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Impact of the valley orbit coupling on exchange gate for spin
qubits in silicon
Bilal Tariq1,2✉ and Xuedong Hu1✉

The mixing of conduction band valleys plays a critical role in determining electronic spectrum and dynamics in a silicon
nanostructure. Here, we investigate theoretically how valley–orbit coupling affects the exchange interaction in a silicon double
quantum dot. We find that exchange splitting can be strongly suppressed at finite valley phase differences between the dots
because of the valley-phase-dependent dressing of the ground states and Coulomb exchange integrals, and a small valley splitting
can render the exchange Hamiltonian incomplete in describing low-energy dynamics due to nearby excited valley states. The
higher orbital states are also vital in calculating the exchange splitting, which is crucial for applications such as exchange gates for
spin qubits.
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INTRODUCTION
The spin of an electron or a nucleus confined in a semiconductor
nanostructure is a qubit with intriguing potential for scalability1,2.
Out of a multitude of material platforms and encoding schemes2–10,
silicon is particularly enticing as a host for spin qubits because of its
low abundance of spinful isotopes, which can be further reduced
through isotopic enrichment. As a result, electron spins have
particularly long coherence times in Si11–13. Furthermore, exchange
interaction, which originates from Coulomb interaction and Pauli
principle, is inherently strong and allows fast two-spin gates14–19.
These favorable properties, together with ingenuity from experi-
mentalists, have led to impressive achievements such as high-
fidelity single-qubit20,21 and two-qubit gates22–25.
A scalable qubit needs to be reproducible in its properties. For

electron spin qubits in Si, one of the main concerns has been the
valley degree of freedom, i.e., the degeneracy in the Si conduction
band, with focus on the valley–orbit coupling induced by the
interface, and the associated effects4,17,26–32. The study of this
problem in single quantum dots have focused on the magnitude
of valley splitting and interesting phenomena such as the spin-
valley hotspot for spin relaxation13,33–35. It has also been
recognized in recent years that valley–orbit coupling matrix
element is generally complex. Its phase, particularly its variations
across neighboring quantum dots, plays a crucial role in
determining the tunnel coupling between dots36–44.
Valley physics in Si has been known to influence exchange

splitting strongly, as evidenced by donor pairs in Si2,17,43,45,46. With
the smooth in-plane confinement of a quantum dot largely
removing the strong valley-coupling effect of the hydrogenic
donor potential, the nearby interface becomes a crucial factor in
determining the remaining valley–orbit coupling. In earlier studies
of spin coupling in quantum dots, valley physics was often
ignored under the assumption that valley splitting is large28,47–50,
or the valley phase variation is small and can be treated
perturbatively51. However, our recent study has shown that a
single interface step in the wrong place could lead to an almost π
phase shift in the valley phase and a strong suppression of the
valley splitting40. Therefore, there is a critical need to re-examine

how electron exchange interaction in a double quantum dot
(DQD) depends on valley splitting and valley phase difference.
Here, we study how exchange coupling in a symmetric Si DQD

is affected by valley–orbit coupling. We find that the two-
electron exchange coupling depends sensitively on the valley
phase difference between the dots, and can be strongly
suppressed even when valley splitting is large in both dots. If
valley splitting is small in at least one of the dots (we will define
precisely what we mean by “small”), the exchange gate protocol
may have to be re-envisioned altogether because of the
presence of additional singlet and triplet states that participate
in the low-energy two-electron dynamics. We have also explored
the impact on the exchange splitting by the valley–orbit
coupling to excited orbital states. Our results clearly demonstrate
the challenges posed by the valley–orbit physics on exchange
gates for spin qubits in Si, and outline the necessary steps toward
reliable exchange gates.

