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Abstract: We have demonstrated a metropolitan all-pass quantum
communication network in field fiber for four nodes. Any two nodes of
them can be connected in the network to perform quantum key distribution
(QKD). An optical switching module is presented that enables arbitrary
2-connectivity among output ports. Integrated QKD terminals are worked
out, which can operate either as a transmitter, a receiver, or even both at
the same time. Furthermore, an additional link in another city of 60 km
fiber (up to 130 km) is seamless integrated into this network based on a
trusted relay architecture. On al the links, we have implemented protocol of
decoy state scheme. All of necessary electrical hardware, synchronization,
feedback control, network software, execution of QKD protocols are made
by tailored designing, which alow a completely automatical and stable
running. Our system has been put into operation in Hefei in August 2009,
and publicly demonstrated during an evaluation conference on quantum
network organized by the Chinese Academy of Sciences on August 29,
2009. Real-time voice telephone with one-time pad encoding between any
two of the five nodes (four all-pass nodes plus one additional node through
relay) is successfully established in the network within 60km.
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1.

Introduction

It has been nearly 3 decades since proposal of quantum key distribution (QKD) [1]. There
are significant theoretical developments and experimental schemes demonstrated, to name a
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few of them, see, e.g., [2-9], which enables rapid developments for point to point (PTP) key
establishment. Compared with classical optical communications, it is very critical to realize
secure connections beyond PTP links by employing QKD, which would offer very promising
network applications.

Currently there are mainly two topology structures to expand existing QKD links. One is
to use so-called trusted relay architecture. Another one is to implement a transparent network
architecture, similar to the case of classical optical network. By using trusted relay, one can
increase communication distance for QKD arbitrarily. Also different type of QKD links are
compatible in such architecture. However, one should ensure privacy for the relay sitesto guar-
antee security for the whole network. The European SECOQC (Secure Communication based
on Quantum Cryptography) quantum network [10] has utilized thiskind of paradigm. We have
also demonstrated a 3-node communication network based on atrusted relay with each adjacent
link of about 20km [11]. By employing optical switching techniques, on the other hand, one
can achieve low network complexity for constructing transparent connections. Unfortunately,
the application of switching solely can not increase communication distance and key genera-
tion rate for QKD. A practical way isto combine additional trust relays to construct a hybrid
scalable network. There are many ways to maintain transparent network implementations, such
asviaoptical switching [12-14], passive optical splitting [15, 16], or wavel ength-division mul-
tiplexing (WDM) [17,18]. By using beam splitters, one cannot choose connections freely in a
passive network, whereas in a WDM-type network, the transmitter has to prepare in advance
laser diodes for operating in corresponding wavelength and choosing communications sites.
Optical switching has been extensively used such asin the DARPA network [12,13], the 3-node
NIST network [14], in [19] together with a relay, and in [20] for a dynamically reconfigured
network. Recent progress in [21] has achieved secure key in alevel of Mbits/s for 20 km fiber
PTP link, which would promise high-speed metropolitan QKD in the future.

We have complemented and improved performance of QKD network over existing demon-
strations in several aspects. This mainly includes all-pass optical switching, novel QKD termi-
nals, 60~130 km inter-city links, with the help of scalable hybrid network topology. The earlier
demonstrations for optical switching network used single optical switch [13, 14] and achieved
only one-way connection for some of communication parties. We have managed to design an
optical switching equipment that enables 2-connectivity for any input and output ports. There-
fore arbitrary interconnection can be created between any two of input and output ports. An
all-pass metropolitan QKD network with star-type topology is then accomplished in Hefei city
of China. The QKD communications are carried out for any two nodes based on polarization
coding. Real-time voice encryption and decryptions are successfully demonstrated through one-
time pad coding. Besides, each of the nodes could work as a transmitter or a receiver, or even
as both altogether in field experiment. Our design thus offers a potential for duplex commu-
nication for the node terminals. Moreover, with such switching equipments and terminals, it
is straightforward to construct a network with routing function for quantum signals, similar
to the case of classical communications. In our case, the distribution of quantum channel is
automatically decided base on communication request, loss of the backbone network, busy or
on-off status for fibers. An additional node in Feixi county that is about 60 km fiber distance
far from relay node at USTC site in Hefel city, is further added to achieve an inter-city QKD
network. With help of trusted relay architecture, we have again established real-time voice
communication between this node and any node from the metropolitan network. The network’s
robustnessis verified for this 5-node hybrid structure, by moving further the additional node to
Tongcheng city that is about 130 km for fiber distance far from USTC site (the actual distance
is about 100km). It works well to communicate with any node from metropolitan network.
The network deployment took place in August 2009, and was publicly demonstrated during an
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evaluation conference on quantum network organized by the Chinese Academy of Sciences on
August 29, 2009. Our hybrid network has realized all necessary functions for a practica QKD
network by developing and integrating several key modules including active optical switching
for connecting any two ports, hybrid network architecture by integrating optical switching and
trusted relay, tailored QKD network processing and control software, automated distribution
for quantum channels, intercorporate communication functions of transmitter and receiver for
QKD terminalsin every node of all-pass network, guaranteed security by employing decoy state
schemes [22—-26]. Thus we hope that our demonstration could provide a critical step towards
practical QKD network in alarge scale.

