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Abstract

‘We derive the nucleon-nucleon interaction from the Skyrme model using second order perturbation theory
and the dipole approximation to skyrmion dynamics. Unlike previous derivations, our derivation accounts
for the non-trivial kinetic and potential parts of the skyrmion-skyrmion interaction lagrangian and how they
couple in the quantum calculation. We derive the eight low energy interaction potentials and compare them
with the phenomenological Paris model, finding qualitative agreement in seven cases.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A nucleon can be modelled as a point particle with spin and isospin degrees of freedom. The
standard way to model the nucleon-nucleon interaction uses a hamiltonian that was first written
down in [1]. The form of this hamiltonian is prescribed by symmetries and it is specified by
eight potentials that (in its simplest form) depend only on the separation of the nucleons. Much
effort has been devoted to deriving these potentials from a more fundamental theory. It is well-
established that the behaviour of the potentials at large separations is governed by Yukawa’s
theory of pion exchange [2]. In contrast, at small separations, QCD effects are important and
theorists frequently rely on phenomology, fitting the potentials to experimental data. Several
of these semi-phenomenological models have been proposed, such as the Paris and Argonne
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models [3,4]. While parts of these models are fixed by theory, many parameters are not con-
strained by theory and must be fitted to data: for example, the Paris model has around sixty
unconstrained parameters. More modern models based on effective field theory have a firmer
theoretical foundation, but still involve many unconstrained parameters [5,6]. It seems to be very
difficult to derive the nucleon-nucleon potentials from fundamental theory without introducing
experimentally-determined parameters.

The Skyrme model is a model of nuclei with roots in QCD that, in its simplest form, has only
three unconstrained parameters. It models nucleons using topologically nontrivial field config-
urations called skyrmions [7]. A skyrmion is a spatially localised soliton that can be described
using six degrees of freedom: three for its position, and three for its orientation.

In order to understand the nucleon-nucleon interaction from the Skyrme model one should
start by understanding the classical dynamics of two skyrmions. The two-skyrmion system can
be described using a configuration space parametrized by two positions and two orientations,
at least when the skyrmions are widely-separated. To extract the nucleon-nucleon interaction
one needs to semiclassically quantise the two-skyrmion dynamics. So two approximations are
needed to derive the nucleon-nucleon interaction: an approximation to the classical dynamics of
skyrmions, and a quantisation method.

The problem of deriving the nucleon-nucleon interaction from the Skyrme model has a long
history and is not yet resolved. Early in his development of the model, Skyrme used the product
approximation to understand the long range interaction of two skyrmions [8]. Here, the two-
skyrmion field is given by the product of the fields of two one-skyrmions. While this is a simple
way of generating a two-skyrmion field, there is no reason to trust its validity when the skyrmions
are close together. This approximation was used by Vinh Mau et al., who showed that the long-
range interactions between skyrmions reproduce the one pion exchange potential of Yukawa
[9]. Subsequent papers attempted to extract shorter-range parts of the nucleon-nucleon potential,
again using the product approximation [10,11]. These papers all used what we will call first order
perturbation theory to pass from classical skyrmions to quantised nucleons. Disappointingly, this
approach did not result in any medium-range central attraction. This was a major failure: without
central attraction there can be no nuclear binding.

The resolution of this problem was found by Walet, Amado and Hosaka [12,13], and came
in two parts. First, they replaced the product approximation, expanding the classical interaction
potential as a Fourier series in relative orientation. The Fourier coefficients were fixed by the
Atiyah-Manton approximation, where Skyrme fields are generated using instantons [14]. Sec-
ondly, they improved the quantisation technique. The potential energy has a low energy region
and the wavefunction should be concentrated there. To account for this fact the authors used
second order perturbation theory, and an attractive central potential was found. They focused en-
tirely on the potential energy, assuming that the kinetic parts of the interaction were subleading.
A year later, Schroers and Gisiger—Paranjape carefully studied the skyrmion-skyrmion interac-
tion, and found that the kinetic energy is not subleading and can dominate the classical dynamics
[15—17]. The consequences of this fact for the nucleon-nucleon interaction are explored for the
first time in this paper.

Another problem with the Skyrme-derived nucleon-nucleon interaction remained unsolved
until recently. The isoscalar spin-orbit potential is essential for describing experimental data from
nucleon-nucleon scattering [18,19], and plays a vital role in the prediction of magic numbers
for larger nuclei [20]. Riska and Nyman obtained a satisfactory result for the isovector spin-
orbit potential, but their approach resulted in an isoscalar potential with the wrong sign [21-
23]. Various modifications of the Skyrme model were proposed to correct this result, such as



D.G. Harland and C.J. Halcrow Nuclear Physics B 967 (2021) 115430

coupling the theory to a dilaton [24] and only including the L¢ term [25] (now known as the
BPS model [26]). These did not improve the situation, and the most promising approach was
shown by Abada to ignore the dominant contribution [27], thereby nullifying the earlier positive
conclusion. Although these attempts to fix the spin-orbit problem seem very different, they all
share a common feature: they combine the product approximation with first order perturbation
theory.

A solution to the spin-orbit problem was found by the authors of this paper [28]. The reso-
lution combines second order perturbation theory with the skyrmion-skyrmion interaction first
found by Schroers [15]. This interaction includes the potential terms as well as the kinetic terms,
whose significance was demonstrated by Gisiger and Paranjape [16,17]. In fact, it is a cou-
pling between potential and kinetic terms which provides the most important contribution to
the spin-orbit potential. The results of this new method were previously calculated only for the
isoscalar spin-orbit potential [28]. In this paper, we present the full nucleon-nucleon interaction
arising from this method. We find a significant improvement over previous attempts to derive the
nucleon-nucleon interaction from the Skyrme model.

Our approach is in some ways similar to that of Sugawara and von Hippel [29]. In their
model, pions can excite nucleons to delta resonances, and this results in a pion-mediated central
attraction between nucleons. Our model is similar but, unlike in [29], the nucleon-delta amplitude
is determined by theory rather than experiment. Also, the model of [29] included an omega meson
to account for the short-range parts of the nucleon-nucleon potential, whereas our model only
captures long-range parts of the nucleon-nucleon potential. The Skyrme model does provide a
framework to study short-range interactions, and we plan to study these in the future.

Although the results in this paper are for the standard Skyrme model, the methods presented
are also valid (perhaps with small modifications) for many modified Skyrme models. These are
plentiful [26,30-32]. The topic of this paper has a history of mistakes and sign errors in the
literature [27,33]. For both these reasons, we present our calculation in painstaking detail.

To understand the calculation we first must understand nuclei as quantised skyrmions. This is
done in section 2. The dipole approximation, first studied by Schroers and Gisiger—Paranjape for
massless pions, is derived in section 3 for massive pions. Section 4 derives a quantum hamiltonian
from this classical dipole-dipole lagrangian. We present the calculation of the nucleon-nucleon
potential from this hamiltonian in section 5, and draw our conclusions in section 6. We include
four appendices. These provide further details for our calculations, and present our explicit for-
mulae for the nucleon-nucleon potential (which are too long to include in the main body of the
article).

2. Nuclei as quantised skyrmions

In this section we review how a quantised skyrmion can be viewed as a nucleon, as was first
shown in [34]. The Skyrme model is a field theory described by the lagrangian

F]% % h nw v Fgm% 3
R3
Here U : R13 - SU(2), L,= U_IBMU, 1, is the identity matrix, F; is the pion decay constant,

my is the pion mass and e is a dimensionless coupling constant. Boundary conditions U (¢, x) —
1, as |x| — oo are imposed to allow for finite energy, and as a result the model has a topologically
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conserved quantity, the winding number B € Z of U : §° = R3 U {oo} — SU(2) = S°. This
winding number B has the physical interpretation of baryon number.

Static solutions of the equations of motion with B = 1 can be obtained using the hedgehog
ansatz:

Uy (x) =exp(—io;X; f(r)), (2.2)

in which r = |x|, ; = x/r, o; are the Pauli matrices and f : R>o — R is chosen to minimise
energy subject to the boundary conditions f(0) = 7 and f(co) = 0. This hedgehog skyrmion is a
soliton whose energy is concentrated at the origin. Further static B = 1 solutions can be obtained
by acting on the hedgehog with symmetries of the theory, namely translations, rotations, and
isorotations (which take the form U — QU Q~! for Q € SU(2)). In fact it suffices to act with
translations and isorotations only, as the hedgehog is invariant under a combination of rotations
and isorotations. Thus we obtain solutions of the form

Ux)=QUp(x—X)Q! (2.3)

parametrised by X € R? and Q € SU(2). The parameters X and Q respectively describe the
position of the soliton and its orientation.

