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Abstract

Since its discovery a large effort has been made to improve analyses and make precision
measurments of the properties of the Higgs Boson. At a mass of 125 GeV Higgs to bb is
the dominant decay mode. However, large QCD backgrounds mean that the gluon-gluon
fusion production mode is not directly accessible at the LHC. Instead an analysis of Higgs
to bb can considered where the Higgs is produced in association with a Vector Boson
(W/Z). This document outlines such an analysis perfomed on the ATLAS Run I 8 TeV
data with focus on one particular channel where the Higgs is produces in association

with a Z Boson which subsequently decays to a pair of neutrinos.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) was built to study fundamental particle physics at
extremely high energies. The experiments built around the LHC have been, at the time
of writing, collecting data for several years. This thesis presents two analyses undertaken

with such data.

The first analysis presented in chapter 5 is a technical study looking at the efficiency
of reconstructing b-jets within simulated data produced for the ATLAS detector, one of
the experiments on the LHC. The analysis aims to help reduce the systematic uncer-
tainties associated with the reconstruction of jets, particularly jets with high transverse

momentum.

Chapter 6 then presents a search for the Standard Model Higgs boson; a fundamental
boson which is the consequence of electroweak symmetry breaking introduced in the
Standard Model to give masses to the other fundamental particles. The analysis probes
one particular decay channel where the Higgs boson, which decays to a pair of b-quarks, is
produced in association with another massive vector boson, identified through a leptonic

decay.

Prior to presentation of the analyses details of the underlying theoretical motivation and
experimental apparatus are given. Chapter 2 introduces the Standard Model of particle
physics with a particular emphasis on the Higgs boson. Previous searches for the Higgs
boson are also discussed here. Next, chapter 3 introduces the LHC and the ATLAS
detector. Finally, chapter 4 details the reconstruction of the particles measured by the
ATLAS detector.



Chapter 2

The Standard Model

The Standard Model (SM) of particle physics is a quantum field theory describing in-
teractions between fundamental particles through the electromagnetic (EM), strong and
weak forces. The theoretical framework of the SM does not describe gravity. Gravity
is much weaker than the other forces; acting upon objects at the particle scale it is
103 times weaker [1] than the next weakest force. Therefore even with the exclusion of
gravity the SM has been extremely successful at predicting many physical results with

high accuracy.

This chapter will discuss the framework of the SM and introduce the fundamental par-
ticles and forces which it predicts. Emphasis is placed on the Higgs boson, the focus of

this thesis. A more complete description of the SM can be found in [2].

2.1 Forces and Particles of the Standard Model

Within the mathematical framework of the SM two different types of particles are al-
lowed; fermions and bosons. Fermions are particles with half integer spin and form the
constituents of matter. Bosons are particles with integer or zero spin and mediate forces
between fermions. This section will introduce fermions and bosons and discuss the the-
ory of the interactions between these fields. For reference a summary of SM particles

can be seen in table 2.1.

2.1.1 Fermions

Fermions are further subdivided into two categories; leptons and quarks. Leptons in-

teract only with the EM and weak forces, while quarks also interact with the strong
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I | II | III Bosons
Quarks A ¢ v
Fermions d > b g
+
Leptons A O 4w
Ve | Vy | Vr H

TABLE 2.1: A summary of the particles of the Standard Model.

force. There are three generations (labeled in table 2.1 as I, IT and III) of fermions in
the SM. Each generation contains a pair of quarks, a lepton and its corresponding lepton

neutrino.

2.1.1.1 Leptons

There are six observed leptons in the SM. Three charged leptons: the electron, e; muon,
p; and tau, 7; and their respective neutrally charged neutrinos: v, v, and v;. By
convention the charged leptons are said to be negatively charged. Oscillations between
the different flavours of neutrino have been observed [3] proving that neutrinos have a

non-zero mass. Table 2.2 outlines some properties of the leptons.

Flavour | Electric Charge | Mass (GeV) | Generation
e -1 0.511 x107% [
Ve 0 <225 x 1077
U -1 105.7 x 1073 .
Yy 0 <0.19 x 1073
T -1 1.777
vy 0 <182 x 1078 | !