2. Optical switching and network architecture

In order to achieve an all-pass network in a metropolitan network, one of the key ingredient is
an equipment that allows arbitrary interconnecting for fibers connecting with different commu-
nication parties. The earlier usesfor optical switching network [13,14] has not yet operated with
this function. In the demonstration, we have managed to produce an 8-port optical switching
equipment that allows interconnecting of any two ports. A star-type network is accomplished
by connecting every node to our optical switching equipment. Compared with other types of
network, there is no special requirements for all-pass network with optical switches. Particu-
larly, this network offers distribution of quantum channel with relatively low loss and enjoying
the advantage of easy controlling with classical network commands. We use the mechanical
optical switches, which provides high degree of isolations among different ports without di-
rect connections. Moreover, there is no induced additional noise when al the ports work at
the same time. Furthermore, this kind of optical switching techniques provides standard sin-
gle mode fiber channel, which enables hybrid connections for different schemes of QKD and
holds potential performance improvement if combined with multiple transmitters and receivers
through WDM in every node.

It is neither proved nor quantified for unconditional security through trusted relay architec-
ture up to now. We remark that trusted relay architecture is however a very practical architec-
ture, which could in principle extend range of secure distance for QKD in alarge scale. Once
the relay nodes are secure, any other nodes can communicate securely with the help of relay
nodes. In addition, the relay node provide an interface allowing interoperability of heteroge-
neous QKD devices, which expand practical applications of QKD network. We have set up a
star-type network based on atrusted relay in USTC site, as shown in Fig. 1. If combined with
multi-level optical switching and multiple trusted relays, this network topology is scalable to
arbitrarily expand to be a complex network with additional QKD devices. We have set up two
types of QKD terminals. The terminals connected to the optical switching module are those
equipped with functions of being both transmitter and receiver. It should be remarked that there
isonecircle link of 10 km goes back USTC through underground optic fiber cable, to simulate
a separately remote node USTC'. The USTC' node connected to optical switching has acted
as a trusted relay, one part of which has been equipped with such a terminal. Another part of
USTC' nodeistreated as areceiver, and uses high speed system that we have devel oped in [27]
without amplification of synchronized signal in between link. All the nodes are running with the
standard BB84 protocols based on decoy state schemes [22—26]. The performances are tested
and verified for all of possible connections among the 5 nodes.

3. QKD terminal devicesfor network applications

Asshownin Fig. 1, the star-type network provides quantum channels for any two nodes among
the 4 nodes in the metropolitan area of Hefel city. To run the network, one has to update the
normal PTP QKD linksto cover all the nodes. Considering the fact that the arbitrary connection
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Fig. 1. Metropolitan all-pass quantum communication network constitutes 4 nodes includ-
ing USTC’, Wan'an, Meilan, and Wanxi. A circle link of 10 km goes back USTC through
underground optic fiber cable, which is used to simulate a separately remote node USTC'.
An additional node in Feixi county (finally moved to Tongcheng city) that is about 60 km
fiber distance (130 km fiber distance) far from USTC' sitein Hefei city, isfurther connected
to achieve an inter-city QKD network, when the USTC' node serves as atrusted relay.

should be possible for any two of the nodes, we have made a integrated design for terminals
that could work either a transmitter or areceiver.

