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Abstract

We derive the nucleon-nucleon interaction from the Skyrme model using second order perturbation theory 
and the dipole approximation to skyrmion dynamics. Unlike previous derivations, our derivation accounts 
for the non-trivial kinetic and potential parts of the skyrmion-skyrmion interaction lagrangian and how they 
couple in the quantum calculation. We derive the eight low energy interaction potentials and compare them 
with the phenomenological Paris model, finding qualitative agreement in seven cases.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

A nucleon can be modelled as a point particle with spin and isospin degrees of freedom. The 
standard way to model the nucleon-nucleon interaction uses a hamiltonian that was first written 
down in [1]. The form of this hamiltonian is prescribed by symmetries and it is specified by 
eight potentials that (in its simplest form) depend only on the separation of the nucleons. Much 
effort has been devoted to deriving these potentials from a more fundamental theory. It is well-
established that the behaviour of the potentials at large separations is governed by Yukawa’s 
theory of pion exchange [2]. In contrast, at small separations, QCD effects are important and 
theorists frequently rely on phenomology, fitting the potentials to experimental data. Several 
of these semi-phenomenological models have been proposed, such as the Paris and Argonne 
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models [3,4]. While parts of these models are fixed by theory, many parameters are not con-
strained by theory and must be fitted to data: for example, the Paris model has around sixty 
unconstrained parameters. More modern models based on effective field theory have a firmer 
theoretical foundation, but still involve many unconstrained parameters [5,6]. It seems to be very 
difficult to derive the nucleon-nucleon potentials from fundamental theory without introducing 
experimentally-determined parameters.

The Skyrme model is a model of nuclei with roots in QCD that, in its simplest form, has only 
three unconstrained parameters. It models nucleons using topologically nontrivial field config-
urations called skyrmions [7]. A skyrmion is a spatially localised soliton that can be described 
using six degrees of freedom: three for its position, and three for its orientation.

In order to understand the nucleon-nucleon interaction from the Skyrme model one should 
start by understanding the classical dynamics of two skyrmions. The two-skyrmion system can 
be described using a configuration space parametrized by two positions and two orientations, 
at least when the skyrmions are widely-separated. To extract the nucleon-nucleon interaction 
one needs to semiclassically quantise the two-skyrmion dynamics. So two approximations are 
needed to derive the nucleon-nucleon interaction: an approximation to the classical dynamics of 
skyrmions, and a quantisation method.

The problem of deriving the nucleon-nucleon interaction from the Skyrme model has a long 
history and is not yet resolved. Early in his development of the model, Skyrme used the product 
approximation to understand the long range interaction of two skyrmions [8]. Here, the two-
skyrmion field is given by the product of the fields of two one-skyrmions. While this is a simple 
way of generating a two-skyrmion field, there is no reason to trust its validity when the skyrmions 
are close together. This approximation was used by Vinh Mau et al., who showed that the long-
range interactions between skyrmions reproduce the one pion exchange potential of Yukawa 
[9]. Subsequent papers attempted to extract shorter-range parts of the nucleon-nucleon potential, 
again using the product approximation [10,11]. These papers all used what we will call first order 
perturbation theory to pass from classical skyrmions to quantised nucleons. Disappointingly, this 
approach did not result in any medium-range central attraction. This was a major failure: without 
central attraction there can be no nuclear binding.

The resolution of this problem was found by Walet, Amado and Hosaka [12,13], and came 
in two parts. First, they replaced the product approximation, expanding the classical interaction 
potential as a Fourier series in relative orientation. The Fourier coefficients were fixed by the 
Atiyah-Manton approximation, where Skyrme fields are generated using instantons [14]. Sec-
ondly, they improved the quantisation technique. The potential energy has a low energy region 
and the wavefunction should be concentrated there. To account for this fact the authors used 
second order perturbation theory, and an attractive central potential was found. They focused en-
tirely on the potential energy, assuming that the kinetic parts of the interaction were subleading. 
A year later, Schroers and Gisiger–Paranjape carefully studied the skyrmion-skyrmion interac-
tion, and found that the kinetic energy is not subleading and can dominate the classical dynamics 
[15–17]. The consequences of this fact for the nucleon-nucleon interaction are explored for the 
first time in this paper.

Another problem with the Skyrme-derived nucleon-nucleon interaction remained unsolved 
until recently. The isoscalar spin-orbit potential is essential for describing experimental data from 
nucleon-nucleon scattering [18,19], and plays a vital role in the prediction of magic numbers 
for larger nuclei [20]. Riska and Nyman obtained a satisfactory result for the isovector spin-
orbit potential, but their approach resulted in an isoscalar potential with the wrong sign [21–
23]. Various modifications of the Skyrme model were proposed to correct this result, such as 
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coupling the theory to a dilaton [24] and only including the L6 term [25] (now known as the 
BPS model [26]). These did not improve the situation, and the most promising approach was 
shown by Abada to ignore the dominant contribution [27], thereby nullifying the earlier positive 
conclusion. Although these attempts to fix the spin-orbit problem seem very different, they all 
share a common feature: they combine the product approximation with first order perturbation 
theory.

A solution to the spin-orbit problem was found by the authors of this paper [28]. The reso-
lution combines second order perturbation theory with the skyrmion-skyrmion interaction first 
found by Schroers [15]. This interaction includes the potential terms as well as the kinetic terms, 
whose significance was demonstrated by Gisiger and Paranjape [16,17]. In fact, it is a cou-
pling between potential and kinetic terms which provides the most important contribution to 
the spin-orbit potential. The results of this new method were previously calculated only for the 
isoscalar spin-orbit potential [28]. In this paper, we present the full nucleon-nucleon interaction 
arising from this method. We find a significant improvement over previous attempts to derive the 
nucleon-nucleon interaction from the Skyrme model.

Our approach is in some ways similar to that of Sugawara and von Hippel [29]. In their 
model, pions can excite nucleons to delta resonances, and this results in a pion-mediated central 
attraction between nucleons. Our model is similar but, unlike in [29], the nucleon-delta amplitude 
is determined by theory rather than experiment. Also, the model of [29] included an omega meson 
to account for the short-range parts of the nucleon-nucleon potential, whereas our model only 
captures long-range parts of the nucleon-nucleon potential. The Skyrme model does provide a 
framework to study short-range interactions, and we plan to study these in the future.

Although the results in this paper are for the standard Skyrme model, the methods presented 
are also valid (perhaps with small modifications) for many modified Skyrme models. These are 
plentiful [26,30–32]. The topic of this paper has a history of mistakes and sign errors in the 
literature [27,33]. For both these reasons, we present our calculation in painstaking detail.

To understand the calculation we first must understand nuclei as quantised skyrmions. This is 
done in section 2. The dipole approximation, first studied by Schroers and Gisiger–Paranjape for 
massless pions, is derived in section 3 for massive pions. Section 4 derives a quantum hamiltonian 
from this classical dipole-dipole lagrangian. We present the calculation of the nucleon-nucleon 
potential from this hamiltonian in section 5, and draw our conclusions in section 6. We include 
four appendices. These provide further details for our calculations, and present our explicit for-
mulae for the nucleon-nucleon potential (which are too long to include in the main body of the 
article).

2. Nuclei as quantised skyrmions

In this section we review how a quantised skyrmion can be viewed as a nucleon, as was first 
shown in [34]. The Skyrme model is a field theory described by the lagrangian

∫
R3

(
− F 2

π

16h̄
Tr(LμLμ) + h̄

32e2 Tr([Lμ,Lν][Lμ,Lν]) − F 2
πm2

π

8h̄3 Tr(12 − U)

)
d3x. (2.1)

Here U :R1,3 → SU(2), Lμ = U−1∂μU , 12 is the identity matrix, Fπ is the pion decay constant, 
mπ is the pion mass and e is a dimensionless coupling constant. Boundary conditions U(t, x) →
12 as |x| → ∞ are imposed to allow for finite energy, and as a result the model has a topologically 
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conserved quantity, the winding number B ∈ Z of U : S3 ∼= R3 ∪ {∞} → SU(2) ∼= S3. This 
winding number B has the physical interpretation of baryon number.

Static solutions of the equations of motion with B = 1 can be obtained using the hedgehog 
ansatz:

UH (x) = exp(−iσj x̂j f (r)), (2.2)

in which r = |x|, x̂j = xj /r , σj are the Pauli matrices and f : R≥0 → R is chosen to minimise 
energy subject to the boundary conditions f (0) = π and f (∞) = 0. This hedgehog skyrmion is a 
soliton whose energy is concentrated at the origin. Further static B = 1 solutions can be obtained 
by acting on the hedgehog with symmetries of the theory, namely translations, rotations, and 
isorotations (which take the form U 	→ QUQ−1 for Q ∈ SU(2)). In fact it suffices to act with 
translations and isorotations only, as the hedgehog is invariant under a combination of rotations 
and isorotations. Thus we obtain solutions of the form

U(x) = QUH (x − X)Q−1 (2.3)

parametrised by X ∈ R3 and Q ∈ SU(2). The parameters X and Q respectively describe the 
position of the soliton and its orientation.

The family (2.3) describes the lowest-energy static configurations in the B = 1 sector. To 
a good approximation, low-energy dynamics in the B = 1 sector can be described by promot-
ing the parameters X, Q to time-dependent functions, i.e. by writing U(t, x) = Q(t)UH (x −
X(t))Q(t)−1. The lagrangian that governs this simplified dynamics is

L = M

2
|Ẋ|2 + �

2
|ω|2, (2.4)

in which M and � are constants which represent the classical mass and moment of interia of the 
B = 1 skyrmion, and

−iω · σ = 2Q−1Q̇ , (2.5)

where ω is interpreted as the angular velocity of the skyrmion. The equations of motion are 
that of a free spinning top. Hence, for small kinetic energies, the skyrmion simply moves with 
constant linear and angular velocities.

