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PREFACE

The description of nuclear matter away from the ground state (specifically at high

densities and temperatures) remains a challenging area of research for physicists for a

long time now. The main interest in this research area is fuelled due to the use of the nu-

clear matter properties to investigate various astrophysical phenomena such as evolution

of the proto-neutron stars, explosion mechanism of supernova as well as evolution of the

universe at initial times. The only accessible tool to create nuclear matter at such condi-

tions on earth is heavy-ion collisions. Though, a large number of experimental as well as

theoretical studies have been conducted to understand behavior of nuclear matter at these

extreme conditions of temperature and pressure, its comprehensive picture is still missing.

The present study is done in the framework of dynamical models i.e., Quantum Molecular

Dynamical (QMD) model and Isospin dependent Quantum Molecular Dynamics (IQMD)

model. The phase space generated via Quantum Molecular Dynamics (QMD) model

is further subjected to various available clusterization algorithms i.e., Minimum Span-

ning Tree (MST) method, Minimum Spanning Tree method with Momentum (MSTM or

MSTP) cut, Minimum Spanning Tree method with Binding (MSTB) energy cut, Minimum

Spanning Tree method with Temperature-dependent Binding (MSTBT) energy cut and

Simulated Annealing Clusterization Algorithm (SACA). Multifragmentation is considered

as the strong candidate to study phase transitions in nuclear matter. Various phases of

nuclear matter constitute different sized multi-fragments. These multi-fragments include

free nucleons (FN’s), light charged particles (LCP’s) and Intermediate Mass Fragments

(IMF’s). The multiplicity of intermediate mass fragments and light charged particles in-

dicates to the onset of multifragmentation and vaporization in nuclear matter.

In the present work, we shall explore phase transition in nuclear matter and associate

its significance with various significants phenomenon in nuclear physics. Firstly, we shall

study liquid-gas phase transition by extracting critical parameters τ and λ and study

various other critical observables such as S2, γ2 and Zmax2. This study will reveal that

whether the liquid-gas phase transition is dependent on the choice of clusterization algo-

rithm or not. Results regarding this will be presented in chapter 3. Further in chapter 4,

we shall extend our study by using energy based clusterization algorithm i.e., Simulated

Annealing Clusterization Algorithm (SACA) and extract all the parameters related to
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phase-transition. We shall also confront our results with experimental data for light and

heavily charged systems.

Next, in chapter 5, we shall study the complete disassociation of system into lighter par-

ticles i.e., onset of vaporization. This study will be conducted using various clusterization

algorithms. Further, we shall study the systematics of light particles and entropy produc-

tion. The work will be spanned over the complete mass asymmetry and incident energy

range. In chapter 6, we shall present the summary of the work along with an outlook.
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Chapter 1

Review of phase-transition in
heavy-ion collisions

The field of nuclear physics focuses on exploring various properties of atomic nuclei and

outshines among the most generally thought about fields in science in the present era.

One of the main motivation behind contemplating nuclear physics is to understand the

properties of nuclear matter at the time of big bang or just after that [1, 2]. The Big

Bang portrayed the development of the universe from the point when the temperature and

density were extremely high and proffer the extensive description of phenomena associated

with it. The origin of the universe from the huge explosion fuelled the enthusiasm of

physicists and cosmologists to further progress in the field. To deal with the physics

(behind the happenings that review the constituents and interactions associated with it),

nuclear physics is considered as an unobtrusive branch.

Another objective of nuclear physics is to comprehend the properties of nuclear matter

as well as of finite nuclei and to understand how the nuclear core is developed from the

basic constituents. The nuclear matter is a naturally visible framework with the equivalent

number of protons and neutrons. Further, these nucleons comprise of quarks and gluons

that glue to each other through strong interactions. The massless gluons are responsible

for the interactions among quarks. In addition, one also wonders whether nuclear matter,

like fluid, can exist in different phases and whether there is a transition among different

phases. The investigation about the phase-transitions in nuclear matter, therefore, has

fascinated the scientists for a long time now. At low incident energies, the nuclear matter is

studied as an analogue to liquid drop through the famous liquid drop model. Subsequently

at intermediate and high incident energies, the properties and characteristics of nuclear

matter resembles closely with that of ordinary matter, therefore, instigates one to explore
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the field at a deeper level. The fundamental reason behind studying these transitions is

to explore how the nuclear matter evolves through different phase-separation (binodals)

and instability boundaries (spinodals) [3]. These phase-transitions are also crucial for

understanding various astrophysical phenomena such as the dynamics of the supernova

explosions as well as the formation of neutron stars [4]. In this thesis, we will explore

liquid-gas phase transitions and various order parameters that predict these transitions

in nuclear matter. We will also study the onset of vaporization and emission of light

particles that will also be used to extract systematics on entropy production.

1.1 Statistical view of phase-transition

The statistical physics provides the framework for associating the microscopic features of

each atom and molecule to the macroscopic properties that can be observed in daily life

[5–7]. The fundamental laws of classical (macroscopic systems) or quantum mechanics

(microscopic systems) govern the physics and dynamics involved behind the interactions

between these atoms and molecules. Consequently, the thermodynamics is a natural out-

come of the statistics. In thermodynamics, when the state variables such as pressure (P),

volume (V), temperature (T), energy (E′), chemical potential (µ) etc. become indepen-

dent of time, the system is said to be in thermodynamical equilibrium. To define it in

a more refined way, one needs to understand the system at a microscopic level. At mi-

croscopic level, all the macroscopic objects are considered to be composed of atoms and

molecules.

1.1.1 Phase-transition and critical phenomenon

The main objective of statistical physics is to determine the equation of state at a mi-

croscopic level by taking into account all the constituents and interactions of the ther-

modynamic system. Here a phase is defined as the state of matter in thermodynamic

equilibrium. Depending upon the different macroscopic conditions, the thermodynamical

variables can be classified into following two types:

• intensive variables : The value of these variables is independent of the amount of

substance for which it is measured. These variables include pressure (P), tempera-

ture (T), volume (V), etc.

and
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Figure 1.1: The Pressure-Temperature (P-T) phase diagram.

• extensive variables: The value of these variables depend on the amount of substance

in the system or quantity contained in the system. These variables include energy

(E′), entropy (S), free energy (F), specific heat (CV ) etc.

For one pair of these thermodynamical variables (such as Pressure-Temperature (P-T),

Pressure-Volume (P-V), Temperature-Energy (T-E′) etc.), two phases can co-exist at the

same time and attain thermodynamical equilibrium. Consequently, the co-existence of two

phases and various characteristics associated with it marks the first-order phase transition.

The phase diagrams between any two above discussed thermodynamical variables can be

used to depict graphically the physical states of the matter under different conditions.

Fig. 1.1 illustrates the variations between different states of the matter as they relate

Pressure-Temperature (P-T) phase diagram. In the figure, different phases are shown

as solid, liquid and gas, respectively. The solid lines in the figure separate two phases

and are also termed as phase equilibrium lines along which the two phases can co-exist

simultaneously. The point where the three phases co-exist simultaneously is termed as

“triple point” and another point where the distinction between liquid and vapor vanishes
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is termed as the “critical point”.

In Fig. 1.2, the Pressure-Volume (P-V) phase diagram depicts the isotherms at dif-

ferent temperatures (T1 and T2). The figure shows the existence of liquid region (water),

the vapor region (steam) and coexistence of liquid and vapor region (water-steam) simul-

taneously. At low volume, the vertical curves represent the incompressible liquid whereas

at high volume, the curves show the hyperbolic trend which denotes the vapor phase.

The parallel isotherms at the mid volume show the simultaneous existence of both the

liquid and vapor phases. In other words, coexistence of liquid and vapor phases happens

at constant pressure. Further, as the temperature increases, the parallel portion of the

curve decreases and ultimately at critical point, liquid-vapor co-existence disappears.

As per Ehrenfest criteria, the nth order of the phase-transition corresponds to the

discontinuity of the nth derivative of free energy function. Thus, in a first-order transition,

the first derivative of the free energy becomes discontinuous whereas in the second-order

transition, the second derivative of the free energy diverges at the transition point.
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In statistical physics, the free energy using partition function is described by the

relation F= -KT ln Q , where F is the Helmholtz free energy, K is the Boltzmann constant

and Q is the partition function of the given system. The first-order derivative of F with

respect to T gives the discontinuity at the transition point if the system undergoes a

first-order phase transition. The entropy (S) can be extracted from the temperature as:

S = −T
(∂F
∂T

)
. (1.1)

Therefore, the entropy gives the first discontinuity at the transition point. The entropy

“S” can also be expressed in the terms of latent heat. The first-order phase transition

includes the latent heat that converts one phase into another without affecting the tem-

perature of the system. From the Ehrenfest theory, it is clearly understood that for the

second-order phase transition, the second derivative of the free energy will diverge at the

critical point. The second-order derivative is related to the specific heat (CV ) that reads

as:

CV = −T
(∂S
∂T

)
, (1.2)

where, CV represents the specific heat at a constant volume. As shown in the above

equation, CV denotes discontinuity at the transition point for second-order derivative.

Another type of phase diagram i.e., Temperature-Energy (T-E′) phase diagram for

ordinary and nuclear matter, is displayed in Figs. 1.3 (a) and (b), respectively. These

curves are termed as caloric curves. In Fig. 1.3 (a), the matter exists in solid form at

initial stage and temperature increases linearly with the energy and therefore, melts down

into liquid form. With the further increase in the temperature, the curves becomes parallel

to the energy axis (X-axis) and therefore, two phases co-exist simultaneously. Thereafter,

further increase in the temperature leads to gas phase.

To study the phase-transition in nuclear matter, Pochdozalla et al. performed first

experiment for heavy-ion reaction [8, 9]. For this experiment, the ALADIN forward spec-

trometer of GSI facility was used to induce 197Au + 197Au reaction at 600 MeV/nucleon.

They studied the isotopic temperature (THeLi) as the function of excitation energy

(< E/A >), here E is the excitation energy and A is the mass of the fireball. Note

that the yield of He and Li produced the above given reaction is used to calculate the

isotopic temperature (THeLi). Their results together with the results obtained by other

experimental groups such as National Superconductor Cyclotron Laboratory (NSCL)-
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Figure 1.3: The Temperature-Energy (T-E′) phase diagram in ordinary and nuclear mat-
ter. “ Reprinted (Fig. 1) with permission from M. D’ Agostino et al., Nuclear Physics A
749, 55c-64c (2005), Copyright (2005) by the Elsevier”.

Michigan State University (MSU), Laboratory of Nuclear Science (LNS) are also showed

in Fig. 1.3 (b). One notices that the isotopic temperature increases sharply with the

excitation energy for initial temperatures after which a plateau was reported at a fixed

isotopic temperature ≈ 5 MeV for the broad range of excitation energy. This plateau was

taken as a strong evidence for the liquid-gas phase transition in nuclear matter. For the

further increase in the excitation energy, a linear rise in the temperature was obtained.

Interestingly, the results were independent of the system masses. These results of nuclear

matter were analogous to the well known behavior (i.e., phase-transition) in ordinary

matter.

1.1.2 Phase-transitions in nuclear matter

The phase transitions in nuclear matter provide an unique edge to the nuclear and statisti-

cal physics. Phase-transitions in nuclear matter are exceptionally unique as they occur at

a scale many orders of magnitude far from the ordinary matter. For the explicit descrip-

tion, a schematic representation of various phases of nuclear matter is displayed in Fig.
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1.4 [10]. As shown in the figure, the nuclear matter exists as liquid phase in ground state.

The point on the density axis (X-axis) in the figure corresponds to the normal state of

the nuclear matter (ρ = ρ0, T = 0 MeV) and the arrows define the trajectory followed by

the universe after the big bang. In the liquid-phase, the nuclear matter is cold and exists

in the ground state i.e., at low temperature and density. With the rise in the temperature

and density, the particles of nuclear matter move freely like Van der Waal’s gas, therefore,

under specific conditions liquid-gas phase transition can be witnessed. When the density

of nuclear matter is too high in comparison to the ground state (e.g., in neutron stars),

this phase is often termed as condensed phase. The state where the temperature is fairly

high with density being few times the normal nuclear matter density corresponds to the

gaseous phase. The nuclei evaporates into hadron gas and further rise in the temperature

can also lead to the second-order phase transitions. This phase corresponds to the highly

compressed state of nuclear matter where density reaches up to 5 to 10 times the normal

nuclear density and the temperature of around 150 MeV (or higher) is attained. In this

phase, nuclear matter is highly compressed that makes hadrons to disassociate themselves

into elementary particles and a de-confined mixture of quarks and gluons start appearing.

This phase is termed as Quark Gluon Plasma (QGP) phase.

1.1.3 Equation of State (EOS) of nuclear matter

As mentioned above, the equation of state in nuclear matter can be expressed in terms of

thermodynamical variables i.e., relation between pressure and volume of nuclear matter.

The knowledge of the equation of state in the field of nuclear physics evoked the interest of

both physicists and cosmologists to understand the range of phenomena happening at all

energy scales. The equation of state helps to procure necessary physics behind phenomena

such as multifragmentation, collective flow, stopping etc. and structure of nuclei far from

the stability line whereas in astrophysics, it helps to understand the mechanism associated

with supernova collapse and the structure of neutron stars. Hans Bethe and Carl Friedrich

von Weizsäcker were pioneers in the field to introduce the concept of nuclear equation of

state near the ground state conditions. Their results were formatted in the form of formula

famously known as semi-empirical mass formula or liquid drop model [11]. Unfortunately,

with the passage of time, it became clear that to pin down the nuclear equation of state

is not straightforward. Further, the uncertainty in the experimental observations and

also in the theoretical approaches has made the situation much more complicated than
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Figure 1.4: A schematic view of the phase diagram of nuclear matter. Here, Y-axis
displays the temperature (in MeV) and X-axis displays the baryons density normalized
to the density of the ground state of nuclear matter. This figure is taken from the Ref.
[10].

was anticipated in early studies. The above situation becomes much complicated when

one realizes that the compressed and hot stage in the nuclear matter stays for very short

period of time and cannot be detected experimentally.

In another approach, the set of isotherms are used to define the equation of state

(pressure versus density) that corresponds to nuclear forces. In Fig. 1.5, we display

such curves for representation. These isotherms show the maximum-minimum behavior

which is quite similar to Van der Waal’s equation of state of real gases. Based on the

interaction taken into account, the nuclear equation of state depicts the critical point at

ρc ≈ 0.3 - 0.4 ρ0 and Tc ≈ 16 - 18 MeV, where ρc and Tc represents the critical density

and temperature, respectively. In Fig. 1.5, the area below the dotted line corresponds

to the area of negative compressibility which implies that at a constant temperature, an

increase in the density leads to decrease in the pressure [12]. However, in this area the

single homogenous phase is unstable and system assimilates into liquid and gas phases.

This assimilation into two phases corresponds to the spinodal instability. This instability

is often mentioned as the cause behind the phenomenon of multifragmentation. The
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Figure 1.5: Equation of state corresponding to pressure or temperature and density (nor-
malized to critical density) in nuclear matter. The dashed dotted lines are the co-existence
lines and dotted lines the spinodal lines [12]. “ Reprinted (Fig. 1) with permission from
B. Borderie and M. F. Rivet, Progress in particle and nuclear physics 61, 551-601 (2008),
Copyright (2008) by the Elsevier”.

considerable part of the co-existence of liquid and gas phases is present in the spinodal

region. We likewise don’t have any immediate method to measure the state variables

(pressure (P), volume (V), temperature (T), energy (E′), etc.) for nuclear matter. As

mentioned earlier, there are various methods to explore the highly dense state of nuclear

matter indirectly. The finite nucleus and monopole vibrations generate slightly higher

density than the normal nuclear density, so cannot be used to examine the situation at

the extreme. On the other side, due to inaccessibility and rare occurrence of neutron star

and supernova explosion, these cannot be taken as reliable sources for hot and dense state

of nuclear matter. Therefore, owing to aptness to overcome all the limitations, heavy-ion

collisions at intermediate energies are considered as the best tool to probe the state of

compressed and dense nuclear matter state [1, 2].
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1.2 Heavy-ion collisions

The progress in the field of nuclear physics led to the construction and commissioning of

various accelerators that are capable of accelerating heavy-ions from few keVs to thou-

sands of GeV/nucleon [13–15]. Concomitantly, the advanced detectors have been devised

to detect charged as well as uncharged particles and reported the key role of heavy-ion

collisions to probe the various aspects of dynamics associated with nuclear matter. Higher

the incident energy, deeper and better insight into nuclear matter from atoms to nucleons

and consequently, nucleons to quarks is possible [16–20].

In accordance with the incident energy of the projectile, heavy-ion collisions can be

classified into three domains and its overview is discussed below: At low incident en-

ergies, the scattering of nucleons is expressed in terms of Brueckners’s G-matrix. In

this domain, the interaction potential is given in terms of G-matrix which can be subdi-

vided into two parts i.e., real and imaginary parts. The real part acts like the potential

whereas, imaginary part is proportional to the cross-section. The mechanism of reac-

tions at low, intermediate and high energy depends strongly on the interplay between the

real and imaginary parts of the interaction potential. At low incident energy (upto few

MeV/nucleon) the contribution of imaginary part is too small to have meaningful and

significant impact. At relativistic energy (≥ few GeV/nucleon), the imaginary part of the

potential dominates. This is attributed to the reduced number of blocked collisions due

to available free momentum space. Contrarily, at intermediate energies (in between few

MeV/nucleon and GeV/nucleon), both the real and imaginary parts play the key role in

deciding the dynamics of a reaction. The cause behind the keen interest in the low energy

domain (Elab < 10 MeV/nucleon) is to understand the process of fusion [21, 22], fission

[23], cluster radioactivity [24], emission of beta and gamma rays [25, 26], synthesization of

super-heavy nuclei [27, 28] as well as to explore the features of exotic nuclei formed during

the reaction [29]. Here, the real part of the potential i.e., mean-field plays the decisive

role. As a result, initial nucleon-nucleon correlations are preserved for the longer duration.

Contrarily, in the high energy domain (Elab > 2 GeV/nucleon), the sub-nucleonic degrees

of freedom becomes dominant. The binary hard collisions among nucleons destroy the ini-

tial correlations among nucleons and therefore, nuclear matter equilibrates early and fast.

The main motive to study the reactions in this regime is to understand the interactions

between quarks and also to explore the existence of quark-gluon plasma [30, 31].
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In the intermediate energy domain, the energy of the projectile is such that none of

the real and imaginary parts has decisive dominance. In this energy domain, both binary

collisions as well as mean-field play equally important role. The nuclei at normal density

and zero temperature behave like a Fermi liquid, therefore, liquid to gas phase transition

can possibly be observed in these reactions. Subsequently, the second phase-transition

is witnessed by the nuclear matter at high temperature and density. Here, one observes

the transition from the hadronic matter to Quark Gluon Plasma (QGP) phase. The

reactions in this density-temperature range also provide an unique edge to determine the

exact nature of the equation of state. The great efforts have been put by large number of

scientists performing experiments at high energy all around the world at Conseil European

pour la Recherche Nucleaire (CERN) at Geneva in Switzerland and Brookhaven National

Laboratory (BNL) at New York, United States of America (USA). In this thesis, we will

constrain our study to heavy-ion collisions at intermediate energy only.

1.2.1 Multifragmentation

When the incident energy of the projectile is comparable to its binding energy, a thermal-

ized (and concentrated) state of nuclear matter may form. This thermalized state of the

nuclear matter gets consolidated by the outflow into the extensive number of varied size

fragments. This complete phenomenon is termed as multifragmentation [12, 32–35]. The

compressed state of nuclear matter exists for a very short time scale. After the compres-

sion phase, the expansion of the nuclear matter occurs that leads to the production of

fragments of various sizes. In Fig. 1.6, a schematic representation of the multifragmenta-

tion as a function of time scale of a reaction is depicted. In the figure, the projectile and

target collide at certain incident energy and forms a pre-equilibrium compressed state for

a very short time scale (10−22 sec). The pressure gradient developed in the compressed

state leads to the fragmentation of the system. Further, these fragments stabilize through

secondary decays.

At low incident energy, the reacting partners (projectile and target) do not have suf-

ficient energy to break into fragments. In comparison, at high incident energy the ex-

citation energy is too high and does not permit fragments to survive. At intermediate

energy, the excitation energy is sufficient to produce large number of fragments therefore,

studying reactions at intermediate energies is an ideal situation [12, 32]. It is well known

that the multiplicity of fragments is reliant strongly on the various entrance channel pa-
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Figure 1.6: A pictorial representation of phenomenon of multifragmentation

rameters such as mass of the colliding nuclei, incident energy of the colliding system,

colliding geometry, binding energy, isospin asymmetry, etc. For the better understanding

of the dynamics behind the fragmentation, one often classifies the fragments based on

the mass and/or charges. In the literature, one often has Free Nucleons (FN’s)[Af=1],

Light Charged Particles (LCP’s) [2≤Af≤4], Medium Mass Fragments (MMF’s)[5≤Af≤9],

Heavy Mass Fragments (HMF’s) (10≤Af≤AT/6) and also Intermediate Mass Fragments

(IMF’s) [5≤Af≤AT/6, where Af represents the mass of the fragment and AT signifies the

total system size/mass]. It should be noted that one often takes charge into considera-

tion when experimental studies are performed. These fragments of different sizes are rich

source of information.

The multifragmentation has been considered as an effective probe to contemplate var-

ious observables. The phenomenon of multifragmentation can also be explained on the

basis of the liquid-gas phase transition. The thermodynamical properties associated with

the hot nuclear matter and finite nuclei can be studied through various methods that

incorporate phenomenological approaches [36, 37], variational methods [38], the Hartree

Fock theory [39], the Thomas-Fermi approximation [40], the relativistic mean-field mod-

els [41] as well as the quasi-particle approximation [42]. These approaches revealed the

similarity between the equation of state of hot nuclear matter and Van der Waal’s forces

of ordinary matter. Also, many studies done in the past predicted liquid-gas phase tran-

sition but the characteristics related to its exact nature are still unknown [12, 32–35]. For
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instance, different calculations done in the literature show fluctuation in the critical tem-

perature Tc [32, 33]. For adequately low temperature and low density, the liquid-gas phase

transition is observed in form of droplets whereas at high density and temperature, this

transition leads to bubble phase. These droplets are frequently termed as fragments and

the mass/charge yield of these fragments strongly assist one to study various parameters

related to the liquid-gas phase transition [43–50]. Further, the bubbles correspond to very

light fragments formed at high energy that can be interlinked to the onset of vaporization

in the nuclear matter. It is well known that the light particles carry vital information

about the early phase of the reaction as they are formed at the every stage of the reaction

and determine the degree of the equilibration of nuclear matter. The entropy is one such

significant observable that shed light on the early stage of the hot and dense state of nu-

clear matter and also on the equilibration reached. As well as, the entropy production in

a heavy-ion reaction is observed to shed light on the fragment formation and on the onset

of vaporization. Detailed studies were also documented to find the entropy production in

nuclear reactions [51–56].

1.3 Features of fragmentation

1.3.1 Mass distribution

The mass distribution exhibits variation of the multiplicity of the fragments. The knowl-

edge of the mass distribution of fragments is essential to investigate the fragmentation

pattern. This distribution can easily be computed through experiments. The Figs. 1.7

(a), (b), (c), (d) show the mass distribution at four freeze-out temperatures (T = 6.5,

7.5, 10 and 14 MeV) for the fireball having mass of 192 units. The mass distribution

shows ‘U’-shaped curve at low temperature of T = 6.5 MeV, that predicts the presence of

both light and heavy mass fragments. At slightly higher temperature, the curve deviates

from ‘U’-shape and shows the production of intermediate mass fragments. At still higher

temperature i.e., T = 10 MeV, one sees monotonous decrease with negative slope that

steepens with further rise in the temperature.

1.3.2 Intermediate mass fragments

The multiplicity of Intermediate Mass Fragments (IMFs) is considered as one of the most

prominent feature to study the physics behind various phenomena. These fragments carry
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Figure 1.7: The mass distribution of fragments using Canonical Thermodynamical model
(CTM) calculation for a fireball (system mass = 192) at a temperature (a) 6.5 MeV (b) 7.5
MeV (c) 10 MeV and (d) 14 MeV. “ Reprinted (Fig. 2) with permission from S. Mallik,
S. Das Gupta and G. Choudhuri, Physical Review C 91, 034616 (2015), Copyright (2015)
by the American Physical Society”.

no hereditary of the colliding nuclei and are heavier than the alpha particles but lighter

than the fission fragments. The multiplicity of IMFs plays a key role in understanding

the dynamics of fragmentation pattern. In Fig. 1.8, we display the IMFs multiplicity as

a function of incident energy. A “rise and fall” behavior of the IMFs with incident energy

of the projectile has been observed [57]. Interestingly, both statistical and dynamical

models calculations have reported the emission of Intermediate Mass Fragments as most

significant signature to analyze the liquid-gas phase transition.

1.3.3 Liquid-gas phase transition

In several studies reported in the past, the multifragmentation has been closely interlinked

with the liquid-gas phase transition in nuclear matter [43, 44, 46]. The phase-transition in

the ordinary matter is generally defined for the macroscopic system in the thermodynamic

limit. Since nuclear system in a reaction is composed of few hundred of nucleons; therefore
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Figure 1.8: The multiplicity of IMFs as a function of incident energy for the central
collisions for 84Kr+197Au [57]. The <NIMF> and E/A represent the multiplicity of IMF’s
and excitation energy of the system, respectively. “ Reprinted (Fig. 2) with permission
from G. F. Peaslee et al., Physical Review C 49, R2271 (1994), Copyright (1994) by the
American Physical Society”.

the term “phase-transition” is only legitimate for the finite nuclear system with long-range

Coulomb interactions.

In heavy-ion collisions at intermediate energy domain, it is considered that liquid-gas

phase transition does occur. The formation of small chunks after the reaction (chunks are

generally termed as fragments) is considered to contain signals of such liquid-gas phase

transitions. As discussed above, mass yield curve at low incident energy points toward

the presence of both light and heavy mass fragments, thus the co-existence of both liquid

and gas phase can be observed. It was found that fragment mass/charge yield when fitted

as a function of mass (Af )/charge (Zf ) of fragments obeys such power-law at certain

excitation energy which is also signal for the liquid-gas phase transition [43, 44, 46]. The

value of incident energy at which power-law [Y(Af ) ∝ Af
−τ ] or [Y(Zf ) ∝ Zf

−τ ] appears

has been termed as critical energy or the energy of the onset of multifragmentation. The

Purdue experimental group noted such signal in their experiments [58]. This kind of
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behavior of fragments was earlier predicted in the Fisher’s droplet model calculations and

was later on confirmed in various other theoretical calculations [44–46]. The value of

critical energy is estimated by looking for the minimum in the power-law parameter “τ”

when plotted as a function of incident energy. One should keep into the mind that the

extraction of critical exponent and its power-law behavior is not sufficient evidence for the

liquid-gas phase transition. Therefore, various other observables such as moments of the

charge distribution, Campi scatter plots, multiplicity derivative of the largest fragment

as well as the fluctuations in the charge of the second largest fragment and many other

observables have been devised in the literature to study liquid-gas phase transition through

multifragmentation.

1.3.4 Onset of vaporization

From the studies of ordinary matter, it is quite evident that at high incident energies

the phase-transition leads to vapor phase. Coincidingly, the dynamics of the heavy-ion

reactions is also governed by the incident energy of the projectile. After the critical point,

the slope parameter τ keeps on increasing with incident energy and at certain higher

incident energy almost all the correlations among nucleons break down. This particular

energy has been identified in the literature as the energy of onset of vaporization. Such

phenomenon was predicted for the first time by Peliert et al. [59] and later on was

confirmed in experimental studies of 16O+80Br at GSI, Germany [35]. In another attempt,

Souza et al. [60] performed much elaborated study of the onset of vaporization by defining

the average charge of the fragments as an observable. Seldom is the case, that the onset of

vaporization is investigated in detail. Though, it should be noted here that the energy at

which the onset of vaporization occurs is of great importance as it determines the strength

of the nucleon-nucleon correlations that is used to determine nuclear potentials.

For the better clarity of phase-transition in nuclear matter, the evolution of fragment

mass distributions with increasing temperature of initial nucleus is shown in Fig. 1.9.