RESULTS
Theoretical model
We calculate the exchange splitting between the ground singlet and
triplet states of a symmetric two-electron Si DQD using the
configuration interaction (CI) approach. While a DQD in the detuned
regime has a tunable exchange splitting7, it is also well known that
effect of charge noise is particularly strong there52. We thus mostly
restrict ourself to the zero detuning (symmetric) point, where the
system is insensitive to the charge noise to the first order53,54.
The single-electron basis states underlying our two-electron

calculations are orthonormalized single-dot envelope functions
multiplied by valley eigenstates that contain the local valley–orbit
phases,

D± ðrÞ ¼ DzðrÞ± e�iϕDD�zðrÞ (1)

where D ¼ L; Rf g denotes the left and right quantum dot. The
eigenenergies are ± ∣ΔD∣ (the S-orbital energy in the absence of
valley–orbit coupling is chosen to be 0), where ΔD is the
valley–orbit couplings. ΔD is a complex quantity. For an interface
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with disorder, its magnitude and phase depend on the details of
the disorder, as discussed in the Supplementary Materials.
In general exchange splitting in a double dot has two important

contributions: electron tunneling that helps lower its kinetic
energy, and Coulomb exchange integral. As we demonstrate in
the Supplementary Materials, it turns out that both these
contributions have the same dependence on the valley phase
difference between the dots. In the following we will focus on the
tunnel coupling contribution and leave the discussion on the
exchange integral to the Supplementary Materials.
We first examine single-electron tunnel couplings in the DQD.

With the valley–orbit phase generally different in the two dots, an
electron can tunnel between any pair of single-dot states,
characterized by the intra- and inter-valley tunnel coupling matrix
elements [by “intra” we mean that states in both dots are in the
ground (excited) valley eigenstates]:

tþþ ¼ t�� ¼ t0
2

1þ e�iϕ
� �

; tþ� ¼ t��þ ¼ t0
2

1� e�iϕ
� �

here, t0 is the tunnel coupling within the same bulk valleys (z or−
z). ϕ= ϕL− ϕR is the valley phase difference in the double dot,
with ϕL and ϕR the valley–orbit phases of the left and right dot,
respectively. While the values of ϕL and ϕR can be calculated, for
example using a variational approach40, it is important to
emphasize here that the important quantity in evaluating tunnel
coupling between the two dots is the phase difference ϕ. Without
loss of generality, we choose ϕR= 0 and ϕL as a variable in our
exchange energy calculations. In Fig. 1 we plot these two
tunneling matrix elements. When ϕ= ϕL= ϕR= 0, valley eigen-
states in the two dots are identical, so that tunneling can only
happen between the same valleys, i.e., t−+= 0. If ϕ= ϕL= π, the
compositions of the valley eigenstates in the two dots are flipped,
so that an electron can only tunnel from ground valley eigenstate
in one dot to the excited state in the other, or vice versa, i.e., t−−
= 0. This valley phase-dependence by the tunneling matrix
elements turns out to be a crucial factor in determining the
exchange splitting when we place two electrons in the DQD.
Notice that in a physically realistic situation, both valley phase

and valley splitting vary as functions of the interface roughness,
such as the location of an interface step, and their variations may

be correlated. However, to clarify their individual influences on the
exchange splitting, we treat them as independent variables above
and for the Hund-Mullikan calculation below.

Exchange energy within the Hund-Mullikan Model
Accounting for the valley degree of freedom, the minimal CI basis
set to calculate the exchange splitting in a Si DQD includes the
ground orbital (orthonormalized S orbital of the Fock-Darwin
states in the in-plane directions) in each valley for each quantum
dot. This is equivalent to a Hund-Mullikan calculation but with two
valley eigenstates from each dot, therefore including all the crucial
ingredients for an exchange calculation. We will later extend to
larger basis sets with up to D-orbitals for each dot in order to
validate our results.
From the four orthonormalized single-electron S orbitals in the

two dots, one can form 10 symmetric and 6 anti-symmetric two-
electron orbital states. Specifically, labeling the S-orbitals in the
two dots as L and R, and the valleys as+ and− (with valley
splittings 2∣ΔL∣ and 2∣ΔR∣), we can form four two-dot symmetric or
anti-symmetric states: (L−R−, L−R+, L+R−, L+R+), two single-dot
anti-symmetric double occupied states: (L−L+, R−R+), and six
single-dot symmetric double occupied states: (L−L−, L+L+, L−L+,
R−R−, R+R+, R−R+). We then use these basis states to expand the
two-electron Hamiltonian and obtain the singlet and triplet
spectrum, respectively. In Fig. 2(a) we show the ground singlet
(solid) and triplet (dotted) energies as functions of the interdot
valley phase difference ϕ= ϕL (ϕR= 0 is fixed), with the valley
splitting in both dots set at 0.1 meV. For a smooth interface, when
ϕL= ϕR= 0, the value of the exchange splitting is at a maximum
of 67 neV. This value depends on the tunnel coupling, quantum
dot confinement, and coulomb interaction, and can be tuned
easily by changing the height of the barrier potential. In this
example calculation the dot radius is set at 8 nm (the correspond-
ing orbital excitation energy is 6.3 meV, and the onsite Coulomb
energy is 16.1 meV as shown in Table 1) and the interdot distance
at 40 nm, making sure that tunnel coupling is quite small.
When both quantum dots have the same valley phase, ϕ= 0,