In order to make contact with nuclear physics we must quantise the low-energy dynamics of 
a skyrmion. The quantum mechanical hamiltonian is

H = 1

2M
|P |2 + h̄2

2�
|S|2, (2.6)

in which Pj = −ih̄∂/∂Xj and

−iSjψ(X,Q) = d

dε

∣∣∣∣
ε=0

ψ(X,Qe−iεσj /2). (2.7)

The operators Sj satisfy [Si, Sj ] = iεijkSk and are interpreted physically as spin operators. In or-
der to understand this hamiltonian we first diagonalise the operator |S|2 = SiSi . The eigenvalues 
of this operator are known to be of the form (n2 − 1)/4 for integers n ≥ 1. The correspond-
ing eigenspaces are spanned by wavefunctions ψ(Q) = ρn

αβ(Q), where ρ : SU(2) → GL(n, C)

is the n-dimensional irreducible representation of SU(2) and ρn
αβ are its matrix entries (with 

1 ≤ α, β ≤ n). Thus the eigenspace Hn with eigenvalue (n2 − 1)/4 is naturally isomorphic 
to Cn ⊗ Cn. The wavefunction is required to satisfy the Finkelstein-Rubinstein constraint 
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ψ(X, −Q) = −ψ(X, Q), and as a result only the eigenspaces with n even (corresponding to 
odd-spin representations) are relevant to the quantum mechanics of the skyrmion [35]. Thus 
wavefunctions in the lowest energy eigenspace are functions

ψ :R1,3 → H2 ∼= C2 ⊗C2. (2.8)

These describe nucleons: the first factor of C2 corresponds to a spin doublet, and the second to 
an isospin doublet. The next-lowest eigenspace corresponds to functions

ψ :R1,3 → H4 ∼= C4 ⊗C4 (2.9)

and describes delta resonances.
Before moving on to investigate the dynamics of two skyrmions we pause to describe some 

operators acting on the 1-skyrmion Hilbert space that will be relevant to later calculations. Let 
Rij (Q) be defined by

Rij (Q) = 1

2
Tr(σiQσjQ

−1), 1 ≤ i, j ≤ 3. (2.10)

In other words, Rij are the matrix entries of the adjoint representation of SU(2). These act on 
skyrmion wavefunctions ψ by multiplication. If ψ ∈ Hn then Rijψ can be written

Rijψ =
∑
m

κmn
j ⊗ λmn

i ψ, (2.11)

where κmn
j and λmn

i are m × n matrices of Clebsch-Gordon coefficients and the sum is over 
m = 2, 4 in the case n = 2 and over m = n − 2, n, n + 2 in the cases n ≥ 4. Our calculations 
later will involve the matrices κmn

j for m, n = 2, 4, and these are given explicitly in Appendix A. 
The matrices λmn

j are identical to κmn
j , but denoted by a different symbol for clarity (the κ’s 

correspond to spin and the λ’s to isospin). We also make note of some identities involving these 
matrices; these can be derived using the matrices given in the appendix. These identities describe: 
commutators with spin operators,

[Si, κ
mn
j ⊗ λmn

l ] = iεijkκ
mn
k ⊗ λmn

l ; (2.12)

contractions with spin operators and epsilon tensors,

εijkSj κ
22
k ⊗ λ22

l = iκ22
i ⊗ λ22

l εijkκ
22
j ⊗ λ22

l Sk = iκ22
i ⊗ λ22

l

εijkSj κ
24
k ⊗ λ24

l = − i

2
κ24
i ⊗ λ24

l εijkκ
24
j ⊗ λ24

l Sk = 5i

2
κ24
i ⊗ λ24

l

εijkSj κ
42
k ⊗ λ42

l = 5i

2
κ42
i ⊗ λ42

l εijkκ
42
j ⊗ λ42

l Sk = − i

2
κ42
i ⊗ λ42

l ;
(2.13)

and substitutions in terms of Pauli matrices,

κ22
i = − 1√

3
σi

κ22
i κ22

j = 1

3

(
δij + iεijkσk

)

κ24
i κ42

j = −
√

2
(

δij − i
εijkσk

)
.

(2.14)
3 2

5
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3. Dipole-dipole Lagrangian

Having understood the dynamics of a single skyrmion, we now consider the dynamics of two 
well-separated skyrmions, following Schroers [15]. To do so, we first investigate the asymptotic 
tail of a single skyrmion. Far from the centre of a hedgehog skyrmion, the Skyrme field U is close 
to the vacuum. In terms of pion fields, we may write U(x) = exp(iπ(x) · σ ) and the lagrangian 
(2.1) takes the form

L = F 2
π

8h̄

∫ (
∂μπ · ∂μπ − m2

π

h̄2 π · π + O(π4)

)
d3x. (3.1)

Thus, far from the centre of the skyrmion the Skyrme lagrangian reduces to the Klein-Gordon 
lagrangian. The asymptotic field of the skyrmion with position X takes the form

π(x) ∼ −C1

(
2h̄

Fπe

)2 ( 1

|x − X|3 + mπ

h̄|x − X|2
)

e
− mπ

h̄
|x−X|

R(Q)(x − X), (3.2)

where R(Q) is the orientation matrix defined in (2.10) and C1 is a dimensionless constant that 
can be computed numerically. We can compare this with the field induced by a dipole with dipole 
moment c:

c · ∇
(

1

4πr
e
− mπ r

h̄

)
= −

(
1

r3 + mπ

h̄r2

)
e
− mπ r

h̄
c · x
4π

. (3.3)

We see that the j th pion field is a dipole with dipole moment ci = 4π( 2h̄
Fπ e

)2C1Rji .
We have learned that, far from its centre, a skyrmion resembles a triplet of orthogonal dipoles. 

As such, we can use the theory of relativistic dipoles to describe the interaction of well sepa-
rated skyrmions. A single dipole with moment c and position X(t) which is moving slowly with 
velocity Ẋ and rotating with angular velocity ω has charge distribution [15]

ρd(x,X(t)) = −T δ(3)(x − X(t)) (3.4)

T :=
((

c − 1
2 |Ẋ|2c − 1

2 (Ẋ · c)Ẋ
)

· ∇ + Ẋ · c × ω
)

. (3.5)

Here and throughout the calculation we have neglected all terms with more than two time deriva-
tives. The potential due to this dipole satisfies

φ̈d − (� − m2)φd = −T δ(3)(x − X(t)) , (3.6)

where m = mπ/h̄ is the reduced pion mass. We formally invert this equation and expand in the 
slow moving approximation

φd =
(
(� − m2) − ∂2

t

)−1
T δ(3)(x − X(t))

= T Gm + d2

dt2 T (� − m2)−1Gm + ... (3.7)

where Gm is the Greens function for the Yukawa interaction, given by

Gm = − 1

4πr
e−mr . (3.8)

To find the potential we are left to evaluate Fm := (� − m2)−1Gm. We do this by solving
6
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Gm = (� − m2)Fm (3.9)

whose unique decaying solution is

Fm = 1

8πm
e−mr . (3.10)

It is worth considering the massless limit, which was studied earlier in [15]. In that case, (3.7)
was solved using special properties of the Laplacian, resulting in

F0 := �−1G0 = − r

8π
. (3.11)

The expansion of our solution about m = 0 is

lim
m→0

Fm = 1

8πm
− r

8π
+ O(m). (3.12)

Although this diverges as m → 0, the lagrangian only depends on derivatives of Fm and the 
divergent term is constant. Hence our result agrees with [15] in the limit m → 0.

Combining all these results and inserting the operator T , the potential due to (3.4) is

φd ≈ − 1

4π

((
c − 1

2Ẋ
2
c − 1

2Ẋ · cẊ
)

· ∇ + Ẋ · c × ω
)(e−m|x−X|

|x − X|
)

+ 1

8πm

d2

dt2 c · ∇
(
e−m|x−X|) . (3.13)

Once again, we have neglected terms with more than two time derivatives. Note that this is not 
the result one finds by simply replacing the massless Greens function for the massive Greens 
function in the expression for φd from Schroers.

A skyrmion is described by three orthogonal dipoles. So the charge density of, and the po-
tential due to, the skyrmion is simply the sum of those of the dipoles. Let the two skyrmions be 
labelled by 1 and 2, each having their own positions X1, X2 and angular velocities ω1, ω2. The 
interaction lagrangian is given by

L = 1

2

(∫
φ1ρ2 + φ2ρ1

)
d3x . (3.14)

This can be evaluated using (3.4) and (3.13). Once again we neglect terms with more than two 
derivatives, and the resulting expression is similar to equation (6.19) in [15]. The result can be 
expressed in terms of x := X1 − X2, r = |x|, q := Q−1

1 Q2, and the parameter

ρ := 8πh̄3C2
1

e4F 2
π

. (3.15)

The lagrangian obtained is

L = M

4
ẋi ẋi + �

2
ωi

1ω
i
1 + �

2
ωi

2ω
i
2

+ ρCij ẋ
i ẋj + ρA1

ij ẋ
iω

j
1 + ρA2

ij ẋ
iω

j
2 + ρBijω

i
1ω

j
2 − 2ρD, (3.16)

where A1 = Aab;ijRab , A2 = Aba;ijRab , Bij = Bab;ijRab , Cij = Cab;ijRab , D = DabRab , and
ij ij

7
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Aab;ij = εajc(δic∇be
−mr/r − 1

2∇ibce
−mr/m) (3.17)

Bab;ij = −εaicεbjd∇cde−mr/m (3.18)

Cab;ij = 1
2δij∇abe

−mr/r − 1
4∇abij e

−mr/m (3.19)

+ 1
8 (δjb∇ia + δja∇ib + δib∇ja + δia∇jb)e

−mr/r

Dab = ∇abe
−mr/r. (3.20)

Later, we will consider the massless (m = 0) limit. Hence it is helpful to record the lagrangian in 
this limit, originally derived in [15]. It has the same structure as (3.16) but with

Aab;ij = εajc(δic∇b1/r + 1
2∇ibc r) (3.21)

Bab;ij = εaicεbjd∇cd r (3.22)

Cab;ij = 1
2δij∇ab1/r + 1

4∇abij r + 1
8 (δjb∇ia + δja∇ib + δib∇ja + δia∇jb)1/r (3.23)

Dab = ∇ab1/r. (3.24)

When r is large, the lagrangian (3.16) is a small perturbation of the free lagrangian for a pair of 
point particles. It implicitly defines a metric on the configuration space of two skyrmions, and at 
large separations this metric is guaranteed to be positive definite (i.e. Riemannian). At small sep-
arations there is no guarantee that the metric is positive definite, but that is no cause for concern: 
this lagrangian was derived using the dipole asymptotics of skyrmions, so the approximation is 
reliable only for well-separated and slowly-moving skyrmions.