The family (2.3) describes the lowest-energy static configurations in the B = 1 sector. To
a good approximation, low-energy dynamics in the B = 1 sector can be described by promot-
ing the parameters X, Q to time-dependent functions, i.e. by writing U(¢,x) = Q(t)Up(x —
X())0@@)"". The lagrangian that governs this simplified dynamics is
A
2
in which M and A are constants which represent the classical mass and moment of interia of the
B =1 skyrmion, and

—iw-0=20""0, (2.5)

where w is interpreted as the angular velocity of the skyrmion. The equations of motion are
that of a free spinning top. Hence, for small kinetic energies, the skyrmion simply moves with
constant linear and angular velocities.

In order to make contact with nuclear physics we must quantise the low-energy dynamics of
a skyrmion. The quantum mechanical hamiltonian is

M .
L=7WV+ lo?, (2.4)

2

1 h
H=—|P*+—1S|%, 2.6
2M| | +2A| | (2.6)
in which P; = —ihd/dX ; and
; d —ieo;/2
—iS;v (X, Q)= —| Y (X, Qe /7). 2.7)
’ de |

The operators S satisfy [S;, S;] = i€;jx Sk and are interpreted physically as spin operators. In or-
der to understand this hamiltonian we first diagonalise the operator |S|> = S; S;. The eigenvalues
of this operator are known to be of the form (n*> — 1)/4 for integers n > 1. The correspond-
ing eigenspaces are spanned by wavefunctions ¥ (Q) = pgﬂ(Q), where p : SU2) - GL(n, C)
is the n-dimensional irreducible representation of SU(2) and pgﬁ are its matrix entries (with

1 <a, B <n). Thus the eigenspace H, with eigenvalue (n> — 1)/4 is naturally isomorphic
to C" @ C". The wavefunction is required to satisfy the Finkelstein-Rubinstein constraint

4
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v(X,—0) =—-v¥(X, Q), and as a result only the eigenspaces with n even (corresponding to
odd-spin representations) are relevant to the quantum mechanics of the skyrmion [35]. Thus
wavefunctions in the lowest energy eigenspace are functions

viRY S5 H,=C?eC2 (2.8

These describe nucleons: the first factor of C2 corresponds to a spin doublet, and the second to
an isospin doublet. The next-lowest eigenspace corresponds to functions

v RY S, =ctect (2.9)

and describes delta resonances.

Before moving on to investigate the dynamics of two skyrmions we pause to describe some
operators acting on the 1-skyrmion Hilbert space that will be relevant to later calculations. Let
R;;j(Q) be defined by

Rij(Q) = %Tr(UiQUjQ_l)a l<i,j=<3. (2.10)

In other words, R;; are the matrix entries of the adjoint representation of SU(2). These act on
skyrmion wavefunctions ¥ by multiplication. If Y € H,, then R;;v can be written

Rijyr =) kT @A™y, @2.11)
m

where «7" and 17" are m x n matrices of Clebsch-Gordon coefficients and the sum is over

m =2,4 in the case n =2 and over m =n — 2,n,n + 2 in the cases n > 4. Our calculations

later will involve the matrices «”*" for m,n = 2,4, and these are given explicitly in Appendix A.

The matrices A" are identical to «”*", but denoted by a different symbol for clarity (the «’s

correspond to spin and the A’s to isospin). We also make note of some identities involving these

matrices; these can be derived using the matrices given in the appendix. These identities describe:
commutators with spin operators,

[Si, 67" @M = eijuny™ @A™ (2.12)
contractions with spin operators and epsilon tensors,
SiijjK,gz ® )lez = il(l»22 ® )»122 8,'ij12-2 ® Alzsz = il(i22 ® )LIZZ
i 5i
24 24 24 24 24 24 24 24
8,‘ijij ®)"1 :—EKi ®)\.l Siij'j ®)\l Sk:EKi ®)\.l (213)
5i i
SiijjKI?Z ® )»?2 = EKI-A'Z ® )»?2 Eiij;u X )»?25]( = _EK;Q X )\42;
and substitutions in terms of Pauli matrices,
1
22
K= —ﬁm
1
22,22 .
KK = 5(51'1 +18ijk0k> (2.14)
2 42 V2 i
KiKjT = —T<5ij - Egijk(fk).
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3. Dipole-dipole Lagrangian

Having understood the dynamics of a single skyrmion, we now consider the dynamics of two
well-separated skyrmions, following Schroers [15]. To do so, we first investigate the asymptotic
tail of a single skyrmion. Far from the centre of a hedgehog skyrmion, the Skyrme field U is close
to the vacuum. In terms of pion fields, we may write U (x) = exp(im (x) - 0) and the lagrangian
(2.1) takes the form

Fz m; 4\ 43
_ - Ol — T
L= Sh (alﬂl’ ot hzn T+ 0O ))d X. 3.1
Thus, far from the centre of the skyrmion the Skyrme lagrangian reduces to the Klein-Gordon
lagrangian. The asymptotic field of the skyrmion with position X takes the form

2oy~ —c (2 2 LM ) XRo)x - X) (3.2)

NFre) \x—xP " hx—xp2 ’ '
where R(Q) is the orientation matrix defined in (2.10) and C; is a dimensionless constant that
can be computed numerically. We can compare this with the field induced by a dipole with dipole
moment c:

1 _mar 1 My \ _mxrc-X
c-V|—e 7 |=—=5+— P — 33
(4nr€ ) (r3 + hr2>e 4 (3-3)
We see that the jth pion field is a dipole with dipole moment ¢; = 47{(%)2C 1Rji.
We have learned that, far from its centre, a skyrmion resembles a triplet of orthogonal dipoles.
As such, we can use the theory of relativistic dipoles to describe the interaction of well sepa-

rated skyrmions. A single dipole with moment ¢ and position X (r) which is moving slowly with
velocity X and rotating with angular velocity @ has charge distribution [15]

pa(x, X (1) = T8 (x — X (1)) (3.4)
T .= ((c—%|X|2c—%(X~C)X)~V+X-cxw>. (3.5)

Here and throughout the calculation we have neglected all terms with more than two time deriva-
tives. The potential due to this dipole satisfies

b — (A —m*)pa=—-TsD(x — X(1)), (3.6)

where m = m /h is the reduced pion mass. We formally invert this equation and expand in the
slow moving approximation

ga=((a—m? - 8,2)71 764 (x — X (1)

d2
=TGm+ﬁT(A—m2)_le+... (3.7)
where G, is the Greens function for the Yukawa interaction, given by
1 —mr
Gyp=——zc . 3.8)
4mr

To find the potential we are left to evaluate F;,, := (A — m?)~1G,,. We do this by solving

6
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Gm=(A—m?)Fy (3.9)

whose unique decaying solution is

F,=——¢ ", (3.10)
8rm
It is worth considering the massless limit, which was studied earlier in [15]. In that case, (3.7)
was solved using special properties of the Laplacian, resulting in

For=A"1Gy=——. G.11)
8

The expansion of our solution about m =0 is

1 r
lim Fy =—— — — 4+ O(m). 3.12
mli>n0 " 8wm 8w +0m) ( )
Although this diverges as m — 0, the lagrangian only depends on derivatives of F;, and the
divergent term is constant. Hence our result agrees with [15] in the limit m — 0.
Combining all these results and inserting the operator 7', the potential due to (3.4) is

1 .9 . . . e—mlx—X|
¢d:\v,——(<c—%X c—%X~cX>-V+X~cxw)(7)

4r x— X|
1 42

eV (e—’"'x—x‘) . (3.13)
aTm

Once again, we have neglected terms with more than two time derivatives. Note that this is not
the result one finds by simply replacing the massless Greens function for the massive Greens
function in the expression for ¢; from Schroers.