t−−= t++ is maximized while t+−= t−+ = 0. The electrons
experience the so-called valley blockade: an electron in L± state
can only tunnel to the R± state as they have the same underlying
Bloch states, while tunneling between L± and R∓ are forbidden as
their underlying Bloch states are orthogonal. The exchange
splitting between the ground singlet and triplet states can thus
be calculated within the (L−L−, R−R−, L−R−) block of the block-
diagonal Hamiltonian, and the additional valley states do not
contribute to the ground singlet-triplet exchange splitting. The
situation here is thus the same as the Hund-Mullikan model for a
GaAs DQD14,55.
As the valley phase difference in the double dot increases from

zero, valley blockade is lifted. An electron can tunnel between any
pair of valley states in the two dots. Consequently, as shown in Fig.
2(a), the exchange splitting decreases, and eventually vanishes
when the phase difference reaches π. The physical picture can be
most clearly illustrated by comparing panels(c) and (d) of Fig. 2. In
Fig. 2(c), where ϕ= ϕL− ϕR= 0, the energy of the ground singlet
state is lowered by the dressing from the doubly occupied states
L−L− and R−R−, while the ground triplet cannot be dressed by the
doubly occupied states L−L+ and R−R+ as they are decoupled due
to valley blockade between L± and R∓. As a result a finite energy
splitting appears between the ground singlet and triplet states. On
the other hand, in Fig. 2(d), where ϕ= π, both ground singlet and
triplet states benefit from dressing by the doubly occupied states
L−L+ and R−R+. Doubly occupied states L−L− and R−R−, which can
only be singlet, do not couple to the ground singlet state because
of the orthogonality of their underlying Bloch states. As such the
ground singlet and triplet states are dressed the same and their
energies are lowered equally. Furthermore, as discussed in the

Fig. 1 Electron tunneling in the presence of valleys. Sketch of a
double quantum dot with two valley eigenstates in each dot. In the
top panel we show the interdot tunnel couplings, both intra- and
inter-valley, as a function of the valley phase difference.
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Supplemental Materials, the Coulomb exchange also has a
dependence on the valley phase difference in the form of
cos2ðϕÞ. Including both these contributions, the exchange
splitting decreases as ϕ increases from 0, and vanishes at ϕ= π.
In short, our results here show that exchange splitting in a Si

double quantum dot can be significantly impacted by the valley
phase difference between the two dots, and can be completely
suppressed if ϕ= π. To make an exchange gate operable, it is
important to avoid such operation points. In the context of interface
step that we consider below, one could conceivably shift away from
these unfavorable points by shifting the quantum dots relative to
each other using top gate potentials, then tune the value of exchange
energy by varying the tunnel barrier height as long as ϕ≠ π.
The results of Fig. 2 are obtained with finite valley splittings of 0.1

meV in each dot. In other words, valley phase difference between
the two dots plays a pivotal role in determining the exchange
splitting even in the presence of finite valley splittings, making our
results meaningful for both SiGe and SiMOS quantum dots.

Effects of valley splitting on exchange coupling
The magnitude of the S-orbital valley–orbit coupling determines
the ground state valley splitting in a Si quantum dot, ranging from
a few hundreds of μeV33,35,37 to less than 10 μeV13,36,44,56. If the
valley splitting is small compared with the thermal broadening of
a nearby reservoir (at a typical electron temperature of 150 mK,

the thermal broadening is about 10 μeV) for spin initialization, an
electron could be initialized into the correct spin state but with a
mixed valley state. Such an unwanted orbital freedom may not
affect single spin manipulation, assuming the two valley
eigenstates having the same g-factor. However, when considering
two-spin exchange coupling, this additional freedom in valley
occupation could lead to significant difficulties.
Consider a situation when the valley–orbit coupling in the right