4. Skyrmion-skyrmion Hamiltonian

Having obtained an approximate lagrangian for two skyrmions, we now calculate the corre-
sponding hamiltonian.

In general, the hamiltonian associated to a lagrangian for a particle moving on a Riemannian 
manifold with metric g under the influence of a potential V is h̄2

2 �g + V , with �g being the 
Laplace-Beltrami operator for the metric g. If the metric is given in the form g = gμνe

μeν , with 
eμ being a frame for the cotangent bundle, the Laplace-Beltrami operator is

�g = −(detg)−1/2Eμ(detg)1/2gμνEν + f λ
μλg

μνEν, (4.1)

with Eμ being the dual frame for the tangent bundle (such that eμ(Eν) = δ
μ
ν ) and f ν

λμ struc-
ture constants defined by [Eλ, Eμ] = f ν

λμEν . A derivation of this formula is given in Ap-
pendix B. The operator �g is manifestly self-adjoint with respect to the inner product 〈ψ |ψ〉g =∫

ψψ(detg)1/2e1 ∧ . . . ∧ en.

If the metric is perturbed to g + δg then the correct hamiltonian is h̄2

2 �g+δg + V . This is 
self-adjoint with respect to the inner product 〈ψ |ψ〉g+δg but not the inner product 〈ψ |ψ〉g . If we 
want our deformed hamiltonian to still be self-adjoint with respect to 〈ψ |ψ〉g we should instead 
choose

H = det(1 + g−1δg)1/4

(
h̄2

2
�g+δg + V

)
det(1 + g−1δg)−1/4. (4.2)

This can be expanded as a power series in δg. Assuming that f λ
μλ = 0, the terms up to quadratic 

order are
8
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H = h̄2

2
�g + V + h̄2

2
EκgκλδgλμgμνEν − h̄2

2
Eκgκλδgλμgμνδgνρgρσ Eσ

+ h̄2

32
gμν[Eμ,gκλδgλκ ][Eν,g

ρσ δgσρ] + O(δg3). (4.3)

We will use equation (4.3) to calculate the hamiltonian for the lagrangian (3.16) as a power 
series in ρ. The ρ-independent kinetic terms determine a metric g, and the ρ-dependent kinetic 
terms determine a perturbation δg. For the frame eμ we choose

ej = dxj , ej+3 = �
j
1, ej+6 = �

j
2; j = 1,2,3, (4.4)

where

−�j
αiσj = �α = 2q−1

α dqα (4.5)

matching (2.5). The dual frame is

Ej = ∂

∂xj

= i

h̄
Pj , Ej+3 = −iS1

j , Ej+6 = −iS2
j ; j = 1,2,3. (4.6)

It is important that the plus and minus signs in these equations are chosen correctly. The sign of 
the spin terms is correct because

−iσke
k+3(Ej+3) = −iσk�

k
1(−iS1

j ) = �1(−iS1
j ) = 2Q−1

1
d

dt

∣∣∣∣
t=0

Q1e
−itσj /2 = −iσj

(4.7)

and, more generally, eμ(Eν) = δ
μ
ν . From equations (4.3) and (3.16) we find

H = h̄2

2�
|S1|2 + h̄2

2�
|S2|2 + 1

M
|P |2 + HI , (4.8)

where

HI = 2ρD − ρh̄2

2�2 B + ρh̄

M�
(PiAi + A

†
i Pi)

+ ρ2h̄2

2�3 F + ρ2h̄2

M�2 A
†
i Ai − ρ2h̄

M�2 (PiÃi + Ã
†
i Pi) + O(ρ3) + O(M−2) (4.9)

and

B = S1
i Bij S

2
j + S2

j Bij S
1
i (4.10)

Ai = A1
ij S

1
j + A2

ij S
2
j (4.11)

F = S1
i BijBkjS

1
k + S2

i BjiBjkS
2
k (4.12)

Ãi = A2
ijBkjS

1
k + A1

ijBjkS
2
k . (4.13)

5. Nucleon-nucleon potential

In the previous section we determined a hamiltonian that describes two interacting skyrmions. 
In this section we will apply perturbation theory to calculate a low-energy effective hamiltonian 
acting on the nucleon-nucleon sector of the skyrmion-skyrmion Hilbert space.
9
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We begin by recalling some essential ideas from degenerate perturbation theory. Let H0
be a hamiltonian acting on a Hilbert space with energy eigenvalues E0 < E1 < E2 < . . . and 
eigenspaces HN . Consider a perturbed hamiltonian of the form

H(ε) = H0 + εH1, (5.1)

with ε small. When ε = 0 the E0-eigenspace H0 is invariant under the action of H(0). As ε
moves away from zero this eigenspace is deformed to a subspace H0(ε) which is invariant under 
H(ε) and which is canonically identified with H0. Using this identification H0(ε) ∼= H0 one 
obtains an operator HE : H0 → H0 which describes the action of H(ε) on H0(ε) and can be 
thought of as a low-energy effective hamiltonian for H(ε). In Appendix C we derive the follow-
ing perturbative formula for this effective hamiltonian:

HE = E0 + εH 00
1 − ε2

∑
N>0

1

EN − E0
H 0N

1 HN0
1

+ ε3
∑

M,N �=0

1

(EN − E0)(EM − E0)
H 0N

1 HNM
1 HM0

1

− ε3

2

∑
N>0

1

(EN − E0)2 (H 0N
1 HN0

1 H 00
1 + H 00

1 H 0N
1 HN0

1 ) + O(ε4). (5.2)

Here HNM
1 : HM → HN are the projections of H1 such that H1 = ∑

M,N HNM
1 . Usually in 

degenerate perturbation theory one works in a basis in which the first (or second) order term is 
diagonal, and in that case the formula (5.2) reduces to well-known formulae for the perturbed 
eigenvalues. The advantage of using equation (5.2) is that it does not require one to choose any 
particular basis.

We will apply the formula (5.2) to the skyrmion-skyrmion hamiltonian (4.8), choosing 
H0 = h̄2

2�
(|S1|2 + |S2|2) and εH1 = 1

2M
|P |2 + HI . This means that we have two deforma-

tion parameters: ρ and M−1 (recall that HI = O(ρ)). The eigenspaces of H0 are the spaces 
HN = Hm ⊗ Hn labelled by N = (m, n), which describe particles of spin m−1

2 and n−1
2 . The 

associated eigenvalues of H0 are EN = (m2 + n2 − 2)h̄2/8�, and the lowest eigenvalue E0
corresponds to the nucleon-nucleon sector labelled by (m, n) = (2, 2).

Equation (5.2) implies that

HE = E0 + |P |2
2M

+ H 00
I −

∑
N>0

H 0N
I

1

EN − E0
HN0

I

+ 1

2M

∑
N>0

1

(EN − E0)2 (H 0N
I [|P |2,HN0

I ] − [|P |2,H 0N
I ]HN0

I )

+ O(ρ3) + O(M−2). (5.3)

The three terms involving HI will be referred to as first, second and third order. Notice that the 
second order term does not involve |P |2 because |P |2 commutes with H0 and thus (|P |2)N0 = 0
if N > 0. The third order term is simpler than in equation (5.2) because we are only working up 
to order 2 in ρ and order 1 in M−1.

A key feature of the formula (5.3) is that the sums over N are finite. This is a special feature 
of the dipole approximation, and happens because HI depends on Q1, Q2 only through the 
combination Rab(q) = Rca(Q1)Rcb(Q2). By the Clebsch-Gordon rules, multiplying a state ψ ∈
10
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H2 ⊗ H2 with Rab(q) results in a state in 
⊕

m,n=2,4 Hm ⊗ Hn. More explicitly, from equation 
(2.11),

Rab ψ = Rca(Q1)Rcb(Q2)ψ =
∑

m,n=2,4

κm2
1a ⊗ λm2

1c ⊗ κn2
2b ⊗ λn2

2c ψ (5.4)

(where the first subscript on κ and λ labels the particle). Thus in equation (5.2), and in what 
follows, the notation 

∑
N>0 means a sum over (m, n) = (2, 4), (4, 2), (4, 4). Similarly, 

∑
N will 

mean a sum over (m, n) = (2, 2), (2, 4), (4, 2), (4, 4).
We now consider when the use of perturbation theory in (5.3) is justified. In general, pertur-

bation theory is considered reliable if the correction to the hamiltonian is small compared with 
the energy differences EN − E0. The smallest energy difference is 3h̄2/2�. Assuming that the 
separation r > h̄/mπ , the approximation will be reliable provided that

|P |2
M

,
ρ

r3 ,
ρh̄2

r�2 ,
ρh̄|P |
M�r2 ,

ρ|P |2
M2r3 <

h̄2

�
. (5.5)

The following conditions on |P |, r, M are sufficient to ensure that this is the case:

|P |2 <
Mh̄2

�
, r > max

{
3

√
ρ�

h̄2 ,
ρ

�
,

h̄

mπ

}
, M >

h̄2

�
. (5.6)

The first inequality simply means that the skyrmions are moving slowly. The third inequality 
is equivalent to the statement that the dominant contribution to the nucleon energy is the rest 
mass of a skyrmion, rather than its spin energy. This is true in all proposed calibrations of the 
Skyrme model. The condition that r > h̄/mπ is not very restrictive, because the pion Compton 
wavelength h̄/mπ is only slightly larger than the proton charge radius. We will examine the 
remaining constraints in the next section, when we discuss calibrations.