A skyrmion is described by three orthogonal dipoles. So the charge density of, and the po-
tential due to, the skyrmion is simply the sum of those of the dipoles. Let the two skyrmions be
labelled by 1 and 2, each having their own positions X, X, and angular velocities @1, @,. The
interaction lagrangian is given by

1
L=§(/¢>1,02+¢2p1>d3X- (3.14)

This can be evaluated using (3.4) and (3.13). Once again we neglect terms with more than two
derivatives, and the resulting expression is similar to equation (6.19) in [15]. The result can be
expressed in terms of x := X1 — X, r = |x|,q := Ql_1 0>, and the parameter

__8xn’Cy 3.15)
T AFR2 '

The lagrangian obtained is

i ei A i A i
L = Z}C X + Ea)lwl + E(Dz(,l)z
+pCiji' 3 + pALii o] + pAL i W) + pBijwiw) — 20D, (3.16)

1 2
where Aij = Aab;ij Rap, A,’j = Aba;ij Rap, Bij = Bab;ij Rap, Cij = Cab;ij Rap, D = DapRap, and

7



D.G. Harland and C.J. Halcrow Nuclear Physics B 967 (2021) 115430

Aabiij = €aje(BicVpe ™ |1 — AVipee™™" /m) 3.17)

Bab:ij = —€aic€pjaVeae " /m (3.18)

Capiij = %8ijVape ™ /1 — Vapije ™™ /m (3.19)
+ %(Sjbvm +8;aVib +8i6Vja + 8iaVip)e ™ /1

Dap = Vape ™ /1. (3.20)

Later, we will consider the massless (m = 0) limit. Hence it is helpful to record the lagrangian in
this limit, originally derived in [15]. It has the same structure as (3.16) but with

Aabiij = €aje(8ic Vol /1 + §Viper) (3.21)
Bab;ij = €aic€bjaVed T (3.22)
Capiij = %&,/Vabl/r + %Vabij r+ %(%’bvia +68;aVib +6ipVja + 8iaVip)l/r (3.23)

Dab = Vap1 /1. (3.24)

When r is large, the lagrangian (3.16) is a small perturbation of the free lagrangian for a pair of
point particles. It implicitly defines a metric on the configuration space of two skyrmions, and at
large separations this metric is guaranteed to be positive definite (i.e. Riemannian). At small sep-
arations there is no guarantee that the metric is positive definite, but that is no cause for concern:
this lagrangian was derived using the dipole asymptotics of skyrmions, so the approximation is
reliable only for well-separated and slowly-moving skyrmions.

4. Skyrmion-skyrmion Hamiltonian

Having obtained an approximate lagrangian for two skyrmions, we now calculate the corre-
sponding hamiltonian.

In general, the hamiltonian associated to a lagrangian for a particle moving on a Riemannian
manifold with metric g under the influence of a potential V is %Ag + V, with Az being the
Laplace-Beltrami operator for the metric g. If the metric is given in the form g = g, ee”, with
e being a frame for the cotangent bundle, the Laplace-Beltrami operator is

Ag=—(detg) '?E, (detg)*g" E, + f}; 8" E,, (4.1)

with E,, being the dual frame for the tangent bundle (such that e*(E,) = 8ty and ffﬂ struc-
ture constants defined by [E;, E,] = ffﬂEv. A derivation of this formula is given in Ap-
pendix B. The operator A, is manifestly self-adjoint with respect to the inner product (v |v/), =
[Uy(detg)/2el ... nem

If the metric is perturbed to g 4 8g then the correct hamiltonian is gAgJﬂsg + V. This is
self-adjoint with respect to the inner product ([v/),s¢ but not the inner product (yr|v),. If we
want our deformed hamiltonian to still be self-adjoint with respect to (1), we should instead
choose

h2
H =det(1 4+ g '5g)1/4 (TAgMg + V) det(1+ g~ '6g)~1/4 4.2)

This can be expanded as a power series in 6g. Assuming that f /i‘k =0, the terms up to quadratic
order are
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hZ hz hZ
H= ?Ag +V+ ?E,(g“‘(ggwg’“’Ev — TEKg")‘SgMLg“VSgngE(,
n? 3
+ 358" (B 87881l Ev, 877 8g0p1 + 0(687). (43)

We will use equation (4.3) to calculate the hamiltonian for the lagrangian (3.16) as a power
series in p. The p-independent kinetic terms determine a metric g, and the p-dependent kinetic
terms determine a perturbation §g. For the frame e we choose

o=dx;, P =ql, Jt0=q) =123, 4.4)
where
— Qo = R =24, ' dgq 4.5)
matching (2.5). The dual frame is
d i

Eij=—=_-P;, Ej+3=—iSl-

ax: R jo Ejre=—iS};
j

% j=1.23 (4.6)

It is important that the plus and minus signs in these equations are chosen correctly. The sign of
the spin terms is correct because

. . . . 1 d Zitors .
—io e (Ej43) = —ior Qf (—iS)) = @ (-iS}) =207 3| Qe it0j/2 = _jg;

=0
4.7
and, more generally, e/ (E),) = 8!, From equations (4.3) and (3.16) we find
? > 1
H=—|S""+—|8*>+ —|P)*+ Hj, 4.8
2A||+2A||+M||+1 (4.8)
where
ph? ph i
232 232 2
p-h p-h p-h ~ ~ _
+ S F Al Al = o s (PA+ ATP) + 0(0Y) + OM™2) - (49)
and
B =S/B;jS; + S7B;;S] (4.10)
a1 ¢l 2 Q2
Aj=A;S; +A;S; 4.11)
F =S} Bi;By;S} + S?Bji Bjx St (4.12)
A; = A} B S; + Al Bji.S;. (4.13)

5. Nucleon-nucleon potential
In the previous section we determined a hamiltonian that describes two interacting skyrmions.
In this section we will apply perturbation theory to calculate a low-energy effective hamiltonian

acting on the nucleon-nucleon sector of the skyrmion-skyrmion Hilbert space.

9
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We begin by recalling some essential ideas from degenerate perturbation theory. Let Hy
be a hamiltonian acting on a Hilbert space with energy eigenvalues Eg < E1 < E; < ... and
eigenspaces H . Consider a perturbed hamiltonian of the form

H(e) = Hy + e Hy, 5.1)

with € small. When € = 0 the Eg-eigenspace Ho is invariant under the action of H(0). As €
moves away from zero this eigenspace is deformed to a subspace Ho(e) which is invariant under
H (¢) and which is canonically identified with Hg. Using this identification Hy(e) = Ho one
obtains an operator Hg : Hog — Ho which describes the action of H(e) on Hp(e) and can be
thought of as a low-energy effective hamiltonian for H (¢). In Appendix C we derive the follow-
ing perturbative formula for this effective hamiltonian:

1

Hr—Eg+eH® 25 1 gONpgNO
E 0 1 NZ Ey — Eo 1 1
>0
1
3 ON gy NM 17 MO
+e Y HNHNM ||
M N0 (EN — Eo)(Em — Eo)

&3

1
— 5 2 g N HNOHY + HPHINHY) + 0. (52)
N>0

Here HINM : Hy — Hy are the projections of Hj such that H) = ZM’N HINM. Usually in
degenerate perturbation theory one works in a basis in which the first (or second) order term is
diagonal, and in that case the formula (5.2) reduces to well-known formulae for the perturbed
eigenvalues. The advantage of using equation (5.2) is that it does not require one to choose any
particular basis.

We will apply the formula (5.2) to the skyrmion-skyrmion hamiltonian (4.8), choosing
Hy = §(|S1|2 +18%?) and €H; = ﬁIPI2 + Hj. This means that we have two deforma-
tion parameters: p and M —1 (recall that H; = O(p)). The eigenspaces of Hy are the spaces
Hy = Hm ® Hy labelled by N = (m, n), which describe particles of spin 5 and “5!. The
associated eigenvalues of Hy are Ey = (m? + n? — 2)h2/ 8A, and the lowest eigenvalue E
corresponds to the nucleon-nucleon sector labelled by (m, n) = (2, 2).

Equation (5.2) implies that

L E— ov_ 1 NO
Hp=Eo+ - +HX - > HN —H
e=Eot o TH I Ey—Ey !
N>0
1

1 ONp p|2 gNO 2 yONq g NO
+ E H/7[|P|°,H P|“,H/"1H
2M o (Ey — EO)Z( PP HE T = 1PE, Hy P 1H)

+0(PH+0M™?). (5.3)

The three terms involving H; will be referred to as first, second and third order. Notice that the
second order term does not involve | P|> because | P|> commutes with Hy and thus (|P|*)N? =0
if N > 0. The third order term is simpler than in equation (5.2) because we are only working up
to order 2 in p and order 1 in M~!.