We make use of weak coherent states coming from laser diodes as optical source. Decoy state
schemeisimplemented for all the links, to extend significantly secure distance and improve key
generation rate with proved security. The main ideafor decoy schemeisto insert randomly de-
coy states with different intensity from the signal state during the transmission process. In the
receiver side, through detection rates and quantum bit error rates for both the signal states and
the decoy states, one can analyze to derive maximum possible information |eaked to eavesdrop-
per. Thus two communications sides could then generate secure keys after error corrections and
privacy amplification process.

A schematic view of QKD terminal in every terminal of metropolitan network is illustrated
in Fig. 2. In order to maintain a relatively high key generation rate, we set the photon number
intensity to be 0.6 : 0.2 : O/pulse for signal states, decoy states and vacuum states, respectively.
The occupancy proportionisset as6: 1: 1. When the terminal serves a transmitter, the optical
pulses are modulated randomly with intensity ratios of 3:1:0 with two cascaded intensity mod-
ulators after 1550 nm laser diodes to generate the three kinds of states. Four types of polarized
states of H/V / + /— are prepared also at this stage after two cascaded beamsplitters (BS) to
represent horizontal, vertical +45° and —45° polarization states. With additional attenuations,
the pulses are outputted to field fiber after adjusting the average photon number intensity to
be 0.6/pulse for signal states. In the receiver side, standard BB84 detection scheme is applied.
When the terminal serve as areceiver, in the detection part the input optical pulses are divided
by a beamsplitter (BS) into two arms corresponding to H/V and 4 /— basis detection unit, re-
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Fig. 2. Schematic view of a QKD device terminal in the experimental setup. When the de-
vice serves as a transmitter, four polarizing states are generated by a 1550 nm laser diode
after two cascaded BS with additional intensity modulation, before combined by another
output BS. Signal and decoy states are also controlled at this stage by random choice. Af-
ter suitable attenuation, the optical pulses go through a circulator before combining in a
CWDM with synchronization pulse. When the terminal serves as a receiver, the optical
pulses enter at CWDM, and then decode quantum signals out, for going through circulator
at the detection part. Synchronization signal goes along another circulator for clock sig-
na detection. Here, LD: Laser Diode; IM: Intensity Modulator; PBS: Polarization Beam
Splitter; PC: Polarization Controller; ATT: Attenuator; CIRC: Circulator; FF: Fiber Filter;
CWDM: Coarse Wavelength-division multiplexing.

spectively. In each arm, there is a polarization controller that will actively compensate possible
polarization displacement in fiber channel. The polarization beamsplitters (PBS) are then for
choosing H/V or +/— measurement basis before the pulses entering detectors.

To incorporating the transmitter function in the same terminal, we have used fiber circula-
tor to isolate the input pulses from field fiber, and the output pulses from the optical source.
Whenever the terminal plays arole of transmitter, pulses from laser diode will go through the
circulator to outer fiber. Whenever the terminal works as areceiver, the input pulses from outer
fiber goes over the circulator and then arrives at detectors. To avoid strong reflection caused by
Rayleigh backward scattering for light other than quantum signals in WDM output ports, we
have added a narrowband (~ 100GHz) fiber filter after the circulator with central wavelength
of 1510.12 nm. This improvement could dramatically reduce unwanted disturbance caused by
noisy light (mainly from synchronization light), and thus contribute low quantum bit error rate
(QBER). Moreover the setting will result in a high visibility for outputs of polarizing quantum
states. Asthe detectors are working in gate mode, they require external trigger signals. We have
therefore use strong optical pulses as synchronization signal, which allow detections by normal
photoelectrical diodes. Whenever thereisaquantum pulseis emitted, thereisasynchronization
pulse from synchronization laser of 200 nw, to tag timing information. For purpose of reducing
cost for using fiber, we have managed to use 1570 nm optical pulses as synchronization signal.
Together with quantum optical pulses, they are combined into a coarse wavelength division
multiplexing module for outputting in field fiber. Another advantage isthat the light with wave-
length 1570 nm contributes relatively small anti-Stokes scattering for light of 1550 nm, which
reflects very low disturbance for quantum signals.

