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ABSTRACT

This thesis discusses the dynamics of spacetime by describing inherent properties con-

nected to the structural geometry of it as the universe evolves. The accelerated cosmic

expansion of spacetime takes place twice, first in the very early universe just after the

big bang and prior to the radiation era and secondly starting in the late universe fol-

lowing the matter era i.e., inflation and dark energy eras respectively which constitute

significant dynamical properties of spacetime. These two epochs may turn out to be

decisive in describing the beginning and ultimate fate of the universe. Inflation has

become a widely accepted paradigm and is now believed to be irrefutable and is backed

by ever-increasing observational evidence. It was proposed to have occurred in the early

universe to solve flatness and homogeneity problems faced by standard big bang cosmol-

ogy. However, now it has transformed into a fascinating paradigm for the beginning of

the universe that describes how it evolves after nucleation from a nothingness-like state.

On the other hand, dark energy accounting for two-thirds of the cosmic budget came

up with the observation-based discovery of the accelerated expansion of the late time

universe.

For the inflationary universe, the study of the spectrum of curvature perturbation is

carried out by considering multifield inflation and using small field potential. We inves-

tigate the effect of the number of e-folds N , slow-roll parameters ϵV , ηV , and spectral

index ns which carry significant information about the multi-field inflationary universe

as it evolves cosmologically. Sasaki-Stewart formalism is used to determine these ob-

servables assuming that isocurvature perturbations can be neglected during early cosmic

evolution. The analysis is carried out by observing the impact of increasing the num-

ber of e-folds on the power spectrum through the spectral index and its impact on the

observable parameters of the slow-roll inflationary phase. It is also observed that the

spectrum of multifield inflation is effectively different than its corresponding single-field

inflation. The field values and their masses impact the results effectively at the time of

horizon-crossing.

Afterward, we investigate a Nflationary phase diagram that illustrates its phase transi-

tions with a multifield polynomial potential. The gradual vanishing of the inflationary

phase during the slow-roll phase of the Nflation model has been demonstrated for a large

number of fields in the case when there are voluminous N phase transitions occurring
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in it. A phase diagram for Nflation model illustrates its phase transitions for a mul-

tifield potential Λ4
j

(

ϕj

µj

)p
. We use Marčenko-Pastur law to find the likely distribution

of different mass scales of the fields. Further, the study for the conditions of entropy

is carried out in the form of a bound that conforms to the number of e-folds N and

the number of fields N . These drive the Nflationary phase and are mostly responsible

for the phenomena taking place in it. We investigate in addition, that all the de Sitter

entropy in the neighborhood of the critical point is concentrated around it and is largely

condensed in the number of fields N for the potential under consideration.

The time-independent Schrödinger equation conforming to the Wheeler DeWitt equation

is briefly explored for modeling the quantized behavior of the universe during its early

phase of evolution. We solve it numerically for a single scalar field in flat spacetime with

FLRW metric using artificial neural networks (ANN) and observe how it governs the

early universe as it evolves through the inflationary phase following the big bang to later

classical phase. To construct a continuous neural network mapping, the explicit Runge-

Kutta method is used as the target parameter to generate the datasets. In order to

determine the solution datasets for different scenarios, the processes of training, testing

and validation are employed to take advantage of these processes in the learning of neu-

ral network models based upon the backpropagation technique of Levenberg-Marquardt.

To study the accelerating universe in the context of general relativity, we explore both

sectors, gravitational and matter sectors of the Einstein field equation. At first, by

modifying the matter sector a multi-field model of dark energy is investigated to drive

the late-time accelerated expansion. On considering two multiple scalar fields, tachyon,

and phantom tachyon, analysis of the autonomous dynamical system in phase space is

carried out using the inverse square potentials suitable for such models. Calculating

critical points and their eigenvalues, stability analysis is performed. It is observed that

stable critical points are satisfied by power-law solutions. Equation of state changes

from w ≥ −1 to w < −1 that is about phantom divide which is decisive in evolutionary

phases of the universe in these models.

Moreover, we also study cosmological dynamics of the late time accelerating universe

through modifying the geometry of spacetime that is the gravitational sector. This can

effectively be modified through f (R) gravity, which offers a viable candidacy for the late

time cosmic phenomenology. We investigate a viable f (R) model and choose the Ein-

stein frame to analyze the cosmic dynamics through the dynamical system approach.

The results through stability analysis show that our universe is currently undergoing

accelerated expansion regardless of the existence of dark energy.
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CHAPTER-01

INTRODUCTION

This thesis consists of four chapters written and presented juxtapositionally, namely In-

troduction, Literature Review, Methodology, and Results and Discussions respectively.

The first chapter of the introduction introduces the fundamentals of inflationary cos-

mology and later developments concerned with the accelerating universe. It further

furnishes an introduction to the problems taken into consideration in the thesis and is

composed of six sections, each of which comprises the introduction for the corresponding

section accommodated in the subsequent chapters namely Literature Review, Methodol-

ogy, and Results and Discussions respectively. To begin with, in section 1.1, we discuss

the geometric structure of spacetime as brought forth by the theory of general relativity,

and the rudimentary definitions with basics of cosmology are covered in addition.

1.1 On the Cosmological Dynamics of Spacetime and Basics of Cosmology

With the advent of general theory of relativity in 1916, spacetime was itself transformed

into one of the four fundamental interactions of the universe, and the geometrical struc-

ture attached to it was considered to demonstrate gravity in a dynamical way (Einstein,

1922). The force of gravity was replaced by the curvature of spacetime that is mirrored

through the geometric structure of metric tensor gµν , the fundamental tensor. Conse-

quently, the paradigm of spacetime became an integral part of the cosmic fabric and

proved a dynamical medium where the whole phenomenal world exists. Any solution of

the field equations of general relativity entails a certain structural geometry of spacetime

or just a spacetime that represents a universe itself, therefore determining a solution of

the field equations amounts to coming across a specific model of the universe.

Cosmology studies the universe as a whole i.e. in its totality (V. Mukhanov, 2005)

encompassing its beginning in spacetime or as spacetime itself, its evolution over time,

and its eventual fate. It is important to mention that the universe is not merely a

random and accidental heap of material stuff piled up haphazardly and distributed

over a void irregularly, rather it forms a single organic whole, parts of which evolve

symmetrically and proportionally depending on one another and perform their functions

in unison with one another. The history of cosmology dates back to ancient Greeks,
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Babylonians, Indians, and Iranians with its roots at that time in philosophy and religion.

Before the era of modern scientific cosmology dawns, it has been nurtured in the womb

of Abrahamic religions especially Judaism, Christianity, and Islam. Cosmology as a

modern science begins with the surfacing of general relativity when Einstein himself first

put it to use for formulating a cosmological model of the universe mathematically. The

model brought about a dynamic universe, however, it was rendered to be static by adding

a fudge factor known as cosmological constant, as there was no cosmological evidence

of its contraction or expansion at that time (Einstein, 1986). Einstein’s static model

was afterward proved to be inconsistent with the cosmological observations and was

discarded; however, its formulation as the first mathematical model based on the field

equations of general relativity laid the foundation stone for the inception of relativistic

cosmology to emerge as one of modern sciences.

Cosmology takes into account the largest structure or scale of spacetime that is the

causally connected and maximally symmetric patch of the cosmological fabric from the

perspective of its origin, evolution, and eventual futuristic fate. It gives the universe a

mathematical description as large as the cosmological observational parameters reveal

and accordingly and consequently allow. The modern relativistic cosmology was estab-

lished on general relativity which brought forth the big bang model by extrapolating the

cosmic expansion backward in time. The big bang model was, however, marred with

some inward problems related coherently to it, which were removed by introducing an

exponentially expanding phase in the very early universe to be known as inflation.

When the energy density of the matter and radiation is removed in Einstein’s static

model retaining the positive cosmological constant that plays a very important role in

making the universe appear static in time, the de Sitter model results. De Sitter’s

model presented in 1917 was proposed just after Einstein presented his static and closed

model of the universe. Resorting to Mach’s principle, Einstein was of the view that it

is merely the matter density in the universe that is the cause of inertia and gravitation.

For investigating the status of Einstein’s belief, de Sitter posed the 2nd model devoid

of matter density, however retaining the cosmological constant that was introduced

by Einstein to halt the cosmic phenomena from expanding. The de Sitter model is

the maximally symmetric solution of Einstein’s field equations with vanishing matter

density. The geometrical structure of spacetime of the de Sitter model is comparatively

more complicated than that of Einstein’s static model. The characteristic of the de

Sitter model is that it predicts a redshift despite containing neither matter density nor
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radiation, however, its geometry was proved to be accelerating (De Sitter, 1916). De

Sitter universe corresponds to the specific case that is related to one of the very early

solutions of Einstein’s Field Equations (EFE). The importance of the de Sitter model

was not recognized until the introduction of inflation in the late 20th century as the

actual universe must be considered as a local set of perturbations in the geometry of de

Sitter having validity at large. De Sitter geometry represents Euclidean space with a

metric that depends on time. It was found that the inflation could be de Sitter geometry

in general or quasi-de Sitter geometry which has an innate impact on the evolution of

the geometry of FLRW spacetimes. It further bears its relation with the late-time

accelerated expansion of the universe and to the dynamic geometry of the spacetime

intrinsically which is cohered with it. The de Sitter universe represents the inflationary

phase of the universe with slightly broken time translational symmetry.

Alexander Friedmann predicted theoretically the possibility of the dynamic universe, the

one which can expand, contract, or even could be born out of a singularity i.e., it could

nucleate from literal nothingness as Alexander Vilenkin has suggested (A. Friedmann,

1924, 1999; Vilenkin, 1982). Later on, George Lemaitre, unaware of Friedmann’s work

at that time, reached independently the same conclusion. His findings were motivated,

however by semi-observational working. Later in 1931, he also proposed a theory of the

primeval atom which came to be known afterward, as the big bang theory by Fred Hoyle

accidentally during a radio speech (Lemâıtre, 1927; Lemaitre, 2013). Edwin Hubble first

in 1927 proved the existence of other galaxies besides the Milky Way and afterward in

1929 discovered on the basis of observational evidence that the universe was indeed

expanding (Hubble, 2013). This was actually discovering what Friedmann already had

predicted theoretically in 1922 (S. Hawking, 2009). The discovery of observation-based

cosmic expansion was a radical breakthrough in the purview of relativistic cosmology

that bore far-reaching influence upon evolving field of cosmological studies. In the late

1940s, George Gamow (1904–1968) who had been a student of Friedmann and his col-

laborators, Ralph Alpher (1921–2007) and Robert Herman (1914–1997), independently

worked on Friedmann’s and Lemâıtre’s hypothesis and transformed it into a model of

the early universe. They made a supposition about the initial state of the universe

as comprising of a very hot, compressed mixture of nucleons and photons, thereby in-

troducing the big bang model on the basis of comparatively strong shreds of evidence.

They, however, did not associate a particular name with their findings in connection
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with the early state of the universe. Based on this model they were successful in cal-

culating the amount of helium in the universe, nonetheless, unfortunately, there was

no authentic observational evidence available through which their calculations could be

compared and verified (ALPHER & Herman, 1988).

The standard relativistic model of cosmology underpinning the big bang theory could

not explain the global structure of the universe and the origin of matter in it. On

the other hand, the distribution of matter in it homogeneously on large scales and the

spatial flatness also remained enigmatic. The big bang model just made an assumption

concerning these enigmatic issues, nonetheless could not solve them. In the framework

of effective field theory, the aspects of nonsingular cosmology are explored by Yong Cai

et al. It is shown that the effective field theory can assist in providing the clarification

about the origin of no-go-theorem and helps to resolve this theorem (Y. Cai, Wan, Li,

Qiu, & Piao, 2017).

The inflationary era was proposed in the standard model of cosmology which propounds

the big bang theory of the creation of the universe. Inflation solves the problems en-

countered in the big bang cosmology. Gliner, in 1965, hypothesized an era of exponen-

tial expansion for the universe earlier than any significant inflationary model surfaced

(Gliner, 1966). It was found that the scalar fields are dynamic existing in nature, and

in 1972 it was proposed that during phase transitions the energy density of the universe

as a scalar field changes (Kirzhnits & Linde, 1972). Andrei Linde, in 1974, realized

that scalar fields can play an important role in describing the phases of the very early

universe. He speculated that the energy density of a scalar field can play the role of

vacuum energy dubbed as a cosmological constant (A. D. Linde, 1974).

In 1978, Englert, Brout, and Gunzig (Brout, Englert, & Gunzig, 1978) forwarded a

proposal of the “fireball” hypothesis attempting to resolve the primordial singularity

problem. They based their investigations on the entropy contained in the universe and

approached the issue of the early evolution of the universe by introducing particle pro-

duction in it. They inquired deep down into it and on the basis of their hypothesis

inferred that a universe undergoing a quantum mechanical effect would itself appear in

a state of negative pressure and would be subject to a phase of exponential expansion.

A work was mentioned by Linde in his review article (A. D. Linde, 1979) where he

sought, in collaboration with Chibisov, to develop a cosmological model based upon the

facts known in connection with the scalar fields. Considering the supercooled vacuum
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as a self-contained source for entropy, they tried to bring about the exponential expan-

sion of the universe to be concerned with it. They, however, discovered instantly that

the universe becomes very inhomogeneous after the bubble wall collisions take place.

Slightly before Alan Guth’s original proposal of inflation surfaced, Alexei Starobinsky

in 1980 proposed a model of inflation on the base of a conformal anomaly in quantum

gravity. His proposal was presented in the framework of general relativity where slight

modification of the equations of general relativity in the matter sector was proposed and

quantum corrections were employed to it in order to have a phase of the early universe.

Starobinsky’s model can be considered as the first model of inflation which has semi-

realistic nature and evades from the graceful exit problem. (Starobinsky, 1980; Müller,

Ricciardone, Starobinsky, & Toporensky, 2018). It was hardly concerned with the prob-

lems of homogeneity and isotropy which occur in the relativistic cosmological model

of the big bang. His model, as he himself accentuated, can be considered the extreme

opposite of chaos in Misner’s model. The model is found to agree with cosmological ob-

servations with slight deviations from recent measurements. Tensor perturbations that

represent gravitational waves have also been predicted in Starobinsky’s model with a

flat spectrum.

Alan Guth employed the dynamics of a scalar field and with a clear physical motiva-

tion presented an inflationary model (Guth, 1981) in 1981 on the basis of supercooling

theory during the cosmological phase transitions occur and the universe expands in a

supercooled false vacuum state. A false vacuum is a metastable state containing a huge

energy density without the existence of any field or particle in it so that when the

universe expands from this heavy nothingness state its energy density does not change

and the empty space remains empty such that the inflationary phase occurs in a false

vacuum state (A. D. Linde, 1984b). The duration of the inflationary phase in Guth’s

original scenario is too short to be capable of resolving any problem, although it was

proposed to solve the big bang problems, instead, the universe becomes very inhomo-

geneous consequently which leads to the graceful exit problem (S. W. Hawking, Moss,

& Stewart, 1982; Guth & Weinberg, 1983). The problem prevents the universe from

evolving to later classical stages and is inherently existing in the originally proposed

version of Guth.

The graceful exit problem was addressed independently by Linde, Steinhardt, and Al-

brecht (A. D. Linde, 1982a; Albrecht, Steinhardt, Turner, & Wilczek, 1982; Allahverdi,

Brandenberger, Cyr-Racine, & Mazumdar, 2010; A. Linde, 1982; A. D. Linde, 1982c,
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1982b; Albrecht & Steinhardt, 1982), where they introduced a phase of slow-roll infla-

tion at the end of the normal inflationary phase all inclusively known as new inflation.

The resolution of the problem was sought by constructing a new inflationary paradigm

where inflation can have its inception either in an unstable state at the top of the effec-

tive potential or in a state of a false vacuum. In this scenario, the dynamics of the scalar

field are such that it rolls gradually down to the lowest of its effective potential. It is of

great importance to note that the shifting away of the scalar field from the state of false

vacuum to other later states has remarkable consequences. When the scalar field rolls

slowly towards its lowest, that is so-called slow-roll inflation, it gives rise to the genera-

tion of density perturbations which seed the cosmic structure formation of the universe

(S. W. Hawking, 1982; Starobinsky, 1982; Guth & Pi, 1982). It was observed that the

production of density perturbations during the phase of slow-roll inflation is inversely

proportional to the motion of the scalar field (Kachru et al., 2003; V. F. Mukhanov &

Chibisov, 1981). The basic difference between the new inflationary scenario and that

of the old one is that the advantageous portion of the inflation in the new inflation

scenario, which is responsible for the large-scale homogeneity and global flatness of the

universe, does not take place in the false vacuum state, where the scalar field vanishes.

This means that the new inflation could explain why our universe was so large only if

it was very large initially and contained many particles from the very beginning.

The course of the 20th century has presented many challenges to standard cosmology.

In the framework of the standard model, in addition to inflation, another breakthrough

came forth in 1998 when the observation-based accelerated expansion of the universe was

discovered (Perlmutter, Aldering, et al., 1999; Perlmutter, Turner, & White, 1999; Riess

et al., 1998). Before this discovery, it was, however, thought that in the perspective of all

known forms of matter and energy that obey the strong energy condition ρ+3p > 0, the

expansion of the universe would slow down over time. This was a natural consequence

of Friedmann’s equations that play a central role in the evolution of the universe. From

the 2nd Friedmann’s equation ä
a = −4πG

3 (ρ+ 3p) that have to absolutely dictate the

cosmic acceleration phenomenon, the universe must be undergoing deceleration charac-

terized by the deceleration parameter q0 = −aä
ȧ2
; however, astoundingly the value of the

deceleration parameter was observationally determined to be less than zero i.e. q0 < 0,

meaning that the expansion of the universe is accelerating rather to be decelerating. The

discovery of the accelerated expansion has won the Noble Prize of 2011 in Physics in

favor of its discoverers namely Saul Perlmutter, Brian Shmidt, and Adam G. Riess. In
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order to explain the cause of the accelerated expansion, an exotic form of energy density

was hypothetically introduced that is usually known as dark energy. The name ”dark

energy” was first used by D. Huterer and M. S. Turner in their 1999 paper (Huterer &

Turner, 1999). On the basis of observational data, the present budget of the universe is

contributed about 70% by dark energy, 26% dark matter, and 4% ordinary baryon mat-

ter where the dark side of the universe is prevalent and sits patiently in a camouflaged

hide. Based on it, dark energy constitutes two-thirds whereas the matter in its baryonic

and dark form amounts to one-third of the total cosmic species. It is significant to

remark that dark energy is substantially effective on the largest scales of intra-galaxies

and does not affect gravitationally bound local systems such as the solar system, or local

distances between planets or stars. There exist a large number of proposed models to

explain the origin and nature of dark energy. Many independent observations lend sup-

port to the existence of dark energy such as discovery of cosmic background radiation

(CMB) radiation, supernovae of Type Ia (SN, Ia), Baryonic acoustic oscillation (BAO),

etc. Dark energy, today constitutes a very significant subject of standard cosmology in

the wake of observational data by providing information about its basic nature, how-

ever, its exact nature remains unknown to the present day, for reviews see the references

(Nojiri & Odintsov, 2007; SAMI, 2009; Bamba, Capozziello, Nojiri, & Odintsov, 2012;

Nojiri, Odintsov, & Oikonomou, 2017b).

The layout of this ongoing Section 1.1 is as follows: Section 1.1.1 begins with describing

relativistic cosmology with some discussion on its underlying principles. The basics of

general relativity with cosmological principle and Weyl’s principle are discussed briefly

in its subsections . The standard model of cosmology is discussed in Section 1.1.2 with

thirteen subsections underlying it . We carry out a reviewal study of the standard model

of cosmology by investigating the geometric structure of spacetime related to it in the

framework of general relativity. In these subsections, possible geometries concerned

with the standard FLRW universe are also discussed, in addition to the derivation of

Friedmann equations. The consequences based on Friedmann’s equations about cosmic

evolution are its part as well, ending in the discussion of cosmological problems faced by

the standard model. In Section 1.1.3, we embark on inflation and discuss its dynamics

in scalar field perspective. It is observed that how the proposal of exponential expan-

sion in the early universe logically solves the cosmological problems. It comprises five

subsections investigating the dynamics of slow-roll inflation and its related definitions.

Further, four indices are added in the end to elaborate on some relevant topics. In
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Appendix-03, the structure of space, time, and spacetime is reviewed as it is described

in relativity and prerelativity perspectives.

1.1.1 Relativistic Cosmology

Albert Einstein himself applied general relativity to the largest scale of spacetime (Einstein,

1986) and presented the very first relativistic model of the universe laying the founda-

tions of modern theoretical cosmology. The model was later on called as Einstein world

or universe. For this purpose, Einstein modified his field equations by proposing an

inherent energy density known as cosmological constant Λ in the geometrical structure

of spacetime itself that provides repulsive gravity to keep the universe from expanding.

Relativistic cosmology was, however founded on three fundamental principles

1. Cosmological principle;

2. Weyl’s principle;

3. General relativity.

These are illustrated in the following subsections.

1.1.1.1 Cosmological Principle

The cosmological principle states that on sufficiently large scale, the universe is ho-

mogenous and isotropic at any time. Therefore, it is the same for all observers and has

similar properties on larger scales. It is the generalization of Copernican Principle which

incorporates two aspects of uniformity that is homogeneity and isotropy and almost all

the standard cosmological models of the spacetime underpin it explicitly or implicitly.

Homogeneity means location independence, i.e., all places in the universe at galactic

scales are indistinguishable. Isotropy gives direction independence, i.e., in whatever di-

rection we look in the universe it appears the same. Certainly, the isotropy connotes

homogeneity, however this is not true vice versa. It has two forms:

1. Cosmological principle with respect to spatial invariance;

2. Cosmological principle with respect to temporal invariance.

In spatial invariance, we suppose the invariance of space with respect to translational and

rotational properties known as homogeneity and isotropy, respectively, and the principle
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may be regarded as cosmological principle. Under both the invariant properties the space

remains isomorphic. Temporal invariance in cosmological principle, on the other hand

leads to a static universe that does not change with time and exists from a time without

beginning. It deprives cosmic evolution from a free will. A perfect cosmological principle

incorporates temporal homogeneity and isotropy which was employed by the steady

state theory of the eternal universe and was not supported by the observations and was

therefore disfavored. Slight time translation symmetry breakage leads to the universe

to evolve in the present form. For a local observer the principle might not be satisfied

as the Earth and the solar system are not homogeneous and isotropic since the matter

clumps together to form objects like planets, stars, galaxies with voids of vacuum-like

in between them but on the larger scales of about MP ¿ 1000 Pc the universe obeys the

cosmological principle. The uniformity of CMB radiation in all directions (homogeneity

and isotropy) provides the confirmatory proof of the cosmological principle.

1.1.1.2 Weyl’s Principle

Weyl’s principle helps us consider the universal stuff as consisting of a fluid, the particles

of which are constituted by galaxies. Therefore, what we name “the universe” is just

cosmic fluid. In the cosmological spacetime, the world lines of the fundamental observers

form a smooth bundle of time-like geodesics which would never meet except in the past

singularity from where the universe emerged or at the future singularity if it would

happen. The fundamental observers are those who comove with the cosmic fluid. The

world lines of galaxies as fluid particles are always and everywhere orthogonal to the

family of spatial hypersurfaces. The postulate was presented by Hermann Weyl (1885–

1955) in 1923 which is essentially about the nature of matter in the universe (Scholz,

2001). He regarded the material content of the universe in the form of fluid whose

constituent particles make a substratum in the cosmic fluid.

It means that in the substratum of spacetime it allows us to consider the structure of

the universe as fluid. The Weyl principle introduces further symmetry in the structure

of spacetime described by the metric tensor by considering the galaxies as test particles

and postulates that the geodesics on which these galaxies move do not intersect. It

states that the world lines of galaxies considered as “test particles” form a 3-bundle of

non-intersecting geodesics orthogonal to a series of spacelike hypersurfaces.
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1.1.1.3 General Relativity

General relativity played a key role in establishing the cosmic expansion and provided

clues and imprints for later developments to crop up related to accelerated cosmological

expansion in the very and late early universe. General relativity provides the best

existing theory of gravitation on cosmological scales and models it as structured into

the geometric structure of spacetime. In Appendix-03, the structure of spacetime is

reviewed as described by classical and relativistic mechanics. It would be convenient to

have a retrospective look into the basics of general relativity whose role has been very

fundamental to the modern cosmology. Therefore, we briefly review the structure of

the theory specifically in connection with the geometrical structure of spacetime in it.

General relativity in its core describes that gravity is the geometry of four-dimensional

spacetime manifested through its curvature. It is a theory of spacetime and gravitation

that are the very basic components of the universe. Einstein’s journey towards general

relativity in order to introduce gravity in his previous theory sought the fascinating

geometry of the structure of spacetime, such that gravity as a field force disappeared

and was assimilated in the very geometric structure of spacetime. In constructing the

framework of new theory, Einstein was influenced and governed by Mach’s principle,

which states that it is a priori existence and distribution of matter which determines the

geometry of spacetime, and in the absence of it, there shall be no geometric structure

of a spacetime in the universe. Therefore, there will be no inertial properties in an,

otherwise, empty universe. In general, relativity gravitation and inertia are essentially

indistinguishable. The metric tensor gµν describes the effect of both combinedly, and

it is arbitrary to ask which one contributes its effect more and which less, therefore

to call it with a single name is suitable either inertia or gravitation (De Sitter, 1916).

In general relativity gravitation, inertia and the geometry of spacetime are coalesced

into a single entity represented by a symmetric tensor of second rank gµν which owes

its existence due to presence and distribution of matter which is represented by an

other symmetric tensor Tµν known as energy-momentum tensor. The metric tensor gµν

is the fundamental object of study in general relativity and takes into consideration

all the causal and geometrical structure of spacetime. General relativity underlies five

fundamental principles connotated by it implicitly or explicitly manner (D’Inverno &

Harvey, 1993):

1. The principle of general covariance

(Page 12 of 216)



The laws of physical phenomena are same both for inertial and non-inertial frames

of reference and it establishes equivalence between all observers. Consequently, it

requires the covariant formulation of physical laws, which is accomplished using

the coordinate-independent language of tensors.

2. The principle of equivalence between gravitation and inertia

In general relativity, gravitation and inertia are not essentially different entities.

The fundamental tensor gµν assimilates both, however with arbitrary ratio. The

weak and strong forms of equivalence principle give the coupling of gravitational

field to everything and everything moves in it without dependence on its mass

and composition respectively. The principle of equivalence allows to construct a

coordinate system in which gravitational effects can be made to disappear.

3. The Mach’s principle

Mach’s principle is about ontological property of being. It describes that it is

the distribution of matter that specifies cosmic geometry and in the otherwise

condition, there would exist no geometry.

4. The principle of minimal gravitational coupling

This principle explicates how one could make a shift from special covariance to

general covariance. It describes that the unnecessary terms should be avoided

being added in Riemann’s curvature tensor.

5. The principle of correspondence

It describes that general relativity must concur with special relativity and New-

ton’s law of gravitation for the absence and the weak field limit of gravitational

field respectively. It is also known as the principle of consistency.

The principle of general covariance and equivalence principles are explicitly implied

whereas the rest of three are implicitly assumed in the formulation of general relativity.

Furthermore, in explaining Mach’s principle, Einstein was impelled to tacitly assume

the essence of cosmological principle. The principle of equivalence and the principle of

general covariance lie at the heart of general relativity and are concomitantly implied.

The principle of general covariance can be derived from the equivalence principle. In the

light of the principle of general covariance, the theory requires that the laws of physics

might be formulated in a coordinate-independent style. The coordinate-independence

requires the replacement of partial derivatives by covariant derivatives which further

introduces the connection coefficients Γλ
µν as the 2nd kind of Christoffel symbols. The
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presence of the gravitational field demands existence of metric tensor gµν and the affine

connection Γρ
µν . All the geometric structure of the curved spacetime is based on the

existence of these tensor and nontensors respectively (Weinberg, 1972; P. J. E. Peebles

& Peebles, 1993; D’Inverno & Harvey, 1993). The field equations of general relativity

read as Gµν = 8πTµν , where Gµν = Rµν − 1
2gµνR is the Einstein tensor and is expressed

in terms of Ricci tensor Rµν , metric tensor gµν , and Ricci scalar R, whereas Tµν is the

energy momentum tensor standing for whatever is existing physically or as effect therein

coherently associated with physical objects or within physical objects. The spacetime

continuum of general relativity is postulated as a 4-dimensional Lorentzian manifold

(M, g), where M denotes the Manifold and g is metric defined over it. The geometry

of a spacetime is encoded in its metric which has a geodesic structure, though complex

and frequently solved numerically for a specific bunch of geodesics. These geodesics

specify the physical properties of the geometry of spacetime which are interpreted by

drawing graphically in a certain spacelike volume. In general relativity, the geometry

of spacetime is itself gravity and is described through dynamic structure of spacetime

in its framework. The interaction between spacetime and the content it contains taken

together form what we manifestly call cosmological phenomenon of which the causally

connected patch is what makes our observable universe. General relativity thus models

the universe as something whose warp and woof is woven by spacetime itself. This

formulates that the universe is not more than dynamics of spacetime. John Archibald

Wheeler has described general relativity in a single sentence ”Matter tells spacetime

how to curve and spacetime tells the matter how to move” (Thorne, Misner, & Wheeler,

2000). The presence of matter occasions the geometry of spacetime as the geodesic

fabric which governs other matter. General relativity thus transforms gravitation from

being a force to being it a property of spacetime, so that gravity does remain a force

but curvature of the geometric structure of spacetime. Einstein worked out a relation

between matter–energy content of the universe and its gravitating effects in the form of

geometry of spacetime. He employed the language of tensors to describe it. The invariant

interval between two events separated infinitesimally with coordinates (t, x, y, z) and

(t+ dt, x+ dx, y + dy, z + dz) has been defined according to special relativity

ds2 = ηµνdx
µdxν (1.1.1)

which defines a Lorentz invariant Minkowski flat spacetime whose spacetime geometry is

encoded in ηµν . Under the change of coordinates ds2 remains invariant and is spacelike

for ds2 < 0, timelike for ds2 > 0 and light-like for ds2 = 0. Material bodies travel on
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time-like geodesics whereas the rays of light follow the light-like geodesics. The light

rays i.e. photon path is described by ds = 0 and the baryonic matter following a path

between two events comes out for which

∫

ds = 0 (1.1.2)

i.e., it generates stationary values and conforms to the shortest distance between two

points to be a straight line which means that there are no external forces to set their

path deviated. General relativity was based on five basic principles as explained earlier

which are incorporated into it in explicit form or implicit form, namely, equivalence

principle, relativity principle, Mach’s principle, and Correspondence principle. Tensors

are geometric objects defined on a manifold M, which remain invariant under the change

of coordinates. It is composed of a set of quantities which are called its components,

therefore it is the generalization of a vector which means that it has more than three

components. They represent mathematical entities that conform to certain laws of

transformations. The properties of components of a tensor do not depend on a coordinate

system that is used to describe the tensors. The transformation laws of a tensor relate

its components to two different coordinate systems. The mathematical representation

of a tensor is displayed usually by considering a boldface alphabetical letter like A, B,

T, P, etc. with an index or a set of indices in the form of superscripts or subscripts

or both in mixed form. These superscripts and subscripts in the case of a tensor are

called contravariant and covariant indices. Contravariant indices of a tensor are used

to give the meaning of contravariant components of it like Aµ, Aµν , Aµνξ...... Covariant

indices of a tensor are used to signify the meaning of contravariant components of it

like Aµ, Aµν , Aµνξ...... The indices of both types namely contravariant and covariant are

used to specify the components of a mixed tensor like Aν
µ, A

ν
µξ, A

νσ
µ , Aνσ...

µξυ.... A mixed

tensor is a tensor that has contravariant as well as covariant components. The number

of indices appearing in the symbol representing a certain type of a tensor is known as its

rank. The appearing indices in the symbol representing a tensor can be contravariant

or covariant or both types of indices in it. The order of a tensor is the same thing

as rank, only the name differs. The number of components of a tensor is related to

its rank or order and the dimensions of the space in which the is being described. In

n-dimensional space, a tensor of rank, say, k will have a number of components equal

to the number of components of a tensor in n-dimensional space is equivalent to nk =

(number of dimensions of space)rank. However, the spacetime of general relativity is

pseudo-Riemannian having four dimensions, three spatial and one temporal. Coordinate
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patches are necessarily considered to map the whole of the spacetime. Each point-event

of a coordinate patch in the four-dimensional pseudo-Riemannian spacetime is labeled

by a general coordinate system, which conventionally runs over 0, 1, 2, and 3, where

0 stands for time and the rest for space coordinates. An inertial or otherwise frame of

reference characterized by a coordinate system can be attached to every point event of

the spacetime and coordinate transformations between any two coordinate systems can

be found. These can be written as

A′
µ =

∂xν

∂x′µ
Aν

B′µ =
∂x′µ

∂xν
Bν

A
′µ
ν =

∂x
′µ

∂xζ
∂xσ

∂x′ν
Aζ

σ

(1.1.3)

while switching to Riemannian geometry for non-Euclidean spaces ordinary partial dif-

ferentiation is generalized to covariant differentiation and is defined using a semi-colon

; as

Bν;µ = ∂,µBν − Γσ
νµBσ

Bν
;µ = ∂,µB

ν + Γν
µσB

σ
(1.1.4)

where comma , denotes an ordinary partial differentiation with respect to the corre-

sponding variable and ; signifies covariant differentiation. In the covariant differentia-

tion, indices can also be raised or lowered with the help of metric tensor, however on

differentiating it covariantly, we see it vanishes, i.e., gµν;α = 0. The interval between

infinitesimally separated events xµ and xµ + dxµ is given by

ds2 = gµνdx
µdxν (1.1.5)

The corresponding contravariant tensor of gµν is given by gµν and they result in Kro-

necker delta. Moreover, indices can be lowered or raised using the metric tensor in either

form as

gµνg
µζ = δζν

gµνB
ν = Bµ

gµνBν = Bµ

(1.1.6)

In general relativity, all the geometry of curved spacetime is contained in the second-

rank symmetric tensor gµν known as fundamental or metric tensor and is the function

of four coordinates gµν = gµν (x0, x1, x2, x3) and gµν encodes all the information about

gravitational field induced by presence of matter. It governs the other matter as a re-

sponse mimicking the role of gravitational potential similar to that of Newtonian gravity
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so that the paths remain no more straight, and the action in Eq. (1.1.2) determines the

path of a free particle known as geodesic

d2xµ

ds2
+ Γµ

νζ

dxν

ds

dxζ

ds
= 0 (1.1.7)

where

Γµ
νζ = gµλΓνζλ =

1

2
gµλ

(

∂gνλ
∂xζ

+
∂gζλ
∂xν

+
∂gνζ
∂xλ

)

(1.1.8)

are the Christoffel symbols which through the geodesic equation specify the world lines

of free particles. The “acceleration due to gravity” in Newtonian gravitation law is

described by these symbols in Einstein’s picture of gravity as the geometric properties

of spacetime encoding the similar information. Locally these symbols vanish in the

inertial frame of reference in free fall and under coordinate transformation from xµ and

x′µ do not constitute components of a tensor and therefore do not represent a tensor.

Γ′σ
µν =

∂x′σ

∂xλ
∂xζ

∂x′µ
∂xρ

∂x′ν
Γλ
ζρ +

∂2xζ

∂x′µ∂x′ν
∂x′σ

∂xζ
(1.1.9)

The Riemann tensor is defined as

Rσ
µνλ =

∂

∂xν
Γσ
µλ − ∂

∂xλ
Γσ
µν + Γn

µλΓ
σ
nν − Γn

µνΓ
σ
nλ (1.1.10)

It has symmetry properties and satisfies the following Bianchi identity:

Rσ
µνλ;ζ +Rσ

µζν;λ +Rσ
µλζ;ν = 0 (1.1.11)

The Ricci tensor is obtained from Riemann tensor contracting

Rµν = gλσR
σ
µνλ =

∂

∂xν
Γσ
µλ − ∂

∂xλ
Γσ
µν + Γn

µλΓ
σ
nν − Γn

µνΓ
σ
nλ (1.1.12)

Another expression of Ricci tensor is written in the form given below when determinant

of the metric tensor gµν is envisaged as a matrix and denoted by g

Rµν = Γλ
µν,λ −

(

ln
√−g

)

,µν
+
(

ln
√−g

)

,λ
Γλ
µν − Γλ

πµΓ
π
λν (1.1.13)

The Ricci scalar or scalar curvature is described as

R = gµνRµν (1.1.14)

contraction of the Bianchi Identity in Eq. (1.1.11) gives

Rµν −
1

2
gµνR (1.1.15)

which is the Einstein tensor. Now we can write basic equations of general relativity

Rµν −
1

2
gµνR = 8πTµν (1.1.16)
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or

Gµν = 8πTµν (1.1.17)

Gµν ∝ Tµν (1.1.18)

These are written with cosmological constant also. From Eq. (1.1.17)

Gµν + Λgµν = 8πTµν (1.1.19)

The energy-momentum tensor Tµν is the source term for the metric tensor gµν which for

a most general matter-energy fluid that is consistent with the assumption of homogeneity

and isotropy represents a perfect fluid and has the form

Tµν = (ρ+ p)uµuν − pgµν (1.1.20)

where uµ = (1, 0, 0, 0) is the four velocity in a comoving frame of reference and

Tµν =















ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p















(1.1.21)

1.1.2 The Standard Model of Cosmology

The standard model in cosmology has been established on the most general homogeneous

and isotropic spacetime. The standard model that propounds the hot big bang model of

the universe is known as Friedmann–Lemaitre–Robertson–Walker (FLRW) line element

which reads as in the Cartesian coordinates

ds2 = −dt2 + dx2 + dy2 + dz2 (1.1.22)

or in spherical coordinates, we have

ds2 = g = gµνdx
µdxν = −dt2

+ a(t)2
(

1

1− kr2
dr2 + r2dθ2 + r2sin2θdϕ2

) (1.1.23)

The predictions for the quantitative behavior of the expanding universe is enunciated

suitably by the metric tensor and the scale factor as a function of time, i.e., a(t) describes

the scale of coordinate grid interrelating the coordinate distance with physical distance,

i.e., in a smooth and homogeneously expanding universe.
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1.1.2.1 Geometric Properties of the FLRW Line Element

From the line element in Eq. (1.1.23), as the time flows only in one direction and the

space obeys the cosmological principle, therefore we are allowed to separate the metric

in temporal and spatial parts. To understand the four dimensional spacetime geometry

of FLRW universe we begin with the geometry of spatial part of the line element that is

a(t)2
(

1

1− kr2
dr2 + r2dθ2 + r2sin2θdϕ2

)

(1.1.24)

This is the spatial part of the metric in Eq. (1.1.23) and is characterized by the scale

factor a(t), which is the explicit function of time and 2nd curvature of the space k.

These parameters are obviously determined by the self-gravitating properties of the

matter–energy content in the universe. The spatial part of the metric incorporates

cosmological principle implying homogeneity and isotropy which provides the kinematics

for the geometry of space(spacetime) while we will observe afterwards that Einstein

equations provide the dynamics into it through supplying the scale factor a (t).

1.1.2.2 Comoving Coordinates and Peculiar Velocities

The coordinates (r, θ, ϕ) form the cosmological rest frame and are known as comoving

coordinates. They can be considered constant because the particles remain at rest in

these coordinates. The peculiar velocity is the motion of the particles with respect to the

comoving coordinates. The peculiar velocities of the galaxies and the supernovae are ig-

nored in cosmology on cosmological scales in the expanding spacetime. The galaxies are

envisaged to constitute the fundamental particles of which the cosmic fluid is considered

to consist of altogether. As p (a) ∝ 1
a(t) , therefore momentum in expanding spacetime

is red-shifted and freely moving particles come to rest in comoving coordinates. The

physical distance between two points is calculated as the scale factor a (t) times the

coordinate distance i.e. it is the product of coordinate distance and the cosmic scale

factor. The expression inside the bracket(parenthesis) without the scale factor a (t) is

solely kinematical statement of the geometry of space(spacetime) and demonstrates a

hypersurface as it is embedded in four-dimensional geometry of spacetime

1

1− kr2
dr2 + r2dθ2 + r2sin2θdϕ2 (1.1.25)

and represents the line element of the three-dimensional space with hidden symmetry of

being homogeneous and isotropic. It represents three geometries for the corresponding
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three values of the curvature term k. The expression multiplied by the scale factor a (t),

however indicates an expanding space embedded in a four-dimensional spacetime.

1.1.2.3 The Geometry of Spherical World

For k = +1, the hypersurface is

1

1− r2
dr2 + r2dθ2 + r2sin2θdϕ2 (1.1.26)

and represents a three dimensional sphere embedded in a four dimensional Euclidean

space. This space is finite and closed.

1.1.2.4 The Geometry of Hyperbolic World

For k = −1, the hypersurface is

1

1 + r2
dr2 + r2dθ2 + r2sin2θdϕ2 (1.1.27)

and demonstrates a three-dimensional hypersphere or hyperbola embedded in a four-

dimensional pseud-Euclidean space. This space is open and infinite.

1.1.2.5 The Geometry of Euclidean World

For k = 0, the hypersurface is

dr2 + r2dθ2 + r2sin2θdϕ2 (1.1.28)

and shows a three-dimensional Euclidean flat space. This space is also infinite and open.

1.1.2.6 Friedmann Equations for Cosmological Evolution

Now, using the Einstein field equations, we set to derive the Friedmann’s Equations that

describe the evolution of the universe by relating the large-scale geometrical character-

istics of spacetime to the large-scale distribution of matter–energy and momentum in it.

We determine the following Einstein Field Equations for the metric in Eq. (1.1.23)

3
[

(

ȧ
a

)2
+ k

a2

]

= 8πGρ

g11

[

2 ä
a +

(

ȧ
a

)2
+ k

a2

]

= −8πGp

g22

[

2 ä
a +

(

ȧ
a

)2
+ k

a2

]

= −8πGp

g33

[

2 ä
a +

(

ȧ
a

)2
+ k

a2

]

= −8πGp

(1.1.29)
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In the first place we derive these equations without incorporating cosmological constant.

From Eq. (1.1.29), we can write

3

[

(

ȧ

a

)2

+
k

a2

]

= 8πGρ (1.1.30)

2
ä

a
+

(

ȧ

a

)2

+
k

a2
= −8πGp (1.1.31)

For other two components expressed in Eq. (1.1.29) the 2nd and 3rd components repeat,

therefore we will write only one time from the three components. From Eqs. (1.1.30)

and (1.1.31), we derive the Friedmann’s Equations and another equation for the conser-

vation of cosmic matter stuff that is how energy density, pressure and cosmic expansion

rate interdependently evolve. For this purpose, substituting Eq. (1.1.30) in Eq. (1.1.31)

and performing simplification, we get

ä

a
= −4πG

3
(ρ+ 3p) (1.1.32)

and from Eq. (1.1.30) which is the time-time component of the Einstein Equations.

(

ȧ

a

)2

+
k

a2
=

8πG

3
ρ (1.1.33)

for
ȧ

a
= H (1.1.34)

which is Hubble parameter and gives expansion rate. The above Eq. (1.1.34) can be

written as

H2 +
k

a2
=

8πG

3
ρ (1.1.35)

differentiating Eq. (1.1.34) with respect to time ‘t’

∂tH = ∂t

(

ȧ

a

)

(1.1.36)

we obtain

Ḣ =
ä

a
−H2 (1.1.37)

which gives

Ḣ +H2 =
ä

a
(1.1.38)

Therefore, that Eq. (1.1.32) takes the form in terms of Hubble parameter.

Ḣ +H2 = −4πG

3
(ρ+ 3p) (1.1.39)

we can also find

Ḣ = −4πG

3
(ρ+ 3p)−H2 (1.1.40)
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From Eq. (1.1.35) H2 = 8πG
3 ρ with k = 0, for flat universe substituting it in Eq. (1.1.40)

above

Ḣ = −4πG

3
(ρ+ 3p)− 8πG

3
ρ (1.1.41)

which results in

∂tH = −4πG (ρ+ p) (1.1.42)

Now, differentiating Eq. (1.1.30) with respect to time after shifting the factor 3 on the

right side, we have

ȧ

a

[

2
ä

a
− 2

(

ȧ

a

)2

− 2
k

a2

]

=
8πG

3
ρ̇ (1.1.43)

subtracting now Eq. (1.1.30) from Eq. (1.1.31), we obtain

2
ä

a
− 2

(

ȧ

a

)2

− 2
k

a2
= −8πG (ρ+ p) (1.1.44)

substituting Eq. (1.1.44) in Eq. (1.1.43), after simplification we have

ρ̇+ 3
ȧ

a
(ρ+ p) = 0 (1.1.45)

The cosmological principle compels us to consider a fluid in which inhomogeneities will

be considered smoothed out and evolution of the universe shall be considered in the

form of perfect fluid characterized by energy density ρ and isotropic pressure p and are

contributed by all types of whatever exists and constitutes the universe. Further we

consider that the pressure of the fluid depends only on the density neglecting its impact

on the cosmic volume and the temperature, i.e., p = p (ρ) which defines a barotropic

fluid. In addition, pressure and density bear a linear relationship

p ∝ ρ ⇒ p = wρ (1.1.46)

where w = p
ρ is a dimensionless constant known as equation of state parameter. Substi-

tuting Eq. (1.1.46) in Eq. (1.1.45), we have another form of energy conservation for the

equation of state parameter w,

ρ̇

ρ
+ 3

ȧ

a
(1 + w) = 0 (1.1.47)

Now, Eqs. (1.1.32), (1.1.33), and Eq. (1.1.45) represent two Friedmann’s Equations,

namely, acceleration and evolution equations, and the equation of conservation, respec-

tively. According to this equation, the evolution of all kinds of matter is determined by

the conservation of energy and momentum.