A key feature of the formula (5.3) is that the sums over N are finite. This is a special feature
of the dipole approximation, and happens because H; depends on Q1, Q; only through the
combination R,p(q) = Req(Q1)Rep(Q2). By the Clebsch-Gordon rules, multiplying a state ¢ €

10
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Ho ® Ho with R,y (g) results in a state in @m,nzz, 4 Hm ® H,. More explicitly, from equation
(2.11),

Rap ¥ = Rea(QDRp (0¥ = Y k2@ N2 @Kp; @ M2 vr (5.4)

m,n=2,4

(where the first subscript on « and X labels the particle). Thus in equation (5.2), and in what
follows, the notation ) _, means a sum over (m,n) = (2,4), (4,2), (4,4). Similarly, )", will
mean a sum over (m,n) = (2,2), (2,4), (4,2), (4,4).

We now consider when the use of perturbation theory in (5.3) is justified. In general, pertur-
bation theory is considered reliable if the correction to the hamiltonian is small compared with
the energy differences Ey — Eq. The smallest energy difference is 34%/2A. Assuming that the
separation r > /i/my, the approximation will be reliable provided that

|PI> p ph® ph|P| p|PP* #?
T, T3 o , <.
M "3 rA2 MAr?2 M?%p3 A
The following conditions on | P|, r, M are sufficient to ensure that this is the case:

,  M#n? JpA p n?
|P|“"<——, r>maxi{J]—,—, —¢, M>—. (5.6)
A B2TAN my A

The first inequality simply means that the skyrmions are moving slowly. The third inequality
is equivalent to the statement that the dominant contribution to the nucleon energy is the rest
mass of a skyrmion, rather than its spin energy. This is true in all proposed calibrations of the
Skyrme model. The condition that » > fi/m, is not very restrictive, because the pion Compton
wavelength 7z /m, is only slightly larger than the proton charge radius. We will examine the
remaining constraints in the next section, when we discuss calibrations.

We wish to compare the hamiltonian (5.3) with the nucleon-nucleon potential. The latter is
constrained by symmetry to be of the form [1]

(5.5)

Van =V + Va0 + VS S+ 2V/L o
+(VCIwV—FVUI{YU]GQ—FVlIZ‘/Slz—F%VZ;/L'U)T]TQ. 5.7

The potentials are known as the isoscalar or isovector central, sigma, tensor and spin-orbit po-
tentials. Here oy;, 0o; are the spin Pauli matrices and 7y;, 7o; are the isospin Pauli matrices,
and we have used the shorthand 7172 = ) ; 71;72 and 6102 = ), 01,02;. The operator Si»
is S;p=3(01 -X)(02-X) — 0 - 03. The total spin is 0 = 0| + 067, and L =x x P is the total
angular momentum. The coefficient functions V" are functions of r = |x|, |P|? and |L|? only.
Since the skyrmion-skyrmion system shares the symmetries of the nucleon-nucleon system, the
hamiltonian (5.3) is guaranteed to be of this form.

We now proceed to describe the calculation of the terms in (5.7) from equation (5.3). This is
a lengthy calculation, and in order to avoid errors we used two independent methods. The first
method is algebraic in character and exploits the identities (2.13) and (2.14). The second method
is a direct calculation in Mathematica that uses the explicit formulae for the matrices «;"" given
in Appendix A. Both methods gave the same result in the case m, = 0. The result for m, > 0
was obtained using the second method only.

In the following few subsections we explain the algebraic method for evaluating (5.3). We
assume that m, = 0 throughout this calculation. We work to order 2 in p and order 1 in %: thus

11



D.G. Harland and C.J. Halcrow Nuclear Physics B 967 (2021) 115430

all equations are understood to be true only up to terms of 0(,03) and O(M~?). Further details
of the calculation are given in Appendix D. At the end of this section we give the final result
for massless pions, and briefly explain the Mathematica-based calculation. The final result for
massive pions is more complicated, and is given in Appendix E.

5.1. First order terms

In this subsection we evaluate the first order term in equation (5.3), i.e.

2
00 _ o _ PRT o0 PR 5100
222 222 2

ph p°h ph - -
+ S PO+ S (AT ADY — S-S (P + ATP)™. (5.8

The first few terms can be evaluated using the identity

1
ROb = K12A22 ZZA §Ula02b1112, 5.9)

a

which follows from (5.4) and the first equation in (2.14). Using identity (5.9) we find

1
D% = DapRyjy = 5 Van(1/r) Ry = L sprims. (5.10)

or 0,3
This reproduces the well-known result that the dipole potential for skyrmions induces the one-
pion exchange potential between nucleons [9]. Using identities (5.9) and (2.13) we find

B = Bup.ij (S! R)ST + STRIYS]) 5.11)
=2V,»r RY (5.12)

4 2
=57, alozrlrz—f&znrz (5.13)

Using identity (5.9) and noting that (Sj)o0 = %01 and (S2)0O = %02 we obtain

1 n
(P A+ A PP = P AL+ A] o0 4 —[Pi,Ai—A;]OO (5.14)
1
= 5P Aapiij}({Rap, $11% + {Rba, 1)
i
= 5 ViAab:ij ((Rap, $;1% + [Roa, S71) (5.15)

= I—S{Pi, Aup:ij¥oaj(02p +01p)T 1 T2

h
+ EViAab;ijSajk(O’Zbalk + 01p02U)T1T2 (5.16)
4h
9 3512‘[11'2 (5.17)

Note that the first term in equation (5.16) evaluates to 0, because Agp;;; is skew-symmetric in
a and j. This particular property of the dipole lagrangian means that the isovector spin-orbit
potential vanishes at order 1 in p.

12
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To evaluate the next few terms, we need an identity for (RapReg)®® =>yR ON RN 0 From

the identities (5.4) and (2.14) we obtain

77 L (ac + i€aced1e) (Bpa + i€parorp) (1 — r112) N=(2,2)
ROV RNO _ ?((Sac - .jeaceale)((sbd +'1€bdf(72f)(1 + ?1112) N=(42)
55 (8ac +1i€ace016) (Bpa — lfbdfO'Zf)(l +371T2) N=(Q2.,4)
%(Sac - %Eaceale)(%d EbdeZf)(l - 1112) N=44).
Therefore

1 1
Z RS;JVR?(;O = g‘sacabd + —

18 €ace€bdf01e02fT1T2.
N

Using equation (5.19) and the fact that S;’/ = %oa j» we obtain

F® = Bij.apByj: CdZS ROVRNOS! + Bji.an Bji: CdZSzRONRNOSk
N N
! (S12+ )
= 0102)T1T
32 18 o5 W12 +0102)T172.

Similarly, we obtain

(PeAi+ AT PO = 2P A 4 AT+ (P Ay — AT
1 - L-o+ n ( 2512)
— — —T1T -0 — (0109 — 172,
r4 18 112 18}’4 102 12 112
and
13 1 5
T 00
(AiAi) =6r—4 9”45124-36?0'162
1 5 S 1
54t 01027 |T2.
273 1T T qog a2t T 97 g 10T
Collecting everything together, we find
HO_ | 2 2h? +p_2 1302 | p* W . s S
! 3A32 T M6AZA | M2aA2A T T M oa2AT?
+ " 42 +p4h2+2 " +p2 g
27A2r " 9r3 EY: - 7T
P\2782% T 93 ) T M oars TP 3632 T M 108A24 | O12TIT?
p? 5h? N 242 2 2 P2 5h2
M 10 - - — 0102T1T
M 368247 72T TP oA TP 36n% 2 T M sanzt | 7102
2 2
p° h 0
T M az T gzt T

13
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5.2. Second order terms

In this subsection we evaluate the second order term in equation (5.3), i.e.

1 ON 7 NO 2 ON nNO
S S F O A —— ——p"p
NZOEN—EO 1o ",&EN—EO

252 254
+ p-h Z 1 (DONBNO+BONDNO) _p h 1 BON pNO
A2 En — Ep 4% Ey — Eo
N>0 N>0
3 2p02h Z 1 (DON(PA‘ FATPYNO 4 (PA; _i_ATP.)ONDNO)
— i i i 4 il
MA = Ex —Ep
p*n’ Z 1 ON f pANO T p\ON pNO
+ (B (Pia; + A PO + (P A; + AT POV BN?)
3 _ i i
2MA b OEN Ey
(5.26)

We will describe how to evaluate just a couple of the terms in this expression. The results for all
other terms can be found in Appendix D, and their total appears at the end of this section.