We wish to compare the hamiltonian (5.3) with the nucleon-nucleon potential. The latter is 
constrained by symmetry to be of the form [1]

VNN = V IS
C + V IS

σσ σ 1σ 2 + V IS
12 S12 + 1

h̄
V IS

LS L · σ
+

(
V IV

C + V IV
σσ σ 1σ 2 + V IV

12 S12 + 1
h̄
V IV

LS L · σ
)

τ 1τ 2. (5.7)

The potentials are known as the isoscalar or isovector central, sigma, tensor and spin-orbit po-
tentials. Here σ1i , σ2i are the spin Pauli matrices and τ1i, τ2i are the isospin Pauli matrices, 
and we have used the shorthand τ1τ 2 = ∑

i τ1iτ2i and σ 1σ 2 = ∑
i σ1iσ2i . The operator S12

is S12 = 3(σ 1 · x̂)(σ 2 · x̂) − σ 1 · σ 2. The total spin is σ = σ 1 + σ 2, and L = x × P is the total 
angular momentum. The coefficient functions V ∗∗∗∗ are functions of r = |x|, |P |2 and |L|2 only. 
Since the skyrmion-skyrmion system shares the symmetries of the nucleon-nucleon system, the 
hamiltonian (5.3) is guaranteed to be of this form.

We now proceed to describe the calculation of the terms in (5.7) from equation (5.3). This is 
a lengthy calculation, and in order to avoid errors we used two independent methods. The first 
method is algebraic in character and exploits the identities (2.13) and (2.14). The second method 
is a direct calculation in Mathematica that uses the explicit formulae for the matrices κmn

i given 
in Appendix A. Both methods gave the same result in the case mπ = 0. The result for mπ > 0
was obtained using the second method only.

In the following few subsections we explain the algebraic method for evaluating (5.3). We 
assume that mπ = 0 throughout this calculation. We work to order 2 in ρ and order 1 in 1 : thus 
M

11
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all equations are understood to be true only up to terms of O(ρ3) and O(M−2). Further details 
of the calculation are given in Appendix D. At the end of this section we give the final result 
for massless pions, and briefly explain the Mathematica-based calculation. The final result for 
massive pions is more complicated, and is given in Appendix E.

5.1. First order terms

In this subsection we evaluate the first order term in equation (5.3), i.e.

H 00
I = 2ρD00 − ρh̄2

2�2 B00 + ρh̄

M�
(PiAi + A

†
i Pi)

00

+ ρ2h̄2

2�3 F 00 + ρ2h̄2

M�2 (A
†
i Ai)

00 − ρ2h̄

M�2 (PiÃi + Ã
†
i Pi)

00. (5.8)

The first few terms can be evaluated using the identity

R00
ab = κ22

1aλ22
1cκ

22
2bλ22

2c = 1

9
σ1aσ2bτ 1τ 2, (5.9)

which follows from (5.4) and the first equation in (2.14). Using identity (5.9) we find

D00 = DabR
00
ab = 1

9
∇ab(1/r)R00

ab = 1

9r3 S12τ 1τ 2. (5.10)

This reproduces the well-known result that the dipole potential for skyrmions induces the one-
pion exchange potential between nucleons [9]. Using identities (5.9) and (2.13) we find

B00 = Bab;ij (S1
i R00

abS
2
j + S2

j R00
abS

1
i ) (5.11)

= 2∇abrR
00
ab (5.12)

= 4

27r
σ 1σ 2τ 1τ 2 − 2

27r
S12τ 1τ 2. (5.13)

Using identity (5.9) and noting that (S1
j )00 = 1

2σ1j and (S2
j )00 = 1

2σ2j we obtain

(PiAi + A
†
i Pi)

00 = 1

2
{Pi,Ai + A

†
i }00 + 1

2
[Pi,Ai − A

†
i ]00 (5.14)

= 1

2
{Pi,Aab;ij }

({Rab,S
1
j }00 + {Rba,S

2
j }00)

− ih̄

2
∇iAab;ij

([Rab,S
1
j ]00 + [Rba,S

2
j ]00) (5.15)

= 1

18
{Pi,Aab;ij }δaj (σ2b + σ1b)τ 1τ 2

+ h̄

18
∇iAab;ij εajk(σ2bσ1k + σ1bσ2k)τ 1τ 2 (5.16)

= 4h̄

9r3 S12τ 1τ 2. (5.17)

Note that the first term in equation (5.16) evaluates to 0, because Aab;ij is skew-symmetric in 
a and j . This particular property of the dipole lagrangian means that the isovector spin-orbit 
potential vanishes at order 1 in ρ.
12
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To evaluate the next few terms, we need an identity for (RabRcd)00 = ∑
N R0N

ab RN0
cd . From 

the identities (5.4) and (2.14) we obtain

R0N
ab RN0

cd =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
27 (δac + iεaceσ1e)(δbd + iεbdf σ2f )(1 − 2

3τ 1τ 2) N = (2,2)

2
27 (δac − i

2εaceσ1e)(δbd + iεbdf σ2f )(1 + 1
3τ 1τ 2) N = (4,2)

2
27 (δac + iεaceσ1e)(δbd − i

2εbdf σ2f )(1 + 1
3τ 1τ 2) N = (2,4)

4
27 (δac − i

2εaceσ1e)(δbd − i
2εbdf σ2f )(1 − 1

6τ 1τ 2) N = (4,4).

(5.18)

Therefore

∑
N

R0N
ab RN0

cd = 1

3
δacδbd + 1

18
εaceεbdf σ1eσ2f τ 1τ 2. (5.19)

Using equation (5.19) and the fact that Sα
j = 1

2σαj , we obtain

F 00 = Bij ;abBkj ;cd
∑
N

S1
i R0N

ab RN0
cd S1

k + Bji;abBjk;cd
∑
N

S2
i R0N

ab RN0
cd S2

k (5.20)

= 4

3r2 + 1

18r2 (S12 + σ 1σ 2)τ 1τ 2. (5.21)

Similarly, we obtain

(PiÃi + Ã
†
i Pi)

00 = 1

2
{Pi, Ãi + Ã

†
i }00 + 1

2
[Pi, Ãi − Ã

†
i ]00 (5.22)

= 1

r4

(
1 − 1

18
τ 1τ 2

)
L · σ + h̄

18r4 (σ 1σ 2 − 2S12)τ 1τ 2, (5.23)

and

(A
†
i Ai)

00 = 13

6r4 − 1

9r4 S12 + 5

36r4 σ 1σ 2

− 1

2r4 τ 1τ 2 + 5

108r4 S12τ 1τ 2 − 1

27r4 σ 1σ 2τ 1τ 2. (5.24)

Collecting everything together, we find

H 00
I =

[
ρ2 2h̄2

3�3r2 + ρ2

M

13h̄2

6�2r4

]
− ρ2

M

h̄2

2�2r4 τ 1τ 2 − ρ2

M

h̄2

9�2r4 S12

+
[
ρ

(
h̄2

27�2r
+ 2

9r3

)
+ ρ

M

4h̄2

9�r3 + ρ2 h̄2

36�3r2 + ρ2

M

17h̄2

108�2r4

]
S12τ 1τ 2

+ ρ2

M

5h̄2

36�2r4 σ 1σ 2 +
[
−ρ

2h̄2

27�2r
+ ρ2 h̄2

36�3r2 − ρ2

M

5h̄2

54�2r4

]
σ 1σ 2τ 1τ 2

− ρ2 h̄
L · σ + ρ2 h̄

L · στ 1τ 2. (5.25)

M �2r4 M 18�2r4

13
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5.2. Second order terms

In this subsection we evaluate the second order term in equation (5.3), i.e.

−
∑
N>0

1

EN − E0
H 0N

I HN0
I = −4ρ2

∑
N>0

1

EN − E0
D0NDN0

+ ρ2h̄2

�2

∑
N>0

1

EN − E0

(
D0NBN0 + B0NDN0

)
− ρ2h̄4

4�4

∑
N>0

1

EN − E0
B0NBN0

− 2ρ2h̄

M�

∑
N>0

1

EN − E0

(
D0N(PiAi + A

†
i Pi)

N0 + (PiAi + A
†
i Pi)

0NDN0
)

+ ρ2h̄3

2M�3

∑
N>0

1

EN − E0

(
B0N(PiAi + A

†
i Pi)

N0 + (PiAi + A
†
i Pi)

0NBN0
)

.

(5.26)

We will describe how to evaluate just a couple of the terms in this expression. The results for all 
other terms can be found in Appendix D, and their total appears at the end of this section.