The multiplicity (dN/dAf ) as a function of fragment mass (Af ) is displayed in the figure.

At low temperatures (T ≤ 1-2 MeV), mass distribution corresponds to the liquid phase

(evaporation in compound nucleus) of the nuclear matter. The fission peak can also be

clearly observed in the figure which indicates the presence of heavy nuclei. With further

increase in temperature, the peaks get broaden and consequently turn into U-shape at

T≈ 5 MeV. The mass distribution follows the power-law (Y(Af ) ∝ Af
−τ ) behavior at
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Figure 1.9: Types of disintegration phenomenon associated to the average multiplicity
as a function of mass of produced fragments. “ Reprinted (Fig. 5.10) with permission
from J. P. Bondorf et al., Physics Reports 257, 133-221 (1995), Copyright (1995) by the
Elsevier”.

temperature about T = 5-7 MeV. The critical exponent “τ” extracted from the power law

distribution shows minimum with incident energy which is defined as the point of onset of

multifragmentation [43–46]. At temperature T = 7-15 MeV, the mass distribution shows

the steep decrease in curve which reflects the emission of intermediate mass fragments

and therefore, coexistence of liquid-gas phase in nuclear matter. With further rise in

the temperature (T = 15 MeV), the curve shows the exponential fall in the multiplicity

reflecting the dominance of light particles i.e., onset of vaporization in nuclear matter.

1.3.5 Entropy production

As mentioned earlier, the entropy shows the discontinuity at the point of first-order phase

transition in ordinary matter. Also, the light particles in vaporization phase assist one

to compute the entropy production in nuclear matter [53]. Therefore, it is considered

as a significant observable to determine the degree of thermalization in nuclear heavy-
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Figure 1.10: The Temperature, Volume and Entropy as function of time [54]. “ Reprinted
(Fig. 1) with permission from G. F. Bertsch et al., Nuclear Physics A 400, 221c-232c
(1983), Copyright (1983) by the Elsevier”.

ion reactions through multifragmentation at intermediate energy. The time evolution

of thermodynamical variables such as temperature (T), volume (V) and entropy (S) is

displayed in Fig. 1.10. The existence of compressed state of nuclear matter during heavy-

ion collisions is for a very short duration. The compressed state leads to high density and

large part of kinetic energy gets converted into thermal excitation energy that leads to

an increase in the randomness of the system. The phase after the compressed state of

nuclear matter witness negligible change in the entropy (as shown in Fig. 1.10). Therefore,

entropy production provides an opportunity to study the early phase of the hot and dense

nuclear matter. Siemen and Kapusta in 1979, reported that generalized entropy can

be deduced from the deuteron to proton ratio [53]. Due to the unaltered behavior of

entropy till the end of the reaction, they insisted on the use of entropy else than other

variables for thermodynamic analysis. Additionally, the entropy production in a heavy-ion

reaction is also observed to shed light on the fragment formation. Detailed studies were

also documented to find the entropy production in nuclear reactions [51–56, 59, 61–64].

1.4 Experimental review of multifragmentation

1.4.1 Features of detectors (specifically 4π detectors)

In this section, we essentially focus on the basic requirements and physical objectives of

the experiments at intermediate energies. As the work presented in this thesis, is based
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on the comparison with experimental data specifically from 4π detector, therefore, we will

take into account features of 4π multi-detectors around us. For example, FOPI detector

at GSI, the INDRA detector (a 4π -light charged particle and fragment multi-detector

built in 1989 at GANIL, the MSU 4π detector etc.) are accessible for heavy-ion reactions.

The reacting partners (i.e., projectile and target) at low incident energy conserve their

identity and the internal quantum states, whereas in reactions at relativistic energies the

assortment of smaller entities in the reactions is quite large. Additionally, reactions at

intermediate energies lead to the production of large number of varied sized fragments

and one can likewise, observe the production of strange particles also [65, 66].

The primary objective to perform any experiment is event-by-event detection and

simultaneous measurement of all the emitted particles. The known experimental detectors

(such as MSU 4π detector, the Bevalac Plastic Ball detector and large array detectors

at CERN and BNL heavy-ion reaction experiments) are strictly based on this procedure.

Likewise, irrespective of set up, the detector of constrained size and geometry are incapable

to determine (forward or backward) emitted particles sharply along the beam-line. The

alignment of detectors is slightly out of vacuum region where the target is placed. Due

to this reason, the particles with lower kinetic energies (soft particles) are not able to

penetrate the vacuum region. Consequently, due to the restricted acceptance of detectors,

it is hard to reproduce the spectrum of the emitted particles. However, an appropriate

arrangement of events is required. Presently, we will discuss couple of fundamental steps

required to be followed for complete management of events in experimental studies.

1.4.2 Event selection

The nuclear physics experiments aim to assemble information about various nuclear in-

teractions happening in the core of the nucleus. When nuclear particles pass through the

detectors they are detected by various electrical signals. The signals carry information

about their type, energy and trajectory. The data acquisition system digitizes, formats

and stores the information so that it can be used further for data analysis. Out of thou-

sand to million events occurring per second only very few events are useful, so experiments

needs proper sorting of “well measured events”.

It is significant to mention here, mainly in the 4π multi-detectors, the direct rela-

tion between the violence of collisions and the centrality of the reactions can be used to

choose the events with different impact parameter (as mentioned in Refs. [67, 68]. But
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experimentally, the violence of the collisions cannot be examined directly. Therefore, the

multiplicity of various particles can give proper measurement of impact parameter. The

measured multiplicity of charged particles (Nc) indicates about the centrality (impact pa-

rameter) of the reaction. However, the charged particle multiplicity (Nc) and the impact

parameter are inversely proportional to each other. Further, we will briefly discuss few of

the other quantities related to event sorting:

1.4.3 Event trigger

The event triggers in experiments deal with the loss of particles or particles which are not

distinguished because of poor count in the detector. The triggering system can be used

to select events by taking into consideration the multiplicity of particles in any 4π-array.

Note that, in few cases there is a need of higher multiplicity and thus, combination of

various runs may take place with other reactions of similar type. Therefore, event trigger

assist in selecting the proper number of collisions with the desired multiplicity.

1.4.4 Physical data storage

The physical data storage in the detector transforms the primary data set into physical

data set to investigate various features of detected particles in heavy-ion reactions. The

physical data set (as reported in Ref. [67]) comprises of detected particles and their

features such as species, charge, energy, momentum, etc. This device is also utilized to

store all the features of the emitted particles. With the assistance of this stored data

set, one can compute the desired cross-section, interactions among different particles,

momentum dependence of nucleon-nucleon interactions and some other observables that

can be measured.

1.4.5 Determination of impact parameter

The impact parameter cannot be measured directly. Therefore, to extract exact value of

the impact parameter and to know the centrality of the reaction, various techniques need

to be developed. As phenomenon of multifragmentation is highly reliant on the geometry

of the colliding system, so it is very pivotal to gain proper knowledge associated with

accurate estimation of the impact parameter. This is attributed to the fact that as the

impact parameter decreases the overlap volume of the colliding partner (projectile and
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target) increases and thus, affects the results of the experiment drastically [12, 32, 43, 47,

69–71].

Some quantities that assist in extracting the information about the measurement of

impact parameter are:

• The ratio of transverse and longitudinal kinetic energy (ERAT ):

This technique is utilized by different experimental groups to deal with the sorting

of data which is based on the cuts in global variable distribution. The multiplicity

of charged particles and ERAT (ratio of transverse and longitudinal kinetic energy)

is used to select impact parameter range [72]. It is defined as:

ERAT =

∑⊥
i Ei∑∥
i Ei

|y≥ycm . (1.3)

Here ycm is the center of mass rapidity of different fragments.

• The charged particle multiplicity (Nc):

All charged particles detected by 4π detectors are defined using this quantity [67, 68].

Since the single detector considers all the multi-hits as single hits, regardless of

whether they can be distinguished as double hits. Therefore, the count Nc is close

counterpart to the multiplicity of detectors in which at least one charged particle is

detected in a given event. This quantity is frequently utilized by various distinctive

research collaborations (for instance, GSI and FOPI) to sort out events [72] .

• The total transverse kinetic energy of identical particles [67, 68, 72]:

This quantity is also used to determine the impact parameter. The Et is defined as:

Et =
∑Nc

i=1
Ei × sinθi

2 =
∑

i

(pisinθi)
2

2mi

. (1.4)

Here Ei, pi, θi and Nc are the kinetic energy, momentum, emission angle of ‘ith’

particle with respect to the beam axis and the charged particles multiplicity, re-

spectively. The experimentally determined impact parameter is used to express the

cross-section by assuming the geometrical correspondence between Et and impact

parameter. Also, the largest value of Et relates to the most central collisions [73].

• The mid-rapidity summed charge, Zy
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This quantity is defined as the sum of all identified particles of rapidity ‘y’ with

0.25 ycm ≤ y ≤ 0.75 yproj + 0.25 ycm, ycm and yproj depict the rapidities of the total

center-of-mass system and of projectile, respectively. The rapidity of the particle is

defined as:

Y =
1

2
ln
E + pZ
E − pZ

, (1.5)

here, E and pZ are the total energy of the particle and the total longitudinal impul-

sion, respectively.

Note that all the quantities discussed above are interlinked with each other. In the

next section, we will discuss various theoretical and experimental endeavors done in the

past to contemplate multifragmentation [74].

A substantial number of experimental endeavors have been done and many are in

progress to comprehend the properties of the hot and dense compressed state of nuclear

matter. The first experiment to study the phenomenon of multifragmentation was per-

formed using cosmic rays (naturally accelerated beams) [34, 75]. Since the cosmic rays

comprise of variety of projectiles of different masses, charges, as well as energies, thus,

constrained the experiments to be inclusive. Also, to perform exclusive experiments the

specified nuclei with a fixed amount of excitation energy was a prerequisite but this was

feasible through accelerators only.

In the mid 70’s, the Bevatron when joined to linear accelerator SuperHILAC (named

as BEVALAC) at Lawrence Berkeley Laboratory was the early accelerator available to ac-

celerate heavy-ions to relativistic energies . This further led to the construction of various

high energy accelerators at Michigan State University (MSU), Michigan, USA, Grand Ac-

celerateur National D’ions Lourds (GANIL) at Caen, France, Relativistic Heavy-Ion Col-

lider (RHIC) at Brookhaven National Laboratory (BNL), New York, USA, NSF-Arizona

accelerator at university of Arizona, Tucson, USA, Vivitron accelerator at Oak Ridge Na-

tional Laboratory Strasbourg, France, Superconducting Cyclotron (SC) at Texas, Michi-

gan, USA, Superconducting cyclotron at INFN, Catania, Italy, Heavy-ion Synchrotron

(SIS) accelerator at GSI, Darmstadt, Germany and Charged Heavy Ion Mass and En-

ergy Resolving Array (CHIMERA) detector at Laboratori Nazionali del Sud in INFN,

Catania, Italy. These accelerators gave extraordinary plausibility to perform heavy-ion

collisions under controlled conditions and led to exclusive experiments. It is important

to mention here that these experiments utilize the range of experimental setups, that are
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exceptionally complex in nature.

As mentioned earlier, the cosmic rays were also used in the past to study multifrag-

mentation and the reactions also analyzed the emission of fragments that are heavier

than alpha particles but lighter than fission fragments. The ionization chambers and

Geiger counters were used as detectors. Subsequently, the phenomenon of multifragmen-

tation was also studied using synchro-cyclotron, proton beams at relativistic energies on

emulsions [76]. The multiplicity, charge distribution, energy distribution, and angular

correlations were determined to study the fragmentation of colliding nuclei. Similarly,

Jakobsson et al. conducted emulsion experiments and proposed exclusive data on multi-

fragmentation [34]. The study done through this experiment extended over the complete

range of phenomena occurring in nuclear matter i.e., the onset of nuclear multifragmen-

tation to nuclear vaporization in heavy-ion collisions. Another experiment at Berkeley,

USA, observed the emanation of IMF’s when emulsion was illuminated by carbon beam

at 250 MeV/nucleon. The motivation behind this experiment was to examine the high

multiplicity of 12C reactions at intermediate energy.

The work done at Berkeley lab at Lawrence Berkeley Laboratory (LBL), mainly con-

centrates around the dynamics of asymmetric reactions such as 36
18Ar+

197
79 Au, 56

26Fe+
197
79 Au,

139
57 La+12

6 C, 4020Ca,
64
29Cu,

139
57 La, 197

79 Au+27
13Al,

51
23V,

64
29Cu . These experiments were performed

in the incident energy range between 35 and 110 MeV/nucleon [77–81]. The major aim

to perform these experiments was to examine the role of entrance channel mass asymme-

try on the reaction dynamics. These experiments also focussed on the various attributes

such as charge distribution, incident energy, angular distribution, cross-section of differ-

ent fragments as well as velocity distribution by varying the asymmetry of the reactions.

Consequently, the Equation of State (EOS) collaboration at BEVALAC have also made

efforts to determine phase-transition in nuclear matter through the phenomenon of multi-

fragmentation. In the similar way, various critical exponents have also been investigated

by colliding 84
36Kr, 139

57 La and 197
79 Au projectiles on the fixed 12

6 C target. The research was

further extended to determine critical exponents such as volume energy, surface energy,

entropy, etc. [82] for symmetric reactions of 197
79 Au+197

79 Au over the entire incident energy

range that spans from 400-1000 MeV/nucleon [83].

The National Superconducting Cyclotron Laboratory (NSCL) of Michigan State Uni-

versity (MSU), was another prominent group to perform experiments using asymmetric

reactions. Specifically, the MSU group emphasized on the reactions of 129
54 Xe + 12

6 C, 27
13Al,
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51
23V,

64
29Cu,

89
39Y (50 MeV/nucleon), 36

18Ar +
197
79 Au, 129

54 Xe + 197
79 Au (50 - 110 MeV/nucleon),

36
18Ar + 64

29Cu,
108
47 Ag, 197

79 Au (17 - 115 MeV/nucleon) [46, 49, 68, 84–87]. The major goal

behind performing these experiments was to determine average multiplicities, spectral

slopes and masses of heavier fragments. Besides asymmetric reactions, efforts were also

made by the group to include nearly symmetric reactions such as 20
10Ne + 27

13Al,
20
10Ne +

45
21Sc,

84
36Kr + 93

41Nb,
129
54 Xe + 129

57 La in the incident energy range of 15 and 135 MeV/nucleon

[88–90]. Lately, to study isospin effects this group also performed an experiment with

112
50 Sn + 112

50 Sn and 124
50 Sn + 124

50 Sn reactions at 50 MeV/nucleon [91–94]. Another study

done at Michigan State University (MSU) analyzed the charge distribution for the sym-

metric reaction of 45Ar + 45Sc in the incident energy range from 35 to 115 MeV/nucleon.

They extracted power law parameter “τ” and exponential parameter “λ” from the charge

distribution to study liquid-gas phase transition in nuclear matter [87]. This study was

further extended for asymmetric reaction of 84Kr+197Au in the incident energy range from

35 - 400 MeV [49].

Among various important experimental groups, A Large Acceptance Dipole magNet

(ALADiN) and FOur PI (FOPI) at GSI were also ones to examine various features as-

sociated with fragmentation. The study done by these groups incorporate the complete

systematics of the reaction between 12
6 C and 208

84 Pb from lower to higher incident energy

ranging from 100 to 1000 MeV/nucleon [43, 49, 57, 70, 71, 95–97]. Further, the study was

extended by fixing the target to 197
79 Au but changing the mass of the projectile. In this

broad range of incident energy, they covered the complete range of phenomena happening

at the various stages of nuclear matter i.e., evaporation to the emission of fragments and

complete disassembly of the nuclear matter. The study was extended further and the

results reported the “rise and fall” feature of IMFs when plotted as a function of incident

energy [57] and impact parameter [71, 97]. Another marked feature, “ universality”, was

reported by this group after studying the behavior of fragment multiplicities and fragment

correlations with Zbound (where Zbound is the total sum of the charge of all the fragments

with Zf ≥ 2)[71, 96].

The 4π multidetector Identification de Noyaux et Detection avec Resolution Array

(INDRA) group at GANIL, constructed in the early nineties intended to investigate the

dynamics of hot and dense nuclei that further cools by multifragmentation. It is another

significant group that has made remarkable progress in the field of nuclear physics. They

gave prominence to the role of various entrance channels and other parameters of multi-
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fragmentation. The group mainly analyzed the asymmetric reactions of 36
18Ar + KCl, 36

18Ar

+ 58
28Ni,

129
54 Xe + nat

50 Sn, 20882 Pb + 197
79 Au and 155

64 Gd + 238
92 U in the incident energy range of 32 -

90 MeV/nucleon [98, 99]. They also focussed on the detailed investigation of the dynamics

for the symmetric reactions of 36Ar on 58Ni and the role of various mass asymmetries was

also studied by this group. The characteristics indicating the liquid-gas phase transition

have been studied through the dynamical (spinodal instability) and thermodynamical

parameters (microcanonical heat capacity) in the multifragmentation phenomenon [100].

They have also given various signals of a first-order phase transition in finite non-extensive

systems. These signals include dynamics of the transition (spinodal fluctuations), nega-

tive heat capacity, bimodality of the size distribution of the heaviest fragment, extraction

of the coexistence zone of the transition, the first estimate of the associated latent heat

dynamics of the transition in relation with the introduction of the N/Z degree of freedom

and neutron enrichment of the gas phase [101, 102]. Lately, another data was reproduced

for symmetric reactions i.e., 197
79 Au+197

79 Au reaction in the incident energy range between

40 - 50 MeV/nucleon [103].

In this direction, strong effort has been done by TAMU - Neutron Ion Multidetector for

Reaction Oriented Dynamics (NIMROD) to study heavy-ion collisions in the Fermi-energy

region [74]. The experimental work extracted various parameters i.e., multiplicity distri-

bution, charge and mass distribution, momentum distribution, kinetic energy spectra, ve-

locity, and temperature for 60
30Zn + 58

28Ni (at 26 MeV/nucleon), 19779 Au (at 47 MeV/nucleon),

60
30Zn + 92

42Mo (at 35 and 47 MeV/nucleon), 27
13Al +

112
50 Sn (at 55 MeV/nucleon), 40

18Ar +

27
13Al,

48
22Ti,

58
28Ni (at an incident energy of 47 MeV/nucleon) and 40

18Ar +
112
50 Sn (at an inci-

dent energy of 40 MeV/nucleon) [109–112]. Another approach has given strong evidence

of liquid-gas phase transition by extracting the critical parameter for nearly symmetric

reactions 40
18Ar + 27

13Al [44]. To extend study further, various other observables such as

Campi plots, fluctuations in Zmax etc. using reactions of 40
18Ar +

27Al, 28Ti and 58Ni at 47

MeV/nucleon were analyzed by this group to study liquid-gas phase transition in nuclear

matter [45]. Also various parameters for symmetry energy such as isotopic and isobaric

yield ratio, neutron to proton ratio (n/p) for the reactions of 112
50 Sn + 112

50 Sn and 124
50 Sn +

124
50 Sn (at 28 MeV/nucleon) were proposed. These observables are also studied by using

different beams with projectiles 36
18Ar,

40
20Ca,

58
26Fe and 58

28Ni on
58
26Fe and 58

28Ni targets (at

incident energies of 25, 30, 40, 45, 47 and 55 MeV/nucleon) [111–113]. The isotopic distri-

bution of hot primary fragments is found to change strongly over the wide and extended
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range of neutron-drip line. Lately, this group also studied the mass dependence of nuclear

caloric curve.

1.5 Theoretical Review of multifragmentation

The number of ingenious theoretical theories have been devised to understand the physics

behind multifragmentation. But attaining such absolute theory that can be procured

from the first principle is not possible at the time and likely computationally impossible.

Consequently, to develop such absolute theory, one has to rely on the wise approximations

formulated in the theory to explain the physics accurately. The dynamics behind mul-

tifragmentation at intermediate energy is examined to explain nuclear equation of state,

therefore, one has to concentrate on the relation between empirical data and observables

to develop theory through numerical simulations.

Over the recent last years, the number of theoretical methodologies have been de-

veloped to examine the physics behind multifragmentation. These methodologies are

modelled on various assumptions. To illustrate various models that depict multifrag-

mentation, it is important to note here that physics involved with heavy-ion collisions is

exceptionally complex and therefore, requires technical handling to develop such theories.

The reaction dynamics associated with the fragmentation differs notably in terms of avail-

ability of free phase-space available at low and high incident energies. As discussed earlier,

at low incident energies due to less available energy in the compressed system, nearly all

the attempted collisions are blocked whereas, at high incident energies the phase-space is

primarily free. Interestingly, at intermediate energy it is the equal contribution of both

mean-field and binary nucleon-nucleon collisions to the reaction dynamics. These fac-

tors are appropriate and in accordance to extract the exact information about the hot

and dense state of nuclear matter under extreme conditions of temperature and density.

Therefore, various theoretical models can be used to portray multifragmentation through

simulations that can further be classified into two types:

• Statistical models,

and;

• dynamical models.
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1.5.1 Statistical models

The statistical models [32–35, 79, 114–120] are based on the idea that the large degrees

of freedom are included in the framework. The extensive number of degrees of freedom

contributes to form the highly excited hot and dense state of nuclear matter. The statisti-

cal theory of multifragmentation predominantly defines the partition probabilities of the

decay channels at statistical equilibrium. On the basis of numerous observables observed

at intermediate energy, the heavy-ion collisions can be examined utilizing statistical equi-

librium. The calculations obtained from statistical equilibrium can be included in the

microcanonical ensemble (expressed by number of particles (N), volume (V) and energy

(E′)), the canonical ensemble (expressed by number of particles (N), volume (V) and en-

ergy (T)) and grand canonical ensemble (expressed by chemical potential (µ), volume (V)

and temperature (T)).

In microcanonical framework the entropy determines the number of microstates i.e.,

weight of the given breakup channel. The primary notion of the model is that the fragmen-

tation takes place simultaneously from the thermalized system. In the literature, various

variants of the statistical model are available (microcanonical, canonical and grand canon-

ical ensemble). All these different variants contrast in the method of portraying individual

fragments and also in the procedure followed for computation. The available statistical

models in the literature are Statistical Multifragmentation Model (SMM) [32, 33, 119, 121]

based on microcanonical ensemble, another model based on same approach is Berlin Mul-

tifragmentation Model [34, 35, 79, 120], Percolation model [33–35], Lattice gas approach

[60], etc. Theoretically, the idea to study nuclear dynamics through statistical models

originated from the compound nucleus, the Weisskopf evaporation model (1937) [122]

and the theory of multiple particle production. Mekijan [115] was the first one to study

multifragmentation using statistical thermodynamics.

Randrup and Koonin [116] considered the macrocanonical ensemble of fragments to

determine various observables like multiplicity, momentum distribution and intrinsic spec-

tra of fragments in the incident energy range above 10 MeV/nucleon. Various thermody-

namical properties have been determined using statistical models to utilize the correlation

between multifragmentation with phase-transition (liquid-gas phase transition) in nuclear

matter.

The percolation theory with a few simple assumptions has been used by Bauer et al to
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perform calculations to study significant features such as mass-yield curves, their peculiar

U-shaped behavior and power law-dependance [123]. Similarly, percolation theory used

by Li et al [46], determined the Zf - distribution of fragments that emanated from the

central symmetric reactions of 40Ar+45Sc and this theory have also been successful to

reproduce Zf - distribution for 40Ar+45Sc reactions in the complete beam energy range

between 15 and 115 MeV/nucleon.

Lately, the models based on the canonical ensembles were developed to study the

dynamics of multifragmentation i.e., Canonical Thermodynamical model [124]. These

models concentrate to study the characteristic behavior of nuclear matter at intermediate

energy to study phase-transition for heavy-ion collisions, to understand the caloric curves

and probe the tendency of negative heat capacity due to finiteness in nuclear matter.

This model can also be utilized for the calculations of observables that are not interlinked

with the phase-transition such as to determine the populations of specified isotopes in

heavy-ion reactions. The assumption of partial or complete thermal equilibrium in the

statistical models is one of the major limitation of these models. Another limitation of

statistical models is to study the dynamics of nuclear reactions at the freeze-out time that

leads to the origin of dynamical models.

1.5.2 Dynamical models

The theoretical procedure to study the non-equilibrated compressed state of nuclear mat-

ter formed at intermediate energy heavy-ion collisions can be divided into three steps:

• Initialization: The target and projectile are prepared in their respective ground

states and boosted towards each other with proper center of mass energy.

• Compressional stage: Here, the reaction happens and compressed matter is in the

hot and dense state.

• Expansion stage: The nuclear matter expands to sub-nucleonic densities which will

ultimately break into different sized fragments and light particles.

The dynamical models ambitiously describe the complete time evolution of the reactions

and thus assists in understanding almost all the properties of nuclear reactions. These

models follow the dynamics of the reaction from well separated projectile and target to the

final stage of the reaction, where nuclear matter exists in the cold fragmented state. The
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dynamical models are quite competent in determining the evolution of the non-equilibrium

stage of the reaction and therefore, portray a true picture that is close to reality. It is

worth mentioning that no dynamical model simulates the fragment production directly

but takes into account the evolution of a single nucleon only. Dynamical models are

classified into two categories: (i) one-body models and (ii) many-body models.

Various dynamical approaches have been proposed to probe the dynamics of the reac-

tion. Along this direction, methodologies such as Time Dependent Hartree Fock (TDHF)

theory or Vlasov equation are developed which are accessible at low incident energy.

But for explicit description, theoretical methodologies should treat nucleon-nucleon cross-

section and mean-field on equal footing in heavy-ion collisions.

Further, based on the Vlasov-Uehling-Uhlenback (VUU) equations or Boltzmaan-

Uehling-Uhlenback (BUU) approach, the one-body models are developed that are suitable

for low incident energies where the mean-field dominates and nucleon-nucleon collisions

are neglected [125, 126]. The test particle method was used to compute the Vlasov-

Uehling-Uhlenback (VUU) equations. Few available one-body approaches are such as

Boltzmaan-Uehling-Uhlenback (BUU) [125](or Vlasov-Uehling-Uhlenback (VUU) [126],

Landau Vlasov (LV) [127], Boltzmann Nordhiem Vlasov (BNV)[128, 129] and Isospin-

dependent Boltzmann-Uehling-Uhlenback (IBUU) models [130, 131]. Therefore, the plau-

sible approach to study heavy-ion reactions at intermediate energy must include mean-field

and nucleon-nucleon collisions with equal probability. Some efforts in the past have also

been done to extend TDHF theory by incorporating nucleon-nucleon interactions into the

framework, responsible for two-body collisions. This approach was dubbed as Extended

Time Dependent Hartree Fock theory [40]. However, the numerical complexities in its

structure constrained its utility to the low energy domain only. Further, BUU/VUU ap-

proach was developed that as a close analogue to TDHF theory. The group of NA (N is

the number of test particles and A is the mass number) particles are taken into account

to calculate the one-body density distribution function. Alternatively, N-parallel events

share interface with each other therefore, event to event correlations cannot be analyzed.

Evidently, these models provide convenient probe to one-body phenomenon rather than

N-body phenomenon (such as multifragmentation) where correlations between events play

a significant role.

In regard to the above requisites, one would need that model which incorporates both

nuclear correlations and fluctuations among nucleons. In the methodology of N-body
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models, N-parallel events are performed and an average of various physical values is cal-

culated. Since N parallel runs are not interlinked with each other so, event by event

correlations can be preserved. Further taking into consideration the above factors, Classi-

cal Molecular Dynamics (CMD) model has been developed to deal with the formation of

fragments and dynamics associated with it. The applicability of the simple CMD model

[173] has been limited due to the absence of quantum features in its structure. The

Quantum Molecular Dynamics (QMD) model [11], extension of CMD model has been de-

veloped to include quantum features in its structure. Numerous number of variants of N-

body dynamical models have been developed such as Antisymmetrized Molecular Dynam-

ics (AMD) model [32, 132–136, 183], Extended Quantum Molecular Dynamics (EQMD)

model [137], Fermionic Molecular Dynamics (FMD) model [138], Improved Quantum

Molecular Dynamics (ImQMD) model [139, 140], Isospin-dependent Quantum Molecu-

lar Dynamics (IQMD) model [141], Constrained Molecular Dynamics (CoMD) model

[142, 143], Temperature-dependent Quantum Molecular Dynamics (TQMD) model [144],

Binding Quantum Molecular Dynamics (BQMD) model [145], Pauli Quantum Molecu-

lar Dynamics (PQMD) model [146], Relativistic Quantum Molecular Dynamics (RQMD)

model [147–149], Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model, G -

matrix Quantum Molecular Dynamics (GQMD) model [150–153].