The first term that we will evaluate is

p2h? 1
Z (DONBNO + BONDNO)
A2 o Eny — Ey

1 ON ¢l pNO g2 ON o2 pNO ¢l
="Vab Vear ecij€aki Z m[’%b Si R i+ Rap Sk RS
N>0
+ ST RO SPRYY + SERGVSIRY). (527)

All of the terms in the sum can be expressed using the identities (2.13), (2.14) and (5.4). For

example,
1
m Rgil)v Scijgdklsil R%(OSIZ
M52 (50— deo1e) (Spa + i 141 N=(4,2
57 (8ac — 3€ace01¢) (8pa +i€parorf)(1+ 37172) =4,2)
N=@2,4) (528

3A 2
22533 2 (840 + i€aceT1e) (pd — & 141

A 1(—3) 35 (8ac +1€ace01¢) (Sbd — 3€pdfo2)(1 + 3T172)
2 . . . .

23 (— 1) 35 (Bac — S€ace01)Bbd — Separorp)(1 — T172) N =(4,4).
Evaluating the remaining terms in a similar manner results in an identity

1 ON ¢l pNO @2 ON ¢2 pNO ¢l 1 pON o2 pNO 2 pON ¢l pNO
5cij£dklZiEN_E [Ra,, S RNOS? + RON STRIYCS! + 51RO S7RNY + STRY) szab]
N>0

A 4 14 A 7 1
= ﬁtsacf?bd —37 T g1tIT2 + h—ZSacedefoleazf 57 T 13Ttz (5.29)

Substituting this into equation (5.27) leads to

p2h? 1
Z (DONBNO + BONDNO)
A2 Ey — E
N>0
14
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B + L 1a437,1)( 25|, (5.30)
a2 s TR FrEener e |-

The other terms in equation (5.26) that do not involve P; can be evaluated by a similar method.
Now we evaluate the term involving P;, A; and D. This requires some algebraic rearrange-
ment:

20°h
MA

1
Z (DON(PiAi + AjPi)NO + (P A + Al’_fpl_)ONDNo)
N>0 En — Eo

2
h 1
= 2y —— [P A+ ADN DY+ DV (4 4+ ADY]
MA o Eyx — Ey

)
ip~h 1 ( ON F\NO \ON NO)
+ D"V (A; — A + V;(A; — A D
; N§>0EN_E0 i (Aj ) i (Aj i)

)
ip°h 1 ( 0N NO ON i NO)

+ E A; +A! VD"’ —V; D" (A; + A . 5.31
M ~ En — Eo (A, z) i i (A; l) ( )

Here we have used the identity [ P;, -] = —i#V;. Each of these three terms can be evaluated using
methods similar to those described above. For example, for the first term we use the following
identities, whose derivation is similar to that of (5.29):

1
ON /¢l pNO NO ¢l 1 pON ON ¢l NO
Ecij Zm [Rab (Si Rjd - Rid Sj) + (Si Rjd - Rid Sj)Rab ]
N>0

4 10

A 8 2 A
= ﬁsba’eaceo—le 77 + TRAAL + ﬁ&w%dfazf 57 T grtiT2 (5.32)

1 ON ;2 pNO NO o2 2 pON ON @2 NO
ed,-jziEN_Eo [Ra,, (S?RNO — RNOS?) + (PR — R, Sj)Rab]
N>0

A 4 10

8 2
= ?817(185106018 (—ﬁ - anm) + Sacpdforf (ﬁ + ﬁnrz) . (5.33)

The result is
ph

1
AL #\ON yNO ON 4. T\NO
—mé m{P”(A’+Ai) D"+ D" (A; + A)) }
N

>0

(A Lo (534)
= — | ——= —T1T 0. .
M6\ "3 7912

The full result for equation (5.31) is in Appendix D. The remaining term in (5.26), which involves
P;, A and B, can be calculated by a similar method and is also given in the appendix.
The complete result for equation (5.26) is

1
_ZE EH?NHINO
N>0 N— =0

o[ 19k% 8 32A p2 [ 26h> 32
=|-p + + —— =+ —
S4A3r2  27Ar*  Qj246 M \ 27A2r4  9r6
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. L 1312 L2 16A ) 0 [ K2 40
- — === |tn17
P\ 324032 T 81A/% T 27026 ) T M \ oz T 27,6 ) | F1T2
N [ 13R2 L 28 L 8A o? [ 43n2 AP
P\ 648a32 T8IAA T 27n26 ) T M \B1AZA T 27,6 ) | P12

[ [ 17R? 6 4A p2 6172
+| -0 + +
1296A3r2 © 81Ar4 ' 2732/6 486024 T

SptiT2

. [ 1312 L4 8A L2 o2 [ 43K2
— 010
P\ T 6a8A32 " BIAF | 27820 1628274 27r6 102
. [, 17h2 Lo A L2 02 [ 61R2

P\ T 1296032 T 27A78 T 27026 972824 T

02 [ 20h 4 P2 [ 5h N 4
27A2%r*  3hr® 81A2r6 ~ 9pr6

01027172

:|L-01112. (5.35)

5.3. Third order terms

In this subsection we evaluate the third order term in equation (5.3). We rearrange this as
follows:

1 1
o7 ﬁ(hf‘wnmz HYO1—11P1?, HPV1H]N)
N>0

_in 1

ON ¢y NO ON NO
M 2 Bu B _E)z{Pi,ViHI HY — H)VViH}?)
N=0 N T O

n 1 0N NO
+—YY ———— V;HNV;HN (5.36)
M%(EN—E())Z o

Substituting for Hy leads to

1
M 2 B gy A U HY 1= 1P HPMIHT)
N>0 N 0

_ 4ip’h
M

1
Z (EN — E0)2 {[)i7 V,DONDNO _ DONV,DNO}

MA2 Z + (En — Eo)z{Pi’ VD B = DB

ON ON NO
+V; BN DO — BNV, DN}
ip2h? 1

4 _ 2
AMA* £~ (Ey — Eo)

I {P;, v; BYNBNO — BONv,; BN

4p2h> 1
_ 2
M i~ (Ey — Eo)

V; D(I)N V; D;VO
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p2h* Z 1
o 2 _ 2
MA? £~ (Ey — Eo)

(Vi DNV, BN? + v; BN v, DY)

p2nt 1

tamas 2. (Ey — Eg)?
N>0

v, BINv,; BN, (5.37)

Each of these six terms can be evaluated by similar methods to those described above, and the
resulting expressions are given in Appendix D. The end result is

1 1

R 7(
_ 2

2M &~ (Ey — Eo)

PP 89m? L 88 +800A2 N 10372 L 148 +560A2 n
M \162a%2% T 27,6 T 27528 972A27% " 8176 " 8128 ) 2

HPMUPP HY 1= 1P, HPYH]Y)

+ 2916A2r4 81;’6 + 81h2r8 17496 A2r4 + 24370 + 243h2%r8

10342 74 224A% 28142 59 2722
STt
N 10372 74 280A%
— 010
T5832A2/4 81,6 g1aZ8 ) 10

N 281h2 59 340A2
— 0102T1T
T34992A%74 2436 p43p2,8 ) T1O2T1T2
Th? 52 16A2\ Lo
+ +
972 A2r it 81r6 ~ 27m%8 ) h
N 89h2 N 22 N 40A2\ L o 5.38)
T1T . .
583224 2436 ' g1p28 ) 12

5.4. Results

Adding the first, second and third order results together, we find the final expression of our
calculation. The isoscalar potentials are

VIS _ 2 (—192A% — 16A%h%r? + 1Th*r*) N p2 2 (1200A% — 1202022 + T1h4r4)
< S4A3H?r0 M 81A2R2/S
(5.39)
VIS 5 (—192A% — 224A%1%r? — 131%r*) P 2 (8064A% + 504A20%r2 — 1769744
e 648A3h%r¢ M 29167278
(5.40)
yis _ o (19280 + 11247072 — 130%*)
v 648 A32r6
| P* (Z20160A% — 1008 A% + 22557 %) o)
M 5832A2h%r8 :
2 (24A% — 35h%r2) (24 A% + TH?r2
VIS '0_( r )( r ) , (542)

50" M 972 A 2128
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while the isovector potentials are

5 (—192A% — 112428272 — 130%%)  p2 (6720A% + 336 A%hr% — 2751*r%)

P
VIV — i
« 7’ 324030776 M 972A2h%8
(5.43)
iy AT %2 (—192A% — 96A%h2r? 4 19h*r?) 540
2T 1296 A3h2rS :
L P 4n?  p* (19584A% +360A°r%0” 4 8397%r%) 545
MO9Ar3 * M 17496 A2h%r8 -
prv o 20 (19200 4 48A%R%2 4 19A%)
STt 1296 A37%r6
p? 5 (—97920% — 14472022 — 265h%r4)
] (5.46)
M 349922528
v 0% (2880A% +3120A20%2 + 773h%r%) .
0= 5832021218 ' (5.47)

The equivalent expressions with a non-zero pion mass can be found in Appendix E.