dot is two orders of magnitude smaller than in the left dot: ∣ΔL∣=
100 μeV and ∣ΔR∣= 1 μeV. In Fig. 3 we plot the energies of the
ground and first excited singlet and triplet states as functions of
the valley phase difference. The ground states have the same
behavior as in Fig. 2, as expected. The first excited singlet and
triplet states are roughly 2 μeV above the ground singlet and
triplet states, respectively, with the electron in the right dot
occupying the excited valley state, i.e., L−R+. Notice that the
phase-dependence of the excited singlet and triplet states are

Fig. 2 Exchange splitting calculated with only single-dot s-orbitals. a Dependence of the ground singlet (S= 0) and triplet (S= 1) energy
levels on the valley phase difference between the two dots (with ϕR= 0). For a smooth interface, the exchange interaction is EJ= 67 neV with
∣ΔL∣= ∣ΔR∣= 0.1 meV for the chosen double dot parameters. b shows the states of ground singlet and triplet for a general ϕ. Panels c and
d illustrates state dressing for phase difference ϕ= 0 and ϕ= π, respectively. The ground singlet energy level (Eg,s) for smooth interface is the
zero energy reference.

Table 1. Relevant Coulomb matrix elements for two electrons in a
double quantum dot, which show a clear hierarchy in their
magnitudes.

Coulomb terms Coulomb expression Values

On-site u= 〈L−(r1)L−(r2)∣HC∣L−(r1)L−(r2)〉 16.1 meV

Interdot k= 〈L−(r1)R−(r2)∣HC∣L−(r1)R−(r2)〉 3.1 meV

Overlap s= ∣〈L−(r1)L−(r2)∣HC∣L−(r1)R−(r2)〉∣ − 5.7 μeV
Exchange j= ∣〈L−(r1)R−(r2)∣HC∣R−(r1)L−(r2)〉∣ 46.3 neV

Fig. 3 Low-energy spectrum of a two-electron Si DQD. Energy
levels of the ground and first excited singlet (S= 0) and triplet states
(S= 1) in a Si double dot as a function of the interdot valley phase
difference ϕ. For this calculation we choose ΔR= 1 μeV, ΔL=
100 μeV, and ϕR= 0.
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quite different from the respective ground state. If an electron is
initialized into the right dot in a superposition of the valley
eigenstates α R�j i þ β Rþj ið Þ "j i, when tunnel coupling is allowed,
the respective singlet-triplet states that can be formed from R�j i
and Rþj i, i.e., the ground and first excited singlet-triplet pairs we
plot in Fig. 3, will in general have different singlet-triplet splittings.
Consequently, the phase accumulated during an exchange gate
will be different in these two pairs, making a spin swap gate
almost impossible1.
In short, a necessary condition for exchange gate protocol to be

valid in a Si DQD is that the valley splitting in each dot is much
larger than the thermal broadening of the reservoir used for
initialization. This condition guarantees a high-fidelity preparation
for a spin qubit in the ground valley eigenstate, taking away any
uncertainty in the follow-up spin manipulations.
When ∣ΔR∣ (and/or ∣ΔL∣) is further reduced, the ground and

excited singlet and triplet states for the DQD become even more
compact in the energy spectrum, and their dynamics cannot be
straightforwardly disentangled, as we discuss in the Supplemental
Materials. While the physics at this limit is subtle and interesting,
the DQD does not have any utility for spin qubit manipulation
anymore as the system cannot be properly initialized and
controlled.

Exchange energy in the presence of an interface step
In the model calculations above we vary either the valley phase
difference or the valley splittings in a quantum dot as an
independent variable. In a realistic situation, however, both would
depend on the properties of the interface. As such they tend to
change in a correlated manner, as has been illustrated in Si/SiGe
heterostructures with a single atomic layer step at the interface
inside a quantum dot28,37,40,41,57,58. Here, we calculate the
exchange splitting in a Si DQD in the presence of an interface
step. To go beyond the qualitative discussions within the Hund-
Mullikan model above, we also include higher-energy orbital
states in our CI calculation.
Before delving into the two-electron calculations, we need to

first calculate the valley–orbit matrix elements among all the
single-electron orbitals. This would allow us to better clarify the
effects of the higher orbital states and the valley–orbit coupling
parameters on the ground state exchange splitting. Including the
s-, p-, and d-orbitals (corresponding to six orbitals per pot) for the
in-plane wave function in each dot, the different valley–orbit
coupling terms can be summarized in a matrix as