We have to incorporate dark matter and dark energy in the matter–energy content

due to the significance of their role in current accelerated expansion and the present
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Minkowskian flat geometry of the universe. Therefore, their role is however unavoidable

in the evolution of the universe. The solution of FLRW line element gives the Friedman’s

equations using Einstein field equations with cosmological constant Λ written usually in

the form

Gµν + Λgµν = 8πTµν (1.1.48)

and Friedmann’s equations with cosmological constant Λ can be worked out

ȧ2

a2
+

k

a2
=

8πG

3
ρ+

Λ

3
(1.1.49)

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
(1.1.50)

The equation of energy conservation can also be calculated from these Friedman equa-

tions in the presence of cosmological constant Λ. Multiplying Eq. (1.1.49) with 3a2,

differentiating it with respect to time and then dividing by ȧ, we have

6ä = 8πGa
(

2ρ+
a

ȧ
ρ̇
)

+ 2Λa (1.1.51)

dividing Eq. (1.1.51) by a.

6
ä

a
= 8πG

(

2ρ+
a

ȧ
ρ̇
)

+ 2Λ (1.1.52)

Substituting now the 2nd Friedman Equation from Eq. (1.1.50) in it, we have

6

(

−4πG

3
(ρ+ 3p) +

Λ

3

)

= 8πG
(

2ρ+
a

ȧ
ρ̇
)

+ 2Λ (1.1.53)

after simplification, we obtain Eq. (1.1.45) again. In order to get the relation between en-

ergy density ρ, scale factor a and equation of state parameter w = p
ρ we solve Eq. (1.1.45)

ρ̇ = −3
ȧ

a
(ρ+ p) = −3

ȧ

a
ρ

(

1 +
p

ρ

)

(1.1.54)

⇒ ρ̇

ρ
= −3

ȧ

a
(1 + w) (1.1.55)

where p
ρ = w. Integrating Eq. (1.1.55)

∫

1

ρ
dρ = −3 (1 + w)

∫

1

a
da (1.1.56)

which gives

ρ = a−3(1+w) (1.1.57)

Now from 1st Friedmann equation, after simplification and performing integration, we

find

a = t
2

3(1+w) (1.1.58)

For w = −1, 0, 1
3 , we find pressure, energy density and scale factor characterizing

the expansion of the universe which demonstrates three phases of the universe namely

vacuum dominated, radiation dominated and matter dominated, respectively.
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1.1.2.7 Vacuum Domination (Λ-Dominated Era)

For w = −1

ρ = a−3(1+w) = a0 (1.1.59)

and

a = t
2

3(1−1) = t∞ (1.1.60)

1.1.2.8 Radiation Domination

For w = 1
3

ρ = a−3(1+ 1
3) = a−4 (1.1.61)

and

a = t

2

3(1+1
3) = t

1
2 (1.1.62)

1.1.2.9 Matter Domination

For w = 0

ρ = a−3(1+0) = a−3 (1.1.63)

and

a = t
2

3(1+0) = t
2
3 (1.1.64)

1.1.2.10 Critical Density (ρc) and Density Parameter (Ω)

Now, considering the cosmic evolution equation that is the first Friedman Eq. (1.1.33)

in the presence of cosmological constant Λ = 0 and H = ∂t ln a, we relate the curvature

of spacetime k and the expansion characterized by the scale factor a (t) to the energy

density ρ (t) of the universe and find the expression for the critical density required to

keep the current rate of the expansion.

H2 =
8πG

3
ρ− k

a2
(1.1.65)

For critical density ρc the curvature of spacetime geometry k must vanish, so that

Eq. (1.1.65) reduces to the form

H2 =
8πG

3
ρ (1.1.66)

where we obtain the expression for critical density

ρ = ρc =
3H2

8πG
(1.1.67)
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From Eq. (1.1.65) dividing both sides by H2 and rearranging

1 =
8πG

3H2
ρ− k

a2H2
=

ρ
(

3H2

8πG

) − k

a2H2
(1.1.68)

where 3H2

8πG = ρc, therefore Eq. (1.1.68) becomes

1 =
ρ

ρc
− k

a2H2
= Ω− k

a2H2
(1.1.69)

⇒ Ω− 1 =
k

a2H2
(1.1.70)

where Ω = ρ
ρc

is the density parameter and we can predict in terms of it about the ge-

ometry of universe. The local geometry of the universe is investigated by this parameter

by observing whether the relative density is smaller than unity, greater than or equal

to it. In the Figure-1.1 given below, all three geometries are illustrated based on the

unity value of density parameter Ω. Three possible geometries spherical, hyperbolic and

Euclidean emerge as the density parameter allows for shifting away, shifting towards

unity and having equivalent value to it respectively.

Figure– 1.1: Three spatial geometries: spherical geometry correspnds to Ω0 > 1 and

hyperbolic geometry corresponds to Ω0 < 1 whereas Ω0 = 1 represents flat geometry

Now, Eq. (1.1.70) can also be derived from Eq. (1.1.65) in an alternative style. Writing

now Eq. (1.1.65) by multiplying and dividing the 1st term on the right side with ρc

H2 =
8πGρ

3

ρc
ρc

− k

a2
(1.1.71)

Using the density parameter Ω = ρ
ρc
, in Eq. (1.1.71) we can write

H2 =
8πG

3
ρcΩ− k

a2
(1.1.72)
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Now, from the critical density expression in Eq. (1.1.67),

⇒ 3
8πG = ρc

H2

⇒ 8πG
3 = H2

ρc

(1.1.73)

substituting the 2nd part in Eq. (1.1.73) in Eq. (1.1.72) and using the density parameter,

we get

H2 = H2Ω− k

a2
(1.1.74)

which gives the following form similar to Eq. (1.1.70)

Ω− 1 =
k

a2H2
(1.1.75)

Now,

Ω =
ρ

ρc
(1.1.76)

is considered decisive in describing the evolution of the universe. The present value of

it is denoted by Ω0 and it gives following three geometries of the universe

Ω0 > 1 (1.1.77)

a closed universe implying the universe with spherical geometry

Ω0 < 1 (1.1.78)

an open universe implying the universe with hyperbolic geometry and

Ω0 = 1 (1.1.79)

a flat universe implying the universe with Euclidean or Minkowskian geometry. The

present value of critical density can be calculated with present value of Hubble constant

H0, gravitational constant G and π.

ρc,0 =
3H2

0
8πG

= 3(73.8)2

8(3.14)(6.67×10−11)

= 1.1× 10−5h2

(1.1.80)

where the scaled Hubble parameter h is defined by H = 100 hkm s−1 Mpc−1

and

H−1 = 9.778 h−1 Gyr H−1 = 2998 h−1 Mpc.
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1.1.2.11 Particle Horizon

When the scale factor a (t) is multiplied with the co-moving coordinates we get the

proper distance. In cosmology, causality is one directional since we just receive photons

from the outer world that serves to be self-sufficient approach. The horizon or horizon

distance of the universe is defined as the maximum distance that light could have traveled

to our reference, i.e., Earth as the time after the beginning of the universe when for the

first time it became exposed to electromagnetic radiation (Kolb & Turner, 2018), thus

horizon represents the causal distance in the universe.

dH(t) = a(t)

∫ t

0

dt′

a(t′)
(1.1.81)

such that dH(t) ∼ H−1(t) Particle horizon is defined to be the distance traveled by a

photon from the time of big bang up to a certain later time, t. Particle horizon puts

limits on communication from the deep inward past.

1.1.2.12 Event Horizon

An event horizon defines such a set of points from which light signals sent at some given

time will never be received by an observer in the future. It sets limits on the horizon

distance and on communication to the future so that as long as it exists, the size of the

causal patch of the universe will be finite.

1.1.2.13 Deceleration Parameter (q0)

A Taylor series is a series expansion of a function about a given point. We require here

a one dimensional Taylor series which is the expansion of a real function f (x) about a

point x = a and is given by

f (t) = f (x)|x=a = f (a) + f ′ (a) (x− a) + f ′′(a)
2! (x− a)2

+f ′′′(a)
3! (x− a)3 + · · ·+ fn(a)

n! (x− a)n + · · ·
(1.1.82)

We take the function f (x) = a (t) which is scale factor and find its Taylor series expan-

sion about the present time t = t0

a (t) = a (t)|t=t0
= a (t0) + ȧ (t0) (t− t0) +

ä(t0)
2! (t− t0)

2

+ (t0)
3! (t− t0)

3 + · · ·+ an(t0)
n! (t− t0)

n + · · ·
(1.1.83)

dividing Eq. (1.1.83) by a (t0) throughout, we have

a(t)
a(t0)

= a(t0)
a(t0)

+ ȧ(t0)
a(t0)

(t− t0) +
1
2
ä(t0)
a(t0)

(t− t0)
2

+1
6

(t0)
a(t0)

(t− t0)
3 + · · ·+ 1

n!
an(t0)
a(t0)

(t− t0)
n + · · ·

(1.1.84)
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on ignoring the higher terms, we have the following surviving expression

a (t)

a (t0)
= 1 +

ȧ (t0)

a (t0)
(t− t0) +

1

2

ä (t0)

a (t0)
(t− t0)

2 (1.1.85)

multiplying and dividing now by ȧ (t) with 3rd term of Eq. (1.1.85) on the right hand side:

a (t)

a (t0)
= 1 +

ȧ (t0)

a (t0)
(t− t0) +

1

2

ȧ (t0)

a (t)

ä (t0)

ȧ (t0)
(t− t0)

2 (1.1.86)

Multiplying again the 3rd term on the right hand side of Eq. (1.1.86) with ȧ(t0)
a(t0)

and its

reciprocal a(t0)
ȧ(t0)

, we have

a (t)

a (t0)
= 1 +

ȧ (t0)

a (t0)
(t− t0) +

1

2

(

ȧ (t0)

a (t0)
× a (t0)

ȧ (t0)

)

ȧ (t0)

a (t)

ä (t0)

ȧ (t0)
(t− t0)

2 (1.1.87)

Putting for ȧ(t0)
a(t0)

= H0, the present value of Hubble parameter and a(t0)ä(t0)

[ȧ(t0)]
2 = −q0,

Eq. (1.1.87) reduces to the following:

a (t)

a (t0)
= 1 +H0 (t− t0) +

1

2
H2

0 (−q0) (t− t0)
2 (1.1.88)

where

q0 = −a (t0) ä (t0)

[ȧ (t0)]
2 = − ä (t0)

ȧ (t0)
H−1

0 = − ä (t0)

a (t0)
H−2

0 (1.1.89)

is called the deceleration parameter. It tells us that greater the value of q0, the faster

will be speed of deceleration. It can be further related with the acceleration equation

ä (t)

a (t)
= −4πG

3
(ρ+ 3p) (1.1.90)

Putting Eq. (1.1.90) in Eq. (1.1.89)

q0 = −
(

−4πG

3
(ρ+ 3p)

)

H−2
0 (1.1.91)

with p = 0 for a universe having matter domination and present energy density ρ = ρ0

with dividing and multiplying by 2, we possess

q0 =
1

2

8πG

3H2
0

ρ0 (1.1.92)

Now, as the critical density is given by ρc =
3H2

0
8πG from the 1st Friedmann equation.

Therefore Eq. (1.1.92) takes the form

q0 =
1

2

(

1

ρc

)

ρ0 =
1

2

ρ0
ρc

=
1

2
Ω0 (1.1.93)

The measurement of deceleration parameter q0 determines how much bigger the universe

was in earlier times. The explorations conducted on redshift measures of supernovae of

Type SNIa to measure the value of q0 has shown astoundingly that q0 < 0 at the
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present which means that the expansion of the universe is accelerating rather than to

be decelerating which affirms that the concept of dark energy must be acknowledged

altogether. The accelerated expansion of the universe corresponds to q0 < 0, whereas

q0 > 0 corresponds decelerated expansion. It is interesting to notice that for all of these

components we have H > 0, i.e., an increasing scale factor which gives the expansion

rate of the universe. Moreover, to get a better understanding of the properties of each

species, it is useful to introduce the deceleration parameter q0 as

q0 = − äȧ
ȧ2

= − ä
ȧ
a
ȧ

= − ä
ȧH

−1

(1.1.94)

such that for both matter-dominated or radiation-dominated universe the expansion is

decelerating. It is also interesting to notice that components with w < −1
3 give an

accelerated expansion. The standard model of cosmology ensues big bang model to the

origin of cosmological evolution, however it encounters some issues like flatness problem,

horizon problem and monopole problem etc intrinsically related to it. Introduction of

inflation in its very early evolution nonetheless, solves these altogether.

1.1.3 Introduction to Cosmic Inflation

Inflation is the period of superluminally accelerated expansion of the universe taking

place sometime in the very early history of the universe. It is now a widely accepted

paradigm which is described as the monumental outgrowth gushing out during the tiniest

fraction of the first second between (10−36–10−32) s. Inflation maintains that just after

the occurrence of the big bang, exponential stretching of spacetime geometry took place,

i.e., becoming twice in size again and again at least about (60–70) times over before

slowing down. Alexei Strobinsky approached the exponentially expanding phase in the

early universe by modifying Einstein Field Equations whereas Alan Guth approached

the scenario in the realm of particle physics proposing a new picture of the time elapsed

in the very small fraction of the first second in the 1980. He suggested that the universe

spent its earliest moments growing exponentially faster than it does today. There is a

large number of inflation models in hand today but every model has its own limitations

to draw the true picture of what happened actually in the early universe.

As the theory of inflation is recognized today, it has myriad models describing inflation-

ary phase in the early universe. From among the heap of these competing models which

differ slightly from one to the other, no model can claim a complete and all-embracing
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prospectus of what happened actually in the universe so that the fast expansion of or in

spacetime takes place. All the energy density that can be adhered to the early exponen-

tially expanding phase of the universe was in the very fabric of spacetime itself despite

ti being in the form of radiation or particles. The early accelerating phase can be now

best described with de Sitter model with slightly broken time symmetry.

With the creation of spacetime that purports to be the earliest patch of the universe

that comes to being would be stretched apart in an incredibly small time span of the

order of a tiniest fraction of first second to such a colossally larger size that its geometry

and topology would be hardly indiscernible from Euclidean geometry. It will logically

ensue similar initial conditions for the energy density to be dispersed at every point in

the fabric of spacetime and the same will be the condition of temperature in this early

phase. That’s why the quantum fluctuations which seed in later times the structure

formation in the universe impart the uniform temperature to all parts of the universe

thereby resolving the homogeneity problem of the universe. This is because all the quan-

tum fluctuations which cause the observable universe were once causally connected in

the deep past of the universe. It might have attained a highest temperature which was

within or lesser than the limits of Planck scale (1019 GeV). The energy scale mentioned

earlier when the inflation comes to an end and transforms into the uniform, very hot,

largely dense that is a cooling and expanding state we ascribe to the hot big bang. This

will take place for a universe inflating from a lower entropy state to an entropy state at

higher level in the panorama of the hot big bang, where the entropy would carry on to

get larger as it happens in our observed universe. The point of time in the earliest where

the universe can be viewed approximately and hardly as classical is known as the Planck

Era. It is thought that prior to this era the universe might be described as the hitherto

unsuspected theory of certain quantum nature like quantum gravity etc. This era corre-

sponds to EP ∼ 1019GeV > E > EGUT ∼ 1015GeV and the energies, temperature and

times of particles are EP ∼ 1019GeV, TP ∼ 1032K, tP ∼ 10−43 s, respectively. Grand

unified theories describe that at high energies as described above the Electroweak and

strong force are unified into a single force and that these interactions bring the particles

present into thermal equilibrium Electroweak Era corresponds to phase transitions that

occur through spontaneous symmetry breaking (SSB) which can be characterized by the

acquisition of certain non-zero values by scalar parameters known as Higgs fields. Until

the Higgs field has zero values, symmetry remains observable and spontaneously breaks

at the moment the Higgs field becomes non-zero. The idea of phase transitions in the
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very early universe suggests the existence of the scalar fields and provides the motiva-

tion for considering their effect on the expansion of the universe. The power spectrum

of CMB radiation is calculated by measuring the magnitude of temperature variations

versus the angular size of hot and cold spots. In order to understand the nature of CMB

radiation, the spectrum of a perfect blackbody is utilized which is briefly discussed in

Appendix-04. During these measurements, a series of peaks with different strengths and

frequencies are determined which conforms to the predictions of inflation theory which

confirms that all sound waves were indeed produced at the same moment by inflation.

It is believed that inflation might have given rise to sound waves-the waves traveling

in the primordial vacuum-like medium with different frequencies after the big bang at

10−35 s starting in phase and would have been oscillating in radiation era for 380,000

years. Now, in the acoustic oscillations of the early universe, these must be measurable

as power spectrum similar to that of measuring the sound spectrum of a musical instru-

ment. we see how inflationary period is obtained in the perspective of particle physics

where a negative pressure is achieved for it to take place. Friedmann solved EFE with

Λ = 0, so
ȧ2

a2
+

k

a2
=

8πG

3
ρ (1.1.95)

ä

a
= −4πG

3
(ρ+ 3p) (1.1.96)

Eq. (1.1.96) is known as acceleration equation. The inflationary period, as its definition

implies, is the acceleratingly expanding phase of the universe in a very small fraction of

first second, as the expansion is characterized by the scale factor a; therefore, we have

such an era as

ä > 0 (1.1.97)

thus Inflationary era

⇔ ä > 0 (1.1.98)

dividing both sides of Eq. (1.1.98) by scale factor a

ä

a
> 0 (1.1.99)

which is the left hand side of Eq. (1.1.96) and Eq. (1.1.99) altogether and imposes the

condition on the right hand side of Eq. (1.1.96)

−4πG
3 (ρ+ 3p) > 0

⇒ ρ+ 3p < 0

⇒ p < −1
3ρ

⇒ ρ > −3p

(1.1.100)
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For the inflation to occur and set the universe in an accelerating phase, we require the

matter to possess an equation of state with negative pressure. The possibility of this

negative pressure p which is less than negative of one-third of density is in perspective

of symmetry breaking in modern models of particle physics. From

ȧ2

a2
+

k

a2
=

8πG

3
ρ (1.1.101)

ȧ2 =
8πG

3
ρa2 − k (1.1.102)

For ä > o, the scale factor shall increase faster than a (t) ∝ t and the term 8πG
3 ρa2 shall

increase during this accelerated era such that the curvature term k will become negligibly

small and shall vanish. Inflationary era is also defined by considering the shrinking of

Hubble Sphere (Schrödinger, 1985) due to its direct linkage to the horizon problem

and because it provides a fundamental role in producing of quantum fluctuations. The

shrinking Hubble Sphere is defined as

d
[

(aH)−1
]

dt
< 0 (1.1.103)

and
d
[

(aH)−1
]

dt
=

d
[

(

a ȧ
a

)−1
]

dt
=

d
[

(ȧ)−1
]

dt
= − ä

a2
(1.1.104)

− ä

a2
< 0 (1.1.105)

which will imply accelerated expansion

ä > 0 (1.1.106)

At t = 0, the scale factor a characterizing expansion of the universe comes out to be

of a specific value. In Eq. (1.1.101), when ρ = ρϕ is of very larger value and the scale

factor a dominates over the curvature term k, then we have
(

ȧ

a

)2

= H2 =
8πG

3
ρϕ (1.1.107)

a = a0e
Ht (1.1.108)

de Sitter line element is given by

ds2 = −dt2 + e2Ht
(

dx2 + dy2 + dz2
)

(1.1.109)

inflation has to terminate and H is constant, meaning that the de Sitter phase cannot give

perfect inflationary era, however for Ḣ
H2 , it would compensate. It would be interesting

here to note that Z. G. Lie and Y.S. Piao have shown that the universe we observe today

may have emerged from a de Sitter background without having the requirement of a

large tunneling in potential and with low energy scale (Liu & Piao, 2013).
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1.1.3.1 The Conditions under Which the Inflation Occurs

Shrinking Hubble sphere has been considered as basic definition of inflationary era due to

its direct connection to the horizon problem and with mechanism of quantum fluctuation

generations (Baumann, 2009, 2018b, 2018a, 2012). differentiating the comoving Hubble

radius (aH)−1 with respect to time we find the acceleratedly expanding Hubble sphere

∂t(aH)−1 = − ä

ȧ2
(1.1.110)

We see that − ä
ȧ2

< 0, multiplying the inequality by −1 and simplifying, we have

ä > 0 (1.1.111)

which means that shrinking comoving Hubble sphere (aH)−1 points toward accelerated

expansion ä > 0. As Hubble sphere H remains nearly constant, in order to understand

the meaning of nearly constant we see how its slow roll variation takes place, so taking

H as variable

∂t

(

1

aH

)

= − ȧH + aḢ

(aH)2
= −1

a

(

1 +
Ḣ

H2

)

(1.1.112)

where Ḣ
H2 = −ε known as slow roll parameter. It can be inferred that Ḣ

H2 < 0 implies

shrinking Hubble sphere.

1.1.3.2 Slow Roll Inflation—The Cosmological Dynamics of Scalar Field

Elementary particles in modern physics are represented by quantum fields and oscilla-

tions of these fields are translated as particles. Scalar fields represent spin zero particles

in field theories and look like vacuum states because they have same quantum numbers

as vacuum. The matter with negative pressure ρ = −p represents physical vacuum-like

state where the quantum fluctuations of all types of physical fields exist. These fluctua-

tions can be considered as waves of all possible wavelengths related with physical fields,

i.e., wavy physical fields moving freely in all directions. The negative pressure violates

the strong energy condition which is necessary for the inflation to occur. To keep things

simpler a single scalar field namely inflaton ϕ = ϕ (x, t) is considered present in the very

early universe, as the value of the scalar field depends upon position x in space which

assigns potential energy to each field value. It is also dynamical due to being function

of time t and has kinetic energy as well, i.e., energy density ρ (ϕ) associated with the

inflaton ϕ is ρ (ϕ) = ρp + ρk. The ratio of the potential and kinetic energy terms of

ϕ = ϕ (x, t), decides the evolution of the universe. The Lagrangian of the scalar inflaton
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field ϕ is expressed as the energy difference between its kinetic and potential terms, that

is

L =
1

2

(

gµν∂
2ϕ− V (ϕ)

)

(1.1.113)

It is assumed that the background of FLRW universe has been sourced by energy-

momentum associated with the inflaton that dominates the universe in the begin-

ning. We shall observe under what conditions this causes accelerated expansion of

the FLRW universe.

S =

∫

d4x
√−gL =

∫

d4x
√−g

[

1

2

(

gµν∂
2ϕ− V (ϕ)

)

]

(1.1.114)

The energy-momentum tensor of the inflaton field is given as

Tµν = ∂µϕ∂νϕ− gµνL (1.1.115)

or

Tµν = ∂µϕ∂νϕ− gµν (L) (1.1.116)

which for µ = 0, ν = 0 results as

T00 =
1

2
ϕ̇2 +

1

2a2
∇2ϕ+ V (ϕ) (1.1.117)

and for µ = ν = j

Tjj =
1

2
ϕ̇2 − 1

6a2
∇2ϕ− V (ϕ) (1.1.118)

The gradient term vanishes, in the otherwise condition, the pressure gained is much less

than the required value to impart impetus for inflation to take place, therefore we obtain

the following values for energy density and pressure

ρϕ = T00 =
1

2
ϕ̇2 + V (ϕ) (1.1.119)

and

pϕ = Tjj =
1

2
ϕ̇2 − V (ϕ) (1.1.120)

The condition V (ϕ) >> ϕ̇2 corresponds to the negative pressure condition ρϕ = −pϕ

which means that the potential (vacuum) energy of the inflaton derives inflation. Now

using Euler–Lagrange equations

∂µ δ (
√−gL)
δ∂µϕ

− δ (
√−gL)
δϕ

= 0 (1.1.121)

we can find equation for inflaton field that comes to be

ϕ̈+ 3
ȧ

a
ϕ̇− 1

a2(t)
∇2ϕ+ V,ϕ(ϕ) = 0 (1.1.122)
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It can also be computed from the energy density and the pressure terms as given in

Eq. (1.1.119) and Eq. (1.1.120) respectively by substituting in the equation of energy

conservation i.e.,
dρ

dt
+ 3H (ρ+ p) = 0 (1.1.123)

Eq. (1.1.123) in terms of inflation field ϕ

dρϕ
dt

+ 3H (ρϕ + pϕ) = 0 (1.1.124)

By substituting Eq. (1.1.119) and Eq. (1.1.120) in Eq. (1.1.124), we have

d
(

1
2 ϕ̇

2 + V (ϕ)
)

dt
+ 3H

(

1

2
ϕ̇2 + V (ϕ) +

1

2
ϕ̇2 − V (ϕ)

)

= 0 (1.1.125)

(

ϕ̈+ V ′(ϕ) + 3Hϕ̇
)

ϕ̇ = 0 (1.1.126)

ϕ̈+ V ′(ϕ) + 3Hϕ̇ = 0 (1.1.127)

where V ′(ϕ) = dV (ϕ)
dϕ and the term 3Hϕ̇ is known as friction term and offers friction to

the inflaton field when it rolls down (ϕ̇) its potential during expansion of the universe

H = ȧ
a .

1.1.3.3 Conditions of the Slow Roll Inflation

According to the big bang model, that is, the currently accepted model, the universe is

about 14 billion years old. At the point of existence the curvature of spacetime was very

large or equivalently can be described in other words that space was largely warped and

curved where only quantum effects can prevail and the question of time to exist is likely

to become absurd. From this state how the very brief era of exponential expansion can

be had is fulfilled by assumption of scalar field which take the responsibility of such state

mentioned. We know from the 2nd Friedmann’s equation which is acceleration equation

ä

a
= −4πG

3
(ρϕ + 3pϕ) (1.1.128)

For ä > 0

ρϕ + 3pϕ < 0 ⇒ pϕ <
1

3
ρϕ (1.1.129)

From Eq. (1.1.119) and Eq. (1.1.120), on substituting for pϕ and ρϕ in Eq. (1.1.129), it

can be had
(

1

2
ϕ̇2 − V (ϕ)

)

< −1

3

(

1

2
ϕ̇2 + V (ϕ)

)

(1.1.130)
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solving the inequality and keeping in mind that ϕ̇ is a squared term, we have

ϕ̇2 << V (ϕ) (1.1.131)

which means that the inflaton field is slowly rolling down its potential. Differentiating

Eq. (1.1.131) with respect to time, we have

ϕ̈ <
1

2
V ′(ϕ) (1.1.132)

Now, from Eq. (1.1.127), we obtain

ϕ̈+ V ′(ϕ) = −3Hϕ̇ (1.1.133)

We neglect the acceleration providing term ϕ̈ = d2ϕ
dt2

as the inflaton field has to roll now

slowly to escape from graceful exit problem in inflation i.e., it is decelerating, so we

write

V ′(ϕ) = −3Hϕ̇ (1.1.134)

plugging Eq. (1.1.134) into Eq. (1.1.132), it gives

ϕ̈ <
1

2
(−3Hϕ̇) (1.1.135)

On neglecting the constant factor, it gives

ϕ̈ << 3Hϕ̇ (1.1.136)

differentiating now Eq. (1.1.134) with respect to time,

3
(

Ḣϕ̇+Hϕ̈
)

= −V ′′(ϕ)ϕ̇ (1.1.137)

As H remains constant during inflation, therefore Ḣ vanishes and we have

ϕ̈ = −V ′′(ϕ)ϕ̇
3H

(1.1.138)

Putting Eq. (1.1.138) in Eq. (1.1.136), we obtain

−V ′′(ϕ)ϕ̇
3H

<< 3Hϕ̇ (1.1.139)

It gives

V ′′(ϕ) << H2 (1.1.140)
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1.1.3.4 Cosmological Parameters for the Slow Roll Inflation

Two slow roll parameters ε and η are defined in terms of Hubble parameter H as well

as potential V which quantify slow roll inflation.

εH = − Ḣ

H2
(1.1.141)

Using the relation a(t) ∝ e−N ⇒ N = ln a, it can also be expressed in the form

εH = −d (lnH)

dN
(1.1.142)

where N is the number of e-folds and 2nd is defined as

ηH = −1

2

Ḧ

ḢH
(1.1.143)

From 1st Friedmann equation

(

ȧ

a

)2

− k

a2
=

8πG

3
ρ (1.1.144)

For ρ = ρϕ and from Eq. (1.1.119) ρϕ = 1
2 ϕ̇

2+V (ϕ), as during inflation V (ϕ) >> ϕ̇2, so

that ρϕ = V (ϕ) also curvature term k is negligibly small, so that

Eq. (1.1.144) takes the form as expressed beneath

H2 =
8πG

3
V (ϕ) (1.1.145)

differentiating Eq. (1.1.145) with respect to time and simplifying

Ḣ =
4πG

3H
V ′ (ϕ)

(

ϕ̇
)

(1.1.146)

and from Eq. (1.1.134) substituting in Eq. (1.1.146), we have

Ḣ = −4πG
(

ϕ̇2
)

(1.1.147)

substituting above in Eq. (1.1.141), we have

εH = − Ḣ

H2
= −

−4πG
(

ϕ̇2
)

H2
=

4πG

H2
ϕ̇2 (1.1.148)

again from Eq. (1.1.134), we have

ϕ̇ = −V ′(ϕ)
3H

(1.1.149)

squaring

ϕ̇2 = −V ′2(ϕ)
9H2

(1.1.150)
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substituting in Eq. (1.1.148)

εH =
4πG

H2

(

−V ′2(ϕ)
9H2

)

=
4πGV ′2(ϕ)

9(H2)2
(1.1.151)

From Eq. (1.1.145) putting for H2

εV =
4πGV ′2(ϕ)

9
(

8πG
3 V (ϕ)

)2 =
1

16πG

(

V ′(ϕ)
V (ϕ)

)2

=
M2

pl

2

(

V ′(ϕ)
V (ϕ)

)2

(1.1.152)

ηH can also be expressed as

ηH = − ϕ̈

Hϕ̇
(1.1.153)

ηV =
1

8πG

(

V ′′(ϕ)
V (ϕ)

)

= M2
pl

(

V ′′(ϕ)
V (ϕ)

)

(1.1.154)

From Eq. (1.1.145) H2 = 8πG
3 V (ϕ), which gives 8πGV (ϕ) = 3H2 substituting above in

Eq. (1.1.154), we have

ηV =
V ′′(ϕ)
3H2

(1.1.155)

1.1.3.5 Number of e-Folds

It is usual practice to have the inflation quantified and the quantity which does this is

called number of e-fold denoted by N before the inflation ends. As the time goes by N

goes on decreasing and becomes zero when inflation ends. It is counted or measured

backwards in time from the end of inflation which means that N = 0 at the end of

inflation grows to maximal value towards the beginning of inflation. It measures the

number of times the space grows during inflationary period. The amount of e-folds

necessarily required to resolve the big bang problems of Horizon, Flatness, Monopole,

Entropy, etc. is N ∼ 60–75 depending upon the different models and on the reasonable

estimation of the observational parameters. To find the number of e-folds between

beginning and end of inflation we know that during inflation the scale factor evolves as

a (t) = a (t0) e
Ht (1.1.156)

or

a (t) = a (t0) e
H(t−ti) (1.1.157)

The factor Ht constitute the number of e-folds denoted by N , i.e.,

N = Ht (1.1.158)

differentiating Eq. (1.1.158) with respect to time

dN

dt
= H = ∂t ln a (1.1.159)
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N =

∫ tf

ti

Hdt =

∫ tf

ti

ȧ

a
dt = ln

(

atf
ati

)

(1.1.160)

Further, the relation between Hubble parameter H and the number of e-folds N can be

written. we have derived earlier the evolution equation for inflaton field that reads

ϕ̈+ 3Hϕ̇+ V,ϕ = 0 (1.1.161)

During slow roll inflation ϕ̈ = 0, so that Eq. (1.1.161) becomes

3Hϕ̇+ V,ϕ = 0 (1.1.162)

3Hϕ̇ = −V,ϕ (1.1.163)

Moreover, during slow roll the Friedmann’s 1st equation evolves as with k = 0 and

ρ = V (ϕ) + 1
2 ϕ̇

2

H2 =
8πG

3

(

V (ϕ) +
1

2
ϕ̇2

)

(1.1.164)

During slow roll of the inflaton field down to its potential
(

ϕ̇
)2

<< V (ϕ) and only ϕ̇

works, thus Eq. (1.1.164) becomes

H2 =
8πG

3
V (ϕ) (1.1.165)

Dividing Eq. (1.1.163) by Eq. (1.1.165)

ϕ̇

H
= − V,ϕ

8πGV (ϕ)
(1.1.166)

Now, from Eq. (1.1.158), we can write because t = tf−ti, so t =
∫ tf
ti

dt and with dividing

and multiplying by dϕ

N = Ht =

∫ tf

ti

Hdt =

∫ tf

ti

H
dt

dϕ
dϕ (1.1.167)

where ϕ̇ = dϕ
dt , Eq. (1.1.167) takes the form

N =

∫ ϕf

ϕi

H

ϕ̇
dϕ (1.1.168)

substituting from Eq. (1.1.166) after inverting

N =

∫ ϕf

ϕi

(

−8πGV (ϕ)

V,ϕ

)

dϕ = −8πG

∫ ϕf

ϕi

V (ϕ)

V,ϕ
dϕ (1.1.169)

or

N = 8πG

∫ ϕi

ϕf

V (ϕ)

V,ϕ
dϕ (1.1.170)

Thus number of e-folds can be found in terms of potential of the inflaton field. Further

slow roll parameter εH can be described in terms of number of e-fold N , we know

εH = − Ḣ

H2
= − 1

H2

dH

dt
= − 1

H2

dH

dN

dN

dt
(1.1.171)
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εH = − 1

H2

d lnN

dt
(1.1.172)

The paradigm of inflation as the exponential expansion occurring in a tiny fraction

of very first second of the cosmic evolution after big bang resolves satisfactorily the

problems of flatness, horizon and monopole formation.

1.2 Multifield Inflationary Universe and Spectrum of Curvature Perturba-

tion

Inflation as a phase of exponential cosmological expansion was introduced in the stan-

dard big bang model accepted as the origin of the observable universe being implied by

the standard FLRW model of cosmology in order to extirpate cosmic conundrums faced

by it. It resolved enigmatic issues encountered in the standard model of cosmology. It

sets the initial conditions on one hand and explains the growth of cosmic structure on

the other hand. There is a large number of inflationary models proposed with single as

well as with multiple scalar fields. The inflationary models with more than one light field

are referred to as multifield models. Obtaining the inflationary era in multi-field models

with two or more fields has comparatively more perspectives, however, the possibly less

predictive power of observables (A. D. Linde, 1984a; Starobinsky, 1980; L. A. Kofman

& Linde, 1987; Silk & Turner, 1987). A notable difference between single field and

multifield models is their sensitivity to respond to the initial conditions. Multi-field

models increase the characterization and features of the adiabatic spectrum by creating

isocurvature or entropy perturbations that have an impact on anisotropies of the CMB

(A. D. Linde, 1984a; L. A. Kofman & Linde, 1987; L. Kofman & Pogosyan, 1988; Les-

gourgues, 2000; Polarski & Starobinsky, 1994; Gordon, Wands, Bassett, & Maartens,

2000). The Generation of density perturbations in some multi-field models is treated in

such a way as if to decouple it from the dynamics of the inflationary era.

At the end of inflation in a multi-field scenario, primordial density perturbations can be

created on account of the inhomogeneous phase of reheating or modulated hybrid infla-

tion if decaying of dark energy turns out to be sensitive to the local values of multi-fields

except for inflaton (Dvali, Gruzinov, & Zaldarriaga, 2004; L. Kofman, 2003; Bernardeau,

Kofman, & Uzan, 2004). The Curvaton inflation on the other hand traverses its path

averse to it (A. Linde & Mukhanov, 1997; Lyth & Wands, 2002; Moroi & Takahashi,

2001) where at some time after inflation a weakly coupled field produces primordial
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density perturbations during its decay into radiation. Isocurvature density perturba-

tions are also a relict from the curvaton scenario but the abundance of it differs from

thermal equilibrium abundance at the time when curvaton decays (Lyth, Ungarelli, &

Wands, 2003). The realization of inflation can also be availed through multi-field sce-

narios comprising of the double and hybrid models as well. Inflationary theory (Guth,

1981; A. D. Linde, 1982a; Albrecht & Steinhardt, 1982) resolves the flatness, homogene-

ity, and monopole problems in a very natural way and predicts almost scale-invariant

density perturbations, that are found to be consistent with present observational data.

Cosmic inflationary models propound that the early universe underwent an incipient

phase of accelerated expansion driven by the dynamics of single, double, or more scalar

field fields (Bassett, Tsujikawa, & Wands, 2006; Guth & Kaiser, 2005; Lyth & Liddle,

2009; Baumann, 2009; Guth, Kaiser, & Nomura, 2014; A. Linde, 2015). Inflation also

takes the responsibility of seeding all structure formation of the universe we observe

today in the form of quantum fluctuations accompanying it in the very tiny fraction of

the first second. Quantum fluctuations (Taylor & Berera, 2000; Lyth & Riotto, 1999)

are considered to intertwine with the exponential expansion but were frozen in Hubble

radius while crossing it and when once inflation comes to end they stretch to cosmological

scales and grow out to the present universe (Riotto, 2002).

Inflationary dynamics are backed up by the contribution of generic entropic perturba-

tions to the adiabatic one. In single-field models of inflation, adiabatic perturbations

are produced whereas in the multi-field models of inflation, both types of perturba-

tions namely entropic and adiabatic are generated,altogether (Man, 2018). Inflation

has, thus become the dominant paradigm for understanding the features of our observ-

able universe. However, single-field inflationary models generally have some fine-tuning

problems on the parametric scales, such as the mass and the coupling of the fields, and

the value of the fields also, which renders it difficult to realize in a high energy theory

realistically.

The working out of remaining part of the problem is organized in the following style:

In section 2.2 of chapter 2, the literature in connection with the problem is reviewed

whereas the methodology is developed for finding out the expressions for the number

of e-folds and spectral index by making use of the formalism as developed by Sasaki

and Stewart in section 3.2 of chapter 3. Section 3.2, incorporates subsection 3.2.1 where

at first we discuss the validation and justification of the potential under consideration

and determine analytically two observables, number of e-folds N and spectral index ns
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corresponding to the value of p. Two significant cases for p > 2 and p = +2,−2 are taken

into consideration to solve analytically. This is accomplished in subsequent subsections

3.2.1.1, 3.2.1.2 and 3.2.1.3 of this section. In section 4.2 of chapter 4, the results and

consequences are presented alongside the explanatory and argumentative discussion with

summarizing and concluding remarks. It is observed that as the value of p is negative,

it is satisfactorily accepted for the considered potential, however positive values lead to

the absurd results for a range of number of e-folds and spectral index. For different

values of p, we infer the predictions about the number of e-folds and spectral index.

However, assigning a value of −2, it gives suitably interpretable results. We have also

used Marčenko-Pastur law for the distribution of a large number of scalar fields. The

results are tabulated and plotted graphically with remarks on these plots that describe

how the relationship is developed for the determined cosmological observables.

1.3 An Nflationary Phase Diagram with Multifield Polynomial Potential

The dynamics of the early universe is explained in the framework of widely accepted

Inflationary paradigm, however the microphysical nature of the universe prior to the

inflationary era of subPlanckian regime is not completely understood yet. Inflationary

cosmology is now about forty years old science where the inflation is recognized with

de Sitter phase with slight change in time translational symmetry. Inflation has been

very successful so far to account for the observational data. The recent measurements

of cosmological parameters imply the convincing evidence that the early universe un-

derwent through de Sitter phase (Aghanim et al., 2020). The theory of inflation was

introduced by Alexei Starobinsky, Alan Guth, and was amended by Andrei Linde, Paul

Steinhardt and Andreas Albrecht in the ’80s of the 20th century (Starobinskii, 1979;

Starobinsky, 1980; Guth, 1981; A. D. Linde, 1982c, 1982b, 1982a; A. Linde, 1982; Al-

brecht & Steinhardt, 1982; S. W. Hawking et al., 1982; Guth & Weinberg, 1983). The

simplest models of inflation involve one scalar field, however beyond the standard model

in particle physics, in SUGRA, quantum gravity, and in string theories the presence of

more than one scalar field is predicted (A. Linde, 1991, 1994). Therefore, consideration

of multifield models makes an appropriate choice.

The concept of Nflation based on multiple fields was introduced by Dimopoulos in 2005.

He was motivated from phase transitions in particle physics. In this model of inflation,

a large number of uncoupled scalar fields are considered to give assistance to each other

to derive an inflationary phase. The motivation behind Nflation model was found in the
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vacua solutions of string theory and in the mechanism of assisted inflation, where hun-

dreds to thousands of scalar fields can approximately be involved (Dimopoulos, Kachru,

McGreevy, & Wacker, 2008). A significant aspect of Nflation is that it does not require

sub-Planckian initial conditions to be imposed on scalar fields such as inflaton to re-

solve the horizon problem. The outcomes from the theory of random matrix are used

to calculate the spectrum of masses of the scalar field inflatons in this model and are

found to correspond with results from the Marčenko-Pastur law (Easther & McAllister,

2006). The current data shows complete compatibility with Nflationary cosmological

parameters like spectral index, tensor to scalar ratio, and non-Gaussianity etc. The

Nflation model gives almost similar values of the observables to that of measured by

single field models.

The subsequent work scheme in relation to the problem under consideration is organized

in the following way: In section 2.3 of chapter 2, latest relevant literature whatever possi-

ble in connection with the problem is reviewed in order to come to know the retrospective

work rendered regarding the problem. Section 3.3 of chapter 3 is concerned with de-

veloping the methodology in order to work out the problem. It consists of subsections

3.3.1 and 3.3.2, where first is concerned with determining the values of the field ϕ by

calculating all the changes occurring in it and second discussed the case of different mass

scale distribution using Marčenko-Pastur law. we find that the result of values for the

fields converge to a single point to be known as critical point which separates between

the boundary of slow roll and eternal inflations. The plot for the phase transition di-

agram of Nflationary phase for the considered multifield potential is drawn here. The

distribution of mass-scale factors using Marčenko-Pastur law has been carried out in

3.3.2 where the graphical representation is also displayed to observe the behaviors of

these mass scales. In section 4.3, with three subsections 4.3.1, 4.3.2 and 4.3.3 of chapter

4, the results and consequences are presented in relation to the problem. We carry out

the study for finding out a bound numerically which mimics the role of a condition on

entropy. Moreover, we work out its relationship with the number of fields N that take

part in driving the Nflationary phase and its relation to the number of e-folds N for

this model. Subsection 4.3.2 is devoted to the findings related with primordial density

perturbations in Nflation, whereas in subsection 4.3.3, we summarize our findings with

a discussion of concluding remarks.

We mention here a few precautions for the conventions adopted with regard to this

problem of Nflation that is, the letter N is used here to denote the number of fields
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rather than e-folding number, whereas the letter N denotes the number of e-folds and

the letter S is reserved to stand for entropy.

1.4 Time Independent Schrödinger Equation Conforming to Wheeler-DeWitt

Equation for the Evolution of Early Universe

The development of quantum mechanics and the discovery of expansion of the universe,

both occur almost simultaneously. Quantum mechanics comes into play with the regime

of cosmology in the context of early universe that comes forth as a result of the big bang

implied by the expansion. In 1923, de Broglie hypothesized that all material particles,

in addition to radiation might also possess wave-like properties λ = ℏ

p , k⃗ = p⃗
ℏ
, ensuing

that the nature universally exhibits wave-particle duality (de Broglie, 1925). Afterwards

in 1927, Heisenberg proposed the uncertainty principle ∆x∆px ≥ ℏ which arises from

wave-particle duality (W. Heisenberg, n.d.; Wheeler & Zurek, 1983). On the other

hand, Bohr’s 1928 complementarity principle describes that wave and particle aspects

of physical systems are complementary to each other and are required for the complete

description of the nature (Bohr, 1928, 1961). Pursuing the idea of matter waves due to de

Broglie, Ervin Schrödinger in 1925 formulated wave mechanics, in addition to the earlier

formulated matrix mechanics, and later in 1926 he proved that the both are equivalent

(Valentini et al., 1992; Schrodinger, 1926; Schrödinger, 1926). His ambitious aim was

not less than a unification of the wave mechanics and general theory of relativity; atomic

physics and cosmology together would provide an explanation of the discrete structure

of matter and elucidate the nature of matter waves (Rüger, 1988).

Quantum mechanics gives a consistent description of matter on the microscopic scales.

In classical physics, generally second order partial differential equations are used to

describe the laws of motion for particles as well as for waves. Schrödinger equation

serves the same purpose in quantum mechanics on the microscopic level (Bransden &

Joachain, n.d.). For a particle with mass m, momentum p → −iℏ∇, kinetic energy

operator − ℏ
2

2m∇2 and potential energy operator −∇V (r, t), the Hamiltonian H of the

system is defined as the total energy of a classical system which is the sum of its kinetic

and potential energies described as a function of momentum and coordinates that is

H = T + V = − ℏ
2

2m∇2 + V (r, t). However, in quantum mechanics total energy cannot

be expressed as the sum of these two due to the uncertainty principle, therefore it is

measured as a single entity known as wave function Ψ = Ψ(xµ, t). Therefore Schrödinger

equation is described as iℏ∂Ψ
∂t = HΨ, where i =

√
−1 makes the equation to give
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periodic solutions despite being its 1st order in time contrary to the classical physics.

It is a linear and 1st order with respect to time and homogeneous wave equation. The

Schrödinger equation constitutes the 5th postulate of quantum mechanics and is the

basic equation of quantum theory which describes the dynamics of a quantum mechanical

system consisting of single particle or as large as the universe itself as a whole. The

dependent variable Ψ = Ψ(xµ, t) is complex entity called state or wave function and

plays the role of probability amplitude. The probability p (xµ, t) of determining a particle

or physical system at a particular point within the volume V about the point with

coordinates xµ at time t is proportional to p (xµ, t) ∝ |Ψ(xµ, t)|2. It comes in two

forms time-dependent Schrödinger wave equation since wave function generally behaves

like a wave where the time appears explicitly and describes how the wave function of

a particle evolves in time. The solution obtained from time-dependent Schrödinger

equation describes the dynamics of a particle in the form of wave function in quantum

mechanics in some sense similar to Newton’s 2nd law F = ma provides the position of a

particle in classical physics. The 2nd type of Schrödinger equation is time-independent,

where time dependence is relaxed and it describes, in addition to other things, the

allowed level of energies for the particles. These two forms, however are not independent

and separate equations rather the time-independent equation can be derived readily from

the time-dependent equation.