Finally, we explain our second method for evaluating this potential. This method started with
the same expressions (5.8), (5.26) and (5.37) but differed in the way the terms in these expres-
sions were evaluated. Using the identity (5.4), the operators R%N and S7 were replaced with
the matrices given in Appendix A. The identities listed in Appendix E were then obtained by
computing the resulting matrix products in Mathematica, and the results added together.

5.5. Comparison with the Paris potential

We now compare the results of our calculation with the successful semi-phenomenological
model proposed by the Paris group [3]. To compare models we must choose a calibration by
fixing Fy, e and my. This is equivalent to fixing the energy scale, length scale and pion mass.
Once these are chosen, all other constants are fixed by the Skyrme model. One calibration we
consider was proposed by Lau and Manton (LM), optimised to reproduce the Carbon-12 energy
spectrum [36]. In this case

F, =108 MeV, ¢ = 3.93 and m, = 149 MeV (5.48)
which fixes the constants
M =1096 MeV, A =332 MeV fm” and p =229 MeV fm>. (5.49)

We will also consider a new calibration, optimised to reproduce the Paris potentials. To find this,
we consider the sum of the L? norms of the differences between ours and the Paris potentials
for r = 1.5 — 2.5 fm. This is a function of F;, e and m, and we minimise the function using a
numerical gradient flow. We find that the optimal calibration is

Fr =165MeV, e =3.75 and m, =216 MeV (5.50)

which fixes the constants

M = 1752 MeV, A =252 MeV fm? and p =124 MeV fm?> . (5.51)

18
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We call this the HH calibration. This calibration gives values of F; and m, reasonably close to
their physical values. This is expected, since we are dealing with pionic physics. Unfortunately
the skyrmion mass M is much too large. This is a common problem when one tries to describe
the physics of the nucleon sector. Meier and Walliser proposed that one-loop corrections can
significantly reduce the mass [37], although including this correction is difficult and will affect
the interaction potentials we have derived.

Our calculation depended on two approximations: perturbation theory and the dipole ap-
proximation to skyrmion dynamics. Our use of perturbation theory is justified only when the
inequalities (5.6) hold. In the Lau-Manton calibration the tightest constraint is

h
r>—=133fm, (5.52)
my
while in the new calibration it is
1

pA\3
r> <?> =0.93 fm. (5.53)

It is harder to quantify when the dipole approximation is valid. An initial test of its validity was
performed by Foster and Krusch, who compared numerically generated skyrmion dynamics to
the dipole approximation when the skyrmions are not spinning and are fixed in the attractive
channel [38]. Their results indicate that the dipole approximation is reliable at large separations,
but unreliable at small separations of the order 1 fm. They don’t estimate the separation at which
the dipole approximation ceases to be reliable.

We plot the eight potentials from (5.7) for the LM calibration, the HH calibration and from
the Paris model in Fig. 1. For the long-range part of the interaction (+ 2 2 fm), both of the
calibrations produce seven potentials with the correct sign. In the HH calibration six potentials
closely match the Paris potentials even at intermediate separation. The LM calibration fails at
shorter range. In both cases, the isoscalar spin-orbit force has the correct sign, though is too small
in the HH calibration. The only major disagreement is with the isovector spin-orbit potential. This
was successfully described in early works from the Skyrme model [39], so perhaps nonlinear
effects will resolve the disagreement.

Let us compare our results with earlier calculations of the nucleon-nucleon potential from
the Skyrme model. In our calculation the potentials are expressed in terms of the expansion
parameters p and M ~!. At first order in p only the isovector tensor and sigma potentials are
non-zero. Hence second order perturbation theory was needed to generate non-trivial results. In
calculations done using first order perturbation theory and the product approximation [11,22,
23], all of the potentials are non-zero at first order in p. In these calculations, all four isoscalar
potentials had an incorrect sign — we believe this is a failing of the product approximation. Our
results, where only one isovector potential has an incorrect sign, are a substantial improvement
on those calculations.

A direct comparison with the results of [12,13] is difficult, as those papers only compute
potentials in particular channels and do not compute VCIS etc. The method of [12,13] could
in principle be used to compute six of the eight potentials in (5.7), but not the two spin-orbit
potentials. In this sense our method is more powerful. Another advantage of our approach over
earlier methods is that it gives an explicit formula for the nucleon-nucleon interaction, but the
price paid for this is that the formula doesn’t capture short-range effects.

We also attempted to find a calibration of our model with m, = 0, by varying only F; and
e only. Here, it was much more difficult to find agreement between our model and the Paris
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——— LM calibration ——— HH calibration Paris model
1S v
Isoscalar central, Vi Isovector central, Vg
i 2.0 0
—0.2 +
—0.6
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Isoscalar sigma, VIS . v
77 20 . Isovector sigma, V/
1.5
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Tsoscalar tensor, Vi5® Tsovector tensor, V5
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4

2.0 2.5 3.0 3.5 4.0
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—0.4¢
=05 |
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Fig. 1. A comparison between the potentials generated from our calculation and the phenomenological Paris potential.
All are plots of the potential (MeV) against separation r (fm).

potential. In particular, the isovector sigma potential VUI ;/ had the wrong sign for all parameter
choices that we tried. This suggests that a non-zero pion mass is an essential ingredient for
producing realistic nucleon-nucleon interactions.
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——— Without metric terms

Tsovector central, VAV
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Fig. 2. A comparison between the potentials when we do the calculation with and without the metric terms from (3.16).
Both calculation are done using the HH calibration. All are plots of the potential (MeV) against separation r (fm).

.5 3.0 3.5 4.0

The calculation that we have presented was based on two key ingredients: perturbation theory
beyond first order, and the inclusion of kinetic terms in the skyrmion-skyrmion interaction. We
now consider how both of these contribute to our final result.

It is clear from the results in subsection 5.4 and Appendix E that if we had kept only first order
terms and neglected terms of order p2, we would be left with just the most basic long-range part
of the nucleon-nucleon interaction, namely the one-pion-exchange potential. Similarly, if we had
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retained terms of order p? but neglected terms of order p%>/M our potential would not have
contained a spin-orbit interaction. Therefore it was necessary for us to work to order p2/M in
order to have a complete description of the nucleon-nucleon potential. These statements only
apply to the dipole approximation of skyrmions; a different approximation could have produced
a spin-orbit potential at lower orders. For example, models based on the product approximation
gave a spin-orbit potential at first order in perturbation theory (but with the wrong sign) [21-23].
To investigate the influence of the kinetic terms in (3.16) on the final result, we have re-done
the calculation with the coefficients A, B, C set to zero. The results are presented in Fig. 2. This
makes clear that V.Y, VS and VCIS receive their dominant contribution from the potential term
(i.e. the term “D” in (3.16)), but the other potentials receive significant contributions involving
the kinetic terms. When kinetic terms are neglected, the isoscalar spin-orbit potential has the
wrong sign. To obtain a realistic interaction, it appears essential to include the kinetic terms.

6. Conclusions

In summary, we have derived a nucleon-nucleon interaction from the Skyrme model using a
method recently introduced in [28]. Compared with earlier attempts based on the Skyrme model,
we obtain a very good match with the long-range parts of the Paris potential. Overall, these
results provide an excellent starting point for describing the nucleon-nucleon interaction from the
Skyrme model. Importantly, we can describe many features of the nucleon-nucleon interaction
using a purely pionic theory.

It is interesting to compare our calculation with an earlier quantum mechanical study of the
two-skyrmion system [45]. This paper studied bound states of two skyrmions, and in particular
was successful in modelling the deuteron. This was achieved using the Atiyah—Manton approxi-
mation [14], which is able to describe skyrmions at both short and wide separations. In contrast,
the dipole interactions that we use are applicable only to well-separated skyrmions. A short-
coming of the paper [45] is that it only includes 10 degrees of freedom for the two-skyrmion
system, whereas our approach includes 12. In order to describe the spin and isospin states of
well-separated skyrmions, 12 degrees of freedom are needed, so it is not possible to derive a con-
ventional nucleon-nucleon potential from the configuration space in [45]. Therefore, a promising
way to extend our results to intermediate and short separations would be to combine our result
with [45]: in other words, apply perturbation theory to quantum mechanics on a 12-dimensional
configuration space of skyrmions obtained using the Atiyah—Manton approximation [14].

