ(θ)p(x|θ). .. .

Rlin(x)

+(θ − θ0)
2 ∂2(σ(θ)p(x|θ))

σ(θ)p(x|θ). .. .
Rquad(x)

(4.29)

2As R(x,z, |θ,θ0) and r(x,z, |θ,θ0) are proportional, they can be used interchangably.
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4.2. Limit setting in 1D and 2D

Hence, we regress exactly in the coefficient functions of the intractable likelihood ratio Rlin(x) and
Rquad(x).

In the last step, we identify the regression targets in Eq. 4.29 with our weight functions. The
weights around the value θ0 can be written event-wise as

wi(θ) = wi,0 + (θ − θ0)wi,1 + (θ − θ0)
2wi,2, (4.30)

where the coefficient wi,0 corresponds to w(θ0), i.e., in our case the SM weight. The coefficients
wi,1 and wi,2 are the BSM-operator specific weights and known from the event-simulation (see
chapter 6). Hence, we set the θ-value at the SM point to zero and reformulate the regression target

R(xi, zi|θ) = σ(θ)

σ(SM)
r(xi, zi|θ,θ0) = wi(θ)

wi(θ0)
= 1 + θ

wi,1

wi,0
+ θ2

wi,2

wi,0
. (4.31)

Finally, we inject the polynomial ansatz of Eq. 4.27 in the loss function of Eq. 4.26, which then
reads

L =
∑
θ∈B

∑
i

wi,0(R(xi, zi|θ)− R̂(x|θ))2

=
∑
θ∈B

∑
i

wi,0(/1 + θ
wi,1

wi,0
+ θ2

wi,2

wi,0
− /1− θRlin(xi)− θ2Rquad(xi))

2

=
∑
θ∈B

∑
i

wi,0

[
θ

(
wi,1

wi,0
−Rlin(xi)

)
+ θ2

(
wi,2

wi,0
−Rquad(xi)

)]2 (4.32)

Here, B contains two different, arbitrarily chosen base points for θ ̸= θ0. As we fit a quadratic
polynomial, for the loss function to be expressive enough B includes two values for θ ̸= 0 in addition
to the SM value θ0 ̸= 0.

4.2 Limit setting in 1D and 2D
For evaluating the network’s performance once the training has been successfully concluded, we

first check the convergence in bins of the scalar event-level observables. The simple condition∑
xi∈bin

w0,iRlin(xi)
?
=

∑
xi∈bin

w1,i∑
xi∈bin

w0,iRquad(xi)
?
=

∑
xi∈bin

w2,i

(4.33)

holds for a converged training. In fact, when minimizing L in Eq. 4.32, the expression in the
brackets vanishes for

Rlin(xi) → wi,1

wi,0

Rquad(xi) → wi,2

wi,0
.

(4.34)

Hence, we can see the convergence in bins of the scalar event-level features we feed the network as
x-values.
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4.2. Limit setting in 1D and 2D

However, this is only a first check in the training process. To effectively set limits, we need to
perform hypothesis tests [110]. From the Neyman-Pearson lemma (Eq. 4.1) we know that in the
absence of nuisances and for an unbinned likelihood ratio test, the optimal test statistic is

qθ(D) = L(σθ − σSM). .. .
=const

−
N∑
i=1

logR(xi|θ, SM) (4.35)

where R(xi|θ, SM) is the differential cross section ratio at detector-level. With simulation-based
inference, we estimated R(xi|θ, SM) as

R(xi|θ, SM) ≈ R̂(xi|θ, SM) = 1 + θRlin(xi) + θ2Rquad(xi), (4.36)

with Rlin(xi) and Rquad(xi) being the output of our neural network. For every hypothesis test, we
then define the test statistic tθ(x) as

tθ(xi) ≡ R̂(xi|θ, SM). (4.37)

Next, we want to make the analysis a binned analysis, as has been done similarly in Ref. [24].
Here, the problem is that the range of values of tθ(x) depends parametrically on θ. In other words,
we cannot define a uniform binning over the whole range of θ-values because there will always be
a θ either large or small where all events are concentrated in the first or the last bin. Hence, we
need to dynamically adjust the binning choice for each individual value of θ.

First, we make a finely binned histogram of p(tθ(x)|SM), i.e., we obtain the probability density
function of the test statistic for a value θ under the SM hypothesis. In practical terms, this means
filling the histogram of tθ(x) with the SM weights. Next, we make this distribution a binned, flat
distribution under the SM hypothesis by computing the weighted quantiles of p(tθ(x)|SM) in steps
of 10%. With this new binning choice, p(tθ(x)|SM) becomes flat by construction with the yield in
each bin, N i

events, being
nbins∑
i=1

N i
events =

nbins∑
i=1

LσSM

nbins
= LσSM, nbins = 10 (4.38)

Then, we fill the bins with the test statistic evaluated at the BSM-point θ, i.e., p(tθ(x)|θ). Now,
the last bin contains those 10% of events that changes the most with respect to θ – which is exactly
what we wanted to achieve in first place.

At this point, it is important to distinguish between two “modes” of evaluation: Keep the full
information learned in the training, or rule out the BSM-related changes that alter the overall
yield. The first consists in weighting the test statistic with the full BSM weights and normalize the
SM weights (and the SM term in the BSM weights) so that the overall yield corresponds to the
integrated luminosity

wi,SM =
LσSMwi,0∑

j wj,0

wi,BSM =
LσSM

(
wi,0 + θwi,1 + θ2wi,2

)∑
j wj,0

(4.39)

This is referred to as “full information” in the following parts of the thesis. The second “mode”
of evaluation is referred to as “shape effects only” and consists in normalizing both SM and BSM
yields to the same expected number of events according to the integrated luminosity.

wi,SM =
LσSMwi,0∑

j wj,0

wi,BSM =
LσSM

(
wi,0 + θwi,1 + θ2wi,2

)∑
j (wj,0 + θwj,1 + θ2wj,2)

(4.40)
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4.2. Limit setting in 1D and 2D

With this weighting choice, we are sensitive only to those effects that the network is able to extract
from the BSM shape information.

Finally, we compute the expected likelihood ratio by summing over the Poisson bins for SM and
BSM pdf [110]:

qθ,binned(D) =

nbins∑
i=1

(
λi(θ)− λi(SM)− nilog

λi(θ)

λi(SM)

)
(4.41)

where λi is the prediction in the respective bin and ni corresponds to the observation which we
replace with the SM prediction λi(SM). When we then multiply the expression in Eq. 4.41 with
−2, we can evaluate where 1σ and 2σ with respect to the value of θ according to Tab. 4.2 below.

(1− α)(%) m = 1 m = 2

68.27 1.00 2.30
90.00 2.71 4.61
95.00 3.84 5.99
95.45 4.00 6.18
99.00 6.63 9.21
99.73 9.00 11.83

Table 4.2: Values of 2∆lnL corresponding to the coverage probability 1−α in % in the limit of
large sample data. The value of m indicates the number of simultaneously estimated parameters.
Values taken from chapter 40: Statistics in Ref. [110].

Lastly, we want to constrain two operators O1 and O2 simultaneously based on our 1D training.
Hence, we write the combined test statistic t2Dθ,θ′ for B containing the values θ and θ′ for the two
trained coefficients as

t2Dθ,θ′(x) = R2D
O1,O2

(x|θ,θ′, SM) = 1 +
∑
i∈B

θiR
(i)
lin(x) +

∑
j∈B

∑
i≤j

θiθjR
(i)
quad(x)R

(j)
quad(x) (4.42)

which we approximate with our training results for one operator RO1
(xi|θ, SM) and RO2

(xi|θ′, SM)
as

t2Dθ,θ′(x) ≈ 1 + θR
(O1)
lin + θ′R(O2)

lin + θ2R
(O1)
quad + θ′2R(O2)

quad. (4.43)

In the 2D evaluation, the BSM weights need to be changed according to

wi,BSM = wi,0 + θw
(O1)
i,1 + θ′w(O2)

i,1 + θ2w
(O1)
i,2 + θ′2w(O2)

i,2 + 2θθ′w(O1,O2)
i,12 , (4.44)

before normalizing again to the same integrated luminosity as the SM. When setting the limits, we
need to choose m = 2 in Tab. 4.2. With the theoretical background at hand, we now move to the
network architecture and the details of technical implementation.
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Chapter 5

Multivariate Analysis

5.1 Basic Priniciples of MVA
As the BSM physic causes various effects in the observed quantities, Multivariate Analysis

(MVA) provides us with a powerful tool to simultaneously investigate these effects while tracing
them back to the two desired numbers, i.e., the linear and the quadratic dependence of the predic-
tion. In this respect, a broad variety of existing algorithms to optimally extract the information
from the input features is at hand. Hence, we first describe the components within our neural net-
work’s architecture. As it is almost identical for simulation-based inference and multi-classification,
we will discuss both training setups simultaneously if not explicitly stated ad locum.