The Wheeler-DeWitt equation was developed by John Archibald Wheeler (1911-2008)

and Bryce DeWitt (1923-2004) in the late 1960s to describe the universe based on the

application of quantum theory (Wheeler, 1957; DeWitt, 1967c, 1967b, 1967a). Since

that time to the present there is a lot of work engendered due to this equation for the

evolution of the universe. The equation is believed to describe the universe quantum

mechanically by combining general relativity and quantum mechanics and corresponds to

the zero-point energy Schrödinger time-independent equation as the quantum fields are

independent of time. Both types of fields gravitational and non-gravitational like scalar

fields may be constituent parts of the Hamiltonian in this case. The scale factor, scalar

fields and their respective conjugate momenta play the role of dynamical variables for the

presence of these fields in the Hamiltonian. DeWitt introduced canonically a quantum

theory of gravity which, in addition, to his other work leads to quantum cosmology and

the results emphasize to describe the gravitationally bound system of universe as a whole

a single quantum state and therefore can be described by a wave function (Misner, 1969;

Vilenkin, 1982, 1984, 1983; Hartle & Hawking, 1983; S. W. Hawking, 1984; Atkatz &
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Pagels, 1982; Halliwell & Hawking, 1985; Vilenkin, 1986, 1988, 1994).

A wave function describing a classical system behaves like a wave. A spacelike surface is

used to predict by the wave function and the classical notion of the system is captured

quantum mechanically as a state in a moment of time. The wave function is a functional

of three dimensional space and matter fields and the Wheeler-DeWitt theory satisfies it

(Bojowald, 2011; Kiefer, 2006; Esposito, 2011). DeWitt equation is analogous to a zero-

energy Schrödinger equation of which the Hamiltonian could contain the gravitational

field as well as nongravitational fields, as for example, scalar fields. If these fields are

present in the Hamiltonian, the dynamical variables are the scale factor and the scalar

field as well as their respective conjugate momenta. Quantum fields are independent of

time.

The layout for carrying out the subsequent numerical study concerning the problem

undertaken in this section 1.4 of the thesis is designed as follows: In section 2.4 of

chapter 2, related literature whatever possible be in connection with the problem is

reviewed in order to familiarize the retrospective work previously rendered concerning

the problem. In section 3.4 and its subsection 3.4.1, the formulation of the problem

statement is presented mathematically where the Wheeler-DeWitt equation and the

time-independent Schrödinger equation are utilized by using a quantization technique.

The Wheeler-DeWitt equation reduces to the time-independent Schrödinger equation

with zero energy function which is solved numerically for the evolution of early universe

phenomenon which takes place quantum mechanically. By assigning the different values

to the parameters, we discuss different cases. Section 4.4 with subsections 4.4.1, 4.4.2,

is devoted to the results derived from the numerical solution of the problem. Further

simulations as graphical display of the results and discussions are presented to explain

the results and tables. In subsection 4.4.1 the results generated with the help of our

proposed ANN-LMB solver are come up with describing thoroughly in both numerical as

well graphical fashion. The subsection 4.4.2 consists of the conclusions and the remarks

summarising the results with conclusion.
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1.5 Accelerating Universe Driven by Multifield Tachyon-Quintom Dark En-

ergy

At present, the universe is undergoing accelerated expansion cosmologically as the as-

trophysical and cosmological observational data within past 20 years from type Ia su-

pernovae (SNe) and other sources confirm it (Riess et al., 1998; Perlmutter, Aldering, et

al., 1999; Riess et al., 2001; Tonry et al., 2003; Astier & Pain, 2012; Yang & Gong, 2020;

Riess, 2020; Rubin & Heitlauf, 2020; Tegmark et al., 2004; Sherwin et al., 2011; Tu, Hu,

& Wang, 2019). Spatial curvature being negligibly small ΩK = 0.001 ± 0.002 ascribes

a spatially flat (Euclidean) geometry to the observable universe (Aghanim et al., 2020,

2021). The accelerated expansion is thought either due to the presence of some exotic

form of matter with negative pressure (ρ = −p) dubbed as dark energy that necessi-

tates to modify Tµν-the RHS of Einstein Field Equation (EFE) or is explained in the

framework of f (R) gravity theories that modify LHS of EFE (Yoo & Watanabe, 2012;

Bamba et al., 2012; Ruiz-Lapuente, 2010; M. Li, Li, Wang, & Wang, 2011; Novosyadlyj,

Pelykh, Shtanov, & Zhuk, 2015; Wei & Zhang, 2008; Faraoni & Capozziello, 2011).

The equation of state (EoS) parameter w = p
ρ characterizing the dark energy has recent

observational constraint to be−1.03±0.03 (Aghanim et al., 2020) that favours dynamical

dark energy models to a certain extent (C.-J. Feng, Zhai, & Li, 2020; Zhao et al., 2017;

Y.-C. Zhang et al., 2017). It describes the nature of dark energy and determines whether

the universe will end as a time-reversed process of the big bang (big crunch) or will

expand forever (big freeze). The energy-momentum tensor Tµν in EFE representing

the energy density of normal baryonic matter in the universe and succumbs to failure in

order to be responsible for the cosmic accelerated expansion on the base of observational

evidence (Zhao et al., 2007; Copeland, Sami, & Tsujikawa, 2006).

The cosmological constant Λ, when it is treated as one of the candidates for dark energy,

as Einstein predicted (Einstein, 1986; Zeldovich, 1965; Bertotti, Balbinot, Bergia, &

Messina, 1990), it encounters the problems of accounting for the extremely fine tuned

value related to it at one hand and an extraordinarily small value on the other hand.

Due to this the status of Λ does not possess amenability and remains unacceptable,

however different proposals to suitably tackle these issues are presented (Armendariz-

Picon, Mukhanov, & Steinhardt, 2000; P. J. E. Peebles & Ratra, 2003; Kang, Zhang,

Jun, & Zong, 2020; J.-J. Zhang, Lee, & Geng, 2019; P. Peebles & Ratra, 1988; Demirtas,

Kim, McAllister, Moritz, & Rios-Tascon, 2021).
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A scalar field in the perspective of particle physics or particle cosmology is considered to

play a crucial role in spontaneous symmetry breaking (SSB). In these disciplines, they

are used to stand for particles of zero spin. They are characterized with specific feature

of transforming as an entity or quantity having scalar nature under the transformations

of coordinates and evolve as function of time only in a universe that satisfies cosmo-

logical principle as implied by general relativity. A very known example of such scalar

field is Higgs field which is responsible for symmetry breaking of the electroweak force.

Similarly, they are considered as well associated with symmetry breaking such as those

of supersymmetry and Grand Unified Theories (GUTs).

The plan to work out the subsequent part of the solution to the problem under con-

sideration is designed in the following way: In section 2.5 of chapter 2, we review the

latest relevant literature whatever be possible in relation to the problem for knowing

the retrospective work performed in regard to the problem. Section 3.5 of chapter 3

with subsection 3.5.1 is involved with developing the methodology in order to work out

the problem. It is devoted to the development of the mathematical machinery for the

model. It presents the development of autonomous dynamical system that plays a sig-

nificant role in investigating and understanding the behavior of such models. We draw

plots for evolutionary phases between the multifield scalars and the parameters of the

EoS w and dark energy ΩDE as a function of the number of e-folds N . The results and

discussion is presented in section 4.5 and its subsections 4.5.1 and 4.5.2, where we per-

form the analysis of the data and study the stability of the critical points inferring the

future evolutionary development of the universe. In the end, a summary with concluding

remarks is described in 4.5.2.

1.6 Accelerating Universe in the Framework of f (R) Modified Gravity

The late-time accelerated expansion of the universe poses one of the major challenges to

present-day cosmology. The observational data acquired in 1998 by distance measure-

ments of Type Ia Supernovae (SNe Ia) led to the discovery of expansion rate (H = ∂ta)

of the universe to be accelerating (Riess et al., 1998; Perlmutter, Aldering, et al., 1999;

Riess et al., 2001). The discovery won the 2011 Nobel prize and since that time it is taken

prima facie evidence that the universe is undergoing accelerated expansion (Perlmutter,

Schmidt, & Riess, 2011; Straumann & Zürich, 2012; Massó, 2012). This unexpected and

bizarre behavior was thought due to an exotic form of energy density called dark energy

(Huterer & Turner, 1999). Dark energy posits one of the most challenging problems

(Page 48 of 216)



in cosmology and as well in other relevant disciplines. It possesses immense negative

pressure p = −ρ as its defining feature which by nullifying the gravitational interaction

causes the rate of cosmic expansion to accelerate (Perlmutter, Turner, & White, 1999).

It constitutes almost two-third of the critical density ρc = 3(MpH0)
2 with negligibly

small curvature term k
a2

making the universe to have spatially flat i.e., Ω0 ≃ 1 geom-

etry (Euclidean). From the recent astrophysical and cosmological observational data

the density parameters constituting the energy budget of the universe are constrained

to be Ωm = 0.315 ± 0.007, ΩΛ = 0.6889 ± 0.0056 (Aghanim et al., 2020; Di Valentino,

Melchiorri, & Silk, 2020; Ivanov, Simonović, & Zaldarriaga, 2020). The recent obser-

vational data accumulated from multifarious sources approve the compelling evidence

in favor of the late time accelerated expansion (To et al., 2021; Benisty & Staicova,

2021; Mazumdar, Mohanty, & Parashari, 2021; Mohayaee, Rameez, & Sarkar, 2021).

The simplest candidate to account for the effects of dark energy is considered a positive

cosmological constant Λ satisfying the negative pressure p = −ρ.

In the framework of general relativity, the standard model of cosmology is accepted with

big bang (t = 0) as the beginning of the universe (Lemâıtre, 1931; Kragh & Lambert,

2007; A. A. Friedmann, 2014). Inflation, an early time phase of accelerated expansion

taking place just after the big bang, was proposed in 1980 to resolve the cosmological

problems faced by the standard big bang model (Starobinsky, 1980; Guth, 1981; Sato,

1981; Kazanas, 1980). Dark energy as a hypothetical cause behind the late acceler-

ated expansion emerged as part of the standard model at the end of the 20th century

(Huterer & Turner, 1999). A widely accepted parameterization of the standard big

bang cosmology is a six-parameter model known as ΛCDM, which is the best fit of

data for recent observations, however, with some challenges being faced in the recent

times (Perivolaropoulos & Skara, 2021; Sola, 2016; Turner, 2018; Scannapieco, White,

Springel, & Tissera, 2009). The cosmological constant Λ represents dark energy, CDM

stands for cold dark matter and 3rd element is the ordinary matter known as baryon

matter density. The general theory of relativity as a classical theory cannot be extrapo-

lated back in time beyond 10−2s and therefore gives a description of classical cosmology

and describes basically the evolution of radiation and matter-dominated eras. On the

other hand, the inflationary phase is proposed to have occurred in the early universe

prior to the radiation-dominated epoch somewhere in time after the Planck era 10−43s

of the big bang to some time between 10−32s and 10−35s which requires the quantum

description of cosmology (Guth et al., 2014; Smeenk, 2005; Earman & Mosterin, 1999).
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On the other hand, the cosmological accelerated expansion is conjectured established on

observational evidence to have commenced since the universe crossed the threshold of

the matter-dominated era and got into the Λ-dominated era approximately four billion

years earlier. The Λ-domination i.e., dark energy dominated epoch requires new Physics

as well. Therefore, to incorporate the early time acceleration i.e., inflation, and the late

time acceleration of expansion i.e., dark energy into its framework, it needs modification

in it (Ishak, 2019; Spaans, 2013; Carroll, 2004).

These two epochs of accelerated expansion require some exotic form of matter with

negative pressure p < 0 and could not be justified and explained by the presence of

normal matter represented by Tµν with pressure p ≥ 0. For this purpose, both the

gravitational sector i.e., geometry of spacetime, and the matter sector i.e., source term

respectively in the equation of general relativity Gµν = 8πTµν are open to modifications

which introduce a semiclassical mechanism in the theory (Ye & Piao, 2019; Mughal

& Ahmad, 2021; Berti et al., 2015; L. Heisenberg, 2019). Einstein has himself felt

the need to modify general relativity at different times: “The theory is based on a

separation of the concepts of the gravitational field and matter. While this may be a

valid approximation for weak fields, it may presumably be quite inadequate for very

high densities of matter. One may not, therefore, assume the validity of the equations

for very high densities and it is just possible that in a unified theory there would be no

such singularity” (Einstein, 1986, 1950). In the light of considerations mentioned above,

general relativity needs to be modified and might not be the final theory of gravitation

and the structure of spacetime, despite the remarkable success it has achieved.

The layout of the work plan for the remaining part of the problem is laid out as follows:

Section 2.6 of chapter 2 is devoted to review the literature about the problem in order

to know historical progress and for finding out the research gap. In Section 3.6 and its

subsections, In order to utilize and construct the methods, we review the cosmological

dynamics briefly as is described in the context of f (R) modified gravity i.e., Einstein field

equation for modified gravity, modified Friedmann equations assuming a spatially flat,

isotropic and homogeneous FLRW spacetime. Moreover, construction of the autonomous

system with the help of defined dimensionless parameters, finding out the critical points

valid for any m (r) and their eigenvalues is the part of this section. Effective Equation

of state (EoS) parameter weff and dark energy EoS wDE parameter are described as

well in the methodological section. Section 4.6 with its subsections discuss the results

for the problem under consideration by investigating a particular model selected for
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study. By using the first and the second derivatives of f (R), the variables m and r

are calculated which help out in determining the geometric curve m (r). Critical points,

their eigenvalues, and other related parameters are calculated in this section for the

autonomous dynamical system. The study of stability analysis for the system is carried

out in this section where properties of the eigenvalues and the effective EoS play an

important role with regard to the stability analysis. At the end of section 4.6, we give

a comprehensive and illustrative discussion on the results with the prospect of some

future work. The section also describes a summary with concluding remarks.
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CHAPTER-02

REVIEW OF LITERATURE

A considerable attention is focussed in order to carry out the analysis of the proposed

problems mathematically due to their extensive applications in various fields of life and

different physical phenomena. The detailed literature is reviewed here for the proposed

problems in the following sections.

2.1 On the Cosmological Dynamics of Spacetime and Basics of Cosmology

This section is retained for keeping the order of corresponding sections as it is related

with introduction section1.1. Therefore, it has no important analytical or numerical

results.

2.2 Multifield Inflationary Universe and Spectrum of Curvature Perturba-

tion

On the other hand, when many fields were taken into account, it was found that they

can work in coordination with one another to drive a period of inflation with the help of

assisted inflation mechanism proposed by Liddle et al. (Liddle, Mazumdar, & Schunck,

1998), although neither of these fields has the ability to sustain the inflationary era

separately. The multi-field inflationary models diminish the difficulties encountered by

single-field inflationary models and thus can be regarded as an attractive implementa-

tion of inflation. The evolution of the universe faces problems when we use a single

tachyonic field to derive inflation because in this case, a larger anisotropy is likely to

generate. Y.S. Piao et al. studied a model of assisted inflation (Piao, Cai, Zhang, &

Zhang, 2002) by taking multi-tachyon fields to derive inflationary period. The spectrum

of curvature perturbations of multi-field inflation with a small field potential was stud-

ied (Ashoorioon, Krause, & Turzynski, 2009) by I. Ahmad et al. They put to use the

Sasaki-Stewart formalism and reached the results which were obtained with the assump-

tion that isocurvature i.e., entropy perturbations can, nonetheless, be neglected. Y.S.

Piao investigated that (Piao, 2009) primordial density perturbations can be possibly

generated by taking into account the sufficient number of e-folds and with making the
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use of decaying speed of sound in a deceleratedly expanding phase of the universe.

R.G. Cai et al. investigated the entropy perturbations in Nflation and computed the

entropy corrections to the power spectrum of curvature perturbations (R.-G. Cai, Hu, &

Piao, 2009) by finding out a transfer coefficient analytically. He described a correlation

function between entropic and curvature perturbations for this purpose. The mechanism

of relating the power spectrum to the slow-roll parameters is described in the reference

(Stewart & Lyth, 1993; Lieb & Yngvason, 1999) with a detailed account presented there.

The evolutionary background equations for the process of driving primordial power spec-

trum (Wolfson & Brustein, 2018) are given by Ḣ = − ϕ̇2

2 and ϕ̈ = −3Hϕ̇− V ,ϕ (ϕ).

Avgoustidis et al. investigated (Avgoustidis et al., 2012) the importance of slow-roll

corrections in multi-field inflationary models when the evolution of cosmological pertur-

bations in the form of quantum fluctuations takes place. They studied the evolution

of curvature and isocurvature perturbations to the next-order in the regime of slow-roll

inflation. Cosmological observables are sensitive during the time of reheating phase in

multi-field inflationary models. A study was carried out by S.C. Hotinli et al. to exam-

ine (Hotinli et al., 2018) the observables during this phase by devising a method that

permits the semi-analytic treatment of the effect of perturbative reheating on cosmo-

logical perturbations using the technique of sudden decay approximation. They further

showed that the rate at which the scalar fields decay into radiation affects the tensor

to the scalar ratio ”r” and scalar spectral index ”ns”. A method was presented by J.

Frazer (Frazer, 2014) for deriving an analytical expression of the density function of

cosmological observables in multi-field models of inflation using semi-separable poten-

tials. Frazer found that the sharp peak of the density function is very faintly sensitive

to the distribution of initial conditions which means inflationary models of multi-field

may possess a density function for observables that is peaked sharply.

The dynamics of the exact multi-field scenarios have been investigated in the classical

style in the ref. (Clesse, 2011) for the case of the hybrid inflationary model. K. Asadi

et al. investigated a multi-field model with two fields to study its reheat phase in order

to have some constraints in the parametric space. They found the number of e-folds

and the temperature during this era of reheating phase of their model (Asadi & Nozari,

2019). A class of multi-field models based on those fields that decay or get stabilized

in a staggered style during inflation was explored by D. Battefeld et al. (Battefeld &

Battefeld, 2009). They observed that fields remain flat before marching towards a steep

downfall in assisted inflation and when these fields face such a decrease their decay rate
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is measured dynamically and transfer of energy takes place to the other degrees of free-

dom. A further decrease in potential energy caused by decay of the fields contributes to

the observables such as spectral index and tensor to scalar ratio. The number of e-folds

is bounded for the acceleratedly expanding universe that emerges out from the de Sitter

epoch asymptotically (Banks & Fischler, 2003) and multi-field model of dark energy is

investigated.

This paper has the purpose of studying the inflationary models with multi-fields in the

vista of their number of e-folds, the slow roll parameters, and the spectral indices. The

multi-field inflationary models possess some remarkably interesting signatures which

single field models digress and have more perspective for the observational evidence

which provides motivation to study these models theoretically. The study of inflationary

phase driven combinedly by multifields usually by axions sparsely spaced is of great

interest. The curvature perturbations are an inflationary relic that seed the structure

formation specifically. The investigations of the spectrum of these perturbations in

multifield inflation are carried out enormously. For the case of equal and unequal masses

by considering the suitable initial conditions these are investigated (Alabidi & Lyth,

2006; Mughal & Ahmad, 2021; Urakawa & Tanaka, 2009, 2009; Easther & McAllister,

2006; Kim & Liddle, 2006; R.-G. Cai, Guo, & Wang, 2015). When we use power-law

potential for multifields the spectrum for these perturbations comes out to be redder than

it is when a single scalar field is employed (Piao, 2006; Gong, 2007; Olsson, 2007; Thomas

& Ward, 2007; Kim & Liddle, 2006, 2007). Spontaneous symmetry breaking naturally

gives rise to the small field models with multifields where the fields usually begin with

unstable equilibrium about the origin and roll down towards a stable minimum.

2.3 An Nflationary Phase Diagram with Multifield Polynomial Potential

It was investigated based on the vacua solutions in string theory that a large number of

axion fields can drive an inflationary phase. These fields working together with following

the mechanism of assisted inflation do not violate the Planck scale. (Liddle et al., 1998).

A large number of fields with different mass-scales was predicted to possibly participate,

see Refs. (Kanti & Olive, 1999; Kaloper & Liddle, 2000). The dynamics of Nflation

as studied by Dimopoulos et al. in his pioneering model, it was supposed that all the

fields will slow roll together starting with Planck scale values. The Nflation model was

generalized for all possible distribution of masses using the outcomes of random matrix

theory soon after it (Easther & McAllister, 2006).
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Density perturbations in Nflation model are predicted similar to that of single massive

scalar field. The study of its dynamics and perturbations was carried out by S.A. Kim

et al. (2006). They investigated numerically the random initial conditions to predict

tensor to scalar ratio and density perturbations. It was observed that tensor to scalar

ratio and scalar spectral index depend completely on the number of e-folds and the

parameters of the model respectively. It was further explored that the tensor to scalar

ratio is independent of the number of fields driving inflation, masses of the fields and

their initial conditions with conclusion that it matches with single field massive inflation

(Kim & Liddle, 2006). Nflation model in the framework of IIB compactifications as a

large volume scenario was also proposed. The pairwise occurrence of geometric moduli

with axion fields play an important role in the development of Nflationary scenario. To

construct Nflation model in the perspective of string theory it is necessary to stabilize

these moduli (Cicoli, Dutta, & Maharana, 2014).

The multifield axion Nflation can be explored with cosine potential to study its proper-

ties. Investigating density perturbations in this model it was found how this is affected

when a quadratic potential is used. The tensor to scalar ratio and scalar spectral index

tend to lower values, however showing compatibility. A bispectrum non-Gaussianity

parameter fNL was calculated whose values for axion decay constant range from 10 to

100 from moderate to larger slightly less than Planck scale respectively (Kim, Liddle, &

Seery, 2010). Pole Nflation is also proposed with a large number of open string moduli

like D3-brains in which each brain covers comparatively short distance due to unified

motion of it and produces the attractor inflationary phase. The theoretical study for

the dynamics of pole Nflation gives the possibility of working together of many fields

like inflaton scalars. To embed pole Nflation in the framework of IIB string theoretical

set-up using Calabi-Yau manifolds is also investigated (Dias, Frazer, Retolaza, Scalisi,

& Westphal, 2019).

The large field models of Nflation are also possible where each field has value of sub-

Planckian order i.e., ∼≤ 10−43s. The realization of the model is achieved by generalizing

the chaotic single-field inflation in the perspective of supergravity (Das & Dutta, 2014).

The findings of the scalar spectral index and tensor to scalar ratio match with the

predictions of chaotic inflation. The entropy perturbations in Nflation model can be

calculated by entropy corrections to the power spectrum of the curvature perturbations

Pζ using δN formalism (R.-G. Cai et al., 2009). A transfer coefficient T 2
RS is found

analytically for this purpose that develops a correlation function between entropy and
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curvature perturbations. When the inflation ends the coefficient is T 2
RS ∼ O (1) and

both adiabatic and entropy perturbations are of the same order. This also poses that

the entropy perturbations can not be ignored. Non-Gaussianities in Nflation can be

calculated where the potentials separable, quadratic and Marčenko-Pastur distribution

law gives the masses of the fields (Battefeld & Battefeld, 2007; Bartolo, Matarrese, &

Riotto, 2002; Bernardeau & Uzan, 2002). A non-linearity parameter fNL is significant

which describes the measure of bispectrum by estimating those parameters which define

the bispecrums and trispectrums as well for the phase of horizon crossing. The occur-

rence of larger non-Gaussianities for the fields growing comparatively faster is expected.

The contribution of each field can be estimated in this model.

Multiple scalar fields working altogether for the multifield phantom power law can be

considered to discuss various features of multifield inflation. We can study such models

to find values of parameters with constraints on observables with data from BAO, H0,

and CMB (Ahmad, 2012; Adshead, Easther, & Lim, 2009; Gott & Slepian, 2011). It is

interesting feature of Nflation model that the slow roll phase gradually disappears on

increasing the number of fields against the square of the ratio of Planck mass Mp to the

average of field masses in phase diagram (Ahmad, Piao, & Qiao, 2008, 2009). This ratio

can be implemented to find a bound on the entropy of Nflationary phase. The entropy

in Nflationary phase can be matched with the entropy of event horizon of a black hole.

The two cases bear very close similarity and can be understood with the help of one

another. We consider a multifield potential and plot the phase transition diagram for it.

We consider first the equal field masses case and afterwards using Marčenko-Pastur law

find all likely distribution of field masses. We investigate that de Sitter (dS) entropy is

saturated by the number of fields near the critical point. It is viable to study a bound

as a condition on entropy related with the number of fields and the number of e-folds.

2.4 Time Independent Schrödinger Equation Conforming to Wheeler-DeWitt

Equation for the Evolution of Early Universe

By reducing the Friedmann-Einstein dynamical equations into Schrödinger equation a

model of the oscillating universe can be constructed where bounded eigensolutions rep-

resent oscillating solutions. Taking into account the cosmic expansion, it can be shown

that large scale periodic structure can be traced out when amplitudes and correlation

lengths of galaxies are considered (Capozziello, Feoli, & Lambiase, 2000). The evolution

of collisionless matter under the influence of gravity can be proposed as a Schrödinger
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field obeying the coupled Schrödinger and Poisson equations (Widrow & Kaiser, 1993).

The time-independent Schrödinger like equation can be derived form the equation of

motion for a single scalar field which drive inflationary phase in FLRW standard cos-

mology with flat spacetime geometry. The one dimensional bound state solutions pro-

duce one exact solution at the lowest for Friedmann equations of standard cosmology

(Barbosa-Cendejas & Reyes, 2009). In the recent era artificial neural network are fre-

quently used almost in all disciplines of science (Yalcin & Pekcan, 2020; Bijari, Zare,

Veisi, & Bobarshad, 2018). In order to determine numerical solutions for wave equation

there exists a voluminous number of analytical methods for example Range-Kutta meth-

ods with different orders, Tunneling Probability, WKB Approximation, Euler method

and Crank-Nicholson Method with their implicit and explicit forms respectively etc.

(Fujiwara, Higuchi, Hosoya, Mishima, & Siino, 1991; Louko & Ruback, 1991; Halliwell

& Louko, 1990; Oliveira-Neto, 1998; Fujiwara, Ishihara, & Kodama, 1993; Bouhmadi-

Lopez & Moniz, 2005; Moss & Wright, 1984; Gotay & Demaret, 1983; Monerat, Silva,

Oliveira-Neto, Ferreira Filho, & Lemos, 2006).

The boundary conditions on the wave functions can describe how the atomic particles

tunnel through the potential energy barriers. The tunneling probability for de Sitter

universe has been investigated by using numerical approximation. For this purpose,

quantization is utilized by considering a radiation-dominated FLRW universe in the

presence of positive cosmological constant which leads to the Wheeler-DeWitt equation.

For a potential barrier the scale factor as it emerges in the equation, results in the form

of Schrödinger equation. The numerical solution can be determined for the resulting

Schrödinger equation from Wheeler-DeWitt equation by finding tunneling probability

to achieve inflation through de Sitter universe asymptotically for the mean energy of

the wave function in the initial state. For some stable constant value of the mean

energy of the wave function in initial state, the tunneling probability grows in the

presence of cosmological constant. (de Barros et al., 2007). The use of Matlab and

C++ language is made for utilizing different methods to numerically inquire into the

Schrödinger equation. Employing an effective algorithm of programming language the

numerical solution of Schrodinger equation can be sought in one and two dimensions with

considering many different cases. Morefully these can both be used for the comparison of

results with the use of 4rth order Runge-Kutta method. Such a numerical solution turns

out to be of immense interest from the perspective of both physically and pedagogically

(Jørgensen, Cardozo, & Thibierge, 2011).
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Wheeler DeWitt equation can also be numerically solved for one dimensional Schrödinger

equation with vanishing effect of the potential. The equation is solved numerically with

positive cosmological constant for the investigation of a universe coming forth form

quantum state. Matter field, however are not taken into account in this model which

was considered in the Hartle-Hawking no boundary context. Here the interpretation is

rendered in terms of internal and external space expansion and using anthropic principle

it can be shown that the external space expands and the internal one behaves in the

opposite (Ochiai & Sato, 2000).

Our motivation is the attractive numerical solutions of the Schrödinger equation for the

evolution of the early universe. Wheeler-DeWitt equation reduces to time-independent

Schrödinger equation with zero-energy on the right hand side. There is an increasing

trend to use numerical methods to solve partial differential equations and ordinary

differential equations with the help of code development in the Matlab. for this purpose

feed forward artificial neural network is used for investigating the Schrödinger equation

(Amato et al., 2013; Palani, 2010) for a universe with negligible effect of cosmological

constant. The FLRW metric is used for minisuper space model of the universe where

we reach at Schrödinger equation by the derivation of Wheeler-DeWitt equation and its

quantization. The use of local stochastic solvers, active set algorithm (ASA) (Shawagfeh,

1993; Fukushima & Tseng, 2002), interior point algorithm (IPA) (Adler, Resende, Veiga,

& Karmarkar, 1989; Lee & Swaminathan, 2005) and sequential quadratic programming

(SQP) is made (Raja, 2014). The number of datasets that are to be trained play a

very important and key role in determining the predictive quality of artificial neural

network as the frequent studies show the evidence. In order to run the mentioned

solvers to generate the numerical results the use of Matlab is benefitted. The Levenberg-

Marquardt Algorithm(LMA) is used in this paper which is a iterative technique employed

to furnish solutions numerically in order to minimize some non-linear functions. As

a technique of optimization it is used to solve the large scale non-linear least square

problems. This technique can shuffle between Gradient descent method and Gauss-

Newton Algorithm depending upon the closeness of current result to local minima and

the nature of the result (Lourakis & Argyros, 2005). Backpropagation refers to the

mechanism in which the error computed at the output layer of the ANN is transmitted

into the hidden layer where all the computations are performed.

❼ A naive and robust application based on stochastic and computing is developed to

investigate the dynamics of the early universe by solving the Schrödinger equation
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numerically.

❼ A framework for computations is efficiently laid out for the Wheeler-DeWitt equa-

tion by taking advantage from the structural artificial neural network with the use

of algorithm of Levenberg-Marquardt backpropagation.

❼ The dynamics of the problem is impressively explored by the technique considered

for the distinct scenarios on the basis of changing the values of involved parameters

and their corresponding cases are developed to illustrate the evolution, dynamics

and the related versions.

❼ Verification and Validating of the considered strategy are endorsed on exact anal-

ysis in the sense of accuracy assessments, the studies regression and histograms

carried out for the developing system introduced in frequent illustrations graphi-

cally and numerically.

2.5 Accelerating Universe Driven by Multifield Tachyon-Quintom Dark En-

ergy

Scalar fields can atone for the fine-tuning and coincidence problems pertaining to Λ and

might restitute, as well to the insufficiency of the energy-momentum tensor Tµν . To in-

vestigate the properties of dark energy, there is a large number of dynamical scalar field

models like quintessence, K-essence, phantom, quintom, tachyon, phantom tachyon etc.

discussed in the literature, see Refs. (Amendola & Tsujikawa, 2010; Frieman, Turner,

& Huterer, 2008; Sahni & Starobinsky, 2006; M. Li et al., 2011; Sami, 2007; Yoo &

Watanabe, 2012; Rong-Gen, 2007; Bahamonde et al., 2018; M. Li, Li, Wang, & Wang,

2013). Quintessence is a scalar field minimally coupled to gravity and evolves dynami-

cally with a canonical kinetic energy term in its Lagrangian L and has EoS parameter

w > −1, see Refs.(Oks, 2021; Ratra & Peebles, 1988; Steinhardt, 2003; Guo, Ohta, &

Zhang, 2005, 2007; Qi, Zhang, & Liu, 2016; Hughes, 2019; Zlatev, Wang, & Steinhardt,

1999; Barreiro, Copeland, & Nunes, 2000). K-essence arises from a non-canonical ki-

netic energy term, see Refs. (Barreiro et al., 2000; Chiba, Okabe, & Yamaguchi, 2000;

Armendariz-Picon et al., 2000; Armendariz-Picon, Damour, & Mukhanov, 1999; S. Li

& Liddle, 2012; S. D. Odintsov & Oikonomou, 2019; Armendariz-Picon, Mukhanov, &

Steinhardt, 2001; Rendall, 2006; Rong-Jia & Xiang-Ting, 2009; Sur & Das, 2009; Scher-

rer, 2004; González-Dıaz, 2004). All the models with negative kinetic energy term can
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be considered its subcases. On the other hand Phantom has non-canonical kinetic en-

ergy term in its Lagrangian L and has EoS parameter w < −1. Introduction of negative

energies is, however a significant issue in these fields, see Refs. (Sami & Toporensky,

2004; Cline, Jeon, & Moore, 2004; Sami, Toporensky, Tretjakov, & Tsujikawa, 2005;

Vikman, 2005; Kujat, Scherrer, & Sen, 2006; Wen-Fu, Zheng-Wei, & Bin, 2010; Cald-

well, Kamionkowski, & Weinberg, 2003; Hu, 2005; Carroll, Hoffman, & Trodden, 2003;

Guo & Zhang, 2005; Ludwick, 2017; Caldwell et al., 2003; González-Dı́az, 2003; Fang,

Tu, Huang, & Shu, 2016; Scherrer, 2005).

Neither quintessence nor phantom individually is able to cross over −1, however the

unified model developed from the two, known as quintom, see Refs. (Štefančić, 2005;

B. Feng, Wang, & Zhang, 2005; Riess et al., 2004) fulfils the requirement. In quintom

models EoS parameter w transitions from w > −1 to w < −1 as the constraint on dark

energy favors it mildly, see Refs. (Guo, Piao, Zhang, & Zhang, 2005; X.-F. Zhang, Li,

Piao, & Zhang, 2006; Y.-F. Cai, Li, Lu, et al., 2007; B. Feng, Li, Piao, & Zhang, 2006;

Guo, Piao, Zhang, & Zhang, 2006; Y.-F. Cai, Li, Piao, & Zhang, 2007; Y.-F. Cai, Qiu,

Zhang, Piao, & Li, 2007; Mishra & Chakraborty, 2018; Panpanich, Burikham, Ponglert-

sakul, & Tannukij, 2021). Recently a model is proposed to resolve Hubble tension using

quintom dark energy (Panpanich et al., 2021). In its earliest emergence, tachyon field

surfaced in string theory and was used in cosmology afterwards to drive inflationary

phase in the early universe, see Refs. (Mazumdar, Panda, & Perez-Lorenzana, 2001;

Piao et al., 2002; Sami, Chingangbam, & Qureshi, 2002; Guo, Piao, Cai, & Zhang,

2003; L. Kofman & Linde, 2002; Fairbairn & Tytgat, 2002; X.-z. Li, Liu, & Hao, 2002;

Sen, 2005). The governing equation for tachyon can be worked out from equation of

relativistic mass in special relativity

m =
m0

√

(−1) v2

c2
− 1

=
m0

√

(−1)

1
√

v2

c2
− 1

(2.5.1)

Multiplying both sides by c2

mc2 =
m0c

2

√

(−1) v2

c2
− 1

=
m0

√

(−1)

c2
√

v2

c2
− 1

(2.5.2)

From mass-energy equivalence relation E = mc2

ETach =
c2ξ

√

v2

c2
− 1

(2.5.3)

where

ξ =
m0

√

(−1)
(2.5.4)
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Eq. (2.5.2) is the dictating energy equation of the motion of tachyon and describes it

in terms of energy. From Eq. (2.5.3) we see that the energy of the tachyon will be

negative i.e. imaginary for the mass being real whereas if the mass becomes negative i.e.

imaginary, then energy of the tachyon will turn out to be real. It is important to note

that it has not been until now possible to produce such a particle in the laboratory and its

existence could not be proven experimentally to this day. It stood up for the candidate of

dark energy after the expansion was proven to be accelerating, see Refs. (Padmanabhan,

2002; Gibbons, 2002; Hao & Li, 2002; Gibbons, 2003; Novosyadlyj, 2013; Abramo &

Finelli, 2003; Bagla, Jassal, & Padmanabhan, 2003; Gorini, Kamenshchik, Moschella,

& Pasquier, 2004; Sami, Chingangbam, & Qureshi, 2004; Calcagni & Liddle, 2006;

Copeland, Garousi, Sami, & Tsujikawa, 2005; Shao, Gui, & Wang, 2007; Shao & Gui,

2008; Martins & Moucherek, 2016; Singh, Sangwan, & Jassal, 2019; Shi, Piao, & Qiao,

2009; Frolov, Kofman, & Starobinsky, 2002; Feinstein, 2002; Aguirregabiria & Lazkoz,

2004; Guo & Zhang, 2004). It is, nonetheless, significant to note that tachyonic dark

energy models require fine tuning larger than quintessence models. Tachyon field with

negative kinetic energy term represents its phantom version, see Refs. (Hao & Li, 2003;

Sheykhi, Movahed, & Ebrahimi, 2012) with EoS parameter w < −1 as the data mildly

favours it. The Lagrangian density L for tachyon field and its phantom version is written

as L = −V (ϕ)
√

1 + εgµν∂µ∂ν where ε = +1 is for tachyon and ε = −1 for phantom

tachyon.

Although, recent data-fit gives specific trend to EoS w, however it does not determine

exactly whether the dark energy is quintessence, phantom, quintom or tachyon. Tachyon

models can effectively illustrate the dark energy and have efficient viability. A quintom

version of tachyon field was investigated in Ref. (Shi et al., 2009), where two scalar

fields namely tachyon and phantom-tachyon represent dark energy that drive the late

time accelerated expansion. These scalar fields easily allow EoS parameter to change

from w > −1 to w < −1 that is it crosses phantom divide. Theoretically, It is possible

that the dark energy consists of more than one scalar field. This allows one to consider

N scalar fields by adapting to the Lagrangian L for N scalar fields Lξ1,.....ξN . Being

motivated by the interesting prospects of tachyon-quintom dark energy, we consider a

multi-field model incorporating tachyon and phantom tachyon fields to explain the late

time acceleration within the context of flat FLRW spacetime in the background. Using

inverse square potentials we study the dynamics of the model in phase space.
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2.6 Accelerating Universe in the Framework of f (R) Modified Gravity

Further, the value attached to the cosmological constant Λ for dark energy is in conflict

with the predicted value in the context of quantum field theory treated as vacuum energy

(Padmanabhan, 2003; Sahni & Starobinsky, 2000; Sola, 2013; Volovik, 2005; Weinberg,

2001) and must be theoretically remedied. At the earliest, to derive inflation in the

very early universe, the quantum corrections to energy-momentum tensor Tµν are well

known in the community of cosmologists (Starobinsky, 1980). Further, to meet this

purpose, the modifications rendered in the matter sector Tµν with the addition of time-

varying canonical and non-canonical scalar fields are famously known as quintessence

and k-essence respectively. In addition to these, there are scalar fields originating from

these with slightly different cosmological aspects and with some other proposals. See for

reviews (Copeland et al., 2006; Y.-C. Zhang et al., 2017; Bamba et al., 2012; Bahamonde

et al., 2018; Yoo & Watanabe, 2012).

The modification in the gravitational sector is studied under extended theories of gravity

(ETGs) resting on extensions and corrections of general relativity. In ETGs, either

geometry is non-minimally coupled to some scalar field, or there arise derivatives of

the metric higher than second-order which constitute scalar-tensor and higher-order

curvature theories of gravity respectively (Faraoni & Capozziello, 2011). The latter

approach is largely discussed in the literature where higher-order derivatives of the

metric are obtained to explain the early time and the late time accelerated expansion of

the universe. The significant point of these theories is that they do not bother to modify

the matter sector by proposing any exotic form, instead, by modifying the geometry of

spacetime these accommodate both phenomena of the early time accelerated expansion

and the late time accelerated expansion inclusively. One of these is the simplest case

of f (R) gravity, where the Lagrangian density L is the arbitrary non-linear function f

of the Ricci scalar invariant R (Buchdahl, 1970; Brejzman, Gurovich, & Sokolov, 1970;

Bergmann, 1968; Ruzmaikina & Ruzmaikin, 1970; De Felice & Tsujikawa, 2010). f (R)

gravity models offer very interesting astrophysical and cosmological applications without

exotic matter. This feature renders the gravity-modified models very attractive.

In general relativity, Ricci scalar R in the Lagrangian L of Einstein-Hilbert action yields

the second-order equations of motion that describe the curvature of spacetime geometry

as the source of gravity, however, the modified gravity equations consist of higher-order

derivative terms e.g. R2, R□R and R□
2R in the Lagrangian L produce 4th, 6th and 8th
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order equations of motion respectively (Ruzmaikina & Ruzmaikin, 1970; Amendola et

al., 1993; Gottlober, Schmidt, & Starobinsky, 1990; Mayer & Schmidt, 1993). However,

any term with 2nd order derivative is consistent with a scalar field, therefore 4th, 6th

and 8th order derivative terms are equivalent to gravity-induced by Lagrangian density

L in Einstein-Hilbert action i.e., R in addition to one, two, and three scalar fields

respectively. It means that the extra degrees of freedom in f (R) can be treated as a

scalar field. This helps us in expressing the effective energy-momentum tensor modified

form and the corresponding dynamics can be accordingly described. This is how the

Jordan frame is rendered equivalent to Einstein frame (Gottlober et al., 1990; Schmidt,

1990; Capozziello, Carloni, & Troisi, 2003). The Jordan frame includes a scalar field

that is non minimally coupled to gravity through Ricci scalar R. The case of f (R) in

the Lagrangian L of Einstein-Hilbert action produces 4th order equations of motion.

In general, there are three approaches in the context of f (R) gravity, we can derive

modified field equations for it. In the first approach, the action is varied with respect

to the metric tensor gµν and the affine connection Γγ
αβ depends upon it. This approach

is known as standard metric formalism. In the 2nd approach, introduced by Einstein

himself (Faraoni & Capozziello, 2011; Einstein, 1925; Capozziello, De Laurentis, &

Faraoni, 2009), however, known after Palatini as Palatini formalism, the torsion-free

affine connection Γγ
αβ is independent of the metric tensor gµν , therefore both, the metric

tensor gµν and the affine connection Γγ
αβ are dealt as independent variables and the

action is varied with respect to both. In the Palatini formalism, it is assumed that

matter action is independent of the affine connection, however when this assumption is

relaxed, we get a third approach known as metric-affine f (R) (Capozziello et al., 2009;

Clifton, Ferreira, Padilla, & Skordis, 2012; Nojiri et al., 2017b; Sotiriou, 2006; Sotiriou

& Liberati, 2007; Ferraro, 2012). Theories of Palatini and the standard metric f (R) are

equivalent to Scalar-tensor theories where the role of f,R derivative as Brans-Dicke scalar

is central. It means that in Brans-Dicke theories the vanishing of parameter makes the

f (R) models equivalent to Scalar-Tensor theories. We will use here the standard metric

formalism in the Jordan frame without requiring it to convert back to the Einstein

frame. To understand deep down into the theory of f (R) and its applications one

can find fascinating and detailed literature in the following and the references therein

(Nojiri & Odintsov, 2007; Sotiriou & Faraoni, 2010; Starobinsky, 2007; S. D. Odintsov

& Oikonomou, 2020; Nojiri, Odintsov, & Oikonomou, 2017a; S. Odintsov & Oikonomou,

2019; Nojiri & Odintsov, 2011; S. Odintsov & Oikonomou, 2018; Capozziello, Mantica,

& Molinari, 2019; Capozziello & De Laurentis, 2011; Capozziello, Nojiri, & Odintsov,
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2018; Bamba et al., 2012; Mughal, Ahmad, & Garćıa Guirao, 2021; Bekov, Myrzakulov,

Myrzakulov, & Sáez-Chillón Gómez, 2020; Nojiri & Odintsov, 2006; Bamba & Odintsov,

2015; Vasilev, Bouhmadi-López, & Mart́ın-Moruno, 2021; Amendola & Tsujikawa, 2010;

Capozziello & De Laurentis, 2015).

The models with Lagrangian density L =
√−g

(

R+ 1
R

)

, in their action, were ruled out

because they do not fulfill the constraints in the solar system i.e., local gravity constraints

were violated which make these models non-viable. In fact, in the beginning, inverse

Ricci scalar invariant term 1
R was added to the Lagrangian density L in the Einstein-

Hilbert action with a view that as long as the universe expands, the added inverse

term might dominate and cause the late-time acceleration. However, it was shown that

adding a term
√−gRn, where n > 1 in Einstein-Hilbert action leads to the modification

of cosmology in the early universe where de Sitter era can be achieved. On the other

hand, for n < 0, it gives self-accelerating vacuum solutions in the late universe which

can explain the accelerated expansion. Similarly, an earlier presented model having

Lagrangian density L =
√−g

(

R+ R2

6M2

)

does not show viability for the late time

cosmological behavior of accelerated expansion of the universe, whereas for the early

time accelerated expansion i.e., inflation it is viable (Amendola, Gannouji, Polarski, &

Tsujikawa, 2007).

In perspective of this problem, we try to understand the late-time accelerated expansion

of the universe and seek its explanation through carrying out study of a viable f (R)

model following the dynamical system approach. The stability of the cosmic structure

as a dynamical system with its accelerated expansion is sought by analyzing it. In the

cosmological context, there is a growing concern with f (R) modified gravity models due

to their simplicity, novel features, and viability. The study of these models for the late

time accelerated expansion by autonomous dynamical system approach is a very robust

technique which is applied frequently (Amendola et al., 2007; Shah & Samanta, 2019).

In particular, by constructing a dynamical system of partial differential equations that

is autonomous, we perform a stability analysis of the system through critical points and

their eigenvalues and find the related parameters describing the densities of matter and

effective dark energy, etc. The plots for the eigenvalues are drawn which throw light

graphically on the late time behavior of the universe through the stability of the points

and eigenvalues. The aspects we discuss are extremely relevant to the late time accel-

eration in the f (R) perspective in connection with equation of state (EoS) parameter

w.
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CHAPTER-03

RESEARCH METHODOLOGY

3.1 On the Cosmological Dynamics of Spacetime and Basics of Cosmology

This section is retained for keeping the order of corresponding sections as it is related

with introduction section1.1. Therefore, it does not contain any significant analytical

and numerical results.