The results presented in Fig. 1 are promising, but to seriously judge the success of our calcu-
lation, we should compare directly with experimental data. This requires the calculation of phase
shifts from our model, found by solving a Schrédinger equation based on the potentials. How-
ever, as explained above, we do not understand the potentials for small r and these are needed
for the calculation. Walet calculated phase shifts by imposing hard-core boundary conditions at
r =1 [40]. An advantage of the Skyrme model is that we should not require a hard-core: the
geometry of the configuration space does not allow the skyrmions to get too close. It would be
preferable to incorporate this fact into any future calculation.

The results suggest that the Skyrme model may provide an understanding of the nucleon-
nucleon interaction using only pions. This is in contrast to the successful one-boson-exchange
models which suggest that €-, 2- and p-mesons must be included. These can also be included
in the Skyrme model [41,42,32], and it would be interesting to see their effect on the results
presented here. To proceed, one must first understand the classical asymptotic interaction of
skyrmions in models coupled to mesons, generalising the results of [15,16]. In fact, our approach

22



D.G. Harland and C.J. Halcrow Nuclear Physics B 967 (2021) 115430

could be adapted to any model which treats nuclei as quantised solitons. This includes holo-
graphic QCD, where nuclei are described as instantons on a curved spacetime [43].

Finally, there are many modified Skyrme models. Authors have included different pionic terms
[26] and used modified potentials [30,44] in the Skyrme lagrangian. Each modification will alter
the results in Fig. 1. Since our calculation yields an explicit formula for the nucleon-nucleon
interaction, it would be very easy to test these modified models by comparing their predictions
for the nucleon-nucleon interaction. We believe this new test will provide valuable insights for
Skyrme phenomenology and help find the Skyrme model which best describes the physics of
atomic nuclei.
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Appendix A. The Clebsch-Gordon matrices IC;-""

In this appendix we present the matrices K;"" that were used in our calculations. We choose

conventions such that the action of the spin operators S/ on H,, = C"®@ C" is given by S/ ®1,,,
where

1 1/0 1 1 1 /0 —i 1 1/1 0
2 Lt 1 2 _ Lt 1 2 _+ 1
Si —201—2<1 0>’S2_202_2<i 0),53—263—2<0 _1>

and
0 V3 0 0
g _ V30 2 0
1 0 2 0 43
0 0 V3 0
0 —iv/3 0 0
o _ i3 0 —2i 0
2 0 2i 0 —iv3
0 0 W3 0
30 0 0
gu_110 1 0 0
37210 0 =1 o0
00 0 3
Then
Kzz_i O —1 Kzz_i O 1 Kzz_i —1 O
L=/3\-1 0 2T B\-0 T30
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-J3 0 iv3 0 00
w_ 1 f 0 -1 p_1 L0 i p_ 120
Tl o 2=l i o 3= /k10 2
0 V3 0 i3 0 0
w L (V30 -1 0
=2\ o 1 0 -3
K_24_ 1 1«/§ 0 i 0
27 /1200 i 0 i3
u_ 1 (0 =2 0 0
S =m0 0 =20
0 —V3 0 0
M L =30 -2 0
Pyl o 2 00 -3
0 0 V3 0
0 V3 0 0
o L —-iv/3 0 2i 0
215l 0 =2 0 i3
0 0 —-iv3 0
-3 0 0 0
w1 0 -1 0 0
P /150 0 10
0 0 0 3

Appendix B. The Laplace-Beltrami operator

In this appendix we derive the equation (4.1) for the Laplace Beltrami operator. Let e/ be a
frame for the cotangent bundle of a manifold and let £, be the dual frame for the tangent bundle.
Let f&v be (locally defined) functions such that [E,, E,] = flfv E;.. Suppose that the metric is
given by

g=guwele’. (B.1)
The standard definition for the Laplace-Beltrami operator acting on a function v is
Agfp = —xd*xdy, (B.2)

in which * denotes the Hodge star operator, defined by u A xv = g(u, v) ﬁel A...Ae€" One
finds that

xe” = /gg" g, (' AL e, (B.3)

in which ¢ denotes the interior product (so that tg,e! Ae? A...Ae" =e> A... A€, et Ae? A
1A L3
N =—e

Ae’ ... Ne" ete.). Therefore
—xdy = — /28" (Ev¥)ig, (' AL neM). (B.4)
In order to evaluate d x diy» we need to evaluate d: E, (e AL neM). By the Cartan structure
equations,
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dig (' Aooone)y=—ig,de' A ne) + Le, (e AL AEY (B.5)
:O—i—(EEuel)Aez/\.../\e"—i—el /\(Egﬂez)/\.../\e”—i—...,
(B.6)
with £ denoting Lie derivative. Now
te, (LE,e") = LE, (g e") =y, Ee” =0— 115, (B.7)
SO
Lg,e"=—f,Ev. (B.3)
Inserting this into equation (B.6) gives
dLEM(el /\.../\e")z—(flike}‘)/\ezA.../\e" —e! /\(—flf)\e}‘)/\eS/\.../\e" -
(B.9)
=—fie A nE (B.10)

Combining equations (B.4) and (B.10) gives

—dxdy = /gg" (EvY) fle' A ne — En(J28" (Ev))e Aup,(e' A ne™)
(B.11)
and thus
—*d*d¢=—Eu(ﬁg“”(Em/f))+g’”f,f,x(Ev¢), (B.12)

as claimed.
Appendix C. Degenerate perturbation theory

In this appendix we derive equation (5.2) for an effective hamiltonian using perturbation the-
ory. Let Hr be a hamiltonian with eigenvalues Eg < Ey < E3 < .... Let /) be an orthonormal
basis for the Eg-eigenspace. Consider a deformation of Hr of the form

Hr +€Hj. (C.1)

We seek deformed basis vectors |* (€)) whose span is invariant under Hg + € Hy, and such that

¥ (0)) = g ). (C2)
In other words, we require that

(Hp + eHDYF (€) =y (e)) H (¢) (C3)
for some e-dependent matrix H @B We also require these vectors, like |1ﬁ8‘) , to be orthonormal:

(Y (©)1yP (e) =8 (C.4)

In this situation H*? (¢) is the hermitian matrix of Hr 4 € H; acting on the subspace spanned by
[ (€)). We can regard H @B (¢) as an effective hamiltonian describing the lowest eigenvalues of
Hrp +€Hj.

To calculate this effective hamiltonian one must solve the system (C.2), (C.3), (C.4).
This system does not have a unique solution, as one can make the replacement |y #(e)) —

25



D.G. Harland and C.J. Halcrow Nuclear Physics B 967 (2021) 115430

[¥%(€))U* (€), for any unitary matrix U (¢) and still have a solution. In order to fix this
degeneracy we impose the constraint

WP ) = (W @©1vh). (C5)

We seek to solve the system (C.2), (C.3), (C.4), (C.5) within the framework of perturbation
theory. That is, we seek a solution in the form

V(@) = [§) +elvf) + X lvs) +... (C.6)

HP ()= HP +eH + @HSP + ... (C.7)

which formally solves the system to all orders in €. In order to construct the solution we rewrite

the equations in an iterative form. Let [Ty denote the projection onto the Ey-eigenspace of Hr.
Equations (C.4) and (C.5) imply that

1
oY% (€)) — &) = —5|w5>(<wﬁ<e>| — W) (v @) — 1vg)). (C.8)
Equations (C.3) and (C.4) imply that
H* (€) = (y*(e)|(HF + eHD) Y’ (€)). (C.9)
Finally, equation (C.3) implies that
1
MylyP (€)= yE P Ty 1y (©) (H () — Egs®P) — eIy Hi 1Y P (€))),  (C.10)
N — L0
for N #0.

Now we generate the perturbative solution using equations (C.8), (C.9) and (C.10). First,
equation (C.9) implies that

HY® = (V¢ |\ Hp [W§) = Eos®P. €11
Equation (C.8) implies that

Moly{) =0 (C.12)
since the right hand side is 0(€?). Equation (C.9) implies that

HP = (g | Hi ). (C.13)
Equation (C.10) implies that

Mylyl) = - HNyly, (C.14)

Exy — Ey
with HIMN := [y H; I y. Thus altogether we have
1
Wi ==> ———H"Iyg). (C.15)
NZO En —Eg

This completes the solution to first order. Now we compute the second order terms. Equation
(C.8) implies that

1 1
Moly$) = -5 > mH?Nvaoll/fg)- (C.16)
N#£0
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Equation (C.9) then implies that
1
H;ﬂz—zﬁ(w(‘ﬂH?NH}VOW(’f). (C.17)
Nz EN 0

Finally, equation (C.10) implies that

1
(Eny — Eo)(Em — Eo)

Mylyg) = — HY H [y + > HIM MO ly),

(En — Ep)?