The utmost utility of these dynamical models has been in the field of intermediate

energy to study heavy-ion reactions. In the next chapter, we will discuss and derive the

details of many-body dynamical from one-body dynamical models. The dynamical models

also defined as “primary models” generate the phase space of single nucleons. This phase

space is further subjected to the “clusterization” algorithms (secondary algorithms) to

construct stable fragments.

These secondary algorithms determine physics behind the nuclear reactions through

the adopted clusterization algorithms. The simplest method to identify fragments is to

spatially constrain the distance between the centroids of two nucleons and this method

is termed as Minimum Spanning Tree (MST) method [11]. As MST approach takes only

coordinate space into account, therefore, in concern to improve the stability of fragments

various variants of MST method has been developed. These variants are such as Minimum

Spanning Tree with momentum cut (MSTP) [154, 155], Minimum Spanning Tree with

Binding energy cut (MSTB) [156], Minimum Spanning Tree with temperature binding

energy (MSTBT) cut [11, 154–157]. In aim to reproduce more reliable results energy
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minimization method have also been introduced [158, 159]. The energy based algorithm

guarantee greater stability of fragments. In the present thesis, we will concentrate on the

role of various clusterization algorithms to study phase-transition in nuclear matter and

associate the significance of emission of light particles to study entropy production.
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1.6 Plan of work

In chapter 2, we shall describe various dynamical models developed in literature to study

dynamics of heavy-ion reactions at intermediate energies. We shall review transport mod-

els such as Quantum Molecular Dynamics (QMD) model and its isospin variant namely

Isospin-dependent Quantum molecular Dynamics (IQMD) model, which will be used as

a principle theoretical approach in our study.

In chapter 3, we shall discuss various clusterization algorithms such as Minimum Span-

ning Tree (MST) method, Minimum Spanning Tree method with Momentum (MSTP

or MSTM) cut, Minimum Spanning Tree method with Binding energy (MSTB) cut and

Minimum Spanning Tree method with Thermal binding energy (MSTBT) cut. These

clusterization algorithms will be utilized to identify fragments. The aim is to search for

the critical point to study onset of multifragmentation in nuclear matter. In this regard

the charge yield of intermediate mass fragments will be fitted using power-law and ex-

ponential law to extract the critical parameters such as ‘τ ’ and ‘λ’. The minimum in

the values of these critical parameters when studied as a function of incident energy is

often linked with onset of multifragmentation or critical energy point for liquid-gas phase

transition. Since studying these critical parameters is not the sufficient condition to study

onset of multifragmentation, we shall also analyze other parameters based on the charge

moments such as <S2>, <γ2> of fragments and charge of the second largest fragment

(Zmax2). These parameters will be analyzed to find the exact energy of onset of multifrag-

mentation or critical energy point and its sensitivity towards clusterization algorithms.

In chapter 4, we shall discuss fine details of energy based clusterization algorithm i.e.,

Simulated Annealing Clusterization Algorithm (SACA) to overcome the discrepancies

of clusterization algorithms discussed in previous chapter. This algorithm is based on

metropolis procedure. Then, we shall confront our calculations obtained by QMD model

+ SACA with experimental obsevations. The study will be done for both lightly and

heavily charged systems. We shall discuss all the parameters discussed in chapter 3 to

study the onset of multifragmentation.

In chapter 5, we study the onset of vaporization for 16O+80Br reactions. We shall com-

pute average charge of the fragments with and without largest fragment. We shall study

the role of varying clusterization range on the fragmentation pattern and its effect on the

point of onset of vaporization. Our study shall also span over the wide range of clusteri-
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zation algorithms i.e., Minimum Spanning Tree (MST) method, Minimum Spanning Tree

method with momentum cut (MSTM or MSTP) and Simulated Annealing Clusterization

Algorithm (SACA). We will study this phenomenon using QMD model as phase space

generator coupled with various clusterization algorithms. We shall also compare our cal-

culations with available experimental data.

Further, we shall present a complete systematic study of mass asymmetric reactions avail-

able throughout the periodic table. We will explore the effect of asymmetry and incident

energy on the composite yield of light mass particles and entropy production by extracting

slopes using power-law. The work shall be done in the framework of Isospin-dependent

Quantum Molecular Dynamics (IQMD) model. The study will be done in the incident

range of 400 to 1000 MeV/nucleon.

Finally, we will summarize our results with an outlook in Chapter 6.
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Chapter 2

Insight of various theoretical models

The growth in theoretical nuclear physics witnessed the development of diverse range of

theoretical models that can consistently explain many aspects of reaction dynamics. At

the same time, with the modernization of the experimental facilities worldwide, many new

challenges are known to the field. To understand the heavy-ions dynamics involved at

intermediate energies, one needs to have explicit and precise knowledge about the mean-

field and binary nn-collisions to describe the real and imaginary parts of the G-matrix,

respectively. Among various theories, the Time Dependant Hartree Fock (TDHF) the-

ory [160, 161], was the first approach developed on the basis of conventional mean field

hypothesis. It was though successful to crack down many hidden questions in nuclear

physics, yet was found unsuitable for describing reaction dynamics at intermediate en-

ergies [40]. Later on, this theory was extended by including binary nn-collisions. Even

then, it was limited to low incident energies only [162].

In contrast to TDHF theory, the Intra-Nuclear Cascade (INC) model developed by

Cugnon [163] and its different variants neglected the role of mean-field and took into

account the binary nn-collisions only [164–166]. This model did not incorporate long

range correlations. It considered the rapidly changing correlations only. In the absence

of mean-field, the nucleons are bound to follow straight line trajectories between the two

consecutive collisions. Since the cascade is a very rapid process (10−22 sec) therefore, it

is suitable for high energy heavy-ion collisions only where binary nucleon-nucleon colli-

sions are very frequent [167]. In the framework of INC model, nucleons in a nucleus are

considered as a bundle of point particles distributed within the sphere without Fermi-

momentum. The Monte-Carlo sampling is used to assign the initial positions to all the

nucleons in a given sphere. It is worth mentioning that the cascade model is based on
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the assumption that incoming particles interact with each nucleon of the target. The

INC model is successful in explaining various experimental observables measured at high

incident energies [164]. Unfortunately, this model was found to fail in describing vari-

ous phenomena at intermediate incident energies (such as multifragmentation, flow, etc.)

where the outcome depends strongly on the initial Fermi-momentum and also on the

intrinsic pressure built during the reaction due to the presence of mean-field. Due to

these limitations, the cascade model is useful only at high incident energies where the

role of mean-field is nearly negligible. In addition, the inconsistency of Cascade model to

reproduce estimated pion yields led to the need of designing a new model that ought to

improve the assumptions taken in the original Cascade model. The strong efforts were

made by Cugnon et al. to modify the original INC model by incorporating compression

and decompression effects (not considered in the original version of INC model) which are

essential to study the phenomena like multifragmentation, flow, etc. [163]. Interestingly,

this model also failed to explain the dynamics owing to the absence of mean-field in its

structure.

Altogether different approach namely Boltzmann-Uehling-Uhlenbeck (BUU) (or

Vlasov-Uehling-Uhlenbeck (VUU)) model was proposed in the literature [125, 126]. This

approach studies the evolution of one-body Wigner phase space and incorporate both

mean-field and binary nn-collisions in its framework. This type of model is the combi-

nation of single particle dynamics (mean-field) and two-body scattering but neglects the

many-body correlations in its structure. The VUU/BUU model is quite accomplished in

studying the role of single particle observables on nuclear dynamics. In one-body mod-

els, large numbers of events are run in parallel to obtain the smooth density functions

in the phase space. These models can barely explain the physics behind the phenomena

like fragment formation and multifragmentation which needs multiparticle dynamics and

correlations. On the other hand, single particle observables such as particle spectra, flow

angles, and pion yields were well explained in the framework of VUU model. It should be

kept into mind that the one-body models have been inconsistent in describing the neces-

sary physics behind the phenomenon involving multi-body correlations [12, 32]. Therefore,

the many-body models that study N-body correlations have been able to subdue all the

limitations of one-body models. The many-body models can preserve the multi-particle

correlations between nucleons and can explain successfully various phenomena associated

with these correlations [11, 12, 32, 141, 168–172].

40



2.1 N-body molecular dynamical models

The majority of studies done in the past over different energy domains using VUU/BUU

models are based on the test-particle concept. In contrast, the many particle models

simulate the collisions of real nucleons on event-by-event basis. The famous many-body

transport model namely Quantum Molecular Dynamics (QMD) model was developed by

Aichelin and Stocker in late eighties [11]. The structure of this model is based on the

features of Classical Molecular Dynamics (CMD) model (first N-body model) [173]. In

comparison to the one-body dynamical models, this model is based on decreasing the

total number of test particles so that each particle represents one nucleon only. Due to

the reduced count of test particles, it became feasible to study the N-body correlations of

the colliding system. The QMD model obtains most of the features of CMD model but

differs from the CMD model with respect to the some of the following quantum features:

• the presence of both collision and potential terms in the dynamical evolution,

• the inclusion of Pauli Principle to respect the Fermionic features of nucleons,

and;

• the stochastic scattering of nucleons.

The QMD approach studies the reaction dynamics based on the event-by-event anal-

ysis, therefore, preserves the correlations among nucleons. In this approach, each event

is simulated individually irrespective of the other events. Unlike BUU/VUU approach,

no averaging is done over various events to preserve the initial correlations among the

nucleons. The paradigm of the transport model follows three important steps:

• Initialization,

• Propagation,

and

• Scattering.

In the following sub-sections, we shall explore each step in detail.
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2.1.1 Initialization

In the beginning, each nucleon from the projectile and target is assigned coordinate and

momentum. This is done by using the Monte-Carlo method where coordinates of each

nucleon are assured within sphere of radius R= 1.14 A1/3. With the help of Monte-Carlo

method, the random numbers are drawn and coordinates of those nucleons are rejected

where centroids are closer than certain distance i.e., rmin=1.5 fm. The major aim behind

this restriction is to procure those nuclei that guarantee proper binding energy and root

mean square radii and are stable enough during entire span of the reaction. The local

Fermi-momentum is determined using Fermi-gas approximation and it reads as:

PF (ri) =
√

−2mU(ri), (2.1)

where PF (ri) is the local momentum. The value of the momentum lies between zero and

PF . All those configurations are drawn which fulfill the following criteria:

(ri − rj)
2(pi − pj)

2 ≥ dmin. (2.2)

Here dmin is the allowed distance between centroids of two nucleons. In the QMD model,

quantum features are included in the structure through describing each nucleon by the

Gaussian wavepacket. So the initial wavefunction in coordinate and momentum space

given in the coherent state of the form reads as:

ψi(r, ri(t),pi(t)) =
1

(2πL)3/4
e

[
i
~pi(t)·r−

(r−ri(t))
2

4L

]
, (2.3)

and

gi(p, ri(t),pi(t)) =
2L

(π)3/4
e−[ip·ri(t)+(p−pi(t))

2L], (2.4)

respectively. Here ‘L’ is the Gaussian width of the wavepacket [11, 141]. The total A-body

wavefunction for all the nucleons is approximated as a direct product of A-coherent states.

The total wavefunction can be written as:

Φ =
∏

i
ψi(r, ri,pi, t). (2.5)

The QMD model neglects the antisymmetrization of the wavefunction since it does not

incorporate Slater determinant in its structure. It is of great significance to mention here

that the phase space evolution using the nn-interaction has been found to be consistent
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with that of TDHF and Vlasov theories. The TDHF theory begins with the Slater deter-

minant, Vlasov theory from the randomly drawn points inside a sphere of radius R = 1.12

A1/3 and the random momenta which is calculated between zero and Fermi-momentum,

whereas, the QMD model begins with biased choice of the positions and momenta of

nucleons. The striking feature is that the time evolution of the system is independent of

the initialization in any of these theories. Evidently, this feature plays a prime role in the

time evolution of the system, if it fulfills the basic prerequisites like approximate constant

density over the coordinate space as well as proper binding energy [11].

Now, to study the time evolution of nucleons in QMD model, the N-body Schrödinger

equation can be utilized. The Schrödinger equation used in the framework is non-

relativistic and keeps the momentum and position coordinates on unequal footing. Al-

though, we are able to solve the equation, still the outcome may not be clear. A somewhat

different approach helps to simplify this difficulty; the Wigner distribution function. This

function is close interlink between the quantum mechanical and classical wavefunctions.

The Wigner transformation operator (M) is given as :

MW (P,R) =

∫
d3s

2π3
e−iP·s < R− s/2|M |R+ s/2 >

=

∫
d3q

2π3
e−iq·R < P− q/2|M |P+ q/2 >, (2.6)

here, ‘s’ and ‘q’ represent the small change in the coordinate and momentum spaces,

respectively. Here operator ‘M’ corresponds to the density operator and its transform is

termed as Wigner density. Thus, the Wigner density of the ith particle in the coordinate

and momentum space can be deduced as:

fi(r,p, ri(t),pi(t)) =
1

(2π~)3

∫
e−

i
~p·r12ψi(r+

r12
2
, t)ψ∗

i (r−
r12
2
, t)d3r12,

=
1

(2π~)3
1

(2πL)3/2

∫
e−

i
~p·r12e

i
~pi(t)·(r+

r12
2

)− [r+
r12
2 −ri(t)]

2

4L

× e−
i
~pi(t)·(r−

r12
2

)− [r− r12
2 −ri(t)]

2

4L d3r12,

=
1

(2π~)3
1

(2πL)3/2

∫
e−

i
~p·r12e

i
~pi(t)·r12−(r−ri(t))

2/2L−r212/8Ld3r12,

=
1

(2π~)3
1

(2πL)3/2

∫
e−

i
~ (p−pi(t))

2·r12e−(r−ri(t))
2/2L−r212/8Ld3r12,

=
1

(2π~)3
1

(2πL)3/2
e−(r−ri(t))

2/2L

∫
e−

i
~ (p−pi(t))

2·r12−r212/8Ld3r12,
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=
1

(2π~)3
1

(2πL)3/2
e−(r−ri(t))

2/2L

×
∫
e−[

i
~ (p−pi(t))

2·r12+r212/8L+i
2(p−pi(t))

22L/~2−i2(p−pi(t))
22L/~2]d3r12,

=
1

(2π~)3
1

(2πL)3/2
e−(r−ri(t))

2/2Le−(p−pi(t))
22L/~2

×
∫
e−[

i
~ (p−pi(t))

√
2L+r12/2

√
2L]

2

d3r12,

=
1

(2π~)3
1

(2πL)3/2
e−(r−ri(t))

2/2Le−(p−pi(t))
22L/~2 ×

(
2
√
2πL

)3
,

=
1

(π~)3
e−(r−ri(t))

2/2Le−(p−pi(t))
22L/~2 , (2.7)

where ri(t) and pi(t) represent the centroids of Gaussian wave packet in the phase space.

Although, the Wigner density acts like a classical particle it can also have negative values.

Further, the Wigner transformation follows the uncertainty principle △x · △p = ~/2
[11]. The Wigner transformation in coordinate and momentum space of the coherent

states is defined by the Gaussian wavefunction. To achieve the desirable density function,

one can subject the Wigner density distribution in the phase space for each nucleon in

the coordinate and momentum space. Therefore, the density of the ith particle in the

coordinate space is defined as:

ρi(r, ri(t),pi(t)) =

∫
fi(r,p, ri(t),pi(t))d

3p,

=

∫
1

(π~)3
e−[r−ri(t)]

2/2Le−[p−pi(t)]
22L/~2d3p,

=
1

(π~)3
e−[r−ri(t)]

2/2L

∫
e−[p−pi(t)]

22L/~2d3p,

=
1

(π~)3
e−[r−ri(t)]

2/2L

(√
π~2
2L

)3

=
1

(2πL)3/2
e−[r−ri(t)]

2/2L

= |ψi(r, ri,pi, t)|2. (2.8)

In the same way, densities in the momentum space reads as:

ρi(p, ri(t),pi(t)) =

∫
fi(r,p, ri(t),pi(t))d

3r

=

(
2L

π

)3/2

e−(p−pi)
22L

= |gi(p, ri(t),pi(t))|2. (2.9)
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Further to pursue the simulation of heavy-ion collision, we need to built the projectile

and target. This can be done by the following steps:

The centroid of each Gaussian wave packet is uniformly distributed in a sphere (of

radius R = 1.14 A1/3, where A implies to the mass of the nucleus) in the polar coordinates

by selecting:

r = R c
1/3
1 ,

cos θ = 1− 2 c2,

ϕ = 2π c3, (2.10)

where c1, c2 and c3 are the random numbers. A minimum distance of 1.5 fm between two

centroids of Gaussians is imposed to get smooth nuclear density. Similarly, the centroid

of each Gaussian wave packet in the momentum space is uniformly distributed in polar

coordinates by:

p = PF (ri) c
1/3
4 ,

cos θ = 1− 2 c5,

ϕ = 2π c6, (2.11)

where c4, c5 and c6 again are random numbers. In the above equation, the Fermi-

momentum can be computed from the eq. (2.1).

The eigen states of the Hamiltonian have to fulfill the uncertainty relation. The phase

space of the ground state of a system is completely filled up to the highest level in the

coordinate and momentum space without any vacancy. This feature of the ground state

is used to initialize target and projectile. Strikingly, only 1 out of 50,000 initializations

qualifies under present criteria. This model ensures proper binding energy and root mean

square radii of both target and projectile in the coordinate and momentum space. The

issue about the stability of nuclei has been properly handled by the Frankfurt group [174].

They have shown an enhancement in the stability time for the propagation of nuclei with

the inclusion of Pauli principle in the mean field. In the same way, Nantes group also

tested the stability of nuclei in terms of the root mean square (r.m.s) radius as well as

in terms of binding energy [11]. Most of the procured nuclei were stable for the time of

couple of hundred fm/c which is long enough duration for the present purpose.
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2.1.2 Propagation

Once the stable projectile and target are prepared, they are boosted towards each other

with the proper center-of-mass energy. The equations of motion for many-body system

are determined by using the generalized Variational principle. We state action as:

S =

∫ t2

t1

L[Φ,Φ∗]dt, (2.12)

where L represents the Lagrange functional of the form:

L = ⟨Φ|i~ d
dt

−H|Φ⟩. (2.13)

Under the allowed variation of the wave function, the action is kept constant to obtain

the time evolution using the relation

δS = δ

∫ t2

t1

L[Φ,Φ∗]dt = 0. (2.14)

This gives the Euler-Lagrange equation for each parameter ‘λ’ which reads as:

d

dt

∂L
∂λ̇

− ∂L
∂λ

= 0. (2.15)

Now if the ψi(r, ri,pi, t) under the limitation includes the true solution of the

Schrödinger equation, then the variation in the above action will initiate the accurate

solution of Schrödinger equation. For any coherent state and Hamiltonian of the form:

⟨H⟩ =
∑
i

⟨Ti⟩+
1

2

∑
ij

⟨Vij⟩, (2.16)

where Ti is the kinetic energy and Vij is potential energy, the Lagrangian can easily be

obtained by:

L =
∑
i

[
−ṙipi − Ti −

1

2

∑
j ̸=i

< Vij >

]
− 3

2Lm
. (2.17)

Using Euler Lagrange equation the time evolution of ri and pi can be determined:

d

dt

∂L
∂ṗi

− ∂L
∂pi

→ ṙi =
pi
m

+∇pi

∑
j

< Vij >,

∴ ṙi = ∇pi
< H >, (2.18)

d

dt

∂L
∂ṙi

− ∂L
∂ri

→ ṗi = −∇ri

∑
j ̸=i

< Vij >,
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∴ ṗi = −∇ri < H >, (2.19)

where ri = ri +
pi

m
t and ⟨Vij⟩ =

∫
d3r1d

3r2⟨ψ∗
iψ

∗
j |V (r1, r2)|ψiψj⟩. These equations, solved

using variational principle, make it feasible to solve 6 × AT (AT = AProj+ATar) [where

AProj and ATar corresponds to mass of the projectile and target, respectively] linear

differential equations, which are much more convenient to solve in comparison to the N-

body second order Schrödinger equation. Subsequently, the framework of equations of

motion is close analogue to the classical Hamilton’s equations and it can be given as:

ṙi =
∂⟨H⟩
∂pi

; ṗi = −∂⟨H⟩
∂ri

. (2.20)

The numerical solution for these equations can be obtained in a same manner as done

for the Classical Molecular Dynamics calculations, therefore, the average of the total

Hamiltonian can be expressed as:

⟨H⟩ = ⟨T ⟩+ ⟨V ⟩

=
∑
i

p2
i

2mi

+ V Sky + V Y uk + V Coul. (2.21)

The terms V Sky, V Y uk and V Coul are the local (two and three-body) Skyrme, Yukawa and

Coulomb potentials, respectively. The local Skyrme potential is given by:

V Sky =
1

2!

∑
j;i̸=j

V
(2)
ij +

1

3!

∑
j,k;i ̸=j ̸=k

V
(3)
ijk . (2.22)

Here, V
(2)
ij and V

(3)
ijk represent the two- and three-body terms of the local Skyrme poten-

tial, respectively. The two-body interactions V
(2)
ij are computed by folding the two-body

potential with the densities of both the nucleons. This is solved as:∑
j;i̸=j

V
(2)
ij =

∑
j;i̸=j

∫
fi(ri,pi, t)fj(rj,pj, t)V (ri, rj)d

3rid
3rjd

3pid
3pj,

=
∑
j;i̸=j

∫
fi(ri,pi, t)fj(rj,pj, t)t1δ(ri − rj)d

3rid
3rjd

3pid
3pj,

=
∑
j;i̸=j

t1

∫
fi(ri,pi, t)fj(rj,pj, t)d

3rd3pid
3pj,

=
∑
j;i̸=j

t1

∫
1

(π~)3
e−(r−ri(t))

2/2Le−(p−pi(t))
22L/~2
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× 1

(π~)3
e−(r−rj(t))

2/2Le−(p−pj(t))
22L/~2d3rd3pid

3pj,

=
1

(π~)6

(√
π~2
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∫
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∑
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∫
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(
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(
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(
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∫
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2
√
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)}2
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∫
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+
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e
−
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r√
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−
(

ri+rj

2
√
L

)}2
+

(
ri

2
√
L
−
rj

2
√
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)2
]
d3r,

=
1

(2πL)3

∑
j;i̸=j

t1e
−(ri−rj)

2/4L

∫
e
−
{

r√
L
−
(

ri+rj

2
√

L

)}2

d3r,

=
∑
j;i̸=j

t1e
−(ri−rj)

2/4L 1

(2πL)3
(
√
πL)3,

=
∑
j

t1
1

(4πL)3/2
e−(ri−rj)

2/4L

= t1
∑
j;i̸=j

ρij, (2.23)

where,

ρij =

∫
d3rρi(r)ρj(r) =

1

(4πL)3/2
e−(ri−rj)

2/4L. (2.24)

The three-body part of the Skyrme interaction is calculated as∑
j,k;i̸=j ̸=k

V
(3)
ijk =

∑
j,k;i̸=j ̸=k

∫
fi(ri,pi, t)fj(rj,pj, t)fk(rk,pk, t)V (ri, rj, rk)
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×d3rid3rjd3rkd3pid3pjd3pk,

=
∑

j,k;i ̸=j ̸=k

∫
fi(ri,pi, t)fj(rj,pj, t)fk(rk,pk, t)t2

×δ(ri − rj)δ(ri − rk)d
3rid

3rjd
3rkd

3pid
3pjd

3pk,

=
t2

(2πL)3 33/2

∑
j,k;i̸=j ̸=k

e−[(ri−rj)
2+(ri−rk)

2+(rk−rj)
2]/6L,

=
t2

(2πL)3 33/2

∑
j,k;i̸=j ̸=k

e{−[(ri−rj)
2+(ri−rk)

2]/6L}× 3
2 ,

=
t2(4πL)

3/2×2

(2πL)3 33/2

[∑
j ̸=i

1

(4πL)3/2
e−(ri−rj)

2/4L

]2
,

=
t2 23

33/2

[∑
j ̸=i

ρij

]2
. (2.25)

This is further supplemented by the Coulomb interaction VCoul term which is given by:

V Coul =
∑
j;i̸=j

Z2
effe

2

|ri − rj|
. (2.26)

The finite two-body range Yukawa interaction VY uk is given by:

V Y uk =
∑
j;i̸=j

t3
e−|ri−rj |/ω

|ri − rj|/ω
. (2.27)

The part of Yukawa term [with t3 = -6.66 MeV and ω (range of Yukawa potential = 1.5

fm)] in the structure is incorporated to improve the surface properties of the nuclei. Since

the interaction density coincides precisely with the single particle density, this assists us

to correlate the required parameters to the nuclear matter properties. Note that the

two-body part of the Skyrme interaction potential and Yukawa interaction are linearly

proportional to ( ρ
ρ0
) whereas, three-body part of the Skyrme potential is proportional to

( ρ
ρ0
)2.

V Sky =
ά

2

(
ρ

ρ0

)
+

β́

γ́ + 1

(
ρ

ρ0

)2

. (2.28)

The ά, β́ and γ́ are the free parameters in the above given equation. The general properties

like average binding energy (-15.75 MeV) and total energy that possess minimum at ρ0

are used to compute the values of ά and β́. Further to examine the role of various

compressibilities κ = 9[ρ2 ∂2

∂ρ2
(E
A
)]ρ=ρ0 , the above equation can be written in a generalized
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form as:

V Sky =
ά

2

(
ρ

ρ0

)
+

β́

γ́ + 1

(
ρ

ρ0

)γ́
. (2.29)

The above mentioned equation describes the equation of state and correlates pressure

with energy. Also, it has been discussed in Ref. [11] that the energy of the equation of

state can be classified into two parts i.e., thermal and compressional energy. One can

also reproduce equation of state on the basis of different γ́ values. Evidently, the higher

(lower) values of γ́ represents the stiffer (softer) equation of state. The κ = 200 MeV and

380 MeV corresponds to the soft and hard equation of state, respectively.

The total baryon-baryon potential Vij can be expressed as:

Vij = V Sky
ij + V Y uk

ij + V Coul
ij + V MDI

ij

= t1 δ(ri − rj) + t2 δ(ri − rj)ρ
γ′−1((ri + rj)/2)

+t3
e−|ri−rj |/ω

|ri − rj|/ω
+

Z2
effe

2

|ri − rj|
+t4 ℓn

2[t5 (pi − pj)
2 + 1] δ(ri − rj). (2.30)

It is worth noting, that the validity of the above equation is for the cold matter only.

It is clearly evident that the matter during the course of collisions. Puri et al included

the temperature dependance of the mean field in the framework of QMD model and pin

down the role of temperature in heavy-ion reaction dynamics [175].

2.1.3 The nucleon-nucleon collisions

As mentioned above, the imaginary part of the G-matrix plays the role of binary nn-

collisions. In the structure of the QMD model, the simulations are limited to binary

collisions (higher order collisions were not included in the simulations) only. The idea of

inclusion of binary collisions in QMD model follows the same procedure as done in the

Cascade model calculations. In this framework, two nucleons are said to be scattered if

they come closer than a certain distance
√

σ(
√
s)

π
(where σ

√
s is the total nucleon-nucleon

cross-section and ‘
√
s’ is the center-of-mass energy of the nucleons).

The scattering of the nucleons in this model differs from the Rutherford scattering, as

the scattering in the former is determined stochastically (using Monte-Carlo procedure).

Among various parameterizations given in the literature, the cross section deduced by

Cugnon et al. is the most frequently used parametrization [176].
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The total cross-section (σ
√
s) can be divided into two channels: elastic and inelastic.