3.2 Multifield Inflationary Universe and Spectrum of Curvature Perturba-

tion

We consider a small field potential consisting of multifield scalars and study its infla-

tionary dynamics analytically as the universe evolves in its earliest phases. Afterward,

we calculate the spectrum of curvature perturbation by assigning suitable values to the

parameter p.

3.2.1 Driving Multifield Inflation due to Small Field Potential and the Spec-

trum of Curvature Perturbation

3.2.1.1 Validation and Justification of the Multifield Potential

We consider the following potential for investigation the problem

∑

i

Vi(ϕi) =
∑

i

Λi

[

1−
(

ϕi

µi

)−p
]

(3.2.1)

The subscript ”i” in the potential stands for the ith field and for the entities related to it.

In addition, Λi is the mass scale and µi is a parameter and these describe the height and

tilt of the potential of the ith field respectively. It has p and µi as free parameters. The

potential given in Eq. (3.2.1) is the multifield version of the brane inflationary potential

V (ϕ) = Λ

(

1−
(

ϕ
µ

)−p
)

used in brane model of inflation. In brane model, the inflation

is proposed to engender by motion of branes in the extra dimensions. The effective

Lagrangian L for such a system comes out to be L = −1
2(∂tϕ)

2− 2T3r4o
r4
UV

(

1− T 2
3 r

4
o

Nϕ4

)

where

T3 is the tension of a light brane, r is related to the distance between two branes. Other

parameters are similarly defined for the system. The effective lagrangian for the brane
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inflation can be worked out to have the form of the potential expressed in Eq. (3.2.1)

for the case i = 1 with an arbitrary value of p (Martin, Ringeval, & Vennin, 2014). For

i = 1, it is studied frequently in the literature e.g. see the Ref. (Martin et al., 2014)

and the references furnished therein in the corresponding section. The potential can

be considered a generalized version of the small field models of inflation as discussed in

the references (Martin et al., 2014; Freese, Frieman, & Olinto, 1990; Knox & Olinto,

1993; Kinney & Mahanthappa, 1996; Covi, 2001; Tzirakis & Kinney, 2007; Kawasaki &

Yamaguchi, 2002) for the negative values of p. Various potentials bearing resemblance to

such models in many aspects are also used in the reference (Kinney & Riotto, 1999, 1998;

Boubekeur & Lyth, 2005). When plotted it demonstrates an increasing function of the

field, therefore the inflation field advances from the right direction to the left. The field

would disappear for ϕ = µ or ϕ
µ = 1 and it might, therefore work in the domain ϕ

µ > 1.

The study of this model, hence should be carried out only in the region lying in the limit

ϕ
µ > 1. In addition, the brane inflation conforms to the condition µ

Mpl
<< 1 and occurs

under it. Below in Figure-3.1 drawn on the same lines as given in Reference (Martin et

al., 2014), the potential and its logarithm are plotted for i = 1 and p = 2. The dynamics

(a) (b)

Figure– 3.1: Plot of the potential of brane inflationary scenario, it depicts potential

plot at the left and its logarithm at the right as a function of ϕ
µ for p = 2

in the background of a multifield model of inflation can be realized and understood by

describing in terms of dimensionless slow roll parameters ε, η∥ and η⊥ similar to the

situation of a single field models, however the second slow roll parameter η is required to

modify in the scenario due multifield inflation likely to be confronted with eta problem.

The parameter ε is the first slow roll parameter and η∥ and η⊥ give the slow roll rate of
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the fields along and perpendicular direction of the motion of the fields. The parameter

η⊥ gives the turn rate of the fields along the perpendicular direction of motion. The

slow roll would last as long as ε << 1 and
∣

∣η∥
∣

∣ << 1, whereas the parameter η⊥ gives

the turn rate of the fields perpendicular to the motion of the fields. Comparatively

larger value of η⊥ may pose interesting phenomena to the multifield scenario, however

it does not imply that it will necessarily violate the slow roll conditions and will destroy

it altogether as is described for multifield inflation. It is also manifest from the slow

roll parameters defined for multifield inflation that Hubble parameter H and the field

derivative ∂tϕ would grow gradually. We can discuss two cases that make enough sense

for the constraints applied on p.

3.2.1.2 Analytical Analysis For the Case Related to p > 2

Let us we consider the potential that is usually used for driving the inflationary phase

in brane cosmology with p > 2. This potential was found to be relevant and useful in a

large number of multifaceted physical situations (Cervantes-Cota & Dehnen, 1995; Gong,

2006; Lazarides & Vamvasakis, 2007; Bauer & Demir, 2011; Barvinsky, 2011; Kallosh &

Linde, 2010). It is also important to note that this model is sometimes considered as a

realistic version of small field inflation with adapting the value of p = 2. The potential

we consider here is with −p. This is the profile representing small field inflation and

can be regarded as a lowest order of Taylor series expansion of an arbitrary potential

about the origin of maxima and minima of it. A generalized version of this potential is

given in Eq. (3.2.1) with uncoupled fields. The slow roll potential parameters are given

εV = 1
2

∑

i

(

pMp

φi

µ2
i

[(

φi
µi

)p
−1

]

)2

and ηV = −p(p+1)
3H2

∑

i

Λi

µi

(

ϕi

µi

)−(p+2)
. The equation of motion

of the scalar field ϕi when it slow-rolls, is

ϕ̈i + 3Hϕ̇i + V ′
i (ϕi) = 0 (3.2.2)

with ϕ̈i ≈ 0 during slow-roll phase, we have from above

ϕ̇i = −V ′
i (ϕi)

3H
(3.2.3)

now for the number of e-folds using above we have

N =

tf
∫

ti

Hdt = −M−2
p

∑

i

ϕe
i
∫

ϕs
i

Vi

Vi
′dϕi (3.2.4)

here ϕs
i represents the point of time when the corresponding perturbations crosses the

horizon and ϕe
i , the upper limit in the integral corresponds to the phase when the
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inflationary phase terminates. It is notable, however that ϕs
i < ϕe

i in general. For

further evaluation of the Eq. (3.2.4), we have from Eq. (3.2.1)

∑

i

V ′
i (ϕi) =

∑

i

Λi

µi

(

ϕi

µi

)−(p+1)

= p
∑

i

Λi

µi

(

ϕi

µi

)−(p+1)

(3.2.5)

further,
∑

i
Vi(ϕi)

∑

i
V ′

i(ϕi)
=

Vi

Vi
′ =

∑

i
Λi

[

1−
(

ϕi

µi

)−p
]

∑

i

Λi

µi
p
(

ϕi

µi

)−(p+1)
(3.2.6)

which simplifies to
Vi

Vi
′ =

1

p

(

−ϕi +
ϕi

p+1

µp
i

)

(3.2.7)

substituting Eq. (3.2.7) into Eq. (3.2.4) gives

N =
1

pM2
p

∑

i





1
µp
i (p+2)

(

(ϕs
i )

p+2 − (ϕe
i )

p+2
)

−0.5
(

(ϕe
i )

2 − (ϕs
i )

2
)



 (3.2.8)

For the small field inflation it turns out that the value of µi is less than the Planck mass

Mp i.e., µi ≤ Mp and the inflation comes to end for ϕe
i ≤ µi. This causes the quadratic

terms i.e., (ϕs
i )

2 and (ϕe
i )

2 to disappear due to ϕs
i ≤ ϕe

i ≤ Mp. From Eq. (3.2.8)

N =
∑

i









1
µp
i p(p+2)

(

(

ϕs
i

Mp

)p+2
−
(

ϕe
i

Mp

)p+2
)

−0.5
p

(

(

ϕe
i

Mp

)2
−
(

ϕs
i

Mp

)2
)









(3.2.9)

or

N =
1

p (p+ 2)µp
i

∑

i

(

(

ϕs
i

Mp

)p+2

−
(

ϕe
i

Mp

)p+2
)

(3.2.10)

which is simplified further to

N =
µ2
i

p (p+ 2)M2
p

∑

i

[

ϕs
i

µi

(

1−
(

ϕs
i

ϕe
i

))]p+2

(3.2.11)

If we approximate the expression 1−
(

ϕs
i

ϕe
i

)p+2
to unity, we are left with

N =
1

p (p+ 2)M2
p

∑

i

µ2
i

(

µi

ϕs
i

)−(p+2)

(3.2.12)

Curvature perturbations as well as isocurvature perturbations both exist in multifield

inflation models, however to keep the things simpler it is considered here that the dur-

ing the slow-roll isocurvature are suppressed and can be neglected. For the remaining

perturbations which are due to the curvature only can be suitably tackled by the mech-

anism developed by the formalism by Sasaki and Stewart (Langlois, 1999; Gordon et

al., 2000; Amendola, Gordon, Wands, & Sasaki, 2002; Byrnes & Wands, 2006; Bassett
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et al., 2006; Sasaki & Tanaka, 1998; Sasaki & Stewart, 1996; Polarski & Starobinsky,

1994). The expression for spectral index ns − 1 according to this formalism is given as

ns − 1 =









∑

i

(

V ′
i

Vi

)2

+ 2
∑

i

(

V ′
i

Vi

)−2

− 2
∑

i

1

Vi

∑

i

(

Vi

V ′
i

)2
V ′′

∑

j

(

Vj

V ′
j

)2









M2
p (3.2.13)

In Eq. (3.2.12), we replace µi

ϕs
i
by ωi i.e.,

µi

ϕs
i

≃ ωi (3.2.14)

then Eq. (3.2.12) can be re-expressed in the form

N =
1

p (p+ 2)M2
p

∑

i

µ2
iω

−(p+2)
i (3.2.15)

Now, we substitute from Eq. (3.2.15)

∑

i

µ2
iω

−(p+2)
i = B1 (3.2.16)

then Eq. (3.2.15) is

N =
1

p (p+ 2)M2
p

B1 (3.2.17)

The reduced Planck mass Mp can be expressed in terms of newly defined constant B1

M2
p =

B1

p (p+ 2)

1

N
(3.2.18)

Now, we calculate all three terms in the Sasaki-Stewart formalism. For this from

Eq. (3.2.1) squaring both sides, we

V 2 =
∑

i

(Vi (ϕi))
2 =

∑

i

Λ2
i

[

1 +

(

ϕi

µi

)−2p

− 2

(

ϕi

µi

)−p
]

(3.2.19)

neglecting the 2nd and 3rd terms, we have

V 2 =
∑

i

(Vi (ϕi))
2 =

∑

i

Λ2
i (3.2.20)

Let we put
∑

i

Λi = B2 (3.2.21)

then Eq. (3.2.20) takes the form

V 2 =
∑

i

(Vi (ϕi))
2 = B2

2 (3.2.22)

Now, from Eq. (3.2.5) squaring both sides and making use of the Eq. (3.2.14), we obtain

the form
∑

i

(

Vi
′)2 = p2

∑

i

Λ2
i

µ2
i

1

ω
−2(p+1)
i

(3.2.23)
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Let us take the expression
∑

i

Λ2
i

µ2
i

1

ω
−2(p+1)
i

= B3 (3.2.24)

then Eq. (3.2.23) becomes
∑

i

(

Vi
′)2 = p2B3 (3.2.25)

Now, from Eq. (3.2.6), the simplification after squaring both sides and using from

Eq. (3.2.14) gives

∑

i

(

Vi(ϕi)

V ′
i(ϕi)

)2

=
1

p2

∑

i

(

ϕ2
i + ϕ2

i

(

µi

ϕi

)−2p

− 2ϕ2
i

(

µi

ϕi

)−p
)

(3.2.26)

Using the definition from Eq. (3.2.14) in above Eq. (3.2.26), we obtain

∑

i

(

Vi(ϕi)

V ′
i(ϕi)

)2

=
ϕ2
i

p2

∑

i

(

1 + ω−2p
i − 2ω−2p

i

)

(3.2.27)

absorbing ϕ2
i into the definition of ωi as given in Eq. (3.2.14). After simplification we

obtain
∑

i

(

Vi(ϕi)

V ′
i(ϕi)

)2

=
1

p2

∑

i

(

ω−2
i + ω

−2(p+1)
i − 2ω−4

i

)

µ2
i (3.2.28)

Let us take
∑

i

(

ω−2
i + ω

−2(p+1)
i − 2ω−4

i

)

µ2
i = B4 (3.2.29)

now Eq. (3.2.29) takes the form using above defined constant

∑

i

(

Vi(ϕi)

V ′
i(ϕi)

)2

=
1

p2
B4 (3.2.30)

Eq. (3.2.5) now, gives on differentiating once again

∑

i

Vi
′′(ϕi) = −p (p+ 1)

∑

i

Λi

µ2
i

(

ϕi

µi

)−(p+2)

(3.2.31)

use of Eq. (3.2.14) gives

∑

i

Vi
′′(ϕi) = −p (p+ 1)

∑

i

Λi

(ωi)
−(p+2)µ2

i

(3.2.32)

By working out the product of Eq. (3.2.26) and Eq. (3.2.31) and using Eq. (3.2.14), we

get
∑

i

(

Vi(ϕi)

V ′
i(ϕi)

)2

Vi
′′(ϕi) = −p+ 1

p

∑

i

Λi

(

ωp
i + ω−p

i − 2
)

(3.2.33)

Let we substitute
∑

i

Λi

(

ωp
i + ω−p

i − 2
)

= B5 (3.2.34)
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then, Eq. (3.2.33) becomes

∑

i

(

Vi(ϕi)

V ′
i(ϕi)

)2

Vi
′′(ϕi) = −p+ 1

p
B5 (3.2.35)

with
∑

i

(

Vi(ϕi)

V ′
i(ϕi)

)2

=
∑

i

(

Vj(ϕj)

V ′
j(ϕj)

)2

(3.2.36)

we substitute from Eqs. (3.2.18), (3.2.20)-(3.2.22), (3.2.25), (3.2.30) and (3.2.35) in

Eq. (3.2.13),

ns − 1 =





p2B3

B2
2

− 2
1

(

B4
/

p2
) + 2

1

B2

(

−p+1
p B5

)

(

B4
/

p2
)





(

B1

p (p+ 1)

1

N

)

(3.2.37)

on simplification, it gives

ns − 1 = − p
p+2

1
N

(

B1B3

B2
2

)

− 2
(

p
p+2

)

1
N

(

B1
B4

)

−2
(

p+1
p+2

)

1
N

(

B1B5
B2B4

) (3.2.38)

By multiplying and dividing the 1st and 2nd terms in the above expression with p+ 1

and on simplifying, we obtain

ns − 1 = −2
(p+ 1)

p+ 2

1

N

(

1

2

p

p+ 2

B1B3

B2
2

+
p

p+ 1

B1

B4
+

B1B5

B2B4

)

(3.2.39)

In Eq. (3.2.39) on the right hand side, the 1st and 2nd terms inside the parenthesis

vanish due to ω−np±n
i ≃ 0, the remaining part is

ns − 1 = −2
(p+ 1)

p+ 2

1

N

(

B1B5

B2B4

)

(3.2.40)

we further mould the above equation in suitable form by adding and subtracting 1 on

the right hand side within parenthesis

ns − 1 = −2
(p+ 1)

p+ 2

1

N

(

B1B5

B2B4
+ 1− 1

)

(3.2.41)

or

ns − 1 = −2
(p+ 1)

p+ 2

1

N

(

1 +
B1B5 −B2B4

B2B4

)

(3.2.42)

Let we replace
B1B5 −B2B4

B2B4
= R (ωi) (3.2.43)

then Eq. (3.2.42) has the form

ns − 1 = −2
(p+ 1)

p+ 2

1

N
(1 +R (ωi)) (3.2.44)

For R (ωi) ≃ 0, Eq. (3.2.44) serves to calculate the spectral index for a single scalar field.

However, the term R (ωi) adds up in for the case when we are considering multifields.
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Therefore, it is important to determine this factor. We will use the definitions of involved

constants to find out the approximate value of the R (ωi) for larger values of p than

2. From Eqs. (3.2.16), (3.2.21), (3.2.29) and (3.2.34) substituting for the constants

B1, B2, B4, B5 in Eq. (3.2.43) to determine R (ωi)

R (ωi) =
∑

i

2
(

ωp
i − ω2

i

)

ωp
i

ω
2(p+1)
i − 2ω2p

i + ω2
i

(3.2.45)

From Eq. (3.2.32), we have the expression for ωp
i with considering

∑

i
Vi

′′(ϕi) = Vi
′′(ϕi) = m2

i ,

we have

ωp
i = − 1

p (p+ 1)

µ2
im

2
i

Λiω2
i

(3.2.46)

using the value of ωp
i in Eq. (3.2.45), we get

R (ωi) =
∑

i

2
(

µ2
im

2
i + ω4

iΛip (p+ 1)
)

µ2
im

2
i

(

ω2
i − 1

)

− ω4
iΛip (p+ 1)

(3.2.47)

The expression of R (ωi) as found in above Eq. (3.2.47) is due to consideration of multiple

fields rather than using a single field. Eq. (3.2.44) becomes now

ns − 1 = −2
(p+ 1)

p+ 2

1

N

(

1 +
∑

i

2
(

µ2
im

2
i + ω4

iΛip (p+ 1)
)

µ2
im

2
i

(

ω2
i − 1

)

− ω4
iΛip (p+ 1)

)

(3.2.48)

and with R (ωi) ≃ 0, Eq. (3.2.44) becomes, that is

ns − 1 = −2
(p+ 1)

p+ 2

1

N
(3.2.49)

Eq. (3.2.48) gives the spectral index for the case of multifields and Eq. (3.2.49) represents

the spectral index for the case when a single scalar field is taken into account. In this

case the masses of all the fields considered at once are of same value at the time of

horizon-crossing. This poses the case when the spectral index of the multifields is same

and corresponds to the spectral index of a single scalar field (Alabidi & Lyth, 2006).

It is also clear that the term R (ωi) appears due to the consideration of multifields. It

is also interesting to observe with regard to the fact that the value of R (ωi) will be

positive for ωi < ωi+1 and m2
i < m2

i+1. It will turn, however into negative for ωi < ωi+1

and m2
i > m2

i+1. The positive value of R (ωi) is interpreted as having a spectrum

being redder for multifields in comparison with its corresponding spectrum emerging

from a single field. Therefore, the negativity here implies being its value less redder

as is demonstrated in the corresponding case. Nonetheless, a stringent condition begs

further work to develop in this perspective.
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3.2.1.3 Analytical Analysis For the Case Related to p = −2,+2

Now, we will discuss some specific cases for the values of p. We will investigate for

p = 2,−2 and will observe that what effect is bore upon the respective expressions of

number of e-folds and the spectral indices.

Let us take first the case when p = 2. From Eqs. (3.2.1, 3.2.5, 3.2.31), we have

∑

i

Vi(ϕi) =
∑

i

Λi

[

1−
(

ϕi

µi

)−2
]

(3.2.50)

∑

i

V ′
i (ϕi) = 2

∑

i

Λi

µi

(

ϕi

µi

)−3

(3.2.51)

and
∑

i

Vi
′′(ϕi) = −6

∑

i

Λi

µ2
i

(

ϕi

µi

)−4

(3.2.52)

From Eq. (3.2.12) for the number of e-folds with p = 2, we get

N =
1

8M2
p

∑

i

µ2
i

(

µi

ϕs
i

)−4

(3.2.53)

Eq. (3.2.53) leads to the absurd result which is

N =
1

8µ2
iM

2
p

∑

i

[

(

ϕe
i

Mpl

)2

+

(

ϕs
i

Mp

)2
]

→ 0 (3.2.54)

similarly, the spectral index ns − 1 from Eq. (3.2.48) for p = 2

ns − 1 = −3

2

1

N

(

1 +
∑

i

2
(

µ2
im

2
i + 6ω4

iΛi

)

µ2
im

2
i

(

ω2
i − 1

)

− 6ω4
iΛi

)

(3.2.55)

for N ≃ 0, as we have an absurd result from above equation, Eq. (3.2.55) leads to the

value of spectral index ns − 1 approaching to ∞ which is again meaningless seemingly.

For p = −2, Eq. (3.2.1) takes the form

∑

i

Vi(ϕi) =
∑

i

Λi

[

1−
(

ϕi

µi

)2
]

(3.2.56)

Now, the Eqs. (3.2.5) and (3.2.31) reduce to the following expressions

∑

i

V ′
i (ϕi) = V ′

i (ϕi) = −2
∑

i

Λi

µ2
i

ϕi (3.2.57)

∑

i

Vi
′′(ϕi) = Vi

′′(ϕi) = −2
∑

i

Λi

µ2
i

(3.2.58)

and the expression for the number of e-folds N is given by

N = − 1

2M2
p

∑

i

ln

(

ϕs
i

ϕe
i

)

µ2
i (3.2.59)

(Page 73 of 216)



Finding the values of the following from Eq. (3.2.56) which comes out to be

∑

i

(

Vi
′)2 = 4

∑

i

Λ2
i

ω2
i µ

2
i

(3.2.60)

∑

i

(

Vi

Vi
′

)2

=
1

4

∑

i

ω2
i µ

2
i (3.2.61)

similarly for
∑

j

(

Vj

Vj
′

)2

=
1

4

∑

j

ω2
jµ

2
j (3.2.62)

and finally
∑

i

(

Vi

Vi
′

)2

Vi
′′ = −1

2

∑

i

Λiω
2
i (3.2.63)

Substituting Eqs. (3.2.60)-(3.2.63) in Eq. (3.2.13) we find the spectral

ns − 1 = −M2
p





∑

i
Λiω

2
i

∑

i
Λi
∑

i
µ2
jω

2
j



 (3.2.64)

where we used the condition that ω−2
i ≃ 0 Now, from Eq. (3.2.3), we have

ϕ̇i

V ′
i (ϕi)

=
ϕ̇j

V ′
j (ϕj)

(3.2.65)

working out for finding V ′
i (ϕi) and V ′

j (ϕj) from Eq. (3.2.56) and using in Eq. (3.2.64),

we obtain

µ2
i

ϕ̇i

Λiϕi
= µ2

j

ϕ̇j

Λjϕj
(3.2.66)

Integrating the above equation between the limits ϕs
i , and ϕe

i for ith field whereas be-

tween ϕs
j and ϕe

i for the corresponding jth field

µ2
i

Λi

∫ ϕe
i

ϕs
i

ϕ̇i

ϕi
=

µ2
j

Λj

∫ ϕe
j

ϕs
j

ϕ̇j

ϕj
(3.2.67)

after simplification we get

∑

i

µ2
i ln

(

ϕs
i

ϕe
i

)

=
∑

k

µ2
k ln

(

ϕs
k

ϕe
k

)

∑

i

Λi

Λk
(3.2.68)

for some fixed value of k we can drop
∑

k

∑

i

µ2
i ln

(

ϕs
i

ϕe
i

)

= µ2
k ln

(

ϕs
k

ϕe
k

)

∑

i

Λi

Λk
(3.2.69)

or having a more simplified expression for it

µ2
i ln

(

ϕs
i

ϕe
i

)

= µ2
k ln

(

ϕs
k

ϕe
k

)

Λi

Λk
(3.2.70)
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The number of e-folds in Eq. (3.2.59) becomes

N = − µ2
k

2M2
p

ln

(

ϕs
k

ϕe
k

)

∑

i

Λi

Λk
(3.2.71)

from Eq. (3.2.71), we can find expression for Planck mass in terms of number of e-folds

M2
p = − 1

2N
µ2
k ln

(

ϕs
k

ϕe
k

)

∑

i

Λi

Λk
(3.2.72)

The expression for spectral index in Eq. (3.2.64) becomes with the use of Planck mass

from above equation

ns − 1 =
2

N
ln

(

ϕs
k

ϕe
k

)

∑

i

(

Λi

Λk

)

ω2
i

∑

j

(

µj

µk

)2
ω2
j

(3.2.73)

for Λi = Λk, all the fields ϕi or ϕk will possess the same value of Λi. In this case the

expression for the spectral index in above equation reduces to the following form

ns − 1 =
2

N
ln

(

ϕs
k

ϕe
k

)

∑

i
ω2
i

∑

j

(

µj

µk

)2
ω2
j

(3.2.74)

The results presented in the Eqs. (3.2.73) and (3.2.74) are independent of the choice of

the value of k that is being considered to the uncompromising level. In Eq. (3.2.74), if

the multifields avail the chance of having the same µi and µj = µk, then we have

ns − 1 =
2

N
ln

(

ϕs
k

ϕe
k

)

(3.2.75)

3.3 An Nflationary Phase Diagram with Multifield Polynomial Potential

In this section we bring into discussion two cases in order to calculate the field values

and critical point.

3.3.1 Calculation of the Field Values and The Critical Point

The potential of a single scalar field ϕ is usually written as V (ϕ) = Λ4f
(

ϕ
µ

)

. It is

characterized by two independent mass scales Λ4 and µ, where Λ4 known as height

corresponds to the density of the vacuum energy during inflationary phase and the

second one µ called as width corresponds to the change in the field ∆ϕ during inflation.

The function f
(

ϕ
µ

)

has distinct forms for the choice of different models. Here we

consider a multifield polynomial potential of the form V (ϕj) = Λ4
j

(

ϕj

µj

)p
and develop
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further calculations to reach at the required results. We first find the total change ∆ϕ

in the field ϕ, which is important and plays significantly very basic role

∆ϕ = ∆ϕ1 +∆ϕ2 +∆ϕ2 + · · ·+∆ϕj =
∑

j

∆ϕj =

√

∑

j

(∆ϕj)
2

(3.3.1)

Now, the equation






dϕj

dt =
(

H−1
)−1

∆ϕj

∆ϕj =
ϕ̇j

H

(3.3.2)

From equation of motion of scalar field

d2ϕj

dt2
− 3H

dϕj

dt
+

dV (ϕj)

dϕj
= 0 (3.3.3)

From Eq. (3.3.3) with
d2ϕj

dt2
= 0

during slow roll phase, therefore we obtain

dϕj

dt
= ϕ̇j =

1

3H

dV (ϕj)

dϕj
(3.3.4)

Using Eqs. (3.3.2) and Eq. (3.3.4) in Eq. (3.3.1), we have

∆ϕ =

√

√

√

√

√

∑

j

(

dV (ϕj)
dϕj

)2

(3H2)2
=

√

∑

j

(

dV (ϕj)
dϕj

)2

3H2
(3.3.5)

From first Friedmann’s equation which describes the cosmological evolution of the uni-

verse

(∂t ln a)
2 − ka−2 =

8πG

3
ρ (3.3.6)

where a = a (t) is the scale factor characterizing expansion rate of the universe, k gives

the curvature of spacetime and ρ is the energy density of the universe. For flat universe

k = 0, the energy density in Planck era ρ = ρ (ϕ), so that ρ ∼ ρϕj
∼ V (ϕj), ∂t ln a = H

and M2
p = 1

8πG , then, Eq. (3.3.6) takes the form

H2 =
1

3M2
p

V (ϕj) (3.3.7)

now the potential

V (ϕj) =
Λ4
j

µp
j

(ϕj)
p =

∑

j

mp
j (ϕj)

p = (mass− scales) (ϕj)
p (3.3.8)

so Eq. (3.3.7) takes the form with the use of Eq. (3.3.8) in it

H2 =

∑

j
mp

j (ϕj)
p

3M2
p

(3.3.9)
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Further from Eq. (3.3.8), we have

dV (ϕj)

dϕj
= pmp

jϕ
p−1
j (3.3.10)

using the Eqs. (3.3.9) and (3.3.10) in Eq. (3.3.5), the term ∆ϕ takes the form

∆ϕ =

√

∑

j

(

pmp
jϕ

p−1
j

)2

3

(∑

j

mp
j (ϕj)

p

3M2
p

) =

pM2
p

√

∑

j
m2p

j ϕ2p−2
j

∑

j
mp

jϕ
p
j

(3.3.11)

We calculate, now, the change in ϕ i.e., δϕ






























δϕ = δϕ1 + δϕ2 + δϕ3 + · · ·+ δϕj =
∑

j
δϕj =

√

√

√

√

(

∑

j
δϕj

)2

δϕ ∝

√

√

√

√

(

∑

j
δϕj

)2

⇒ δϕ =
√
N

√

√

√

√

(

∑

j
δϕj

)2
(3.3.12)

Now, using the value of δϕj =
H
2π and in addition to Eq. (3.3.9) in Eq. (3.3.12), we find

δϕ =

√
N

2
√
3π

1

Mp

√

∑

j

mp
jϕ

p
j (3.3.13)

Equating Eq. (3.3.11) and Eq. (3.3.13) for both types of change in the values of ϕ, where

we can determine the relation

12π2p2
M6

p

N





∑

j

m2p
j ϕ2p−2

j



 =





∑

j

mp
jϕ

p
j





3

(3.3.14)

and from slow roll condition we have ε = − Ḣ
H2 = 1

16πG

(

∂φV
V

)2
, |ε| ≃ 1

p2
M2

p

2





∑

j

mp
jϕ

p−1
j





2

=





∑

j

mp
jϕ

p
j





2

(3.3.15)

Now, either the mass-scales of fields are equivalent or different, so we discuss two cases

accordingly

3.3.2 The Case of Equivalent Mass Scales

Now, from Eq. (3.3.14) and Eq. (3.3.15), we can find the case for the equivalent mass

scales and the equivalent potentials for keeping the case simple and straightforward

respectively i.e., mj = m and ϕj = ϕ

M6
p

N
12π2p2

(

m2pϕ2p−2
)

= (mpϕp)3 ⇒ ϕ =

(

48π2

N3

)
1
4

√

M3
p

m
(3.3.16)
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p2

2
M2

p

(

mpϕp−1
)2

= (mpϕp)2 ⇒ ϕ =
√
2
Mp√
N

(3.3.17)

The results calculated in Eqs. (3.3.16) and (3.3.17) are obtained by substituting the

masses of all fields to be equivalent and that of the fields as well to keep the things

simple and easy to handle. These equations represent the values of fields at the final

stage of slow roll phase and at the boundary of eternal inflation respectively with respect

to the number of fields N in order to derive the Nflationary phase. From Eq. (3.3.16),

we can observe that ϕ =

√

M3
p

m 4π(3)
1
2
(

1
N3

)
1
4 i.e., ϕ ∝

(

1
N3

)
1
4 ∝

√

(

1

N
3
2

)

that is the value

of ϕ at the boundary of eternal inflation and varies as N− 3
4 . We can plot the values of

ϕ at the end of slow roll phase and at the boundary of eternal inflation crossing each

other at a point of the fields, let it be N , which is obtained by comparing the values of

field ϕ as given in Eqs. (3.3.16) and (3.3.17), that is

(

48π2

N3

)
1
4

√

M3
p

m
=

√
2
Mp√
N

⇒ N ≃ 12π2
M2

p

m2
(3.3.18)

or by dropping the constant we can write in simple form

N ≃
M2

p

m2
(3.3.19)

The value
(

Mp

m

)2
represents a common point between the phase of slow roll and eternal

inflation where the lines of two regions join each other as given in the diagram. This can

be labelled as meeting point or crossing point. The slow roll phase beyond this point

does not appear more. Once this point is achieved, the line of eternal inflation at the

boundary does not move further extending downward which means that the crossing

point can be considered as a critical point. The field values at the critical point can be

calculated by substituting it in Eqs. (3.3.16) and (3.3.17). Eq. (3.3.16) at the critical

point N ≃ M2
p

m2 gives the value of the field

ϕ =

(

48π2

N3

)
1
4

√

M3
p

m
=







48π2

(

M2
p

m2

)3







1
4√

M3
p

m
≃ 2

√
π(3)

1
4

m2
(3.3.20)

and at the critical point N ≃ M2
p

m2 , Eq. (3.3.17) produces the field value

ϕ ≃
√
2
Mp√
N

≃
√
2

Mp
√

(

M2
p

m2

)

≃
√
2m (3.3.21)

Below in Figure-3.2, we plot the phase transition diagram for Nflationary phase. In

Eq. (3.3.20), behavior of the field with mass scale goes the way like ϕ ∝ m−2 which means

that the field value does not depend on number of fields N and is inversely proportional
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Figure– 3.2: The diagram of Nflationary phase between ϕ and N for a specific mul-

tifield potential V (ϕj) = Λ4
j

(

ϕj

µj

)p
. The two dotted lines divide the

region of inflation into three phases as is shown in the diagram. The

phase of slow roll appears to terminate on and beyond the critical

point. It is complicated to predict about it due to disappearance of

classical limit on and to the other side of the critical point. Two lower

dotted lines and one upper represent the lasting values of slow roll

phase and eternal inflation respectively
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to the square of the mass scale of the fields which takes the responsibility for occurrence

of the boundary in eternal inflation. Eq. (3.3.21) describes the behavior of the field

ϕ ∝ m and is independent of the number of fields N and for those values of ϕ which

fall short than m, there are likely chances that the slow rolling phase would not occur

during inflation. But we know that slow roll phase might necessarily occur in inflationary

paradigm in order to resolve the cosmological problems occurring in the standard model

of cosmology like horizon, flatness, monopole and entropy problems. The slow roll phase

is also necessary to occur to generate the primordial quantum fluctuations to seed the

present structure formation in the universe cosmologically. Beyond the critical point,

it is expected that only the line representing the end value of slow roll phase would

exist and the line representing the boundary of eternal inflation would terminate at the

critical point as shown in the diagram. This is drawn as dotted line shifting away from

the critical point. Since the value of eternal inflation at the boundary is dependent on

extrapolating the value of slow roll phase, we argue that beyond and below the end value,

the fast roll regime takes over and replaces it. In the scenario, the possibility of quantum

fluctuations being suppressed is likely to happen and therefore it can hardly be probable

for the quantum fluctuations to suppress the evolution of these fluctuations classically,

however the case cannot be simple enough as expected. Next we will investigate that

a restriction on entropy can be found as a bound on the number of fields N that at

the critical point
(

Mp

m

)2
saturates. It means that our semiclassical investigations do

not remain valid and become inapplicable beyond the critical point. Beyond the critical

point quantum era is dominant and the investigation of phase diagram beyond it would

constitute an interesting subject of exploration for further future work. In Nflation

scenario, it is important to note that when the number of fields N is larger than the

ratio of squares of Planck mass (Mp) to the average value of the masses of the fields

(mass scales) (m̄), then the region of slow roll inflation exits no more.

N ≤ M2
p : m2 ⇒ N ≤

M2
p

m2
(3.3.22)

The case when field-masses are equivalent is simple to handle, for this reason we con-

sidered equivalent mass-scale case upto here. However, the scenario is not affected

too much with different masses of the fields if we use some suitable technique. The

Marčenko-Pastur law comes here to remedy for the case of different masses. It has al-

ready been investigated that the phase diagram does not change for the unequal masses,

we just have to replace the mass m with average masses of the fields m̄. It is, however

significant to note here that all the fields implied by N are massive with no massless
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scalar field contained in it. If we take the massless fields present under N , they will have

no effect because the dynamics of massive scalar fields remains unaffected due to their

negligible impact. Therefore, their presence and non-presence is equivalent and it can

be supposed as if they are not present at all. From Eqs. (3.3.16) and (3.3.17) it can be

seen that only massive fields are taken into account for which Eq. (3.3.21) is satisfied.

This is the case when massive scalar fields are considered as dominant for cosmologi-

cal evolution. However, the way fields behave as jumping random movement quantum

mechanically along the trajectory of the field spaces during calculating of perturbations

since isocurvature perturbations are only furnished by the fields which are massless and

Eq. (3.3.16) and (3.3.17) do not bother about this mentioned case as such. The plots

beneath are drawn in Figure-3.3 which give the behavior of logarithmic change in field

ϕ values against the number of fields.
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(a) (b)

Figure– 3.3: (a) The figure shows plot between the logarithmic change of ϕ and the

number of fields N . It represents relationship of slow roll, eternal inflation and fast roll

phases. It can clearly be seen that N has bound for which slow rolling phase disappears

converging towards the critical point.

(b) The figure shows plot between the logarithmic change of ϕ and the number of fields

N . It represents relationship of slow roll, eternal inflation and fast roll phases. It can

clearly be seen that N does not have any bound for which slow rolling phase disappears

converging towards some point. Therefore two lines separating the Nflationary phases

move parallel to each other and never converge to some point
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3.3.3 The Case of Different Mass Scales-An Application of Marčenko-Pastur

law Concerned with Distribution of Masses in Nflation

The use of random matrix theory in Nflation model plays a significant role to show that

spectrum for the distribution of different masses is in accordance with Marčenko-Pastur

law. R. Easter and L. McAllister have suggested the mechanism to solve the problem

of different scale of masses (Easther & McAllister, 2006). They have proposed a law

regarding the general case of the distribution of mass scales which is known as Marčenko-

Pastur law. The technique was first used in connection with the mass distribution of

axion fields in string theory. we employ Marčenko-Pastur law for the distribution of

mass scale factors µ. Marčenko-Pastur law uses µ̄ and β, where β is the ratio of rows

and columns of mass scale factor µ. We can express it as β = n
n+r for any mass scale

matrix of order (n+ r) × n. Now the values related with µ for the smallest and the

largest are given by

µ2
1 = x = µ̄2

(

1−
√

β
)2

(3.3.23)

µ2
2 = y = µ̄2

(

1 +
√

β
)2

(3.3.24)

respectively and the field value during slow roll approximation comes out to be

ϕj (t) ≃ ϕj (t0) [T (t)]
µ21
y (3.3.25)

where T (t) = ϕn(t)
ϕn(t0)

represents the ratio between the larger field at some time t and

initial value at some time t0. Defining now in Eq. (3.3.14) and Eq. (3.3.15), the following

z = 2 ln[T (t)]
y , where ϕ2

j is replaced by ϕ2
j (t0) e

zµ2
i . We can compute in a straightforward

way the respective range of average values of mass distributions regardless of the initial

field distributions when we neglect correlations between them. Now we employ the

power series expansion and calculate the average value of the exponential term.

⟨ezµ2
i ⟩ =∑

i
⟨µ2

i ⟩ c
j

j = µ̄2i
i
∑

j=1
T (i, j)βj−1 cj

j

=
∞
∑

i=0
µ̄2iF1 (1− i,−i, 2, β) cj

j

(3.3.26)

Now, Eq. (3.3.14) can be expressed in the form

µ2
jϕ

2
j = nαµ̄2

∞
∑

i=0

µ̄2iF1 (−i,−i− 1, 2, β)
ci

i
(3.3.27)

where α = ⟨ζ2j (t0)⟩, further we have

µ4
jϕ

2
j = nαµ̄4

∞
∑

i=0

µ̄2iF1 (−i− 1,−i− 2, 2, β)
ci

i
(3.3.28)
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We substitute Eq. (3.3.27) and Eq. (3.3.28) in Eq. (3.3.14) first and afterwards in

Eq. (3.3.15), and obtain for α respectively







α =
(

48π2

N3

M3
p

m̄

)
1
2
f1 (t, β)

α = 2
M2

p

N f2 (t, β)
(3.3.29)

where






































f1 (t, β) =

(

∞
∑

i=0
µ̄2iF1(−i−1,−i−2,2,β) c

i

i

) 1
2

(

∞
∑

i=0
µ̄2iF1(−i,−i−1,2,β) c

i

i

) 3
2

f2 (t, β) =

(

∞
∑

i=0
µ̄2iF1(−i−1,−i−2,2,β) c

i

i

)

(

∞
∑

i=0
µ̄2iF1(−i,−i−1,2,β) c

i

i

)2

(3.3.30)

The Figure-3.4 below gives the distribution of masses according to Marčenko-Pastur

law. For distinct values of z we can have f1 (t, β) and f2 (t, β). It can be observed from

(a) (b)

Figure– 3.4: (a) Marčenko-Pastur law: This figure illustrates the mass distribution

of axions versus dimensionless mass variables in the case β adopts different values. c

is along parallel axis when the function f1 (t, β). Note that the law of large numbers

ensures that the mass distribution of N axions obeys the distribution probability of a

single field.

(b) Marčenko-Pastur law: This figure illustrates the mass distribution of axions versus

the dimensionless mass variables in the case β adopts different values. c is along parallel

axis when the function f2 (t, β). Note that the law of large numbers ensures that the

mass distribution of N axions obeys the distribution probability of a single field

the diagrams of the two functions that when the values of z are taken in larger range the

function’s behavior is similar to that like of a constant. For equal values of mass scales
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and fields the functions f1 (t, β) = f2 (t, β) ≃ 1 and from Eq. (3.3.29) the value of α ≃ ϕ2

and m̄ = m, in this case we regain the values of ϕ as expressed in Eqs. (3.3.16, 3.3.17)

i.e., ϕ =
(

48π2

N3

) 1
4

√

M3
p

m and ϕ =
√
2
Mp√
N
.
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3.4 Time Independent Schrödinger Equation Conforming to Wheeler-DeWitt

Equation for the Evolution of Early Universe

In this section we discuss formulation of the problem.

3.4.1 Mathematical Formulation of the Problem

Wheeler-DeWitt equation leads to the time-independent Schrödinger equation with the

condition of zero point energy. The time-independent Schrödinger equation gives evolu-

tion of the universe as state system and predicts even inflationary phase under special

assumptions. From the Friedmann 1st equation of evolution, we have,

(

ȧ

a

)2

+
k

a2
=

8πG

3
ρ (3.4.1)

assuming the energy density is sourced by the cosmological constant i.e., ρ = Λ
8πG only

and considering a positively curved spacetime geometry i.e., k = +1, that represents a

close universe, we have from Eq. (3.4.1)

ȧ2

a2
+

1

a2
=

1

3
Λ (3.4.2)

d2a

dt2
− 1

3
Λa2 + 1 = 0 (3.4.3)

Eq. (3.4.3) is satisfied by the following solution

a (t) = a0 cosh

(

t

a0

)

(3.4.4)

where a0 =
√

Λ
3 and at t = 0 the universe shrinks to a radius of the maximally smallest

size and the expansion at t = 0 is a (0) = a0 =
√

Λ
3 , however at some later time t = t0,

it keeps on expanding forever. From Eq. (3.4.1) we also have a generalized form for

Eq. (3.4.3) as
d2a

dt2
− 8πGρ

3
a2 = −k (3.4.5)

Now, From Eq. (3.4.2), multiplying it by a3 on both sides and after having simplified,

we have

aȧ2 + a− 1

3
a3Λ = 0 (3.4.6)

Furthermore, making use of Einstein-Hilbert action we obtain

SEH = − 3π

4G

∫ (

aȧ2 − a+
1

3
a3Λ

)

dx0 (3.4.7)
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Determining now the classical Lagrangian L and Hamiltonian H from it. We can write

the Lagrange L classically from the above equation

L = L (a, ȧ) = − 3π

4G

(

aȧ2 − a+
1

3
a3Λ

)

(3.4.8)

The conjugate momentum to the variable a (t) is

∂L (a, ȧ)

∂ȧ
= P = − 3π

2G
ȧa (3.4.9)

and Hamiltonian function taken classically could be written as

H =
∂L (a, ȧ)

∂ȧ
(ȧ)− L (a, ȧ) = − 3π

2G
ȧa (ȧ) +

3π

4G

(

aȧ2 − a+
1

3
a3Λ

)

(3.4.10)

H = − 3π

4G

(

a− 1

3
a3Λ

)

− GP 2

3πa
(3.4.11)

When we use quantization where the conjugate momentum operator is p → i ∂
∂t ⇒ p2 =

− ∂2

∂t2
and Eq. (3.4.11) takes the form with its use in it

H = − 3π

4G

(

a− 1

3
a3Λ

)

+
G

3πa

∂2

∂t2
(3.4.12)

The classical constraint H = 0 as an operator identity is not satisfied and proved here.