TABLE 2.2: A summary of lepton properties. Neutrino masses have yet to be precisely
measured, experimental results however have set an upper limit [4].

2.1.1.2 Quarks

There are six flavours of quarks. Each generation of fermions has one up type quark; u,
¢, or t and one down type quark; d, s or b. Quarks carry fractional charge with up type
quarks carrying a charge of +2/3 and down type quarks carrying a charge of -1/3. A

summary of their properties can be seen in table 2.3.

Quarks also carry colour charge. Colour charge is a property which plays the same
role within the strong interaction as electric charge in electromagnetism. Every quark
is characterised by one colour; red, green or blue. Individual quarks have not been

observed, only bound “colourless” states consisting of either three quarks of different
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Generation | Flavour | Electric Charge Mass (GeV)

u +2/3 (15— 3.3) x 103
I _

d 1/3 (3.5 —6.0) x 1073
n c +2/3 1.271007

s -1/3 104738 x 1073
I t +2/3 171.2+ 2.1

b -1/3 4.240-4"

TABLE 2.3: A summary of quark properties [4].

colour (baryons), such as the proton (uud), or a quark and anti-quark of the same

colour (mesons), such as the 7% (ud), have been observed in nature.

2.1.2 Bosons

Each force has one or more boson associated to it. The massless photon, «v, mediates the
EM force; the Z° and W bosons mediate the weak force and eight massless gluons, g,
mediate the strong force. Each of these bosons have a spin of 1 and are known as vector
bosons. A summary of force mediating boson properties can be seen in table 2.4. As
well as the vector bosons, the SM contains one spin 0 scalar boson known as the Higgs
boson. The Higgs boson plays an important part in the SM and is the result of the
Higgs Mechanism which provides massive vector bosons with mass. This thesis focuses

on one analysis which contributed to its discovery.

Interaction | Electric Charge Mass (GeV)
g Strong 0 0
vy EM 0 0
70 Weak 0 91.1876 + 0.0021
W= Weak +1 80.398 £ 0.025
H - 0 125.09 4+ 0.24

TABLE 2.4: A summary of vector boson properties [4, 5].

2.1.3 Standard Model Particle Summary

In total there are 30 distinct elementary particles. There are 24 fermions; 6 quarks and
6 leptons, each fermion has a corresponding anti-particle which is identical aside from
having opposite charge. There are 6 bosons; the massless gluon, the massless photon,
the Higgs boson and three massive bosons, W* and Z°. All of the particles have now

been experimentally observed.
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2.2 Quantum Field Theories

The SM uses a relativistic quantum field theory (QFT) to describe the interactions and
dynamics of fundamental particles. In QFTs particle fields which permeate over all
space are quantised. Excitations in these fields represent particles. The Lagrangian
formulation is used to describe the dynamics of these particles and their interactions
with each other. Dynamics of a system are governed by the symmetries respected
by the chosen Lagrangian. The SM is invariant under local transformations of the
SU(3)cxSU(2), xU(1)y gauge group resulting in the three fundamental forces; strong,
weak and EM. Here C represents colour charge, L, left-handed weak isospin and Y hy-
percharge. Each of these forces are described within the SM by a gauge theory. Quan-
tum chromodynamics (QCD) describes strong interactions between quarks and gluons.
Quantum electrodynamics (QED) describes EM interactions and is described together

with the weak interaction within the context of electroweak unification.

2.2.1 Electroweak Unification and the Higgs Mechanism

Unification of the EM and weak forces was first suggested by Glashow [6] and indepen-
dently by Salam and Ward [7]. Electroweak interactions are mediated by photons, W=+
and Z bosons and are governed by SU(2)r, x U(1)y gauge symmetries. Such local gauge
theories predict massless vector bosons; however, this prediction can not be correct as

massive W and Z bosons have been observed [8].