In case of elastic channels (NN→NN), the total cross-section (labelled as σel) is given by

(
√
s is in GeV, σ in mb, momentum in GeV/c, c = 1):

σ(el)(
√
s)(mb) =

 55 if
√
s < 1.8993 GeV

35
1+100(

√
s−1.8993)

+ 20 if
√
s ≥ 1.8993 GeV,

(2.31)

with
√
s =

√
(E1 + E2)2 − (P1 +P2)2. Here, Ei and Pi (i, j = 1, 2) are the energy and

momenta of two particles in the center-of-mass of two particle, respectively. The angular

distribution for the elastic channels is given by:

dσel

dΩ
∼ exp(A′(s).κ′), (2.32)

where, ‘κ′’ depicts the squared momentum transfer in the c.m of the colliding particles

and A′(s) [in (GeV/c)−2] can be computed from
√
s as:

Á(s) =
6(3.65(

√
s− 1.866))6

1 + (3.65(
√
s− 1.866))6

. (2.33)

In case of inelastic channels NN→N∆, the total cross-section (labelled as σinel) in param-

eterized form is defined as:

σ(inel)(
√
s) =

 0 if
√
s < 2.015 GeV

20(
√
s−2.015)2

0.015+(
√
s−2.015)2

if
√
s ≥ 2.015 GeV.

(2.34)

The cross-section is expressed in GeV. The angular distribution for inelastic channel is

supposed to be isotropic. Based on the criteria that the mass of the two colliding nucleons

is nearly equal to 1.876 GeV which defines the limit for
√
s = 1.8999 GeV. Therefore,

constant cross-section (= 55mb) is used for the two colliding nucleons with very small

velocity.

Each scattered partner undergoes the check for Pauli blocking. To decide whether the

scattering is blocked or allowed, the phase space around each scattered partner is checked

[11]. Evidently at low incident energy, most of the collisions are Pauli blocked. This

condition gets nullified at high incident energies. Here, it is important to mention that

the equation of state and cross-section discussed till the end, is legitimate for cold nuclear

matter only [11].
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Pauli blocking:

It is one of the most significant quantum attribute. The phase space of nucleons gener-

ated through the QMD model is further subjected this check. Each nucleon is assumed

to occupy a sphere in the momentum and coordinate space [11, 141]. This trick yields

same Pauli blocking as obtained by using Gaussian wave packets. The already occupied

fractions P1 and P2 in the phase space are determined for each scattering partners. The

probability of the binary nucleon-nucleon collision to be accepted (Pallow) reads as:

Pallow = 1− [1−min(P1, 1)][1−min(P2, 1)], (2.35)

which is blocked with probability Pblock =[1 - Pallow]. The present QMD model yield

blocked probability is close to 96 % at ground state. For complete stopping, this value

should be unity. The Pauli blocking plays a crucial role at low incident energies in contrast

at high incident energies where binary collisions govern the dynamics of the reaction. It

is worth mentioning that in-medium cross-section differs significantly from the free cross-

section at low incident energies. Both in-medium and free cross-section merge at higher

incident energies.

2.2 Other variants of molecular dynamics model

Lately, many improvements and transformations have been made over the original QMD

model to extend its legitimacy from low to high incident energy domain with new de-

grees of freedom. The Quantum Molecular Dynamics (QMD) model has been further

amended in various ways to investigate the low energy reactions resulting in Binding

Quantum Molecular Dynamics (BQMD) model [145], Pauli Quantum Molecular Dynam-

ics (PQMD) model [146], Extended Quantum Molecular Dynamics (EQMD) model [137],

Improved Quantum Molecular Dynamics (ImQMD) model [139, 140], Fermionic Molecular

Dynamics (FMD) model [138]. On the other hand in the high energy domain, Relativistic

Quantum Molecular Dynamics (RQMD), Ultra Relativistic Quantum Molecular Dynam-

ics (UrQMD) models were developed [150–153].

Bohnet et al. refined the original version of the QMD model to describe the proper

binding energy of target and projectile and termed it as Binding Quantum Molecular

Dynamics (BQMD) model [145]. The BQMD model is quite consistent in explaining

various processes at low incident energies. The local binding energy of all the nucleons
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constrains the maximum Fermi momentum so as to keep all the nucleons bound in a

nucleus. Unlike in the QMD model where Gaussian type distribution is considered, the

nucleons in the BQMD model were represented by Woods-Saxon type distribution.

Another modified version of the QMD model has been developed by Peilert et al. that

includes Pauli potential and has been termed as Pauli Quantum Molecular Dynamics

(PQMD) model [146]. The PQMD model utilizes the strong repulsive potential that de-

pends on the inter-particle separation between nucleons in the phase-space. The idea of

inclusion of Gaussian Pauli potential defined by Dorso et al. is worthwhile in phase-space

as it does not permit two nucleons to come too close to each other [177]. The QMD ap-

proach in addition to Pauli potential manifests the model with defined ground states which

is also capable to give the proper excitation energy of the fragments. Further, efforts were

done to incorporate the time-dependent Gaussian width coupled with phenomenological

Pauli potential into effective interactions in QMD model which is dubbed as Extended

Quantum Molecular Dynamics (EQMD) model [137]. This approach has proficiently ex-

plained the ground state properties of nucleus such as binding energies, density profiles

or α-clustering structure in light nuclei structure over the wide mass range.

In another approach, Wang et al. modified the original version of QMD model dubbed as

Improved Quantum Molecular Dynamics (ImQMD) model by introducing the symmetry

energy and surface terms in the potential energy part to explore the physics behind the

heavy-ion fusion at low incident energies [139, 140]. These improvements also include the

system size dependent wave packet to study the evolution of the wave packet width.

Likewise, the ImQMD model consider the antisymmetrization in the structure, a con-

straint on the occupied phase space is implemented and isospin-dependent nn-cross section

is also taken into account to consider Pauli blocking [146]. In this approach, the Rela-

tivistic Mean Field (RMF) calculations are used to obtain neutron and proton density

distributions.

Further, another new variant of ImQMD model i.e, ImQMD-II was developed by

including two new additional features in the interaction potential energy based on the

Skyrme interaction of SkM* and SLy series [140]. This model successfully described

the ground state properties of exotic as well as of stable nuclei. The improved QMD

model has been further modified, to consider increasing proximity between the reacting

partners and surface interaction; the shell effect term and the switch function method were

also introduced, respectively [178]. In this model, the fusion reactions close to Coulomb
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barrier, the doubly magic nuclei, the halo nuclei induced reactions and fusion dynamics

of superheavy nuclei were studied systematically [178].

In order to study the inelastic channels of baryon-baryon and meson-baryon collisions

and also the decay of resonances for the production of pion and strange particles; up-

dated version of improved ImQMD model is introduced dubbed as the Lanzhou Quantum

Molecular Dynamics (LQMD) model [179]. In this model, due to inclusion of momentum

dependence of the symmetry potential, the effective mass of nucleons gets differentiated

in the nuclear medium. In LQMD model, the transverse emissions and ratios of the pi-

ons (π
−

π+ ) and kaons (K
−

K+ ) are found to depend strongly on the momentum dependance

of symmetry energy. In this model, nucleons, baryons, resonances, and mesons in the

system propagate in the self-consistently generated mean field. The LQMD model is also

widely used to study the high density behavior of the symmetry energy extracted from

the heavy-ion collisions [179].

With the increase in the incident energy, the velocity of the nucleons approaches the veloc-

ity of light, therefore, demands complete relativistic theory. To address relativistic effects,

Lehmann and Puri et al extended the legitimacy of present QMD model upto relativistic

energies using Covariant dynamics in the same manner as followed by Sorge et al. [180].

This model is termed as Relativistic Quantum Molecular Dynamics (RQMD) model. The

collision term is modified by incorporating heavy baryon-resonances, strange particles and

string excitation for high energy hadron-hadron interaction. The RQMD model reported

the same results in non relativistic limit of incident energy (< 50 MeV/nucleon), although

the results of QMD and RQMD differs significantly at high energy. Waged et al developed

another model to study the heavy-ion collisions at high incident energies [181]. This new

approach was developed in the framework of Glauber theory coupled with QMD model

(dubbed as DQMD model).

To study pp (proton-proton), pA (proton-nucleus) and AA (nucleus-nucleus) correla-

tions at high incident energies the Frankfurt group developed a ultra relativistic variant of

QMD model termed as Ultra Relativistic Quantum Molecular Dynamics (UrQMD) model

within the large energy domain from BEVALAC and SIS (1GeV/nucleon) upto SPS (200

GeV/nucleon) and energies in colliders like RHIC (
√
s = 20 GeV/nucleon) and Large

Hadron Collider (LHC) [182]. The framework of UrQMD model resembles closely with

the structure of QMD and RQMD models. The structure of UrQMD is assimilated with

all the necessary physics that is major prerequisite for studying nuclear dynamics at low,
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intermediate and high energy.

The inconsistency of QMD model to include fermionic nature prompted the advance-

ment which led to the development of Antisymmetrized Molecular Dynamics (AMD)

and Fermionic Molecular Dynamics (FMD) models. In these models, wavefunction of

the system is described by the Slater determinant of N-wave packets. Now, to study

fermionic nature of nucleons, antisymmetrization of the wavefunction has been taken into

consideration in various methodologies. These methodologies are: Fermionic Molecular

Dynamics (FMD) model [138], Antisymmetrized Molecular Dynamics (AMD) model [132–

134] and Constrained Molecular Dynamics (CoMD) model. In FMD model, the system

of fermions is depicted by an antisymmetrized N-body wavefunction that is constructed

from the single-particle wave-packets of Gaussian shape. The antisymmetric feature of

N-body system in this model takes into account the Pauli principle with respect to parti-

cle exchange. It also ensures the correct treatment of Fermionic motion and shell model

properties. The low energy phenomena such as fusion-fission and the features of nuclear

structure are appropriately described within framework of FMD model.

Modification in the FMD approach has been done by including stochastic collision

term and consequently, Ono et al. developed the Antisymmetrized Molecular Dynamics

(AMD) model [132–135]. This model calculated the rms radius (=2.49 fm) of 12
6 C which

could explain the previous discrepency of the 12C nuclei [134]. In contrast to FMD ap-

proach where the dynamical width parameter is considered, the AMD approach takes

into account the Gaussian width that remains constant with time. This simplification

in the structure of AMD model saved the computational time of calculations but at the

expense of flexibility of the description, in comparison to the FMD model, as long as the

stochastic extension terms are not considered [183]. The AMD model lacks in describing

the quantum-mechanical mixing of shell-like and clusterlike configuration and also the

wave nature of the nucleons. Therefore, the modified rendition of the AMD model, An-

tisymmetrized Molecular Dynamics superposition of selected snapshots (AMD triplet-S)

has been utilized to demonstrate the cluster-shell competition of these nuclei [184]. This

methodology works on the idea of the Stochastic Variational Method (SVM).

Although, the nuclear reaction and structure of light nuclei are very well explained in

the AMD and FMD models, the criteria of solving Slater determinant consumes huge

computational time, therefore, limits its utilization to the lighter system only. Papa et

al. imposed additional constrains on the occupation probability (i.e., f ≤ 1) to make the
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calculations faster so that the heavier nuclei can be studied [142, 143].

The updated version of Constrained Molecular Dynamics (CoMD) model i.e., CoMD-

II [143] resolved the problem of non-conservation of angular momentum that affects other

semi-classical microscopic approaches due to the presence of hard core repulsive interaction

and more generally the usage of random forces. In the above prescribed methodologies,

the mean field and collisions are not considered in a self consistent manner. In other words,

the nuclear mean field and in-medium nn-collisions are characterized independently. The

parameterized version of the nn-collisions invincibly affects the observables that carry

crucial information about the nuclear equation of state. Hence the in-medium cross section

utilized in a transport model ought to be resolved reliably before complete data about the

equation of state can be obtained. This improvement in the QMD model approach has

been done by Jaenicke et al., based on the Brueckner-Bethe-Goldstone equations using

Reid soft core potential that is further utilized to determine both effective nn-potential

as well as nn-cross section microscopically [185].

The inclusion of temperature in the mean-field potentials of nucleons derived from

realistic G-matrix has been done by Puri et al. and dubbed it as Temperature Depen-

dent Quantum Molecular Dynamics (TQMD) model [175, 186] . In the framework of

QMD model, the local temperature of the ith particle in each time step is calculated

which is further used to compute temperature dependent potential in the simulation.

In nuclear matter, the temperature dependent potential was obtained by computing the

Bethe-Goldstone equation at finite temperature.

2.3 Isospin-dependent Quantum Molecular Dynam-

ics (IQMD) model

The Isospin-dependent Quantum Molecular Dynamics (IQMD) model developed by Hart-

nack et al inherits the majority of its features from VUU model [141, 187, 188]. It is an

extension of the original QMD model. In the framework of IQMD model, different charge

states of nucleons, deltas and pions are treated explicitly. The isospin degree of free-

dom has been included in the model through the nucleon-nucleon scattering cross section,

Coulomb potential as well as symmetry potential (in a similar way as in IBUU model).

Since the framework of IQMD model is a close analogue to the QMD model, for this

reason it also comprise of three steps i.e., initialization, propagation and scattering. The
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procedure followed by IQMD model at each step differs from the QMD model to some

extent. The procedure followed by IQMD model in the first step of initialization follows

the distribution of the centroids of Gaussians of the nucleus distributed arbitrarily in

a phase space sphere. The distribution in the phase space sphere (r ≤ R, p ≤ PF ) is

within the radius R = 1.12 A1/3 that corresponds to the ground state density of ρ0 =

0.17 fm−3 and momentum sphere PF≈ 270 MeV/nucleon. The Fermi momentum in the

IQMD model is computed using Fermi gas model. The Fermi momentum is strongly de-

pendent on the ground state density. The momenta are uniformly distributed within the

momentum sphere, therefore, nucleons close to the surface are initially unbound. This as

a result leads to the reduced binding energy of the initialized nucleus. On the contrary,

a stronger stability of density profile is achieved in the IQMD model due to full Fermi

energy available in the framework of IQMD model. Although the IQMD model provides

comparatively stable density distribution and good energy conservation but this is on the

cost of nuclear evaporation and improper binding energies (Ebind ≈ 4-5 MeV/nucleon for

heavy nuclei rather than 8 MeV/nucleon). Another characteristic property that differen-

tiate IQMD model from QMD model is the Gaussian width ‘L’ which is a measure of the

interaction range. In the framework of QMD transport model, the Gaussian width is kept

constant whereas in the IQMD model it varies in accordance to the system size i.e., 2.16

fm2 for Au and 1.08 fm2 for Ca nucleus. The inclusion of the system size dependence ‘L’

in the IQMD guarantees the maximum stability of the density profile of the target and

projectile.

As mentioned above, the IQMD model encompass isospin factor in the form of sym-

metry potential and Coulomb potential in its framework. The Coulomb potential is given

in the same form as expressed in Eq. (2.26) in QMD model. The potentials such as

Skyrme, Yukawa and momentum dependent given in QMD and IQMD model are isospin

independent, the key role of isospin factor in IQMD model (included in QMD model) is

attributed to the symmetry potential. The symmetry potential in the IQMD model can

be given as:

V sym =
∑
j;i ̸=j

t6(1/ρ0) T3iT3jδ(ri − rj), (2.36)

where t6 = 100 MeV and T3i and T3j depict the isospin projection of the ith and jth

particles (i.e., +1/2 and -1/2 for protons and neutrons, respectively).
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The role of nuclear symmetry energy and its density dependence has been viewed as

one of the most undetermined characteristic property of the isospin-asymmetric neutron-

rich nuclear matter. Consequently, the momentum dependence of the symmetry energy

is also termed as one of the most engrossing topic in the field of nuclear physics today.

Therefore, the total interaction potential (‘Vij’) in IQMD model differs from the QMD

model (given in Eq. (2.30)) in terms of symmetry potential only. The total binding energy

of the nucleus in the ground state is computed using the expectation value of the total

Hamiltonian.

The IQMD model differs from QMD model in terms of cross-section parameterization

in the framework. In QMD model, the nucleon-nucleon collisions use Cugnon parameter-

ization while in framework of IQMD approach, Vernst and Arndt parameterization have

been considered [189]. For describing the elastic nucleon-nucleon collisions the experi-

mental parameterization has been taken into account. Although the method followed to

treat the collisions in IQMD model is similar to the QMD model but Pauli blocking is

isospin-dependent. This implies that this feature checks the occupied phase space of the

scattered partners in accordance to the isospin of the already scattered partners. Besides

the formation of nucleons and deltas (as in QMD model), pions are also formed through

the decay of delta resonance in IQMD model.

The utility of IQMD model has been large to extract numerous observables over the

broad energy range. Hartnack et al. [141] has not been only one to develop IQMD,

various other groups have also done efforts in this direction to further modify QMD

model. In another approach the isospin degree of freedom has been included in QMD

model by Chen et al and dubbed it as Isospin-dependent Quantum Molecular Dynamics

(IQMD) model [190]. Although the isospin dependence in structure of this model has

been included through mean field, binary nucleon-nucleon collisions and Pauli Blocking

but differs from IQMD model developed by Hartnack et al. in number of aspects. For

instance, the two models differ in the procedure followed for initialization (in considering

Gaussian width), the separate treatment is given to neutron and proton due to their

different behavior of their density distribution in nuclei far from the β-stability line. The

value of interaction range in IQMD model by Chen et al. is considered fixed with value

2 fm2. The isospin-dependent nucleon-nucleon scattering cross section uses experimental

parameterizations given by Chen et al. [190]. Here, the total interaction potential (i.e.,

sum of Skyrme, Yukawa, Coulomb and symmetry) considered is similar to the potentials
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given in IQMD model developed by Hartnack et al. This model has also been used to

study isospin-dependence in various phenomena such as fragmentation, collective flow

etc. at intermediate energies. Further, this model has been improved by adding Pauli

potential and symmetry energy in its framework to stabilize the cold nuclei [82, 174, 191].

This model has been utilized to study phenomenon such as fragmentation, collective flow

and also different forms of symmetry potential [66].

The models discussed above are primary models that are utilized to generate the phase

space of nucleons. Subsequently, there is necessity of secondary algorithms to clusterize

the phase space of nucleons into stable fragments. The detailed range of secondary algo-

rithms will be discussed in chapters 3 and 4.
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Chapter 3

Role of clusterization algorithms on
the cluster formation and
phase-transition in nuclear matter

As discussed in chapter 1, the similarity between nucleon-nucleon interactions (short-

range repulsive and long-range attractive parts) and the Van der Waal’s forces between

molecules indicates the existence of a liquid-gas phase transition in excited nuclear matter

[43–46, 49, 58, 59, 87, 109, 192–201]. Conversely, based on the similarity between the equa-

tions of state for both phases (that differs approximately by five orders of magnitude), it is

considered that like liquid-gas phase transition in macroscopic systems, multifragmenta-

tion phenomenon must also contain some signals of the phase-transitions in nuclear matter

[43–46, 49, 58, 59, 87, 109, 192–201]. Lately, the same idea was proposed in other fields also

such as astronomical and micro-systems (atomic clusters and nuclei). The nuclei as finite

system are enticing more and more physicists to find and examine the behavior of liquid-

gas phase transition. In this direction, it was found that the mass/charge yields when

fitted as a function of mass (Af )/charge (Zf ) obey a power-law [Y(Af ) ∝ Af
−τ/Y(Zf ) ∝

Zf
−τ ] at a certain excitation energy; the plausible signal of the liquid-gas phase transition

in nuclear matter [43–46, 58, 87, 109, 192–200]. Such a signal was first noted by the Pioneer

Purdue group [58]. Later on, this behavior was also reported by various other theoretical

groups and was found to be in accordance with the earlier predictions of the Fisher’s

droplet model [44, 46, 87, 109, 192, 193]. It is worth mentioning that the occurrence of a

phase-transition in multifragmentation phenomenon was also questioned in some studies.

The study conducted by Porile et al. [202] presented one such classical example.

61



3.1 Different approaches to study phase-transition

The occurrence of phase-transition in nuclear matter has been predicted using two different

approaches:

1. Using those models that predict the phase-transition based on the breaking of nu-

clear matter at subnormal densities,

and;

2. using the evolution of the decay mechanism of nuclei as a function of excitation

energy.

Though, the former one is purely a theoretical concept, the latter one, however, can

be used to pin down the phase transition experimentally as well [43–46, 58, 87, 109, 192–

194, 199–201]. In the present work, we will focus on the latter method. In this method,

the critical point of the phase-transition (also termed as the onset of multifragmentation)

corresponds to a minimum in the value of the critical parameter (τ) when plotted as a

function of incident energy [46, 58, 87, 194, 196, 200].

3.2 Secondary algorithms (Fragment recognition

methods)

As noted in previous chapters, the primary models (both statistical and dynamical models)

can be used to study various important phenomena happening at intermediate energy

domain such as multifragmentation, collective flow, energy of vanishing flow, etc. The

primary models aim to generate the phase-space of nucleons after the collision of the

target and projectile with certain geometry and incident energy. The dynamical models

are able to provide the complete evolution of the reaction from the well separated target

and projectile upto the freeze-out stage of the reaction, whereas the statistical models

provide limited information; only at freeze-out time. Additionally, the dynamical models

encompass all the features to successfully explain physics behind the heavy-ion collisions at

intermediate energy [11, 12, 32, 141, 168–172]. The many-body dynamical models such as

Quantum Molecular Dynamics (QMD) model follows the evolution of individual nucleons

as independent systems. These types of models generate the phase-space of nucleons at

various stages of the reaction.
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The information obtained through dynamical models is further subjected to the sec-

ondary algorithms. The aim of using secondary algorithms is to identify stable fragments.

These secondary algorithms are termed as “clusterization algorithms”. To implement the

clusterization algorithm, one usually treats each individual nucleon, independently. Usu-

ally, the final fragment configuration is frozen when the hot expanding system expands

to well below the normal nuclear density. In the present framework, the freeze-out time

is decided in accordance with the Gross et al. where freeze-out is supposed to occur if

fragment configuration remains constant for tfreeze± 10 fm/c [203]. The important idea

behind implementing various clusterization methods is attributed to the fact that one can

attain different fragment structures with the same primary model. Therefore, it becomes

compulsory to procure comprehensive knowledge related to the formation of fragments

with different clusterization algorithms. Various spatial based clusterization algorithms

are discussed in the following paragraphs.

3.2.1 The Minimum Spanning Tree (MST) method

It is the one of the most famous and universally used clusterization algorithm to identify

various fragments. This method known as the Minimum Spanning Tree (MST) method

[11], identifies various fragments on the basis of the distance among nucleons bound in

a fragment. Accordingly, two nucleons share the same fragment if their distance, is less

than distance Rclus. This condition reads as:

| ri − rj |≤ Rclus, (3.1)

where ri and rj in coordinate space, are the centroids of the ith and jth nucleon, respec-

tively. The value of Rclus can vary between 3 - 6 fm. Here, it is worth mentioning that

the role of varying Rclus at freeze-out time is insignificant. Primarily, the Rclus value is

considered to be 4 fm.

Although the MST method is quite simple and fast but its pertinence is only legitimate

at freeze-out stage. The framework of this method is not accomplished enough to study

the hot and dense compressed state of nuclear matter (i.e., before freeze-out). Lately, the

different Rclus values for protons and neutrons has also been suggested [204].
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3.2.2 The Minimum Spanning Tree method with Momentum
(MSTP) cut

Evidently, the MST method does not remark on the stability of fragments therefore, to

avoid the formation of loosely bound/unbound fragments, the relative momenta of the

nucleons is also constrained in addition to their coordinate space [154, 155]. This method

was labelled as the Minimum Spanning Tree method with Momentum cut (MSTP or

MSTM) method. Accordingly, we demand:-

| ri − rj | ≤ Rclus ; | pi − pj | ≤ pFermi, (3.2)

where pi and pj are the momentum coordinates of ith and jth nucleons, respectively, and

pFermi is the Fermi-momentum of the nucleons bound in a nucleus at its ground state.

This formalism rejects all those nucleons which are too far in the momentum space.

3.2.3 Binding energy based clusterization algorithm

Sometimes, in the MST and MSTP methods, one cannot separate two structure fragments

if they share a single slow moving surface nucleon. An alternative method to remove above

mentioned ambiguity is to first recognize the “pre-clusters” using the MST method and

then check their stability using their binding energy. In this algorithm, the realization

of the fragment structure depends on the interactions and relative kinetic energy of the

nucleons of a given fragment identified by the MST method. The following mechanism is

adopted for identifying such realistic fragments:

1. Identify the clusters using the MST method,

and;

2. then subject each such fragment to the following binding energy check:

ζ =

Af∑
i=1


(
pi − pcmAf

)2
2m

+
1

2

Af∑
j ̸=i

Vij(ri, rj)

 < Ebind. (3.3)

with Ebind = -4.0 × Af MeV if Af ≥ 3 and Ebind = 0, otherwise. In the above equation

pc.m.Af
represent the center-of-mass momentum of the fragment, respectively. The proba-

bility to sustain fragment for long depends on the Ebind (binding energy) [156, 157, 205].
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If any fragment is not able to fulfil the condition mentioned in eq. (3.3), then this pre-

fragment is treated as unbound and all the nucleons of the pre-fragment are considered

as free nucleons. In this approach of the MST method in which constant binding en-

ergy constrain was incorporated is dubbed as MSTB (1.1). The MSTB (1.1) not only

removes the unbound fragment structures but also improves the fragment identification

time to large extent [156]. Puri et al. further modified this approach by implementing the

binding energy condition where Ebind was computed using modified Bethe−Weizsäcker

mass-formula [156]. This version was termed as MSTB (2.1).

Generally, one can use the binding energies corresponding to a cold or hot nucleus.

Recently, it has already been shown that one should implement thermal binding energies

instead of cold binding energies to filter the unstable fragments at the time of their

identification. This method is dubbed as Minimum Spanning Tree with Thermal Binding

energy cut (MSTBT) [157]. We will continue with this approach in this work also and will

implement only temperature-dependent binding energies to filter the unstable fragment

structures. In this method, the excitation energies of various fragments are taken into

account and Ebind is calculated using the so called temperature-dependent binding energy

formulae. Interestingly, for the hot binding energies, various formulae were proposed

in the literature [206–208]. We shall discuss some of these formulae in the following

paragraphs [156, 157]. Here, we shall use three different temperature-dependent binding

energy formulae proposed by Davidson et al. [206], Pi et al. [207] and Sauer et al. [208].

A few details of the temperature-dependent binding energy formulae will be discussed in

the next section:

3.2.4 Different temperature-dependent binding energy formulae

Davidson et al formula:

The first formula put forwarded by Davidson et al. uses the canonical ensemble theory.

This formula reads as:

EBind(T ) = α(T )Af + β(T )A
2/3
f +

(
γ(T )− η(T )

Af
1/3

)
(4tς

2 + 4|tς |)
Af

+ 0.8076
Zf

2R(0)

Af
1/3R(T )(

1− 0.7636

Zf
2/3

− 2.29
R(0)2

[R(T )Af
1/3]2

)
+ δ(T )

f(Af , Zf )

Af
3/4

, (3.4)
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where tς = (2Zf − Af )/2 represents the isospin asymmetry of a nucleus and f(Af , Zf )

= (-1, 0, 1) for even-even, even-odd and odd-odd nuclei, respectively. It is important

to note here that the relation of nuclear radius is not computed using fitting, but is

derived by parameterizing the weak dependence on temperature. To derive this formula,

the excitation energy of a nucleus is fitted according to canonical ensemble theory and is

converted into the temperature of the considered system;

Q(Af , Zf , T ) =
n∑
i

gi exp
(
− Ei
T

)
+

∫ Emax

En

dE gAf ,Zf
(E) exp

(
− E

T

)
, (3.5)

where gi = (2ji + 1) is the spin degeneracy factor and Ei is the excitation energy of

the ith state of the nucleus (En and Emax corresponds to the excitation energy of the nth

and highest energy state of the nucleus, respectively). The temperature-dependence of the

constants α(T ), β(T ), γ(T ), δ(T ) and η(T ) was calculated from the available experimental

details of the excited states of 313 nuclei in the mass region 22 ≤ AT ≤ 250 by calculating

the partition function of respective nucleus in canonical ensemble theory and making a

least square fit of the excitation energy to ensemble average using the relation

Ei(Af , Zf , T ) = T 2 ∂

∂T
ln Q(Af , Zf , T ). (3.6)

It is important to mention that in the present study, no refitting of the coefficients of the

formula is done; instead the actual form of the expressions given in Ref. [206] is used.