Instead, it is taken as the constraint on the states of the theory that is

HΨ(t) = 0 (3.4.13)

Now, from Eq. (3.4.12), for H = 0

− 3π

4G

(

a− 1

3
a3Λ

)

+
G

3πa

∂2

∂t2
= 0 (3.4.14)

or

H =
∂2

∂t2
− 9π2

4G2

(

a2 − 1

3
a4Λ

)

= 0 (3.4.15)

and Eq. (3.4.13) takes the following form

(

∂2

∂t2
− 9π2

4G2

(

a2 − 1

3
a4Λ

))

Ψ(a) = 0 (3.4.16)

Eq. (3.4.16) represents Wheeler-DeWitt (WDW) equation in minisuperspace where Ψ (a)

is the wave function of the observable universe expressed solely in terms of scale factor

a (t) and does not explicitly depend on time and can be said that it is independent of

time. This equation can be viewed as the time-independent Schrödinger wave equation,

that is
(

− h2

2m

∂2

∂x2
+ V

)

Ψ = EΨ (3.4.17)
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Having a comparative look on Eqs. (3.4.16) and (3.4.17)), it implies that Wheeler-

DeWitt equation can be considered as Schrödinger wave equation with the zero-point

energy wave function i.e. (0)E at the right hand side (Vakili, 2012). Now, we consider

an FLRW metric in minisuperspace that goes all the way

ds2 = −N2 (t) dt2 + a2 (t)

[

dr2

1− kr2
+ r2dθ2 + r2sin2θdϕ2

]

(3.4.18)

where the parameter N (t) stands for the lapse function and describes the measure

considerations for the rate of flow of proper time τ with respect to the coordinate time t

as one shifts away along the unit normal vector to the hypersurface. The lapse function is

defined in terms of the metric tensor gµν and slicing of it into timelike hypersurfaces. The

parameter a (t) is the scale factor that characterizes expansion of the universe whreas the

term k is curvature of space (spacetime) representing three geometries namely spherical,

elliptical and flat corresponding to +1, −1 and 0 respectively. The minisuperspace used

here is the analogue of quantum version for FLRW universe which takes into account

such model of the universe. It is here intended to work out a variable which could play

suitably the role of time variable. Now, employing Einstein-Hilbert action, we proceed

SEH =
1

16πG

∫

(√−gR+
√−gLϕ

)

d4x (3.4.19)

and substituting the value of Ricci scalar R from Eq. (3.4.18) and in addition taking

Lϕ = 1
2g

µν∂µϕ∂νϕ + V (ϕ) and N (t) = 16πG = 1 in Eq. (3.4.19), we determine the

Lagrangian L in the minisuperspace parameterized as {a, ϕ} in the following form

L = −3

(

da

dt

)2

a+ 3ka+
1

2
a3
(

dϕ

dt

)2

− a3V (ϕ) (3.4.20)

We figure out the momenta conjugate to the variables a and ϕ respectively

∂L

∂ϕ̇
= Pϕ = a3

dϕ

dt
(3.4.21)

and
∂L
∂ȧ

= Pa = −6a
da

dt
(3.4.22)

Now, on the other hand, the canonical Hamiltonian H is given by

H = ȧ (t)
∂L

∂ȧ (t)
+ ϕ̇ (t)

∂L
∂ϕ̇ (t)

− L (3.4.23)

Eq. (3.4.23) becomes on substituting the values of momenta conjugate from Eq. (3.4.21)

and Eq. (3.4.22) and of L from Eq. (3.4.20)

H =
1

2

P 2
ϕ

a3
− 1

12

P 2
a

a
+ a3V (ϕ)− 3ka (3.4.24)
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The canonical Hamiltonian as worked out in Eq. (3.4.24), now takes the form for the

canonical transformations as given below

(ϕ, Pϕ) → (T, PT ) (3.4.25)

we have

T =
ϕ

Pϕ
(3.4.26)

and

PT =
P 2
ϕ

2
(3.4.27)

HCL =
PT

a3
− 1

12

P 2
a

a
+ a3V (T )− 3ka (3.4.28)

The subscript CL here indexed in H denotes classical Hamiltonian. It is arguable here

that the momentum PT which appears linearly in the expression can be regarded as

parameter of time during the quantization of the model. To quantize the model and

have the Wheeler-DeWitt equation there out

HΨ(a, T ) = 0 (3.4.29)

here Ψ (a, T ) is the wave function of the universe in the minisuperspace. Using the

transformations

PT → −i
∂

∂t
(3.4.30)

and

Pa(t) → −i
∂

∂a (t)
(3.4.31)

The quantized version of Eq. (3.4.28) takes the form as is expressed below where the

results from Eq. (3.4.30) and Eq. (3.4.31) are used for the operators

HQZ = a2 (t)
∂2

∂a2
+ sa (t)

∂

∂a
− i

(

12
∂

∂T

)

− 36ka4 (3.4.32)

The subscript QZ here in H denotes the quantized Hamiltonian whereas s represents

the mutual interaction in the term − 1
12

P 2
a

a as the ambiguous order for the factors a and

Pa. Using the quantized Hamiltonian in Eq. (3.4.32), we obtain the Wheeler-DeWitt

equation in Eq. (3.4.29) in the form

(

a2 (t)
∂2

∂a2
+ sa (t)

∂

∂a
− i

(

12
∂

∂T

)

− 36ka4
)

Ψ(a, T ) = 0 (3.4.33)

Considering the case for a flat geometry (k = 0), we have from the above equation

(

a2 (t)
∂2

∂a2
+ sa (t)

∂

∂a
− 12i

∂

∂T

)

Ψ(a, T ) = 0 (3.4.34)
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From Eq. (3.4.34) we can have the Schrödinger equation by separating suitably its

variables as Ψ (a, T ) = eiBTΨ(a). This leads to the equation in the following form

a2
d2Ψ(a)

da2
+ sa

dΨ(a)

da
+ 12BΨ(a) = 0 (3.4.35)

or
(

a2
d2

da2
+ sa

d

da
+ 12B

)

Ψ(a) = 0 (3.4.36)

where s and B are the parameters which for different values falling in the feasible

range of the solution suitable for the phenomena under consideration help in solving

this equation numerically. We will solve this equation numerically by assigning different

values to these parameters. The dependent variable Ψ (a) is the wave function and

is the function of scale factor a (t) describing expansion evolutionary dynamics of the

universe. In interpreting the wave function Ψ (a) physically, it bears similarity to that

of the wave function discussed in quantum mechanics. The scale factor parameter seems

here somehow to play the role of a coordinate-like variable. For the scale factor a (t),

two initial conditions are possibly taken into account that is a (0) = 0 and a (0) >

0. When the solution is considered in the half plane t ≥ 0, we observe a (t) → 0

as t → ∞. The observations evidence that a (t) is always increasing function which

means that the big crunch could not be attained and our simple approach may still

be advantageous to describe the desired dynamics. In the case of a bound state as a

quantum state possessing solution means that it does not present a good demonstration

altogether. However, the Schrödinger equation possesses an infinite number of wave

function solutions for any as large as possible number of continuous set of energies that

diverge to ±∞ as t → ∞ (Mielnik & Reyes, 1996). Determining such a solution and

interpreting it probabilistically could reveal the weird features of the cosmic dynamics

with providing dualistic nature of the cosmic scale factor. Below in the Figure-3.5, the

graphical abstract is illustrated which presents the step by step procedural process of

the working for solving the problem and describes how the early universe could evolve.
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Figure– 3.5: The graphical abstract of the proposed problem
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3.5 Accelerating Universe Driven by Multifield Tachyon-Quintom Dark En-

ergy

In the first place, we begin with the development of the mathematical machinery required

to discuss dark energy models under consideration using dynamical system approach.

3.5.1 Development Of the Mathematics For the Model

We take two homogeneous scalar fields namely multifield-tachyon
n
∑

i=1
ξi and multifield-

phantom tachyon
n
∑

i=1
ηi which is known as tachyon-quintom (Shi et al., 2009). Their

corresponding potentials are
n
∑

i=1
V (ξi) and

n
∑

i=1
V (ηi) respectively. In the background we

consider the FLRW universe with four-dimensional flat spacetime. Since we shall use

equation of state parameter w expressed in terms of pressure and density as ratio of the

two, therefore we are going to take the fluid whose density is the function of pressure

only i.e., ρ = ρ (p). The barotropic fluid is disseminated through and replenished in

the universe with equation pγ = (γ − 1) ργ with the condition 0 < γ ≤ 2, where γ has

different values for dust and radiation etc. The system of this type will have action of

the form

S = ∫
(

M2
pR

2
+

n
∑

i=1

Lξi +

n
∑

i=1

Lηi + Lm

)

√−gd4x (3.5.1)

where
n
∑

i=1

Lξi = −
n
∑

i=1

V (ξi)

√

√

√

√1 + gµν
n
∑

i=1

∂µξi∂νξi (3.5.2)

and
n
∑

i=1

Lηi = −
n
∑

i=1

V (ηi)

√

√

√

√1− gµν
n
∑

i=1

∂µηi∂νηi (3.5.3)

are the scalar field Lagrangian densities where as Lm represents the Lagrangian density of

the matter fields as Lagrangian. The spatial homogeneity will imply
n
∑

i=1
∂iξi =

n
∑

i=1
∂iηi =

0, that is only spatially homogeneous solutions that evolve in time i.e., time dependent

solutions will be considered. The generalized energy densities of the fields result in the

form

ρ n
∑

i=1
ξi
=

n
∑

i=1
V (ξi)

√

1−
n
∑

i=1
ξ̇2i

(3.5.4)
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ρ n
∑

i=1
ηi

=

n
∑

i=1
V (ηi)

√

1 +
n
∑

i=1
η̇2i

(3.5.5)

and the generalized pressures for both fields

p n
∑

i=1
ξi
= −

n
∑

i=1

V (ξi)

√

√

√

√1−
n
∑

i=1

ξ̇2i (3.5.6)

p n
∑

i=1
ηi

= −
n
∑

i=1

V (ηi)

√

√

√

√1 +

n
∑

i=1

η̇2i (3.5.7)

Now, the equations of the scalar fields for generalized tachyon and generalized phantom

tachyon read in the following forms

n
∑

i=1
ξ̈i

1−
n
∑

i=1
ξ̇2i

+ 3H
n
∑

i=1

ξ̇i +

n
∑

i=1
V,ξi (ξi)

n
∑

i=1
V (ξi)

= 0 (3.5.8)

and
n
∑

i=1
η̈i

1−
n
∑

i=1
η̇2i

+ 3H
n
∑

i=1

η̇i −

n
∑

i=1
V,ηi (ηi)

n
∑

i=1
V (ηi)

= 0 (3.5.9)

and from equation of continuity, substituting for pγ = (γ − 1) ργ , we obtain evolution

equation for barotropic perfect fluid

dρ

dt
+ 3H (ρ+ p) = 0, (3.5.10)

⇒ dργ
dt

+ 3H (ργ + pγ) (3.5.11)

⇒ dργ
dt

− 3Hγργ = 0 (3.5.12)

In order to find the equation for acceleration, we have now to compute first the following

two parameters Ḣ and H2. We know from Friedmann’s Equations that

H2 =

(

ȧ

a

)2

=
8πG

3
ρ+

k

a2
(3.5.13)

Ḣ +H2 =
ä

a
= −4πG

3
(ρ+ 3p) (3.5.14)

from above Eq. (3.5.13) and Eq. (3.5.14), we have

Ḣ = −4πG

3
(ρ+ p) (3.5.15)
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Now, Eq. (3.5.15) can be written for the densities and pressures of the generalized fields

considered in the model and for the barotropic pressure and density, that is

Ḣ = − 1

2M2
p



 ρ n
∑

i=1
ξi
+ ρ n

∑

i=1
ηi
+ p n

∑

i=1
ξi
+ p n

∑

i=1
ηi
+ ργ + pγ



 (3.5.16)

Now, substituting the values for the generalized energy densities and pressures, we have

Ḣ = − 1
2M2

p













n
∑

i=1
V (ξi)

√

1−
n
∑

i=1
ξ̇2i

+

n
∑

i=1
V (ηi)

√

1+
n
∑

i=1
η̇2i







+









−
n
∑

i=1
V (ξi)

√

1−
n
∑

i=1
ξ̇2i −

n
∑

i=1
V (ηi)

√

1 +
n
∑

i=1
η̇2

+ργ + (γ − 1) ργ

















(3.5.17)

after having simplified the above expression, we obtain

Ḣ = − 1

2M2
p













n
∑

i=1
V (ξi)ξ̇

2
i

√

1−
n
∑

i=1
ξ̇2i

−

n
∑

i=1
V (ηi)η̇

2
i

√

1 +
n
∑

i=1
η̇2i

+ γργ













(3.5.18)

Now, from Eq. (3.5.13)

H2 =

(

ȧ

a

)2

=
8πG

3
ρ+

k

a2

With k = 0 for flat universe

H2 =
8πG

3
ρ (3.5.19)

Since the energy density ρ is contributed by
n
∑

i=1
ξi and

n
∑

i=1
ηi and ργ , and for M2

p = 1
8πG ,

we have

H2 =
1

3M2
p

ρ =
1

3M2
p



ρ n
∑

i=1
ξi
+ ρ n

∑

i=1
ηi
+ ργ



 (3.5.20)

Using Eq. (3.5.4) and Eq. (3.5.5), we have

H2 =
1

3M2
p













n
∑

i=1
V (ξi)

√

1−
n
∑

i=1
ξ̇2i

+

n
∑

i=1
V (ηi)

√

1 +
n
∑

i=1
η̇2i

+ ργ













(3.5.21)

Now, dividing both sides of above equation by H2

1 =
1

3H2M2
p













n
∑

i=1
V (ξi)

√

1−
n
∑

i=1
ξ̇2i

+

n
∑

i=1
V (ηi)

√

1 +
n
∑

i=1
η̇2i

+ ργ













(3.5.22)
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or

1 =













n
∑

i=1
V (ξi)\3H2M2

p

√

1−
n
∑

i=1
ξ̇2i

+

n
∑

i=1
V (ηi)\3H2M2

p

√

1 +
n
∑

i=1
η̇2i

+
ργ

3H2M2
p













(3.5.23)

From Eq. (3.5.23), we are going now to define some parameters which are dimensionless

and can facilitate our calculations. Further we will construct dynamical system with

the help of these parameters

x n
∑

i=1
ξi
=

n
∑

i=1

ξ̇i (3.5.24)

x n
∑

i=1
ηi

=

n
∑

i=1

η̇i (3.5.25)

and

y n
∑

i=1
ξi
=

n
∑

i=1
V (ξi)

3H2M2
p

(3.5.26)

y n
∑

i=1
ηi

=

n
∑

i=1
V (ηi)

3H2M2
p

(3.5.27)

and

z =
ργ

3H2M2
p

(3.5.28)

Now, using the defined parameters from Eqs. (3.5.24)-(3.5.28), Eq. (3.5.23) becomes

1 =













y n
∑

i=1
ξi

√

1− x2n
∑

i=1
ξi

+

y n
∑

i=1
ηi

√

1 + x2n
∑

i=1
ηi

+ z













(3.5.29)

For obtaining the equation of acceleration, we divide both sides of Eq. (3.5.18) byH2 and

making use of the defined parameters from Eqs. (3.5.24)-(3.5.28), we get the following

simplified form

Ḣ

H2
= −3

2













y n
∑

i=1
ξi
x2n
∑

i=1
ξi

√

1− x2n
∑

i=1
ξi

+

y n
∑

i=1
ηi
x2n
∑

i=1
ηi

√

1 + x2n
∑

i=1
ηi

+ γz













(3.5.30)

Using the value of z from Eq. (3.5.29) in Eq. (3.5.30) and performing simplification, we

have

H′

H = −3
2













−
y n
∑

i=1
ξi






γ−x2

n
∑

i=1
ξi







√

1−x2
n
∑

i=1
ξi

−
y n
∑

i=1
ηi






γ+x2

n
∑

i=1
ηi







√

1+x2
n
∑

i=1
ηi

+ γ













(3.5.31)
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here H ′ denotes the derivative of H with respect to the logarithm of the scale factor

i.e., lna = N and H = ∂t ln a = dN
dt and Ḣ = dH

dN × dN
dt = H ′H Now, from Eq. (3.5.29)

ΩDE = 1− 1

3

(

ργH
−2M−2

p

)

(3.5.32)

where we used Eq. (3.5.28) and for

y n
∑

i=1
ξi

√

1−x2
n
∑

i=1
ξi

+

y n
∑

i=1
ηi

√

1+x2
n
∑

i=1
ηi

= ΩDE The parameter ΩDE

weighs out the energy density of dark energy as a fraction of the critical density ρcd.

The EoS w = p
ρ of dark energy for the system of multifield scalars is given by

w =

p n
∑

i=
ξi
+ p n

∑

i=
ηi

ρ n
∑

i=
ξi
+ ρ n

∑

i=
ηi

(3.5.33)

using Eqs. (3.5.4)-(3.5.7), we obtain

w =

−
n
∑

i=1
V (ξi)

√

1−
n
∑

i=1
ξ2i −

n
∑

i=1
V (ηi)

√

1 +
n
∑

i=1
η2i

n
∑

i=1
V (ξi)

√

1−
n
∑

i=1
ξ2i

+

n
∑

i=1
V (ηi)

√

1+
n
∑

i=1
η2i

(3.5.34)

dividing and multiplying by 8πG
3H2

w =

8πG
3H2

(

−
n
∑

i=1
V (ξi)

√

1−
n
∑

i=1
ξ2i −

n
∑

i=1
V (ηi)

√

1 +
n
∑

i=1
η2i

)

8πG
3H2







n
∑

i=1
V (ξi)

√

1−
n
∑

i=1
ξ2i

+

n
∑

i=1
V (ηi)

√

1+
n
∑

i=1
η2i







(3.5.35)

after simplification we get

w =

−y n
∑

i=1
ξi

√

1− x2n
∑

i=1
ξi

− y n
∑

i=1
ηi

√

1 + x2n
∑

i=1
ηi

y n
∑

i=1
ξi

√

1−x2
n
∑

i=1
ξi

+

y n
∑

i=1
ηi

√

1+x2
n
∑

i=1
ηi

(3.5.36)

Carrying out some numerical analysis shows that there is correspondence between e-

folding number N and the redshift z. The redshift is related to the scale factor a (t) by

the relation z = a0(t)
a(t)−1 and a0 (t) = 1, we have z = 1

a(t)−1 . For z ≈ 1010, the number of

e-folds maps the nucleosynthesis at the time of big bang to Nnbb ≃ −21. On the other

hand, for z ≈ 3300, the number of e-folds maps the equality of matter-radiation at the

time slightly after big bang to Nemr ≃ −10. We take N = −10 as the initial number

of e-folds which could be a convenient choice and conforming to it consider γ = 1 in
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Eqs. (3.5.38) and (3.5.41) which may prove a suitable approximation. In the below in

Figure-3.6, it is shown how the equation of state and dark energy evolves conforming

to the number of e-folds. Now, we develop an autonomous dynamical system. we use

(a) (b)

Figure– 3.6: The figure shows how does the growth of equation of state parameter w

and the parameter of dark energy density ΩDE occur with evolution of the number of

e-folds N and for γ = 1 and λ n
∑

i=1
ξi

and λ n
∑

i=1
ηi

as 0.33

inverse square potentials to study the dynamics of our model constructed for tachyon and

phantom tachyon. Inverse square potential renders the similar role to tachyon field as

does the exponential potential to the standard scalar field. These potentials have been

used extensively in the study of tachyon models and allow to develop the dynamical

system (Padmanabhan, 2002; Bagla et al., 2003; Calcagni & Liddle, 2006; Copeland

et al., 2005; Aguirregabiria & Lazkoz, 2004). From Eqs. (3.5.8) and (3.5.24) and with

inverse square potential defined for multifield scalars
n
∑

i=1
ξi as

n
∑

i=1
V (ξi) = M2

n
∑

i=1
ξi

n
∑

i=1
ξ−2
i

for evolution of the system. Here M2
n
∑

i=1
ξi

is the mass scale of multifield scalars
n
∑

i=1
ξi.

x′ n
∑

i=1
ξi
=

d



x n
∑

i=1
ξi





dN

= −3



1− x2n
∑

i=1
ξi







x n
∑

i=1
ξi
−
√

λ n
∑

i=1
ξi
y n
∑

i=1
ξi





(3.5.37)
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From Eq. (3.5.26) and Eq. (3.5.31) with using inverse square potential
n
∑

i=1
V (ξi) =

M2
n
∑

i=1
ξi

n
∑

i=1
ξ−2
i , we find

y′ n
∑

i=1
ξi
=

d



y n
∑

i=1
ξi





dN

= 3y n
∑

i=1
ξi





















−
y n
∑

i=1
ξi






γ−x2

n
∑

i=1
ξi







√

1−x2
n
∑

i=1
ξi

−
y n
∑

i=1
ηi






γ+x2

n
∑

i=1
ηi







√

1+x2
n
∑

i=1
ηi

−
√

λ n
∑

i=1
ξi
y n
∑

i=1
ξi
x n
∑

i=1
ξi
+ γ





















(3.5.38)

where

λ n
∑

i=1
ξi
=

4M2
p

3M2
n
∑

i=1
ξi

(3.5.39)

Now, from Eq. (3.5.9) and Eq. (3.5.25) with inverse square potential defined for multifield

scalars
n
∑

i=1
ηi as

V

(

n
∑

i=1

ηi

)

= M2
n
∑

i=1
ηi

n
∑

i=1

η−2
i

for evolution of the system. Here M2
n
∑

i=1
ηi

is the mass scale for multifield scalars
n
∑

i=1
ηi.

x′n
∑

i=1
ηi

=

d



x n
∑

i=1
ηi





dN
= −3



1 + x2n
∑

i=1
ηi







x n
∑

i=1
ηi
+
√

λ n
∑

i=1
ηi
y n
∑

i=1
ηi



 (3.5.40)

From Eq. (3.5.27) and Eq. (3.5.31) with using inverse square potential V

(

n
∑

i=1
ηi

)

=

M2
n
∑

i=1
ηi

n
∑

i=1
η−2
i , we find y′n

∑

i=1
ηi

=

d



y n
∑

i=1
ηi





dN

= 3y n
∑

i=1
ηi













−
y n
∑

i=1
ξi






γ−x2

n
∑

i=1
ξi







√

1−x2
n
∑

i=1
ξi

−
y n
∑

i=1
ηi






γ+x2

n
∑

i=1
ηi







√

1+x2
n
∑

i=1
ηi

−
√

λ n
∑

i=1
ηi
y n
∑

i=1
ηi
x n
∑

i=1
ηi
+ γ





(3.5.41)

where

λ n
∑

i=1
ηi

=
4M2

p

3M2
n
∑

i=1
ηi

(3.5.42)

(Page 98 of 216)



The Figure-3.7 describes and illustrates the growth of general points of the scalar fields

as the number of e-folds grows.

(a) (b)

(c) (d)

Figure– 3.7: The above figures indicate the behavior of general points of scalar mul-

tifields as the number of e-folds N evolve. The points x n
∑

i=1
ξi
, y n

∑

i=1
ξi
, x n

∑

i=1
ηi

and y n
∑

i=1
ηi

develop gradually as the function of e-folding number N for γ = 1 and λ n
∑

i=1
ξi
and λ n

∑

i=1
ηi

both with assigned a value equivalent to 0.33
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3.6 Accelerating Universe in the Framework of f (R) Modified Gravity

Here we revise the theoretical framework of f (R) modified gravity which provides the

methodology for finding out the results in study of these models.

3.6.1 Theoretical Framework of f (R) Modified Gravity

In Section 2 here, we briefly review the theoretical background in which the cosmological

dynamics of f (R) modified gravity is developed. Taking start from Einstein Field

Equation (EFE) of general relativity, that is

Gµν = Rµν −
1

2
gµνR = 8πTµν (3.6.1)

we move forward to develop f (R) dynamics. Eq. (3.6.1) corresponds to Einstein-Hilbert

action with Lagrangian density L =
√−gR

SEH =
1

16πG

∫

d4x
√−gR+

∫

d4x
√−gLm (3.6.2)

In scalar field models we usually modify RHS of EFE i.e., matter sector represented

by energy-momentum tensor Tµν and accordingly add some terms in it for a scalar

field usually. On the other hand, the gravitational sector is modified which means that

RHS is kept unaltered and LHS is modified that stands for the geometry of spacetime

mimicking the role of gravity in f (R), and this is why it is called model of modified

gravity. The LHS of EFE is derived solely from the curvature invariant term i.e., Ricci

scalar R, therefore, in the modified gravity we replace it by a general function of it in

the action. Replacing Ricci scalar R in Einstein-Hilbert action given in Eq. (3.6.1) by a

general function of R, that is f (R) i.e., R → f (R), we have

SEH(f(R)) =
1

16πG

∫

d4x
√−gf (R) +

∫

d4x
√−gLm (3.6.3)

The variation of Eq. (3.6.2) for the curved geometry would be written as

δSEH(f(R)) =

∫

d4xδ
(√−gf (R)

)

(3.6.4)

where the variation of Eq. (3.6.2) with inverse metric gµν → gµν + δgµν yields the

following modified gravity equation through performing tedious calculations

F (R)Rµν −
1

2
f (R) gµν − (∇µ∇ν − gµν□)F (R) = k2Tµν (3.6.5)

where □ = gµν∇µ∇ν = ∇ν∇ν and ∇µ are the covariant d′Alembert operator or

d′Alembertian and covariant derivative operator respectively whereas F (R) = f,R (R).
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The modified f (R) gravity equation expressed in Eq. (3.6.5) reduces to general relativity

equation for f (R) = R and ∂f(R)
∂R = F (R) = 1. In Eq. (3.6.4), the LHS is the modified

form of Einstein tensor Gµν = Rµν − 1
2gµνR and represents the modified geometry in

the framework of f (R). We can contract Eq. (3.6.4) with gµν to determine the trace of

modified EFE

F (R)R+ 3□F (R)− 2f (R) = k2T (3.6.6)

For a vacuum solution T = 0, the de Sitter space with curvature term R to be constant

F (R)R+ 3□F (R)− 2f (R) = 0 (3.6.7)

Eq. (3.6.7) represents an inflationary solution with the term 3□F (R) = 0 at the de

Sitter point.

F (R)R− 2f (R) = 0 (3.6.8)

If the condition in Eq. (3.6.8) is fulfilled, the late time de Sitter solution can be obtained

in f (R)-based models that play the role of dark energy through modification of the

geometry of spacetime.

3.6.1.1 Modified Version of Friedmann’s Equations In the Framework of

f (R) Gravity For a Spatially Flat and Homogeneous Universe

For a homogeneous, isotropic and spatially flat and expanding FLRW universe with a

time-dependent scale factor a (t)

ds2 = gµνdx
µdxν = −dt2 + a2 (t)

(

dx2 + dy2 + dz2
)

(3.6.9)

Now, Friedmann’s equations for the modified Einstein field equation as given by Eq. (3.6.5)

can be determined going through the lengthy calculations. Where we find

R00 = −3
(

Ḣ +H2
)

(3.6.10)

Rii = 2ȧ2 + aä (3.6.11)

and

R = 6
(

Ḣ + 2H2
)

(3.6.12)

Eq. (3.6.10) can be further re-expressed using Eq. (3.6.12)

R00 = −1

2
R+ 3H2 (3.6.13)

for

Tµν = diag (−ρm, pm, pm, pm) (3.6.14)
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where trace of Tµν is (−ρm + 3pm). Now, on using µ = ν = 0 in Eq. (3.6.5) gives

F (R)R00 −
1

2
f (R) g00 −∇0∇0F (R) + g00□F (R) = k2T00 (3.6.15)

Solving through tedious calculations by using Eq. (3.6.10) and Eq. (3.6.14), we reach at

3H2F =
1

2
(FR− f)− 3HḞ + k2 (ρm + ρr) (3.6.16)

again for µ = ν = i in Eq. (3.6.5), we have

F (R)Rii −
1

2
f (R) gii −∇i∇iF (R) + gii□F (R) = k2Tii (3.6.17)

We find

gii□F (R) = −2a2HḞ − a2F̈ +∇i∇iF (3.6.18)

Using Eq. (3.6.11), Eq. (3.6.14) and Eq. (3.6.8) in Eq. (3.6.17), we obtain

2ḢF = −F̈ +HḞ − k (ρm + pm) (3.6.19)

Eq. (3.6.16) and Eq. (3.6.19) taken together determine the background dynamics of a

flat FLRW universe governed by f (R) gravity. From Eq. (3.6.16), on dividing by 3H2F

and for ρ = ρr+ρm, we can construct a dynamical autonomous system in the framework

of f (R), that is

− Ḟ

HF
+

(

− f

6H2F

)

+
R

6H2
+

k2ρr
3H2F

+
k2ρm
3H2F

= 1 (3.6.20)

Now, the following parameters (Amendola et al., 2007) are defined

x1 = − Ḟ

HF
(3.6.21)

x2 = − f

6H2F
(3.6.22)

x3 =
R

6H2
(3.6.23)

x4 =
k2ρr
3H2F

(3.6.24)

x5 =
k2ρm
3H2F

(3.6.25)

Eq. (3.6.23) can be recast by using Eq. (3.6.12)

x3 =
Ḣ

H2
+ 2 =

R

6H2
(3.6.26)

We have a constraint from Eq. (3.6.20) on using the defined dimensionless parameters

in it

x1 + x2 + x3 + x4 + x5 = 1 (3.6.27)
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Now, for pm = 4
3ρr, N = ln a and Ḣ = H ′H, where dot ”.” and prime ”′” denote

differentiation with respect to the cosmic time ”t” and ”N” that is natural logarithm

of the scale factor a, respectively, so that we can determine the following dynamical

system, after going through a process of tedious calculations

dx1
dN

= x21 − x1x3 − 3x2 − x3 + x4 − 1 (3.6.28)

dx2
dN

= x1x2 − 2x2 (x3 − 2) +
x1x3
m

(3.6.29)

dx3
dN

= −2x3 (x3 − 2)− x1x3
m

(3.6.30)

dx4
dN

= x4 (x1 − 2x3) (3.6.31)

dx5
dN

= x5 (x1 − 2x3) (3.6.32)

where,

m =
Rf,RR

f,R
=

d log f,R
d logR

(3.6.33)

It is important to note that m is the most significant definition in the construct of f (R)

whereas the derivative terms f,R = ∂f
∂R and f,RR = ∂2f

∂R2 . The variable m measures the

deviation of f (R) cosmology from the flat ΛCDM cosmological model that corresponds

to the vanishing of m (Amendola & Tsujikawa, 2008). The notation ”, ” written in the

place of subscript or as subscript denotes the partial differentiation with respect to the

variable written adjacent to it such as here is R. Another variable (parameter) r, in

addition to m is defined as

r = −Rf,R
f

= − d log f

d logR
=

x3
x2

(3.6.34)

It can be observed from the coordinates x2 and x3 in the points P5 and P6 respectively

in terms of which r is described that they are joined with the line m (r) = −r− 1 in the

light of Eq. (3.6.34) above. The effective equation of state parameter weff , can also be

written with the help of Eq. (3.6.16) and Eq. (3.6.19) through division

weff = −1− 2Ḣ

3H2
(3.6.35)

or using Eq. (3.6.26), it gives

weff = −1

3
(−1 + 2x3) (3.6.36)

Further, another form can also be written as

wDE = −1 +
F̈ −HḞ + k (ρ+ p)

1
2 (FR− f)− 3HḞ + kρM

(3.6.37)
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It can be written in terms of critical points as well

wDE = −1

3

−1 + 2x3 +
F
F0
x4

1− F
F0

(1− x1 − x2 − x3)
(3.6.38)

The model dependent values can be determined for the points x1, x2, x3, x4 and x5.

The fixed points corresponding to any f (R) model can be determined from the system

defined above. The certain properties of these points similar to the effective equation of

state parameter that describe the evolution of the universe are described below. For the

matter-dominated epoch these are determined for the dynamical system developed above

generally. For this epoch x4 = w = k2ρr
3FH2 = 0. These fixed points in the context of f (R)

are responsible for the description of universe through their different properties. The

properties of these fixed points (P1 − P6) are very interesting and are given underneath.

P1: (x1, x2, x3, x4) = (−4, 5, 0, 0) , P1(EV ) :
(

−5,−4,−3, 4(1+m)
m

)

, weff = 1
3 ,Ωm =

0,Ωr = 0,ΩGC = 1

The point P1 is unable to produce matter dominated epoch since Ωm = 0 and it

generates irrelevant effective equation of state weff = 1
3 which could not be used

to derive the epoch of accelerated expansion of the late time universe as it requires

negative value of unity or closer to it. Figure-3.8 below gives evolution of P1.

(a) (b)

Figure– 3.8: The evolution of point P1 for general f (R) for −1 < m =
Rf,RR

f,R
< 1. In

Fig1(a) shows a plot in two dimensions whereas in Fig1(b) a three dimensional plot is

given

(Page 104 of 216)



P2: (x1, x2, x3, x4) = (−1, 0, 0, 0) , P2(EV ) :
(

−2,−1, 3, 1+4m
m

)

, weff = 1
3 ,Ωm = 2,Ωr =

0,ΩGC = −1

The point P2 could not give perfect matter dominated epoch before the expansion

begins accelerating. Similarly, its effective equation of state weff = 1
3 which could

not shed light on the late time accelerated expansion is irrelevant. The point is,

however dominated by geometric curvature. Figure-3.9 below gives evolution of

P2.

(a) (b)

Figure– 3.9: The evolution of point P2 for general f (R) for −1 < m =
Rf,RR

f,R
< 1. In

Fig1(a) shows a plot in two dimensions whereas in Fig1(b) a three dimensional plot is

given

P3: (x1, x2, x3, x4) = (0, 0, 0, 1) , P3(EV ) : (4, 4,−1, 1) , weff = 1
3 ,Ωm = 0,Ωr = 1,ΩGC =

0

The point P3 could not give matter dominated epoch before the expansion begins

to accelerate as it considers matter density to be vanishing. Similarly, its effective

equation of state is weff = 1
3 which could not shed light on the late time acceler-

ated expansion rather is irrelevant. The geometric curvature also vanishes at this

point. Figure-3.10 below gives evolution of P3.

P4: (x1, x2, x3, x4) = (0,−1, 2, 0) , P4(EV ) :
(

−4,−3, −3m−√
m
√
−16+25m

2m , −3m+
√
m
√
−16+25m

2m

)

weff = −1,Ωm = 0,Ωr = 0,ΩGC = 1. It is very important point as it gives

weff = −1 which leads to the late time de Sitter point with R = −2 satisfying
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(a) (b)

Figure– 3.10: The evolution of point P3 for general f (R) for −1 < m =
Rf,RR

f,R
< 1.

In Fig1(a) shows a plot in two dimensions whereas in Fig1(b) a three dimensional plot

is given

the condition F (R)R− 2f (R) = 0. The point is related with the accelerated ex-

pansion of the universe and is dominated by curvature geometrically. Figure-3.11

below gives evolution of P4.

P5: (x1, x2, x3, x4) = (1, 0, 0, 0) , P3(EV ) :
(

1, 2, 5, −1+4m
m

)

, weff = 1
3 ,Ωm = 0,Ωr =

0,ΩGC = 1

The point P5 could not give matter dominated epoch as Ωm = 0 and is concerned

as well with the irrelevant effective equation of state since weff = 1
3 which could

not throw light on the accelerated expansion of the late time. It is, however

dominated by geometric curvature. Figure-3.12 below gives evolution of P5.

P6: (x1, x2, x3, x4) =
(

3m
1+m , 16

(

−6 + 9m
(1+m)2

+ 18m2

(1+m)2
+ 3

1+m − 12m
1+m

)

, 1+4m
2(1+m) , 0

)

, P6(EV ) :




−1,
3(m+2m2+m3)

m(1+m)2
, −3m−3m2−√

m(1+m)
√
−16−31m+160m2+256m3

4m(1+m)2
,

−3m−3m2+
√
m(1+m)

√
−16−31m+160m2+256m3

4m(1+m)2



 , weff = − m
1+m ,Ωm =

2−3m−8m2

2(1+m)2
,Ωr = 0,ΩGC = m(7+10m)

2(1+m)2

The point P6 gives matter dominated epoch as for a range of values between -1

and +1 and is concerned as well with effective equation of state. It could not

produce radiation epoch, however is related with curvature domination for values

of m. Figure-3.13 below gives evolution of P6.
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(a) (b)

Figure– 3.11: The evolution of point P4 for general f (R) for −1 < m =
Rf,RR

f,R
< 1.

In Fig1(a) shows a plot in two dimensions whereas in Fig1(b) a three dimensional plot

is given

(a) (b)

Figure– 3.12: The evolution of point P5 for general f (R) for −1 < m =
Rf,RR

f,R
< 1.

In Fig1(a) shows a plot in two dimensions whereas in Fig1(b) a three dimensional plot

is given
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(a) (b)

Figure– 3.13: The evolution of point P6 for general f (R) for −1 < m =
Rf,RR

f,R
< 1.

In Fig1(a) shows a plot in two dimensions whereas in Fig1(b) a three dimensional plot

is given

P7: (x1, x2, x3, x4) =
(

4m
1+m ,− 2m

(1+m)2
, 2m
1+m , 1−2m−5m2

(1+m)2

)

,

P7(EV ) :





1,
4(1+2m+m2)

(1+m)2
, −1+m2−

√
3
√
−5+42m2+64m3+27m4

2(1+m)2
,

−1+m2+
√
3
√
−5+42m2+64m3+27m4

2(1+m)2



 , weff = 1−3m
3+3m ,Ωm =

0,Ωr =
1−2m−5m2

(1+m)2
,ΩGC = 2m(2+3m)

(1+m)2

The point P7 is very significant as it allows the formation of matter-domination

era. The matter-dominated era corresponding to Ωm = 1− (10m+7)m

2(m+1)2
with effective

equation of state weff < 0 can be achieved for the value of m being close to 0 i.e

m → 0. This point can launch the universe enter into the acceleratedly expanding

phase for small value of m. Figure-3.14 below gives evolution of P7.

P8: (x1, x2, x3, x4) =
(

−2(−1+m)
1+2m ,− 1−4m

m+2m2 ,
−1+3m+4m2

m(1+2m) , 0
)

,

P8(EV ) :

(

−2(−1+2m+5m2)
m(1+2m) , 2m−3m2−8m3

m2(1+2m)
, m−2m2−8m3

m2(1+2m)
,−2(−m+m3)

m2(1+2m)

)

weff = 2−5m−6m2

3m+6m2 ,Ωm = 0,Ωr = 0,ΩGC = 1. The point P8 is very important with

regard to the accelerated expansion with effective equation of state weff < −1
3

provided that −1
2 < m < 0 or

√
3−1
2 < m < −

√
3+1
2 . Figure-3.15 below gives

evolution of P8.
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(a) (b)

Figure– 3.14: The evolution of point P7 for general f (R) for −1 < m =
Rf,RR

f,R
< 1.

In Fig1(a) shows a plot in two dimensions whereas in Fig1(b) a three dimensional plot

is given

(a) (b)

Figure– 3.15: The evolution of point P8 for general f (R) for −1 < m =
Rf,RR

f,R
< 1.

In Fig1(a) shows a plot in two dimensions whereas in Fig1(b) a three dimensional plot

is given
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3.6.1.2 Constraints For Viable f (R) Models at Local and Cosmological

Scales

In f (R) gravity perspective, inflation as the accelerated expansion in the early universe

was first described by Starobinsky model f (R) = R + αR2 (Starobinsky, 1980). Since

that time, it is known that the model has viability only for inflation and is not any

more concerned with the late time accelerated expansion. The reason behind it is that

as long as the quadratic term R2 maintains itself, inflationary phase continues, however

the moment it begins growing smaller in comparison with linear term R, the early

accelerated expansion comes to the end. Likewise, the models with the negative powers

of scalar invariant undergo the similar situation and limitations. There are, however

some models that do not show viability for local gravity constraints (Hu & Sawicki,

2007; Capozziello & Tsujikawa, 2008) and some are not viable for global constraints.

Therefore, it is important to know which models are viable and which are the otherwise.

In this regard, there some viability constraints that a f (R) model must fulfill. The

set of viability conditions or constraints which must be satisfied for an f (R) model to

be viable and to be working realistically, are expressed below (Amendola & Tsujikawa,

2010; Shah & Samanta, 2019; Bamba, 2013):

1. F = df(R)
dR > 0.

2. F,R = d2f(R)
dR > 0.

3. f → R− 2Λ.

4. 0 < m < 1 at r = −2, where m =
R d2f

dR
df
dR

=
RF,R

F .

5. Constraints due to violation of the equivalence principle.
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CHAPTER-04

RESULTS AND DISCUSSION

4.1 On the Cosmological Dynamics of Spacetime and Basics of Cosmology

This section is retained for the sake of keeping the corresponding sections in order as

it is related with introduction section1.1. Therefore, it has no significant analytical or

numerical results.

4.2 Multifield Inflationary Universe and Spectrum of Curvature Perturba-

tion

It can be noted from Eq. (3.2.75) in chapter 3 of methodology that all the terms included

in the ln
(

ϕs
k

ϕe
k

)

might be equivalent on account of what is expressed in Eq. (3.2.71). Now,

the Eq. (3.2.75) is representing the same equation for the corresponding single field case.

The value of ln
(

ϕs
k

ϕe
k

)

in Eq. (3.2.71) will be smaller for the bigger value of µ
i
when Λi

are taken equivalent to the µ
i
. If we consider µk = Max (µn) where n denotes natural

numbers. This gives rise to µi

µk
< 1 which implies that the spectrum is more redder than

its corresponding spectrum resulting from Eq. (3.2.75) for a single scalar field ϕk. In

this case the value of ln
(

ϕs
k

ϕe
k

)

would represent almost the smallest from all the values of

ln
(

ϕs
i

ϕe
i

)

which indicates that in Eq. (3.2.75) the case of single scalar field ϕk the value of

k approaches nearer to unity. On the other hand If we take into account µk = Min (µn)

where n denotes natural numbers. This gives rise to µi

µk
> 1 which leads to the factual

result that the spectrum is less redder than its corresponding spectrum resulting from

Eq. (3.2.75) for a single scalar field ϕk. In this case the value of ln
(

ϕs
k

ϕe
k

)

would represent

almost the biggest one out of all the values of ln
(

ϕs
i

ϕe
i

)

which shows that in Eq. (3.2.75)

the case of single scalar field ϕk the value of k shifts away from unity. It means that

the value of the scalar spectral index falls between that of single field in general for the

biggest µk and the smallest accordingly. Below in Table-4.1 and Table-4.2 are listed the

corresponding range of spectral indices resulting from variant values of N and against

the values of p, the corresponding range of N respectively. Below in Figure-4.1 and

Figure-4.2, spectral index (ns) is plotted against e-folding number N for a range of

values.
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Table– 4.1: Spectral index (ns) in terms of e-fold number N for a range of values of p

Sr.No values of p
spectral index in terms of

e-folding number (N)

2 p = −300 0− 4
N

3 p = −200 0− 3
N

4 p = −100 0 undefined

5 p = 000 0− 1
N

6 p = 100 0− 4
3N

7 p = 200 0− 3
2N

8 p = 300 0− 8
5N

9 p = 400 0− 5
3N

Table– 4.2: Spectral index (ns) against the number of e-folds N

Sr.No e-folding Number (N) spectral index (ns)

1 30 0.90

2 35 0.914

3 40 0.925

4 45 0.93

5 50 0.94

6 55 0.945

7 60 0.95

8 65 0.953

9 70 0.96
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Figure– 4.1: Plot of spectral index (ns) against the e-folding Number (N) for the

values of p. At the right there is logarithm of the plot
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Figure– 4.2: Plot of spectral index (ns) against the e-folding Number (N)
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Now, considering that the fields are uncoupled so that the dynamics during slow roll

proceeds as

∆ϕ ≃

√

√

√

√

∑

i

(

∂tϕi

H

)2

(4.2.1)

and Friedmann equation

H2 =
8πG

3
ρ+

k2

a2
(4.2.2)

using Eq. (3.2.3), Eq. (3.2.5) and Eq. (4.2.2) in Eq. (4.2.1) above, we have

∆ϕ ≃ pM2
p

√

∑

i

(

Λi

µi

(

ϕi

µi

)−(p+1)
)2

∑

i
Λi

(

1−
(

ϕi

µi

)−p
) (4.2.3)

The quantum fluctuations during this phase

δϕ ≃
√

∑

i

(δϕi) (4.2.4)

where δϕi ∼ H
2π and making use of Eqs. (3.2.1, 4.2.2), it gives

δϕ ≃ 1

πMp

√

N

12

√

√

√

√

∑

i

Λi

(

1−
(

ϕi

µi

)−p
)

(4.2.5)

The critical field values can be reached at ∆ϕ ≃ δϕ, for p = 2, we have

p2M6
p

∑

i

(

Λi

µi

(

ϕi

µi

)−(p+1)
)2

≃ N

12π2

∑

i

(

Λi

(

1−
(

ϕi

µi

)−p
))3

(4.2.6)

using now the slow roll condition ε << 1, from Eq. (3.2.1) and Eq. (3.2.5) we get the

following relation

1

2
pM2

p

∑

i

(

Λi

µi

(

ϕi

µi

)−(p+1)
)2

<<
∑

i

(

Λi

(

1−
(

ϕi

µi

)−p
))2

(4.2.7)

or towards the end of slow roll phase

1

2
pM2

p

∑

i

(

Λi

µi

(

ϕi

µi

)−(p+1)
)2

≃
∑

i

(

Λi

(

1−
(

ϕi

µi

)−p
))2

(4.2.8)

R. Easter and L. McAllister have developed a very powerful technique in order to work

out the problem of different scale of masses (Easther & McAllister, 2006). The method

is frequently employed in Nflation or multiple field scenarios. They have proposed a

law regarding the general case of the distribution of mass scales which is known as

Marčenko-Pastur law or distribution. In multifield models of inflation it is customary

to make use of random matrix theory which might play a very basic and important role
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in the distribution of different masses related to the spectrum. This is accomplished by

using some suitable law, the one best example is Marčenko-Pastur distribution. The

law was first used in string theory where the problem of mass distribution axion field

was being faced. In multifield models there occur different trajectorie of inflation and

therefore become susceptible to the initial conditions as the values of the fields laying in

the background dynamics. As is the case in most cases inflationary scenarios are based

on the hypothesis taken ad hoc which pose the problem of finding the initial conditions

to not much reliable. Based on it, inflationary parameters, in some specific scenarios are

predicted not to depend largely on priors of initial conditions (Easther, Frazer, Peiris,

& Price, 2014). We utilize Marčenko-Pastur law here for the distribution of mass scale

factors µ or Λi. Marčenko-Pastur law makes the use of the parameters µ̄ and β, where

β is the ratio of rows and columns of mass scale factor µ. We can express it as β = n
n+r

for any mass scale matrix of order (n+ r) × n. Now the values related with µ for the

smallest and for the largest are given by

µ2
1 = x = µ̄2

(

1−
√

β
)2

(4.2.9)

µ2
2 = y = µ̄2

(

1 +
√

β
)2

(4.2.10)

respectively and the field value during slow roll approximation comes out to be

ϕj (t) ≃ ϕj (t0) [T (t)]
µ21
y (4.2.11)

where T (t) = ϕn(t)
ϕn(t0)

represents the ratio between the larger field at some time t and

initial value at some time t0. Defining now in Eq. (4.2.6) and Eq. (4.2.8) z = 2 ln[T (t)]
y

where ϕ2
j is replaced by ϕ2

j (t0) e
zµ2

i . We can compute in a straightforward way the

respective range of average values of mass distributions regardless of the initial field

distributions when we neglect correlations between them. Now we employ the power

series expansion and calculate the average value of the exponential term.