The first term that we will evaluate is

ρ2h̄2

�2

∑
N>0

1

EN − E0

(
D0NBN0 + B0NDN0

)

= −∇ab

1

r
∇cdr εcij εdkl

∑
N>0

1

EN − E0

[
R0N

ab S1
i RN0

jk S2
l + R0N

ab S2
kRN0

il S1
j

+ S1
i R0N

jk S2
l RN0

ab + S2
kR0N

il S1
j RN0

ab

]
. (5.27)

All of the terms in the sum can be expressed using the identities (2.13), (2.14) and (5.4). For 
example,

1

EN − E0
R0N

ab εcij εdklS
1
i RN0

jk S2
l

=

⎧⎪⎪⎨
⎪⎪⎩

2h̄2

3�
5i
2 i 2

27 (δac − i
2εaceσ1e)(δbd + iεbdf σ2f )(1 + 1

3τ 1τ 2) N = (4,2)

2h̄2

3�
i(− i

2 ) 2
27 (δac + iεaceσ1e)(δbd − i

2εbdf σ2f )(1 + 1
3τ 1τ 2) N = (2,4)

h̄2

3�
5i
2 (− i

2 ) 4
27 (δac − i

2εaceσ1e)(δbd − i
2εbdf σ2f )(1 − 1

6τ 1τ 2) N = (4,4).

(5.28)

Evaluating the remaining terms in a similar manner results in an identity

εcij εdkl

∑
N>0

1

EN − E0

[
R0N

ab S1
i RN0

jk S2
l + R0N

ab S2
kRN0

il S1
j + S1

i R0N
jk S2

l RN0
ab + S2

kR0N
il S1

j RN0
ab

]

= �

h̄2 δacδbd

(
− 4

27
− 14

81
τ 1τ 2

)
+ �

h̄2 εaceεbdf σ1eσ2f

(
− 7

27
− 1

18
τ 1τ 2

)
. (5.29)

Substituting this into equation (5.27) leads to

ρ2h̄2

�2

∑ 1

EN − E0

(
D0NBN0 + B0NDN0

)

N>0

14
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= ρ2

�r4

[
− 8

27
− 28

81
τ 1τ 2 + 1

81
(14 + 3τ 1τ 2)(σ 1σ 2 − 2S12)

]
. (5.30)

The other terms in equation (5.26) that do not involve Pi can be evaluated by a similar method.
Now we evaluate the term involving Pi , Ai and D. This requires some algebraic rearrange-

ment:

−2ρ2h̄

M�

∑
N>0

1

EN − E0

(
D0N(PiAi + A

†
i Pi)

N0 + (PiAi + A
†
i Pi)

0NDN0
)

= − ρ2h̄

M�

∑
N>0

1

EN − E0

{
Pi, (Ai + A

†
i )

0NDN0 + D0N(Ai + A
†
i )

N0
}

+ iρ2h̄2

M�

∑
N>0

1

EN − E0

(
D0N∇i (Ai − A

†
i )

N0 + ∇i (Ai − A
†
i )

0NDN0
)

+ iρ2h̄2

M�

∑
N>0

1

EN − E0

(
(Ai + A

†
i )

0N∇iD
N0 − ∇iD

0N(Ai + A
†
i )

N0
)

. (5.31)

Here we have used the identity [Pi, ·] = −ih̄∇i . Each of these three terms can be evaluated using 
methods similar to those described above. For example, for the first term we use the following 
identities, whose derivation is similar to that of (5.29):

εcij

∑
N>0

1

EN − E0

[
R0N

ab (S1
i RN0

jd − RN0
id S1

j ) + (S1
i R0N

jd − R0N
id S1

j )RN0
ab

]

= �

h̄2 δbdεaceσ1e

(
8

27
+ 2

81
τ 1τ 2

)
+ �

h̄2 δacεbdf σ2f

(
− 4

27
− 10

81
τ 1τ 2

)
(5.32)

εdij

∑
N>0

1

EN − E0

[
R0N

ab (S2
i RN0

cj − RN0
ci S2

j ) + (S2
i R0N

cj − R0N
ci S2

j )RN0
ab

]

= �

h̄2 δbdεaceσ1e

(
− 4

27
− 10

81
τ 1τ 2

)
+ δacεbdf σ2f

(
8

27
+ 2

81
τ 1τ 2

)
. (5.33)

The result is

− ρ2h̄

M�

∑
N>0

1

EN − E0

{
Pi, (Ai + A

†
i )

0NDN0 + D0N(Ai + A
†
i )

N0
}

= ρ2

Mh̄r6

(
−4

3
+ 4

9
τ 1τ 2

)
L · σ . (5.34)

The full result for equation (5.31) is in Appendix D. The remaining term in (5.26), which involves 
Pi , A and B , can be calculated by a similar method and is also given in the appendix.

The complete result for equation (5.26) is

−
∑
N>0

1

EN − E0
H 0N

I HN0
I

=
[
−ρ2

(
19h̄2

54�3r2 + 8

27�r4 + 32�

9h̄2r6

)
− ρ2

M

(
26h̄2

27�2r4 + 32

9r6

)]
15
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+
[
−ρ2

(
13h̄2

324�3r2 + 28

81�r4 + 16�

27h̄2r6

)
+ ρ2

M

(
h̄2

9�2r4 − 40

27r6

)]
τ 1τ 2

+
[
−ρ2

(
13h̄2

648�3r2 + 28

81�r4 + 8�

27h̄2r6

)
− ρ2

M

(
43h̄2

81�2r4 + 20

27r6

)]
S12

+
[
−ρ2

(
17h̄2

1296�3r2 + 6

81�r4 + 4�

27h̄2r6

)
− ρ2

M

(
61h̄2

486�2r4 + 2

9r6

)]
S12τ 1τ 2

+
[
ρ2

(
− 13h̄2

648�3r2 + 14

81�r4 + 8�

27h̄2r6

)
+ ρ2

M

(
43h̄2

162�2r4 + 20

27r6

)]
σ 1σ 2

+
[
ρ2

(
− 17h̄2

1296�3r2 + 1

27�r4 + 4�

27h̄2r6

)
+ ρ2

M

(
61h̄2

972�2r4 + 2

9r6

)]
σ 1σ 2τ 1τ 2

+ ρ2

M

[
20h̄

27�2r4 − 4

3h̄r6

]
L · σ + ρ2

M

[
5h̄

81�2r6
+ 4

9h̄r6

]
L · στ 1τ 2. (5.35)

5.3. Third order terms

In this subsection we evaluate the third order term in equation (5.3). We rearrange this as 
follows:

1

2M

∑
N>0

1

(EN − E0)2 (H 0N
I [|P |2,HN0

I ] − [|P |2,H 0N
I ]HN0

I )

= ih̄

M

∑
N>0

1

(EN − E0)2

{
Pi, ∇iH

0N
I HN0

I − H 0N
I ∇iH

N0
I

}

+ h̄2

M

∑
N>0

1

(EN − E0)2 ∇iH
0N
I ∇iH

N0
I . (5.36)

Substituting for HI leads to

1

2M

∑
N>0

1

(EN − E0)2 (H 0N
I [|P |2,HN0

I ] − [|P |2,H 0N
I ]HN0

I )

= 4iρ2h̄

M

∑
N>0

1

(EN − E0)2

{
Pi, ∇iD

0NDN0 − D0N∇iD
N0}

− iρ2h̄3

M�2

∑
N>0

1

(EN − E0)2

{
Pi, ∇iD

0N
I BN0

I − D0N
I ∇iB

N0
I

+ ∇iB
0N
I DN0

I − B0N
I ∇iD

N0
I

}
+ iρ2h̄5

4M�4

∑
N>0

1

(EN − E0)2

{
Pi, ∇iB

0N
I BN0

I − B0N
I ∇iB

N0
I

}

+ 4ρ2h̄2

M

∑ 1

(EN − E0)2 ∇iD
0N
I ∇iD

N0
I

N>0
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− ρ2h̄4

M�2

∑
N>0

1

(EN − E0)2

(∇iD
0N
I ∇iB

N0
I + ∇iB

0N
I ∇iD

N0
I

)

+ ρ2h̄6

4M�4

∑
N>0

1

(EN − E0)2 ∇iB
0N
I ∇iB

N0
I . (5.37)

Each of these six terms can be evaluated by similar methods to those described above, and the 
resulting expressions are given in Appendix D. The end result is

1

2M

∑
N>0

1

(EN − E0)2 (H 0N
I [|P |2,HN0

I ] − [|P |2,H 0N
I ]HN0

I )

= ρ2

M

[(
89h̄2

162�2r4 + 88

27r6
+ 800�2

27h̄2r8

)
+

(
103h̄2

972�2r4 + 148

81r6
+ 560�2

81h̄2r8

)
τ 1τ 2

+
(

103h̄2

2916�2r4 + 74

81r6
+ 224�2

81h̄2r8

)
S12 +

(
281h̄2

17496�2r4 + 59

243r6
+ 272�2

243h̄2r8

)
S12τ 1τ 2

+
(

− 103h̄2

5832�2r4 − 74

81r6
− 280�2

81h̄2r8

)
σ 1σ 2

+
(

− 281h̄2

34992�2r4 − 59

243r6
− 340�2

243h̄2r8

)
σ 1σ 2τ 1τ 2

+
(

7h̄2

972�2r4 + 52

81r6
+ 16�2

27h̄2r8

)
L · σ

h̄

+
(

89h̄2

5832�2r4 + 22

243r6
+ 40�2

81h̄2r8

)
L · σ

h̄
τ 1τ 2

]
. (5.38)

5.4. Results

Adding the first, second and third order results together, we find the final expression of our 
calculation. The isoscalar potentials are

V IS
C = ρ2

(−192�4 − 16�2h̄2r2 + 17h̄4r4
)

54�3h̄2r6
+ ρ2

M

2
(
1200�4 − 12�2h̄2r2 + 71h̄4r4

)
81�2h̄2r8

(5.39)

V IS
12 = ρ2

(−192�4 − 224�2h̄2r2 − 13h̄4r4
)

648�3h̄2r6
+ ρ2

M

(
8064�4 + 504�2h̄2r2 − 1769h̄4r4

)
2916�2h̄2r8

(5.40)