The role of shell corrections, pairing terms and deformations is observed to be negligible

here [209, 210].

Sauer et al and and Pi et al formulae:

The other formula implemented for filtering the loosely bound fragments is given as:

EBind(T ) = (av − αvT
2)Af − (as − αsT

2)A
2/3
f −

[
ac

(
1− aCoul

A
2/3
f

)
− αCoulT

2

]
Z2
f

A
1/3
f

−(asym − αsym × 10−4T 2)
(Af − 2Zf )

2

Af
+ (ass + αssT

2)
(Af − 2Zf )

2

A
4/3
f

.(3.7)

Here Zf is the the charge of the fragment, respectively. This formula was proposed by
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Sauer et al. [208] and Pi et al. [207] using two different theories. Sauer et al. obtained

this formula by employing the Thermal Hartree-Fock (TDHF) Approximation, whereas

Pi et al. used hot Thomas-Fermi calculations. In the first case, the density of the nucleus

was considered to be somewhat greater at the interior compared to its surface, but in

the latter case, the density was considered to vary continuously from the interior to the

surface. Also, Pi et al. considered the contribution of the surface nucleons towards the

nuclear symmetry energy; in contrast to Sauer et al., who ignored this contribution. In

the case of the formula by Sauer et al., the coefficient aCoul was set to be zero, whereas

aCoul was taken to be 3.1445 by Pi et al.. We find that the formula proposed by Pi et al.

is more accurate compared to Sauer et al. for lighter mass nuclei. The parameter set used

in the formulae of Sauer et al. and Pi et al. are listed in Table 3.1. On the contrary, the

parameter set used in the binding energy formula of Davidson et al., is extracted from

the graphical representation reported in Ref. [206].

The versions of the MSTBT method with binding energy formula of Davidson et al.,

Pi et al. and Sauer et al. are termed as MSTBT (3.1), MSTBT (3.2) and MSTBT

(3.3), respectively. As far as the extraction of the temperature from non equilibrated

system (like typical heavy-ion collisions) is concerned, there are many methods listed in

the literature that account for e.g. diffusion of the surface and so on [175]. However, the

present formulae are valid upto 4 MeV only. Therefore, using thermal binding energies

with fixed temperature is just a case study to understand whether one needs to look at

excited fragments in a different way or not. Such assumptions were introduced in our

previous work successfully [157].

3.3 Experimental and theoretical approaches to

study liquid-gas phase transition

The significant number of studies have been performed by 4π group at Michigan State

University (MSU), Michigan, USA, Equation of State (EOS) collaboration at BEVALAC,

INDRA 4π array group and ALADIN group at GSI. Li et al. [87] reported experimen-

tal findings of the charge spectra of fragments emitted in the reactions of 40Ar+45Sc

and observed a minimum in the critical exponent (τ) at incident energy of 23.9 ± 0.7

MeV/nucleon. The percolation model was also used in this study for theoretical un-

derstanding [46, 87]. In another experiment, Ogilvie et al [43] reported the existence of
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Table 3.1: Parameters of the temperature-dependent binding energy formulae of Pi et al.
[207] and Sauer et al. [208] used in the present work. All values are in MeV.

Label av as ac asym αv αs αCoul αsym ass αss

Pi et al 16.00 20.80 0.7714 33.960 0.064 0.2238 0.00102 71.50 71.54 0.8184

Sauer et al 16.10 19.00 0.7000 30.020 0.055 0.1500 0.00070 60.04 0.0 0.0

the above minimum in the Au induced reactions on C, Al, and Cu targets at incident

energy of 600 MeV/nucleon. Similarly, William et al. [49] performed the experiment

for the reaction of 84Kr+197Au and compared their results to the Statistical Multifrag-

mentation Model (SMM). It is worth mentioning that some studies use exponential fits

[Y (Zf ) ∝ e−λZf ] rather than power-law fits [Y (Zf ) ∝ Z−τ
f ] to extract the corresponding

minimum [43, 46, 59, 87]. In some studies, it was pointed out that the power-law obser-

vation of the mass (charge) distribution is necessary, but not a sufficient condition for

extracting the phase-transition or critical point in a heavy-ion reaction. Therefore, var-

ious other order parameters such as the moments of the charge distribution, the Campi

scatter plots, the multiplicity derivative of the fragment multiplicity, as well as the fluc-

tuation in the charge of the largest fragment, and the second largest fragment, and so on

have also been put forward [45, 109, 192, 193, 196–198]. Various groups have studied the

phase-transition for symmetric to asymmetric reactions over wide range of system mass

combinations. Gilkes et al. performed the experiment at EOS collaboration, Berkeley,

and reported the role of various observables calculated using charge moments from frag-

mented system to determine the critical behavior in the finite nuclei [201]. Lately, Wada

et al. performed experiment using NIMROD multidetector array using the same reactions

as in Ref. [109, 192] and examined the phase-transition signals predicted by SMM model

[211]. Another experiment has been performed by the group at Texas A & M cyclotron

institute for the reaction of 28Si+112,124Sn at incident energies of 30 MeV/nucleon and

50 MeV/nucleon. In this experiment, charge distribution was measured in terms of a

critical exponent τ and various observables extracted from the moments of charge dis-

tribution. The multidetector i.e., Forward Array Using Silicon Technology (FAUST) has

been used to detect charged particles [200]. They used inclusive data to calculate the

critical parameter “τ” and second moment of the charge distribution.

Among various transport models, N -body theories such as the Classical Molecular Dy-
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namics (CMD) model, Quantum Molecular Dynamics (QMD) model [11] and its isospin-

dependent variant [141] enjoy special status since they can preserve the individual corre-

lations among the nucleons. These models were also used couple of times in the past to

get glimpse of the phase-transition [44, 192, 212, 213]. In one of such studies, Belkacem et

al performed a detailed study of various order-parameters for the reaction of 197Au+197Au

at 35 MeV/nucleon using Classical Molecular Dynamics (CMD) model [193]. Ma et al

in another study used isospin-dependent Classical Molecular Dynamics (CMD) model

and reported maximum entropy in the event space at the critical point predicting phase-

transition [214]. In another case, Ma et al [109, 192] examined the reactions of 40Ar on

27Al, 48Ti, 58Ni at 47 MeV/nucleon using the TAMU Neutron Ion Multi-detector for Re-

action Oriented Dynamics (NIMROD) set up for various critical parameters [109, 192].

In one of such studies, Ma et al. [44] used the QMD model and reported a minimum

in τ at 65 MeV/nucleon for the reactions of 40Ar+27Al. On the other hand, Puri et al.

found a flat behavior of the power-law parameter τ for the reaction of 40Ar+45Sc using

the Isospin-Dependent Quantum Molecular Dynamics (IQMD) model [212].

Through a very careful inspection of the literature we note that, only a few studies

discussed the influence of input parameters as well as fragment formation criteria on the

critical exponents. For example, Li et al. [46] varied the initial lattice size from 50 to 800

in percolation model calculations and found a shift in the minimum of τ till lattice size of

500 and no effect was recorded afterwards. In another study, Pan et al. [194] varied the

critical density (at which fragments are assumed to be formed) in the percolation model

and reported a similar effect. In a recent study, Lin et al. examined the sensitivity of

various phase-transition parameters for primary and secondary fragments using Statistical

Multifragmentation Model (SMM) calculations [196]. They showed that the analysis

of primary and secondary fragments can influence the critical point observation. The

importance of the simultaneous study of various critical parameters, was also put forward.

It should be noted that all the above-mentioned dynamical studies were conducted

by employing the Minimum Spanning Tree (MST) method as a fragment identifier [44,

109, 192, 193, 212, 213, 215]. At the same time, improvements over the MST method were

also reported time to time (discussed in earlier sections) [11, 44, 109, 154–159, 205]. These

modifications range from the simple momentum cut to complicated energy minimization.

We must also keep in mind that clusterization method is enforced at certain reaction time

to identify fragments. Therefore, one has to also examine the phase transition by keeping
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into mind the associated questions such as freeze-out time, initialization, parameters

of the clusterization algorithm and so on. In this work, we will focus on the role of

these improvements (over the MST method) in deciding the phase-transition in heavy-ion

reactions.

3.4 Various signatures that predict liquid-gas phase

transition

Theoretical investigation of phase-transition in thermodynamics reveal the strong role of

various thermodynamical variables such as free-energy, specific heat, pressure, energy etc.

These variables entirely contribute to the theoretical study of nuclear phase-transition.

From the set of isotherm curves (discussed in chapter 1), it is obvious that the equation of

state obtained from the mean field calculations of nuclear matter was found to resemble

Van der Waal’s equation of state in ordinary matter. Various dynamical and statistical

models have studied the role of various order parameters associated with liquid-gas phase

transition. The statistical models report fluctuations at critical point in thermodynamical

variables such as free-energy, specific heat, excitation energy as significant signature of

liquid-gas phase transition. On the other hand, the dynamical models concentrate on

various observables extracted from the fragmented system after multifragmentation. Both

theoretical and experimental studies done in the past discuss various signals that help one

to predict liquid-gas phase transition, some of which are discussed below:

3.4.1 The caloric curves

The similarity between caloric curves (temperature-energy curve) of ordinary and nuclear

matter is quite striking. This triggered the interest of physicists to explore deeper into

the topic both experimentally and theoretically. The study of nuclear caloric curves was

contemplated by various significant experimental groups such as ALADIN collaboration,

EOS collaboration and INDRA collaboration [8, 9]. Associating to all the studies done

in the past, caloric curves can be classified into three stages: At excitation energy below

2 MeV/nucleon, the state of nuclear matter corresponds to the liquid phase. Within

the energy range between 3 to 10 MeV/nucleon, isotopic temperature remains constant

for the broad range of incident energy. This stage corresponds to the co-existence of

liquid-gas phase. Further rise in the excitation energy leads to the constant increase

70



E/A (MeV)

Figure 3.1: The τ and λ calculated by the fit of IMF distribution and average IMF
multiplicity as the function of incident energy for 40Ar+27Al reaction. The solid and
dashed line in the figure represent the cases corresponding to b = 0 and 2.5 fm, respectively
[44]. “ Reprinted (Fig. 3) with permission from Y. G. Ma and W. Q. Shen, Physical
Review C 51, 710 (1995), Copyright (1995) by the American Physical Society”.

in temperature which can corresponds to gaseous phase or vaporization phase. Many

of the caloric curves extracted in the literature are not in agreement with each other.

This difference can be attributed to the difference in energy thresholds implemented to

measure the isotopic yield. The complexity in performing direct comparison between real

and apparent temperatures and small count of nucleons in the nucleus also led to difficulty

in measuring the caloric curves. Therefore, there was need of defining better signatures

to explore underlying physics behind the phase-transitions in nuclear matter.

3.4.2 The critical exponent τ/λ

As mentioned earlier, the analysis by Purdue group revealed that, mass/charge yields

of fragments when fitted as a function of mass (Af )/charge (Zf ) follow the power-law
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E/A (MeV)

Figure 3.2: The γ2 produced in the Ar+Al (open circles), Ti (open triangles) and Ni (solid
spheres) as a function of incident energy [45]. “ Reprinted (Fig. 14) with permission from
Y. G. Ma et al., Physical Review C 71, 054606 (2005), Copyright (2005) by the American
Physical Society”.
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(∝ Zf
−τ ) and exponential fits (∝ e−λZf ) at a certain excitation energy. This led to

the conclusion that the fragmenting system is close to the critical point of liquid-gas

phase transition [43–46, 58, 87, 109, 192–200]. This idea was initially introduced by the

Fisher’s droplet model that points to the power-law behavior of liquid drops at the critical

point. In this direction, the study done using Lattice Gas Model (LGM) also predict the

power-law behavior at the critical point. Fig. 3.1 (a) displays the critical parameter “τ”

(calculated from power-law fit) and “λ” (calculated from exponential fit) as the function

of incident energy. Similar reports were reported by the group performing calculations

with Percolation model [46]. Few experimental groups have also validated the power-law

behavior at the critical point. The minimum obtained when these critical parameters are

plotted as a function of incident energy also signifies the onset of multifragmentation.

3.4.3 The IMF multiplicity

The emanation of Intermediate Mass Fragments (IMFs) gives valuable information about

the dynamical evolution of the reactions at intermediate energy. At low incident ener-

gies, the IMF production is the unaccustomed phenomenon whereas at high energies the

production of large count of light particles governs the domain. Whereas, at intermediate

energy the emission of intermediate mass fragments has been both theoretically and exper-

imentally pronounced phenomenon. It is well known that, the multiplicity of intermediate

mass fragments shows rise and fall when studied as a function of incident energy [57]. The

emission of intermediate mass fragments for central collisions for 40Ar+27Al studied using

QMD model has manifested another idea to study liquid-gas phase transition. In Fig.

3.1 (b), we display such results for representation. For instance, the maximum in the

multiplicity of IMFs at the critical energy gives another significant evidence to study the

onset of multifragmentation.

3.4.4 The moments of fragment charges

Another prominent feature reported by various experimental and theoretical groups is the

existence of maximal fluctuations at the critical point in the systems that undergo phase-

transition. The thermodynamical cause behind the fluctuations is the disappearance

of latent heat at the critical point. Campi proposed the event-by-event correlations to

study scatter plots between the largest cluster as a function of normalized second moment
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Figure 3.3: The critical parameter τ (τeff ) (a), the exponential parameter λ (λeff ) (b),
<S2> (c), the normalized charge variance (NVZ) (d), the mean charge of the second
largest fragment <Z2max> (<Zmax2>) (e). “ Reprinted (Fig. 3) with permission from Y.
G. Ma et al., Physical Review C 69, 031604 (2004), Copyright (2004) by the American
Physical Society”.
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(excluding the mass of the heaviest cluster). This study introduced “S2” as an significant

observable to predict liquid-gas phase transition. Another quantity, “γ2” that takes the

ratio of moment of charges into account has also been proposed by the same group to study

the liquid-gas phase transition. In Fig. 3.2, we display the value of “γ2” as a function of

incident energy of the projectile [109]. From the figure, it can clearly be observed that the

maximum in the figure indicates the critical point which can closely be associated with

the maximal fluctuations. The detailed description of these observables can be studied in

the following section.

The experiment performed by TAMU-NIMROD detector reported various signals that

mark the existence of first order phase transition [45, 211]. In this direction, the wide va-

riety of studies have also been performed. The schematic comparison between numerous

theoretical and experimental outcomes as a function of temperature is displayed in Fig.

3.3. The figure shows various observables such as critical parameter τ , exponential pa-

rameter λ, <S2>, Normalized Charge Variance (NVZ), mean charge of the second largest

fragment (Zmax2) as a function of incident energy. Clearly, the observables displayed in

the figure show deviation in their behavior at the critical point i.e., minima in the Figs.

3.3 (a) and (b) and maxima in Figs. 3.3 (c), (d) and (e). The figure compares the ex-

perimental results with standard statistical sequential decay code (GEMINI), the isospin

dependent Lattice Gas model, Classical Molecular Dynamics (CMD) model with Coulomb

forces [109].

3.4.5 Results and discussions

It is well known that the identification of the fragments based on the spatial correlations

should be done when the system is diluted and fragments are well separated. Therefore,

in the present study, clusterization algorithms are enforced at a freeze-out time of 300

fm/c where fragments are well separated from each other.

In Figs. 3.4 and 3.5, we display the fragment charge spectra obtained in the central re-

actions of 40Ar+45Sc at different incident energies between 15 and 115 MeV/nucleon. The

results obtained using MST, MSTP, and MSTBT methods are represented by squares,

circles, and inverted triangles, respectively. It should be noted that for the discussion of

Figs. 3.4 to 3.6, MSTBT results corresponds to the results of MSTBT (3.1) (at 4 MeV)

version. From the figure, the well-known trends can be noted. The heavier fragments

dominate the spectra at lower incident energies, which is taken over by the lighter frag-
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Figure 3.4: The charge distributions of central reactions of 40Ar+45Sc at different pro-
jectile incident energies in the range of 15 to 115 MeV/nucleon. The open squares, open
circles, and open inverted triangles represent the results using the MST, MSTP, and
MSTBT methods, respectively. The lines are to guide the eyes and correspond to power-
law fits over fragment charge distributions for IMFs [3≤Zf≤12].
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ments at higher incident energies. At the same time, one sees nearly no effect of different

clusterization algorithms on the spectra [44, 46, 49, 87]

Now to see how different algorithms can affect the critical point, the charge yield

distribution of intermediate mass fragments is fitted with a power-law (∝ Z−τ
f ) (shown in

Fig. 3.4) and exponential fitting (∝ e−λZf ) (shown in Fig. 3.5). In Fig. 3.6, the values of

τ (upper panel) and λ (lower panel) obtained using different algorithms are plotted as a

function of incident energy. Various symbols have the same meaning as in Figs. 3.4 and

3.5. In addition, the calculation with temperature of 2 MeV is also displayed in the figure

(labelled as MSTBT′).

Looking at the Fig. 3.6, one notices that the value of τ(λ) increases with projectile’s

incident energy beyond 20 (25) MeV/nucleon; mimicking the increase in the sharpness of

the charge spectra of the fragments. It is worth noting that even though the fragment

charge yields (presented in Fig. 3.1) differ significantly for different algorithms, their

power-law parameter τ (λ) shows almost similar trends with incident energy within error

bars except for the MSTP method, where deviation is more significant. This happens due

to a sharp decrease in the probability of the larger charge fragments. The minima in the

τ(λ) is obtained using fourth-order polynomial fit as was done in Refs. [46, 87, 212, 213].

The minima in τ (or critical point) is found at incident energies of 18.03, 19.04, and

18.03 MeV/nucleon using MST, MSTP, and MSTBT methods, respectively. Whereas,

no minima in τ is obtained in the case of MSTBT′ (inverted lined triangles) method.

Similarly, for the exponential fits, the parameter λ has minima at incident energy of 21.06,

19.04, 19.04, and 17.02 using MST, MSTP, MSTBT, and MSTBT′ methods, respectively.

It is worth mentioning that the values of τ (λ) are much lower than the experimentally

measured or expected values. This may be due to the lack of exact Fermionic properties

(such as specific heat) of the nucleons in the present dynamical model (see Refs. [216,

217]). As mentioned above, the cold binding energies can also be enforced to check the

stability of the fragments (dubbed as MSTB method) [156]. Though, we already discarded

its use in Ref. [157] here results with MSTB are also displayed for the reference purpose

only. Interestingly, no minimum was observed when cold binding energies were used.

This further shows that demanding cold binding energies for the fragment filtration is too

stringent a condition. Probably one needs to wait longer to have cold fragments, but in

that case, one runs into the risk of having spurious fragments. On the other hand, the

use of thermal binding energy seems to be a reasonable condition. As noted, all different
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Figure 3.5: The charge distributions of central reactions of 40Ar+45Sc at different projec-
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78



cluster identifiers reach nearly the same conclusion. It clearly demonstrates that the effect

of different cluster identifiers is nearly insignificant.

3.4.6 Different signatures to study liquid-gas phase transition

In a recent study, Lin et al. pointed that one should study various order parameters

simultaneously to pin down the exact critical point [196]. Also the earlier studies showed

that the occurrence of a minimum in τ(λ) is necessary but not a sufficient condition for the

observation of phase-transition [45]. Campi suggested using the moments of the charge

distribution to pin down the critical point [197]. In general, the ith moment of the charge

distribution having multiplicity ‘n’ can be defined as:

Mi =
∑

Zf ̸=Zmax

Zi
f n(Zf ). (3.8)

Here, Zf is the charge and n(Zf ) is the multiplicity of the fragment with charge Zf

in an event. The values obtained are then averaged over all events except the heaviest

fragment which indicates towards the property of bulk liquid in infinite system. In most

of the studies, two particular combinations of these moments are used namely normalized

second moment (S2) and γ2 [45, 109, 192, 193, 195]. These are defined as

S2 =
M2

M1

, (3.9)

and,

γ2 =
M2M0

M1
2 , (3.10)

where M0, M1, M2 are the zeroth, first, and second moments of the charge distribution,

respectively. In such an analysis, the parameters <S2> and <γ2> are expected to give

maximal values at the critical point mimicking the largest fluctuations of the fragment

charge distribution. Also due to the exclusion of largest cluster charge, one expects <S2>

to be proportional to the isothermal compressibility [195]. In other studies, the charge

of the second largest fragment (<Zmax2>) is also found to show a maximal value at the

critical point when plotted as a function of the incident energy of the projectile [192]. We

have also analyzed these parameters using various clusterization algorithms.

In Fig. 3.7, we display the values of the parameters <S2>, <γ2>, and <Zmax2> as

a function of incident energy using MST, MSTP, and MSTBT methods. The symbols

have the same meaning as in Figs. 3.4 and 3.5. We see that all three parameters give

79



0

2

4

6

8

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

 MST
 MSTP
 MSTBT 
 MSTBT'  

 

 E (MeV/nucleon)

 

 

 

(a)

(b)
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almost the same results over the entire range of the incident energy. The effect of different

clusterization algorithms is nearly insignificant.

The parameter <S2> shows a maximal value at 12 MeV/nucleon for the fragments

identified using MST, MSTP, and MSTBT methods. Note that this predicted critical

point is much lower than the expected or measured value due to the inclusion of classical

heat capacity in-spite of the Fermionic one [217]. As pointed out in Ref. [217], the classical

heat capacity is much larger than the Fermionic heat capacity, therefore, causing lesser

production of IMFs and a larger Zmax. We also noted that the MST method gives highest

value of <S2> due to maximum number of bound charge fragments.

Similarly, the parameters <γ2> and <Zmax2> show maxima at 15 MeV/nucleon using

MST, MSTP, and MSTBT algorithms. It is worth mentioning that we also checked the

sensitivity of our results by varying the freeze-out time from 300 to 400 fm/c. The critical

values of τ(λ) read as 19.04 (20.05), 17.01 (18.03), and 21.06 (22.07) for MST, MSTP,

and MSTBT methods, respectively. In other words, the effect of different freezing time is

about 5 - 10% only. The effect is of similar order as we obtain for different clusterization

algorithms.

On the other hand, no effect of different freeze-out time is seen on the other transition

parameters such as <S2>, <γ2> and <Zmax2>. All these parameters remain completely

insensitive towards both different clusterization algorithms as well as towards different

freeze-out time (from 300 to 400 fm/c).

3.4.7 Effect of different thermal binding energies in clusteriza-
tion algorithm

Now, we would like to draw the attention of the reader to the studies conducted by

Souza et al [218] using statistical multifragmentation model (SMM) and Karthikraj et al

[219] using dynamical cluster model (DCM). In both these studies, results were reported

depending on the binding energy formulae one uses in the analysis codes. Souza et al.

conducted their study using the SMM model to constraint the symmetry energy using

an iso-scaling parameter based on the lighter fragments [218]. They took three liquid-

drop-based binding energies, i.e., LDM1 [220], LDM2 [221], and LDM3 [222] to draw

the breakup conditions for nuclei. The iso-scaling parameter and thus, the symmetry

energy was found to vary significantly with the choice of the binding energy formula in

their analysis program. A similar type of results were reported by Karthikraj et al. but
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using different temperature-dependent binding energies in the DCM model to look for the

α-structure of nuclei [219]. They studied the decay of 56Ni∗ compound nucleus formed

in the reaction of 35S+24Mg. The α-structure was found to depend significantly on the

temperature-dependent binding energy one is using in analysis code.

Keeping the above studies in mind, we extended our work by using different thermal

binding energy formulae (discussed in section 3). We used MSTBT (3.1), MSTBT (3.2),

and MSTBT (3.3) methods for analyzing the stable fragment structures and finally critical

parameters namely, τ , λ, <S2>, <γ2>, and <Zmax2>.

The results of τ and λ using different versions of MSTBT methods are plotted in Fig.

3.8, whereas Fig. 3.9 depicts the results for <S2>, <γ2>, and <Zmax2> parameters.

The inverted triangles, stars, and pentagons represent the results obtained using MSTBT

(3.1), MSTBT (3.2), and MSTBT (3.3) methods, respectively. From Fig. 3.8, we observe

minima in τ at 18.03, 17.02 and 17.72 MeV/nucleon for MSTBT (3.1), MSTBT (3.2),

and MSTBT(3.3) methods, respectively. For λ, minima are obtained at 19.04, 20.05,

and 19.04 MeV/nucleon for MSTBT (3.1), MSTBT (3.2), and MSTBT (3.3) methods,

respectively.

All other parameters <S2>, <γ2> and <Zmax2> (see in Fig. 3.9) show the insignificant

effect of different versions of the MSTBT method. Our these results are in agreement with

previously reported results [157].
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3.5 Summary

In this chapter, we investigated the connection between liquid-gas phase transition (or

the onset of multifragmentation) and fragment charge yields for the central reactions

of 40Ar+45Sc. In the present work, we have coupled various clusterization algorithms

with the QMD model. Our detailed study in the chapter clearly indicates that different

quantities advocated to study the phase transition namely the minimum in the critical

parameter τ(λ) and maxima in <S2>, <γ2> and <Zmax2> give nearly consistent results.

Further, all these results are nearly insensitive towards different clusterization algorithms,

different freeze-out time, as well as towards different thermal binding energies formulae,

therefore, present a universal behavior. Thus the order parameters used to find the critical

point of phase transition is independent of the choice of algorithm one uses to find results.
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Chapter 4

Fragment emission and critical
behavior using energy based
clusterization algorithm

In the previous chapter, we have used various extensions of Minimum Spanning Tree

(MST) method (that include momentum and binding energy cuts) and found that there

is no effect of these extensions on the extraction of liquid-gas phase transition signals

[223]. It is very well known that the utility of MST method (or any of its extension) is

constrained to dilute nuclear matter only where nucleon-nucleon collisions nearly cease.

The MST method (or any of its variant) is quite accomplished to explain physics at the

freeze-out stage (i.e., at ∼ 300 fm/c). In previous chapter using Quantum Molecular Dy-

namics (QMD) model, we could definitely obtain minimum in the exponent of charge yield

for the reaction of 40Ar+45Sc and corresponding maxima in the values of <S2>, <γ2>,

and <Zmax2>. The absolute values were, however, far from the experimental data. But to

understand about the density fluctuations/correlations among nucleons that lead excited

system to break into variable sized fragments; one requires clusterization algorithm that

can trace back these initial correlations in the time (or identify fragment structures quite

early in time i.e., when matter is in the violent or compressed state). In this direction,

Puri and Aichelin proposed an algorithm namely Simulated Annealing Clusterization Al-

gorithm (SACA) [159]. The idea of such algorithm was given by Dorso and Randrup for

small systems [224]. This algorithm was found to resolve the issues that were reported

with Minimum Spanning Tree (MST) method or any of its variants. In the last two

decades, the utility of SACA method has been shown to resolve many misconceptions

regarding dynamical models. For example, Tsang et al put forward a failure of QMD
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+ MST method to reproduce the 197Au + 197Au data at relativistic energies of 250 and

400 MeV/nucleon for peripheral collisions [84]. They considered the use of classical heat

capacity instead of Fermionic heat capacity in the dynamical model as the main reason

for this failure. Later, Puri et al were successful in reproducing these experimental results

using the same QMD model coupled with SACA method. They have also extended their

study upto incident energies of 1000 MeV/nucleon to explain spectator fragmentation of

197Au + 197Au reactions. Earlier, thermal models were considered more suitable to explain

experimental observations at these incident energies. In the last few years, the QMD +

SACA model was also able to explain event-by-event correlations among fragments in the

Fermi-energy domain for symmetric as well as asymmetric reactions [223]. This approach

when coupled with Quantum Molecular Dynamics approach is also found to explain great

set of experimental data on fragment multiplicities, bimodality, multiplicity distribution

etc. Very recently, Aichelin and Fevre have shown success of QMD + Fragment Recog-

nition in General application (FRIGA) model (modified version of SACA) to reproduce

the isotopic yields [225]. Great efforts are done in order to extend the SACA method to

the region of ultra-relativistic energies (upto LHC) to explain the production of hyper-

clusters, related phenomena and Quark-Gluon Plasma (QGP) formation and hypernuclei

production [226]. Our present aim is to workout the problem of studying liquid-gas phase

transition (or onset of multifragmentation) with QMD model coupled with SACA method.