⟨ezµ2
i ⟩ =∑

i
⟨µ2

i ⟩ c
j

j = µ̄2i
i
∑

j=1
T (i, j)βj−1 cj

j

=
∞
∑

i=0
µ̄2iF1 (1− i,−i, 2, β) cj

j

(4.2.12)

Now, Eq. (4.2.6) can be expressed in the form

µ2
jϕ

2
j = nαµ̄2

∞
∑

i=0

µ̄2iF1 (−i,−i− 1, 2, β)
zi

i
(4.2.13)

where α = ⟨ζ2j (t0)⟩, moreover, we have

µ4
jϕ

2
j = nαµ̄4

∞
∑

i=0

µ̄2iF1 (−i− 1,−i− 2, 2, β)
zi

i
(4.2.14)
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We substitute Eq. (4.2.13) and Eq. (4.2.14) in Eq. (4.2.6) first and afterwards in Eq. (4.2.8),

and obtain for α respectively



















α = p2M6
p

∑

i

(

Λi

µi

(

ϕi

µi

)−(p+1)
)2

f1 (t, β)

α = 1
2pM

2
p

∑

i

(

Λi

µi

(

ϕi

µi

)−(p+1)
)2

f2 (t, β)

(4.2.15)

where






































f1 (t, β) =

(

∞
∑

i=0
µ̄2iF1(−i−1,−i−2,2,β) z

i

i

) 3
2

(

∞
∑

i=0
µ̄2iF1(−i,−i−1,2,β) z

i

i

) 5
2

f2 (t, β) =

(

∞
∑

i=0
µ̄2iF1(−i−1,−i−2,2,β) z

i

i

) 1
2

(

∞
∑

i=0
µ̄2iF1(−i,−i−1,2,β) z

i

i

)2

(4.2.16)

In Figure-4.3, distribution of mass scales is plotted in accordance with Marčenko-Pastur

law. we can have values of the functions f1 (t, β) and f2 (t, β) corresponding to the

0 1 2 3 4 5

β0.0

0.2

0.4

0.6

0.8

1.0

f1

(a)

0 1 2 3 4 5

β0.0

0.2

0.4

0.6

0.8

1.0

f2

(b)

Figure– 4.3: This figure demonstrates the mass distribution according to Marčenko-

Pastur law, where it takes place against the dimensionless mass variables in the case β

takes on different values. c is along parallel axis when the functions are along vertical

axes. It can be noted that the law of large numbers of mass scales ensures that the mass

distribution of N fields obeys the distribution probability like that of a single field

distinct values as adapted by or assigned to the parameter z. However, for comparatively

bigger values of it, the functions behave like a constant as the figures show it. In the

case, when values of the fields and mass scales are equivalent, the functions f1 (t, β) =

f2 (t, β) ≃ 1 and from Eq. (4.2.15) the value of α ≃ ϕ2 and m̄ = m, in this case we

regain the values of the fields.
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4.2.1 Discussion and Concluding Remarks

In this problem related to multifield inflation, we discussed the inflationary phase by

considering a small multifield potential written in the generalized form
∑

i
Vi(ϕi) =

∑

i
Λi

[

1−
(

ϕi

µi

)p]

with p being negative. This potential represents the small field infla-

tionary model and can be regarded as Taylor series expansion about the origin of its

minima and maxima in its lowest order. In small field models of inflation the field is

usually considered beginning with about an unstable equilibrium around the origin and

then rolling down along its potential about the origin. As the field expression denotes a

generalized potential to stand for the multifield inflationary potential. i denotes any ith

field taken into account multiple fields. The parameters Λi and µi denote the height and

tilt of the ith potential in the multiple fields. The spectrum of curvature perturbations

which give rise to the growth of cosmic structure are important relic from inflation. We

investigated this spectrum for the potential under consideration. At first, we considered

the case for the value of p larger than 2. In the case, in general, when inflaton fields have

the equivalent masses the equations of motion give rise to those of single field inflation

producing the phase of non-perturbations. This occurs due to relative mass differences

in the inflaton fields. It is observed that the spectrum comes out to be more or less

redder in comparison with the corresponding single field model accordingly. Included

fields and their effective masses play a very significant role because the results depend

upon these at the time of horizon-crossing. It is noted that the result corresponds to

that of single scalar field when the effective masses of all the fields are taken to be equiv-

alent. The spectrum in this case results to be similar and therefore coincides with the

spectrum of single field. It is concluded that the results for the values of p > 2, p = 2

and p = −2 are different and the behaviour of the field potentials and the corresponding

spectrums are distinct as well as different.

It can be noted that all the terms included in the factor ln
(

ϕs
k

ϕe
k

)

might be equivalent on

account of the result reached. With some extra term the two expressions represent the

same equation for the corresponding single field case. The value of ln
(

ϕs
k

ϕe
k

)

for the result

reached at, will be smaller for the larger value of µ
i
when Λi are taken equivalent to the

µ
i
. If we consider µk = Max (µn) where n denotes natural numbers. This gives rise to

µi

µk
< 1 which implies that the spectrum is more redder than its corresponding spectrum

resulting from the result for a single scalar field ϕk. In this case the value of ln
(

ϕs
k

ϕe
k

)

would represent almost the smallest from all the values of ln
(

ϕs
i

ϕe
i

)

which indicates that
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in Eq. (3.2.75) the case of single scalar field ϕk the value of k tends to get nearer to unity.

On the other hand if we are taking the µk = Min (µn) where n denotes natural numbers.

This gives rise to µi

µk
> 1 which resultantly leads to the result that the spectrum is less

redder than its corresponding spectrum resulting from the result for a single scalar field

ϕk. In this case the value of ln
(

ϕs
k

ϕe
k

)

would represent almost larger one out of all the

values of ln
(

ϕs
i

ϕe
i

)

which shows that the case of single scalar field ϕk, where the value

of k shifts away from unity. It means that the value of the scalar spectral index falls

between that of single field in general for the biggest µk and the smallest accordingly.

The results we came across depend upon the effective masses and the values of the fields,

however they emerge irrespective of the consideration for the initial conditions. Due to

the spectrum being calculated on the time of horizon-crossing these occur on this time.

To have these results we only require to satisfy the slow-rolling approximation of the

fields in the initial and not any further action for it. The imposition of the condition

δϕj

ϕ̇j
= δϕi

ϕ̇i
is ensured in order to neglect the isocurvature perturbations. With this

condition it appears that the fields are confined to some specific trajectories. Although

the incorporation of the isocurvature perturbation modes look plausible however, is not

taken into account for keeping simplicity and for remaining stuck with the our main

theme.

It is investigated how the observables such as slow roll parameters, e-folding number and

spectral index affect the inflationary models of multi-fields. Multi-field models might

predict a range of values for the spectral index, although initial values of the inflaton

scalar field depend upon the coefficient µ. The models of the inflationary universe

which come out of the potential representing the models of scalar fields are namely the

natural inflation model, double-well inflationary model, and brane inflationary model.

First, we performed calculations of inflationary parameters taking single field models

from these scalar field potentials. These models of scalar fields are very well-known

inflationary models. Slow roll parameters are calculated for all three models taken into

consideration. Then we computed the spectral indices for all three models expressed

in terms of slow-roll parameters. The number of e-folds is calculated by the formula

expressed in terms of the potential and its derivatives. In the natural inflation model,

we used the limiting value of the potential for ϕ −→ 0. In our calculations for the

natural inflation model, we set the limiting case for both sinϕ and cosϕ, so that the

result we obtained is the good approximated solution. In Table-4.1 and Table-4.2 are

listed the corresponding range of spectral index resulting from the variant values of N
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and against the values of p, the corresponding range of N respectively. Where the range

of values for spectral index with an increasing number of e-fold N is observed. Whereas,

in Figure-4.1 and Figure-4.2, spectral index (ns) is plotted against e-folding number N

for a range of values. The behavior and the trend of spectral index against the number

of e-folds N is diagramed graphically for the range N = 30, 35, 40, 45, 50, 55, 60, 65, 70.

The range of values for spectral index with an increasing number of e-fold is listed in

Table-4.1 and Table-4.2 for the corresponding cases. In Figure-4.3, distribution of mass

scales is plotted in accordance with Marčenko-Pastur law or distribution for the case

when a large number of scalar fields is taken into account.

4.3 An Nflationary Phase Diagram with Multifield Polynomial Potential

We discuss the following results in this section for an Nflationary phase diagram with

the multifield polynomial potential.

4.3.1 Relation Between Number of Fields N , Number of e-Folds N and En-

tropy S

The entropy S during Nflation is given by de Sitter (dS) i.e., S ∼
(

H−1
)2
M2

p where

S = SdS . We are considering entropy on the boundary of eternal inflation such that it

can be expressed in the form

S ∼
M2

p

H2
∼

M2
p

(

Nm2ϕ2/M2
p

) =
M4

p

Nm2ϕ2
(4.3.1)

From Eq. (3.3.16), making use of the expression ϕ =
(

48π2

N3

) 1
4

√

M3
p

m in Eq. (4.3.1), we

find

S ∼
√

N

48π2

Mp

m
≃

√
N

√

√

√

√

(

1

(48)
1
2π

)2
(

Mp

m

)2

⇒ S ∝ N
1
2 (4.3.2)

From Eq. (4.3.2), we note that the entropy S is in direct proportion to the square root of

the number of fields N , it simply means that the entropy decreases with decrease in the

number of fields and increases with increase in the number of fields. The case of such

entropy is similar to the entanglement entropy related with event horizon of a black hole

where it depends on the N number of species (fields). This entropy represents a general

case for N species (Dvali & Solodukhin, 2008). Although this does not appear to agree

with black hole entanglement entropy due to equal contributions of all the fields in its

entropy. The problem is resolved by proposing a suitable gravity cutoff (Λ) which is
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given as Λ ∼ Mpl√
N

(Dvali, 2010; Dvali & Solodukhin, 2008; Arkani-Hamed, Dubovsky,

Nicolis, Trincherini, & Villadoro, 2007). We use Eq. (4.3.2) and put to test it for the

gravity cutoff as described below

S ∼
√

N

48π2

Mp

m
=

√
N
√
N√

48πm

Mp√
N

=
N√
48π

Λ

m
(4.3.3)

From above the value of gravity cutoff Λ ∼ Mp√
N

⇒ Λ
√
N ∼ Λ ·N ∼ Mp, substituting in

Eq. (4.3.3), we find

S ∼ N√
48π

Λ

m
∼ 1√

48π

Mp

m
∼ Mp

m
(4.3.4)

The result in Eq. (4.3.4) represents the entropy for the case of a single field at the

boundary of the eternal inflation. Now, we develop a relation between e-folding number

N , number of fields N and entropy S, we will use the following expression for the number

of e-folds N
N ∼ Nϕ2

M2
p

(4.3.5)

Using ϕ =
(

48π2

N3

) 1
4

√

M3
p

m from Eq. (4.3.6) in Eq. (4.3.5), we find the expression for the

number of e-folds

N ∼
√
48πMp

m
√
N

(4.3.6)

Using for
Mp

m =
√

48
N πS from Eq. (4.3.2) in Eq. (4.3.6), we find a relation between

number of e-folds N , number of fields N and entropy S in the form

N ·N ∼ 48π2S (4.3.7)

For simplicity, we can drop the constant terms to have

N ·N ∼ S (4.3.8)

In Figure-3.2, at the boundary of eternal inflation the initial value of the field ϕ is

given by Eq. (3.3.16) and for a specific number of fields N along the axis of ϕ, the

total number of e-folds N shall correspond to the line of slow roll phase accordingly.

However, Eq. (4.3.7) represents a general condition on entropy with number of fields N

and number of e-folds N . We observe now that

N ·N ≤ S (4.3.9)

will be the case below the boundary line of eternal inflation. Eq. (4.3.9) indicates the

fact that for a certain number of fields N , total number of e-folds in case of slow roll

phase along the axis representing ϕ and along the line in parallel with N axis both are
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bounded by the entropy bound S while at the boundary of eternal inflation the entropy

bound is saturated. Further from Eq. (4.3.7) or Eq. (4.3.8) for N tending to unity we

can recover the result for single field such that total number of e-folds turns out to be of

the order of entropy (Arkani-Hamed et al., 2007; Kaloper, Kleban, Lawrence, & Sloth,

2016; Huang, 2008).

N ·N ≃ 48π2S ⇒ N · 1 ≃ 48π2S ⇒ N ≃ 48π2S ⇒ N ≃ S (4.3.10)

On the other hand when N is near the critical point and the number of e-folds tends

approximately to unity i.e.,

N ≃ 1 ⇒ 1 ·N ≃ S ⇒ N ≃ S (4.3.11)

Eq. (4.3.11) describes the fact that the entropy is equivalent to the number of fields N .

From Eq. (3.3.18) the number of fields N is given as N ≃ 12π2M
2
p

m2 ⇒ Mp

m =
√

N
12

1
π ,

substituting this value of
Mp

m in Eq. (4.3.2) we can have the same value as found in

Eq. (4.3.11), that is

S ∼
√

N

48π2

Mp

m
= S ∼

√

N

48π2

√

N

12π2
∼ N

12
√
2π2

(4.3.12)

12
√
2π2S ∼ N ⇒ S ∼ N (4.3.13)

However, below the critical point N ≤ S and from Eq. (4.3.2), S ∼
√

N
48π2

Mp

m ≥ N

can be found which becomes as N ≤ 12π2M
2
p

m2 . G. dvali et al. has suggested (Dvali &

Solodukhin, 2008, 2008; Dvali, 2010; Arkani-Hamed et al., 2007) about the renormal-

izability of the planck mass Mp in the presence of the number of fields N at the scale

of the order m such that M2
p ≥ Nm2. It means in other words that N ≥

(

Mp

m

)2
do

not show consistency. If we consider the case N ≥
(

Mp

m

)2
keeping in mind the case of

Eq. (4.3.2), S ∼
√

N
48π2

Mp

m , we find that number of fields N is larger than the entropy

dS of the critical point i.e., N ≥ S. It intuitionally looks impossible because it suggests

that at least each field has one degree of freedom. We argue that in a system consisting

of N number of fields, total degrees of freedom, in addition to the entropy limit must

also be equivalent to N . In this case the entropy dS represents the entropy of the system

maximally. It is interesting to note that for comparatively larger N , we can determine

the relation given in Eq. (4.3.10) and from Eq. (4.3.1) as well, ϕ2 ≃ M4
p

m2SN
substituting

this value in Eq. (4.3.5), we have N ≃
(

Mp

m

)2
S−1, differentiating it with respect to S,

it results in the following expression

dN
dS

≃ − 1

S2

(

Mp

m

)2

(4.3.14)
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By integrating Eq. (4.3.14) alongside the axis in which ϕ is evolving as illustrated in

the Figure-??, and using the value of
M2

p

m2 from Eq. (4.3.1), we find N · N ≃ S which

corresponds again with Eq. (4.3.10).

4.3.2 Eternal Inflationary Phase and Primordial Density Perturbations That

Appear At Its Boundary

A smooth universe can be described by the ratio approaching to unity i.e., δρ
ρ ≈ 1,

clearly the value unity for this ratio requires both of the denominator and numerator

to be of value 1 i.e., δρ = 1 and ρ = 1. This poses the case of a universe without

any structure cosmologically existing in it. Because the inhomogeneities such as stars,

galaxies, cluster of galaxies and whatever is observed in the condensed form or like that

are smoothed out. If there be any homogeneity will be negligibly small to grow in the

present form. But we know the case is not like this. When the ratio δρ
ρ has to deviate

from unity, The quantity δρ has to take values either less than 1 or larger than it with

respect to a fixed complete single value assigned to ρ. This is the value 1 representing

the energy density budget of the universe. In this case either δρ
ρ is larger or smaller

than 1, accordingly we can predict the presence of inhomogeneities in the universe in

the form of structure formation like planets, stars, galaxies and cluster of galaxies etc.

In this way we utilize the ratio δρ
ρ and it serves our purpose of detecting inhomogeneities

of structure in the geometric structure of spacetime. We know how inflation is obtained

from a single scalar field and its mechanism as well. When the scalar field inflaton is at

the boundary of eternal inflation the primordial density perturbations are of the order

of unity that is
δρ

ρ
∼ 1 (4.3.15)

But in case of Nflation, we can use a formula for the primordial density perturbations

developed by Sasaki et al. for the primordial density perturbations (Sasaki & Stewart,

1996; Sasaki & Tanaka, 1998). These perturbations during the phase of slow roll are

approximated (Kim & Liddle, 2006; Lyth & Riotto, 1999) by S.A. Kim et al. and the

expression for these is given by

(

δρ

ρ

)2

∼ m2N2ϕ4M−6
p (4.3.16)
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The dynamics of the boundary of eternal inflation satisfies the Eq. (3.3.16), using ϕ =
(

48π2

N3

) 1
4

√

M3
p

m from Eq. (3.3.16) in Eq. (4.3.16), we can reach at the following result

(

δρ

ρ

)2

∼ m2N2





(

48π2

N3

)
1
4

√

M3
p

m





4

M−6
p (4.3.17)

⇒ δρ

ρ
∼

√
48π

1√
N

⇒ δρ

ρ
∝ 1√

N
(4.3.18)

If we observe the two results determined in Eq. (4.3.15) and Eq. (4.3.18) respectively,

we see that δρ
ρ tends to unity always in Eq. (4.3.15) but in Eq. (4.3.18), δρ

ρ is inversely

proportional to the square root of number of fields N i.e., δρ
ρ decreases with increasing

N and it increases with decreasing N and it will always remain less than unity for each

value of N . This is clearly distinctive from that of single scalar field results. We can

investigate such behavior as the case is in single field inflation at the boundary of the

eternal inflation and the point of primordial density perturbations approaching unity are

same but change of the fields in the two cases is different as can be seen from Eq. (3.3.11)

and Eq. (3.3.13) in the corresponding section of previous chapter of methodology.

4.3.3 Discussion and Concluding Remarks

We investigated pertaining to the problem of the multifield model of inflation and studied

its Nflationary phase transition properties. The study is carried out for the properties of

inflationary phase with the help of phase diagram which gradually decreases and finally

vanishes in the slow roll phase of this Nflation model. It is observed that as the number

of fields is increased the critical point and the end point of slow rolling phase shift to

smaller average values of the fields. The motion of these two points, however takes place

at different rates. It is the critical point that splits between the regions of eternal inflation

and slow roll. Generally the critical point shifts towards end phase faster than the end

point of the slow roll which indicates that the region of eternal inflation wiil dominate

over the slow roll inflation. The slow roll region completely disappears when there is

a large number of fields. Therefore Nflation might have some bound on the number

of fields that assist each other to drive inflationary phase for evolution of the universe.

From black hole entropy in its event horizon a bound is found between number of fields

N , with masses m and planck mass. The properties of Nflation models correspond to the

properties of single field models which help to check their real existence. Inflation was

here demonstrated for a large number of fields when large N phase transitions occur in

Nflation. By drawing the phase transition diagram for Nflationary model considering the
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multifield potential V (ϕj) = Λ4
j

(

ϕj

µj

)p
, we explained how the slow roll phase diminishes.

Further conditions on entropy as a bound that conforms to the number of fields N and

the outcomes occurring in it have also been addressed. It is investigated that all the de

Sitter (dS) entropy around or at the critical point remains concentrated about it and

is condensed in the number of fields N for the considered potential. We observe the

behavior of two regions, the slow roll phase and the eternal inflationary phase separated

by the critical point at the boundary and at the initial points respectively which move

gradually at slightly distinct rates towards field values smaller on the average. The

boundary of the slow roll is likely to be engulfed slowly by the eternal inflation as the

pace of critical point might be faster than the ending point, in principle. It can also

be seen that the bounding limit from the theory of black holes for the number of fields

N and Planck mass Mp does not almost show viability for the massless scalar fields

which generate density perturbations as entropy. Marčenko-Pastur distribution or law

gives the likely distribution of field masses that assigns average mass to all the large

and small masses. We found approximately similar order for a specific value of β which

incorporates all the masses naturally.

4.4 Time Independent Schrödinger Equation Conforming to Wheeler-DeWitt

Equation For the Evolution of Early Universe

Below we discuss the results and simulations which are the outcomes of numerical solu-

tions of the problem.

4.4.1 Results and Simulations

In Figure-4.4 below the numerical values and absolute errors of Ψ (a) for all scenarios

are plotted using the developed code in Matlab for the problem emerging from Wheeler-

DeWitt equation. It is concerned with the early stage evolution of cosmic expansion. The

figure incorporates all the scenarios for all cases inclusive. The subfigures (a), (b) and

(c) correspond to numerical values whereas (d), (e) and (f) are related to absolute errors.

Moreover, the datasets as tabulated in Table-4.3 in the follwing are generated for the

time independent Schrodinger equation conforming to the Wheeler-DeWitt equation for

three scenarios. Each scenario consists of three cases that are generated through Runge-

Kutta method (RK4). Afterwards, these datasets are trained through LMBN algorithm

in order to perform testing, validation and training of these for the enhanced accuracy
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of results. Now, the following plots presented in Figure-4.5 are showing the Error

(a) (b) (c)

(d) (e) (f)

Figure– 4.4: These figures demonstrate the plots of numerical values and absolute

errors of Ψ (a) for all scenarios. The figures (a), (b) and (c) are the numerical values of

Ψ (a) for scenarios 1, 2 and 3 respectively, whereas the figures (d), (e) and (f) are the

absolute errors of Ψ (a) for scenarios 1, 2 and 3 respectively

Autocorrelation Analysis for all scenarios. Again, the following plots presented in Figure-

4.6 describe Error Histogram Analysis for all three scenarios with their corresponding

cases.

4.4.2 Discussion With Results And Simulations

The datasets are generated for the Schrödinger equation for three scenarios. Each sce-

nario consists of three cases that are generated through Runge-Kutta method (RK4).

Afterwards these datasets are trained through LMBN algorithm in order to perform test-

ing, validation and training of these for the enhanced accuracy of results. The graphical

abstract displays the stepwise procedure of the proposed scheme for the problem to solve

in a comparatively better understanding of the reader as shown in Figure-3.5 in the cor-

responding section of previous chapter 3 of methodology. The results of performance

analysis are presented in Table-4.3 by varying the parameters s and B for all scenarios
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure– 4.5: These figures are showing the error autocorrelation analysis and are

presenting the results through graphical display of all scenarios inclusive with all nine

cases. The figures (a), (b) and (c) illustrate three cases of error autocorrelation analysis

corresponding to scenario 1 respectively, whereas the figures (d), (e) and (f) depict three

cases of error autocorrelation analysis corresponding to scenario 2 respectively, whereas

the figures (g), (h) and (i) demonstrate three cases of error autocorrelation analysis

corresponding to scenario 3 respectively
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure– 4.6: The figure shows error histogram analysis and presents graphical display

of all three scenarios inclusive with all nine cases. The figures (a), (b) and (c) represent

three cases of error histogram analysis corresponding to scenario 1 respectively, whereas

the figures (d), (e) and (f) illustrate three cases of error histogram analysis corresponding

to scenario 2 respectively, whereas the figures (g), (h) and (i) demonstrate three cases

of error histogram analysis corresponding to scenario 3 respectively
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and their corresponding cases.

The obtained datasets through LMBN scheme is optimized for different weights in

ntstool by setting 5% of the whole dataset as testing and validation, 90% for train-

ing with 100 hidden layers and 2 delays in order to train the dataset with the LMBN

algorithm. The complete numerical data that is obtained in detail for the plots of per-

formance and error analysis using LMBN scheme is evaluated for the parameter s and

for the profiles B as the 2nd parameter. The process is repeated for scenarios inclusively

and for the adjacent cases as well and the results of both cases are tabulated in Table-

4.3. The numerical results with absolute errors for error histogram analysis and error

autocorrelation analysis for Ψ (a) with regard to each case are presented in Figure-4.5

and Figure-4.6 with their subfigures (a-f) illustrating the behaviour.

It is significant to mention that the hidden layers and the neurons in these hidden layers

play very important role in the quality of the solvers. The choice in preferring the

number of hidden layers and the number of neurons assimilated in the hidden layer

requires a great deal of precautionary measures because these have great impact on the

performance of the network. Usually error and trial method is used to fix the number of

these parameters and it would be almost impossible to determine the number of hidden

layers for a specific learning procedure. In most of ANN applications, it is however

observed that one layer would suffice (Smith et al., 1997; Trzaska & Dobrzański, 2006;

Tan, Mat, Abd Rahim, Lile, & Yaacob, 2011). The incremental updating of weights helps

carry out the network training which is meant for the entry of responses which provide

a successive learning vector and is taken to be determined each time and are changed

as well (Zajkowski, 2014). Now, the following plots as presented in Figure-4.7 illustrate

Performance Analysis for all scenarios and the corresponding cases. The following plots

are drawn for Regression Analysis as given in Figure-4.8 and Figure-4.9 and demonstrate

the analysis for all scenarios related to it in addition to their corresponding cases.

Further, the following plots are drawn for Training State Analysis as given in Figure-
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure– 4.7: The figure presents the performance analysis and presents graphical dis-

play of all three scenarios inclusive with all nine cases. The figures (a), (b) and (c)

describe three cases of performance analysis corresponding to scenario 1 respectively,

whereas the figures (d), (e) and (f) represent three cases of performance analysis corre-

sponding to scenario 2 respectively, whereas the figures (g), (h) and (i) illustrate three

cases of performance analysis corresponding to scenario 3 respectively
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(a) (b) (c)

(d) (e) (f)

Figure– 4.8: These figures illustrate the analysis for regression and present graphical

display of two scenarios incorporating six cases. The figures (a), (b) and (c) demonstrate

three cases of regression analysis corresponding to scenario 1 respectively, whereas the

figures (d), (e) and (f) show three cases of regression analysis corresponding to scenario 2

respectively. The figures on the next page are integral part of the analysis for regression

and give graphical display of third scenario incorporating three cases
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(a) (b) (c)

Figure– 4.9: This figure with subfigures (a), (b) and (c) are the integral part of Figure-

4.11 however is labeled as a separate figure due to shifting of it to the next page. It

shows three cases of regression analysis corresponding to scenario 3 respectively

4.10 and illustrate the analysis for all the related scenarios and their corresponding

cases. Now, the following diagrams are plotted for Time-Series Response Analysis as

shown in Figure-4.11 and explain the analysis for all three scenarios in relation to it and

their corresponding cases. The following results presented in the Table-4.4) as given

below describe the comparative study through absolute errors for all the cases inclusive.

The scenarios are also shown as well. and the following results presented below in the

Table-4.5 are outcomes of the study of comparative statistics analysis for the scenario

1-3 for all cases inclusively based on absolute errors. In Figure-4.4, the figures plotted

as its subfigures are formed with the help of developed code in Matlab for the problem

emerging from Wheeler-DeWitt equation conforming to time independent Schrodinger

equation. It is concerned with the early phase growth of cosmic evolution and is therefore

related with cosmological quantum states in its very early evolutionary stages. The figure

incorporates all the scenarios with all the cases inclusive. Figure-4.5 represents overall

the autocorrelation of error for all three scenarios including nine cases are presented in

subfigures [4.5(a) - 4.5(i)] three for each scenario. In Figure-4.5 autocorrelation measures

the degree to which a lagging value of a variable have a connection with its non-lagging
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure– 4.10: These figures describe the training state analysis and presents graphical

display of all three scenarios inclusive with all nine cases. The figures (a), (b) and (c)

indicate three cases of training state analysis corresponding to scenario 1 respectively,

whereas the figures (d), (e) and (f) demonstrate three cases of training state analysis

corresponding to scenario 2 respectively, whereas the figures (g), (h) and (i) represent

three cases of training state analysis corresponding to scenario 3 respectively
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure– 4.11: These figures represents the time series response analysis and gives

graphical display of all three scenarios inclusive with all nine cases. The figures (a),

(b) and (c) demonstrate three cases of time series response analysis corresponding to

scenario 1 respectively, whereas the figures (d), (e) and (f) show three cases of time series

response analysis corresponding to scenario 2 respectively, whereas the figures (g), (h)

and (i) illustrate three cases of time series response analysis corresponding to scenario

3 respectively
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Table– 4.5: The comparative statistics analysis of the scenario 1-3 for all cases on the

basis of absolute errors

Operator
Scenario 1 Scenario 2 Scenario 3

Case 1 Case 2 Case 3 Case 1 Case 2 Case 3 Case 1 Case 2 Case 3

Max 5.00E-09 1.25E-08 4.07E-10 1.09E-08 4.18E-09 3.44E-10 1.82E-09 1.36E-09 1.07E-09

Min 1.54E-05 3.49E-05 1.34E-05 5.19E-05 4.76E-05 1.03E-05 8.33E-06 1.83E-05 1.77E-05

Mean 3.55E-06 4.02E-06 2.56E-06 7.43E-06 6.24E-06 1.93E-06 1.98E-06 5.15E-06 2.13E-06

Std 2.48E-06 3.27E-06 1.82E-06 5.19E-06 5.02E-06 1.25E-06 1.71E-06 3.14E-06 1.56E-06

value (normal) for the same variable in given time series i.e., it quantifies the relationship

observation and the points. It measures the location of the different points in time and

searches out their relationship to the observations by developing a trend template over

the time series. The same variable between two successive intervals of time becomes

of great interest in this regard. It figures out the degree of correlation for the same

variable between two successive time intervals. The analysis of autocorrelation focusses

short-term trends on the parametric values. The range set of Autocorrelation is {−1, 1}
and between −1 and 0 it represents negative autocorrelation and a positive correlation

has a value between 0 and 1. Thus it can be observed how the correlation go alongside

the lag in Figure-4.5 and sub-figures[4.5(a) - 4.5(i)].

Now, Figure-4.6 as well as its subfigures [4.6(a) - 4.6(i)] represents the histogram of error

for all three scenarios including nine cases. Figure-4.6 represents the error histogram

for the errors. After we have performed training to a feed forward neural network it

shows the histogram of error between predicted and target values. The error values as

manifested in the error histogram can be negative this is due to the reason that this

negativity of values explains the predicted values are varying from the target values.

The number of vertical bars on the graph display we observe are known as bins. In the

present case the error range in totality is split from 0 to 300 into tinier bins along the

vertical axis. Horizontal axis displays the target outputs i.e., the number of samples of

our dataset that falls in a particular bin in the histogram. The error histogram illustrates

the conditions of behaviour of the neural network with training of the datasets.

For example, on considering subfigure [4.6(a)] from Figure-4.6, the bins on the horizontal

axis spans between 0 to 300, and the positive correlations falling between this limit range
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between 0 and 300 correlations on the vertical axis. We have a bin corresponding to the

error ranging −3.40−05 to 1.790−05. For the training dataset, the altitude of the that

bar falls below 10 but very near to this value in the case of validation and training. The

datasets of the test occur between 10 and 300 values. This explains that a large number

of sample datasets from the given multifaceted datasets possess an error which situates

in that specific range. Further, the line which corresponds to zero error is situated there

which also conforms to the zero error value the axis of the error which usually taken as

X-axis. The existence of low or small values oferror is also manifest from the diagram

of error histogram almost occurring for every dataset of values. It is also obvious that

most of the error lie between the range given as −3.40− 05 to 1.790− 05.

Figure-4.7 with subfigures [4.7(a) - 4.7(i)] represents the performance plot of the training

for all three scenarios including nine cases. We may observe that the performance of

the training attains the minimum value at epoch 170 and reaches its maximum value at

766. It is further obvious that the training remains continuing to the iteration 766 and

stops after it as a temporary halt. This figure does not indicate any significant problem

occurring during the training and the outstanding validating performance at epoch 389 is

6.3472e−12. The performance value for different number of hidden nodes with gradient

values and the total number of epochs are listed and displayed in Table-4.3. The above

values as listed in the Table-4.4 are represented graphically and the plots in graphical

illustration in order to make a understandable sense as displayed in the Figure-4.7 with

subfigures [4.7(a) - 4.7(i)]. The artificial neural network with 100 points, it was noted,

in hidden layers possesses the least performance value at epoch 389 to be 6.3472e− 12

with total number of 766 epochs. It was observed that the minimum gradient decent

was meaningfully effective for this network. In order to decide the choice for number

of hidden variable the analysis was further performed with the convergence of network

performance plots. We observe a colossal distinction and contrast if we plot the network

training performance with 100 nodes in the convergence of network. On the other hand

with 100 hidden variables the network had considerably rapid convergence of network

as presented in Figure-4.7.

Figure-4.8 and Figure-4.9 with subfigures [4.8(a) - 4.8(f)] and its integral subfigures on

the next page [4.9(a) - 4.9(c)] represent the regression analysis for scenarios 1 − 2 and

for scenario 3 respectively including nine cases. In ANN after training, testing and vali-

dation is accomplished, then regression analysis is performed. It is the process based on

the statistics in order to estimate the relation between targets and outputs of the system.
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The plot of the regression picks two parametric values namely outputs and targets and

plots the linear regression of the targets in relation to the outputs. The miniscule circle

placed on the plots indicates the representation of specific values of data. After the re-

gression plot it is significant to check the goodfit of the data in the model. Regression as

a statistical technique employed almost in all disciplines that determine the strength and

the character of the relationship between one dependent variable and a series of other

independent variables. Linear, multiple linear and non-linear regression techniques are

usually used for different problems. Simple linear regression put to use one independent

variable to explicate or predict the result outcome of the dependent variable. On the

other hand multiple linear regression makes use of two or more independent variables to

explain and predict the result outcome of the dependent variable.The regression analy-

sis helps us sorting out which of the variables involved does indeed have an impact and

which factors we can ignore. The regression values are plotted for 0 to 3 and 100 hidden

nodes as can be seen in Table-4.5) to further investigate the conduct of these distinct

several hidden nodes or variables.

In LMBN model, the regression analysis is carried out after the network finalizes the

processes of training, testing and validation. The plot of regression function grabs

two parameteric values (targets, outputs) and draw plots of the linear regression of

the targets in relation to the outputs. It is a mechanism of statistical procedure for

assessing the relationships between the outcomes of output and the target of the network.

Moreover, the Figure-4.8 and Figure-4.9 with subfigures [4.8(a) - 4.8(i)] and [4.9(a) -

4.9(c)] on the next page represents the plots of regression for the training, testing,

validation and over all regression. The tiny circle indicates the representation of data

in the model. It is very important to authenticate the goodfit of the datasets as the

diagnosis after the plots of regression have been generated.

Figure-4.10 with subfigures [4.10(a) - 4.10(i)] represents training for all three scenarios

including nine cases. The main aim and purpose of training the network is to reduce

as much as the mean square error (MSE). The choice to fix and decide the number of

hidden layers and the number of neurons in these hidden layers requires that we must be

carefully select these because it has significant impact on the network performance. It is

not easy target to decide the number of hidden layers for a specific learning procedure.

These parameters are determined usually by error and trial method. In most ANN

applications it is, however in general observed that one hidden layer is sufficient. The

training procedure might employ the largest datasets and might govern the network
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to follow and understand the samples existing in the in the datasets. The process of

training carries on up to the network slowly and gradually rectifies and improves on the

checks of validating.

Figure-4.11 with subfigures [4.11(a) - 4.11(i)] illustrates the Time Series Response for

all three scenarios including nine cases. Time Series Response analysis investigates the

previous behavior of the historical series by making use of several distinct techniques

where the randomness, trend and the quality of being periodical in the given datasets

are verified in two different methods. When the observations swing about a pivotal

axis that is horizontal, it is known as stationary and it becomes non-stationary when it

begins oscillating about the varying values. The most suitable and proper model for a

particular dataset is the coefficient of determination which is labelled by R, the mean

absolute error written in abridged form as MAE, and the third is the mean squared error

in short form expressed abridgedly as MSE (Abraham et al., 2020; Escolano & Esṕın,

2016).

4.5 Accelerating Universe Driven by Multifield Tachyon-Quintom Dark En-

ergy

We study the stability of the system here as a result of our developed mathematics for

the model in methodology section.

4.5.1 Stability Of the Model

The fixed points which we have determined in the previous chapter 3 of methodology

from the dynamical system, which are x′ n
∑

i=1
ξi
, y′n

∑

i=1
ξi

, x′n
∑

i=1
ηi

and y′n
∑

i=1
ηi

, it is observed

that where these points diminish to zero, the existence of these critical points x( n
∑

i=1
ξi

)

crt
,

y( n
∑

i=1
ξi

)

crt
, x( n

∑

i=1
ηi

)

crt
and y( n

∑

i=1
ηi

)

crt
corresponds to that. These critical points have

been calculated for the system and are enlisted in the Table-4.6 given below. Now, from

Eq. (3.5.31) calculated in previous chapter 3 of methodology, we determine the solutions

of the self-similar nature, that is

H ′

H
=

Ḣ

H2
= −3

2

















−

y n
∑

i=1
ξi



γ − x2n
∑

i=1
ξi





√

1−
n
∑

i=1
ξ̇2i

−

y n
∑

i=1
ηi
(γ − x2n

∑

i=1
ηi

√

1−
n
∑

i=1
η̇2i

+ γ

















(4.5.1)
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This corresponds to an expanding universe such that the scale factor a (t) is directly

proportional to the power p of time t, i.e., scales like a (t) ∝ tp, where

p =
2

3













−
y n
∑

i=1
ξi






γ−x2

n
∑

i=1
ξi







√

1−
n
∑

i=1
ξ̇2i

−
y n
∑

i=1
ηi

(γ−x2
n
∑

i=1
ηi

√

1−
n
∑

i=1
η̇2i

+ γ













(4.5.2)

We now study the stability around the critical points given in Table-4.6 for which we

consider small perturbations δx n
∑

i=1
ξi
, δy n

∑

i=1
ξi
, δx n

∑

i=1
ηi
, δy n

∑

i=1
ηi

about the critical points

x( n
∑

i=1
ξi

)

crt
, y( n

∑

i=1
ξi

)

crt
, x( n

∑

i=1
ηi

)

crt
and y( n

∑

i=1
ηi

)

crt
respectively such that

x( n
∑

i=1
ξi

)

crt
→ x( n

∑

i=1
ξi

)

crt
+ δx n

∑

i=1
ξi

y( n
∑

i=1
ξi

)

crt
→ y( n

∑

i=1
ξi

)

crt
+ δy n

∑

i=1
ξi

x( n
∑

i=1
ηi

)

crt
→ x( n

∑

i=1
ηi

)

crt
+ δx n

∑

i=1
ηi

y( n
∑

i=1
ηi

)

crt
→ y( n

∑

i=1
ηi

)

crt
+ δy n

∑

i=1
ηi

when we substitute the above small perturbations around the critical points in Eqs. (3.5.37

- 3.5.38) and Eqs. (3.5.40 - 3.5.41) as described in previous chapter 3 of methodology,

these lead to the following equations in matrix form which represents differential equa-

tions of the first order.

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






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
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
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∑
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∑

i=1
ξi
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∑
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∑
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










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
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
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
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∑
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∑
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∑
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∑
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












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(4.5.3)

where theX represents matrix depending upon the critical points x( n
∑

i=1
ξi

)

crt
, y( n

∑

i=1
ξi

)

crt
,

x( n
∑

i=1
ηi

)

crt
and y( n

∑

i=1
ηi

)

crt
.

The dependence of the matrix X on x( n
∑

i=1
ξi

)

crt
y( n

∑

i=1
ξi

)

crt
x( n

∑

i=1
ηi

)

crt
and y( n

∑

i=1
ηi

)

crt
is

clear. Now the general solution for the evolution of linear perturbations can be expressed

in the following way using the eigenvalues a, b, c, and d of the matrix X. Thus it is the

nature of the eigenvalues upon which stability around the fixed points depends.

δx n
∑

i=1
ξi
= v11e

aN + v12e
bN + v13e

cN + v14e
dN (4.5.4)
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δy n
∑

i=1
ξi
= v21e

aN + v22e
bN + v23e

cN + v24e
dN (4.5.5)

δx n
∑

i=1
ηi

= v31e
aN + v32e

bN + v33e
cN + v34e

dN (4.5.6)

δy n
∑

i=1
ηi

= v41e
aN + v42e

bN + v43e
cN + v44e

dN (4.5.7)

The following Table-4.7 enlists the eigenvalues and the status of stability for the critical

or fixed points determined from the equations. The points h and k are given below

Table– 4.7: The table enlisting the eigenvalues and the status of stability

Labels a b c d Status of Stability

I −3 3γ −3 3γ unstable

II −3 −3x2
(

n
∑

i=1

ηi

)

crt

−3− 3
2
x2
(

n
∑

i=1

ηi

)

crt

−3γ − 3x2
(

n
∑

i=1

ηi

)

crt

stable

III 6 3γ −3 3γ unstable

IV 6 −3x2
(

n
∑

i=1

ηi

)

crt

−3− 3
2
x2
(

n
∑

i=1

ηi

)

crt

−3γ − 3x2
(

n
∑

i=1

ηi

)

crt

unstable

V 0 − 3
2

−3 3 unstable

VI 6



1 + x2
(

n
∑

i=1

ηi

)

crt





3
2
x2
(

n
∑

i=1

ηi

)

crt

−3− 3
2
x2
(

n
∑

i=1

ηi

)

crt

−3γ − 3x2
(

n
∑

i=1

ηi

)

crt

unstable

VII h k −3 3γ unstable

VIII 3



−γ + x2
(

n
∑

i=1

ξi

)

crt





3
2



−2 + x2
(

n
∑

i=1

ξi

)

crt



 −3 3x2
(

n
∑

i=1

ξi

)

crt

unstable

h =

3






(γ − 2)λ n

∑

i=1
ξi
∓
√

16λ n
∑

i=1
ξi
γ2
√

(−γ + 1) + λ2
n
∑

i=1
ξi

(17γ2 − 20γ + 4)







4λ n
∑

i=1
ξi

(4.5.8)

and

k =

3






(γ − 2)λ n

∑

i=1
ξi
∓
√

16λ n
∑

i=1
ξi
γ2
√

(−γ + 1) + λ2
n
∑

i=1
ξi

(17γ2 − 20γ + 4)







4λ n
∑

i=1
ξi

(4.5.9)

It has been described by E.J. Copeland et al. (Copeland et al., 2005) and Z.K. Guo

et al. (Guo & Zhang, 2004) have shown that the real parts of all eigenvalues might

be negative for the remaining stable points. Table-4.7 lists all the eigenvalues and the

status of their stability. A fixed critical point I gives a solution with fluid domination, the
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points II and III represent a phantom tachyon and tachyon domination in the solutions

respectively. A two- field dominated solution is manifested by the fixed critical point

IV. For the γ to remain unity, the fixed critical points V and VI owe their existence to

it. The energy densities ρ n
∑

i=1
ξi

and ργ show a decrease at the same rate in the point

VII when the point VIII indicates a solution where tachyon field energy dominates. The

Figure-4.12 below demonstrates the evolution of the equation of state (EoS) parameter

w and the development of the parameter of dark energy ΩDE in the very early universe

and their development during its behavior in the late time accelerated expansion where

γ = 1 and λ(

n
∑

i=1
ξi

) and λ(

n
∑

i=1
ηi

) both take on the value 0.33. The above diagrams in

(a) (b)

(c) (d)

Figure– 4.12: The diagrams demonstrating the evolution of equation of state param-

eter w and the development of the parameter of dark energy ΩDE in the very early

universe. The figure also demonstrates their developmental growth during the cosmic

behavior in late time accelerated expansion where γ = 1 and λ(

n
∑

i=1
ξi

) and λ(

n
∑

i=1
ηi

) both

take on the value 0.33

Figure-4.12 illustrate the plots for the evolution of the equation of state parameter w
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and dark energy parameter ΩDE cosmologically against the growth of e-folding number

N , It can be seen that the evolutionary path cosmologically bends towards the point II

which is a fixed stability point in the Table-4.6 in the model. A comparison between

the plots of the Figure-3.6 in the previous chapter 3 of Methodology and the values of

the critical points listed in Table-4.6, can in addition clarify the situation more clearly

. When we substitute 1
3 the value of λ(

n
∑

i=1
ηi

) in point II the stable critical point i.e.,

x( n
∑

i=1
ξi

)

crt
= 0 , y( n

∑

i=1
ξi

)

crt
= 0, x( n

∑

i=1
ηi

)

crt
= −

√

λ(

n
∑

i=1
ηi

)y( n
∑

i=1
ηi

)

crt
and

y( n
∑

i=1
ηi

)

crt
=

√

λ2
(

n
∑

i=1
ηi

) + 4 + λ(

n
∑

i=1
ηi

)

2
(4.5.10)

we obtain the values of these points x( n
∑

i=1
ξi

)

crt
= 0 , y( n

∑

i=1
ξi

)

crt
= 0, x( n

∑

i=1
ηi

)

crt
=

−
√

λ(

n
∑

i=1
ηi

)y( n
∑

i=1
ηi

)

crt
= −0.627285 and

y( n
∑

i=1
ηi

)

crt
=

√

λ2
(

n
∑

i=1
ηi

) + 4 + λ(

n
∑

i=1
ηi

)

2
= 1.180460 (4.5.11)

which shows consistency with plots as described in Figure-4.12. Further with the

help of Eq. (3.5.34), at the fixed point II, we possess w = p
ρ = −1 − x2( n

∑

i=1
ηi

)

crt
=

−1.03367 which also shows consistency with the plots drawn in Figure-3.6 in previ-

ous chapter 3 of methodology. In Table-4.7, We have described the initial values of

the fixed points x( n
∑

i=1
ξi

), y( n
∑

i=1
ξi

), x( n
∑

i=1
ηi

) and y( n
∑

i=1
ηi

) would evolve towards stabil-

ity If these are not the values of unstable points in the model granted the condition

1 − x2( n
∑

i=1
ξi

) > 0 does not get violated as physical constraint. When the values of the

points x( n
∑

i=1
ξi

), y( n
∑

i=1
ξi

), x( n
∑

i=1
ηi

) and y( n
∑

i=1
ηi

) deviate slightly by a quantity amounting

δ⃗ from the values of x( n
∑

i=1
ξi

)

crt
, y( n

∑

i=1
ξi

)

crt
, x( n

∑

i=1
ηi

)

crt
, y( n

∑

i=1
ηi

)

crt
from the Eqs. (4.5.4)

- (4.5.7), it can be envisaged that δ⃗ can be larger enough despite being diminishing.

4.5.2 Discussion and Final remarks

The analysis shows that the model does not indicate sensitivity to the kinetic energy

density of under consideration multi-field scalars initially. It has been shown that there

exists a stable unique critical point during the analysis of the background spatially flat
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universe in the phase space. We make its comparison with the tachyon model altogether.