The masses of the W* and Z bosons are introduced into the SM via spontaneous sym-
metry breaking with the introduction of the Higgs Field. The Goldstone Theorem [9]
can be applied to the spontaneous symmetry breaking of the SM. It tells us that in a
generic continuous symmetry which is simultaneously broken (such as the SM) there
must exist one massless scalar boson for each broken symmetry generator. These bosons
are known as Goldstone bosons. In the case of the SM and the spontaneous symme-
try breaking of the SU(2);, x U(1)y gauge group four massless Goldstone Bosons are
produced. Brout and Englert [10], Higgs [11, 12], and Kibble, Guralnik and Hagen [13]
developed a theory, now known as the Higgs Mechanism, which showed how the massless
Goldstone bosons can be absorbed by the longitudinal polarisation of the W* and Z

bosons causing them to have mass.

The Higgs Field, ¢, is a complex SU(2);, doublet constructed from two complex scalar
fields, ¢+ and ¢°,
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FIGURE 2.1: The "Mexican hat’ potential given in 2.3 where y? < 0 and A > 0 [14]
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The Lagrangian describing the dynamics of the Higgs field is defined as

Ly = (D) (D"¢) — V(¢) (2.2)

containing a kinetic term and a symmetric potential, V(¢) with the form

V =u’o'o — Ao')? (2.3)

where p and ) are both free parameters. In the case where y? < 0 and A > 0 a ‘Mexican
hat’ potential is produced with a non-zero minimum, see figure 2.1, allowing spontaneous

symmetry breaking to occur. Ly is invariant under gauge transformations.

In order to leave the photon massless the vacuum expectation value (vev), ¢, must be
invariant under U(1)g gauge transformations. The EM gauge symmetry is unbroken.

The resulting vev has the form

b0 = \/g < S ) where v = [;\2 (2.4)
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As Ly is invariant under local gauge transformations it can be transformed into a
different gauge. Such a transformation can be made into a special gauge which minimised
the number of scalar degrees of freedom. This is known as the unitary gauge in which

the Higgs Field can be written as

1 0
¢:\@<H+v> (25)

where H is the neutral Higgs scalar field. Expanding £ around ¢g results in mass terms

for W* and Z bosons. For a more complete derivation see [15].

Fermions acquire mass through an additional SU(2)z x U(1)y invariant Yukawa term
added to the Lagrangian. An example of this can be shown for the electron where the

Yukawa term is given as

Ly (e) = —Ge[xrder + ero'x1] (2.6)

where xr, is a left handed doublet, er is a singlet and G, is the Yukawa coupling. In
the unitary gauge we have the Higgs Field given in equation 2.5, substituting this into
Ly (e) the electron mass and Higgs boson coupling can be identified. The couplings
between the Higgs Boson and fermions is proportional to mass hence why H — bb is an

important signature for Higgs boson searches.

2.3 Searches for the Higgs Boson

Searches for the Higgs boson have followed its prediction. Although the Higgs mass is
not predicted by the SM a limit of ~1 TeV is set by theory [16]. Beyond this mass
unitarity of certain scattering processes would be broken. Very early searches were able
to put constraints on the mass of the Higgs boson [17, 18]. However they were unable

to explore a wide mass range until the development of high energy particle colliders.

2.3.1 Higgs Searches Prior to the LHC

Searches for the Higgs boson using high powered particle colliders began at CERN with
the Large Electron-Positron (LEP) Collider. LEP ran from 1989 to 2000, accelerating
and colliding electrons and positrons at a centre of mass energy up to /s = 209 GeV.

LEP measured observables of particles with which the Higgs interacts. Through these
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FIGURE 2.2: Exclusion limits from the Tevatron combination [21]. A global excess at
2.50 is observed at my ~ 120 GeV.

precision electroweak measurements, combined with direct exclusion limits LEP was

able to place a lower bound on the Higgs mass at a 95% confidence level of my = 114.4

GeV [19].

Following LEP, the Tevatron, a proton anti-proton collider at the Fermi National Accel-
erator Laboratory, was able to place further constraints on the Higgs mass. At the end
of running in 2011, combined data from two experiments (CDF and D0) were able to ex-
clude the SM Higgs boson in the mass ranges 100 < mpg < 108 GeV and 147 < mp < 180
GeV at a 95% confidence level [20]. Furthermore a global excess at 2.50 was observed
at myg ~ 120 GeV [21]. Figure 2.2 shows the exclusion limit for the Tevatron combina-
tion, the excess can be seen around my ~ 120. This result is of particular interest as
the dominant decay channels analysed at the Tevatron are those used in the presented

analysis.