V IS
σσ = ρ2

(
192�4 + 112�2h̄2r2 − 13h̄4r4

)
648�3h̄2r6

+ ρ2

M

(−20160�4 − 1008�2h̄2r2 + 2255h̄4r4
)

5832�2h̄2r8
(5.41)

V IS
SO = ρ2

M

(
24�2 − 35h̄2r2

) (
24�2 + 7h̄2r2

)
972�2h2r8

, (5.42)
¯
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while the isovector potentials are

V IV
C = ρ2

(−192�4 − 112�2h̄2r2 − 13h̄4r4
)

324�3h̄2r6
+ ρ2

M

(
6720�4 + 336�2h̄2r2 − 275h̄4r4

)
972�2h̄2r8

(5.43)

V IV
12 = ρ

6�2 + h̄2r2

27�2r3 + ρ2

(−192�4 − 96�2h̄2r2 + 19h̄4r4
)

1296�3h̄2r6
(5.44)

+ ρ

M

4h̄2

9�r3 + ρ2

M

(
19584�4 + 360�2r2h̄2 + 839h̄4r4

)
17496�2h̄2r8

(5.45)

V IV
σσ = −ρ

2h̄2

27�2r
+ ρ2

(
192�4 + 48�2h̄2r2 + 19h̄4r4

)
1296�3h̄2r6

+ ρ2

M

5
(−9792�4 − 144�2h̄2r2 − 265h̄4r4

)
34992�2h̄2r8

(5.46)

V IV
SO = ρ2

M

(
2880�4 + 3120�2h̄2r2 + 773h̄4r4

)
5832�2h̄2r8

. (5.47)

The equivalent expressions with a non-zero pion mass can be found in Appendix E.
Finally, we explain our second method for evaluating this potential. This method started with 

the same expressions (5.8), (5.26) and (5.37) but differed in the way the terms in these expres-
sions were evaluated. Using the identity (5.4), the operators RMN

ab and Sα
i were replaced with 

the matrices given in Appendix A. The identities listed in Appendix E were then obtained by 
computing the resulting matrix products in Mathematica, and the results added together.

5.5. Comparison with the Paris potential

We now compare the results of our calculation with the successful semi-phenomenological 
model proposed by the Paris group [3]. To compare models we must choose a calibration by 
fixing Fπ , e and mπ . This is equivalent to fixing the energy scale, length scale and pion mass. 
Once these are chosen, all other constants are fixed by the Skyrme model. One calibration we 
consider was proposed by Lau and Manton (LM), optimised to reproduce the Carbon-12 energy 
spectrum [36]. In this case

Fπ = 108 MeV, e = 3.93 and mπ = 149 MeV (5.48)

which fixes the constants

M = 1096 MeV,� = 332 MeV fm2 and ρ = 229 MeV fm3 . (5.49)

We will also consider a new calibration, optimised to reproduce the Paris potentials. To find this, 
we consider the sum of the L2 norms of the differences between ours and the Paris potentials 
for r = 1.5 − 2.5 fm. This is a function of Fπ, e and mπ and we minimise the function using a 
numerical gradient flow. We find that the optimal calibration is

Fπ = 165 MeV, e = 3.75 and mπ = 216 MeV (5.50)

which fixes the constants

M = 1752 MeV,� = 252 MeV fm2 and ρ = 124 MeV fm3 . (5.51)
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We call this the HH calibration. This calibration gives values of Fπ and mπ reasonably close to 
their physical values. This is expected, since we are dealing with pionic physics. Unfortunately 
the skyrmion mass M is much too large. This is a common problem when one tries to describe 
the physics of the nucleon sector. Meier and Walliser proposed that one-loop corrections can 
significantly reduce the mass [37], although including this correction is difficult and will affect 
the interaction potentials we have derived.

Our calculation depended on two approximations: perturbation theory and the dipole ap-
proximation to skyrmion dynamics. Our use of perturbation theory is justified only when the 
inequalities (5.6) hold. In the Lau-Manton calibration the tightest constraint is

r >
h̄

mπ

= 1.33 fm , (5.52)

while in the new calibration it is

r >

(
ρ�

h̄2

) 1
3 = 0.93 fm . (5.53)

It is harder to quantify when the dipole approximation is valid. An initial test of its validity was 
performed by Foster and Krusch, who compared numerically generated skyrmion dynamics to 
the dipole approximation when the skyrmions are not spinning and are fixed in the attractive 
channel [38]. Their results indicate that the dipole approximation is reliable at large separations, 
but unreliable at small separations of the order 1 fm. They don’t estimate the separation at which 
the dipole approximation ceases to be reliable.

We plot the eight potentials from (5.7) for the LM calibration, the HH calibration and from 
the Paris model in Fig. 1. For the long-range part of the interaction (r � 2 fm), both of the 
calibrations produce seven potentials with the correct sign. In the HH calibration six potentials 
closely match the Paris potentials even at intermediate separation. The LM calibration fails at 
shorter range. In both cases, the isoscalar spin-orbit force has the correct sign, though is too small 
in the HH calibration. The only major disagreement is with the isovector spin-orbit potential. This 
was successfully described in early works from the Skyrme model [39], so perhaps nonlinear 
effects will resolve the disagreement.

Let us compare our results with earlier calculations of the nucleon-nucleon potential from 
the Skyrme model. In our calculation the potentials are expressed in terms of the expansion 
parameters ρ and M−1. At first order in ρ only the isovector tensor and sigma potentials are 
non-zero. Hence second order perturbation theory was needed to generate non-trivial results. In 
calculations done using first order perturbation theory and the product approximation [11,22,
23], all of the potentials are non-zero at first order in ρ. In these calculations, all four isoscalar 
potentials had an incorrect sign – we believe this is a failing of the product approximation. Our 
results, where only one isovector potential has an incorrect sign, are a substantial improvement 
on those calculations.

A direct comparison with the results of [12,13] is difficult, as those papers only compute 
potentials in particular channels and do not compute V IS

C etc. The method of [12,13] could 
in principle be used to compute six of the eight potentials in (5.7), but not the two spin-orbit 
potentials. In this sense our method is more powerful. Another advantage of our approach over 
earlier methods is that it gives an explicit formula for the nucleon-nucleon interaction, but the 
price paid for this is that the formula doesn’t capture short-range effects.

We also attempted to find a calibration of our model with mπ = 0, by varying only Fπ and 
e only. Here, it was much more difficult to find agreement between our model and the Paris 
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Fig. 1. A comparison between the potentials generated from our calculation and the phenomenological Paris potential. 
All are plots of the potential (MeV) against separation r (fm).

potential. In particular, the isovector sigma potential V IV
σσ had the wrong sign for all parameter 

choices that we tried. This suggests that a non-zero pion mass is an essential ingredient for 
producing realistic nucleon-nucleon interactions.
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Fig. 2. A comparison between the potentials when we do the calculation with and without the metric terms from (3.16). 
Both calculation are done using the HH calibration. All are plots of the potential (MeV) against separation r (fm).

The calculation that we have presented was based on two key ingredients: perturbation theory 
beyond first order, and the inclusion of kinetic terms in the skyrmion-skyrmion interaction. We 
now consider how both of these contribute to our final result.

It is clear from the results in subsection 5.4 and Appendix E that if we had kept only first order 
terms and neglected terms of order ρ2, we would be left with just the most basic long-range part 
of the nucleon-nucleon interaction, namely the one-pion-exchange potential. Similarly, if we had 
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retained terms of order ρ2 but neglected terms of order ρ2/M our potential would not have 
contained a spin-orbit interaction. Therefore it was necessary for us to work to order ρ2/M in 
order to have a complete description of the nucleon-nucleon potential. These statements only 
apply to the dipole approximation of skyrmions; a different approximation could have produced 
a spin-orbit potential at lower orders. For example, models based on the product approximation 
gave a spin-orbit potential at first order in perturbation theory (but with the wrong sign) [21–23].

To investigate the influence of the kinetic terms in (3.16) on the final result, we have re-done 
the calculation with the coefficients A, B, C set to zero. The results are presented in Fig. 2. This 
makes clear that V IV

σσ , V IS
12 and V IS

C receive their dominant contribution from the potential term 
(i.e. the term “D” in (3.16)), but the other potentials receive significant contributions involving 
the kinetic terms. When kinetic terms are neglected, the isoscalar spin-orbit potential has the 
wrong sign. To obtain a realistic interaction, it appears essential to include the kinetic terms.

6. Conclusions

In summary, we have derived a nucleon-nucleon interaction from the Skyrme model using a 
method recently introduced in [28]. Compared with earlier attempts based on the Skyrme model, 
we obtain a very good match with the long-range parts of the Paris potential. Overall, these 
results provide an excellent starting point for describing the nucleon-nucleon interaction from the 
Skyrme model. Importantly, we can describe many features of the nucleon-nucleon interaction 
using a purely pionic theory.

It is interesting to compare our calculation with an earlier quantum mechanical study of the 
two-skyrmion system [45]. This paper studied bound states of two skyrmions, and in particular 
was successful in modelling the deuteron. This was achieved using the Atiyah–Manton approxi-
mation [14], which is able to describe skyrmions at both short and wide separations. In contrast, 
the dipole interactions that we use are applicable only to well-separated skyrmions. A short-
coming of the paper [45] is that it only includes 10 degrees of freedom for the two-skyrmion 
system, whereas our approach includes 12. In order to describe the spin and isospin states of 
well-separated skyrmions, 12 degrees of freedom are needed, so it is not possible to derive a con-
ventional nucleon-nucleon potential from the configuration space in [45]. Therefore, a promising 
way to extend our results to intermediate and short separations would be to combine our result 
with [45]: in other words, apply perturbation theory to quantum mechanics on a 12-dimensional 
configuration space of skyrmions obtained using the Atiyah–Manton approximation [14].