5.1.1 Deep Neural Networks (DNNs)

x0

x1

x2

x3

. . .

xn−1

xn

y0

. . .

ym−1

ym

Figure 5.1: Fully connected linear layer:
Every input is connected to every output.

The first component of choice – a Deep Neural Net-
work of multiple stacked dense layers – follows naturally
from the structure of our data [10]. In fact, for every
simulated event we can retrieve a large number of scalar
event-level observables, i.e., our feature vector x. Hence,
we start by setting up a DNN of dense layers that takes
x as input and passes it through a number of subsequent
hidden layers. The working principle of a dense – or
fully-connected – layer is encoded in the linear equa-
tion

y = Wx+ b, (5.1)

where the feature vector x is multiplied with the layer’s
weights W to get the layer’s output y. b denotes an
eventual bias applied in the training [111]. For every
linear (dense, fully connected) layer, the input shape is
determined by the length of the input feature vector x,
whereas the shape of the output is a free hyperparameter
and therefore subject to optimization. To give the neural network suitable degrees of freedom, our
architecture comprises a sequence of multiple fully connected layers. As depicted in Fig. 5.1, every
neuron on the input side is connected to every neuron at the output side.

This fully connected setup is not the desired configuration, as we want to bring in non-linearity
in the training for further degrees of freedom. In this respect, the tools of choice are activation
functions that determine whether a neuron fires or not. In our case, we choose the Rectified
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5.1. Basic Priniciples of MVA

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
x

2−

1.5−

1−

0.5−

0

0.5

1

1.5

2

Le
ak

yR
eL

U

                 

                 

                 

                 

                 

ReLU

ReLU_slope 0.4

ReLU_slope 0.5

ReLU_slope 0.3

ReLU_slope 0.2

ReLU_slope 0.1

Figure 5.2: Comparison of ReLU(xi) and LeakyReLU(xi).

Linear Unit function (ReLU) [112] applied to every input feature xi,

ReLU(xi) = (xi)
+ = max(0, xi). (5.2)

However, we find that cutting off all inputs smaller than 0 might be too strong of a restriction.
Hence, we adapt the ReLU to a so-called Leaky Rectified Linear Unit function (LeakyReLU) [113]
with ReLU_slope being the negative slope of a linear function and another tunable hyperparameter,
as shown in Fig. 5.2:

LeakyReLU(xi) =

{
xi, if x ≥ 0

ReLU_slope× xi, otherwise

For the multi-classification network, we apply the Softmax function [114] in the last step, so that
all output is mapped to the range of [0,1]:

Softmax(xi) =
exp(xi)∑
j exp(xj)

(5.3)

Activation functions are of great use to tackle the risk of overtraining, i.e., loosing the network’s
adaptability to new training data by just learning the training data sample. An additional helper are
Dropout layers [115] that help prevent the co-adaption of neurons by randomly zeroing elements
of the input vector with probability p. This means that while training, Dropout layer draw samples
from an exponential number of “thinned” networks. When evaluating the network, all predictions of
the thinned configurations are averaged by a single un-thinned network with smaller weights [116].
In our case, samples of thinned networks are randomly drown from a Bernoulli distribution [117]. A
schematic depiction of the working principle of dropout layers can be found in Fig. 5.3. In terms of
hyperparameters for optimization, we gain an additional handle in the dropout probability p stored
in the dropout variable when tuning the network.

To sum things up, we now have several hyperparameters that need to be optimised in the
training for the DNN: the number of entries in the output vector of the first layer, ergo, the hidden
size of the first dense layer (hs1) and of the second dense layer (hs2). Additionally, we need to
choose the slope of the LeakyReLU ReLU_slope and the probability p for a single neuron to be
deactivated in the training, i.e., the dropout parameter. The input size of the first layer and the
output size of the final layer are determined by the number of scalar event-level input features n
and the number of targets. In our case this number is 2 in simulation-based inference and 4 in
multi-classification. The final configuration of the DNN is shown in Fig. 5.4.
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5.1. Basic Priniciples of MVA

(a) fully connected layers (b) dense layers + dropout
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Figure 5.3: (a) Two stacked fully connected layers. Every input neuron is connected to every
output neuron. (b) Two stacked fully connected layers with dropout. Some neurons are randomly
deactivated.
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Figure 5.4: The DNN consists of two stacked dense layers of hidden sizes hs1 and hs2 with
LeakyReLUs and Dropout layers in between. The shape of the input vector is (1, n), the shape
after each hidden layer i is (1, hsi).

5.1.2 Recurrent Neural Networks (RNNs)
To extract even more information from our data, we choose another class of algorithms to pair

with the DNN layers: Recurrent Neural Networks (RNNs) [118] and, in particular, Long Short Term
Memory (LSTMs) [11–14]. In fact, not all BSM effects might be detectable when only looking at
scalar event-level based observables. Hence, we want our network to search for correlations between
different kinematic variables in the multiple jets of one event.

The search for correlations in the jet system resembles the problem of spoken language recogni-
tion. In fact, when the machine tries to extract information from a sentence, it is a priori unclear
where the most relevant piece might be located [12]. Similarly, we can teach the machine our
“sentences”, i.e., the collection of features of single jets within our complete jet system, just as one
would do in spoken language processing. To then scan the sentence for the most relevant piece,
the network must display time-dependent behaviour. Such time-dependent structures are encoded
in algorithms of Recurrent Neural Networks (RNN) [118] and Long Short Term Memory (LSTM)
[11–14], which we will describe in the following.

Going back to our Deep Neural Networks, where does the main difference to RNNs lie? It
helps to take into consideration that our configuration of fully connected layers with dropout and
activation functions from Fig. 5.4 is sometimes referred to as Feedforward Neural Networks (FNN).
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5.1. Basic Priniciples of MVA

(a) DNN (b) RNN
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Figure 5.5: (a) Two stacked fully connected layers. This DNN configuration allows informa-
tion to be passed from one node to the other in forward direction only. (b) The RNN allows
information to be passed forward and backward, mimicing temporal dynamic behaviour.

In fact, information is passed through the different components in only one direction, i.e., forward.
Contrarily, RNNs have additional so-called feedback connections. Opposed to DNNs, RNN therefore
allow input from one node to affect the same node’s subsequent input, as shown in Fig. 5.5, (b).
With this intrinsic “backward” connections, RNNs mirror temporal dynamic behaviour.

5.1.3 Long Short Term Memory (LSTM)
As RNNs are likely to run into vanishing and exploding gradients, LSTMs as a subcategory of

RNNs are specifically designed to overcome the first of this two malfunctions in RNNs [11]. Both
of them are a consequence of the updating timescales for weights and biases in RNNs:

Long Term Memory: The so-called long term memory is connected to the updating of weights
and biases between different subsequent layers. This is denoted with “long”, as the updating
is performed only after one complete training epoch, i.e., when all available input has been
passed through the complete network once.

Short Term Memory: The so-called short term memory is updated more frequently, namely once
per time step. Therefore, it is connected to the activation patterns of the nodes and the
update of the RNN’s feedback connections.

LSTMs help in tackling the vanishing gradient problem related to the long term memory. When
performing the backpropagation operation, the gradient might vanish because of limitations in
finite-precision numbers used. Here, the LSTM’s workaround consists in their long short term
memory, which allows gradients to stay unchanged [11–13].