4. Performancein field fiber

Our QKD network is based on installed field fibers of China Netcom Group Corp Ltd. All of the
four nodes are connected to the optical switching module at laboratory situated in USTC. The
fifth node in Feixi county that is 60 km fiber distance far from USTC' is connected to all-pass
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metropolitan network in Hefei city, with USTC’ site acting as atrusted relay. The specification
parameter for all the links are shown in Table 1.

Table 1. Measured specifications for QKD network

link Circlelink USTC Wan'an Meilan Wanxi Feixi
Distance  10.047 km 8.447km 9.904km 8.417km 60km
Fiber loss 2.82dB 2.65dB 2.86 dB 275dB 17dB

The measured fiber losses among different links do not include loss coming from optical
switch, whose value is typically around 0.9 dB~1.2 dB. The CWDM and FF contribute a loss
less than 0.8 dB, and can achieve isolation of about 70 dB between classical communication
and quantum signals.. All of the four nodes including USTC’, Wan’ an, Wanxi and Meilan uti-
lize integrated QKD terminals with functions of transmitter and receiver. The repetition rate of
4 MHz is used for the laser source at these nodes. As mentioned before, the average photon
number is 0.6 and 0.2, for sinal states and decoy states, respectively. The receivers use single
photon detectors of InGaAs type with two id201 detectors from id Quantique and two detectors
produce by East China Normal University. The detectors efficiency is about 10% for all of
four detectors in each node. The random numbers we used for 4 MHz system are produced
by modules from id Quantique, while the high-speed system of 320 MHz in Feixi-USTC'’ link
are using pseudo-random numbers. Once powered on, our system can automatically execute
whole adjusting and feedback process, wait connecting request from any nodes, and choose
their corresponding working modes. We find that the systems can work perfectly with current
commercially available underground fiber cables. After extensive monitoring and tests, the sys-
tem has proven very robust and stable, with a consistent key generation rate for a period of
24h.

For the whole network links, we have measured and derived al the relevant parameters,
as listed in Table 2. Here we use post data processing method followed from results of [28]
and [22—26]. The key generation rate that can be achieved is as follows

R> q{—Qu f(Ex)H2(Ey) + Qu[1—Ha(er)]}, @

where the subscript 1 isthe average photon number per signal in signal states. For convenience,
we denote v the average photon number per pulse for decoy state. Q,, and E,, are the measured
gain and the QBER for signal states, respectively; q is an efficiency factor for the protocol. Qq
and e; are the unknown gain and the error rate of the true single photon state in signal states.
The decoy state method can estimate the lower bound of Q; denoting as Q'i, and the upper
bound of e; denoting as e‘i’ , and then one can achieve maximum possible secure key rate. The
Ha(x) isthe binary entropy function: Hz(x) = —xlog,(x) — (1 —X)log, (1 — x), while the factor
f(x) isfor considering an efficiency of the bi-directional error correction [29].

We follow here the method developed in [28] and [22—26] to estimate good bounds for Q;
and e;. After experimentally measuring all the relevant parameters as listed in Table 2, we can
input the following bounds for calculating final key generation rate [26]

24— 2

e H v 2_y2
Q>Qf = u'uv—vz( \L/ev—QueuP—Yéj'uT)a )
E,Qu-Yte #/2
a<d ﬂuQLo/ 3
1
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Table 2. Measured and derived specifications for quantum network based on decoy states