The scale for sum-masses M(

n
∑

i=1
ξi

) of the multifield scalars
n
∑

i=1
ξi should be enough

larger (Copeland et al., 2005) than Planck mass Mp in case of dark energy of multi-field

tachyon with inverse square potential of the type
n
∑

i=1
V (ξi) = M2

(

n
∑

i=1
ξi

)

n
∑

i=1
ξ−2
i in order

to meet the late time accelerated expansion of the universe i.e., a (t) ∝ [time]
1
2
a, where

a =





M(

n
∑

i=1
ξi

)

Mp





2

>> 1. This huge mass pushes the solutions towards dense energy

regions where even general theory of relativity fails, therefore the potential
n
∑

i=1
V (ξi) =

M4−p
(

n
∑

i=1
ξi

)

n
∑

i=1
ξ−2
i where p lies between 0 and 2. The phantom tachyon fields

n
∑

i=1
ηi in

our model take the responsibility of this late time acceleration with equation of state

parameter w(

n
∑

i=1
ξi

) < −1. From Eqs. (3.5.37) and (3.5.38), it becomes clear that the

value of M(

n
∑

i=1
ξi

) is not still smaller as required by the recent observational constraints.

This is due to the reason for λ(

n
∑

i=1
ξi

) = 4
3

M2
p

(

n
∑

i=1
ξi

)2 being larger, therefore 1−
(

n
∑

i=1
ξ̇i

)2

falls in risk of non-positive behavioral increment.

In our multi-fields model of tachyon and phantom tachyon there is only one stable

critical point namely II whose value does not rest on the value of γ, on the other hand

in reference to (Aguirregabiria & Lazkoz, 2004), it is shown that in tachyon model of

dark energy the sole source of dark energy is tachyon scalar field and it has three critical

stable points, existence of whose hinges upon the factor γ. Further we have seen the

values of scalar fields
n
∑

i=1
ξ̇i and

n
∑

i=1
η̇i are zero at critical points in our model of tachyon

and phantom tachyon but in tachyon model of dark energy singly, the values of both

fields at critical points can be non-zero also as expressed in the Table-4.7. The values of

x( n
∑

i=1
ξi

)

crt
, y( n

∑

i=1
ξi

)

crt
, x( n

∑

i=1
ηi

)

crt
and y( n

∑

i=1
ηi

)

crt
at the critical points are fixed with

the value of x( n
∑

i=1
ηi

)

crt
becoming non-zero and if its value is zero then y( n

∑

i=1
ηi

)

crt
turns

out to be zero, this is obvious from the Eq. (3.5.40), it further ensues the impossibility
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that x( n
∑

i=1
ηi

)

crt
and ρ( n

∑

i=1
ηi

)

crt
are zero i.e.,



























































ρ( n
∑

i=1
ξi

)

crt

=

n
∑

i=1
V (ξi)crt

√

1−(
∑n

i=1 ξ̇
2
i )crt

=

3y( n
∑

i=1
ξi

)

crt
√

√

√

√

1−x2
(

n
∑

i=1
ξi

)

crt

M2
pH

2

p( n
∑

i=1
ξi

)

crt

=



w(

n
∑

i=1
ξi

)

crt







ρ( n
∑

i=1
ξi

)

crt





⇒ w(

n
∑

i=1
ξi

)

crt

= −1 +

(

n
∑

i=1
ξ̇2i

)

crt

= −1 + x2( n
∑

i=1
ξi

)

crt

≥ −1

(4.5.12)

and


























































ρ( n
∑

i=1
ηi

)

crt

=

n
∑

i=1
V (ηi)crt

√

1−(
∑n

i=1 η̇
2
i )crt

=

3y( n
∑

i=1
ηi

)

crt
√

√

√

√

1−x2
(

n
∑

i=1
ηi

)

crt

M2
pH

2

p( n
∑

i=1
ηi

)

crt

=



w(

n
∑

i=1
ηi

)

crt







ρ( n
∑

i=1
ηi

)

crt





⇒ w(

n
∑

i=1
ηi

)

crt

= −1−
(

n
∑

i=1
η̇2i

)

crt

= 1− x2( n
∑

i=1
ηi

)

crt

< −1

(4.5.13)

It is clear from Eq. (4.5.12) that H2 becomes non-increasing for non-zero y( n
∑

i=1
ξi

)

crt

at the points which are fixed, with ρ( n
∑

i=1
ξi

)

crt
also non-increasing. The same is not

inapplicable from Eq. (4.5.13) for y( n
∑

i=1
ηi

)

crt
and ρ( n

∑

i=1
ηi

)

crt
making one of the two

critical points y( n
∑

i=n

ξi

)

crt
, y( n

∑

i=1
ηi

)

crt
equal to zero. Therefore y( n

∑

i=n

ξi

)

crt
is set to zero for

ρ( n
∑

i=1
ξi

)

crt
as non-increasing and ρ( n

∑

i=1
ηi

)

crt
as increasing. Moreover if 1−x2( n

∑

i=1
ξi

)

crt
> 0

does not get violated and for y( n
∑

i=1
ξi

)

crt
being zero, the critical point x( n

∑

i=1
ξi

)

crt
also

becomes zero. In tachyon model of dark energy, the speed of sound c2s is described by

the following expression

c2s =

p( n
∑

i=1
ξi

)
1
2

(

n
∑

i=1
∂µξi

)2

ρ( n
∑

i=1
ξi

)
1
2

(

n
∑

i=1
∂µξi

)2 = 1−
n
∑

i=1

ξ̇2i ≤ 0 (4.5.14)

In order to investigate whether a ghost dark energy model is stable or the otherwise,

we use the theory of perturbation. In case the model is unstable we can find ghost

modes for ghost instability therein. In the energy density of the background we consider

a perturbation of very small size and investigate to observe whether it will collapse or

will grow cosmologically. We can write from the linear theory of perturbation ρ (x, t) =

ρ (t)+ δρ (x, t), here the term ρ (t) represents the energy density in the background that
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remains unperturbed. Now from Eq. (3.5.10) or from covariant divergence of energy-

momentum tensor ∇iT
ij = 0, we obtain the following equation

δ (∂ttρ) = c2s∇2δρ (x, t) (4.5.15)

here c2s is described as the term with speed of sound squared and is expressed as dp
dρ .

Two solutions δρ = δρ0 exp
(

ik⃗ · x⃗± iωt
)

come out, where for the case when c2s > 0 ,

the first solution comes out to be oscillatory wave solution δρ = δρ0 exp
(

ik⃗ · x⃗− iωt
)

which demonstrates propagation mode for the perturbations of energy density. When

the second solution is δρ = δρ0 exp
(

ik⃗ · x⃗+ iωt
)

for c2s < 0. This describes that the

density perturbation would grow out because in this case the oscillation frequency comes

out to be purely imaginary. This propagation mode as growing perturbation marks the

possibility for ghost instabilities to emerge. The unwanted consequence of c2s < 0 is

principally interpreted as the growth of amplitude exponentially for the modes with

short wavelengths. The robust coupling scale being light during c2s < 0, excludes the

validity range of an effective field theory for the dangerous short wavelength modes to

incorporate. The occurrence of ghost instability is related to the field having negative

kinetic energy term. In the field theories these are usually followed by the violation of

Null Energy Condition (NEC) in the development of singularity-free cosmological models

in effective field theories. The problem of ghosts is resolved by considering the theory of

Galileon, its generalized forms and the theories beyond it, see References (Y. Cai et al.,

2017) and the references therein. Gradient instability arises when the field has a negative

momentum squared and is related to negative speed of sound squared. This may lead to

perturbations grow exponentially. Some spatial operators cure this instability. However

it was shown that tachyon dark energy models have speed of sound squared c2s to be

positive. Therefore, these models are supposed to be stable against small perturbations

(Gorini, Kamenshchik, Moschella, Pasquier, & Starobinsky, 2005; Sandvik, Tegmark,

Zaldarriaga, & Waga, 2004). The speed of sound squared is to be found

c2s =
ċ3 − ac2

ac1
(4.5.16)

from the quadratic action of scalar perturbations where c2 = M2
p f (t) and the action is

S2
ξ =

∫

[

c1ξ̇
2 −

(

ċ3
a

− c2

)

(∂ξ)2

a2
+

c4
aa

(

∂2ξ
)2 − 16λ (t)

M2
pa

6

(

∂2ξ
)2

]

a3d4x (4.5.17)

The condition to avoid the ghost instability is c1 > 0 and the gradient instability is

avoided by the condition ċ3 − ac2 > 0. Similarly, from quadratic action of tensor
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perturbations

S2
γ =

M2
p

8

∫

(

γ2µν − c2T
(γµν,ρ)

2

a2

)

a3QTd
4x (4.5.18)

we have QT = f + 2
(

m4
Mp

)2
and c2T = f

QT
. The conditions for avoiding the gradient and

ghost instabilities for tensor modes are c2T > 0 and QT > 0 respectively.

In relation to the Eq. (4.5.14), we explain that due to the presence of under-root in

the Lagrangian density L, the difference term 1−
n
∑

i=1
ξ̇2i will be non-positive accordingly

and it keeps as a consequence, the pressure and energy to remain in the realm of real,

therefore a positive sound speed is attributed to the homogeneous perturbations which

owes stability. We can put to use independent sound speed of each component of the

multi-fields tachyon and phantom tachyon in our case here to give a description to the

model. It is, however, notable that J.Q. Xia et al. (Xia, Cai, Qiu, Zhao, & Zhang, 2008;

Myung, 2007; Bean & Dore, 2004) and H. Kodama et al. (Kodama & Sasaki, 1984)

have shown the use of effective sound speed because using of two or more independent

components of sound does not coincide with the present juncture of the constraints of

dark energy. The effective sound speed for larger N in the case when the energy density

is considered as a fraction of dark energy density of phantom tachyon, when Ω n
∑

i=1
ηi

approaches to unity, is

c2s =

p n
∑

i=1
ηi

1
2

(

n
∑

i=1
∂µηi

)2

ρ n
∑

i=1
ηi

1
2

(

n
∑

i=1
∂µηi

)2 = 1 +
n
∑

i=1

η̇2i > 1 (4.5.19)

for the effective density in the Lagrangian L of Eq. (3.5.2) in previous chapter 3. It can be

interpreted as the perturbations of the scalar field in the background that can move with

a speed larger than the speed of light in the preferred and privileged frame of reference

where the field is existing homogeneously in the background. In concluding remarks,

we investigated a dark energy model consisting of multi-field tachyon and multi-field

phantom tachyon known as the multi-field tachyon-quintom model. During evolution of

the universe, the equation of state parameter w in p = wρ changes its direction from

w < −1 to w > −1 in the model we considered. The inverse square potentials are used

in the development of the autonomous system as dynamical system for performing the

analysis in phase space where we found stable points that have power-law solutions. The

analysis of spatially flat background universe of FLRW metric manifests the existence

of a unique critical point which is compared with the tachyon dark energy model. We

observed that neither multi-field tachyon nor the multi-field phantom tachyon showed

(Page 148 of 216)



sensitivity to the kinetic energy of initial conditions. It happens approximately when the

e-folding number is near to ten and the variation of multi-field tachyons by the order

of magnitude four is still observed coinciding with the observations conducted in the

recent past.

The results for multiple tachyon and phantom tachyon fields are presented graphically, in

which slightly changed behaviour of the parameters involved as compared to single field.

At the fixed point II in Table-4.7, we obtained w = p
ρ = −1 − x2( n

∑

i=1
ηi

)

crt
= −1.03367

which also shows consistency with the plots drawn in Figure-3.6 presented in previous

chapter of Methodology and has minute difference with single scalar fields. The evolution

of equation of state parameter w and dark energy parameter ΩDE as function of number

of e-folds N is plotted beginning with the initial condition −10. In accordance with it

the initial values of the fields have slight variations which impacts the overall results

very lightly. The different initial values of the scalar fields have convergence towards a

track that evolves in common with all for N ≥ 2. From this point onwards the values

of the fields become slightly larger, however the convergence of these fields with distinct

and different initial values stay constant and do no change.

4.6 Accelerating Universe in the Framework of f (R) Modified Gravity

The following results are obtained for the model under consideration in the framework of

f (R) modified gravity. We discuss four cases by modifying the autonomous dynamical

system as each case demands correspondingly imposing conditions on the cosmic stuff

i.e. matter, radiation and dark energy. By determining fixed points in each, their

eigenvalues are calculated. Stability of all the systems considered is discussed in the

light of eigenvalues. For other related eras, parameters of density of all kinds and

equation of state parameters are computed and interpreted.

4.6.1 Calculations For the Model Under Consideration and Construction Of

Autonomous System

After reviewing the necessary mathematical machinery for the sake of retrospection em-

ployed for investigating more possibilities in the framework of f (R) gravity, we are now

to apply that for a particular viable f (R) model in order to carry out its analysis and

study of its stability properties in phase space through dynamical system approach. The

use of puissant and powerful approach of dynamical systems is very frequent nowadays to
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study the cosmological evolution of our universe. The dynamical system approach proves

very advantageous in understanding the cosmic dynamics globally in the context of any

proposed model with regard to early universe and specifically the late time dynamics

of the accelerated expansion. In perspective of a dynamical system, we construct an

autonomous system of differential equations for the given cosmological model by intro-

ducing suitable dynamical variables in the model. By doing this, we can suitably carry

out the analysis of many of the features of the model in the phase space through studying

the critical points and their stability analysis. This may provide realization and insight

into the large scale behaviour of the model under consideration for the geometry of global

dynamics of the model. We assume first that the universe is composed of radiation and

matter only that do not interact with each other i.e.,
∫ (

1
2k2

f (R) + Lm + Lr

)

d4x
√−g.

The characteristics of being mutually interaction-free renders the equation of continuity

ρ̇+ 3∂ta (ρ+ p) = 0 to assume the forms i.e., ρ̇m + 3∂taρm = 0 and ρ̇r + 4∂taρr = 0 for

the corresponding epoches with i.e., pm = 0 and pm = 4
3ρr respectively. The modified

Friedmann equations as determined for a spatially flat, homogeneous and expanding

universe in Eq. (3.6.16) and Eq. (3.6.19) of methodology chapter 3 are

3H2F =
1

2
(FR− f)− 3HḞ + k2 (ρm + ρr) (4.6.1)

2ḢF = −F̈ +HḞ − k2 (ρm + pm) (4.6.2)

where pm = 4
3ρr. In first Friedmann equation (4.6.1), the following dimensionless vari-

ables or parameters are defined

x1 = − Ḟ

HF
, x2 = − f

6H2F
, x3 =

R

6H2
, x4 = Ωr =

k2ρr
3H2F

(4.6.3)

Moreover, we have a constraint from Eq. (3.6.27) in previous chapter 3 of methodology

x1 + x2 + x3 + x4 = 1 (4.6.4)

In Eq. (4.6.4), x4 = Ωr = w = k2ρr
3H2F

and it gives

Ωm = 1− Ωr − (x1 + x2 + x3) (4.6.5)

The parameter for energy density contributed by geometric curvature ΩGC is the sum

of variables x1, x2 and x3 i.e.,

ΩGC = x1 + x2 + x3 = H−2

(

Ḣ + 2H2 −H
Ḟ

F
− f

6F

)

(4.6.6)

we consider the following particular model in order to study its stability analysis by

constructing an autonomous system whose dynamics will describe the physical universe
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as a system in phase space.

f (R) = Rp exp (qR) (4.6.7)

and

f,R (R) = exp (qR)
[

pRp−1 + qRp
]

(4.6.8)

f,RR (R) = exp (qR)
[

p (p− 1)Rp−2 + 2pqRp−1 + q2Rp
]

(4.6.9)

and

m =
Rf,RR (R)

f,R (R)
=

p (p− 1) + 2pqR+ q2R2

p+ qR
(4.6.10)

and

r = −Rf,R (R)

f (R)
= − (p+ qR) (4.6.11)

Now, with the help of Eq. (4.6.8) and Eq. (4.6.9), we determine the value of m in terms

of r or as a function of it i.e., m (r)

m (r) =
p

r
− r (4.6.12)

which comes out to be independent of parameter q. By writing now the parameter

m in terms of the variable r i.e., m = m (r), we can realize the possible existence of

matter-dominated era followed by radiation era after which the late time accelerated

expansion epoch would has started. The properties of the model can also be studied

from the curves drawn for m (r) in the plane (m, r) as given below in the Figure-4.13.

The expression of m (r) can be re-evaluated using for r from Eq. (3.6.34) in it as

m (r) =
−x23 + x22p

x2x3
(4.6.13)

The derivative of m in Eq. (4.6.7) is

dm

dr
= − p

r2
− 1 (4.6.14)

We can check the conditions for m and dm
dr to understand the viability of matter domi-

nated era and the late time accelerated expansion epoch. For matter dominated epoch

m (r)|r=−1 = −p + 1, for p = 1, it leads to m (r) = 0. Now dm(r)
dr

∣

∣

∣

r=−1
= −p − 1, at

p = 1, dm(r)
dr

∣

∣

∣

r=−1
= −2, it leads to dm(r)

dr

∣

∣

∣

r=−1
< −1 as −2 < −1, however we require

dm(r)
dr

∣

∣

∣

r=−1
> −1. Therefore for p = 1, the conditions of viable matter dominated epoch

are partially achieved which means that the model f (R) = RpeqR does not yield matter

dominated epoch at r = −1 and p = 1. For p < 0, the condition dm(r)
dr

∣

∣

∣

r=−1
< −1

is satisfied i.e., for p ̸= 1. For a viable epoch of late time accelerated expansion we

have m (r)|r=−2 = −p
2 + 2 and dm(r)

dr

∣

∣

∣

r=−2
= −p

4 − 1, whereas either we have to satisfy

(Page 151 of 216)



(a)

-3 -2 -1 1 2 3

r

-5

5

m

(b)

Figure– 4.13: The evolution of the geometric curve for the model under consideration.

The plots between the parameter m and r for the function m (r) = p
r − r determined for

the model f (R) = Rp exp (qR) in the plane (m, r). In Fig1(a), p = 1 whereas in Fig1(b)

p = 0

m (r) = −r − 1, dm(r)
dr < 1 with

√
3−1
2 < m ≤ 1 at r = −2 or at r = −2 just 0 ≤ m ≤ 1.

Now at p = 1 it is not satisfied, however at p = 2 it is fulfilled and it remains valid for

p ≥ 2. Further, in Eq. (4.6.7) for p = 1, we have m (r) = −r which purely presents the

exponential case of the model evolution (Amendola et al., 2007). Now, we substitute the

value of m (r) from above equation in the dynamical system described in Eqs. (3.6.28)-

(3.6.31), and after simplification, we obtain the following set of differential equations for

the model under consideration. This is how we transform fourth order gravity equations

of f (R) in a system of linear equations.

x′1 = −1 + x21 − x1x3 − 3x2 − x3 + x4 (4.6.15)

x′2 = −x2 (−4− x1 + 2x3) +
x1x2x

2
3

px22 − x23
(4.6.16)

x′3 = −2x3 (x3 − 2)− x1x2x
2
3

px22 − x23
(4.6.17)

x′4 = x4 (x1 − 2x3) (4.6.18)

and the effective equation of state parameter weff , matter density parameter Ωm and

radiation density parameter Ωr for this system will be determined by

weff = −1− 2Ḣ

3H2
= −1

3
(2x3 − 1) (4.6.19)
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Ωr = x4 = w =
k2ρr
3H2F

(4.6.20)

and

Ωm =
k2ρm
3H2F

= 1− (x1 + x2 + x3 + x4) (4.6.21)

and from Eq. (3.6.27)

x1 + x2 + x3 = 1− x4 (4.6.22)

or

ΩGC = ΩDE = 1− Ωr − Ωm (4.6.23)

where ΩGC = x1 + x2 + x3 and ΩGC signifies the gravity due to curvature playing the

role of dark energy. Now, we determine the critical points, their eigenvalues and the

related density parameters ΩGC , Ωm and Ωr using these points.

4.6.2 Stability Analysis For Cosmic Dynamics Without Including Cosmolog-

ical Constant Λ as Dark Energy

The critical points are usually categorized into three cases discerned on the basis of the

signs of eigenvalues. Firstly, a stable point or an attractor is the one for which the

eigenvalues of the Jacobian matrix have all the real parts of them to be negative. In

this case, all the nearby trajectories are attracted toward the critical point. Secondly,

an unstable point or a repeller is the one for which the eigenvalues of the Jacobian

matrix possess all the real parts of them to be positive. In this case, the trajectories

are repelled from the critical point. Thirdly, a critical point is a saddle point if one half

the eigenvalues of the Jacobian matrix has positive signs and the other half possesses

negative signs. This case nonetheless becomes relevant if the two eigenvalues at the

lowest possess the real parts with opposite signs. In this case, some of the nearby

trajectories are attracted toward the critical point and some are repelled away from

the critical point. Moreover, eigenvalues are used to determine whether a critical point

(fixed or equilibrium point) is stable or unstable. On displacing a system in beginning

around a critical point, if the system comes back ultimately to its original position and

ensures its stay over that point, the critical point is stable. On the other hand, around

an unstable critical point, the system does not return to its initial state. Now, the

eigenvalues of the system linearized around the critical point can determine the stability

modus operandi about that point. The particular behavior of stability is dependent

upon the existence and nature of the eigenvalues. The real and imaginary components

of eigenvalues, in addition to the signatures of real parts and in addition their being
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distinct are very fundamental to the study of stability analysis. Some properties of

eigenvalues are mentioned below

1. Eigenvalues with only real component

The Eigenvalues possessing only real components are

a. All Positive

The set of eigenvalues of a point are positive, distinct and real, the point is unstable

and the system at this point is unstable as well.

b. All Negative

When all the eigenvalues of a point are negative, distinct and real, the point is

unstable and the system at this point is unstable as well.

c. Negative and positive

When the set of eigenvalues of a point contains both positive and negative, then

critical point represents a saddle point that is unstable.

d. Repeated and Real

For two positive repeated eigenvalues, the critical point is unstable source whereas

for two negative repeated it is stable sink. Moreover, or the real and repeated

eigenvalues, the role of associated eigenvector decides whether the critical point is

stable or unstable depending upon whether it is linearly independent or orthogonal.

In this case the eigenvector degenerates and an eigenvalue possess more than one

eigenvector associated with it.

e. Zero eigenvalues

If the set of eigenvalues of a point consists of both real and imaginary parts as

zero, the system is unstable with unstable point.

2. Complex eigenvalues

For a set of imaginary eigenvalues i.e., x + iy, stability analysis depends upon

the existence and nature of real part with a non-zero complex component. The

following three cases belong to it

a. Zero Real Component

For zero real component, the system mimics the role of an undamped oscillator

b. Positive Real component

For a positive real part, the point is unstable making the system unstable behaving
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like an unstable oscillator.

c. Negative Real component

For a negative real part, the point is stable and consequently the system is stable

at this point behaving as a damped oscillator. It makes a necessary and sufficient

condition for a stable system to have the real parts of all eigenvalues negative signs

in this case.

We determine now the Jacobian matrix for the system given in Eqs. (4.6.15-4.6.18)

which comes out

J =































2x1 − x3 −3 −1 − x1 1

x2 +
x2x2

3

px2
2
−x2

3

4 + x1 − 2x3 −
2px1x2

2
x2
3

(

px2
2
−x2

3

)

2
+

x1x2
3

px2
2
−x2

3

−2x2 +
2x1x2x3

3
(

px2
2
−x2

3

)

2
+

2x1x2x3

px2
2
−x2

3

0

−
x2x2

3

px2
2
−x2

3

2px1x2
2
x2
3

(

px2
2
−x2

3

)

2
−

x1x2
3

px2
2
−x2

3

−2 (−2 + x3) − 2x3 −
2x1x2x3

3
(

px2
2
−x2

3

)

2
−

2x1x2x3

px2
2
−x2

3

0

x4 0 −2x4 x1 − x3































(4.6.24)

The dynamical system for the model in Eq. (4.6.15) to Eq. (4.6.18), has the following

critical points as solutions of these equations dx1
dN = 0, dx2

dN = 0, dx3
dN = 0, dx4

dN = 0. We will

calculate their corresponding eigenvalues with the help of Jacobian matrix, the effective

equation of state parameter weff , and parameters for matter, radiation and curvature

densities i.e. Ωm, Ωr, and ΩGC respectively for analysing its stability.

P1: (x1, x2, x3, x4) = (−4, 5, 0, 0)

The characteristic polynomial λ4+8λ3−λ2−128λ−240 gives the following eigenval-

ues of point P1: −5, −4, 4, 3. weff = 1
3 , Ωm = k2ρm

3FH2 = 1−(x1 + x2 + x3 + x4) = 0,

Ωr = x4 = 0 and ΩGC = 1. For a point to be stable the signs of its all eigen-

values must be negative, however in case of I, one of the eigenvalues 4 is positive

which makes the point insusceptible to stability. On the other hand, the value of

the effective equation of state parameter is positive which means that the cosmic

accelerated expansion could not be realized through this point. Similarly, through

this point the matter dominated epoch could not be yielded. The point is, however

predominated thoroughly by ΩGC i.e., curvature density is prevalent.

P2: (x1, x2, x3, x4) = (0,−1, 2, 0)

The eigenvalues of point P2 are−4, −3,
12−3p−

√
272−168p+25p2

2(−4+p) ,
12−3p+

√
272−168p+25p2

2(−4+p) .

weff = −1, Ωm = 0, Ωr = 0 and ΩGC = 1. It can be observed on simplification

that the real parts of all four eigenvalues are negative which makes the point P2

stable, however spirally stable. On the other hand, from the negative value of the
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effective equation of state parameter weff , it is clear that this point produces accel-

eration. It means that the cosmic accelerated expansion could be realized through

this point. However, matter dominated epoch could not be achieved through this

point. However the point is completely dominated by the curvature geometrically

ΩGC = 1.

P3: (x1, x2, x3, x4) = (−1, 0, 2, 0)

The eigenvalues of point III are −5, −4, −4, 0. weff = −1, Ωm = 0, Ωr = 0

and ΩGC = 1. The real parts of three eigenvalues are negative while 4rth is zero

which makes the point P3 unstable. On the other hand, from the signature of

the effective equation of state parameter weff , it is clear that this point could

produce acceleration which means that the cosmic accelerated expansion could

be realized through this point. However, matter dominated epoch could not be

achieved through this point. However the point is thoroughly dominated by the

curvature geometrically ΩGC = 1.

P4: (x1, x2, x3, x4) = (3, 0, 2, 0)

The eigenvalues of point IV are −4, 4, −1, 0. weff = −1, Ωm = −4, Ωr = 0

and ΩGC = 5. The real parts of two eigenvalues are negative, one zero and

4rth has positive signature which makes the point P4 unstable. On the other

hand, from the negative value of the effective equation of state parameter weff ,

it is concluded that this point is related with the accelerated expansion. Matter

dominated epoch, nonetheless, could not be obtained through this point as Ωm

has negative value violating the definition for this era. The value of curvature

density is also problematic and may pose unjustified difficulty in interpretation as

ΩGC = 5.

P5: (x1, x2, x3, x4) = (4, 0, 2,−5)

The eigenvalues of point P5 are: 5, −4, 1, 0. weff = −1, Ωm = 0, Ωr = −5 and

ΩGC = 6. One of the eigenvalues is negative, however, due to presence of zero, and

positive signatures of other eigenvalues, the point P5 unstable. On the other hand,

from weff , the point shows viability to yield the epoch of accelerated expansion. It

means that the cosmic accelerated expansion could be realized through this point.

However, matter dominated epoch could not be achieved through this point as Ωm

has zero value. The value of curvature density is also problematic and may pose

much difficulty in interpretation as ΩGC = 6.
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P6: (x1, x2, x3, x4) =
(

4(−1+p)
p , 2(−1+p)

p2
, 2(−1+p)

p , −2+8p−5p2

p2

)

The eigenvalues of point P6 are: 1, −
4(−p+p2)
(−1+p)p2

,
2p−3p2+p3−

√
3
√

12p2−68p3+127p4−98p5+27p6

2(−1+p)p2
,

2p−3p2+p3+
√
3
√

12p2−68p3+127p4−98p5+27p6

2(−1+p)p2
. weff = −1+ 4

3p , Ωm = 0, Ωr = −5− 2
p2
+ 8

p

and ΩGC = 6+ 2
p2

− 8
p . Due to presence of 1 as positive eigenvalue, the point gets

deprived of stability and remains unstable. Matter dominated epoch could not

be achieved through this point as Ωm is vanishing. Moreover, the value of p is

decisive in having other properties related with point P6. For p < 0 and p ≥ 2, it

produces different possibilities in yielding various eras of energy density, however

the point is not viable for accelerated expansion. The eigenvalue plot for the point

P6 is presented in Figure-4.14 below.

Figure– 4.14: Plot of the eigenvalues for point P6 for −1 < p < 2

P7: (x1, x2, x3, x4) =
(

3(−1+p)
p , 3−4p

2p2
, −3+4p

2p , 0
)

The eigenvalues of point P7 are−1, −3(−p+p2)
(−1+p)p2

,
3p−3p2−p

√
81−498p+1025p2−864p3+256p4

4(−1+p)p2
,

3p−3p2+p
√

81−498p+1025p2−864p3+256p4

4(−1+p)p2
. Other related parameters are weff = −1+ 1

p ,

Ωm = −3−13p+8p2

2p2
, Ωr = 0 and ΩGC = 5+ 3

2p2
− 13

2p . Further, the value of p will play

an important role in having other properties related with point P7. For p < 0 and

p ≥ 2, it presents different possibilities in yielding various eras of energy density

of he universe. The point becomes spiral stable for the range of p. The graph

displaying the plot of eigenvalues for the point P7 is presented in Figure-4.15 in

the below.

P8: (x1, x2, x3, x4) =
(

−2(−2+p)
−1+2p , 5−4p

1−3p+2p2
, p(−5+4p)
1−3p+2p2

, 0
)

, where
−20+36p−16p2− 50p

1−3p+2p2
+ 130p2

1−3p+2p2
− 112p3

1−3p+2p2
+ 32p4

1−3p+2p2

5−4p = −2(−2+p)
−1+2p is simplified.

The eigenvalues of point P8 are:

(Page 157 of 216)



Figure– 4.15: Plot of the eigenvalues for point P7 for −1 < p < 2

2(2−3p+p2)
(−1+p)2(−1+2p)

, − 2(2−8p+5p2)
(−1+p)(−1+2p) ,

3−16p+21p2−8p3

(−1+p)2(−1+2p)
, 5−19p+22p2−8p3

(−1+p)2(−1+2p)
. weff = −1

3

(

−1−7p+6p2

1−3p+2p2

)

,

Ωm = 0, Ωr = 0 and ΩGC = 1. For the given range of p, when eigenvalues of the

point are plotted we observe that it shows stability. Additionally, we remark that

the point is susceptible to various other possibilities for different values of p in the

range. The cases emerging for p = 0 and p = ±∞ are very interesting. The point

can produce accelerated expansion in the range of values for p. The eigenvalues

are plotted for the point P8 in the mentioned range in Figure-4.16 given below.

Figure– 4.16: Plot of the eigenvalues for point P8 for −1 < p < 2

Now, we tabulate the results of all points collectively for this case in Table-4.8 given

below

(Page 158 of 216)



Table– 4.8: Description of results for all points for the first case of dynamical system

Sr.No Fixed Points Status of stability Existence of acceleration

1 P1 Unstable No

2 P2 Spiral stable Yes

3 P3 Unstable Yes

4 P4 Unstable Yes

5 P5 Unstable Yes

6 P6 Unstable No

7 P7 Spiral stable Yes

8 P8 Stable Yes

4.6.3 Development Of Dynamical System With the Cosmological Constant

Λ Representing Dark Energy

Now we propose to incorporate the cosmological constant Λ in addition to matter and

radiation densities which represents dark energy as an additional cosmic component.

This impels us to consider the problem in five dimensional world with taking into account

dark energy as extra component. The calculations are similar to that of performed in the

previous case for evaluating the accelerated expansion phase. We use Jacobian matrix,

signs of eigenvalues for carrying out the analysis of stability alongwith equation of state

parameter. It is assumed here that there does not exist interaction of any kind between

the components of cosmic fluids as a whole. The modified Friedmann equations given

in Eq. (3.6.16) and Eq. (3.6.19) can be written now

3H2F =
1

2
(FR− f)− 3HḞ + k2 (ρm + ρr + ρΛ) (4.6.25)

2ḢF = −F̈ +HḞ − k2 (ρm + pm) (4.6.26)

where pm = 4
3ρr. In above Eq. (4.6.25), the first modified Friedmann which is slightly

different now than Eq. (3.6.16) due to inclusion of cosmological constant term, the

following dimensionless variables are defined

x1 = − Ḟ
HF , x2 = − f

6H2F
, x3 =

R
6H2 , x4 =

k2ρr
3H2F

, x5 =
k2ρm
3H2F

(4.6.27)
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Further, we have from Eq. (3.6.27) for the above mentioned corresponding variables

x1 + x2 + x3 + x4 + x5 = 1 (4.6.28)

In Eq. (4.6.27), the variables x4 = Ωr and x5 = Ωm and from Eq. (4.6.6), ΩGC =

x1 + x2 + x3 . Using these in Eq. (4.6.28), we obtain

x1 + x2 + x3 = 1− Ωr − Ωm (4.6.29)

The parameter for energy density contributed by Λ i.e., ΩΛ can be determined from

above as we have proposed in this fashion,

ΩΛ = 1− x1 − x2 − x3 − x4 − x5 (4.6.30)

or

ΩΛ = 1− ΩGC − Ωr − Ωm (4.6.31)

Now, forthrightly we can write the autonomous system with the help of Eq. (4.6.25),

Eq. (4.6.27) and Eq. (4.6.14), in the form given below

x′1 = −4 + 3x1 + 2x3 + 4x4 + 3x5 − x1x3 + x21 (4.6.32)

x′2 = −x2 (−4− x1 + 2x3) +
x1x2x

2
3

px22 − x23
(4.6.33)

x′3 = −2x3 (x3 − 2)− x1x2x
2
3

px22 − x23
(4.6.34)

x′4 = x4 (x1 − 2x3) (4.6.35)

x′5 = x5 (x1 − 2x3) + x5 (4.6.36)

For the system described above, the effective equation of state parameter weff , matter

density parameter Ωm and radiation density parameter Ωr are

weff = −1− 2Ḣ

3H2
= −1

3
(−1 + 2x3) (4.6.37)

Ωr = x4 = w =
k2ρr
3H2F

(4.6.38)

and

Ωm = x5 = u =
k2ρm
3H2F

(4.6.39)

and from Eq. (4.6.6)

x1 + x2 + x3 = 1− x4 − x5 (4.6.40)

ΩGC = 1− Ωm − Ωr (4.6.41)
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where ΩGC signifies the gravity due to curvature mimicking the role of dark energy in

f (R) gravity. Now, we determine the critical points, their eigenvalues and the density

parameters ΩΛ, Ωm and Ωr using these points. The Jacobian matrix for the system of

equations is

J =







































3 + 2x1 − x3 0 2 − x1 4 3

x2 +
x2x2

3

px2
2
−x2

3

4 + x1 − 2x3 −
2px1x2

2
x2
3

(

px2
2
−x2

3

)

2
+

x1x2
3

px2
2
−x2

3

−2x2 +
2x1x2x3

3
(

px2
2
−x2

3

)

2
+

2x1x2x3

px2
2
−x2

3

0 0

−
x2x2

3

px2
2
−x2

3

2px1x2
2
x2
3

(

px2
2
−x2

3

)

2
−

x1x2
3

px2
2
−x2

3

−2 (−2 + x3) − 2x3 −
2x1x2x3

3
(

px2
2
−x2

3

)

2
−

2x1x2x3

px2
2
−x2

3

0 0

x4 0 −2x4 x1 − 2x3 0

x5 0 −2x5 0 1 + x1 − 2x3







































(4.6.42)

4.6.4 Stability Analysis Of the System Describing For Cosmic Dynamics

With Cosmological Constant Λ

The dynamical system for the model in Eq. (4.6.32) to Eq. (4.6.36), has the following

critical points and their corresponding eigenvalues. In addition, the effective equation

of state parameter weff , matter density parameter Ωm are also worked out.

P1: (x1, x2, x3, x4, x5) = (−1, 0, 2, 0, 0)

Eigenvalues of this point are: −5, −4, −4, −1, 0. weff = −1, Ωr = 0, Ωm = 0 and

ΩGC = 0. One of the eigenvalues is 0, the point is not stable. Matter and radiation

eras could not be obtained through this point, however, accelerated expansion is

possible to achieve. The plot of eigenvalues for the point is laid out in Figure-4.17

underneath.

Figure– 4.17: Plot of the eigenvalues for point P1 for −1 < p < 2
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P2: (x1, x2, x3, x4, x5) = (0, 0, 2, 0, 0)

eigenvalues of this point are: −4, −4, −3, 1, 0. weff = −1, Ωr = 0, Ωm = 0

and the ΩΛ = −1. One of the eigenvalues is 0, while another is positive, which

bars the point to be stable, therefore the point is unstable. However the point is

predominated by ΩΛ phase. The can produce accelerated expansion as the effective

parameter of equation of state is negative.

P3: (x1, x2, x3, x4, x5) = (3, 0, 2, 0,−4)

eigenvalues of this point are: −4, 4, 3, −1, 0. weff = −1, Ωr = 0, Ωm = −4 and

the ΩGC = 0. It is unstable point and other eras can be easily explained.

P4: (x1, x2, x3, x4, x5) = (4, 0, 2,−5, 0)

the eigenvalues of this point are: 5, −4, 4, 1, 0. weff = −1, Ωr = −5, Ωm = 0

and ΩGC = 0. It is not a stable point and values of other parameters can be

interpreted easily.

P5: (x1, x2, x3, x4, x5) =
(

4(−1+p)
p ,−2(−1+p)

p2
, 2(−1+p)

p , −2+8p−5p2

p2
, 0
)

The eigenvalues of this point read as:

1, −4(−p+p2)
(−1+p)p2

,
4(−p2+p3)
(−1+p)p2

,

2p−3p2+p3−
√
3
√

12p2−68p3+127p4−98p5+27p6

2(−1+p)p2
,
2p−3p2+p3+

√
3
√

12p2−68p3+127p4−98p5+27p6

2(−1+p)p2
.

Whereas, other related parameters are: weff = −1 + 4
3p , Ωr = −5 − 2

p2
+ 8

p ,

Ωm = 0 and ΩΛ = 4−4p
p2

. In the range of p, acceleration could be achieved,

however stability is not possible to obtain. The eigenvalue plot is given below for

this point in Figure-4.18 below.

Figure– 4.18: Plot of the eigenvalues for point P5 for −1 < p < 2
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P6: (x1, x2, x3, x4, x5) =
(

3(−1+p)
p , 3−4p

2p2
, −3+4p

2p , 0, −3+13p−8p2

2p2

)

The eigenvalues of this point are:

−3(−p+p2)
(−1+p)p2

, − −p2+p3

(−1+p)p2
,
3(−p2+p3)
(−1+p)p2

, −5,
3p−3p2±p

√
81−498p+1025p2−864p3+256p4

4(−1+p)p2
.

Other parameters related to the point are weff = −1 + 1
p , Ωr = 0, Ωm =

−3−13p+8p2

2p2
and ΩΛ = 0. It has similar properties to the point P5. The eigen-

values of this point are plotted in Figure-4.19 in the below.

Figure– 4.19: Plot of the eigenvalues for point P6 for −1 < p < 2

P7: (x1, x2, x3, x4, x5) =
(

−2(−2+p)
−1+2p , 5−4p

1−3p+2p2
, p(−5+4p)
1−3p+2p2

, 0, 0
)

The eigenvalues of this point are:
2(2−3p+p2)

(−1+p)2(−1+2p)
, − 2(2−8p+5p2)

(−1+p)(−1+2p) , −
3−13p+8p2

(−1+p)(−1+2p) ,

5−19p+22p2−8p3

(−1+p)2(−1+2p)
, − 2(2p−3p2+p3)

(−1+p)2(−1+2p)
. weff = 1+7p−6p2

3−9p+6p2
, Ωr = 0, Ωm = 0 and ΩΛ = 0.

Stability of this point could be achieved for this point in the range given for p.

The accelerated expansion is also possible to have for the range of values in p. The

plot of eigenvalues of the point is drawn below in Figure-4.20, where each colour

live corresponds to a certain eigenvalue.

Now, we tabulate the results of all points collectively for this case in Table-4.9 given

below

4.6.5 Dynamical Systems With Interaction Terms Between Cosmic Fluids

It will constitute an interesting issue to explore the effect of interaction between the

cosmic fluids namely radiation, matter and dark energy. In order to understand the

nature of mutual interaction between the cosmological fluids we will discuss both kinds of

interactions i.e., linear and non-linear and develop the autonomous systems accordingly.
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Figure– 4.20: Plot of the eigenvalues for point P7 for −1 < p < 2

Table– 4.9: Description of results for all points for the second case of dynamical system

Sr.No Fixed Points Status of stability Existence of acceleration

1 P1 Unstable Yes

2 P2 Unstable Yes

3 P3 Unstable Yes

4 P4 Unstable Yes

5 P5 Unstable Yes

6 P6 Unstable Yes

7 P7 Stable Yes
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The dimensionless variables will be defined on the same lines as earlier in previous two

cases. The conservation equation for cosmic fluids is however described in the following

way for the corresponding epoches. Equation of continuity ρ̇+3∂ta (ρ+ p) = 0 assumes

the forms i.e., ρ̇m+3∂taρm = 0 and ρ̇r +4∂taρr = 0 for the corresponding epoches with

i.e., pm = 0 and pm = 4
3ρr respectively.

4.6.6 When Linear Interaction is Considered

The linear interaction is defined as Q = Hρt in accordance with the references (Shah

& Samanta, 2019; Arevalo, Bacalhau, & Zimdahl, 2012; Garcia-Salcedo, Gonzalez, &

Quiros, 2012; Golchin, Jamali, & Ebrahimi, 2017; Pan, de Haro, Yang, & Amorós, 2020;

Bolotin, Kostenko, Lemets, & Yerokhin, 2015). The modified Friedmann equations given

in Eqs (4.6.25, 4.6.26) are put to use for this case. The dimensionless parameters are

also defined similarly as given in Eq. (4.6.27). The dynamical system in case of linear

interaction remains unaltered except for the equation dx5
dN in Eq. (4.6.47) underneath

which is modified slightly. The autonomous system reads as

x′1 = −4 + 3x1 + 2x3 + 4x4 + 3x5 − x1x3 + x21 (4.6.43)

x′2 = −x2 (−4− x1 + 2x3) +
x1x2x

2
3

px22 − x23
(4.6.44)

x′3 = −2x3 (x3 − 2)− x1x2x
2
3

px22 − x23
(4.6.45)

x′4 = x4 (x1 − 2x3) (4.6.46)

x′5 = x5 (x1 − 2x3) + x5 + 1− (x1 + x2 + x3) (4.6.47)

For the system described above, the effective equation of state parameter weff , matter

density parameter Ωm and radiation density parameter Ωr are

weff = −1− 2Ḣ

3H2
= −1

3
(−1 + 2x3) (4.6.48)

Ωr = x4 = w =
k2ρr
3H2F

(4.6.49)

and

Ωm = x5 = u =
k2ρm
3H2F

(4.6.50)

and from Eq. (4.6.6)

x1 + x2 + x3 = 1− x4 − x5 (4.6.51)

ΩGC = 1− Ωm − Ωr (4.6.52)
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The parameter for energy density contributed by Λ i.e., ΩΛ can be determined from

above as we have assumed the case,

ΩΛ = 1− x1 − x2 − x3 − x4 − x5 (4.6.53)

or

ΩΛ = 1− ΩGC − Ωr − Ωm (4.6.54)

where ΩGC signifies the gravity due to curvature term playing the role of dark energy.

Now, we determine the critical points, their eigenvalues and the density parameters

ΩGC , Ωm and Ωr using these points. The Jacobian matrix of the system in Eq. (4.6.43)

to Eq. (4.6.47) is calculated to be

J =







































3 + 2x1 − x3 0 2 − x1 4 3

x2 +
x2x2

3

px2
2
−x2

3

4 + x1 − 2x3 −
2px1x2

2
x2
3

(

px2
2
−x2

3

)

2
+

x1x2
3

px2
2
−x2

3

−2x2 +
2x1x2x3

3
(

px2
2
−x2

3

)

2
+

2x1x2x3

px2
2
−x2

3

0 0

−
x2x2

3

px2
2
−x2

3

2px1x2
2
x2
3

(

px2
2
−x2

3

)

2
−

x1x2
3

px2
2
−x2

3

−2 (−2 + x3) − 2x3 −
2x1x2x3

3
(

px2
2
−x2

3

)

2
−

2x1x2x3

px2
2
−x2

3

0 0

x4 0 −2x4 x1 − 2x3 0

−1 + x5 −1 1 − 2x5 0 1 + x1 − 2x3







































(4.6.55)

4.6.7 Stability Analysis Of the System With Linear Interaction

The dynamical system for the model in Eq. (4.6.43) to Eq. (4.6.47), has the following

critical points and their corresponding eigenvalues.

P1: (x1, x2, x3, x4, x5) =
(

4, 0, 2,−35
4 , 5

)

The eigenvalues of this point are: 5, −4, 1
2

(

5 + ı̇
√
3
)

, 1
2

(

5− ı̇
√
3
)

, 0. Other

parameters are found to be weff = −1, Ωr = −35
4 , Ωm = 5 and ΩΛ = −5

4 . It is an

unstable point as the signatures of eigenvalues manifest. It can yield accelerated

expansion phase, however, radiation and matter dominations are not satisfied by

this point.

P2: (x1, x2, x3, x4, x5) =
(

1
2

(

3− ı̇
√
3
)

, 0, 2, 0, 13
(

3− 2
(

3− ı̇
√
3
)))

The eigenvalues of this point are: −4, −1
2 ı̇
(

−5ı̇+
√
3
)

, 1
2

(

5− ı̇
√
3
)

, −ı̇
√
3, 0.

Moreover, equation of state and other parameters are weff = −1, Ωr = 0, Ωm =

−1+ 2ı̇√
3
and ΩΛ = −1

6 ı̇
(

−9ı̇+
√
3
)

. The point is not stable on account of positive

real parts of the eigenvalues.