The results presented in Fig. 1 are promising, but to seriously judge the success of our calcu-
lation, we should compare directly with experimental data. This requires the calculation of phase 
shifts from our model, found by solving a Schrödinger equation based on the potentials. How-
ever, as explained above, we do not understand the potentials for small r and these are needed 
for the calculation. Walet calculated phase shifts by imposing hard-core boundary conditions at 
r = 1 [40]. An advantage of the Skyrme model is that we should not require a hard-core: the 
geometry of the configuration space does not allow the skyrmions to get too close. It would be 
preferable to incorporate this fact into any future calculation.

The results suggest that the Skyrme model may provide an understanding of the nucleon-
nucleon interaction using only pions. This is in contrast to the successful one-boson-exchange 
models which suggest that ε-, �- and ρ-mesons must be included. These can also be included 
in the Skyrme model [41,42,32], and it would be interesting to see their effect on the results 
presented here. To proceed, one must first understand the classical asymptotic interaction of 
skyrmions in models coupled to mesons, generalising the results of [15,16]. In fact, our approach 
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could be adapted to any model which treats nuclei as quantised solitons. This includes holo-
graphic QCD, where nuclei are described as instantons on a curved spacetime [43].

Finally, there are many modified Skyrme models. Authors have included different pionic terms 
[26] and used modified potentials [30,44] in the Skyrme lagrangian. Each modification will alter 
the results in Fig. 1. Since our calculation yields an explicit formula for the nucleon-nucleon 
interaction, it would be very easy to test these modified models by comparing their predictions 
for the nucleon-nucleon interaction. We believe this new test will provide valuable insights for 
Skyrme phenomenology and help find the Skyrme model which best describes the physics of 
atomic nuclei.
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Appendix A. The Clebsch-Gordon matrices κmn
j

In this appendix we present the matrices κmn
j that were used in our calculations. We choose 

conventions such that the action of the spin operators Sj on Hn
∼= Cn⊗Cn is given by Sj,nn⊗1n, 

where

S22
1 = 1

2
σ1 = 1

2

(
0 1
1 0

)
, S22

2 = 1

2
σ2 = 1

2

(
0 −i
i 0

)
, S22

3 = 1

2
σ3 = 1

2

(
1 0
0 −1

)

and

S44
1 = 1

2

⎛
⎜⎜⎝

0
√

3 0 0√
3 0 2 0

0 2 0
√

3
0 0

√
3 0

⎞
⎟⎟⎠

S44
2 = 1

2

⎛
⎜⎜⎝

0 −i
√

3 0 0
i
√

3 0 −2i 0
0 2i 0 −i

√
3

0 0 i
√

3 0

⎞
⎟⎟⎠

S44
3 = 1

2

⎛
⎜⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎟⎠ .

Then

κ22
1 = 1√

(
0 −1

−1 0

)
κ22

2 = 1√
(

0 i
−i 0

)
κ22

3 = 1√
(−1 0

0 1

)

3 3 3
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κ42
1 = 1√

6

⎛
⎜⎜⎝

−√
3 0

0 −1
1 0
0

√
3

⎞
⎟⎟⎠ κ42

2 = 1√
6

⎛
⎜⎜⎝

i
√

3 0
0 i
i 0
0 i

√
3

⎞
⎟⎟⎠ κ42

3 = 1√
6

⎛
⎜⎜⎝

0 0
2 0
0 2
0 0

⎞
⎟⎟⎠

κ24
1 = 1√

12

(√
3 0 −1 0

0 1 0 −√
3

)

κ24
2 = 1√

12

(
i
√

3 0 i 0
0 i 0 i

√
3

)

κ24
3 = 1√

12

(
0 −2 0 0
0 0 −2 0

)

κ44
1 = 1√

15

⎛
⎜⎜⎝

0 −√
3 0 0

−√
3 0 −2 0

0 −2 0 −√
3

0 0 −√
3 0

⎞
⎟⎟⎠

κ44
2 = 1√

15

⎛
⎜⎜⎝

0 i
√

3 0 0
−i

√
3 0 2i 0

0 −2i 0 i
√

3
0 0 −i

√
3 0

⎞
⎟⎟⎠

κ44
3 = 1√

15

⎛
⎜⎜⎝

−3 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 3

⎞
⎟⎟⎠ .

Appendix B. The Laplace-Beltrami operator

In this appendix we derive the equation (4.1) for the Laplace Beltrami operator. Let eμ be a 
frame for the cotangent bundle of a manifold and let Eμ be the dual frame for the tangent bundle. 
Let f λ

μν be (locally defined) functions such that [Eμ, Eν] = f λ
μνEλ. Suppose that the metric is 

given by

g = gμνe
μeν. (B.1)

The standard definition for the Laplace-Beltrami operator acting on a function ψ is

�gψ = − ∗ d ∗ dψ, (B.2)

in which ∗ denotes the Hodge star operator, defined by u ∧ ∗v = g(u, v)
√

ge1 ∧ . . . ∧ en. One 
finds that

∗eν = √
ggμνιEμ�(e1 ∧ . . . ∧ en), (B.3)

in which ι denotes the interior product (so that ιE1e
1 ∧ e2 ∧ . . .∧ en = e2 ∧ . . .∧ en, ιE2e

1 ∧ e2 ∧
. . . ∧ en = −e1 ∧ e3 . . . ∧ en etc.). Therefore

− ∗ dψ = −√
ggμν(Eνψ)ιEμ(e1 ∧ . . . ∧ en). (B.4)

In order to evaluate d ∗ dψ we need to evaluate dιEμ(e1 ∧ . . . ∧ en). By the Cartan structure 
equations,
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dιEμ(e1 ∧ . . . ∧ en) = −ιEμd(e1 ∧ . . . ∧ en) +LEμ(e1 ∧ . . . ∧ en) (B.5)

= 0 + (LEμe1) ∧ e2 ∧ . . . ∧ en + e1 ∧ (LEμe2) ∧ . . . ∧ en + . . . ,

(B.6)

with L denoting Lie derivative. Now

ιEλ(LEμeν) = LEμ(ιEλe
ν) − ι[Eμ,Eλ]eν = 0 − f ν

μλ, (B.7)

so

LEμeν = −f ν
μλEν. (B.8)

Inserting this into equation (B.6) gives

dιEμ(e1 ∧ . . . ∧ en) = −(f 1
μλe

λ) ∧ e2 ∧ . . . ∧ en − e1 ∧ (−f 2
μλe

λ) ∧ e3 ∧ . . . ∧ en − . . .

(B.9)

= −f λ
μλe

1 ∧ . . . ∧ en. (B.10)

Combining equations (B.4) and (B.10) gives

−d ∗ dψ = √
ggμν(Eνψ)f λ

μλe
1 ∧ . . . ∧ en − Eλ(

√
ggμν(Eνψ))eλ ∧ ιEμ(e1 ∧ . . . ∧ en)

(B.11)

and thus

− ∗ d ∗ dψ = −Eμ(
√

ggμν(Eνψ)) + gμνf λ
μλ(Eνψ), (B.12)

as claimed.

Appendix C. Degenerate perturbation theory

In this appendix we derive equation (5.2) for an effective hamiltonian using perturbation the-
ory. Let HF be a hamiltonian with eigenvalues E0 < E1 < E2 < . . .. Let |ψα

0 〉 be an orthonormal 
basis for the E0-eigenspace. Consider a deformation of HF of the form

HF + εHI . (C.1)

We seek deformed basis vectors |ψα(ε)〉 whose span is invariant under HF + εHI , and such that

|ψα(0)〉 = |ψα
0 〉. (C.2)

In other words, we require that

(HF + εHI )|ψβ(ε)〉 = |ψα(ε)〉Hαβ(ε) (C.3)

for some ε-dependent matrix Hαβ . We also require these vectors, like |ψα
0 〉, to be orthonormal:

〈ψα(ε)|ψβ(ε)〉 = δαβ. (C.4)

In this situation Hαβ(ε) is the hermitian matrix of HF + εHI acting on the subspace spanned by 
|ψα(ε)〉. We can regard Hαβ(ε) as an effective hamiltonian describing the lowest eigenvalues of 
HF + εHI .

To calculate this effective hamiltonian one must solve the system (C.2), (C.3), (C.4). 
This system does not have a unique solution, as one can make the replacement |ψβ(ε)〉 →
25



D.G. Harland and C.J. Halcrow Nuclear Physics B 967 (2021) 115430
|ψα(ε)〉Uαβ(ε), for any unitary matrix Uαβ(ε) and still have a solution. In order to fix this 
degeneracy we impose the constraint

〈ψα
0 |ψβ(ε)〉 = 〈ψα(ε)|ψβ

0 〉. (C.5)

We seek to solve the system (C.2), (C.3), (C.4), (C.5) within the framework of perturbation 
theory. That is, we seek a solution in the form

|ψα(ε)〉 = |ψα
0 〉 + ε|ψα

1 〉 + ε2|ψα
2 〉 + . . . (C.6)

Hαβ(ε) = H
αβ
0 + εH

αβ
1 + ε2H

αβ
2 + . . . (C.7)

which formally solves the system to all orders in ε. In order to construct the solution we rewrite 
the equations in an iterative form. Let �N denote the projection onto the EN -eigenspace of HF . 
Equations (C.4) and (C.5) imply that

�0|ψα(ε)〉 − |ψα
0 〉 = −1

2
|ψβ

0 〉(〈ψβ(ε)| − 〈ψβ
0 |)(|ψα(ε)〉 − |ψα

0 〉). (C.8)