Similarly to several words in a sentence in language recognition, a large number of jets originating
from the tt̄tt̄ or tt̄bb̄ parents gives us the constituents of our input. Hence, the latter is no longer
a simple feature vector x of shape (1, n) as with the DNN, but a jet array z of variable length up
to a defined maximum number of N_jet_max jets, each with m kinematic features. The working
principle of an LSTM cell is given in the following equations, all performed once per element
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Figure 5.6: Schematic of a LSTM cell.

zt with t ∈ {0, 1, ..., N_jet_max} for the sequential input z of shape (1,m, N_jet_max) [119]:

it = σ(Wiizt + bii +Whiht−1 + bhi)

ft = σ(Wifzt + bif +Whfht−1 + bhf )

gt = tanh(Wigzt + big +Whght−1 + bhg)

ot = σ(Wiozt + bio +Whoht− 1 + bho)

ct = ft ⊙ ct−1 + it ⊙ gt

ht = ot ⊙ tanh(ct)

(5.4)

In Eq. 5.4, it, ft, gt and ot are the input, forget, cell and output gates. The LSTM’s cell and hidden
states are denoted by ct and ht, respectively. While training, the network learns the weight matrices
in W and an eventual bias vector b. ⊙ stands for the Hadamard product. σ is the cell’s activation
function, i.e., the sigmoid function given by σ(xi) = (1 + exp(−xi))

−1.

With adding LSTMs to our network architecture, we have two additional hyperparameters to
optimize. The first one is the number of stacked LSTM layers (num_layers), the second is the
output size (hidden size) of the LSTM (hs_lstm). Additionally, we need to decide a suitable length
for N_jet_max.

5.2 The MVA architecture
5.2.1 The DNN+LSTM Confguration

For the final architecture, we combine both DNN and RNN components. For the scalar event-
level input features stored in the input vector x, we keep the configuration from Fig. 5.4. In parallel,
we feed jet-array based input stored in z of variable length up to N_jet_max into one or multiple
stacked LSTM layer(s). The output of the DNN is a vector y′ of shape (1, hs2), whereas the output
of the LSTM is a vector y′′ of shape (1, hs_LSTM).

At this point, we need to concatenate the output y′ and y′′. To combine the information
gathered from DNN and LSTM, we pass the concatenated output through another DNN layer of
hidden size hs_comb. Finally, the last dense layer gives us the two/four desired output values. A
last detail is worth noting: we add LeakyReLUs and dropout layers not only after every dense layer,
but also on the LSTM output.

The MVA architecture used for training is sketched in Fig. 5.7. The number of dense layers with
the respective activation function have proven to be appropriate for our task. For the optimization
of all aforementioned hyperparameters see chapter 6.
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Figure 5.7: MVA Neural Network Architecture with shapes and hyperparameters. The gen-
eral setup is used for simulation-based inference and multi-classification likewise, with the only
difference being the configuration of the last dense layer, as indicated above.
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5.2. The MVA architecture

5.2.2 Optimizer and Scheduler
Lastly, we must define our model’s optimizer and scheduler. In this context, the optimizer’s

task is to change weights of the network in order to minimize the loss. Contrarily, the scheduler
models only the learning rate for an optimal adaption to the learning process [120, 121]. As an
optimizer, we use the adam algorithm – an algorithm for first-order gradient-based optimization of
stochastic objective functions, i.e., our target weight functions. The key feature of this approach
is found in its estimation of lower-order moments that are then used for optimally updating the
training weights. Further detail is found in the original paper in Ref. [122].

The learning rate scheduler demands more in-depth tuning, as the BSM-effects result only in
minimal nuisances in the training data with respect to the SM. In fact, starting with a relatively
high learning rate of 0.1 is necessary to not get stuck in a local minimum of the parameter space.
Then, we decay the learning rate linearly until reaching 7/10 of the total epochs. At this point, we
continue training until the total number of 10000 epochs at a relatively low learning rate of 0.0001.
The slope of the linear decay is referred to as s_factor and takes the value of 0.001 for training
with signal only. Hence, we implement a scheduler that adapts the learning rate according to the
sketch in Fig. 5.8, (a).

When training with signal and background, an adequate tuning of the learning rate is even more
crucial for an optimal training process. Here, it turns out that the best performance is reached if
we start with an initial learning rate of 0.1 as before, but turn it down to slightly higher value of
0.005 after 7/10 of the total epochs. When reaching the total number of 10000 epochs, we assess
the model’s performance. In most cases, it turns out useful to continue training with a learning rate
of 5e-05 for some 2000 epochs and then, if necessary, go to a very tiny learning rate of only 5e-06.
This assures that the small BSM nuisances are adequately learned even when there is background
present. The decay of the learning rate is shown in Fig. 5.8, (b).

With respect to our hyperparameter set, we now add the parameter w_decay that represents
the weight decay in the adam optimizer (as we set it to zero this has no impact on the training).
Next, the initial learning rate start_lr that is 0.1 for both signal and signal+background trainings.
Lastly, we have the target learning rate at 7/10 of the total number of epochs target_lr or the
s_factor, respectively. The combination of these two parameter is (1e-04 / 0.001) when training on
signal data only, and (5e-04 / 0.005) for the first learning rate plateau with signal and background.
If needed, two plateaus of variable length at a target_lr of 5e-05 or 5e-06 are added. A complete
collection of all hyperparameter can be found in the next chapter 6, Tab. 6.1.
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Figure 5.8: The optimal learning rate evolution for training with (a) signal only and (b)
signal+background. In the latter case, scheduling the learning rate down after the first training
part increases the probability that small nuisances of the EFT-weights in the signal are learned
properly by the network.
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5.2.3 The Loss Function
Coming back to the network’s two tasks – multi-classification and simulation-based inference in

SMEFT – the loss function is where the two MVA setups fundamentally differ. The loss function
for simulation-based inference has been discussed extensively in the dedicated chapter 4. Here, we
just repeat the final expression, which is given by

L =
∑
θ∈B

∑
i

wi,0

[
θ

(
wi,1

wi,0
−Rlin(xi)

)
+ θ2

(
wi,2

wi,0
−Rquad(xi)

)]2
, (5.5)

where B contains two different, arbitrarily chosen base points θ ̸= 0, wi,j are the per-event weights
from simulation, and Rlin and Rquad are the regression targets in the polynomial dependence of the
detector-level likelihood ratio.

For multi-classification, we use the PyTorch build-in mean square error loss function between
input x and target y [123],

L =
1

Nevents

Nevents∑
i=1

(xi − yi)
2. (5.6)

As this loss function is more sturdy and robust than the complex loss function for simulation-based
inference, this makes the multi-classification an ideal proxy for testing the network’s configuration
in an easy to control setup.

5.3 The MVA input features
5.3.1 Training variable selection

For training, we use 40 scalar event-level input features that are fed into the dense layers in
Fig. 5.7. The input features comprise variables regarding jets, leptons, b-tagged jets and missing
energy and are characterized in Tab. 5.1 below.

From the kinematic variables of transverse momentum pT, pseudorapidity η and azimuthal angle
ϕ we can derive the angular distance ∆R with the definition of the coordinate system of CMS from
Fig. 5.9

∆R =
√
(∆η)2 + (∆ϕ)2. (5.7)

Furthermore, we calculate the invariant mass of two decay products as

m2 = pµ1pµ2
, (5.8)

which for a 4-momentum pµi in the limit of massless particles

pµi = |pi|

(|||(
√
1 +

m2
i

|pi|2
cos(ϕi)sin(θi)
sin(ϕi)sin(θi)

cos(θi)

)|||) = |pTi |

(||||(
√

cosh2(ηi) +
m2

i

|pTi
|2

cos(ϕi)
sin(ϕi)
sinh(ηi)

)||||) m=0
= |pTi |

(||(
cosh(ηi)
cos(ϕi)
sin(ϕi)
sinh(ηi)

)||) (5.9)

evaluates to
mT

2 = 2pT1
pT2

(cosh(η1 − η2)− cos(ϕ1 − ϕ2)). (5.10)

Finally, we use the mT2 constructed from the missing transverse momentum /pT and the particles
specified in the entries 38 - 40 in Tab. 5.1 below according to

M2
T2 ≡ min

/pT1
+/pT2

=/pT

[max{m2
T(p1, /pT1

),m2
T(p1, /pT2

)}] (5.11)
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Figure 5.9: The coordinate system of CMS. Image taken from Ref. [124].

with unknown fractions of missing momentum /pTi
and the observed missing momentum /pT [125,

126]. The following table enumerates all variables used as DNN input:

