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Abstract

An algorithm for the construction of non-spurious harmonic oscillator (h.o.) wave functions with
arbitrary permutational symmetry is presented. The h.o. wave functions, expressed in Jacobi
coordinates, are calculated recursively using a new type of h.o. coefficients of fractional parent-
age. These coefficients are the eigenvectors of the two-cycle class operator of the permutation
group in the appropriate basis: The matrix elements of the class operators are evaluated by
using a specific version of the h.o. brackets. A procedure is developed to transform the resultant
h.o. states from Jacobi into single particle coordinates. The procedures proposed are expected
to enhance the effectiveness of computations involving h.o. basis sets.

L Construction of non-spurious harmonoic oscillator
states with arbitrary permutational symmetry

Harmonic oscillator wave functions have been widely used in computational molecular, atomic
and nuclear physics, and recently also in non-relativistic quark calculations[l]. In all these
applications the eigenvectors of a translationally invariant hamiltonian are evaluated in terms of
h.o. eigenstates. The h.o. states used in these calculations should be constructed in such a way
that the trivial center-of-mass (c.m.) motion is explicitly separated: Spurious states, in which
the c.m. is excited, must be eliminated.

In order to construct non-spurious states for n identical isotropic three-dimensional h.o.s
we must use a set of coordinates where the c.m. is separated from the n — 1 internal coordi-
nates. Among the various sets of coordinates satisfying this requirement the normalized Jacobi
coordinates
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were found to be preferable because each internal coordinate 5; ¢ = 2,...,7n depends on the first
i single particle coordinates only. This property enables the formulation of a recursive procedure
for constructing the set of h.o. non-spurious states[2].

The h.o. wave functions expressed in Jacobi coordinates are naturally separated into an
internal and a c.m. wave function. The c.m. wave function is totally symmetric with respect

483



to permutations of the particle coordinates. On the other hand, the internal coordinates do not
have simple symmetry properties with respect to permutation of particle indices. Our aim is
to construct internal wave functions, consisting of n — 1 h.o.s, which belong to an irrep of the
permutation group, Sy.

The permutational symmetry of an internal wave function of n-particles can be specified by
a sequence of Young frames I'2I'3 .. .I's, where I'; is the i-particle Young frame. This sequence is
equivalent to the Yamanouchi symbol Y;,[3]. Additional good quantum numbers are the resultant
internal angular momentum A, and internal energy ( fuw (e,, + 3(n - 1)) where ¢, is an internal
energy parameter ). However, the angular momenta and energies of less than n particles are not
good quantum numbers. One can construct a complete set of states labeled by |Y,Anenan >
where ¢, is an additional label that takes care of the remaining degeneracies. For simplicity we
denote the combination of quantum numbers Ané 0 by &,.. 7() stands for the individual h.o.
radial and angular quantum numbers N; and L; corresponding to the #"th Jacobi coordinate.

The two particle internal wavefunction gan be written as

[Tz Az €302 >= T2 @252 >= Upn,1,(52) = |n®); 72 > (2)

where €3 = 2N + L3, Az is the internal angular momentum and Ly = A,. T is determined by
L;: I’y = [2] for even Ly and Ty = [1?] for odd Ly. The value of the 2z component of the angular
momentum is suppressed.

Let us assume that the (n — 1)-particle wave functions, symmetry adapted to Sn_1, have
already been constructed. The general expression for the n-particle internal wave function,
symmetry adapted to S, can than be written in the form

|Yn®r; P2P5. . . P >= z
Qn—lﬂ(n)
(¢n = €n—1 +2Np + Ly)
[Y -1 q’n-—l'ﬂ(n)Anl}Yn‘I’n] [Yre1®r1 ”I(n)An; P2Pa. . fn > (3)
where ¥;, = Y1, and the coefficients [ |} ] are the h.o. coefficients of fractional parentage

(hocfps).

The)hocfps defined in Eq. (3) satisfy orthogonality and completeness relations{2] similar to
those satisfied by the single shell cfps for arbitrary permutational symmetry, defined in ref. [4].
On the other hand, here, the n’th particle state [7{™); 5, >= |N,,L,; 7, > is not unique. We
have to sum over :all the different single particle states consistent with the angular momentum
coupling Apo1+ I, = X, and the energy relation €, = €4..1 + 2N, + Ly, since the elements of
S, couple all those states. This is the price paid for using the Jacobi rather than single particle
coordinates.