2.3.2 Higgs at the LHC

Current Higgs searches at the LHC are based upon the full Run 1 dataset collected in
2011 and 2012 at /s = 7 TeV and /s = 8 TeV respectively, with a total integrated
luminosity of approximately 25 fb~!.

2.3.2.1 Higgs Production and Decay at the LHC

During collisions in the LHC the Higgs boson can be produced in several ways. Feynman
diagrams for the four most probable Higgs production mechanisms can be seen in figure

2.3. The rate of each process depends on the centre of mass energy and the mass of
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F1GURE 2.3: Feynman diagrams of the most common Higgs production mechanisms
at the LHC (a) gluon-gluon fusion (ggF), (b) vector boson fusion (VBF), (c) and (d)
associated vector boson and tt production
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FIGURE 2.4: SM Higgs production cross section as a function of mass [22].

the Higgs. Figure 2.4 shows Higgs production cross sections as a function of mass for
Vs =Tand \/(s) = 8 TeV data [22]. The most common Higgs production mechanism
is gluon gluon fusion (ggF), figure 2.3 (a), followed by vector boson fusion (VBF), figure

2.3 (b). Associated production mechanisms, figure 2.3 (c) and (d) are less common.

The Higgs boson can decay into a variety of different particles, the rate of each decay
mode again depends on its mass. Figure 2.5 shows the main decay channels as a function

of Higgs mass [22].

Figure 2.6 shows SM Higgs production cross section times branching ratio at (a) low
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Ficure 2.5: Branching ratio of SM Higgs boson decay production as a function of
mass for the low mass range [22]

mass, and (b) across the entire mass range. At low masses (my < 130 GeV) bb is
dominant, however, a search for H — bb where the Higgs boson is produced via ggF or
VBF is made difficult by the high QCD backgrounds produced in a hadron collider. It
is possible to utilise associated production with a vector boson, see figure 2.3 (¢), where
the vector boson decays leptonically. This decay into charged leptons or neutrinos helps
separate the H — bb decay from the multijet background and makes it possible to

observe this decay at the LHC; the subject of this thesis.

H — c¢ and H — ¢g processes can not be studied in the same way. Analysis of H — c¢
events is difficult due to a lower branching fraction. c-jets are also identified with a
much lower efficiency. H — ¢gg has a lower branching fraction and suffers from large

backgrounds.

Two other channels, H — v and H — 77 can be studied in this low mass region.
Although they have much lower branching ratios than H — bb the signal to background

ratio is much higher.

At masses my = 130 GeV it is no longer useful to study the three low mass channels.
Here the WW and ZZ decays switch on and become useful before being completely
dominant at even higher masses. Initially the H — ZZ — 4l channel is the most

important as the completely leptonic decay is extremely clean and as the decay contains
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FIGURE 2.6: Cross section times branching ratio of Higgs boson decay production as
a function of mass for (a) the total mass range and (b) low mass range [22]

no neutrinos it offers excellent mass resolution. Due to this even at 125 GeV H — 27 —
4l is a major search channel. Approaching my 2 800 GeV the H — ZZ and H — WW
decay rate drops. H — ZZ — 4l starts to play a smaller role due to a reduced overall

cross section times branching ratio compared to the other high mass channels.

2.3.2.2 Higgs Searches at the LHC

On the 4th July 2011 two experiments, ATLAS and CMS (Compact Muon Solenoid),
showed results which provided evidence for a new fundamental particle which was con-
sistent with the SM Higgs boson [23, 24]. The results combined several decay channels
using data collected at /(s) = 7 and /(s) = 8 TeV.

ATLAS results showed an excess with a maximum located at 126.5 GeV with a local
significance exceeding 50. Likewise CMS saw an excess with a local significance of 4.9 o,
the maximum was consistent with the ATLAS result. The ATLAS and CMS results can
be seen in figure 2.7 (a) and (b) respectively. Combined the ATLAS and CMS results
were also able to exclude a Higgs boson at a 95% confidence level over much of the

remaining mass range around 126.5 GeV.