No. Symbol Definition
1 NrecoJet jet multiplicity
2 HT scalar sum of the transverse momentum of all jets in an event
3 HT,b scalar sum of the transverse momentum of b-tagged jets
4 HT,ratio scalar sum of pT of the first four jets divided by HT
5 pT(j0) transverse momentum of the leading jet
6 η(j0) pseudorapidity of the leading jet
7 pT(j1) transverse momentum of the subleading jet
8 η(j1) pseudorapidity of the subleading jet
9 pT(j2) transverse momentum of the third leading jet
10 η(j2) pseudorapidity of the third leading jet
11 pT(j3) transverse momentum of the forth leading jet
12 pT(j4) transverse momentum of the fifth leading jet
13 pT(j5) transverse momentum of the sixth leading jet
14 pT(j6) transverse momentum of the seventh leading jet
15 pT(j7) transverse momentum of the eighth leading jet
16 pT(b0) transverse momentum of the leading b-tagged jet
17 pT(b1) transverse momentum of the subleading b-tagged jet
18 pT(ℓ0) transverse momentum of the leading lepton
19 η(ℓ0) pseudorapidity of the leading lepton
20 pT(ℓ1) transverse momentum of the subleading lepton
21 η(ℓ1) pseudorapidity of the subleading lepton
22 mT(ℓ0) transverse mass of the leading lepton
23 mT(ℓ1) transverse mass of the subleading lepton
24 mT(ℓ0, ℓ1) invariant mass of the lepton system
25 mT(j0) transverse mass of the leading jet and the leading lepton
26 mT(j1) transverse mass of the subleading jet and the leading lepton
27 mT(j0, j1) invariant mass of the leading / subleading jet system
28 /ET missing transverse energy
29 ∆ϕ(ℓ0, ℓ1) difference in azimuthal angle of the leading and subleading lepton
30 ∆ϕ(j0, j1) difference in azimuthal angle of the leading and subleading jet
31 ∆η(ℓ0, ℓ1) difference in pseudorapidity of the leading and subleading lepton
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5.3. The MVA input features

32 ∆η(j0, j1) difference in pseudorapidity of the leading and subleading jet
331 m4b mass of the system of 4 b-jets if there are as many else 0
341 ∆R0(ℓ, b) minimum angular distance in the lepton/b-jet system
351 ∆R1(ℓ, b) second smallest angular distance in the lepton/b-jet system
361 ∆R(b, b) minimum angular distance in the b-jet system
371 ∆R(ℓ, ℓ) minimum angular distance between leading/subleading lepton
381 mT2(ℓ, ℓ) mT2 variable from leading and subleading leptons [125, 126]
391 mT2(b, b) mT2 variable from leading and subleading b-jets [125, 126]
401 mT2(b + ℓ) mT2 variable from two leading leptons and b-jets [125, 126]
412 BTagj0 b-tagging score of the leading jet
422 BTagj1 b-tagging score of subleading jet
432 BTagj2 b-tagging score of third leading jet

Table 5.1: Scalar event-level input features for dense layers (DNNs)

For the LSTM-layers in simulation-based inference, we have only four features as we are limited
by the DELPHES parametrisation of the reconstructed jets [127, 128]. The features are listed in
Tab. 5.2 below, whereas details on the sample generation will be given in the next chapter 6. In
addition to the kinematic variables pT, η and ϕ the binary b-tagging criterion is 0 if the jet is not
b-tagged and 1 if the contrary is true.

No. Symbol Definition
1 pT transverse momentum of the jet
2 η pseudorapidity of the jet
3 ϕ azimuthal angle of the jet
4 bTag binary b-tagging criterion

Table 5.2: Jet array features for LSTM layer(s) in simulation-based inference.

Contrarily, in multi-classification we have the possibility to use more features as the training data
is not processed with the limited detector simulation in DELPHES. In addition to the kinematic
quantities pT, η and ϕ of each jet, we can also feed our LSTMs discriminator quantities between
b-quarks, b-quarks and leptons as well as between light quarks and gluons. Additional features
comprise c-quark vs b-quark discriminators and the pile-up probability. The complete list can be
found in Tab. 5.3 below.

No. Symbol Definition
1 pT transverse momentum of the jet
2 η pseudorapidity of the jet
3 ϕ azimuthal angle of the jet
4 BTagB b+bb+lepb tag discriminator
5 BTagCvB c vs b+bb+lepb discriminator
6 BTagQG gluon vs light quark discriminator
7 puId pile-up jet probability
8 qgl quark vs gluon likelihood discriminator

Table 5.3: Jet array features for LSTM layer(s) in multi-classification.

1Feature not used in multi-classification.
2Feature not used in simulation-based inference.
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Chapter 6

Data Generation and Training

6.1 The input data
6.1.1 MadGraph5_aMC@NLO and DELPHES

For simulating the tt̄tt̄ and tt̄bb̄ signals for simulation-based inference, we use the framework
MadGraph5_aMC@NLO. MadGraph5_aMC@NLO is a framework that creates code to com-
pute tree-level and next-to-leading order cross sections, matches the output to parton shower sim-
ulations and merges samples that differ by light-parton multiplicities only [129]. The user’s input
in all this is limited to the input of the physical quantities:

import model SMEFTsim_topU3l_MwScheme_UFO-massless_4t
define p = g u c d s u∼ c∼ d∼ s∼
define j = g u c d s u∼ c∼ d∼ s∼
define l+ = e+ mu+ ta+
define l- = e- mu- ta-
define vl = ve vm vt
define vl∼ = ve∼ vm∼ vt∼
define p = p b b∼
define j = j b b∼

−→ generate p p > t t∼ t t∼ SMHLOOP=0 NPprop=0 NP=1 @0
output TTTT_MS -nojpeg

for tt̄tt̄ and

...
−→ generate p p > t t b b SMHLOOP=0 NPprop=0 NP=1 @0

output TTbb_MS -nojpeg

for tt̄bb̄. This means, we simulate the decays with no extra jet for our signal processes.

The use of SMEFTsim_3 allows us to include new physics (NP=1), as this package is specifically
designed for automated computations in SMEFT [130]. The topU3l extension matches our require-
ments that we choose in accordance with the interpretation of top-quark LHC measurements in
SMEFT, again follwing Ref. [31] based on Ref. [90]. In this process, we use MadSpin implemented
in MadGraph5_aMC@NLO to decay narrow resonances while preserving spin correlation [131].
Exemplar histograms of the kinematic variable HT for our simulated events at generator level are
shown in Fig. 6.1. In Fig. 6.2, histograms of the EFT weights for all operators in Tab. 3.1, chapter
3 are shown.
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Figure 6.1: Histogram of (a) tt̄tt̄ and (b) tt̄bb̄, no event selection applied. In tt̄tt̄, EFT
operators are weighted with θ = 1, in tt̄bb̄ with 10.
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6.1. The input data

Then, we process the events with the model of the CMS detector in DELPHES, a framework
that provides fast simulation of the CMS detector [127, 128]. The generator level samples are used
to subsequently simulate the detector and retrieve output observables as, e.g., isolated leptons,
missing transverse energy and collection of jets in an event. In this process, DELPHES takes into
account subdetector resolutions while smearing the kinematics of the particles in the final states.
Additionally, DELPHES includes the following six features [127, 128]:

1. geometrical implementation of the detector,
2. the magnetic field and its effect on charged particles’ tracks,
3. reconstruction of photons, leptons, jets, b-jets, τ -jets, missing transverse energy,
4. lepton isolation,
5. trigger emulation and
6. an event display.

However, being only a fast detector simulation, DELPHES comes with limitations in comparison to
the full detector simulation GEANT4 [132]: an idealised geometry (uniform, symmetric around the
beam axis, no cracks, no material), no secondary interactions, no multiple scatterings, neglected
photon conversion and bremsstrahlung [127, 128].

For training with signal and background in simulation-based inference, we use the tt̄ sample
produced with Powheg [133] at next leading order. The shower has been simulated with Pythia
[134] and the detector simulation with GEANT4.

For multi-classification, we use tt̄tt̄ produced with MadGraph5_aMC@NLO as signal sample.
The shower has been simulated with Pythia and the detector response with GEANT4. The three
background categories result from the tt̄ background, which we divide in tt̄bb̄, tt̄cc̄ and tt̄+light
jets components.

6.1.2 Event selection
Next, we follow Ref. [31] mimicking the analysis in Ref. [102] and apply the following require-

ments for our selection in tt̄tt̄ and tt̄bb̄ in simulation-based inference: Each event must have two
reconstructed leptons with transverse momentum pT > 20GeV and pseudorapidity |η| < 2.4, miss-
ing transverse energy must be /ET > 30GeV. Additionally, we require every event to have at least
four jets with pT > 30GeV and |η| < 2.5, with at least two of them being b-tagged jets.