We will use all the critical exponents explained in the earlier chapters. The motivation of

the present study is to know whether our observations about liquid-gas phase transition

are influenced if the energy based clusterization algorithm is used. If successful, one can

consider the combination of QMD + SACA method as universally consistent method that

can explain all the observations linked to multifragmentation.

4.1 Various energy based clusterization algorithms

4.1.1 Early Cluster Recognition Algorithm (ECRA)

Dorso et al, were the first to take initiative to develop an algorithm based on the metropolis

procedure. This algorithm was named as Early Cluster Recognition Algorithm (ECRA)

[158]. The emphasizing fact of this algorithm was that one could procure the most stable

configuration at the early stage of the reaction (i.e., before freeze-out stage). In this

algorithm the aim was on on maximizing the binding energy of each cluster, thus also used
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the momentum space of nucleonic space. Despite the fact, the outcome of this algorithm

was quite interesting but its utility was constrained due to the enhanced computing time

and its compatibility to study lighter reactions only.

4.1.2 Simulated Annealing Clusterization Algorithm (SACA)

Based on the idea of energy minimization (as mentioned in ECRA), Puri et al. designed a

unique clusterization technique “Simulated Annealing Clusterization Algorithm (SACA)”

[159]. This algorithm removed all the shortcomings of the ECRA method. This algorithm

is based on the similar ground as the “annealing” process used for the cooling of solids and

widely used in metallurgy field. This algorithm is able to recognize the correlations among

nucleons bound in fragments much ahead of their formal separation in coordinate space.

In other words, SACA enables one to understand the reaction dynamics at the violent

stages of a reaction. This algorithm not only identifies the realistic fragment structures

but also realizes the fragment structure as early as ∼ 60 - 90 fm/c where state of matter

is still dense and hot. This time is much shorter compared to the time needed by the

standard MST method to provide the final fragment structures (∼300 fm/c). Here, Monte-

Carlo simulated annealing technique is evoked to search for the most bound configuration

consisting of the fragments of different sizes and free nucleons. This algorithm constructs

almost all possible fragment configurations using metropolis procedure [227] coupled with

“simulated annealing” technique [228]. This algorithm is a sequence of metropolis steps

with a control parameter ϑ interpreted as “temperature”.

Further, it may happen that at intermediate times of a reaction too many clusters

are recognized, which will break apart at later times. To avoid this and to fasten the

procedure the pre-clusters formed at the intermediate stages are subjected to following

binding energy condition:

ζ =

Af∑
i=1

√(pi − pcmAf

)2
+m2

i −mi +
1

2

Af∑
j ̸=i

Vij(ri, rj)


< Ebind × Af , (4.1)

with Ebind = - 4.0 MeV, if Af ≥ 3 and Ebind = 0 MeV, otherwise. This constant binding

energy cut was changed to microscopic binding energy cut, where binding energy is cal-

culated using the binding energy formula. But the effect on final fragment configuration

has been seen to be insignificant. This condition assists to realize the fragments early,
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despite the fact that if once loosely bound fragments are formed, it consumes longer time

to search for the true configuration. Some steps regarding the procedure followed in the

algorithm will be discussed in the upcoming paragraphs.

The procedure of the SACA method proceeds from any random configuration (e.g. us-

ing MST method) which is the basis to construct the new configuration. The acceptance

of new configuration is based on the criteria that it yields maximum number of stable

configurations. This algorithm ameliorates a better picture, by avoiding the trapping of

configuration in the local minima that was major problem in using ECRA method. The

simulated annealing technique also inherits the feature to accept even the rejected config-

uration in the controlled manner. The paradigm of obtaining most bound configuration

through SACA method follows the chain of metropolis steps with a controlled parameter

‘ϑ’ which is termed as temperature. It is important to notice here that unlike Restruc-

tured Aggregation Method (RAM) [229], the SACA method does not alter the nucleonic

phase space. The steps for SACA algorithm reads as:

1. One begins from any random configuration ‘ψ′’ having energy ζψ′ . From which

a new fragment configuration ‘ϕ′’ with energy ζϕ′ is generated using Monte-Carlo

procedure. This is done by shifting one or few nucleons from one fragment to other

fragment.

2. The energy difference between the old and new fragment configuration is calculated

i.e., △ζ = ζϕ′ − ζψ′ .

3. If energy difference between two configurations (∆ζ) is negative, the new configura-

tion is always accepted. On the other hand, if ∆ζ is positive, the new configuration

is still accepted with a probability exp(−∆ζ/ϑ) to avoid any local minima.

Let initial configuration ‘ψ′’ consists of randomly and artificially created fragments

and free nucleons be ‘ψ′’. The total energy (ζψ′) associated with this configuration is then

calculated as:

ζψ′ =

A
l1
f∑

i=1


√(

pi −Pcm

A
l1
f

)2

+m2
i −mi +

1

2

A
l1
f∑

j ̸=i

Vij(ri, rj)


l1

+....+

A
l2
f∑

i=1


√(

pi −Pcm

A
l2
f

)2

+m2
i −mi +

1

2

A
l2
f∑

j ̸=i

Vij(ri, rj)


l2
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+

A
l3
f∑

i=1


√(

pi −Pcm

A
l3
f

)2

+m2
i −mi +

1

2

A
l3
f∑

j ̸=i

Vij(ri, rj)


l3

+.....

Aln
f∑

i=1

√(pi −Pcm
Aln

f

)2
+m2

i −mi +
1

2

Aln
f∑

j ̸=i

Vij(ri, rj)


ln

. (4.2)

Here, Al1
f represents the number of nucleons in the cluster ‘l1’, P

cm

A
l1
f

is the momentum of

the cluster ‘l1’ in its center-of mass frame. Note here, the interaction between nucleons

of the different clusters in not considered, therefore ζψ′ calculated in the above equation

differs from the total energy of the system. Now, new fragment configuration is generated

using Monte-Carlo method by choosing one of the following possibilities:

• transferring a single nucleon from one fragment to other fragment, or

• setting a single nucleon free from a fragment, or

• absorbing a single nucleon by the fragment.

To understand the SACA method, let the new configuration ‘ϕ′’ is generated by transfer-

ring a single nucleon from fragment l3 to l2. The energy associated with new configuration

‘ϕ′’ reads as:

ζϕ′ =

A
l1
f∑

i=1


√(

pi −Pcm

A
l1
f

)2

+m2
i −mi +

1

2

A
l1
f∑

j ̸=i

Vij(ri, rj)


l1

+....+

A
l2
f +1∑
i=1


√(

pi −Pcm

A
l2
f +1

)2

+m2
i −mi +

1

2

A
l2
f +1∑
j ̸=i

Vij(ri, rj)


l2

+

A
l3
f −1∑
i=1


√(

pi −Pcm

A
l3
f −1

)2

+m2
i −mi +

1

2

A
l3
f −1∑
j ̸=i

Vij(ri, rj)


l3

+.....

Aln
f∑

i=1

√(pi −Pcm
Aln

f

)2
+m2

i −mi +
1

2

Aln
f∑

j ̸=i

Vij(ri, rj)


ln

. (4.3)

During this procedure, the energy of all fragments except the donor (l3) and acceptor

(l2) fragment remains constant. The energy difference between the old (ψ′) and new (ϕ′)
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configuration then can be calculated as:

∆ζ = ζϕ′ − ζψ′ . (4.4)

If the energy difference between two configurations (∆ζ) is negative, the new configura-

tion is always accepted. On the other hand, if (∆ζ) is positive, the new configuration

is accepted with a probability e−
∆ζ
ϑ to avoid any local minima, where ‘ϑ’ is the control

parameter in metropolis algorithm. Initially, a large value of ‘ϑ’ is taken. This is done to

overcome any kind of local minima. At a given temperature, a sequence of steps is per-

formed until cluster configuration freezes in binding energy. Then the control parameter

‘ϑ’ decreases to construct a new cluster configuration. The same procedure is repeated by

exchanging two nucleons, three nucleons and so on. In between the metropolis procedure,

the control parameter ‘ϑ’ is decreased to cool down the system. A decrease in control

parameter ‘ϑ’ means that the accepted energy difference in metropolis step is narrowed.

After a large number of metropolis steps, one would be able to realize the most stable

configuration in nature. The SACA algorithm has number of control parameters that can

change the time taken to realize the fragment configuration.

In the second step, the above mentioned procedure is repeated via shifting two nucle-

ons at one time. Further steps include shifting three, four and larger number of nucleons.

In the last step, the above procedure is evoked by allowing exchange of entire fragment

(instead of individual nucleons). The detailed description of the procedure such as mathe-

matical modelling, effect of input parameters, optimization input parameters of the model

are given in Ref. [159].

To show the reliability of the SACA computer code, we apply this algorithm to single

nuclei whose ground state properties are well known to us. We take two nuclei for the

reference purpose i.e., 40Ca and 208Pb. We divide 40Ca into 5 and 208Pb into 10 random

clusters of any size. If SACA finds the most bound configuration, then it must return us

these random configurations as single 40Ca and 208Pb nuclei. In the Fig. 4.1, we show

the evolution of the multiplicity (upper panels) and binding energy of the nuclei/clusters

(lower panels) as a function of the iterations for the single nuclei of 40Ca (left panel) and

208Pb (right panels) [159]. Initially, we see multiplicity of clusters to be five for 40Ca and

10 for 208Pb. These random clusters are unstable and can also be observed by looking at

lower panels, where binding energy of the clusters is shown. Starting from these random

configurations, SACA construct other possible configurations and try to minimize the
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binding energy of the system. It takes nearly few thousand iterations to find the final

configuration. One can observe that SACA computer modelling gives multiplicity value

of 1 at the end, which means SACA finds that the most stable cluster configuration is

a single nucleus i.e., 40Ca and 208Pb in the present case. These configurations are stable

and can also be observed from the binding energy values, which are negative and almost

equal to actual binding energies of these nuclei. These results confirm the reliability of

the SACA code in identifying the realistic clusters.

4.1.3 Fragment Recognition in General application (FRIGA)
model

It is worth mentioning here that recently SACA algorithm was extended to study the

hypernuclei production in heavy-ion reactions [226], namely Fragment Recognition in

General application (FRIGA) model. To obtain more realistic fragments, this approach

was extended by incorporating isospin degree of freedom in the framework through the

potential terms (i.e., asymmetry energy and shell effects). Recently, the consistency of

this algorithm in the reproduction of experimental data at the ultra-relativistic ener-

gies and production of hyper-nuclei was presented in Ref. [225, 226]. The results fur-

ther strengthen the applicability of the procedure to construct fragments/clusters in the

adopted algorithm. As the extended SACA is all set to explore the physics related to

Quark-Gluon Plasma (QGP) at ultra-relativistic energies of Super Proton Synchrotron

(SPS), Relativistic Heavy Ion Collider (RHIC), and Large Hadron Collider (LHC), the

present chapter will be dedicated to understand the utility of SACA method to under-

stand liquid-gas phase transition in multifragmentation at intermediate energy domain.

In the following, we will briefly discuss Michigan State University (MSU) set up whose

results we have compared in this chapter.

4.2 The Michigan State University (MSU) 4π array

The diverse range of experimental facilities have been developed so far and many are

under development. The outcome of performed experiments have been quite consistent in

providing many facets of the dynamics related to multifragmentation over broad variety of

colliding partners of different masses, incident energies, colliding geometries, isospin con-

tents, etc. Out of various existed research facilities and groups, the major groups involved
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Figure 4.1: (Upper panels) The evolution of single nuclei 40Ca and 208Pb as the function
of iterations, respectively. (Lower panels) Same as upper panels, but here we display the
energy of the system as the function of the iterations. “ Reprinted (Fig. 1) with permission
from R. K. Puri and J. Aichelin, Journal of Computational Physics 162, 245-266 (2000),
Copyright (2000) by the Elsevier”.
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Figure 4.2: A thirty-two face truncated icosahedron, comprising of twenty hexagons and
twelve pentagons. “ Reprinted (Fig. 1) with permission from G. D. Westfall et al., Nuclear
Instruments and Methods in Physics Research A 238, 347-353 (1985), Copyright (1985)
by the Elsevier.”

in the study of phenomenon of multifragmentation are FOur PI (FOPI) at GSI Germany,

4π multidetector Identification de Noyaux et Detection avec Resolution Array (INDRA)

group at GANIL, Caen, France, A Large Acceptance Dipole magN et (ALADiN) at GSI,

Germany and 4π array of Michigan State University (MSU), Michigan, USA. Various de-

tectors have been developed to accurately detect particles from heavy-ion collisions. For

the simultaneous detection of variety of charged particles i.e., from pions to fission frag-

ments, one needs a detector with the wide dynamic range. The aim was to construct an

apparatus that can achieve almost complete 4π coverage and hold within a large dynamic

range. In this chapter, we will compare our calculations with the experimental data from

MSU 4π detector, therefore, we will present a few details of the set up [230].

4.2.1 Details of the experimental set up

The low-pressure Multi-Wire Proportional Counter (MWPC) forms the inner layer and

detect fission fragments and various other slow, heavy, highly ionizing particles close to

Coulomb barrier energies. The MWPC measures position sensitivity and provides infor-

mation of the time of these particles. The Braggs Curve Counter (BCC) is constructed to
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detect high energy particles which acts as a thick second layer. The charge Zf and total

energy of the fragments are also measured by the BCC counter. After the penetration of

particles when they pass through both Multi-Wire Proportional Counter (MWPC) and

Braggs Curve Counter (BCC); these particles can be analyzed in the scintillator telescope.

The scintillator telescope provides information about the ∆E and E for light particles such

as pions, protons and alpha particles. These telescopes can also be used to give timing

information for the random-coincidence suppression and pion identification. Further, the

photomultiplier tube is assembled to read these signals. At the output, the CaF2 (slow)

and plastic scintillator (fast) owing to the difference in the characteristic time are as-

sembled. These signals are further separated by implementing different time gates. The

shape of the detector is constrained as it is made of number of components (MWPCs,

BCCs and scintillator telescopes), in order to achieve the objective of maximum coverage

by 4π detector. The configuration of the detector is selected on the basis of thirty-two

face truncated icosahedron comprising twenty regular hexagonal faces and twelve regular

pentagonal faces in the configuration. For better understanding, the geometrical exam-

ple figure of icosahedron is displayed in Fig. 4.2, that encloses hidden lines which are

represented by dashed lines. The schematic view of a typical example of the truncated

hexagonal detector is depicted in Fig. 4.3. Here, it is important to note that for the com-

plete coverage of 4π solid angle, the detector must have maximum sensitive area to detect

maximum count of particles and walls should have a small cross-section in comparison to

the sensitive area. The structure of the detector is built in such a manner that the center

lines of the walls are along the radii of a sphere centered at the target [230].

The Multi-Wire Proportional Counter (MWPC)

It is the low pressure gas detector that makes use of double amplification method. These

detectors can be utilized as initial detectors for the heavy fragments with slow mobility

alike fission fragments. The better and larger version of MWPC has been introduced and

they are made more position sensitive by diving the cathode foil into strips. Since, the

utility of this method needs the delay line outside the detector lines therefore, making

it inappropriate for close packing structures. Accordingly, the strips on the cathode foil

are connected with NiCr strips. The charge division method is employed to calculate the

position signal.
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Figure 4.3: The illustrated representation of one of the thirty subarrays that construct
the multiparticle array. “ Reprinted (Fig. 2) with permission from G. D. Westfall et al.,
Nuclear Instruments and Methods in Physics Research A 238, 347-353 (1985), Copyright
(1985) by the Elsevier”.

The Braggs Curve Counter (BCC)

It is designed as an ionization chamber in the detector with its field aligned in the direction

of incoming particles. In the similar manner, the range of the stopped particles in the

detector can also be computed. This counter is based on the principle that the maximum

specific ionization of the stopping ion is proportional to atomic number of the particle.

The maximum value of the ionization is used to compute the charge Zf ; the integral of

the ionization is also used to calculate energy E.

The ionization of a stopping particle leads to production of electrons that drift towards

anode that is further shielded by Frisch Grid. One can compute charge as a function of

time gathered around the anode, due to alignment of electric field in the same direction

of the path of the particle and therefore, also calculate the complete energy loss of the

distribution. In the existing counter, the range of covered area through angles is very

large and subsequently, the data corresponding to the stopping particles will be lost if

the electrons do not align themselves along the path of the particle. Therefore, the

field shaping grid is assembled in the BCC to provide the radial field. The pictorial

representation of BCC is shown in Fig. 4.4. The basic shape of BCC is hexagonal pyramid.

It comprises of small diameter entrance window, pressure window made of aluminized

mylar, Frisch grid composed of gold plated tungsten wires and anode behind the Frisch
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Figure 4.4: The enlarged view of Bragg Curve Counter. “ Reprinted (Fig. 4) with per-
mission from G. D. Westfall et al., Nuclear Instruments and Methods in Physics Research
A 238, 347-353 (1985), Copyright (1985) by the Elsevier”.

grid. The rear pressure window is made by using scintillator telescopes. Therefore, the

BCC can operate at a pressure of 500 Torr.

The Scintillator telescopes

These telescopes are built to detect light particles from pions to alpha particles. The

“Phoswich” technique is followed to calculate E and ∆E for identification of particles and

energy measurement. This technique is based on the utilization of time constants from

CaF2 and plastic scintillators. The characteristic time for CaF2 (1µs) is greater than for

plastic scintillator (50ns). Therefore, the energy loss from the CaF2 can be measured by

imposing the long, delayed gate at the output of the phototube, on the other side the

energy collected in the plastic scintillator can be attained using a short gate.

The structure of a scintillator counter supports this method of producing light by

CaF2 that possess better collection efficiency than the plastic scintillator. The number of

scintillator telescopes are connected through lightguides to the photo-multipliers.

4.3 Results and discussions

For the present study, several thousand events of the reactions of 40Ar+45Sc and

84Kr+197Au were generated, at different beam energies (ranging between 15 and 400
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MeV/nucleon). The choice of various entrance channels for the reactions (e.g., incident

energies and colliding geometries) is guided by the experimental measurements available in

the literature [46, 49]. Here, soft equation of state supplemented by Cugnon parametriza-

tion of the nucleon-nucleon (NN) cross-section is used to simulate the above reactions. It

is worth mentioning that above choice of the equation of state and NN cross-section has

been very successful in explaining various experimental results [51, 157, 159, 231, 232].

In Fig. 4.5, we display the normalized charge yields (see crossed squares) calculated

using the QMD model coupled with SACA method for the central collisions of 40Ar+45Sc

at different incident energies between 15 and 115 MeV/nucleon. The choice of the central-

ity and incident energy range is guided by experimental measurements reported in Ref.

[46]. Along with calculated yields, we also show the available experimental data (see stars)

[46]. From the figure, we notice that the slope of the charge yield becomes steeper with

incident energy signifying the violence of the binary collisions. These results (obtained

with QMD + SACA) are consistent with experimental trends and calculations reported in

earlier studies [43, 44, 46, 49, 59, 87, 212, 213, 233]. Very encouragingly, the QMD + SACA

can reproduce the measured charge yields at all incident energies very closely. It is worth

mentioning that the charge distributions are often fitted with power-law ∝ Z−τ
f to inves-

tigate the critical energy point of the possible liquid-gas phase transition. Hence, we also

fit the calculated charge yields [3≤Zf≤12] with power-law ∝ Z−τ
f (shown in Fig. 4.5).

The extracted values of τ are plotted in Fig. 4.6. From the figure, it is clear that the

values of τ increases with beam energy (>20 MeV/nucleon) reflecting the steepening of

the slope of the charge distribution with incident energy. We also observe a minimum in

the extracted “τ” value when plotted against incident energy. This minimum in the value

of the power-law factor “τ” corresponds to the onset of multifragmentation or sometimes

has also been referred as critical energy point. To obtain the exact value of the onset of

multifragmentation or minimum in the τ , we fitted extracted values of τ with fourth order

polynomial fit as was done in previous experimental analysis [46, 87, 212, 213] and obtained

a minimum in the τ at 20.1 MeV/nucleon. Very interestingly, our present prediction about

the minimum value for the light charged system of 40Ar+45Sc is in a close agreement with

the measured one (23.9 MeV/nucleon) [46]. This is the closest value ever reported in the

literature so far by any theoretical model. On the other hand, QMD + MST predicted

the minimum value to occur at 18.03 MeV/nucleon and values of τ were nowhere close

to experimental values [215, 223]. Also, the Percolation model calculations predicted the
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Figure 4.5: The normalized charge distributions obtained in the central reactions of
40Ar+45Sc at beam energies between 15 and 115 MeV/nucleon. The crossed squares
show the calculated results of QMD + SACA method whereas, stars represent the ex-
perimental data [46]. The solid lines correspond to power law fits of fragment charge
distributions for IMFs [3≤Zf≤12] using QMD + SACA model.
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Figure 4.6: The extracted values of power-law parameter τ , (obtained from the power-law
fits ∝ Zf

−τ of IMFs as shown in Fig. 4.5.) plotted as a function of incident energy. The
solid and dashed lines correspond to fourth order polynomial fits over extracted τ values
obtained using QMD + SACA and experimentally predicted τ values, respectively. Solid
arrow represents the minimum in the extracted τ values for QMD + SACA calculations.
Symbols have same meaning as in Fig. 4.5.
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Figure 4.7: Same as Fig. 4.5, but here solid lines represent exponential fits ∝ e−λZf over
fragment charge distribution of IMFs obtained using QMD + SACA model.

energy of critical point much higher than experimental data (28 MeV/nucleon) [46]. Thus,

the QMD + SACA calculations not only reproduced the measured charge yields but also

explained the behavior of power-law factor “τ” over the entire energy range nicely.

Next, to check the accuracy of our predicted minimum or onset of fragmentation

(obtained with power-law fits ∝ Z−τ
f ), we also fitted the above calculated yields (Fig.

4.5) with exponential fit of the form ∝ e−λZf (see Fig. 4.7) and plotted the extracted λ

values in Fig. 4.8.

Very interestingly, once again QMD + SACA method found a minimum in the ex-

tracted λ value. The exact minimum is extracted by fitting the λ values with fourth order

polynomial fit. The minimum value obtained at 23.1 MeV/nucleon is very close to the

one obtained using power-law fit (= 20.1 MeV/nucleon) and experimental values (= 23.9
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Figure 4.8: The extracted values of parameter λ, obtained using exponential fits ∝ e−λZf

of IMFs as a function of beam energy. The solid line and solid arrow correspond to fourth
order polynomial fit and a minimum in the extracted value of parameter λ.
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MeV/nucleon). It is first time that such close agreement between model and experimental

results is obtained.

It will be of further interest to investigate the multiplicity of various fragments around

the onset of fragmentation. In Fig. 4.9, we display the multiplicity of free nucleons

(FNs), light charged particles (LCPs) and intermediate mass fragments (IMFs) [3≤Zf≤12]

against incident energy emitted in the reactions of 40Ar+45Sc. From the figure, we notice

that all the fragments show some disorder near the energy of the minimum in the power-

law exponent τ . The multiplicities of free nucleons and light charged particles have little

lower yield whereas the multiplicity of intermediate mass fragments shows maximal value

around the energy of minimum value and are consistent with the earlier studies reported

in Ref. [192].

As discussed in chapter 3, one needs to also analyze other critical parameters simulta-

neously to pin down the onset of fragmentation or possible critical behavior. Frequently

used parameters are based on the study of moments e.g. <S2>, <γ2>, and size of the sec-

ond largest fragment (<Zmax2>). The parameters <S2>, <γ2>, and <Zmax2> (averaged

over large number of events) should exhibit a peak at incident energy where minimum

in the exponent parameter τ is obtained (for definition of critical exponents see previous

chapter) [58, 121, 193, 195–198].

In Fig. 4.10, we display the average values of <S2>, <γ2>, and <Zmax2> as a function

of incident energy of projectile. We see that all these parameters passes through maximal

value over the incident energy. Interestingly, all parameters <S2>, <γ2>, and <Zmax2>

predict a maximum at 20 MeV/nucleon, which is again very close to the earlier predicted

value using τ/λ i.e., 20.1 (23.1) MeV/nucleon. Combining all the results from Figs. 4.5 to

4.10, our study predicts the critical point (or onset of fragmentation) to be in the band of

20-23.1 MeV/nucleon. One may also say that this is in close agreement with experimental

data.

It would be of further interest to see whether QMD+SACA can also reproduce the

trends reported for the reaction of 84Kr+197Au where no minimum in the power exponent

was observed experimentally. In Fig. 4.11, we display the normalized charge distributions

(crossed squares) [3≤ Zf ≤12] obtained in the highly charged reaction of 84Kr+197Au at

six different incident energies in the range of 35 and 400 MeV/nucleon. The available

experimental data [49] for the same reaction is also displayed (see stars). Note that

QMD+SACA is able to reproduce the experimental measurements for IMFs in most of
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Figure 4.9: The average multiplicity of emitted free nucleons (FNs) (top panel), light
charged particles (LCPs) (middle panel) and intermediate mass fragments (IMFs) (bottom
panel) as a function of beam energy for the central reactions of 40Ar+45Sc.
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the cases.

Further, we again fit the charge yields at each incident energy with power-law fits ∝
Z−τ
f and the extracted values of power-law factor τ are plotted against incident energy

in Fig. 4.12. From the figure, one notices that the extracted values of τ increase mono-

tonically with incident energy without passing through minimum value. This absence of

minimum in τ has been advocated to be due to dominance of long range Coulomb forces

in highly charged systems [213]. In the figure, we also display the results of previous

calculations (represented by different lines) reported using Statistical Multifragmentation

Model (SMM) with and without sequential decay [49]. It was shown that rotational or

radial flow indeed is required into the SMM model to correctly describe the experimental

observations. At the same time one needs to apply sequential decays into the model. In

the present study, we find that the present calculations using QMD+SACA give τ values

that are close to the experimentally measured ones as well as to the SMM calculations

with sequential decay [49]. We have also analyzed the other critical parameters λ, <S2>,

<γ2>, and <Zmax2> for this highly charged system (results are not shown here) and no

discontinuity was found indicating the absence of minimum in this highly charged system.

It is worth mentioning that no sequential decays are used in the present calculations for

explaining experimental results. In the inset, we also displayed the results of τ down to

the incident energy of 15 MeV/nucleon and no minima in the extracted values of τ is

seen.

The consistency of the QMD+SACA approach to reproduce experimental data for light

and heavily charged systems gives us faith that it can provide much reliable information

about the onset of fragmentation. It is worth mentioning that SACA method does not

have free parameter as in other calculations. Moreover, the fragments can be realized as

early as ∼ 60-90 fm/c when system is still hot and dense. Further, this is the first ever

consistent calculation which is in accordance with the onset of fragmentation in lighter

system and subsequent absence of such trends in highly charged system.
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Figure 4.11: The normalized charge distributions obtained from the central reactions of
84Kr+197Au at six different beam energies between 35 and 400 MeV/nucleon. Solid lines
represent the power-law fitting of IMFs [3≤Zf≤12] obtained using QMD + SACA model.

108



30 60 100100 200 400
0

1

2

3

4

5

6

7

 Present
 Data
 SMM+Rot. Flow
 SMM+Rad. Flow
 No Seq. decay (SMM+Rot. Flow)
 No Seq. decay (SMM+Rad. Flow)

 

 

84Kr+197Au

10 20 30
0

1

2

 

Energy (MeV/nucleon)

Figure 4.12: Extracted values of the power-law factor τ , obtained from the power-law fits
of IMFs [3≤Zf≤12] for the central reactions of 84Kr+197Au as shown in Fig. 4.10. Here,
different lines represent the Statistical Multifragmentation Model (SMM) calculations
with and without sequential decay.