Figure 2.8 shows the local significance of the five individual channels input into the
ATLAS combined Higgs search. The excess is mainly due to contributions from the
H — 4l and H — ~~ channels. More analysis was required to confirm the discovery of
the SM Higgs boson as predicted by Brout, Englert, Higgs, Kibble, Guralnik and Hagen.

For example did the new particle couple to fermions?
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FIGURE 2.7: Combined search results for (a) ATLAS [23] and (b) CMS [24]. The

observed 95% CL upper limit on the signal strength (solid line) is shown with the

expected results for a background only hypothesis (dashed line). The green and yellow
bands represent the + 1 and 2 ¢ uncertainties on the background only expectation.
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The ATLAS results on July 4th were based on 4.8 fb™! of \/s = 7 TeV data and 5.9
fb~1 of \/s = 8 TeV data. The result presented in this thesis is an improved version of
the H — bb analysis using the full Run 1 dataset. It is the culmination of several years
work which started with the 7 TeV analysis contributing to the July 4th result. The

other main channels have also been improved and updated [25-27].

1



Chapter 3

The Large Hadron Collider and
ATLAS Experiment

This chapter will first discuss the design of the LHC, highlighting its broad physics
program and the key design features of each of its four main detectors. Section 3.2 will
then focus in more detail on the ATLAS (A Toroidal LHC ApparatuS) Detector, its

components and their performance.

3.1 The Large Hadron Collider

The Large Hadron Collider (LHC) is a hadron-hadron synchrotron collider commissioned

and built by the European Organisation for Nuclear Research (CERN).

Located beneath the French-Swiss border near to Geneva, Switzerland, the LHC is
designed to run at high energies and luminosities in order to produce rare physical
processes in sufficient quantities to study at each of the four interaction points around
the 26.7 km ring.

In order achieve such high energy collisions, two counter rotating beams are injected
into the LHC after passing through a series of smaller accelerators which are described
in more detail in the following section. For the majority of its running time the LHC
accelerates and collides bunches of protons and the remainder of this section will focus

on this scenario. It should be noted that the LHC is also used to collide heavy ions [28].

Protons in the LHC begin life as hydrogen atoms which are stripped of their electrons in
an electric field. The protons are initially injected into a linear accelerator (Linac 2) and

are accelerated to an energy of 50 MeV. Following Linac 2, protons pass through three

14
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FIGURE 3.1: The LHC accelerator complex [29]

synchrotron accelerators in which the energy of the protons is progressively increased.
The Proton Synchrotron Booster (PSB) accelerates the protons to 1.4 GeV, the Proton
Synchrotron (PS) to 25 GeV and the Super Proton Synchrotron (SPS) to 450 GeV.
From here the beam is split in two and accelerated in opposite directions around the

LHC. Details of this can be seen in figure 3.1.

Situated around the LHC beam pipe are four detectors. The locations of these exper-
iments can be seen in Figure 3.2. Of the four detectors two, ATLAS and CMS, are
general purpose detectors designed to search for new physics over a broad phase space.
Having two general purpose detectors not only increases the amount of data collected,
roughly doubling the rate of rare events, but as ATLAS and CMS are able to utilise
different technologies and techniques to search for the same signals. Therefore any new

physics discoveries in one experiment can be independently cross-checked by the other.

The remaining two detectors, LHCb (Large Hadron Collider Beauty) and ALICE (A
Large Ion CollidEr) are more specialised detectors designed with a more defined goal
in mind: LHCD is dedicated to b-physics and ALICE is designed to study the physics
of strongly interacting matter at extreme energy densities, in particular quark-gluon

plasma.



Chapter 3. The Large Hadron Collider and ATLAS Experiment 16

- B = iww
= L~

il;l-gc -B
. ’_I,:,_l oint 8 ALICE

~=z Point 2

"
i
e
V
}
'
i

FIGURE 3.2: The location of the four detectors situated on the LHC ring [30]

3.1.1 Luminosity

In any collider experiment, including the LHC, it is important to be able to calculate
the number of expected events, N, which will be produced for a given process. This
number can be calculated by multiplying the production cross section, o for the given

process by the total integrated luminosity with respect to time, L.