When training with backgrounds, the selection changes as follows: In tt̄tt̄+background, we
require two or more leptons with pT > 20GeV and |η| < 2.4, six or more jets with pT > 30GeV
and |η| < 2.5, one or more of which must be a b-jet. Additionally, we apply a cut on HT = 500GeV.
In tt̄bb̄+background, we require two or more leptons with pT > 20GeV and |η| < 2.4, four or more
jets with pT > 30GeV and |η| < 2.5, one or more of which must be a b-jet to consistently remove all
extra double b-jet activity. For the background, we assume that no EFT weights are present, i.e.,
that the EFT operators just act upon the signal whereas the background is described by the SM
only. For all processes, we normalize to the same integrated luminosity of L = 300 fb−1. Histograms
of selected input features can be found in Fig. 6.3 - Fig. 6.6 on the next pages.

For multi-classification, we require a minimum number of 4 jets, of which at least three are
b-tagged. Additionally, we require HT > 500GeV and use the two lepton opposite sign channel.
Histograms of selected input features can be found in Fig. 6.7.
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Figure 6.3: Histogram of selected input features for tt̄tt̄.
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Figure 6.4: Histogram of selected input features for tt̄tt̄ with tt̄ background
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Figure 6.5: Histogram of selected input features for tt̄bb̄.
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Figure 6.6: Histogram of selected input features for tt̄bb̄ with tt̄ background
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Figure 6.7: Histogram of selected input features for multi-classification of tt̄tt̄, tt̄bb̄, tt̄cc̄ and
tt̄+light jets.
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6.2. Hyperparameter optimization

6.2 Hyperparameter optimization
With the MVA architecture of chapter 5 and the simulated samples at hand, we now optimize

the tunable hyperparameter. In Tab. 6.1, a summary of all hyperparameters related to the DNN
or LSTM part of the network are listed, together with the general training parameters.

No. Variable Definition default

DNN
1 hs1 hidden size, first dense layer 80
2 hs2 hidden size, second dense layer 45
3 hs_comb hidden size of the combined dense layer if LSTM == True,

hidden size of third dense layer if LSTM == False
5

4 ReLU_slope negative slope of LeakyReLU(x) for x < 0 0.5
5 dropout dropout probability in dropout layers 0.5

LSTM
6 num_layers number of stacked LSTM layers 2
7 hs_lstm output size, LSTM 4
8 ReLU_slope negative slope of LeakyReLU(x) for x < 0 after LSTM 0.5
9 dropout dropout probability in dropout layer after LSTM 0.5

General setup

10a n_epochs (sig) number of training epochs for signal only 10000
10b n_epochs

(sig+bkg)
number of training epochs for signal+background 15000

11 batches number of batches 1
12 optimizer optimizer adam

[122]
13 w_decay rate of decaying weights 0
14 scheduler scheduler linear+

flat
15a s_factor(sig) scheduler decay factor 0.001
15b s_factor

(sig+bkg)
scheduler decay factor 0.005

16 LSTM add LSTM layer(s) False
17 start_lr start learning rate 0.1
18a target_lr

(sig)
target learning rate (signal) 1e-04

18b target_lr
(sig+bkg)

target learning rate (signal+background) 5e-04
5e-05
5e-06

Table 6.1: Collection of all tunable hyperparameter and general components of the MVA
architecture with their respective default value before hyperparameter optimization.

We perform the hyperparameter optimization in the simulation-based inference setup. This is
not only because learning the BSM signatures is the central aim of this thesis, but also because
the task is far more complicated than the relatively simple multi-classification. Hence, optimizing
in the more delicate setup is a sensible choice to prevent pseudo-optimization in an already robust
setting.
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6.2. Hyperparameter optimization

6.2.1 Hyperparameter optimization DNN
As different operators have different effects on the shape information and given their various

interference strength, we choose three operators for the hyperparameter optimization of the DNN.
The first one is Ott in tt̄tt̄, as it is among those operators with the strongest effects. Next, OQt8 in
tt̄tt̄, with tiny yield variations and mostly BSM information in the shape. Lastly, we probe OQb1
in tt̄bb̄, to assure hyperparameter optimization is suitable for both signal samples tt̄tt̄ and tt̄bb̄.
In the training setups 1-4 described in Tab. 6.2, we vary the size of the first hidden layer, hs1,
between 40 and 160, where 40 is the total number of scalar event-level input features. The size of
the subsequent layers is equivalent to our default configuration. For performance evaluation, we
compute the LLR as described in section 4.2 in chapter 4. Furthermore, we probe the configuration
not only on the complete learning output denoted by “full information” in the following tables, but
we also probe the shape-sensitive part. As described in chapter 4, we achieve this second evaluation
mode by normalizing both SM and BSM yield to the same expected number of events, i.e., LσSM.
This second choice of normalization is referred to as “shape effects only”.

The results are displayed in Tab. 6.2 below. We see only minor differences in performance with
varying hidden size of the first dense layer in OQb1 for an overly large hs1 and no differences at
all for the operators in tt̄tt̄. Hence, the configuration of a first hidden size of 80 – two times the
number of scalar event-level input features – is adequate.
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No. hs1 hs2 hs_comb LSTM num_layers hs_LSTM

1-4 40 / 80 / 120 / 160 45 5 - - -

Table 6.2: Hyperparameter optimization: hidden size of the first dense layer (hs1)
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6.2. Hyperparameter optimization

In the training setups 5-8 in Tab. 6.3, we probe the optimal size of the second dense layer.
As before with hs1, performance is decreasing very slightly for OQb1 in case hs2 is chosen to be
excessively small. In tt̄tt̄, which generally has more pronounced EFT effects visible in the shapes,
the performance is unaltered. Hence, the configuration of hs2 = 45, corresponding to the number
of scalar event-level based input features plus 5, meets the requirements.

Last for the DNN, we examine the optimal size of the third dense layer in case no LSTMs
are added, or, if LSTMs are added in a later step, the hidden size of the combined layer for the
concatenated DNN and LSTM output, hs_comb. This corresponds to the training setups 9-12
in Tab. 6.4. For Ott and OQt8 no effects connected to variations in hs_comb are visible. In
OQb1, however, performance decreases significantly with hs_comb being too large, especially when
reduced to the shape effects only. Hence, the optimal configuration requires the last hidden layer
to be relatively small, and just slightly larger than the training target length.

Finally, the output size of the last layer is not subject to opimization, as it is fixed by the target
length, i.e. 2 for simulation-based inference – Rlin, Rquad – and 4 for multi-classification – the
probability for tt̄tt̄, tt̄bb̄, tt̄cc̄ or tt̄+light jets. With respect to our DNN layers, it should be noted
that the network is quite prone to overtraining. To prevent this, dropout layers and activation
functions are used as described in detail in the previous chapter 5. In this respect, a dropout
probability of 0.5 paired with a negative slope of 0.5 in the LeakyReLU has shown to be adequate.
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No. hs1 hs2 hs_comb LSTM num_layers hs_LSTM

5-8 80 30 / 35 / 45 / 50 5 - - -

Table 6.3: Hyperparameter optimization: hidden size of the second dense layer (hs2)
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6.2. Hyperparameter optimization
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No. hs1 hs2 hs_comb LSTM num_layers hs_LSTM

9-12 80 45 5 / 10 / 15 / 20 - - -

Table 6.4: Hyperparameter optimization: hidden size of the combined layer (hs_comb)

The hyperparameter optimization has been performed with the BSM effects and simulation-
based inference. However, the results are assumed to be valid also for multi-classification, because
of the almost identical network structure. As the network for multi-classification learns much
faster and converges quickly, the qualitative learning rate adjustment in Fig. 5.8 of chapter 5 is
maintained, but the number of epochs can be reduced to 1/10 of the total epochs stated there, i.e.,
n_epochs=1000.

6.2.2 Hyperparameter optimization LSTM
For the LSTMs, we try to optimize performance by training with different configurations of the

two main tunable parameters: the number of layers and the hidden size of the LSTM. We identify
the combinations of these two parameters with the syntax num_layers × hs_LSTM in the plots on
the following pages.