Para. Meilan-USTC' USTC'-Meilan  USTC -Wanxi Wanxi-USTC’ Wanxi-Wan'an
SiftedR 110k 9.74k 10.0k 8.02k 8.00k
Fina R 1.45k 1.20k 1.95k 1.45k 1.30k
Eu 1.58% 1.47% 1.51% 1.53% 1.35%
E, 4.00% 4.10% 4.99% 4.99% 4.41%
Qu 8.21x 1073 5.81x 1073 7.25x 1073 5.83x 1073 7.15x 1073
Q. 2.71x 1073 1.90x 103 2.32x10°3 1.91x 103 2.20x 1073
Yo 2.03x 104 1.38x 104 2.04x 1074 1.70x 1074 1.78x 1074
Para. Wan'an-USTC' Meilan-Wanxi  Meilan-Wan'an USTC' -Wan'an Wanxi-Meilan
Sifted R 8.33k 8.54k 9.39k 8.17k 7.97k
Fina R 1.40k 1.43k 2.54k 1.82k 1.75k
E, 1.67% 1.70% 1.28% 1.43% 1.68%
E, 5.40% 4.43% 3.48% 2.79% 4.28%
Qu 5.80x 1073 6.79x 1073 6.86x 103 7.33x10°3 6.23x 1073
Qv 1.90x 103 2.30x 1073 2.29x 1073 2.48x 1073 2.21x 1073
Yo 1.75x 104 1.86x 104 1.19x 104 1.33x 104 1.58x 104
Para. Wan'an-Meillan  Wan'an-Wanxi  Feixi-USTC’
SftedR 7.33k 8.39k 18.0k
Fina R 1.40k 1.21k 4.50k
Eyu 1.60% 1.56% 1.13%
E, 5.16% 4.97% 1.71%
Qu 6.43x10°3 5.68 x 10~3 1.64x10°%
Q. 2.16x 1073 1.91x 103 6.60 x 10~°
Yo 1.77x 104 1.74x 104 1.13x 106
in which
L 10
Qv QV (1 \/m )7
L 10
YO - YO(]. m)?
U 10
YO - Y()(l + \/W )7

Here N,, and Ny are numbers of pulses used as decoy state and vacuum state, respectively,
while Q, is the measured gain for the decoy states. The measured counting rate for vacuum
decoy state is denoted by Yo.

From Table 2, we see afinal key rate of more than 1.2 kbps whenever QBER is less than 2%,
for atypical running of 400 s for our system. This has already excluded 1/5 period consuming
for adaptive feedback control. We have estimated the bounds for Q% and €} by considering
the statistical fluctuations for vacuum states, gains for signal states and decoy states within
10 standard deviations, which ensure the final keys rates promises a confidence interval of
about 1— 1.5 x 10-23, Although the distance isrelatively long for Feixi-USTC’ link, we obtain
highly fast key rates of 4.5 kbps. Thisis mainly due to several essential elements that we have
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maintained. We have managed to achieve 320 MHz high repetition rate for optical source. With
the help of superconduction detectors, extremely low dark counts or counts from unwanted light
isanticipated. It istherefore attained for high detection counting rate of about 10 kbps for each
arm, and low QBER of typically less than 1%. Based on these resource of secure keys, we have
finally tested in application layer to realize voice communication with one-time pad. The voice
communication is not only implemented in all of the four nodes in the metropolitan network,
each of which has also successfully created secretly audio communication with Feixi node. We
have attempted to move the system in Feixi node to Tongcheng city that is about 130 km from
USTC’, with an approximate fiber loss of 29 dB for transmission. Again we have demonstrated
successful operation of QKD, by using broadband wireless network from China Telecom as
classical communication channel. A final key rate around 0.2 kbps and QBER of lessthan 2 %
are achieved. We remark that authentication of classical communication is not yet implemented
in our system, which is an important ingredient for QKD network and will be covered in our
future work.

5. Conclusions and per spectives

We have demonstrated an all-pass quantum communication network in field environment. Hy-
brid network architecture is illustrated to construct an inter-city network by combining the
metropolitan quantum network and a trusted relay, which is capable of extending reach of net-
work nodes arbitrarily. All of necessary functions and equipments are realized, including seam-
less integrating of all-pass optical switching, trusted relay, decoy state protocol, tailored QKD
network hardware, and software control etc. Integrated QKD terminals are developed, which
can operate both as a transmitter or a receiver with automated switching. The designed termi-
nals arein fact possible to be used as both transmitter and receiver at the same time, which will
double key generation rate with suitable software and electrical control hardware. The hybrid
architecture by using of all-pass structure and trusted relay would enables a scalable network
for arbitrary distance. The results reported in this paper would help to make a significant step
for a practical QKD network in widespread implementation and associated applications.
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