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Abstract 

An algorithm for the construction of non-spurious harmonic oscillator (h.o.) wave functions with 
arbitrary permutational symmetry is presented. The h.o. wave functions, expressed in Jacobi 
coordinates, are calculated recursively using a new type of h.o. coefficients of fractional parent- 
age. These coefficients are the eigenvectors of the two-cycle class operator of the permutation 
group in the appropriate basis, The matrix elements of the class operators are evaluated by 
using a specific version of the h.o. brackets. A procedure is developed to transform the resultant 
h.o. states from Jacobi into single particle coordinates. The procedures proposed are expected 
to enhance the effectiveness of computations involving h.o. basis sets. 

I. Construction of non-spurious harmonoic oscillator 
states with arbitrary permutational symmetry 

Harmonic oscillator wave functions have been widely used in computational molecular~ atomic 
and nuclear physics, and recently also in non-relativistic quark calculations[l]. In all these 
applications the eigenvectors of a t ransla t ional ly  invariant  hamil tonian are evaluated in terms of 
h.o. eigenstates. The h.o. states used in these calculations should be constructed in such a way 
tha t  the t r ivial  center-of-mass (c.m.) motion is explicitly separated:  Spurious states,  in which 
the c.m. is excited, must  be eliminated. 

In order to construct non-spurious states for n identical  isotropic three-dimensional h.o.s 
we must  use a set of coordinates where the c.m. is separated from the n - 1 internal  coordi- 
nates. Among the various sets of coordinates satisfying this requirement the normalized Jacobi 
coordinates 

were found to be preferable because each internal  coordinate /~  i -- 2 , . . . ,  n depends on the first 
i single part icle  coordinates only. This proper ty  enables the  formulat ion of a recursive procedure 
for constructing the set of  h.o. non-spurious states[2]. 

The h.o. wave functions expressed in Jacobi coordinates are natura l ly  separated into an 
internal  and a c.m. wave function. The c.m. wave function is to ta l ly  symmetr ic  with respect 
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to permutations of the particle coordinates. On the other hand, the internal coordinates do not 
have simple symmetry properties with respect to permutation of particle indices. Our aim is 
to construct internal wave functions, consisting of n - 1 h.o.s, which belong to an irrep of the 
permutation group, S~. 

The permutational symmetry of an internal wave function of n-particles can be specified by 
a sequence of Young frames r 2 r 3 . . ,  rn ,  where r i  is the/-particle Young frame. This sequence is 
equivalent to the Yamanouchi symbol Yn[3]. Additional good quantum numbers are the resultant 
internal angular momentum An and internal energy ( hw (en + ~(n - 1)) where en is an internal 
energy parameter ). However, the angular momenta and energies of less than n particles are not 
good quantum numbers. One can construct a complete set of states labeled by IYnAnenan > 
where an is an additional label that  takes care of the remaining degeneracies. For simplicity we 
denote the combination o f  quantum numbers Anenan by On. ~(1) stands for the individual h.o. 
radial and angular quantum numbers Ni and Li corresponding to the i ' th Jacobi coordinate. 

The two particle internal wavefunction 9an 15'e written as 

IF2 A2 e2 ; ~2 > =  Ir2 02 ; y~ > =  ~N2L2(Y2) = 17¢2); Y2 > (2) 

where e2 = 2N2 + L2, A2 is the internal angular momentum and L2 = A2. F~ is determined by 
L 2 : r 2  = [2] for even L2 and r2 = [15] for odd L2. The value of the z component of the angular 
momentum is suppressed. 

Let us assume that the (n - 1)-particle wave functions, symmetry adapted to Sn-1, have 
already been constructed. The general expression for the n-particle internal wave functions 
symmetry adapted to Sn, can than be written in the form 

IYnOn; Y2Y3. . .Yn >= 
~n_l rj( n ) 

(en = en-1 + 2Nn + Ln) 

[Y.-lOn-lV(n)Anl)rnon] IYn-10n-xn("lA.;ffzy3. . .y .  > (3) 

where Yn = Y,~-xr,~ and the coefficients [ I) ] are the h.o. coefficients of fractional parentage 
(hocfps). 

The hocfps defined in Eq. (3) satisfy orthogonality and completeness relations[2] similar to 
those satisfied by the single shell cfps for arbitrary permutational symmetry, defined in ref. [4]. 
On the other hand, here, the n ' th  particle state I~l(n);ffn > =  INnLn;ffn > is not unique. We 
have to sum over all the different single particle states consistent with the angular momentum 
coupling/~n.--1 + ~n = /~n and the energy relation en = en-1 + 2Nn + Ln, since the elements of 
Sn couple all those states. This is the price paid for using the :Iacobi rather than single particle 
coordinates. 