Contrarily to our assumption, the LSTM configuration does not add any gain in performance
compared to the DNN only setup. This is confirmed by the LLR on the follwing two pages in
Tab. 6.5 for different number of layers and different hidden sizes of the LSTM. We test a broad
variety of configurations to rule out that the LSTM’s additional value might be limited to dedicated
configurations only. Additionally, we always consider the LLR with full trained information and
the LLR with shape effects only, in case the gains of an LSTM might be visible only in one of the
settings.
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6.2. Hyperparameter optimization
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No. hs1 hs2 hs_comb LSTM num_layers hs_LSTM

13-18 80 45 5 1 1 / 2 / 4 / 6 / 8 / 16
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No. hs1 hs2 hs_comb LSTM num_layers hs_LSTM

25-30 80 45 5 4 1 / 2 / 4 / 6 / 8 / 16

Table 6.5: Hyperparameter optimization for the LSTM (num_layers×hs_LSTM)
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6.2. Hyperparameter optimization

The reason for this behaviour is to be investigated. Possible explanations are listed below:

1. When training with signal only, the DNN fully extracts all available information. Hence, no
improvement is seen for additional LSTMs. If this were the case, training with backgrounds
must behave differently. No systematic parameter study has been conducted in this respect.
However, training in different operators with different LSTM configuration for all two signal
processes with additional tt̄ background has not shown any hints for this hypothesis to be
true. As an example, the LLRs for three trainings with background are shown in Fig. 6.8.

2. The additional LSTMs are not configured properly. If this were the case, the additional
LSTMs will not enhance performance in multi-classification either. This hypothesis is to be
investigated in the following subsection.

3. The LSTMs are configured properly but the input data is not sufficient. The limitations of the
DELPHES parametrization of the detector limit the expressivity of the data. If this were the
case, LSTMs in multi-classification should significantly enhance the network’s performance,
as they get a considerably larger set of input features.

In the following subsection, we use our multi-classification setup with an identical neural network
to reject the second and back the third hypothesis.
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Figure 6.8: LSTMs do not improve the performance with respect to the DNN only config-
uration in signal+background training. Here, we used 1 LSTM layer of hidden size 20 for the
operators OQt8, OQt1 and OQQ8 in tt̄tt̄.

6.2.3 LSTM and multi-classification
We start by comparing LSTM configurations for different number of layers and hidden sizes.

To evaluate the performance, we first make a histogram of the output probabilities for the four
different categories when samples of a single category are fed into the trained network. An example
of such a histogram can be seen in Fig. 6.9, where the trained network has been fed with all four
samples and the probability for tt̄tt̄ in each individual sample category has been retrieved. From the
histograms for signal and background, we then compute the ROC-curve with the training output.
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Figure 6.9: Histogram of the neural network’s output for the tt̄tt̄ probability.

0 0.2 0.4 0.6 0.8 1
total background efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 s
ig

na
l e

ffi
ci

en
cy

tttt

1x5
1x10
1x15
1x20
1x25

0 0.2 0.4 0.6 0.8 1
total background efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 s
ig

na
l e

ffi
ci

en
cy

tttt

2x5
2x10
2x15
2x20
2x25

0 0.2 0.4 0.6 0.8 1
total background efficiency

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 s
ig

na
l e

ffi
ci

en
cy

tttt

4x5
4x10
4x15
4x20
4x25

hs1 hs2 hs_comb LSTM num_layers hs_LSTM

70 40 5 1 / 2 / 4 5 / 10 / 15 / 20 / 25

Table 6.6: Hyperparameter optimization: LSTM configuration in multi-classification
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Figure 6.10: Roc curves for
LSTMs with different number of lay-
ers (1/2/4) and hidden size 20.

From the shapes we deduce that the hidden size of the
LSTM paired with the DNN default configuration1 ought to
be 20 or 25. Comparing configurations of hidden size 20 shows
that stacking multiple layers does not improve the network’s
performance, as all curves in Fig. 6.10 perfectly overlap. The
optimal LSTM configuration for multi-classification is there-
fore num_layers=1 and hs_LSTM=20 or 25.

What is left to investigate is the performance of a network
with an additional LSTM layer compared to a DNN-only set
up. With the optimal DNN configuration from the previous
hyperparameter optimization, the enhancement of the network
due to the LSTM is significant. This can be seen by comparing
the LSTM’s red ROC-curve in Fig. 6.11 to the DNN’s blue
shape. Hence, we deduce that the LSTMs are implemented
correctly and that they are able to extract information beyond
the DNN.

1The default values for hs1 is 80 in simulation-based inference, which corresponds to 2× the number of scalar
event-level input features (=40). In multi-classification, the number of scalar event-level input features is 35, hence
hs1 = 2× 35 = 70. Similarly, the optimal hs2 equals the number of DNN input features +5.
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6.2. Hyperparameter optimization

However, this is not what we have found for simulation-based inference. To understand what
the reason behind this might be, we compare the inputs of the LSTMs for inference and multi-
classification, respectively. On the one hand, due to the limited DELPHES parametrization of the
detector we have only four kinematic observables to feed the LSTM jets in inference. The number
of inputs for classification, on the other hand, is significantly higher and comprises observables that
are not (already partly) present in the DNN variables. Hence, it is reasonable to assume that we
simply do not feed our LSTMs enough information beyond what the DNN already knows.

To back this claim, we deliberately restrict the multi-classification input to the kinematic vari-
ables pT, η and ϕ and train the LSTM again. As we cannot deduce the optimal LSTM output size
for this case – the number of LSTM inputs drastically changed – we again try different hidden sizes.
The configurations and results are summarized in Tab. 6.7.
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hs1 hs2 hs_comb LSTM num_layers hs_LSTM

70 40 5 1 / 2 / 4 1 / 2 / 4 / 8 / 16

Table 6.7: Hyperparameter optimization: Reduced LSTM configuration in multi-classification

The results are clear: The different configurations all yield the same output, and what is more, do
not further improve the network’s performance. In fact, in Fig. 6.11 below, the roc curves for DNN
only and DNN + “reduced” LSTM perfectly overlap. Hence, we conclude that our third hypothesis
is correct.
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Figure 6.11: Comparison of DNN, DNN+LSTM (reduced features) and DNN+LSTM (full
features). The performance of the latter is significantly better, whereas the first two are identical.
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Chapter 7

Results

7.1 Training for signal only
We start by computing the LLR for 1D training with single operator insertions without addi-

tional tt̄ background. As described in chapter 4, a first hint for successful training is the condition∑
xi∈bin

w0,iRlin(quad)(xi)
?
=

∑
xi∈bin

w1(2),i, (7.1)

i.e., convergence in the bins of scalar event-level observables. Training the network as described in
the chapters 5 and 6 adequately meets this condition. An exemplar collection of such histograms
of Rlin(quad)(x) in bins of the DNN input features is shown in Fig. 7.2 on the next page for OQQ1
in tt̄tt̄.

To set limits, we compute the 1D and 2D log-likelihood ratios using (a) full information from
training or (b) only the information regarding the shape. The two modes of evaluation differ in
their normalization, which can be seen when we make histograms of the test statistic tθ for θ ̸= 0,
i.e., not at the SM point where the test statistic is flat under the respective binning choice. Again
for OQQ1 in tt̄tt̄ as an example, histograms for the two modes are shown in Fig. 7.1. For (a), the
total number of events is modified because of the operator insertion, for (b), the operator influences
only the shape with respect to the SM, keeping the sum of all per-bin yields constant.
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Figure 7.1: The transformed test statistic for OQQ1 in tt̄tt̄ according to the procedure described
in Chapter 4, section 4.2. The bins are then used in expression Eq. 4.41. The values of θ for
which the test statistic has been calculated differ between the left and right figure. This is a
deliberate choice to better adapt to the most sensitive θ-range according to the LLR shapes.
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7.1. Training for signal only
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Figure 7.2: Convergence in bins of all scalar event-level observables for OQQ1 in tt̄tt̄. The solid
red line denotes the left side of Eq. 7.1 for Rlin, i.e., the training output, whereas the dashed red
line marks the right side, i.e., the truth. Blue lines are the equivalent for Rquad.
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Figure 7.3: 1D LLR for all operators in tt̄tt̄, signal only. The shapes have been
calculated using the full information or only the shape information about the EFT effects
learned in the training. These effects affect both variations in the yield per bin and changes in
the shape of the pdf p(x|θ) with respect to the SM pdf p(x|SM). The blue and purple boxes
indicate 2σ and 1σ according to Tab. 4.2, respectively. The network has been trained with
signal only.
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Figure 7.4: 1D LLR for all operators in
tt̄bb̄, signal only. The shapes have been cal-
culated using the full information or only
the shape information about the EFT effects
learned in the training. These effects affect both
variations in the yield per bin and changes in the
shape of the pdf p(x|θ) with respect to the SM pdf
p(x|SM). The blue and purple boxes indicate 2σ
and 1σ according to Tab. 4.2, respectively. The
network has been trained with signal only.
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Figure 7.5: 2D LLR (full information) for selected operators in tt̄tt̄, signal only.The
2D limits above have been calculated using the full information about the EFT effects learned
in the training for selected operator combinations in tt̄tt̄.
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Figure 7.6: 2D LLR (shape effects only) for selected operators in tt̄tt̄, signal only.
The 2D limits below have been calculated using only the shape information from the EFT
effects learned in the training for selected operator combinations in tt̄tt̄.
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Figure 7.7: 2D LLR (full information) for selected operators in tt̄bb̄, signal only.The
2D limits above have been calculated using the full information about the EFT effects learned
in the training for selected operator combinations in tt̄bb̄.
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Figure 7.8: 2D LLR (shape effects only) for selected operators in tt̄bb̄, signal only.
The 2D limits below have been calculated using only the shape information from the EFT
effects learned in the training for selected operator combinations in tt̄bb̄.
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7.2 Training with signal and background
Finally, we train selected operators using a combination of signal and background samples, i.e.,