Δ ¼

Δss Δspx 0 Δsdxx 0 0

Δpxs Δpxpx 0 Δpxdxx 0 0

0 0 Δpypy 0 0 0

Δdxxs Δdxxpx 0 Δdxxdxx 0 0

0 0 0 0 Δdxydxy 0

0 0 0 0 0 Δdyydyy

0
BBBBBBBB@

1
CCCCCCCCA
: (2)

The terms in Δ generally vary differently with the step position as
the orbitals have different forms. Given a step position and
orientation, each of the matrix elements can be calculated
straightforwardly. The Δ matrix can then be included when
calculating the orthonormal single-electron eigenbasis, over which
we construct the two-electron states and calculate the exchange
splitting.
In Fig. 4 (a), we show the step-position dependence of the

magnitude of the valley–orbit coupling (valley splittings for the
particular orbitals) in the diagonal elements of the left quantum
dot with a monolayer step. The step considered here is along the y
direction and can thus be identified by its position along the x-
axis. Note that the influence of the step on the diagonal elements
Δpypy and Δdyydyy are the same as on Δss as these orbitals share the
same form along the x-axis. For the same reason, Δpxpx ¼ Δdxydxy .
Similar to the ground orbital state, the valley splittings for the
other orbital states are also reduced when the step cuts through
the quantum dot, reaching their minima when the step is located
at the center of the dot. Furthermore, the valley–orbit coupling
behavior is not the same for different orbital states due to the
shape of the Fock-Darwin wave functions along the x direction.
Valley phases for each orbital state also depend on the step

location, as shown in Fig. 4(b), varying from 0 to 0.85π. The change
in the valley phase of ϕdxxdxx is wider with two stairs like features,
because of the presence of three nodes in the x direction in the dxx
orbital. On the other hand, ϕpxpx

¼ ϕdxydxy , with one node present
in their wave functions along the x direction. Lastly, ϕss changes
the most sharply as the s-orbital is the smallest.
With multiple orbitals from each dot, new off-diagonal

valley–orbit coupling terms also appear. In this paper, we consider
up to the d-orbital states in our calculations, which leads to three
non-vanishing off-diagonal terms, Δspx , Δpxdxx and Δsdxx . In Fig. 4 we
show how the position of the step affects the magnitude of each
of these off-diagonal terms. In particular, the magnitude of Δspx
reaches a maximum value of ~ 0.075meV when the step is at the
center of the dot. Δpxdxx and Δsdxx are also finite. The phases of
these off-diagonal terms do not have much of an effect on our
exchange calculation and hence have not been shown here. As
our results below indicate, these finite off-diagonal elements in
the valley–orbit coupling matrix is quite important in our
calculation of the ground state exchange splitting.
With all the single-electron orbitals clarified, CI calculations for

two electrons in the DQD can be performed. In Fig. 5 we plot the
ground state exchange splitting as a function of the step location
x0, with the step oriented perpendicular to the interdot axis. x0= 0
refers to the situation when the step is at the midpoint between
the two dots, and x0=−20 nm is when the step passes through
the middle of the left dot. The most important feature in this
figure is the suppression of exchange coupling when the step is
located in between the two dots, similar to what we find in Fig. 2
(a) when we only consider the s-orbitals. This suppression has the
same origin as well: when the step is in between the dots (at or
near x0= 0), the valley phase difference between the dots