109



4.4 Summary

In this chapter, we examine the charge yield of fragments and its connection with liquid-

gas phase transition (i.e., the onset of multifragmentation) in light and heavily charged

systems of 40Ar+45Sc and 84Kr+197Au, respectively. We have also used various other pa-

rameters and found that QMD+SACA calculations are consistent with the experimental

measurements. Using different critical parameters, we obtained a minimum in the power-

law exponent around 20-23.1 MeV/nucleon for 40Ar+45Sc systems which is close to the

experimentally observed value of 23.9 MeV/nucleon. No such minima (or onset of frag-

mentation) is observed for 84Kr+197Au in agreement with experimental findings and other

theoretical calculations. It is worth reminding that due to lack of fermionic statistics in

the model, the QMD type model cannot be consistent with the realistic liquid-gas phase

transition. Though, we could reproduce exactly the energy of the minima in the power law

exponent as reported in the experiment, it does not necessarily indicate phase-transition.
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Chapter 5

Onset of vaporization and role of
mass asymmetry on the entropy
production in heavy-ion collisions

Over the past few decades, with the help of experimental and theoretical studies, various

aspects of dynamics of heavy-ion reactions have been explored, some of which are already

discussed in previous chapters. These extensive studies have shown that the outcome of

a reaction depends on various entrance channels e.g., incident energy of the projectile,

impact parameter, mass of the colliding nuclei, mass asymmetry of the colliding nuclei

as well as isospin asymmetry of the colliding partners (for details see chapter 1) [43, 49,

60, 71, 84, 97]. It is well known now that the mass asymmetry of colliding nuclei can

change the outcome of a reaction to a a great extent. Generally, the mass asymmetry of

a reaction is defined using asymmetry parameter ηA, where ηA = |AP−ATar

AP+ATar
|; AP (ATar) is

the mass of the projectile (target). The value of ηA varies between 0 and 1, with ηA = 0

corresponding to symmetric reaction and the asymmetry of a reaction increases as one

approaches the value 1, with ηA = 1 corresponding to extreme asymmetric reaction. The

vital difference between symmetric and asymmetric reaction is that the former stores the

energy in compressional form whereas the later stores major part of energy as thermal

energy. Rigorous studies done in the past reveal a great role of mass asymmetry of colliding

nuclei on the reaction dynamics at incident energies starting from low to ultra-relativistic

ones. For example at low incident energies, it has been found that the magnitude of

sub-barrier fusion is enhanced for systems with large mass asymmetry [234–236]. At

intermediate energies, Ogilivie et al. studied the reactions of Au beam on C, Al and Cu

at incident energy of 600 MeV/nucleon [43]. They observed a significant role of mass

111



asymmetry of reaction on the signals of liquid-gas phase transition [43]. In other study,

Schuttauf et al. performed a more detailed observations where they analyzed the reactions

with various mass asymmetries in the incident energy range of 400-1000 MeV/nucleon

[71]. They showed that the energy of maximum IMF’s production decreases linearly as

one moves from symmetric to extreme asymmetric reactions. Out of various experimental

studies done in the past, ISIS, FASA and PHENIX collaborations are amongst to study

mass asymmetric reactions at relativistic incident energies [71, 237, 238].

In 1981 R. R. Betts performed a systematic study via keeping the total system mass

of the reaction constant but varying their mass asymmetry and measured their fusion

probabilities [239]. He proposed this method as a better way to understand the difference

between dynamics of the symmetric and asymmetric reactions. On the similar lines, many

other studies have been performed at lower incident energies. A few such attempts were

also performed on various observables in heavy-ion collisions at intermediate energies e.g.,

Kaur et al. studied various reactions having ηA to vary between 0.0 to 0.6 in the incident

energy range of 50 to 600 MeV/nucleon. The total system mass in this study was kept

constant [240]. Their study reported the absence of rise and fall behavior for multiplicity

of IMFs for highly asymmetric reacting partners when plotted against incident energy.

They also showed the role of mass asymmetry on nuclear stopping at incident energy of

250 MeV/nucleon [241]. In another study, they analyzed the reactions of 50Cr+ 102Ru

(ηA=0.3), 32S+ 120Sn (ηA=0.5) and 16O+ 136Xe (ηA=0.7) at incident energies between 50

to 250 MeV/nucleon and found that the transition energy (the energy at which elliptical

flow changes from in-plane to out-of-plane) increases with increase in the mass asymmetry

[242]. Puri and collaborators analyzed the role of the mass asymmetry on the energy of

vanishing flow (EVF) and geometry of vanishing flow (GVF) [243, 244]. Their study

reported a role as large as 40 % on EVF and 62 % on GVF between symmetric and

highly asymmetric reacting partners. Recently, Puri et al., proposed asymmetric reactions

as a vital probe to constraint the density dependence of the symmetry energy at low

densities [245]. In another study, Guo et al., studied the mass asymmetric reactions of

16O+ 197Au at incident energy of 40 MeV/nucleon to investigate α-structure of 16O [246].

Therefore, asymmetric reactions can also be a powerful tool to understand the structure

of exotic nuclei such as α structure nuclei, halo-nuclei etc. but only, if first, one completely

understands them for stable systems. All the above mentioned studies demonstrate the

need and importance of understanding the dynamics of various asymmetric reactions to
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map the complete reaction dynamics. This will be the prime aim of the present study.

5.1 Light particles and their role in understanding

reaction dynamics

In the previous chapters, our focus was to study the physics associated with all or in-

termediate mass fragments. It is well known now that with the increase in the incident

energy of projectile the abundance of bigger bound fragments (A > 4) decreases gradually

[35, 60, 84, 247]. The energy at which the abundance of bigger bound fragments almost

vanishes is known as the energy of “onset of vaporization” [35, 60, 84, 247]. At incident en-

ergies close to or higher than the energy of onset of vaporization, the physics related to the

reaction dynamics is mainly governed by the light charged particles (A < 5). Moreover,

one is always in search for observables that can provide information of the nuclear matter

during its compressional stages. One such observable that preserves the early traces of the

reaction and remains unaltered in the expansion phase of the compressed state of nuclear

matter is “entropy” and can be obtained using yields of lighter mass fragments. Various

valuable theoretical and experimental attempts have been done in the past to study the

entropy production [51–56, 59, 61–64]. These studies have investigated the role of various

entrance channel parameters on entropy production, like system mass, incident energy of

projectile, isospin content of reacting partners and other reaction parameters like isospin

dependence of cross-section, Gaussian width, equation of state. The entropy production

was found to remain constant for all of these entrance channel parameters except for the

Gaussian width of nucleons [51, 52]. Unfortunately, all these studies were limited to mass

symmetric reacting partners only, whereas above paragraphs clearly show the crucial role

of mass asymmetry on various observables used to understand the dynamics of a reaction.

These studies motivated us to look for the role played by the mass asymmetry on the

entropy production. In this chapter, we will focus on two main aspects. First, we will

look for few aspects related to the energy of onset of vaporization and second we will

analyze in detail, the effect of mass asymmetry on entropy production. The study of

entropy production will be conducted via varying mass asymmetry of a reaction. We will

keep the total system mass constant between 40 to 240 units and the mass asymmetry

of reaction will be varied between 0.0 to 0.7. The study will be conducted at different

incident energies between 400 and 1000 MeV/nucleon.
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5.2 Onset of vaporization

The fragment pattern, of course, depends on the incident energy if impact parame-

ter/geometry of the reaction is fixed. The production of intermediate mass fragments

increases with incident energy but after certain incident energy, the free nucleons and

lighter charged particles dominate the reaction outcome. This phase has been termed as

vaporization in the literature and the incident energy at which this phase starts to domi-

nate is termed as “onset of vaporization”. A few attempts have been done to understand

physics related to onset of vaporization which we will discuss in upcoming sections.

5.2.1 Review of literature on onset of vaporization

Jakobsson et al. were among firsts to study, in experiments, the reactions of 16O+80Br

and 16O+108Ag in the incident energy range of 10 to 220 MeV/nucleon on event-by-event

basis [35]. These experiments were conducted at GANIL and BEVALAC accelerators and

only high multiplicity events (central collisions) were used for analysis. They found that

the colliding systems first undergo from fission to multifragmentation at lower incident

energies and then multifragmentation to vaporization at higher incident energies. It is

worth mentioning that, in previous chapters, we have studied in detail the physics of onset

of multifragmentation and its link to liquid-gas phase transition. Here, we will concen-

trate our discussion to higher incident energies only. To describe vaporization, they used

the sum of charges of fragments (< Z >) with and without including the charge of the

largest fragment (< Z1 >). They observed that the value of < Z > decreases rapidly

whereas < Z1 > remains almost constant above 20 MeV/nucleon for both 16O+80Br and

16O+108Ag reactions. The reason for this is the decrease in the size of the largest cluster

(Zmax) as incident energy increases. This further showed that, the increasing amount of

excitation energy is mainly used to break the heaviest fragment into pieces. They have

also presented the value of < Z > ∼ 1.4 at 2 GeV/nucleon which signifies that only

lighter charge particles sustains at these energies. For theoretical description, Souza et al.

had performed calculations using Quantum Molecular Dynamics (QMD) + Restructured

Aggregation Model (RAM) model for the reaction of 16O+80Br. They were successful in

reproducing the experimental results above 50 MeV/nucleon [60]. They analyzed various

other reaction observables such as charged particle multiplicity (< Nc >), multiplicity of

IMFs (< NIMFs >) etc and stressed that above 200 MeV/nucleon only lighter fragments
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dominate the reaction outcome. Their findings revealed the onset of vaporization to ex-

ist around 200 MeV/nucleon [218]. In the same direction, Tsang et al. performed an

experiment at GSI, Germany, with the 197Au beam on 197Au target [84]. The reactions

were performed at incident energies of 100, 250 and 400 MeV/nucleon. They showed that

for central impact parameter, the multiplicity of IMFs decreases gradually with incident

energy and for incident energies ≥ 400 MeV/nucleon the multiplicity of IMFs is < 1.

Thus, almost all the charge is in the form of lighter mass fragments only. For theoretical

description, they used QPD+EES (Expanding Evaporation System), QMD+MST and

QMD+SMM. They depicted inconsistency with the dynamical models to describe the

results which was resolved when QMD was coupled with SACA method for fragments.

Later on, Bacri et al. in their experiment using 4π multi-detector INDRA, studied re-

actions between 36Ar and 58Ni in the incident energy range of 32 and 95 MeV/nucleon

[247]. They found that to vaporize the system into free and light charged particles, one

needs a minimum excitation energy of ∼ 12 MeV/nucleon. Interestingly, this excitation

energy is twice the energy required to have maximum abundance of α-particles. These

lighter fragments are used to estimate the entropy production in heavy-ion collisions. Let

us first give an overview of the literature on the entropy production in heavy-ion reactions

at intermediate energies.

5.3 Overview of previous attempts on entropy pro-

duction

Siemens and Kapusta were among firsts to calculate the entropy production in the heavy-

ion collisions. Their method was based on a highly idealized assumption of perfect gas

[53]. They proposed to use the deuteron-to-proton ratio to calculate entropy considering

it to be saturated very early during a reaction. Bertsch and Cugnon generalized this

assumption considering the presence of other lighter clusters like t, 3He, 4He [54]. They

included these lighter clusters to estimate entropy. Some other assumptions like by Stöcker

et al. to include heavier fragments (A >4) to calculate entropy [62], by Jacak et al. to

determine entropy using fragments 1≤ A ≤ 14 in mid-rapidity [63], also exist in nature.

But these assumptions were found to influence the results in the lower side of incident

energies where heavier fragments have significant yield.

Further, the method to estimate entropy was debated intensively in the early days,
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therefore, many studies used various definitions to calculate entropy. For e.g., Doss et

al. [55] measured the entropy for the reactions of 40Ca+40Ca and 93Nb+93Nb at inci-

dent energies of 400 and 600 MeV/nucleon, respectively. Doss et al. also measured the

yield ratios for lighter fragments and concluded the consistency of results with Quan-

tum Statistical Model (QSM) [55]. They showed the mass independence of the entropy

calculated by using the definitions of Siemens and Kapusta and Stöcker et al. (will be

explained in detail in next section). Later on, the Cascade Model calculations were also

performed using assumptions of local equilibrium in addition to the method proposed by

Bertsch and Cugnon [54]. These studies showed that at lower incident energies, results

are quite different compared to experimental data whereas, at higher incident energies.

In the literature, many studies have been done using various transport models. Aichelin

et al. have studied the role of Momentum Dependant Interactions (MDI) and Equation

of State (EOS) using BUU model for the 40Ca+40Ca reactions [11]. The results were

found to be insensitive towards momentum dependence of the potential but dependent

on Equation of State (EOS). Puri et al. calculated the dlike and plike ratio as a function

of participant proton multiplicity and entropy production for the reaction of 40Ca+40Ca

and 93Nb+93Nb at different incident energies between 400 and 1050 MeV/nucleon using

Quantum Molecular Dynamics (QMD) model [51]. The results were found to be in good

agreement with 4π Plastic Ball Data [51]. Later on, using IQMD model they reported

that with increase in the neutron content, the entropy production decreases i.e., with

an increase in neutron content the nuclear system gets more and more ordered. They

also showed the significant dependence of entropy production on the EOS and Gaussian

width [52]. All these calculations were done for symmetric reactions only [52]. It can be

clearly seen that the majority of the studies done and results reported in the past are

for symmetric reactions. Very few studies have been done to understand the dynamics of

asymmetric reactions for entropy production e.g., the CHIC collaboration have studied

various mass asymmetric reactions ranging from proton-nucleus to nucleus-nucleus reac-

tions (p+Kr, O+Kr and Ne+Au) in the incident energy range of 30 MeV/nucleon to 350

GeV [63]. They estimated the ratios, Rdp (deuteron to proton) and Rtp (triton to proton),

and corresponding entropy production. The statistical evaporation models were reported

to fail in reproducing these experimental observations. Whereas, the mean field models

were successful in explaining the experimental results to some extent. As their study was

done using inclusive data of reactions, therefore, their conclusions were not exact or were
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blurred. In another study, Trockel et al. studied the reactions of 12C+ 197Au at inci-

dent energies of 30, 48 and 84 MeV/nucleon [64]. This study reported that the entropy

production calculated using lighter particles increases with the increase in the incident

energy. Nagamiya et al. in their experiments at Berkeley Bevalac, studied the reactions of

C+C, C+Pb, Ne+NaF, Ne+Cu, Ne+Pb, Ar+KCl and Ar+Pb at 800 MeV/nucleon, and

Ne+NaF and Ne+Pb at 2.1 GeV/nucleon [248]. They reported the yields of lighter mass

particles (i.e., p, d, t, 3He and 4He), their ratios and entropy production. They observed

that the ratios of d/p, t/p, and 3He/p show a rapid decrease with incident energy for

symmetric reactions compared to asymmetric reactions. Later, Danielewicz and Bertsch

tried to reproduce the data using cascade model but found inconsistencies in explaining

the d/p ratio [249]. These studies on entropy production show that interesting aspects of

reaction dynamics can be explored via studying entropy production of asymmetric react-

ing partners. Moreover, no systematic study of entropy production is ever been done for

mass asymmetric reacting partners and is the prime aim of this study. Before that, we

shall demonstrate the detailed formalism of computing entropy production.

5.4 Entropy production in heavy ion collisions

It is well explained and discussed in earlier chapters that the dynamics of heavy-ion

collisions at intermediate energies is very complex and difficult to understand. On one

hand it is due to the short span for which the hot and dense state of nuclear matter is

formed, on the other hand, it is also due to the fact that one can detect the fragments only

at the time when nuclear matter is well diluted and cold. Therefore, one is always in search

for observables that can directly reflect or trace back the properties of nuclear matter

during the hot and compressed state. In this direction, specific entropy is found to provide

such traces as it first increases, but as soon as the compressed phase of a reaction is over,

thus during expansion, remains constant. The last three decades have witnessed many

different methods to accurately calculate entropy. In the earliest attempt, it was suggested

that after the equilibrium is set in the reaction zone, the entropy can be calculated using

the deuteron-to-proton ratio, Rdp. The basis of this assumption was to consider the system

as ideal gas consisting of mainly neutrons and protons in local equilibrium, allowing one

to calculated entropy per nucleon using Sackur-Tetrode equation:

S

A
=

5

2
− µA

τ
. (5.1)
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Here, µA and τ are the chemical potential of the protons and temperature of the system,

respectively. Then for a composite particle of A nucleons, the chemical potential µA is

given by

µA = τ ln

[
nA
ncA

]
− εA. (5.2)

In this equation, nA and εA represent the density of composite system of A nucleons and

its corresponding binding energy, respectively. Also, ncA is termed as chemical density and

is represented by

ncA = gA

( mAτ

2π~2
)3/2

, (5.3)

where mA and gA are the mass of the fragment A and it isospin degeneracy, respectively.

Siemens and Kapusta [53] assumed that in a case, if the number of protons outnumber

deuterons in a given system and further no significant contribution from heavier clusters,

the entropy per nucleon can be calculated as:

S

A
=

5

2
−
{
εA
τ

+ ln

[
gd
gp

(
md

mp

)]
− lnRdp

}
. (5.4)

Now, if the temperature of the system is much larger than the binding energy of the

deuteron, the above equation reduces to

SN = 3.945− lnRdp, (5.5)

where, Rdp is the deuteron-to-proton ratio. The experiments have clearly shown that

Rtp(triton-to-proton ratio)<< Rdp ≤ 0.4 at E ≥ 400 MeV/nucleon, the above formula

was expected to give consistent results. Unfortunately, the entropy per nucleon observed

using this formula was much larger compared to what was measured in experiments.

Later, Bertsch and Cugnon studied the entropy production for the reactions of 40Ca+

40Ca using Cascade model. To calculate the entropy they replaced the number of deuteron

and protons with the deuteron-like and proton-like clusters [54]. The deuteron-like and

proton-like clusters were calculated including the ground state of the particles with masses

from 2 to 4 (i.e., t, 3He, 4He) [54]. In this modified definition, the formula to calculate

entropy per nucleon reads as:

SN = 3.945− lnR̃dp, (5.6)

where

R̃dp =
dlike
plike

=
d+ 3

2
(t+3 He) + 3 4He

p+ d+ t+ 2 3He+ 2 4He
. (5.7)
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This formulation to some extent removes the reliance on chemical equilibrium and di-

luteness of nuclear system. Later on, Stöcker et al. proposed the inclusion of heavier

fragments (A > 4) in the formulation for entropy production [62]. This inclusion was con-

sidering the formation of bigger fragments also at higher densities but lower temperatures.

The contribution of this proposition was found to be significant only at lower incident

energies, whereas at higher incident energies the number of heavier fragments (A > 4) is

very small, therefore, no significant role is seen on entropy production. Peilert et al. put

forward a parameterized form of the above formula to estimate entropy production [59]

and it reads as:

R̃dp =
dlike
plike

=
Y (A = 2) + 3

2
Y (A = 3) + 3Y (A = 4)

Np

, (5.8)

where Y(A=‘n’) stands for the number of fragments with multiplicity ‘n’ in one event.

The participant proton multiplicity is calculated as:

Np =
Zp + ZTar
AP + ATar

[Y (A = 1) + 2Y (A = 2) + 3Y (A = 3) + 4(Y = 4)]. (5.9)

We will use above equations to calculate proton-like and deuteron-like clusters, their ratio

and finally entropy production. We will pursue our study using available transport model

and for all the possible mass asymmetries.

5.5 Results and discussion

5.5.1 Results of onset of vaporization

For the present analysis, we have simulated the reactions of 16O+80Br at incident energies

between 15 and 200 MeV/nucleon. We have used a soft equation of state along with

energy-dependent cross-section. This is to keep into mind that this study is only first hand

attempt to put forward the sensitivity of the point of onset of vaporization towards some

technical parameters of clusterization algorithms and different clusterization techniques.

The other main aim of this part is to also show that at higher incident energies, only

lighter particles dominate the reaction results within the present model calculations. We

will here use the parameters < Z > and < Z1 > to observe the vaporization phase in

accordance to the one used by Jakobsson et al. [35] and Souza et al. [60].

Before understanding other aspects, it is important to question whether the model

used for the calculations itself contains the desired physics related to vaporization or not.
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Figure 5.1: The mean charge with (< Z >) and without (< Z1 >) largest fragment as a
function of incident energy for the system of 16O+80Br. The symbols are explained in the
text.
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To take care of this aspect, we try to reproduce the available experimental results on

the onset of vaporization. In Fig. 5.1, we have plotted the normalized average charge

in each event with (< Z >) and without largest fragment (< Z1 >) as a function of

incident energy. The method of calculating normalized mean charge is same as reported

in Refs. [35, 60]. The Open (filled) stars represent the experimental data of < Z1 > (

< Z >) and open (filled) squares represent the corresponding calculations using QMD

with default MST method (Rclus =4 fm) (labelled as ‘MST’). From the figure, we see

that the normalized mean charge (< Z >) decreases with increase in the incident energy

as more amount of energy is stored inside the system that leads to extra breaking and

cracking, thus, lesser number of larger fragments. Here the energy of vaporization is taken

to be the one where < Z > reaches asymptotic value. The < Z > ≃ 1 signifies that the

correlations among nucleons are completely broken and matter is in the form of single

nucleons only. One can figure out immediately that the QMD + MST model with default

values is able to reproduce experimental data at all incident energies reasonably well. The

exact reproduction happens only above incident energy of 50 MeV/nucleon. The failure of

MST method at lower incident energies happen due to its inability to separate fragments

which are overlapping in coordinate space due to lower fragment velocities. This leads to

one large fragment instead of many intermediate mass fragments. This is supported by

the results of normalized charge excluding largest fragment < Z1 >. We see that the MST

method has serious problem at lower incident energies whereas it explains experimental

data nicely at higher energies. Nevertheless, QMD + MST model is able to reproduce

the onset of vaporization quite nicely which is reported to be around 200 MeV/nucleon.

Role of different spatial constraints on vaporization

Though, the MST method remains the most widely and successful method in the literature

to identify fragments, some studies have shown that the clusterization range used in the

MST method can also lead to change in the results [250]. Therefore, it would be of

further interest to see whether spatial range used for constructing the fragments affect

the onset of vaporization or not. For this, we also performed same calculations using

Rclus = 3 and 5 fm also. The results are displayed in Fig. 5.2. We see some effect of

altering the clusterization range at lower incident energies where nucleons are still close

in the space. The effect however vanishes at higher incident energies. On the average,

altering the range of clusterization by 25 % changes < Z > by 12 % at 15 MeV/nucleon
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Figure 5.2: Same as Fig. 5.1, but using different Rclus values in MST method.

122



whereas the effect reduces to 6 % at 200 MeV/nucleon. Further, it is evident that the

clusterization range do not affect the energy of the onset of vaporization. The uncertainty

of 6 % is within the experimental error limits, therefore, one can say that the results on

the onset of vaporization are independent of the variation in the spatial constraints used in

clusterization algorithm. The results can be understood in terms of the expansion in the

constituent nucleons of the system at different incident energies in accordance with earlier

studies [71, 251]. At lower incident energies, the nucleons expand at lower rate and are

close to each other. Therefore, the change in the clusterization range in the MST method

can give different fragment sizes. With increase in the incident energy, the phase-space is

opened up at faster rate and at freeze out, only those nucleons are close which are part

of the same fragment. Thus, the role of different clusterization ranges do not alter the

results of fragments significantly at incident energy close to onset of vaporization.

Role of different clusterization on the onset of vaporization

As mentioned in earlier chapters, one can use different definitions to obtain clusters. The

role of these definitions was found to be insignificant on the signals of the onset of mul-

tifragmentation or liquid-gas phase transition (discussed in chapter 3). But one should

keep into mind that the absolute values were indeed affected by the change in cluster

definitions. In chapter 3, the discussion was focussed on the onset of multifragmentation,

thus, only to the lower incident energies. Here, our aim is to analyze the onset of vapor-

ization which occurs at relatively higher incident energies. Therefore, it is of interest to

see how results are changed with the choice of clusterization algorithm. In particular, we

will use MST, MSTP, SACA with the QMD model, and MST, MSTP with the IQMD

model [11, 141, 154, 155, 159]. The details of these different methods of clusterization can

be found in chapters 2 to 4.

In Fig. 5.3, we show the results of < Z > and < Z1 > with the above mentioned

combinations of primary models and clusterization algorithms. The results of QMD cou-

pled with MST, MSTP and SACA are represented by open (filled) squares, circles, and

double(half crossed) crossed squares, respectively, whereas, the results of IQMD coupled

with MST and MSTP are represented as open (filled) triangles, and inverted triangles,

respectively. From the figure, we see that the value of < Z > is greatly influenced at

lower incident energies but gives the same values at higher incident energies where onset

of vaporization appears. One can understand the results as following: at lower incident
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energies less phase-space is available for the nucleons and they are close to each other.

As discussed earlier, the MST method being based on the spatial constraints is unable

to separate out the fragments even if they have only one common nucleon. If one en-

forces the MSTP method, the picture changes significantly. Now the calculations are

more away from the experimental results. The MSTP method, which is based on the

spatial+momentum constraints is able to separate many overlapping clusters but the pro-

duction of excess number of free particles reduces the values of < Z > and < Z1 >. Hence

the MSTP results are more deviated compared to the MST method. If one shifts to the

SACA method, the results are significantly improved with respect to the MST and MSTP

methods, and also consistent with the experimental observations. These results are com-

plementary to what we observed in chapter 4. The success of SACA method reflects its

ability to identify fragment configurations even if they are overlapped. Nevertheless, we

also specify here that the failure of one clusterization algorithm in reproducing the abso-

lute values does not make them unsuitable to discuss physics related to that observable.

It only reflects the inability of the algorithm to contain certain features related to that

observable. The bottleneck in the present calculations is the insignificant role of different

algorithms at incident energies where vapor phase starts to appear. Moreover, the results

of QMD and IQMD models with different cluster definitions are also same at energies

where vapor phase starts dominating. The same kind of results were reported by Souza

et al. [60] for vaporization, but using QMD + RAM model (see diamonds in figure). One

should keep into mind that the QMD model used by Souza et al have many modifications

such as Pauli principle, isospin etc. over the one used in the present study. Further, the

RAM model used to identify fragments is much more complex compared to the present

clusterization algorithms [229]. At the same time, one alters with the phase-space in

RAM method to obtain spherical fragments, thus, distorts the actual physics related to

reaction. This is not the case in the clusterization algorithm used in the present study.

The present calculations with all primary+secondary algorithms are indeed close to the

experimental results where vapor phase persists and consistent with earlier calculations.

Therefore, one can say that all these combinations contain the desired physics related

to vaporization. Note that this is the first ever study in the last two decades on the

vaporization, but a detailed study is still required to extract all the physics related to

vaporization. The present results are that at higher incident energies most of the system

is broken into lighter mass fragments (A < 5) within the present models also. If one
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wants to discuss any physics at higher energies one should study the observable related to

lighter fragments only. One such observable is “Entropy” that is derived from the ratio

of lighter mass fragments will be discussed in upcoming sections.

5.5.2 Results of entropy production

For the present study, we simulated several thousand events for various reactions. As

mentioned earlier, for these reactions, the mass asymmetry of the colliding nuclei will be

varied between 0.0 and 0.7 via keeping the total system mass constant between 40 to 240

units. In this case, we simulated the reactions of 20Ne +20Ne (ηA=0.0),18F+22Ne (ηA=0.1),

14N+26Mg (ηA=0.3), 10B+30Si (ηA=0.5) and 6Li+34S (ηA=0.7) for AT= 40; 40Ca+40Ca

(ηA=0.0), 36Ar+44Ca (ηA=0.1), 28Si+52Ca (ηA=0.3), 20Ne+60Ni (ηA=0.5) and 11B+69As

(ηA=0.7), for AT= 80; 80Kr+80Kr (ηA=0.0), 70Ge+90Zr (ηA=0.1), 54Fe+106Pb (ηA=0.3),

40Ca+120Te (ηA=0.5) and 24Mg+136Nd (ηA=0.7), for AT=160 and 120Sn+120Sn (ηA=0.0),

108Cd +132Ba (ηA=0.1), 84Sr+156Dy (ηA=0.3), 60Ni+180W (ηA=0.5) and 36Ar+204Pb

(ηA=0.7) for AT=240.

The reactions are simulated at incident energies between 400 and 1000 MeV/nucleon.

As discussed earlier, at these incident energies only vapor phase persists, thus system exists

only in terms of the lighter mass clusters. It is worth noting that all the calculations are

done by using the IQMD model in which the Fermi momentum is reduced by 30 % for soft

equation of state. All results are analyzed at 40 fm/c as upto this stage the compressed

phase is over.

5.5.3 Entropy production at fixed beam energy

In the Fig. 5.4, we demonstrate the ratios of< A = 2/p >, < A = 3/p > and< A = 4/p >

as a function of system mass at incident energy of 400 MeV/nucleon. Here results are

shown for various mass asymmetries corresponding to total system mass of 40, 80, 160

and 240. The mass asymmetry parameter (ηA) varies between 0.0 and 0.7. The results

obtained for different mass asymmetries of 0.0, 0.1, 0.3, 0.5 and 0.7 are represented by

squares, circles, triangles, hexagons and diamonds, respectively. For further discussion,

these symbols will be kept same.