P3: (x1, x2, x3, x4, x5) =
(

1
2

(

3 + ı̇
√
3
)

, 0, 2, 0, 13
(

3− 2
(

3 + ı̇
√
3
)))

The eigenvalues of this point are: −4, 1
2 ı̇
(

5ı̇+
√
3
)

, 1
2

(

5 + ı̇
√
3
)

, ı̇
√
3, 0. Other
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parameters for the density and the equation of state are weff = −1, Ωr = 0,

Ωm = −1 − 2ı̇√
3
and ΩΛ = 1

6 ı̇
(

9ı̇+
√
3
)

. This is also an unstable point. The

point produces accelerated expansion as effective equation of state parameter has

negative 1 value.

P4: (x1, x2, x3, x4, x5) =

(

4(−1+p)
p ,−2(−1+p)

p2
, 2(−1+p)

p ,−7(2−8p+5p2)
4p2

, 2−8p+5p2

p2

)

The eigenvalues of this point are:

−4(−p+p2)
(−1+p)p2

,
−5p2+5p3−

√
3
√

−p4+2p5−p6

2(−1+p)p2
,
−5p2+5p3+

√
3
√

−p4+2p5−p6

2(−1+p)p2
,

2p−3p2+p3−
√
3
√

12p2−68p3+127p4−98p5+27p6

2(−1+p)p2
,
2p−3p2+p3+

√
3
√

12p2−68p3+127p4−98p5+27p6

2(−1+p)p2
.

The related parameters to the points are:

weff = −1 + 4
3p , Ωr = −7(2−8p+5p2)

4p2
, Ωm = 5 + 2

p2
− 8

p and ΩΛ = −2−8p+5p2

4p2
. It is

an unstable point, however, it gives accelerated expansion phase for the range of p

and is viable for other eras as well. The eigenvalue plot for the point is diagramed

in Figure-4.21 as presented below.

Figure– 4.21: Plot of the eigenvalues for point P4 for −1 < p < 2
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P5: (x1, x2, x3, x4, x5) =

(

(3+ı̇
√
3)(−1+p)

2p , 3+ı̇
√
3−8p

4p2
, −3−ı̇

√
3+8p

4p , 0, −3−3ı̇
√
3+21p+13ı̇

√
3p−12p2−8ı̇

√
3p2

12p2

)

.

The eigenvalues of this point are:

3p+ı̇
√
3p−3p2−ı̇

√
3p2

2(−1+p)p2
, 5p2−ı̇

√
3p2−5p3+ı̇

√
3p3

2(−1+p)p2
,
ı̇(−

√
3p2+

√
3p3)

(−1+p)p2
,

3p+ı̇
√
3p+3p2−3ı̇

√
3p2−6p3+2ı̇

√
3p3

8(−1+p)p2
±ı̇

√

√

√

√

√

√

√

√

√

√















−54p2 − 54ı̇
√
3p2 + 540p3 + 332ı̇

√
3p3 − 1742p4

−574ı̇
√
3p4 + 1920p5 + 400ı̇

√
3p5 − 664p6 − 104ı̇

√
3p6















8(−1+p)p2
,

Other related parameters are:

weff = 3+ı̇
√
3−6p

6p , Ωr = 0, Ωm =
−3−3ı̇

√
3+(21+13ı̇

√
3)p+(−12−8ı̇

√
3)p2

12p2
and

ΩΛ =
−3+(15−2ı̇

√
3)p+ı̇(9ı̇+

√
3)p2

6p2
. The point is unstable, however for the accelerated

expansion and other eras it shows feasibility.

P6: (x1, x2, x3, x4, x5) =



















−2(−2+p)
−1+2p , 5−4p

1−3p+2p2
, p(−5+4p)
1−3p+2p2

, 0,

1
3









12− 8p− 4(−2+p)2

(−1+2p)2
+ 2(−2+p)

−1+2p + 2p2(−5+4p)2

(1−3p+2p2)2
− 2p3(−5+4p)2

(1−3p+2p2)2

−10p(−5+4p)
1−3p+2p2

+ 8p2(−5+4p)
1−3p+2p2



























The eigenvalues of this point come out to be:
2(2−3p+p2)

(−1+p)2(−1+2p)
, 5−19p+22p2−8p3

(−1+p)2(−1+2p)
, −2(−2+10p−13p2+5p3)

(−1+p)2(−1+2p)
,

3−20p+27p2−10p3±
√
3
√

−1+8p−26p2+44p3−41p4+20p5−4p6

2(−1+p)2(−1+2p)
.

The related other parameters are: weff = 1+7p−6p2

3−9p+6p2
, Ωr = 0,

Ωm = 1
3









12− 8p− 4(−2+p)2

(−1+2p)2
+ 2(−2+p)

−1+2p + 2p2(−5+4p)2

(1−3p+2p2)2
− 2p3(−5+4p)2

(1−3p+2p2)2
− 10p(−5+4p)

1−3p+2p2

+8p2(−5+4p)
1−3p+2p2









and ΩΛ = 0. The eigenvalue plot for this point is drawn in Figure-4.22 given be-

low. It produces accelerated expansion for p < 0. From the plot it can be seen

that the point is unstable.

Now, we tabulate the results of all points collectively for this case in Table-4.10 given

below

4.6.8 When Non-Linear Interaction is Considered

The Non-linear interaction has been described as Q = Hρt in accordance with the

references (Shah & Samanta, 2019; Arevalo et al., 2012; Garcia-Salcedo et al., 2012;

Golchin et al., 2017; Pan et al., 2020; Bolotin et al., 2015). The modified Friedmann

equations given in Eqs. (4.6.25, 4.6.26) are put to use for this case. The dynamical

autonomous system in this non-linear interaction perspective keeps itself unmodified
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Figure– 4.22: Plot of the eigenvalues for point P6 for −1 < p < 2

Table– 4.10: Description of results for all points for third case of dynamical system

Sr.No Fixed Points Status of stability Existence of acceleration

1 P1 Unstable Yes

2 P2 Unstable Yes

3 P3 Unstable Yes

4 P4 Spiral stable Yes

5 P5 Unstable Yes

6 P6 Unstable Yes
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except for dx5
dN which is modified slightly. The dimensionless parameters are also defined

similarly as given in Eq. (4.6.27). The autonomous system is

x′1 = −4 + 3x1 + 2x3 + 4x4 + 3x5 − x1x3 + x21 (4.6.56)

x′2 = −x2 (−4− x1 + 2x3) +
x1x2x

2
3

px22 − x23
(4.6.57)

x′3 = −2x3 (x3 − 2)− x1x2x
2
3

px22 − x23
(4.6.58)

x′4 = x4 (x1 − 2x3) (4.6.59)

x′5 =
x5
(

1− x2 − 3x3 − x4 − x21 + 2x23 + x1x3 + 2x2x3 − x1x2 − x1x5 − x2x5 − x3x5
)

1− (x1 + x2 + x3)
(4.6.60)

For the system described above, the effective equation of state parameter weff , matter

density parameter Ωm and radiation density parameter Ωr are

weff = −1− 2Ḣ

3H2
= −1

3
(−1 + 2x3) (4.6.61)

Ωr = x4 = w =
k2ρr
3H2F

(4.6.62)

and

Ωm = x5 = u =
k2ρm
3H2F

(4.6.63)

and from Eq. (4.6.6)

x1 + x2 + x3 = 1− x4 − x5 (4.6.64)

ΩGC = 1− Ωm − Ωr (4.6.65)

The parameter for energy density contributed by Λ i.e., ΩΛ can be determined from

above as we have assumed the case,

ΩΛ = 1− x1 − x2 − x3 − x4 − x5 (4.6.66)

or

ΩΛ = 1− ΩGC − Ωr − Ωm (4.6.67)

where ΩGC signifies the gravity due to curvature playing the role of dark energy. Now,

we determine the critical points, their eigenvalues and the density parameters ΩGC , Ωm

and Ωr using these points. The Jacobian matrix of the system of equations is

J =







































3 + 2x1 − x3 0 2 − x1 4 3

x2 +
x2x2

3

px2
2
−x2

3

4 + x1 − 2x3 −
2px1x2

2
x2
3

(

px2
2
−x2

3

)

2
+

x1x2
3

px2
2
−x2

3

−2x2 +
2x1x2x3

3
(

px2
2
−x2

3

)

2
+

2x1x2x3

px2
2
−x2

3

0 0

−
x2x2

3

px2
2
−x2

3

2px1x2
2
x2
3

(

px2
2
−x2

3

)

2
−

x1x2
3

px2
2
−x2

3

−2 (−2 + x3) − 2x3 −
2x1x2x3

3
(

px2
2
−x2

3

)

2
−

2x1x2x3

px2
2
−x2

3

0 0

x4 0 −2x4 x1 − 2x3 0

a51 a52 a53 −
x5

1−x1−x2−x3
a55







































(4.6.68)
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where

a51 =
x5 (−x5 − 2x1 − x2 + x3)

1− x1 − x2 − x3
+

x5









1− x4 − x1x5 − x21 − x2 − x2x5 − x1x2 − 3x3 − x3x5

+x1x3 + 2x2x3









(1− x1 − x2 − x3)
2

a52 =
x5 (−1− x5 − x1 + 2x3)

1− x1 − x2 − x3
+

x5









1− x4 − x1x5 − x21 − x2 − x2x5 − x1x2 − 3x3 − x3x5

+x1x3 + 2x2x3









(1− x1 − x2 − x3)
2

a53 =
x5 (−3− x5 + x1 + 2x2)

1− x1 − x2 − x3
+

x5









1− x4 − x1x5 − x21 − x2 − x2x5 − x1x2 − 3x3 − x3x5

+x1x3 + 2x2x3









(1− x1 − x2 − x3)
2

a55 =
1− x4 − 2x1x5 − x21 − x2 − 2x2x5 − x1x2 − 3x3 − 2x3x5 + x1x3 + 2x2x3

1− x1 − x2 − x3

4.6.9 Stability Analysis Of the System With Non-Linear Interaction

The dynamical system for the model in Eq. (4.6.56) to Eq. (4.6.60), has the following

critical points. These critical points as solutions of the autonomous system of differen-

tial equations can determine stability of the system. The corresponding eigenvalues of

these points and other related density parameters play their fundamental role in sta-

bility analysis. We will analyze stability of the dynamical system through properties

of eigenvalues and viability for the accelerated expansion as well with the help of these

points. In this system some points have very larger eigenvalues that can not be put

here, therefore are skipped. The eigenvalues of almost all points are shown figuratively

through plots for the range (−1 ≤ p ≤ 2) where it applies.

P1: (x1, x2, x3, x4, x5) = (0, 0, 2, 0, 0)

The eigenvalues of this point are: −4, −4, 0, 1, 5 and the related other parameters

are: weff = −1, Ωr = 0, Ωm = 0, ΩΛ = −1. As the two repeated eigenvalues are

negative, in addition to the one other to be positive, therefore the system is not

stable at this point. However the point can yield accelerated expansion.

P2: (x1, x2, x3, x4, x5) =
(

4, 0, 2,−27
2 ,−32

21

)

The eigenvalues of this point are:

(Page 171 of 216)



Root
[

18144 + 2252#1− 5271#12 + 735#13&, 3
]

,−4,

Root
[

18144 + 2252#1− 5271#12 + 735#13&, 2
]

,

Root
[

18144 + 2252#1− 5271#12 + 735#13&, 1
]

, 0

.

The remaining parameters related to the point are: weff = −1, Ωr = −27
7 ,

Ωm = −32
21 , ΩΛ = 8

21 . Stability of the system, however at this point is not possi-

ble. Matter dominated era has incorrect definition as the similar case is with the

radiation epoch. The accelerated expansion is also not possible to yield through

this point for the system.

P3: (x1, x2, x3, x4, x5) = (4, 0, 2,−5, 0)

The eigenvalues of this point are:

5, −4, 4, 8
5 , 0, and other parameters are determined to be:

weff = −1, Ωr = −5, Ωm = 0 and ΩΛ = 0. It is an unstable point as can be

seen from the signs of eigenvalues and other parameters are obvious where to lead

straightforwardly.

P4: (x1, x2, x3, x4, x5) =
(

0, 53 , 2, 0, 0
)

The eigenvalues of this point are:

0, 0, −4,
108−75p−

√
5
√

9936−11400p+3125p2

2(−36+25p) ,
108−75p+

√
5
√

9936−11400p+3125p2

2(−36+25p) .

The related parameters to the point are found to be: weff = −1, Ωr = 0, Ωm = 0,

ΩΛ = −8
3 . For the given range of the values of p, at this point acceleration could

be generated. The eigenvalue plot for the point is presented in Figure-4.23 as given

underneath.

Figure– 4.23: Plot of the eigenvalues for point P4 for −1 < p < 2
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P5: (x1, x2, x3, x4, x5) =
(

4(−1+p)
p ,−2(−1+p)

p2
, 2(−1+p)

p , −2+8p−5p2

p2
, 0
)

The eigenvalues of this point are:

8(−1+p)2

2−8p+5p2
, −4(−2p+10p2−13p3+5p4)

(−1+p)p2(2−8p+5p2)
,
4(−2p2+10p3−13p4+5p5)

(−1+p)p2(2−8p+5p2)
,

4p−22p2+36p3−23p4+5p5

2(−1+p)p2(2−8p+5p2)
+

√
3
√
a

2(−1+p)p2(2−8p+5p2)
, 4p−22p2+36p3−23p4+5p5

2(−1+p)p2(2−8p+5p2)
−

√
3
√
a

2(−1+p)p2(2−8p+5p2)

where a = 48p2−656p3+3692p4−11128p5+19652p6−20956p7+13283p8−4610p9+

675p10

Now, the related density parameters to the point are: weff = −1 + 4
3p , Ωr =

−5 − 2
p2

+ 8
p , Ωm = 0, ΩΛ = 0. The point is unstable, however, accelerated ex-

pansion is possible through this point. Radiation and matter epoches could not

be yielded through this point. The eigenvalue plot is drawn below in Figure-4.24

which shows its properties.
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P6: (x1, x2, x3, x4, x5) =









4(−1+p)
p ,−2(−1+p)

p2
, 2(−1+p)

p , −16+128p−314p2+280p3−81p4

p2(8−32p+21p2)
,

−32(1−2p+p2)
8−32p+21p2









The eigenvalues of this point are enormously larger and cannot be manually written

here. It is, however clear that for p < 0 and p > 2, the resulting values do not

make a stable point. weff = −1 + 4
3p , Ωr = −16+128p−314p2+280p3−81p4

p2(8−32p+21p2)
, Ωm =

− 32(−1+p)2

8−32p+21p2
, ΩΛ = 8(−1+p)2

8−32p+21p2
. The point gives accelerated expansion for the

range of values of p, however, matter and radiation dominated eras could not

be properly achieved. The plot for the eigenvalues is presented in Figure-4.25

underneath and can be interpreted suitably. Eigenvalue expressions could not be

placed due to their colossal sizes, however plot for each expression is labelled.

Figure– 4.25: Plot of the eigenvalues for point P6 for −1 < p < 2

Now, we tabulate the results of all points collectively for this case in Table-4.11 given

below
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Table– 4.11: Description of results for all points for fourth case of dynamical system

Sr.No Fixed Points Status of stability Existence of acceleration

1 P1 Unstable Yes

2 P2 Unstable Yes

3 P3 Unstable Yes

4 P4 Unstable Yes

5 P5 Unstable Yes

6 P6 Unstable Yes

4.6.10 Discussion and Concluding Remarks

The study of dark universe in the context of f (R) dynamics has engrossing characteris-

tics. To explain the late time accelerated expansion in its perspective is very attractive

due to being it comprehensive and simple. In this paper we studied a particular model of

f (R) modified gravity by investigating its stability analysis through dynamical system

analysis approach. A very challenging issue faced by f (R) models is their viability for

yielding the matter-dominated era. However these models were categorized (Amendola

et al., 2007) based on the viability conditions that can produce the matter epoch followed

by the late time accelerated expansion. With regard to it a straightforward method to

investigate the cosmological viability is to study f (R) models established on the ge-

ometric curves m (r) and the critical line m (r) = −r − 1 plotted in the (m, r) two

dimensional plane. The model we studied belongs to so called ϕMDE matter era where

the scale factor a (t) is proportional to t
1
2 . The existence of such matter-dominated era,

however is debatable and is related with a specific class of f (R) models. In addition to

these, there are cosmological viability conditions directly based on f (R) derivatives f,R

and f,RR. Moreover, it is obvious from the definition of m =
Rf,RR

f,R
that it contributes

significantly in establishing the viability of these cosmological models.

In the result of this problem, we reviewed first briefly the f (R) mathematical framework

and derived the modified gravity equation that governs the cosmic dynamics. The modi-

fied Freidmann equations are presented then considering the FLRWmetric for a spatially

flat and homogeneous universe. Defining the dimensionless parameters or variables, the
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autonomous dynamical system of differential equations is derived. Critical points, dif-

ferent density parameters and the eigenvalues of the critical points for the general f (R)

are listed solving the autonomous system simultaneously. We also discussed the viability

conditions in general for these models and for the model under consideration. By cal-

culating the first two derivatives, the parameters m and r are determined, from where

m is expressed as a function of r i.e., m = m (r). The mass of scalaron is somhow

affected by the presence of standard matter in the background and is closely related

with m. The value of m = m (r) for the selected model obviously would be similar for

all the discussed cases. We study four cases for studying the stability of the system

developed for the model describing our universe. In the first case a universe consisting

of radiation and matter only is proposed and accordingly defining the dimensionless

parameters, the dynamical system is constructed. We did not consider any interaction

term between these cosmic stuff. Determining the critical points, relevant density pa-

rameters and eigenvalues of these points in the perspective of the autonomous system

plots are drawn. The signature of eigenvalues shed light on stability of the system in

addition to the values of density parameters. The points which could cause accelerated

expansion are discussed in detail.

In the second case we considered cosmological constant Λ representing dark energy

density ρΛ in the cosmic fluidic stuff and incorporated into the modified Friedmann

equations. In accordance with first modified Friedmann equation, defining dimension-

less parameters in it, we constructed the autonomous system of differential equations

whose stability is investigated. Going through the same procedure of determining the

critical points, their eigenvalues in the context of newly developed autonomous system

with the help of Jacobian matrix and other density parameters, the stability analysis is

performed. The signs of eigenvalues of the points lend help in understanding the stabil-

ity and the plots of it give their graphical behaviour. In first two cases, the interaction

between matter and dark energy was not taken into account. Now, however the inter-

action of two kinds linear and non-linear would present an interesting case to study. In

third case, linear interaction terms are taken into consideration and using conservation

equation for cosmic fluidic stuff we drew up a program of modifying autonomous system

accordingly following the references (Amendola et al., 2007; Shah & Samanta, 2019).

The dimensionless parameters, however are not disrupted in this whole process. It is ob-

served that only first and fifth equations in the autonomous system are slightly changed.
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For stability analysis, the method of critical points, eigenvalues with finding density pa-

rameters is adapted. The graphical display similar to the earlier discussed cases is laid

out. It can be observed that at some points accelerated expansion is achieved, however

stability and violation of other closely related parameters is lost altogether. Finally, we

considered the non-linear case and following the similar procedure of case third stability

is analyzed. It is observed that it is the range of values for p which makes the points in

most cases to help undergo the system through the phase of accelerated expansion.

It is important to notice that in many cases the roots of the eigenvalues are not so simple

and straightforward in general and entails implications and complications, however we

considered the range of values for −2 ≤ p ≤ 0 that sets the trend of stability analysis

efficiently and very close to precision and accuracy. Another thing which is important

to note is that the addition of cosmological constant in the framework of f (R) modified

gravity makes no difference and is therefore redundant. This is because in the construct

of f (R), it is the curvature of spacetime itself that is responsible for driving the cosmic

expansion acceleratingly. The fact is also clear from our discussion and calculational

aspects in addition to the behaviour of points P2 and P3 in case of 3rd autonomous

system which makes it more plausible. Therefore in f (R) gravity models, the stability

of the system describing the universe phenomenologically and the late time behaviour

of expanding acceleratingly can be described self sufficiently within its perspective.

In general, the work can be enlarged for any f (R) model for modified gravity and for

other extended theories of modified gravity as well if it fulfils the necessary required

conditions of viability as are understood and discussed.
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CHAPTER-05

CONCLUSIONS

Relativistic cosmology was founded on general relativity with the introduction of cos-

mological principle where Weyl’s principle was implicitly implied, in addition. In the

beginning, two cosmological models were presented by Einstein and de Sitter, although,

now of historical interest, yet they both are very significant as the first initiates modern

cosmology relativistically and scientifically and the latter, later on, was used to provide

the initial conditions of the big bang model with a slight change in time translation

symmetry. The first theoretical models for the possibility of a dynamic universe evolved

beginning with Friedmann, Lemaitre and were observationally determined by Edwin

Hubble. In 1929, E. Hubble found exactly the same expanding universe that Friedmann

did theoretically in 1922. Therefore, it was Friedmann who championed the cause of

dynamic universes; however, his work was recognized later when he was no more in the

world. The theory of the big bang that was based on the standard cosmological model

faced Horizon, Flatness, Entropy problems, etc. To resolve these problems a phase of ex-

ponentially expanding universe was introduced in its very early history which proposed

to have occurred in a very small fraction of time (about 1
1043

s of the very 1st second

after time creation) known as inflation. Inflation is identified as the initial conditions

under which the big bang might have taken place. The introduction of inflation caused

the name inflationary cosmology to surface and it is about forty years since its birth

to date. The inflationary paradigm stands now on the firm observational footing and

is accepted irrevocably in cosmology as the viable description for the early universe.

Starobinsky, Guth, and Linde are credited with setting the foundations of inflationary

cosmology. The inflationary cosmology is being hailed as successful in explaining the

origin of structure formation through cosmological quantum fluctuations as relicts of

cosmic inflation. The observations conducted on cosmic microwave background (CMB)

radian and the recent discoveries of gravitational waves and black holes lend confirma-

tory support to the underlying principles of inflationary cosmology. Dark energy is one of

the most challenging issues of standard cosmology both on theoretical and observational

grounds. In the framework of ΛCDM it has equation of state (EoS) w = −1, however Λ

is confronted with fine-tuning problem. An alternative remedy to tackle the problems

related to Λ is the construction of models based on canonical and non-canonical scalar

(Page 179 of 216)



fields. These models modify the matter sector on the right-hand side of the Einstein

field equation, nonetheless, in non-scalar field models, the gravitational sector which is

the curved geometry of spacetime is modified such as in f (R) gravity. ΛCDM model, a

parametrization of the big bang is accepted for being in good agreement with the recent

observations. There exists now, however, a well-elaborated scenario to unify inflation

with dark energy in modified gravity which was first proposed by S. Nojiri and S.D.

Odintsov, See Ref. (Nojiri & Odintsov, 2003).

We discussed the multifield inflation by considering a small multifield potential writ-

ten in the generalized form
∑

i
Vi(ϕi) =

∑

i
Λi

[

1−
(

ϕi

µi

)p]

with p being negative. This

potential represents the small field inflationary model and can be regarded as Taylor

series expansion about the origin of its minima and maxima in its lowest order. In

small field models of inflation the field is usually considered beginning with about an

unstable equilibrium around the origin and then rolling down along its potential about

the origin. As the field expression denotes a generalized potential to stand for the mul-

tifield inflationary potential. i denotes any ith field taken into account multiple fields.

The parameters Λi and µi denote the height and tilt of the ith potential in the mul-

tiple fields. The spectrum of curvature perturbations which give rise to the growth of

cosmic structure are important relic from inflation. We investigated this spectrum for

the potential under consideration. At first, we considered the case for the value of p

larger than 2. In the case, in general, when inflaton fields have the equivalent masses

the equations of motion give rise to those of single field inflation producing the phase of

non-perturbations. This occurs due to relative mass differences in the inflaton fields. It

is observed that the spectrum comes out to be more or less redder in the respective cases

in comparison with the corresponding single field model accordingly. Included fields and

their effective masses play a very significant role because the results depend upon these

at the time of horizon-crossing. It is noted that the result corresponds to that of single

scalar field when the effective masses of all the fields are taken to be equivalent. The

spectrum in this case results to be similar and therefore coincides with the spectrum of

single field. It is concluded that the results for the values of p > 2, p = 2 and p = −2

are different and the behaviour of the field potentials and the corresponding spectrums

are distinct as well as different.

It can be noted that all the terms included in the factor ln
(

ϕs
k

ϕe
k

)

might be equivalent

on account of the result reached. With some extra terms, the two expressions represent

the same equation for the corresponding single field case. The value of ln
(

ϕs
k

ϕe
k

)

for the
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result reached at, will be smaller for the larger value of µ
i
when Λi are taken equivalent

to the µ
i
. If we consider µk = Max (µn) where n denotes natural numbers. This gives

rise to µi

µk
< 1 which on the other hand implies that the spectrum is more redder than

its corresponding spectrum resulting from the result for a single scalar field ϕk. In this

case the value of ln
(

ϕs
k

ϕe
k

)

would represent almost the smallest from all the values of

ln
(

ϕs
i

ϕe
i

)

which indicates that in Eq. (3.2.75), the case of single scalar field ϕk, the value

of k tends to get nearer or approach to unity. On the other hand if we are taking the

µk = Min (µn) where n denotes natural numbers, then this gives rise to µi

µk
> 1 which

resultantly leads to the result that the spectrum is less redder than its corresponding

spectrum resulting from a single scalar field ϕk. In this case the value of ln
(

ϕs
k

ϕe
k

)

would

represent almost larger one out of all the values of ln
(

ϕs
i

ϕe
i

)

which shows that the case

of single scalar field ϕk, where the value of k shifts away from unity. It means that

the value of the scalar spectral index falls between that of single field in general for the

biggest µk and the smallest accordingly.

Further, we considered a multifield model of inflation and studied its Nflationary phase

transition properties. The study is carried out for the properties of inflationary phase

with the help of phase diagram which gradually decreases and finally vanishes during

slow roll phase of this Nflation model. It is observed that as the number of fields

is increased, the critical point and the end point of slow rolling phase shift towards

the smaller average values of the fields. The motion of these two points, however, takes

place at different rates. It is the critical point that splits between the regions of eternally

inflating phase and slow roll phase. In general, the critical point shifts towards the end

phase faster than the end point of the slow roll phase indicating that the region of eternal

inflation will dominate over the slow roll inflation. The slow roll region completely

disappears when there is a large number of fields. Therefore Nflation might have some

bound on the number of fields that might assist each other to drive the inflationary

phase for evolution of the universe. From black hole entropy in its event horizon a

bound is determined between number of fields N , with masses m and planck mass

Mp. The properties of Nflation models correspond to that of the properties of single

field models which help to investigate their real existence. Inflation is demonstrated

for a large number of fields when large N phase transitions occur in Nflation. By

plotting the phase transition diagram for Nflationary model by considering the multifield

potential V (ϕj) = Λ4
j

(

ϕj

µj

)p
, we explained how the slow roll phase diminishes. Further

conditions on entropy in the form of a bound which conforms to the number of fields
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N and the outcomes occurring in it have also been addressed. It is further investigated

that all de Sitter (dS) entropy around or at the critical point remains concentrated

about it and is completely condensed in the number of fields N for the considered

potential. We observe the behavior of two regions, the slow roll phase and the eternal

inflationary phase separated by the critical point at the boundary and at the initial

points respectively which move gradually at slightly distinct rates towards field values

smaller on the average. The boundary of the slow roll is likely to be engulfed slowly by

the eternal inflation as the pace of critical point might be faster than the ending point,

in principle. It can also be seen that the bounding limit from the theory of black holes

for the number of fields N and Planck mass Mp does not almost show viability for the

massless scalar fields which generate density perturbations as entropy. Marčenko-Pastur

law gives the likely distribution of field masses that assigns average mass to all the large

and small masses. We determined approximately similar order for specific value of β

which incorporates all the masses naturally.

For understanding the earliest phase of cosmic evolution, Wheeler-DeWitt equation mo-

tivated the study of quantum cosmology around 1960 for investigating the early quantum

phases of the universe. When the universe was evolving beyond the classical reign the

quantum cosmology although hitherto perfectly unknown turns out to be important with

Wheeler-DeWitt equation. The time-independent Schrödinger equation conforming to

the Wheeler DeWitt equation is briefly reviewed for modelling the quantized behavior

in the early universe. Therefore by solving Schrödinger equation we can get insight into

the early universe evolution phases where the inflationary paradigm since the last forty

years has become a dominant paradigm to the extent of irrefutable status. We solve

it numerically for a single scalar field in flat spacetime with FLRW metric using artifi-

cial neural networks (ANN) and observe how it governs the early universe as it evolves

through the inflationary phase following the big bang. To construct a continuous neural

network mapping the explicit Runge-Kutta method is used as the target parameter to

generate the datasets. To determine the solution datasets for different scenarios the

processes of training, testing and validation are employed to take advantage of these

in the learning of neural network models established upon the backpropagation tech-

nique of Levenberg-Marquardt. The work can be extended in future prospective using

the technique of proposed ANN-LMB for the evolution of different system dynamics by

solving numerically. This presents a viable technique to be applied to solve the problems

of this nature.
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To study the accelerating universe in the context of general relativity, we explore both

sectors i.e. gravitational and matter sectors of the field equation. By modifying first

the matter sector a multi-field model of dark energy is investigated to drive accelerated

expansion. In order to understand accelerating universe in the framework of general rel-

ativity, we investigated both matter and gravitational sectors of Einstein field equation.

For this purpose, at first we used modification of the matter sector for constructing a

multi-field model of dark energy which drives the accelerated expansion. By considering

two multiple scalar fields, namely tachyon, and phantom tachyon, we analyze the au-

tonomous system in phase space making use of inverse square potentials suitable for such

models. The critical points and their eigenvalues for the autonomous system stability

analysis is performed. It is observed that stable critical points are satisfied by power-

law solutions. Significant feature of the model is that the equation of state changes

from w ≥ −1 to w ≤ −1 that is related to so called phantom divide and is decisive in

evolutionary phases of the universe in these models. In principle, such models can be

extended for understanding the cosmic viability for its late time accelerated phase.

On the other hand, accelerating universe is also explored using the gravitational sector

of Einstein field equation. The gravitational sector is effectively modified through f (R)

gravity, which offers a viable candidacy for accelerating universe, where Ricci scalar in-

variant R is basically replaced to some general non-linear function of it which consists of

higher-order curvature terms. Following the dynamical system approach for a particular

f (R) model, its stability analysis is carried out for cosmological inferences.

A particular model f (R) = Rp exp (qR) with m =
Rf,RR

f,R
= p(p−1)+2pqR+q2R2

p+qR and r =

−Rf,R
f = − (p+ qR) and with the geometric curve m (r) = − r2−p

r , is considered for

investigation. Following the geometric approach for the curve m (r) in the plane (r,m)

which provides some properties of the model, study is carried out. In the case of matter-

dominated era the viability conditions at r = −1, m (r) = 0 and dm
dr > −1 are examined.

On the other hand, for the late time acceleration however, at r = −2, either of the two

conditions m (r) = −r − 1 with dm
dr < −1, 1 ≥ m > 1

2

(√
3− 1

)

and 1 ≥ m ≥ 0 are

sought to satisfied.

In the first place, cosmic content is assumed to be comprised of matter and radiation

only in absence of cosmological constant term Λ. In this case interaction of any kind is

disregarded. Afterward, as second consideration, the interaction term in the presence of

cosmological constant term representing dark energy is taken into account. The effects

of linear and non-linear interaction terms between matter and dark energy are also taken
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into consideration for the case orderly. The results are presented for each case alongside

the discussion carried out for the critical points, their eigenvalues, and the equation of

state parameter. We present the stability analysis of the autonomous system of the

model which is extended afterward by considering the cosmological constant as dark

energy, which proves, however, to be redundant. The cases of linear and non-linear

interactions between cosmic fluids are also discussed. The analysis shows that at some

points accelerated expansion is yielded with a viable epoch of matter domination. In

general, the work can be enlarged for any arbitrary f (R) and for other extended theories

of modified gravity if these fulfil the required conditions of viability.
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Vasilev, T. B., Bouhmadi-López, M., & Mart́ın-Moruno, P. (2021). Little rip in classical
and quantum f (r) cosmology. Physical Review D , 103 (12), 124049.

Vikman, A. (2005). Can dark energy evolve to the phantom? Physical Review D , 71 (2),
023515.

Vilenkin, A. (1982). Creation of universes from nothing. Physics Letters B , 117 (1-2),
25–28.

Vilenkin, A. (1983). Birth of inflationary universes. Physical Review D , 27 (12), 2848.

Vilenkin, A. (1984). Quantum creation of universes. Physical Review D , 30 (2), 509.

Vilenkin, A. (1986). Boundary conditions in quantum cosmology. Physical Review D ,
33 (12), 3560.

Vilenkin, A. (1988). Quantum cosmology and the initial state of the universe. Physical
Review D , 37 (4), 888.

Vilenkin, A. (1994). Approaches to quantum cosmology. Physical Review D , 50 (4),
2581.

Volovik, G. E. (2005). Cosmological constant and vacuum energy. Annalen der Physik ,
14 (1-3), 165–176.

Wei, H., & Zhang, S. N. (2008). How to distinguish dark energy and modified gravity?
Physical Review D , 78 (2), 023011.

Weinberg, S. (1972). Gravitation and cosmology: principles and applications of the
general theory of relativity.

Weinberg, S. (2001). The cosmological constant problems. In Sources and detection of
dark matter and dark energy in the universe (pp. 18–26). Springer.

Wen-Fu, W., Zheng-Wei, S., & Bin, T. (2010). Exact solution of phantom dark energy
model. Chinese Physics B , 19 (11), 119801.

Wheeler, J. A. (1957). On the nature of quantum geometrodynamics. Annals of Physics,
2 (6), 604–614.

(Page 206 of 216)



Wheeler, J. A., & Zurek, W. H. (1983). Quantum theory and measurement. Princeton
university press.

Widrow, L. M., & Kaiser, N. (1993). Using the schrödinger equation to simulate
collisionless matter. The Astrophysical Journal , 416 , L71.

Wolfson, I., & Brustein, R. (2018). Small field models with gravitational wave signature
supported by cmb data. Plos one, 13 (5), e0197735.

Xia, J.-Q., Cai, Y.-F., Qiu, T.-T., Zhao, G.-B., & Zhang, X. (2008). Constraints on
the sound speed of dynamical dark energy. International Journal of Modern Physics D ,
17 (08), 1229–1243.

Yalcin, Y., & Pekcan, O. (2020). Nuclear fission–nuclear fusion algorithm for global
optimization: a modified big bang–big crunch algorithm. Neural Computing and Appli-
cations, 32 (7), 2751–2783.

Yang, Y., & Gong, Y. (2020). The evidence of cosmic acceleration and observational
constraints. Journal of Cosmology and Astroparticle Physics, 2020 (06), 059.

Ye, G., & Piao, Y.-S. (2019). Bounce in general relativity and higher-order derivative
operators. Physical Review D , 99 (8), 084019.

Yoo, J., & Watanabe, Y. (2012). Theoretical models of dark energy. International
Journal of Modern Physics D , 21 (12), 1230002.

Zajkowski, K. (2014). The method of solution of equations with coefficients that contain
measurement errors, using artificial neural network. Neural computing and applications,
24 (2), 431–439.

Zeldovich, Y. B. (1965). Survey of modern cosmology. In Advances in astronomy and
astrophysics (Vol. 3, pp. 241–379). Elsevier.

Zhang, J.-J., Lee, C.-C., & Geng, C.-Q. (2019). Observational constraints on running
vacuum model. Chinese Physics C , 43 (2), 025102.

Zhang, X.-F., Li, H., Piao, Y.-S., & Zhang, X. (2006). Two-field models of dark energy
with equation of state across-1. Modern Physics Letters A, 21 (03), 231–241.

Zhang, Y.-C., Zhang, H.-Y., Wang, D.-D., Qi, Y.-H., Wang, Y.-T., & Zhao, G.-B. (2017).
Probing dynamics of dark energy with latest observations. Research in Astronomy and
Astrophysics, 17 (6), 050.

Zhao, G.-B., Raveri, M., Pogosian, L., Wang, Y., Crittenden, R. G., Handley, W. J.,
. . . others (2017). Dynamical dark energy in light of the latest observations. Nature
Astronomy , 1 (9), 627–632.

Zhao, G.-B., Xia, J.-Q., Li, H., Tao, C., Virey, J.-M., Zhu, Z.-H., & Zhang, X. (2007).
Probing for dynamics of dark energy and curvature of universe with latest cosmological
observations. Physics Letters B , 648 (1), 8–13.

Zlatev, I., Wang, L., & Steinhardt, P. J. (1999). Quintessence, cosmic coincidence, and
the cosmological constant. Physical Review Letters , 82 (5), 896.

(Page 207 of 216)



LIST OF PUBLICATIONS

Published Papers
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APPENDIX-01

Abbreviations Used in the Thesis

S# Item Abbreviation

1 Ricci Scalar R

2 Fundamental tenssor gµν

3 Lagrangian L

4 Scale factor characterizing cosmic expansion a (t)

5 Cosmological constant Λ

6 Energy-momentum tensor Tµν

7 Einstein Tensor Gµν

8 Ricci tensor Rµν

9 Affine connection-Christoffel symbols of second kinds Γλ
µν

10 Cosmic energy density ρ

11 Cosmic pressure p

12 Hubble parameter describing rate of cosmic expansion H

13 Parameter used to describe various forms of density Ω

14 Geometric curvature of spacetime k

15 Deceleration parameter q

16 Giga year Gyr (109yr)

17 Megaparsec Mpc
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S# Item Abbreviation

18 Particle horizon dH (t)

19 Scalar field (inflaton) ϕ

20 Potential and Hubble slow roll parameters εV ,ηV ,εH ,ηH

21 e-folding number N

22 Planck mass Mp

23 An arbitrary function of Ricci scalar f (R)

24 Spectral index ns

25 Wave function of the observable universe Ψ (a)

26 Derivative of f (R) with respect to R F

27 Entropy during Nflation dS

28 Speed of sound c2s
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APPENDIX-02

Space, Time and Spacetime

A background arena woven with space and time fabric is necessarily required for all the
physical phenomena to play over it. We actually keep on seeking the compatibility of
the physical laws known so far with the structure of space and time. This is because
space, time, and motion are concomitant ingredients cohered to matter and can never
be disengaged from each other. The universe exists in space and evolves in time so that
the universe, space, and time are inseparable from each other and are coherently related
to each other. This is what was presented in relativity theories. Space is understood
as possessing three dimensions, whereas time is speculated to have only one dimension.
Therefore, Newtonian Mechanics has been formulated in such a way as to consider
the spatial dimensions existing independently from the dimension of time. Euclidean
geometry provides a necessary mechanism in dealing with such notions of space and time.
In this regard, Euclidean space becomes important which proposes three independent
perpendicular dimensions of space with time dimension being unaffected by it. The
spatiotemporal dimensions are envisaged as independent and absolute entities which
are not affected by each other at all. The Euclidean structure of space is flat and
distances are measured by using the standard Pythagoras theorem for geometry of three
dimensions as

ds2 = x2 + y2 + z2, (0.0.1)

and in the differential of the distances

ds2 = dx2 + dy2 + dz2, (0.0.2)

here ds = (x, y, z) or ds = (dx, dy, dz), respectively. More compactly, it is written as

ds2 = δµνdx
µdxν (0.0.3)

where

δµν =















1 0 0

0 1 0

0 0 1















(0.0.4)

and signature of δµν = (+1,+1,+1) The time coordinate does appear anywhere in this
distance-measuring formula which means in the geometry of space, the dimension of
time will be dealt with separately. Newton’s notions of space and time as described in
”Principia Mathematica” are defined (Newton & Huygens, 1987) as follows ”Absolute
space, in its own nature, without regard to anything external, remains always similar
and immovable. Relative space is some movable dimension or measure of the absolute
spaces which our senses determine by its position to bodies: and which is vulgarly taken
for immovable space. Absolute motion is the translation of a body from one absolute
place into another: and relative motion, the translation from one relative place into
another” where absolute time is defined in the following words ”Absolute, true and
mathematical time, of itself, and from its own nature flows equably without regard to
anything external, and by another name is called duration. Relative, apparent, and
common time, is some sensible and external (whether accurate or inequable) measure
of duration by the means of motion, which is commonly used instead of true-time”.
In 1905, Einstein’s paper entitled ”On the electrodynamics of moving bodies” put forth
on the base of two postulates that time might be dealt on equal footing with space as
one of the dimensions of space. Herman Minkowski (1864–1909) translated the mixing
of space and time coordinates as requiring a four-dimensional scenario where physical
phenomena take place and the geometry of such four dimensional spacetime, where
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time is one dimension, is described by spacetime interval which is the generalized form
of Pythagoras theorem

ds2 = −dt2 + dx2 + dy2 + dz2 (0.0.5)

or
ds2 = ηµνdx

µdxν (0.0.6)

where

ηµν =























η00 η01 η02 η03

η10 η11 η12 η13

η20 η21 η22 η23

η30 η31 η32 η33























=























−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1























(0.0.7)

and it has the signatures ηµν = (−1,+1,+1,+1).
Minkowski first understood that the spacetime interval as given in Eq. (0.0.5) remains
invariant for all the observers and carries the similar meaning for all the inertial ob-
servers in uniform relative motion, however, Einstein considered in the beginning that
either with respect to time or with respect to space, the spacetime interval does not
remain identical for all relative observers moving with constant velocity with respect
to each other. Minkowski avowedly said in a conference addressing to the German sci-
entists that ”Ladies and gentlemen! the views of space and time which I wish to lay
before you have sprung from the soil of experimental physics, therein lies their strength,
they are radical. Henceforth space by itself and time by itself are doomed to fade away
into mere shadows and only a union of the two will preserve an independent reality”
(Minkowski, 2013). This marked the point for the emergence of the geometry of the
four-dimensional spacetime continuum and the reformulation of the special theory of
relativity in its context. It works pseudo-Euclidean due to incorporating the time di-
mension, however remains flat. However, it was Einstein’s ingenuity to carve it before
anyone else. General relativity was formulated on the base of four dimensional spacetime
continuum as Minkowski has laid it, however in order to incorporate the gravity into it
Einstein utilized the power of tensors and modeled the curved geometry of spacetime
describing its curvature as gravity. The geometry of curved spacetime is encoded into a
two rank symmetric tensor known as fundamental tensor and is given by the spacetime
metric or line element as

ds2 = gµνdx
µdxν (0.0.8)

where the fundamental tensor gµν is given by

gµν =























g00 g01 g02 g03

g10 g11 g12 g13

g20 g21 g22 g23

g30 g31 g32 g33























=























g00 0 0 0

0 g11 0 0

0 0 g22 0

0 0 0 g33























(0.0.9)

If a diagonal metric has to represent the curved geometry, its spatial components in the
diagonal g11, g22 and g33 must show a shift from unity. The diagonal metric necessarily
implies cosmological principle which portrays a universe that is invariant to transla-
tion and rotation on the cosmological scales of extragalactic distances. In the absence
of matter-energy content, the curvature of spacetime vanishes, and the geometry of
spacetime becomes flat, i.e., gµν = µµν , yet non-Euclidean that is required by the spe-
cial relativity. The philosophical impact of spacetime, in the vista of independent space
and time, is more complicated to apprehend, however describes nature more naturally.
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APPENDIX-03

Spectrum of the Black Body

A blackbody can absorb hypothetically radiation of all wavelengths falling on it and
reflecting nothing at all. How at the different wavelengths distribution of radiation oc-
curs in a blackbody is given below in Figure 1:

Figure– 1: The figure above shows how the distribution of radiation occurs at different

corresponding wavelengths for a perfect blackbody

In the early universe when matter and radiation decoupled from each other, the so-called
decoupling, instantly primordial radiation was produced and were given off proving a
snapshot of the universe at that time and is known as cosmic microwave background
radiation (CMBR) observed accidentally in the 60 s. The recent observations conducted
on cosmic microwave background radiation reveals the fact that this is the perfect black
body radiation with a temperature of 2.7255 Kelvin on average. We know that the
wavelength distribution of a black body is given by

u (λ, T ) dλ =
8πhc

λ5

(

1

e
hc

λkBT
−1

)

dλ (0.0.10)

where u (λ, T ) dλ is the energy per unit volume of the radiation with wavelength between
λ and λ+dλ emitted by a blackbody at temperature T . We consider now a black body
radiation from the big bang when the universe first became transparent to photons after
400,000 years after big bang to this time about 4,000,000,000 years. The wavelength of
the primordial photons λ is Doppler shifted to λ′ due to expansion of universe ,certainly
λ′ > λ. Let f (λ′, T ′) dλ′ be the current per unit volume of the residual big bang
radiation as measured from the earth. As the shell of charged particles that emitted the
radiation is moving away from the Earth at extremely relativistic speed so we should
use the relativistic Doppler shift for light from a receding source to relate λ′ to λ that is

λ′ =

√

1 + v/c
√

1− v/c
λ = Bλ (0.0.11)

where we put B =

√
1+v/c√
1−v/c

, and v is the speed of recession of the charged shell. As

v < c, clearly λ′ > λ by a factor
√

1 + v/c
√

1− v/c
(0.0.12)
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Eq. (0.0.12) can be interpreted by generalization that all the distances have grown since
first radiation emitted. In order to have a relation between currently observed spectrum
f (λ′, T ′) dλ′ and original black body radiation distribution

u (λ, T ) dλ (0.0.13)

we put from Eq. (0.0.11) λ = λ′

B
into Eq. (0.0.10)

u (λ, T ) dλ =
8πhc
(

λ′

B

)5

(

1

e
hc

λ′

B
kBT

−1

)

dλ′

B
(0.0.14)

u (λ, T ) dλ

B4
=

8πhc

λ′5

(

1

e
hc

λ′kBT ′
−1

)

dλ′ (0.0.15)

where T ′ = T
B

and right hand side of Eq. (0.0.15) can be identified with current black

body spectrum f (λ′, T ′) dλ′ which has standard functional form of a blackbody spec-
trum with wavelength λ′ and temperature T ′. Eq. (0.0.13) becomes

u (λ, T ) dλ

B4
= f (λ′, T ′) dλ′ (0.0.16)

Eq. (0.0.16) says that the radiation from a receding blackbody has same spectral distri-
bution as yet but its temperature T ′ and energy

u (λ, T ) dλ (0.0.17)

dropped by factors of B and B4 respectively.
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