the ones with the greatest effects on the shapes. The background consists of tt̄ events, whereas the
signals are again tt̄tt̄ and tt̄bb̄, respectively. The event selections are performed as described in
section 6.1.2 in chapter 6.

It is important to note that we do not tell the machine about the signal and background events.
Instead, we let it treat every event exactly the same, except from the SM reference weight wi,0 we
assign to every event in the loss function. This weight is related to the cross section of the process,
and we normalize to the integrated luminosity of L = 300 fb−1,

wsig
i,SM =

Lσsig
SMwsig

i,0∑
j w

sig
j,0

(7.2)

for our DELPHES signal samples tt̄tt̄ and tt̄bb̄. For the tt̄ background simulated with GEANT, the
events are also assigned per-event weights that model interference effects from next-leading order
(NLO) calculations and can also be negative.

The histograms in bins of scalar event-level observables in Fig. 7.10 on the next page and
the computation of the 1D and 2D LLRs are then just identical to the training setting without
background.

0.6− 0.4− 0.2− 0 0.2 0.4 0.6

θ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

TT
TT

, c
Q

Q
1

1.5− 1− 0.5− 0 0.5 1 1.5

θ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

TT
TT

, c
Q

Q
8

1− 0.5− 0 0.5 1

θ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

TT
TT

, c
Q

t1

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2

θ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

TT
TT

, c
Q

t8

0.6− 0.4− 0.2− 0 0.2 0.4 0.6

θ

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

TT
TT

, c
tt

Figure 7.9: 1D LLR for selected operators in tt̄tt̄, with back-
ground. The shapes have been calculated using the full information
or only the shape information about the EFT effects learned in the
training. The blue and purple boxes indicate 2σ and 1σ according to
Tab. 4.2, respectively. The network has been trained with signal and tt̄
background.

Figure 7.9

54



7.2. Training with signal and background

0 100 200 300 400 500 600 700 800
) 

1
(lT m

0.2−

0

0.2

0.4

0.6

0.8

3
10×

0 50 100 150 200 250 300
)  

1
(l

T
 p

0.2−

0.1−

0

0.1

0.2

0.3

0.4

3
10×

3− 2− 1− 0 1 2 3
) 

1
(lη 

0.1−

0

0.1

0.2

0.3

0.4

3
10×

0 50 100 150 200 250 300 350 400
  

miss
T E

0.2−

0.1−

0

0.1

0.2

0.3

0.4

3
10×

0 500 1000 1500 2000 2500
 2j m

0.4−

0.2−

0

0.2

0.4

0.6

0.8
3

10×

0 500 1000 1500 2000 2500
 l1,j1 m

0.0004−

0.0002−

0

0.0002

0.0004

0.0006

0.0008

0.001

0 0.5 1 1.5 2 2.5 3 3.5
 

2l
φΔ 

0.1−

0.05−

0

0.05

0.1

0.15

0.2

0.25

3
10×

0 0.5 1 1.5 2 2.5 3 3.5
 

2j
φΔ 

0.1−

0

0.1

0.2

0.3

0.4

0.5

3
10×

0 1 2 3 4 5 6
 

2l
ηΔ 

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5

0.6

3
10×

0 1 2 3 4 5 6
 

2j
ηΔ 

0.2−

0

0.2

0.4

0.6

0.8

3
10×

0 500 1000 1500 2000 2500 3000
 T H

0.4−

0.2−

0

0.2

0.4

0.6

0.8

3
10×

0 500 1000 1500 2000 2500
 T,b-jets H

0.0004−

0.0002−

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 100 200 300 400 500 600
)  

0
(j

T
 p

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5

3
10×

3− 2− 1− 0 1 2 3
) 

0
(jη 

0.1−

0

0.1

0.2

0.3

0.4

0.5

3
10×

0 100 200 300 400 500 600
)  

0
(b

T
 p

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5

3
10×

0 100 200 300 400 500 600
)  

1
(b

T
 p

0.0004−

0.0002−

0

0.0002

0.0004

0.0006

0.0008

0.001

0 500 1000 1500 2000 2500
  4b m

0.001−

0.0005−

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 200 400 600 800 1000 1200
 T,bb m2

0.0005−

0

0.0005

0.001

0.0015

0 0.5 1 1.5 2 2.5 3 3.5
 b-jet,b-jet RΔ 

0.1−

0.05−

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
3

10×

0 0.5 1 1.5 2 2.5 3 3.5
 2l RΔ 

0.1−

0.05−

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
3

10×

0 1 2 3 4 5 6 7 8
 jet multiplicity 

0.0005−

0

0.0005

0.001

0.0015

0.002

0 100 200 300 400 500 600 700 800
) 

2
(lT m

0.0004−

0.0002−

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 200 400 600 800 1000 1200 1400
 2l m

0.0004−
0.0002−

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 50 100 150 200 250 300
)  

2
(l

T
 p

0.0004−

0.0002−

0

0.0002

0.0004

0.0006

0.0008

0.001

3− 2− 1− 0 1 2 3
) 

2
(lη 

0.1−

0

0.1

0.2

0.3

0.4

3
10×

0 500 1000 1500 2000 2500
 l1, j2 m

0.0006−

0.0004−
0.0002−

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 T HΔ 

0.2−

0

0.2

0.4

0.6

0.8

3
10×

0 100 200 300 400 500 600
)  

1
(j

T
 p

0.4−

0.2−

0

0.2

0.4

0.6

0.8

3
10×

3− 2− 1− 0 1 2 3
) 

1
(jη 

0.1−

0

0.1

0.2

0.3

0.4

0.5
3

10×

0 100 200 300 400 500 600
)  

2
(j

T
 p

0.0004−

0.0002−

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

3− 2− 1− 0 1 2 3
) 

2
(jη 

0.1−

0

0.1

0.2

0.3

0.4

3
10×

0 100 200 300 400 500 600
)  

3
(j

T
 p

0.0005−

0

0.0005

0.001

0.0015

0 100 200 300 400 500 600
)  

4
(j

T
 p

0.0005−

0

0.0005

0.001

0.0015

0 100 200 300 400 500 600
)  

5
(j

T
 p

0.001−

0.0005−

0

0.0005

0.001

0.0015

0.002

0.0025

0 100 200 300 400 500 600
)  

6
(j

T
 p

0.001−

0.0005−

0

0.0005

0.001

0.0015

0.002

0.0025

0 100 200 300 400 500 600
)  

7
(j

T
 p

0.0005−

0

0.0005

0.001

0.0015

0.002

0 0.5 1 1.5 2 2.5 3 3.5
 0 RΔ 

0.0002−

0

0.0002

0.0004

0.0006

0.0008

0.001

0 0.5 1 1.5 2 2.5 3 3.5
 1 RΔ 

0.2−

0.1−

0

0.1

0.2

0.3

0.4

0.5

3
10×

0 200 400 600 800 1000 1200
 T,ll m2

0.001−

0.0005−

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 200 400 600 800 1000 1200
 T,blbl m2

0.001−

0.0005−

0

0.0005

0.001

0.0015

0.002

0.0025

Figure 7.10: Convergence in bins of all scalar event-level observables for OQQ1 in tt̄tt̄ with tt̄
background. The solid red line denotes the left side of Eq. 7.1 for Rlin, i.e., the training output,
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Figure 7.11: 1D LLR for selected operators in tt̄bb̄, with background. The shapes
have been calculated using the full information or only the shape information about the
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Figure 7.12: 2D LLR (full information) for selected operators in tt̄tt̄ with tt̄ back-
ground. The 2D limits above have been calculated using the full information about the EFT
effects learned in the training for selected operator combinations in tt̄tt̄
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Figure 7.13: 2D LLR (shape effects only) for selected operators in tt̄tt̄ with tt̄
background. The 2D limits below have been calculated using only the shape information
from the EFT effects learned in the training for selected operator combinations in tt̄tt̄

.