From the figure, we see an uniform rise for the < A = 2/p >, < A = 3/p > and

< A = 4/p > as the system mass increases for different mass asymmetries. To get a better

126



0.2

0.4

0.6

0.8

 
 

X =  2

E= 400 MeV/nucleon
 

   = 0.04  ±  0.02 
 = 0.03  ± 0.01
 = 0.03  ± 0.02
 = 0.02  ± 0.03
 = 0.02  ± 0.04

0.0

0.1

0.2

0.3
   = 0.13 ± 
 = 0.12 ±
 = 0.11 ±
 = 0.10 ±
 = 0.07 ± 0.04

X =  3

(b)

(c)
 

 

 

<X
/p

>

A
T

20 60 100 140 180 220 260
0.00

0.05

0.10

0.15

   = 0.24  ± 
 = 0.22  ±
 = 0.20  ±
 = 0.13  ±
 = 0.12  ± 0.03

X =  4

 

(a)

 

Figure 5.4: The composite yield ratios, <X/p> where X stands for A= 2, A= 3 and A=
4 as a function of total system mass for various mass asymmetries at an incident energy
of 400 MeV/nucleon. The results of mass asymmetries of 0.0, 0.1, 0.3, 0.5 and 0.7 are
represented as lined, squares, circles, triangles, hexagons and diamonds, respectively.
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picture, the ratios as a function of total system mass are fitted with power law (∝ AξT ).

We see that for a fixed mass asymmetry, the values of slopes obtained using power law is

always positive for all ratios, < A = 2/p >, < A = 3/p > and < A = 4/p >. We also

find that the slopes of the ratios is decreasing in the order starting from < A = 4/p >,

< A = 3/p > to < A = 2/p > e.g., for ηA=0.0, the values of slopes (without errors)

are 0.24, 0.13 and 0.04, and for ηA=0.7, the slopes are 0.12, 0.07 and 0.02 for the ratios

of < A = 4/p >, < A = 3/p > and < A = 2/p >, respectively. Therefore, the slopes

are less steeper in asymmetric systems compared to symmetric systems and rise is more

as the cluster size increases. Earlier, Singh et al. have observed such behavior, greater

rise for heavier fragments than lighter ones, in their study of symmetric reactions in

the incident energy range of 50 MeV/nucleon and 1 GeV/nucleon [252]. In their study,

different fragments also showed power law dependence as a function of system masses.

Now, let us understand the results, first, for symmetric systems (ηA=0.0). At fixed

incident energy, the systems with lesser number of nucleons dilutes faster compared to

the systems with larger number of nucleons. Therefore, more number of nucleons exist

close to each other in phase space as the total system mass increases. This leads to

the formation of more number of clusters with masses 2 to 4. Ultimately, all the ratios

increases with increase in the total system mass. The increase in the slopes for < A =

4/p >, < A = 3/p > and < A = 2/p > can also be explained on the basis of the above

discussion i.e., more dense is the system, greater will be the possibility that the clusters

with masses 2, 3 and 4 forms. The above discussed role that the expansion of system

depends on source size is well established for multifragmentation and collective flow in

experiments and theory [71, 251].

Further, let us understand the prominent increase for lower mass asymmetries com-

pared to higher mass asymmetries e.g., for ηA =0.0, 0.1, 0.3, 0.5 and 0.7 the slopes (exact

upto three decimals) for < A = 2/p > are 0.04 (0.038), 0.03 (0.030), 0.03 (0.026), 0.03

(0.026) and 0.02 (0.022), respectively, for < A = 3/p > the values are 0.13, 0.12, 0.011,

0.10 and 0.07, respectively, and < A = 4/p > the values are 0.24, 0.22, 0.20, 0.13 and

0.12, respectively. We avoid to write error bars during discussion to keep the discussion

more clear. Note that the trends of slopes are similar in all the cases. To understand

these trends of ratios, one must know the fact that for fixed total system mass and con-

stant incident energy the greater share of energy is used as thermal in case of reactions

with larger mass asymmetries. The larger temperature of the system causes the lesser
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abundance of lighter clusters. On the other hand in case of symmetric reactions the

larger share of energy is in the form of compression causing rapid expansion and lower

temperature leads to larger number of light bound clusters. For fixed beam energy of 800

MeV/nucleon, Nagamiya et al. showed similar results for the reactions of C+C, Ne+NaF,

Ar+KCl, Ne+Cu, C+Pb, Ne+Pb and Ar+Pb [248]. They reported the slopes of 0.36 and

0.8 for the ratios of d/p and t/p, respectively. It is important to mention here that the

present calculated slopes differ from the one reported by them due to the difference in the

methods to vary mass asymmetries. Danielewicz and Bertsch have also presented such

results in the framework of cascade model [249].

5.5.4 Beam energy dependence of entropy production

Let us now understand the variation of ratios of < A = 2/p >, < A = 3/p > and

< A = 4/p > at different beam energies. In particular, we present results at 600, 800

and 1000 MeV/nucleon. The results are displayed in Figs. 5.5-5.7. We have already

discussed the results at 400 MeV/nucleon in Fig. 5.4. Symbols have the same meaning

as in Fig. 5.4. If we compare Figs. 5.4 to 5.7, we found that all the ratios decrease in

magnitude with increase in beam energy for fixed system mass and mass asymmetry. This

is due to the reason that as the density of the phase-space decreases the yield of bound

fragments also decreases J. Kapusta has also obtained similar results in his theoretical

study [253]. We also note that the decrease of ratios as a function of the beam energies

is more pronounced for symmetric systems (e.g., 40Ca+40Ca) than for the asymmetric

systems (11B+69As). These trends are consistent with the observations of Nagamiya et

al. in Ref. [248]. They have reported the trends for the system of Ne+NaF and Ne+Pb

in the incident energy range of 400 MeV/nucleon to 2.1 GeV/nucleon. The beam energy

dependence arises through the terms freeze out density and temperature. Since these two

quantities do not depend strongly on the projectile and target masses, the different beam

energy dependence of the systems with different mass asymmetries are easy to explain.

For symmetric systems (ηA=0.0), the slopes of < A = 2/p > at incident energies

of 400, 600, 800 and 1000 MeV/nucleon are 0.04, 0.17, 0.19 and 0.22, respectively, of

< A = 3/p > are 0.13, 0.32, 0.39 and 0.46, respectively, of < A = 4/p > are 0.24, 0.52,

0.65 and 0.74, respectively. For asymmetric systems (ηA=0.7), the slopes of < A = 2/p >

at incident energies of 400, 600, 800 and 1000 MeV/nucleon are 0.02, 0.08, 0.12 and 0.14,

respectively, of < A = 3/p > are 0.07, 0.15, 0.21 and 0.22, respectively, of < A = 4/p >
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Figure 5.5: Same as Fig. 5.4, but at incident energies of 600 MeV/nucleon.

130



0.2

0.4

0.6

0.8

 
 
 

 = 0.19  ±  0.03
 = 0.18  ± 0.04
 = 0.14  ± 0.04
 = 0.13  ±  0.03
 = 0.12  ± 0.06

E = 800 MeV/nucleon

X = 2

 

0.0

0.1

0.2

0.3

 

 
 

 = 0.39 ± 0.04
 = 0.34 ± 0.04
=  0.29 ± 0.05
 = 0.24 ± 0.03
 = 0.21 ± 0.07

X = 3

(b)

(c) 

 

 

<X
/p

>

A
T

20 60 100 140 180 220 260
0.00

0.05

0.10

0.15
 = 0.65  ± 0.02
 = 0.53  ± 0.05
= 0.47  ± 0.04
 = 0.33  ± 0.06 
 = 0.24  ±  0.08

X = 4

 

(a)

 

 

Figure 5.6: Same as Fig. 5.4, but at incident energies of 800 MeV/nucleon. Here, stars
represent the experimental data for Ne+Cu and Ar+Pb at an incident energies of 800
MeV/nucleon [248].
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are 0.12, 0.19, 0.24 and 0.29, respectively. Therefore, the slope values increases as one

increases the incident energy for fixed mass asymmetry value. Qualitatively, the observed

behavior could be explained as following: as we increase the beam energy, a larger phase-

space volume will be opened up. Since formation of composite fragments is less likely for

larger phase-space volumes, we expect smaller ratios for (A=2)/p, (A=3)/p, and (A=4)/p

as the incident energy is increased. Such a tendency is clearly seen both for symmetric and

asymmetric systems. Also, note that the increase in incident energy reduces the phase

space density in expansion phase. The reduction is more prominent for lighter system

masses compared to heavier ones. Thus, the rising nature of the ratios continues to ap-

pear even for largest incident energies. In asymmetric system, slow composite fragments

could be produced more copiously because they tend to originate in the target. Since the

spectra of the target fragments do not have strong beam dependence, we could expect

less beam energy dependence for heavier mass targets causing the increase in the slopes.

We have also shown the results in tabular form in Table 5.1. One can clearly understand

the trends from there also.

Next, one is obviously curious to know whether the present results for asymmetric reac-

tions is consistent with experimental observations or not. Keeping this aspect into mind,

we have displayed the experimental data (see stars) for higher asymmetries for Ne+Cu

and Ar+Pb at incident energy of 800 MeV/nucleon [248] (displayed in Fig. 5.8). From

the figure, we can see the consistency between the experimental data and the theoretical

calculations. We would also want to mention here that for the same reactions Danielewicz

and Bertsch failed to explain the ratios of d/p [249]. This is the first ever calculation,

where dynamical models are so close to the experimental results of light particle ratios

for asymmetric reactions. At the same time, one can see a rise of ratios in experimental

data with increase in system mass for incident energy of 800 MeV/nucleon [248]. Also,

the present trends of ratios as a function of incident energy are in accordance with the

experimental observations [248]. This consistency also reflects the success of the present

model to explain the physics of asymmetric reactions. One can find the comparison be-

tween theoretical and experimental data for symmetric reactions in wide incident energy

domain in the framework of the present model in Ref. [51, 52].
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5.5.5 Variation of deuteron like clusters and deuteron-to-proton
ratio with mass asymmetry

Now, let us understand the deuteron like clusters (< dlike >) and deuteron-to-proton

(< Rdp >) ratios for different mass asymmetries in the incident energy range of 400 to

1000 MeV/nucleon. The results of < dlike > and < Rdp > are shown in Figs. 5.8 and 5.9,

respectively. Symbols have same meaning as in previous figures.

From Fig. 5.8, we see that the values of dlike clusters increase with the increase in

system masses for all mass asymmetries and for all incident energies. Here, dlike clusters

are calculated using the eq. 5.8. In this equation, one uses the yields of clusters with

masses 2, 3, and 4 on event-by-event basis. Therefore, the rise which was seen for yields of

light mass clusters add up to make the difference in slopes of symmetric and asymmetric

reactions more prominent. At incident energy of 400 MeV/nucleon, the increase in slopes

is sharp in symmetric reactions compared to asymmetric ones. The slopes of < dlike >

clusters is 0.69, 0.69, 0.68, 0.65 and 0.64 for the mass asymmetry values of 0.0, 0.1, 0.3,

0.5 and 0.7, respectively.

Also, the slopes of ratios changes with the increase in the incident energy e.g., for

ηA =0.0, the slopes of power law fit for < A = 2/p > changes from 0.04 to 0.22, for

< A = 3/p > changes from 0.13 to 0.46, for < A = 4/p > changes from 0.24 to 0.74 and

for ηA = 0.7, the slope for < A = 2/p > changes from 0.02 to 0.14, for < A = 3/p >

changes from 0.07 to 0.22, for < A = 4/p > changes from 0.12 to 0.29 for incident

energy change from 400 to 1000 MeV/nucleon. These change in the slopes are clear

demonstration that the light cluster formation is greatly influenced by the change in the

mass asymmetry of the reaction. The above results are easy to understand with the help

of previously discussed results. Again, as discussed earlier, the opening of phase space (or

decrease in phase space density) and temperature difference in symmetric and asymmetric

systems contribute to the change in slopes.

In Fig. 5.9, we have displayed the results of deuteron-to-proton ratios < Rdp > for

different mass asymmetries at incident energies of 400, 600, 800 and 1000 MeV/nucleon.

Interestingly, at incident energy of 400 MeV/nucleon, the slopes of < Rdp > decreases

gradually if one moves from symmetric to asymmetric reactions. The slopes of power law

fit are 0.17, 0.10, 0.9, 0.08 and 0.07 for the mass asymmetries of 0.0, 0.1, 0.3, 0.5 and

0.7, respectively. This decrease is associated with the number of free protons and bound
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Figure 5.7: Same as Fig. 5.4, but at an incident energy of 1000 MeV/nucleon.
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Figure 5.8: The < dlike > clusters are displayed at incident energies of 400, 600, 800 and
1000 MeV/nucleon for various mass asymmetries (from top to bottom).
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Table 5.1: Slopes of the power law fit (ξ) for the ratios of < (A = 2)/p >, < (A = 3)/p >,
< (A = 4)/p >, < dlike > clusters and deuteron-to-proton Rdp ratio at incident energies
of 400, 600, 800 and 1000 MeV/nucleon. The results are shown for all mass asymmetry
values ranging from 0.0 to 0.7 for constant system masses of 40, 80, 160 and 240 units.

Mass Asymmetry < A = 2/p > < A = 3/p > < A = 4/p > dlike Rdp

(ηA)

E = 400 MeV/nucleon

0.0 0.04±0.02 0.13±0.01 0.24±0.02 0.69±0.09 0.17±0.01

0.1 0.03±0.01 0.12±0.01 0.22±0.03 0.69±0.09 0.10±0.00

0.3 0.03±0.02 0.11±0.06 0.20±0.02 0.68±0.08 0.09±0.01

0.5 0.02±0.03 0.10±0.04 0.13±0.04 0.65±0.08 0.08±0.01

0.7 0.02±0.04 0.07±0.04 0.12±0.03 0.64±0.08 0.07±0.03

E = 600 MeV/nucleon

0.0 0.17±0.03 0.32±0.02 0.52±0.02 0.93±0.04 0.24±0.03

0.1 0.11±0.02 0.28±0.03 0.47±0.02 0.94±0.04 0.18±0.02

0.3 0.10±0.01 0.25±0.03 0.37±0.03 0.91±0.03 0.16±0.02

0.5 0.09±0.03 0.21±0.02 0.23±0.02 0.83±0.05 0.14±0.02

0.7 0.08±0.05 0.15±0.04 0.19±0.09 0.82±0.04 0.13±0.04

E = 800 MeV/nucleon

0.0 0.19±0.03 0.39±0.04 0.65±0.02 1.05±0.02 0.28±0.03

0.1 0.18±0.04 0.34±0.04 0.53±0.05 1.06±0.01 0.22±0.03

0.3 0.14±0.04 0.29±0.05 0.47±0.04 1.03±0.01 0.21±0.02

0.5 0.13±0.03 0.24±0.03 0.33±0.06 0.95±0.03 0.17±0.03

0.7 0.12±0.06 0.21±0.07 0.24±0.08 0.92±0.04 0.16±0.05

E = 1000 MeV/nucleon

0.0 0.22±0.03 0.46±0.05 0.74±0.04 1.13±0.01 0.30±0.03

0.1 0.18±0.04 0.37±0.04 0.62±0.05 1.12±0.01 0.24±0.03

0.3 0.17±0.04 0.34±0.04 0.50±0.04 1.10±0.00 0.22±0.03

0.5 0.15±0.05 0.27±0.05 0.33±0.05 1.02±0.01 0.18±0.04

0.7 0.14±0.06 0.22±0.06 0.29±0.09 0.98±0.03 0.17±0.05
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fragments. The results here follows the same trends as seen in previous cases i.e., with the

increase in mass asymmetry the slopes of power law fit decreases at fix incident energy.

But, if one compare the slopes with the slopes of < dlike > clusters, the slopes are less

shaper for all mass asymmetry values at a given incident energy.

Further, if one compares the values of < Rdp > for different asymmetries at different

incident energies, the slopes are found to increase with rise in the incident energy. The

slopes of power law fits, for ηA=0.0, varies from 0.17 to 0.30, whereas, for ηA=0.7, varies

from 0.07 to 0.17 for change in incident energy from 400 to 1000 MeV/nucleon. Again,

as the Rdp is calculated using deuteron-like and proton-like clusters, therefore, the results

here are mere image of the earlier results.

5.5.6 Entropy production for various mass asymmetries

As discussed in section 5, the Rdp ratios are used to calculate the entropy production in

heavy-ion collisions. Here, the values of Rdp are used to calculate entropy using the eq.

5.5 for the reactions with various mass asymmetries at incident energies of 400, 600, 800

and 1000 MeV/nucleon.

In Fig. 5.10, the entropy per nucleon is plotted for incident energies of 400, 600, 800

and 1000 MeV/nucleon and for the reactions with total system masses equal to 40, 80,

160 and 240 units. The mass asymmetry values lies between 0.0 and 0.7. From the figure,

we see that the entropy per nucleon remains almost constant for all mass asymmetries

between 0.0 to 0.7 at incident energies of 400, 600, 800 and 1000 MeV/nucleon. Typically,

the variation in the entropy values for all cases is between 0.3-0.5 level at all incident

energies. These variations are of the same order as seen for increase in incident energy.

To see consistency with experimental data, we have also shown the entropy values for

the reactions of 40Ca+40Ca at incident energies of 400 and 1050 MeV/nucleon, and 93Nb

+93Nb at incident energies of 400 and 650 MeV/nucleon. We see that our calculations

are consistent with the experimental results at both incident energies for both system

masses. Thus, we find that for variation in system mass and asymmetry of a reaction, the

individual yields and their ratios change, but the entropy per nucleon remains constant.

These results can also be understood by looking at the < Rdp > ratios in Fig. 5.9. In

particular, the following two aspects can be observed:

• The variation in < Rdp > is in between 0.3 range only, for a given mass asymmetry
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Figure 5.9: The deuteron-to-proton ratio (< Rdp >) is displayed as a function of system
masses for mass asymmetries of 0.0, 0.1, 0.3, 0.5 and 0.7 at incident energies of 400, 600,
800 and 1000 MeV/nucleon.
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Figure 5.10: The entropy production per nucleon (< SN >) as a function of total system
mass is displayed for mass asymmetry values of 0.0, 0.1, 0.3, 0.5 and 0.7 at incident
energies of 400, 600, 800 and 1000 MeV/nucleon. Stars represent the experimental data
[55].
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for all incident energies.

• The variation of incident energy changes the < Rdp > from ∼ 0.45 to ∼ 0.30 for

systems with total system mass 40, and from ∼ 0.50 to ∼ 0.45 for systems with

total mass 240.

One can see the variation is not that drastic that it can influence results within the

formalism to calculate entropy (see eq. 5.5). Thus we conclude that entropy production

in heavy-ion collisions remains constant for all system masses with mass asymmetries

between 0.0 to 0.7 and in the incident energy range of 400 to 1000 MeV/nucleon.
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5.6 Summary

First, we have demonstrated the role of various technical parameters of clusterization

algorithms such as clusterization radius and different clusterization algorithms on the

onset of vaporization. We observed that the technical parameters do not alter the results

of vaporization and also close to the experimental observations. Later, the property of

light particles to thermalize the nuclear matter instigates one to study entropy production

as the important probe for asymmetric reactions. The study done includes the role of mass

asymmetries on ratios of light mass clusters and entropy production at different incident

energies of 400, 600, 800 and 1000 MeV/nucleon. The study was conducted using various

mass asymmetries for total system masses of 40, 80, 160 and 240 units. The role of both

mass asymmetry and incident energy is seen for ratios of light clusters. Also, the ratios

are found to be consistent with the available experimental data and earlier calculations.

Lastly, the entropy production is found to be independent of all mass asymmetries and

system masses.
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Chapter 6

Summary of the thesis and outlook

In this thesis, the phenomenon of multifragmentation and various features associated

with it was presented. Both Quantum Molecular Dynamics (QMD) model and its isospin

variant was used to generate the phase space of nucleons from the beginning to the end

of the reaction. Further, the phase space of nucleons is clusterized using various clusteri-

zation algorithms.

In chapter1, we introduced the phase transitions in nuclear matter. We also corre-

lated phenomenon of multifragmentation (emission of multi-particles) with various stages

of phase transitions in nuclear matter. Then, we presented details of available experimen-

tal facilities and theoretical modelling done to study multifragmentation.

In chapter 2, we discussed the methodology of Quantum Molecular Dynamics

(QMD) model and Isospin-dependent Quantum Molecular Dynamics (IQMD) model in

detail which is used in the present study.

In chapter 3, we discussed various spatial based clusterization algorithms such as

MST method and its variants. We extracted the critical exponent τ/λ to study the point

of onset of multifragmentation or critical energy point. We also calculated various ob-

servables such as S2, γ2 and Zmax2 to study the first-order phase transition in nuclear

matter. Our results validated the utility of MST method and its any extension to identify

fragments as results were found insensitive to the choice of algorithm.

In chapter 4, we put forward the idea of using energy based clusterization algorithm
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to overcome the shortcomings of MST method (or any of its variant). We discussed the

need and importance of energy based clusterization algorithm i.e., SACA. Then we con-

fronted our calculations with the available experimental results that includes the critical

parameter τ (λ) and various other observables such as S2, γ2 and Zmax2. Our detailed

study spans over both light and heavy systems. Our detailed study revealed the capabil-

ity of SACA method to very well reproduce exactly the energy of minima in power law

exponent as shown in experimental data.

In chapter 5, we try to associate emission of light particles to study onset of vaporization

in nuclear matter. We presented calculations using various clusterization algorithms and

its role on the onset of vaporization. Further, we discussed the significance of emission of

light particles at various stages of the reaction and associate it to study entropy produc-

tion. This study was done using IQMD model. Our study spans over the entire range of

mass asymmetric reactions and also different total system masses. The entropy was found

independent of mass asymmetry and total system mass. The results of both IQMD and

QMD model were also compared. The entropy was found independent of both models

also.

Summarizing, we have attempted to study phase transitions that nuclear matter un-

dergo at various stages of the reaction with incident energy. We have done this study

using complete range of available clusterization algorithms. We have shown that these

algorithms provide realistic structure of fragments. Our results showed that, although the

MST provide strong evidence to study liquid-gas phase transition in nuclear matter at

the later stages of the reaction, the SACA can give these indications more accurately and

precisely at the early stages of the reaction. In future scope, it will be very interesting

to introduce new parameters to study phase transitions in nuclear matter. We have also

shown the systematics of light particles near/after the complete vaporization of system.

6.1 Outlook

We have investigated the role of various clusterization algorithms on the phase-transitions

in nuclear matter and related phenomenon, still there are numerous challenges yet to be

solved. The most important challenge is to study role of varying various model ingredients,

mass asymmetry and N/Z ratios on phase transition. Despite the fact that various ob-

servables have been put forward as probe in the literature which give information about
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dynamics involved with phase-transitions in nuclear matter but, we need to search for

new observables to better understand the physics related to phase-transitions in nuclear

matter. In chapters 3 and 4, we studied the role of various clusterization algorithms on

liquid-gas phase transition. This study can be extended by studying the complete range of

asymmetric reactions and by defining new observables to define the existence of liquid-gas

phase transition. In chapter 5, we have associated the emission of light particles to the

entropy production and onset of vaporization. It would be quite interesting to extend it

to study role for asymmetric reactions and N/Z ratio on these phenomena.
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[36] W. Stöcker and J. Burzlaff et al., Nucl. Phys. A 202, 265 (1973).

[37] D. G. Ravenhall, C. J. Pethick and J. M. Lattimer, Nucl. Phys. A 407, 571 (1983);

D. G. Ravenhall, C. J. Pethick and J. R. Wilson, Phys. Rev. Lett. 50, 2066 (1983).

[38] B. Friedman and V. R. Pandharipande, Nucl. Phys. A 361, 502 (1981); T. J.

Schlagel and V. R. Pandharipande, Phys. Rev. C 36, 162 (1987).

[39] G. Sauer, H. Chandra and U. Mosel, Nucl. Phys. A 264, 221 (1976); P. Bonche,

S. Levit and D. Vautherin, Nucl. Phys. A 428, 95 (1984); ibid. A 427, 278 (1984).

[40] E. Suraud, Nucl. Phys. A 462, 109 (1987); H. Müller and R.M. Dreizler, ibid., A

563, 649 (1994).

[41] B. D. Serot and J. D. Walecka, Adv. Nucl. Phys. 16, 1 (1986).
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Chapter 6

Summary of the thesis and outlook

In this thesis, the phenomenon of multifragmentation and various features associated

with it was presented. Both Quantum Molecular Dynamics (QMD) model and its isospin

variant was used to generate the phase space of nucleons from the beginning to the end

of the reaction. Further, the phase space of nucleons is clusterized using various clusteri-

zation algorithms.

In chapter1, we introduced the phase transitions in nuclear matter. We also corre-

lated phenomenon of multifragmentation (emission of multi-particles) with various stages

of phase transitions in nuclear matter. Then, we presented details of available experimen-

tal facilities and theoretical modelling done to study multifragmentation.

In chapter 2, we discussed the methodology of Quantum Molecular Dynamics

(QMD) model and Isospin-dependent Quantum Molecular Dynamics (IQMD) model in

detail which is used in the present study.

In chapter 3, we discussed various spatial based clusterization algorithms such as

MST method and its variants. We extracted the critical exponent τ/λ to study the point

of onset of multifragmentation or critical energy point. We also calculated various ob-

servables such as S2, γ2 and Zmax2 to study the first-order phase transition in nuclear

matter. Our results validated the utility of MST method and its any extension to identify

fragments as results were found insensitive to the choice of algorithm.

In chapter 4, we put forward the idea of using energy based clusterization algorithm
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to overcome the shortcomings of MST method (or any of its variant). We discussed the

need and importance of energy based clusterization algorithm i.e., SACA. Then we con-

fronted our calculations with the available experimental results that includes the critical

parameter τ (λ) and various other observables such as S2, γ2 and Zmax2. Our detailed

study spans over both light and heavy systems. Our detailed study revealed the capabil-

ity of SACA method to very well reproduce exactly the energy of minima in power law

exponent as shown in experimental data.

In chapter 5, we try to associate emission of light particles to study onset of vaporization

in nuclear matter. We presented calculations using various clusterization algorithms and

its role on the onset of vaporization. Further, we discussed the significance of emission of

light particles at various stages of the reaction and associate it to study entropy produc-

tion. This study was done using IQMD model. Our study spans over the entire range of

mass asymmetric reactions and also different total system masses. The entropy was found

independent of mass asymmetry and total system mass. The results of both IQMD and

QMD model were also compared. The entropy was found independent of both models

also.

Summarizing, we have attempted to study phase transitions that nuclear matter un-

dergo at various stages of the reaction with incident energy. We have done this study

using complete range of available clusterization algorithms. We have shown that these

algorithms provide realistic structure of fragments. Our results showed that, although the

MST provide strong evidence to study liquid-gas phase transition in nuclear matter at

the later stages of the reaction, the SACA can give these indications more accurately and

precisely at the early stages of the reaction. In future scope, it will be very interesting

to introduce new parameters to study phase transitions in nuclear matter. We have also

shown the systematics of light particles near/after the complete vaporization of system.

6.1 Outlook

We have investigated the role of various clusterization algorithms on the phase-transitions

in nuclear matter and related phenomenon, still there are numerous challenges yet to be

solved. The most important challenge is to study role of varying various model ingredients,

mass asymmetry and N/Z ratios on phase transition. Despite the fact that various ob-

servables have been put forward as probe in the literature which give information about

143



dynamics involved with phase-transitions in nuclear matter but, we need to search for

new observables to better understand the physics related to phase-transitions in nuclear

matter. In chapters 3 and 4, we studied the role of various clusterization algorithms on

liquid-gas phase transition. This study can be extended by studying the complete range of

asymmetric reactions and by defining new observables to define the existence of liquid-gas

phase transition. In chapter 5, we have associated the emission of light particles to the

entropy production and onset of vaporization. It would be quite interesting to extend it

to study role for asymmetric reactions and N/Z ratio on these phenomena.
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