The hocfps are evaiuated recursively by diagonaiizing the transposition class operator (the 
sum of all the different transpositions) 

n 

c 2 [s .]  = ~ ( i ,  ¢) 0)  
i < i  ~ 

within sets of states having common en, An and Yn-1. The eigenvalues of this operator uniquely 
determine the various irreps of Sn obtained from a given irrep of Sn-a by adding one box[4]. 
The eigenvectors are the desired hocfps. 

The evaluation of the matrix elements of the transposition class operator is presented in ref. 
[2]. It involves a passage to a new set of coordinates ~n-1 and ;~n, which are either symmetric 
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or antisymmetric in the coordinates r'~-1 and ~'~. This passage is achieved under a rotation by 
ang le  s a t i s f y i n g  --  a n d  -- 

~" ~" @*n--I "~- ~ ' n )  n - -  2 i = 1  
Pn = ~n- l s in f l  + fi,,cosfl n - 2 2 (5) 

The phase problem associated with degenerate irreps is discussed in ref. [2] 

I I .  T r a n s f o r m a t i o n  o f  t h e  h a r m o n i c  o s c i l l a t o r  s t a t e s  f r o m  J a c o b i  i n t o  s i n g l e  
P a r t i c l e  c o o r d i n a t e s  

The internal h.o. states with arbitrary symmetry, derived in the previous section, are expressed 
in terms of the normalized Jacobi coordinates (Eq. (1)). However, in many calculations in 
atomic and nuclear physics it is desirable to have expressions for the wave functions in terms of 
the single particle coordinates. This is particularly important  when the h.o. states are used as 
a basis set in a calculation involving non-harmonic potentials, which are not easily expressible 
in Jacobi coordinates. 

The total n-particle h.o. wave function is obtained by coupling the c.m. wave function to 
the internal wave function, obtaining 

W.~,~c(")~z.; ~2Y3...Y./") > (8) 

where £ ,  is the total angular momentum and c(n) stands for the u-particle c.m. quantum 
numbers N(n) and L(n). The permutational symmetry of this coupled state is determined by 
that of the internal state, as was shown in the previous section. For n-particle non-spurious 
states the c.m. wave function is always in the ground state and therefore L(n) = 0 and £n = An. 

The coordinates /Yn and ~(~) can be rewritten in terms of the first (n - 1)-particle c.m. 
coordinate, p (,-1) = ~ (r'l + . . .  + r'n-1), and the n ' th  particle coordinate r'n. Inserting this 
relation we obtain[5] 

y ( . - 1 )  = f i (" )cos~ - y . s i n f l  
~'. = y(n)sinl9 + ~,~cos~ (7) 

co,,8 = V / - ~ .  where 
The h.o. wavefunctions expressed in terms of the coordinates ~,  and ~-(n) can he transformed 

into h.o. wave functions expressed in terms of the coordintes f ( , - 1 )  and r'n by using the h.o. 
brackets for different masses[6]. 

After separating the wave function of the last coordinate ( ~',, ) by using a change of coupling 
transformation[7], we obtain 

C,Y. ¢.e(")~Cn ]Y"')'~e('O£"; Y2Y3"" "AY('~) >= ~ ~._,~--,)~._,n(-) 
,I~._a d--1LC._a h(-) 

[Yn-x ~,~-x c('~-l) £ . - l h ( " )  £n; ~21Y3...~n_ly(n-1)~'n > (8) 
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where the coefficients are 

C Y"~"~"~" = ~/(2A, + 1 ) (2~  + 1) 
• ,~-z dn-1)£n-1  h('q 

E Z(2  + 1) 
~(,~) A 

L(~) L~ A~ ]~n L (~-1) £n-1 < (9) 

and where the h(n) stands for quantum numbers Nn, Ln of the h.o. wave function in the single 
particle coordinate r'n. The summation over the quantum numbers Nn and Ln (denoted by z/(n)) 
is restricted by the condition e~ = ~ - t  + 2N. + L~, where ~. and en-1 are specified by ~ and 
~ - 1 .  Note that the Yamaaouchi symbol Yn determines the Yamanouchi symbol Yn-t. In order 
to transform completely to the single particle coordinates we have to apply Eq. (8) recursively 
(n - I) times. 

In conclusion we point out that the straightforward construction of an n-particle basis in 
terms of h.o. wave functions generates a large number of spurious states~ involving c.m. motion. 
A common device employed to eliminate these states is the addition of an appropriate operator 
with a relatively large coefficient to the hamiltonian, in order to push them up in energy. An 
obvious drawback is that a huge basis set is employed, a substantial part of which is totally 
ineffective. 

The explicit elimination of the spurious states presently proposed results in a very significant 
reduction in the size of the basis employed. Moreover, the states constructed in our method 
have a definite permutational symmetry. This property is essential for calculations involving 
multiple angular momentum quantum numbers, such as non-relativistic quark calculations. 
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