Fig. 4 Valley–orbit couplings as functions of the interface step position. Valley–orbit coupling as a function of the location of a single
interface step. a and b present the magnitudes and phases of the diagonal valley–orbital coupling elements in Eq. (2), respectively, while
c shows the magnitude of the off-diagonal terms of the valley–orbit coupling matrix of Eq. (2).
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is ~ 0.85π, making the tunnel coupling between the ground valley
states in the two dots very small and the exchange coupling
strongly suppressed.
There are two interesting features in Fig. 5 due to higher

orbitals. There is a broad peak when the step is in the middle of
the left dot, and there is a longer tail of finite exchange splitting
(as compared to the s-orbital only calculation) as the step
approaches the middle between the dots. These features are
mainly the results of a competition between two influences: the
phase of the Δss, and the magnitude of Δspx . As discussed for Fig. 2,
a non-vanishing phase for Δss suppresses the magnitude of the
exchange splitting for the ground singlet-triplet pair. The term Δspx
originates from the symmetry breaking within the left dot due to
the presence of the step. It reaches its maximum magnitude when
the step is at the center of the dot, and causes a linear change in
the exchange splitting (see Supplement Materials). The
valley–orbit coupling in the excited states plays an important
role here because we have two small quantum dots, such that
orbital excitation energy (~6.3 meV) is much smaller than the
onsite Coulomb interaction ~16meV, making the dressing of the
ground singlet and triplet states by the orbital excited states as
important as the doubly occupied ground orbital states. In other
words, to achieve numerical convergence for an exchange
calculation, more orbital states need to be included. However,
for the purpose of exploring the qualitative effects of the
valley–orbit coupling, our finite-size calculation here is sufficient.

DISCUSSIONS AND CONCLUSIONS
Our calculations above are for a symmetric Si double quantum
dot. Nevertheless, the lessons we have learned are applicable to
the finite-detuning regime, where exchange splitting is dominated
by the tunnel coupling between the (11) singlet and (02) [or (20)]
ground singlet state [here (11) and (02) refer to the electron
occupation in each dot]7,48. This tunnel coupling is again
sensitively dependent on the interdot valley phase difference.
For example, a π phase shift would render the ground singlet-
singlet anti-crossing a crossing, with a vanishing exchange
splitting between ground singlet and triplet states. Meanwhile, a
reduction in the magnitude of the valley splitting would push all
the (11) and (02) crossings and anti-crossings close to each other,
making exchange control more difficult to achieve48. In short,
valley–orbit coupling plays as important a role in the detuned
regime as for a symmetric Si DQD. Further explorations are
needed to firmly establish the viability and conditions for
exchange gates in this regime.

In our study here we take the interdot valley-phase difference ϕ
as a well-defined quantity and possibly tunable by external field.
Such a model is applicable in situations where effective mass
model is appropriate, such as an interface between Si and SiGe
with interface steps but otherwise smooth and sharp. Another
main source of interface roughness that affects valley–orbit
coupling is the atomistic-scale alloy disorder near the interface,
whether in a Si/SiGe or Si/SiO2 system59,60. Exchange interaction in
such a system would certainly be affected. However, the behavior
of valley–orbit phase, which is a well-defined concept only within
the effective mass model, in a system with roughness of very small
length scale is unknown. For disorders at such length-scale, an
atomistic approach such as the tight binding approximation
would be more appropriate than the effective mass approxima-
tion. Consequently one may calculate the single-electron tunnel
coupling and two-electron exchange coupling directly, and
calculate the corresponding effective valley–orbit coupling (both
magnitude and phase) afterward.
In conclusion, we have performed analytical and numerical

analysis of the ground singlet-triplet exchange splitting of a
symmetric Si double quantum dot. Our results show that
valley–orbit coupling in the two dots play crucial roles in
determining the exchange energy. In particular, it depends
sensitively on the valley phase difference between the two dots,
reaching a minimum when the phase difference is π, even in the
presence of large valley splittings in both dots. We also show that
it is imperative that valley splitting in each of the quantum dots
should be large compared to the thermal broadening of the
reservoir, such that a spin qubit can be properly initialized. By
examining the splitting in both the ground and first excited
singlet-triplet pairs, we show that exchange gate would not work
properly if both of these manifolds are involved in the spin
dynamics. Lastly, we show that the higher-energy orbital states
also make important contributions in determining the value of the
exchange energy, particularly for smaller dots with large on-site
Coulomb interaction.
While our results are particularly relevant for Si/SiGe quantum

dots, the phase-dependence by the exchange coupling, irrespec-
tive of the magnitude of the valley splitting, is an important
observation for SiMOS quantum dots as well, which tend to have
larger valley splittings but also have an amorphous interface. Our
results shine a further spotlight on the interface roughness, and
the need to understand and characterize them in order to achieve
scalable quantum computing based on spin qubits in silicon.
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