Equations (C.3) and (C.4) imply that

Hαβ(ε) = 〈ψα(ε)|(HF + εHI )|ψβ(ε)〉. (C.9)

Finally, equation (C.3) implies that

�N |ψβ(ε)〉 = 1

EN − E0

(
�N |ψα(ε)〉(Hαβ(ε) − E0δ

αβ
)− ε�NHI |ψβ(ε)〉) , (C.10)

for N �= 0.
Now we generate the perturbative solution using equations (C.8), (C.9) and (C.10). First, 

equation (C.9) implies that

H
αβ
0 = 〈ψα

0 |HF |ψα
0 〉 = E0δ

αβ. (C.11)

Equation (C.8) implies that

�0|ψα
1 〉 = 0 (C.12)

since the right hand side is O(ε2). Equation (C.9) implies that

H
αβ
1 = 〈ψα

0 |HI |ψβ
0 〉. (C.13)

Equation (C.10) implies that

�N |ψβ
1 〉 = − 1

EN − E0
HN0

I |ψβ
0 〉, (C.14)

with HMN
I := �MHI�N . Thus altogether we have

|ψα
1 〉 = −

∑
N �=0

1

EN − E0
HN0

I |ψα
0 〉. (C.15)

This completes the solution to first order. Now we compute the second order terms. Equation 
(C.8) implies that

�0|ψα
2 〉 = −1

2

∑ 1

(EN − E0)2 H 0N
I HN0

I |ψα
0 〉. (C.16)
N �=0
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Equation (C.9) then implies that

H
αβ
2 = −

∑
N �=0

1

EN − E0
〈ψα

0 |H 0N
I HN0

I |ψβ
0 〉. (C.17)

Finally, equation (C.10) implies that

�N |ψα
2 〉 = − 1

(EN − E0)2 HN0
I H 00

I |ψα
0 〉 +

∑
M �=0

1

(EN − E0)(EM − E0)
HNM

I HM0
I |ψα

0 〉,

(C.18)

so that in total

|ψα
2 〉 = −1

2

∑
N �=0

1

(EN − E0)2 H 0N
I HN0

I |ψα
0 〉 −

∑
N �=0

1

(EN − E0)2 HN0
I H 00

I |ψα
0 〉

+
∑

M,N �=0

1

(EN − E0)(EM − E0)
HNM

I HM0
I |ψα

0 〉. (C.19)

This completes the solution to second order. Finally, to third order equation (C.8) implies that

�0|ψα
3 〉 = −1

2

∑
N �=0

1

(EN − E0)3 (H 0N
I HN0

I H 00
I + H 00

I H 0N
I HN0

I )|ψα
0 〉

+ 1

2

∑
M,N �=0

(
1

(EM − E0)(EN − E0)2 + 1

(EM − E0)2(EN − E0)

)
H 0N

I HNM
I HM0

I |ψα
0 〉

(C.20)

and equation (C.9) implies that

H
αβ
3 =

∑
M,N �=0

1

(EN − E0)(EM − E0)
〈ψα

0 |H 0N
I HNM

I HM0
I |ψβ

0 〉

− 1

2

∑
N �=0

1

(EN − E0)2 〈ψα
0 |(H 0N

I HN0
I H 00

I + H 00
I H 0N

I HN0
I )|ψβ

0 〉. (C.21)

Thus, our solution for Hαβ is

Hαβ =
〈
ψα

0

∣∣∣∣
(

HF + εH 00
I − ε2

∑
N �=0

1

EN − E0
H 0N

I HN0
I

+ ε3
∑

M,N �=0

1

(EN − E0)(EM − E0)
H 0N

I HNM
I HM0

I

− ε3

2

∑ 1

(EN − E0)2 (H 0N
I HN0

I H 00
I + H 00

I H 0N
I HN0

I )

)∣∣∣∣ψβ
0

〉
+ O(ε4). (C.22)
N �=0
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Appendix D. Detailed calculation of potential with massless pions

In this section we presents the results of evaluating each of the terms in equations (5.26) and 
(5.37). We include these so that the reader can cross-check their calculations, should they wish 
to re-derive our result.

− 4ρ2
∑
N>0

1

EN − E0
D0NDN0

= ρ2�

h̄2r6

[
−32

9
− 16

27
τ 1τ 2 + 4

27
(2 + τ 1τ 2)(σ 1σ 2 − S12)

]
(D.1)

ρ2h̄2

�2

∑
N>0

1

EN − E0

(
D0NBN0 + B0NDN0

)

= ρ2

�r4

[
− 8

27
− 28

81
τ 1τ 2 + 1

81
(14 + 3τ 1τ 2)(σ 1σ 2 − 2S12)

]
. (D.2)

− ρ2h̄4

4�4

∑
N>0

1

EN − E0
B0NBN0

= ρ2h̄2

�3r2

[
−19

54
− 13

324
τ 1τ 2 − 1

1296
(26 + 17τ 1τ 2)(S12 + σ 1σ 2)

]
(D.3)

− 2ρ2h̄

M�

∑
N>0

1

EN − E0

(
D0N(PiAi + A

†
i Pi)

N0 + (PiAi + A
†
i Pi)

0NDN0
)

= ρ2

Mr6

[
−32

9
− 40

27
τ 1τ 2 + (σ 1σ 2 − S12)

(
20

27
+ 2

9
τ 1τ 2

)]

+ ρ2

Mh̄r6

[
−4

3
+ 4

9
τ 1τ 2

]
L · σ (D.4)

ρ2h̄3

2M�3

∑
N>0

1

EN − E0

(
B0N(PiAi + A

†
i Pi)

N0 + (PiAi + A
†
i Pi)

0NBN0
)

= ρ2h̄2

M�2r4

[
−26

27
+ 1

9
τ 1τ 2 + (σ 1σ 2 − 2S12)

(
43

162
+ 61

972
τ 1τ 2

)]

+ ρ2h̄

M�2r4

[
20

27
+ 5

81
τ 1τ 2

]
L · σ . (D.5)

4iρ2h̄

M

∑
N>0

1

(EN − E0)2

{
Pi, ∇iD

0NDN0 − D0N∇iD
N0}

= ρ2�2

Mh̄3r8

(
16

27
+ 40

81
τ 1τ 2

)
L · σ (D.6)

− iρ2h̄3

M�2

∑
N>0

1

(EN − E0)2

{
Pi, ∇iD

0N
I BN0

I − D0N
I ∇iB

N0
I + ∇iB

0N
I DN0

I − B0N
I ∇iD

N0
I

}

= ρ2

Mh̄r6

(
52

81
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)
L · σ (D.7)
28



D.G. Harland and C.J. Halcrow Nuclear Physics B 967 (2021) 115430
iρ2h̄5

4M�4

∑
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Appendix E. Potentials with non-zero pion mass

Setting s = mπr/h̄, the isoscalar nucleon-nucleon potentials are given by

V IS
C = − ρ2 e−2s

108�3r6h̄2

(
64�4

(
s4 + 4s3 + 10s2 + 12s + 6

)
+ 16�2r2h̄2
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))
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M
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)
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))
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V IS
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The isovector potentials are given by

V IV
C = − ρ2 e−2s

648�3r6h̄2

(
64�4

(
s4 + 4s3 + 10s2 + 12s + 6

)
+ 112�2r2h̄2

(
s3 + 2s2 + 4s + 2

)
+ 13r4h̄4

(
s2 + 2

))
+ ρ2

M

e−2s

5832�2r8h̄2

(
448�4

(
s6 + 6s5 + 27s4 + 84s3 + 162s2 + 180s + 90

)
+ 16�2r2h̄2

(
91s5 + 57s4 + 156s3 + 246s2 + 252s + 126

)
+ r4h̄4

(
913s4 − 2304s3 − 930s2 − 3300s − 1650

))
(E.5)

V IV
12 = ρ

e−s

27�2r3

(
2�2

(
s2 + 3s + 3

)
+ r2h̄2(s + 1)

)

− ρ

M

h̄2e−s

27�r3

(
s3 − 3s2 − 12s − 12

)

+ ρ2 e−2s

1296�3r6h̄2

(− 64�4
(
s3 + 4s2 + 6s + 3

)
− 24�2r2h̄2

(
2s2 + 5s + 4

)
+ 19r4h̄4(s + 1)

)
+ ρ2

M

e−2s

34992�2r8h̄2

(
1088�4

(
s5 + 8s4 + 30s3 + 63s2 + 72s + 36

)
+ 8�2r2h̄2

(
514s4 + 1315s3 + 1148s2 + 180s + 90

)
+ r4h̄4

(
677s3 + 2355s2 + 3356s + 1678

))
(E.6)

V IV
σσ = ρ

e−s

27�2r3

(
2�2s2 + r2h̄2(s − 2)

)
− ρ

M

h̄2e−s

27�r3 s2(s − 6)

+ ρ2 e−2s

1296�3r6h̄2

(
64�4

(
2s3 + 5s2 + 6s + 3

)
+ 48�2r2h̄2

(
2s2 + 2s + 1

)
+ 19r4h̄4(1 − 2s)

)

30



D.G. Harland and C.J. Halcrow Nuclear Physics B 967 (2021) 115430
− ρ2

M

e−2s

34992�2r8h̄2

(
1088�4

(
2s5 + 13s4 + 42s3 + 81s2 + 90s + 45

)
+ 16�2r2h̄2

(
514s4 + 544s3 + 332s2 + 90s + 45

)
+ r4h̄4

(
1354s3 + 2679s2 + 2650s + 1325

))
(E.7)

V IV
SO = ρ2

M

e−2s

5832�2r8h̄2

(
320�4

(
s2 + 3s + 3

)2

+ 16�2r2h̄2
(

29s3 + 224s2 + 390s + 195
)

+ r4h̄4
(

557s2 + 1330s + 773
))

.

(E.8)
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