The hocfps are evaluated recursively by diagonalizing the transposition class operator (the
sum of all the different transpositions)

n
c? [Sn] = Z(i"’:l) (4)
i<

within sets of states having common €,, A, and Y,-1. The eigenvalues of this operator uniquely
determine the various irreps of S, obtained from a given irrep of S,_; by adding one box[4].

The eigenvectors are the desired hocfps.
The evaluation of the matrix elements of the transposition class operator is presented in ref.
[2]. It involves a passage to a new set of coordinates j,_; and ﬁn, which are either symmetric
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or antisymmetric in the coordinates 7,—; and #,. This passage is achieved under a rotation by

an angle 3 satisfying cosf = ,/#‘;‘:’—ﬁ and sinf.= /5y

= o L 1. .
Pn-1 = Pn-1c08P — ppsinf = —ﬁ("'n—l - )
4 - . - n—2 - . 2 n—2 .
Pn = Pn-18inf + prcosf = (Fac1+7n) — — Z i (5)
2n n—2 =

The phase problem associated with degenerate irreps is discussed in ref. [2]

II. Transformation of the harmonic oscillator states from Jacobi into single
particle coordinates

The internal h.o. states with arbitrary symmetry, derived in the previous section, are expressed
in terms of the normalized Jacobi coordinates (Eq. (1)). However, in many calculations in
atomic and nuclear physics it is desirable to have expressions for the wave functions in terms of
the single particle coordinates. This is particularly important when the h.o. states are used as
a basis set in a calculation involving non-harmonic potentials, which are not easily expressible
in Jacobi coordinates.

The total n-particle h.o. wave function is obtained by coupling the c.m. wave function to
the internal wave function, obtaining

|V ®nc™ L0s 5o - o Faf ™ > (6)

where £, is the total angular momentum and c¢(™ stands for the n-particle c.m. quantum
numbers N and L(®), The permutational symmetry of this coupled state is determined by
that of the internal state, as was shown in the previous section. For n-particle non-spurious
states the c.m. wave function is always in the ground state and therefore L(*} = 0 and £, = A,,.

The coordinates 5, and 5" can be rewritten in terms of the first (n — 1)-particle c.m.
coordinate, p ("~1) = (7:_—T (F1L + ...+ Tu—1), and the n’th particle coordinate 7. Inserting this
Telation we obtain[5]

ﬁo(n—l) p‘(")co,gﬂ —_ ﬁnsinﬂ

Fo = PWsing + phcosf (7N

where cosf = /21,

The h.o. wavefunctions expressed in terms of the coordinates 5, and 5"} can be transformed
into h.o. wave functions expressed in terms of the coordintes 5(*~1) and #, by using the h.o,
brackets for different masses{6].

After separating the wave function of the last coordinate ( 7, ) by using a change of coupling
transformation([7], we obtain

IR R (n)
[V @ne™Ly; p2fs ... P ™ >= > o3 Gl S
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IY —IQn—l c(n_l)ﬁn-—lh(n)ﬂn; 521_).3 . -ﬁn—lﬁ(n_l)f.ﬂ > (8)
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where the coefficients are

n)
Ot = (2 + 1)(2L + 1)
Z [Yn—lq)n—ln(n)Anl}Yu‘pn] 2(2)\ + 1)
A
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An.— ['n A An— ﬁn A n— n n) .(n
{ I I A, }{ oLy o }<(°( DAENA(n™MeA > (9)

and where the A(") stands for quantum numbers N,,, L,, of the h.o. wave function in the single
particle coordinate 7. The summation over the quantum numbers N, and L, (denoted by n(™)
is restricted by the condition €, = ¢y + 2N, + L,,, where ¢, and ¢,; are specified by ®,, and
®,._1. Note that the Yamanouchi symbol Y;, determines the Yamanouchi symbol ¥;,_;. In order
to transform completely to the single particle coordinates we have to apply Eq. (8) recursively
(n — 1) times.

In conclusion we point out that the straightforward construction of an n-particle basis in
terms of h.o. wave functions generates a large number of spurious states, involving c.m. motion.
A common device employed to eliminate these states is the addition of an appropriate operator
with a relatively large coefficient to the hamiltonian, in order to push them up in energy. An
obvious drawback is that a huge basis set is employed, a substantial part of which is totally
ineffective.

The explicit elimination of the spurious states presently proposed results in a very significant
reduction in the size of the basis employed. Moreover, the states constructed in our method
have a definite permutational symmetry. This property is essential for calculations involving
multiple angular momentum quantum numbers, such as non-relativistic quark calculations.
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