M0
(C.18)
so that in total
1 1 1
W) =—=> ———=HNHIY§) = Y ——— H H|y§)
2 N0 (Eny — Ep) N0 (Ey — Ep)
1
+ E T E = ED HNM MOy - (C.19)

M, N0

This completes the solution to second order. Finally, to third order equation (C.8) implies that

1 1
Moly§) =5 > s P HY O H -+ B HPY HY ) )
2 N0 (Enx — Ep)
1 1 {
+ = + HONHNMHMOW/"‘)
2 M%o <<EM ~Eo)(En — Eo)? " (Em — Eo)(Ex — Eo)) AR

(C.20)

and equation (C.9) implies that

1
Haﬁ — (wotlHONHNMHMth/S)
’ M%O (Ey — E))(Ey —Eo) " 1 70 70 70

1 1
Y S WIHN HYOHL + HOHY HYO)E). (21
2 & (Ex — Eo)

Thus, our solution for H*# is

1
(HF+6H?0—GZZ YN HNHNO
Nz EN 0

H = <¢g

1
3 ON g NM yy MO
te HONHNM g
M%O (Ey —E))(Emy—Eo) 1 71

’%

€’ 1

~= > ———— NP + H}’OH}’NH,NO)> ‘I/Ig> +0(@eY. (C22)

_ 2
2 & (Ey — Eo)
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Appendix D. Detailed calculation of potential with massless pions

In this section we presents the results of evaluating each of the terms in equations (5.26) and
(5.37). We include these so that the reader can cross-check their calculations, should they wish
to re-derive our result.

1
_4p22 DON pNO
N0 Ev = Eo
_PAf 2 16 4 2+ 11 sl 1
_h2r6 9 27‘[[‘[2 77 T1T2)(0102 12 .
2
p*h Z 1 (DONBNO+BONDNO)
A2 En — Eo
N>0
_r[8 8 L L 144301100100 —250) |, D2)
=3 | 3 gttty 172)(0102 12) |- :
p’n BON pNO

C4A4 A%:OEN—EO

p2h2|: 19 13
— T1T) —

= -— - = 26+ 17 S D3
32| 52 3 —— 26+ 177 172)( 12+0102)} (D.3)

1
1296

Z EN — (DOV(Pi; + AT PONO + (P A; + AT PN DVO)
N>

P2 32 40 T+ $1) 20+2
=— |- —-=7I7 0102 — TIT
Mr6 9 27 112 102 12 27 9 112

SR R S S
—— | ==+ =17 o .
M6 3 gitt?

2#3
p-h 1
AT O Fo g (B (Bt ATPONO (P + AP BY')
N=>0
p2h? 26+1 "y 2512) 43 6l
= —F | —— T17T 0102 — —T T
MAZA |7 gt T OO T el G T g T2

p2h [20 5

m E‘f—ﬁ‘tl‘[z}lwd. (D.5)

4ip2h
1:0 Z . Pi, v, DOV pNO _ DONViDNO}
=0 (EN — Eo)

ZAZ /16 40
P <—+ T]Tz)L-(T (D.6)

MHE3r8 81
ip*h’ 1 ON pNO ON NO ON HNO ON NO
— (EN_EO)Z{P,-,V,-D, B’ — D}V B’ +Vv;B}" D} — BV V; D"}
N>0
p% (52 22
=W<8] 3T]T2)L'U (D7)
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ip2h? 1
4 _ 2
AMA* £~ (Ey — Eo)

{Pi, ViB{NB)® — BINV; B°}

_p2h 7+8911 L-oc (D.8)
T MaZA\o972 g3 2 '

4p2h? 1
_ 2
M &= (Ey — Eo)

pPA> [800 + 56Or + 4S5 50107) >0 + 68 T (D.9)
=——|—+—-—17 — 50 — 4 — .
Mr28 | 27 e 12 12 1927\ 81 " 243172

Y
MA? (En — Ep)?
N=>0

v, DN, DNO

2
(Vi DYV BNO + V; BNV, DY)

P2 88+148 (S ) 74+ 59 D.10)
=—|=4+—117 — —+ —117 .
M6 |27 T gy TP T PR TIOR3 It
6
p%h Z 1 v, BNy, gNO
AMA* £~ (Ey — Eo)? B
= P21 89 + 103r T2+ (28 010)) 103 + 281 T D.11)
T MAZA|162 T 97212 12791927\ 5832 T 34992 12 '

Appendix E. Potentials with non-zero pion mass

Setting s = m,r/h, the isoscalar nucleon-nucleon potentials are given by

—2s

VES = = = (64* (" + 453 1057 + 125 4+ 6)

¢ * Tosament
+ 1682707 (53 4257 + 45 +2) — 17r0* (52 4 2) )
p2 —2s

B (160A% (50 + 657 + 275* + 845 + 1625 + 1805 + 90)
M 486A%r8h

+ 842202 (835 - 35* — 125% — 3057 — 365 — 18)

+ et (103s4 — 27053 + 79852 + 17045 + 852) ) (E.1)
e—2s
V112S =— pzm (64A4 (s3 + 452 + 65 + 3)
+ 5602202 (257 + 55+ 4) + 13845 + 1)
N p_z e—2s
M 5832A2r8h?

1 56A22H2 (26s4 4 71s% + 7652 + 365 + 18)

(448% (57 + 8% + 3057 + 6357 + 725 + 36)

+ 4% (9135 - 60057 — 40525 — 3538) ) (E.2)
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—2s
VIS— 2 € (gapt (2s3 4552 4 65+ 3) 112027282 (2s2 125+ 1)
Zildrryen
+13r* 1% (2s — 1)
p* e 4(~5 4 3 2
_P ¢ (448 <2s 4 13s5% + 4253 + 815% + 905 + 45
M 5832A2r8h2( )
112027282 (26s4 43257 + 2852+ 185 + 9)
424 3 2
Tt (1826s 395752 — 45105 — 2255)) (E.3)
2 —2s 2
P ¢ 4(2
vis—P ¢ " (64n (s +3s+3>
507 M 972A2r8h2(

— 3222 (16s3 3752 + 425 + 21) — g (29s2 42745 + 245) ). (E4)

The isovector potentials are given by

wv_ 2 e

C TP a8 AR
+ 11282207 (57 4267 + 4s +2) + 13r%0* (52 4 2) )

(64A% (5* + 457 + 1057 + 125 +6)

2 —2s
O (448A% (50 + 657+ 275 + 8457 + 16257 + 1805 + 90)
M 583202r%h

+ 16A2r2R2 (91s5 4 575% 4 15653 + 24652 + 2525 + 126)
T rtp (913s4 — 230453 — 93052 — 33005 — 1650)) (E.5)
—s

v € 2( 2 222
v :pm<2A (52 +354+3) + 2% + 1)

h2 —s
- s (T3 - 125 - 12)
M 27A73
—2s
02— (= 640% (57 + 45+ 65 + 3) — 24022 (267 + 55 + 4)
1296 A3r6n
+19r*% (s + 1)
;02 e—2s
oS (1088A% (57 + 85 4+ 305° + 6357 + 725 + 36)
M 34992 A28

+ 82212 (514s4 + 13155 + 114852 + 180s + 90)

T4 (677s3 4235552 + 33565 + 1678) ) (E.6)

e 22, 242
Viy = p3rs <2A 2+ 2R3 (s —2)) -
—2s
Pt (64A% (267 + 557 4 65 +3) + 480227 (267 + 25 + 1)
1296A3/6h

+ 19r*7% (1 - 25))

2 —
p ke ,

Maast 60
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p2 e—2s

M 34992 A2r872
T 16A%2H? (514s4 + 54453 + 33252 4 90s + 45)

(1088A% (26 + 135* + 426 + 815> + 905 + 45)

Tt (1354s3 + 267952 + 26505 + 1325) ) (E.7)

2 -2
w_P e

SO M 5832027852
+16A%70% (295 422457 + 3905 + 195) + r*n* (5575 + 13305 +773)).
(E.8)
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