57



7.2. Training with signal and background

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
cQb1

5−

4−

3−

2−

1−

0

1

2

3

4

5

ct
b8

4−10

3−10

2−10

1−10

1

10

210

310

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
cQt1

2−

1.5−

1−

0.5−

0

0.5

1

1.5

2

cQ
b1

4−10

3−10

2−10

1−10

1

10

210

310

4− 2− 0 2 4
cQb8

5−

4−

3−

2−

1−

0

1

2

3

4

5

ct
b8

4−10

3−10

2−10

1−10

1

10

210

310

2− 1.5− 1− 0.5− 0 0.5 1 1.5 2
cQb1

4−

2−

0

2

4cQ
b8

4−10

3−10

2−10

1−10

1

10

210

310

4− 3− 2− 1− 0 1 2 3 4
cQt8

4−

2−

0

2

4cQ
b8

4−10

3−10

2−10

1−10

1

10

210

310

4− 3− 2− 1− 0 1 2 3 4
cQt8

2−

1.5−

1−

0.5−

0

0.5

1

1.5

2

cQ
b1

4−10

3−10

2−10

1−10

1

10

210

310

Figure 7.14: 2D LLR (full information) for selected operators in tt̄bb̄ with tt̄
background. The 2D limits above have been calculated using the full information about the
EFT effects learned in the training for selected operator combinations in tt̄bb̄.
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Figure 7.15: 2D LLR (shape effects only) for selected operators in tt̄bb̄ with tt̄
background. The 2D limits below have been calculated using only the shape information
from the EFT effects learned in the training for selected operator combinations in tt̄bb̄.
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7.3 Summary of the limit setting
Looking at the 1D and 2D limits on the Wilson coefficients on the previous pages, we see that

we can effectively constrain a large amount of four-fermion operators in tt̄tt̄ and tt̄bb̄ with and
without backgrounds. Hereinafter, we will briefly discuss peculiarities and characteristics of the
LLRs just computed:

• Regarding the general shape of the LLR contures in 1D, we note that it follows a
quartic polynomial form. This is to be expected, as the yield itself is a quadratic function in
the EFT parameters and hence a quadratic polynomial in θ. In a Gaussian approximation
of the 1D limits on the Wilson coefficients, one can then interpret the LLR shapes as one
dimensional Gaussian confidence intervals. The deviation from the Gaussian parabola is due
to the quadratic term in the EFT, that leads to the quartic shape.

• When training and evaluating signal only in tt̄tt̄, the yield information considerably
improves the discriminative power of our parametrized classifier. When removing the yield
variations in evaluation, performance decreases and the shapes display a more quartic be-
haviour. In training and evaluating signal only in tt̄bb̄, the effect is a little less
pronounced for operators like, e.g., Otb1, OQb1, OQtQb1 and OQtQb8.

• When evaluating the 2D LLRs in tt̄tt̄ for the combination of the operators OQQ1
and OQQ8, the shape displays a peculiar form. This is in accordance with the underlying
theory structure of SMEFT for operators involving only left-handed heavy quarks. In fact,
Ref. [90] gives the following relation between those operators and the color singlet and octets
that would or would not interfere with the QCD amplitudes:(

O1(3333)
qq

O3(3333)
qq

)
=

(
1 −1/3
0 4

)T (
(Q̄ γµ Q) (Q̄ γµ Q)

(Q̄ γµ TA Q) (Q̄ γµ TA Q)

)
(7.3)

When looking at our operators in Tab. 3.1, we can identify (Q̄ γµ Q) (Q̄ γµ Q) with 2OQQ1
and (Q̄ γµ TA Q) (Q̄ γµ TA Q) with 2OQQ8. Hence, in the 2D limit, we effectively constrain
O1(3333)

qq in the rotated basis with a ratio of 1/3 between OQQ1 and OQQ8, as seen in the
previous plots.

• When training and evaluating signal and background in tt̄tt̄ and tt̄bb̄, the differ-
ences in the 1D shapes between the two “modes” of evaluation almost vanish. Hence, we
conclude that the most efficient handle to tease out the EFT nuisances from a large tt̄ back-
ground not affected by the respective operators is the variation in the shape. The increased
discriminative power of the yield changes is still present at values of θ very close to the
SM point. However, this relevant θ-range, where the yield variations would allow tighter
limits than just the shape information, is well below the 1σ. When looking at the 2D ratios
(especially in tt̄bb̄), there is almost no difference.

• Furthermore, when training and evaluating signal and background, one notices that
the LLR shapes are generally less “smooth” than in the signal only case. This is especially
the case for the 2D limits in tt̄tt̄, e.g., for the operator combinations of OQQ1 + OQt1 or
Ott + OQt1. This behaviour is mirrored in the histograms of the input features for certain
values of θ, where the EFT effects are either present only in form of very flat changes that
are almost equal in each bin or almost no variations in yield.
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Chapter 8

Conclusion and Outlook

In this thesis, we instantiated a complete work-flow from sample generation to training a neural
network with simulation-based inference and setting first nuisance-free limits for single operator
insertions in the Standard Model Effective Field Theory formalism.

At the heart of our machine learning approach, we exploited the fact that the beyond the Stan-
dard Model effects of effective field operator insertions enter quadratically in the theory prediction
for the cross section at a given value of the Wilson coefficients with respect to the Standard Model.
This polynomial dependence allowed us to construct a loss function so that we could regress in the
intractable quantity of the joint likelihood ratio at detector level while using the tractable event
weights from simulation as a training target. By choosing a posteriori the value of θ we want to be
optimal to, we thus circumnavigated the necessity to train separate networks for distinct values in
our parameter space.

As training data, we produced signal samples for our physics cases of four top quark production
and simultaneous production of two top and two bottom quarks. From the data, we retrieved
scalar event-level and jet-array system based observables to feed into our Multivariate Analysis
architecture. In terms of machine learning, we used a combination of Deep Neural Networks (DNNs)
and Long Short Term Memory (LSTM) layers to optimally extract the beyond the Standard Model
information present in the input features. After optimizing the hyperparameters related to the
DNN components, however, we found that the LSTMs could not further contribute to the network’s
performance. An investigation of the causes for this unexpected behaviour took advantage of the
fact that our Multivariate Analysis architecture could also be used for multi-classification with
minimal modifications.

When using the training setup with multi-classification as a proxy for LSTM testing, we saw
a considerable improvement of performance when adding an optimized LSTM configuration to the
DNN. After artificially restraining the LSTM input to the features we had used in simulation-based
inference before, the performance degraded again, which is a strong hint that the limitations of
our detector parametrization in DELPHES are responsible for the weak performance of additional
LSTMs.

Finally, we set limits for single operator insertions, both for training with signal samples only
and with an additional tt̄ background. In this respect, we investigated the yield related improve-
ments in the limits compared to the log-likelihood ratio shapes with variations only in the shapes.
Herein, we found that the signal-only performance of the training profits considerably from the
yield-related changes, whereas the changes in shape provide the most sensitive handle when back-
ground is added. In 2D, we saw correlations between some operator combinations, which we could
trace back to the underlying theoretical background.
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8. Conclusion and Outlook

As an outlook, this thesis opens up interesting perspectives on attempts to learn the EFT effects
through simulation-based inference, not least because of intrinsic technical limitations of this work.
In fact, making use of samples with a more accurate detector parametrization could fully exploit the
LSTM layers’ power. If this is comparable to what has shown in multi-classification, the expected
improvement could be significant. Additionally, making use of Graph Neural Networks could also
lead to an increased performance of the neural network.

Lastly, another point should not be left unmentioned: The limits on Wilson coefficients have
been computed in an ideal setting without any addition of systematical uncertainties or nuisances.
It remains to investigate in the future if the discriminative power is still present thereafter, especially
in the systematically limited, difficult to model tt̄bb̄ production.
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