N =0L = U/Edt (3.1)

Cross sections for a number of Standard Model processes can be seen in figure 3.3. The

instantaneous luminosity, £, of a pp collider is given by

N2n
r— bfrev'YrF (32)
dre, B*
where N, is the number of particles per bunch, n is the number of bunches per beam,
frev 18 the frequency of revolution around the beam pipe, =, is the relativistic gamma
factor, €, is the normalised transverse beam emittance, §* is the beta function at the

collision point and F' is the geometric luminosity reduction factor due to the crossing
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10" gre——r——rrr ey 10°
10° 410°
. F Ot : I 3] ;
10 F Tevatron LHC ER
10° ‘ P 4 10°
10° k 410° <
: ”
E (e} o
4 b 4
10 3 4 10 g
10° | 4 10° 8
jet
b OuE > vs20) Jiw
—_
o <
c 10" F o ‘ 4100 o
~ E : E o
° 1 - » %z 4 10° Hé
. E “,-e‘(ET > 100 GeV) L0
10" | ; 410" —<
: 3 0
10% | 3 4 10° g
; § >
10° o, ; 410° @
F jet /
0t b TuES s 310
10° ;_oHiggs(MHZIZO GeV) 1100
F 200 GeV”
10° 4 10°
E WJS2009 500 GeV
10-7 11l Lo vl R T 10-7
0.1 1 10
Vs (TeV)

FIGURE 3.3: MSTW 2008 NLO Standard Model process cross sections as a function
of collider energy.[31]

angle at the iteraction point. The product of €, and §* allows the transverse area of
the luminous interaction region at the iteraction point [32] to be calculated. The LHC
is designed to provide an instantaneous luminosity of 103*cm™2s™!, which corresponds

to approximately one billion proton proton collisions per second.

3.2 The ATLAS Detector

The ATLAS detector [33] is one of two general purpose detectors located on the LHC
ring. ATLAS is designed to provide near-hermetic 47 coverage in order to achieve a broad

physics program, from searching for new physics to performing precision measurements.

The sub-detectors which make up the ATLAS detector are arranged in symmetric cylin-
drical barrel layers each with additional end-cap detectors to ensure maximum detector
coverage. Figure 3.4 provides a cutaway view of the ATLAS detector and illustrates the

layout of the various components described within this chapter. A precision tracking
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FIGURE 3.4: A cutaway view of the ATLAS detector highlighting the various compo-
nents [33]

system composed of a silicon pixel detector; a silicon strip detector, the semiconduc-
tor tracker (SCT); and a straw tube tracking detector, the transition radiation tracker
(TRT), surrounds the beam pipe. The tracking system is submerged in a 2 T solenoid
field. Electromagnetic and Hadronic calorimeters are located outside of the magnetic
field. Finally the muon tracking system consists of three large superconducting toroids
surrounded by an array of muon detectors. The following sections will discuss each of

these components in more detail.

3.2.1 Co-ordinate System and Units

Before discussing the various components in more detail it is useful to understand the
co-ordinate system used to describe the detector geometry. The ATLAS detector uses
a right handed coordinate system where the origin is defined as the nominal interaction
point in the centre of the detector. The beam direction defines the z-axis, with the x —y
plane transverse to the beam. Positive z points from the interaction point to the centre
of the LHC ring, positive y points vertically. The azimuthal angle, ¢, and the polar
angle, 0, are defined with respect to these axes where ¢ is measured around the beam
line and 0 is measured from the positive z direction. R is defined as the radial distance

perpendicular to the beam line.

It is useful to also define rapidity, y. Rapidity describes the angle of a particle relative

to the beam axis,
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E+p.
=1 . 3.3
Y " E . (3.3)

Rapidity is hard to measure for highly relativistic particles. Psuedorapidity, 7, is used
instead where changes in y are invariant under longitudinal Lorentz boosts, 7 is defined

as

17 = —Intan(0/2). (3.4)

The angular separation (AR) between two objects is also invariant under longitudinal

Lorentz boosts and is defined as

AR = /(Ag)? + (A)2. (3.5)

where ¢ and n are the opening angles between two particles.

It is often useful to measure a variable transverse to the direction of the beam as the
partons involved in the collision carry an unknown fraction of the proton’s momentum
resulting in a boost in the z-direction. Transverse energy, Er, can for example be defined
as Ep = Esinf, where F is the particle’s energy, and transverse momentum, pp, can be

defined as py = psin @, where p is its momentum.

3.2.2 Magnet System

A strong magnetic field is required in order to make precision measurements of the mo-
mentum of charged particles. ATLAS utilises a system of four superconducting magnets;
a central superconducting solenoid and three outer superconducting toroids. In total the
magnet system has a diameter of 22 m and length of 26 m providing a magnetic field over
a volume of 12,000 m? [33]. Figure 3.5 provides an illustration of the ATLAS magnet

system.

The inner solenoid magnet is aligned with the beam pipe and provides a 2 T field for
the inner detector. It has a length of 5.8 m and outer diameter of 2.56 m. As part of
the design requirements of the magnet system it was crucial that the solenoid magnet
would provide a strong magnetic field whilst minimising its radiative thickness. The
stong magnetic field was required to provide excellent momentum resolution, whilst the
radiative thikness must be as low as possible to avoide particle interactions with the

detector.
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FIGURE 3.5: Geometry of the ATLAS magnet system [34]

The toroidal magnets are divided into three regions. The toroidal barrel, constructed
from eight coils which supply a magnetic field to the central muon detectors and two
toroidal end-caps for the muon detectors situated in the end-cap regions. In total the

toroidal magnets supply a field of 0.5 T and 1 T for the barrel and end-cap respectively.

3.2.3 Inner Detector

The inner detector (ID) lies within a cylindrical envelope of length +3.512 m and radius

1.150 m immersed in the 2 T magnetic field produced by the surrounding solenoid.

The inner detector consists of three independent but complimentary sub-detectors: the
Pixel Detector, SCT and TRT. It is designed to provide momentum measurements of
charged particles, primary and secondary vertex reconstruction within || < 2.5 and
moderate charged particle identification. The layout of the various sub-detectors which

make up the ID can be seen in figure 3.6.

As well as providing precision measurements, the design of the inner detector takes into
account the harsh high-radiation environment within the LHC. The detector components
are designed, unless otherwise stated, to last for ten years without being replaced. The
design of the ID also considers the amount of material particles must traverse as several
interaction effects can effect the accuracy of track measurements. Figure 3.7 shows the

cumulative amount of material in terms of radiation length as a function of |n|.
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The key properties of the main components of the ID are given in table 3.1, each com-

ponent is described in more detail in the following sections.

3.2.3.1 Pixel Detector

The Pixel Detector is the nearest component of the ID to the beam pipe, it also offers
the best resolution. A total of 1744 identical silicon pixel sensors make up the Pixel
Detector and are arranged as three barrel layers; concentric cylinders around the beam

pipe in the barrel region, and two sets of three end-caps located perpendicular to the
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Component Position Resolution (um) | n Coverage
Pixel Detector Inner barrel layer R¢ =10, z = 155 + 2.5
2 outer barrel layers | Rp = 10, z = 155 + 1.7
End-caps R¢ =10, R = 155 1.7-25
Silicon Tracker Barrel layer R¢ = 17, z = 580 +14
End-caps Ry =17, R = 580 1.4-2.5
Transition Radiation Tracker | Barrel straws 170 (per straw) + 0.7
End-cap straws 170 (per straw) 0.7-35

TABLE 3.1: Key properties of the ID components

beam. Each sensor consists of 47232 50 x 400 pm pixels resulting in a total of around

140 million silicon pixels.

In a typical event three of the pixel layers will be crossed by a charged particle; the
interaction produces a series of electron-hole pairs which are separated by an electric
field and read out by electronics giving a ’hit’ on the pixel. The intrinsic measurement
accuracies for each of the barrel layers are 10 um in the R — ¢ plane and 155 pum along
the z-axis [33]; the end-caps also have an intrinsic accuracy of 10 ym in the R — ¢ plane
and 155 um in R [33]. This accuracy combined with a close proximity to the beam
pipe results in the Pixel Detector’s high resolution as outlined in table 3.1 and excellent

vertexing capability.

3.2.3.2 Silicon Tracker (SCT)

The SCT utilises 4088 silicon strip modules in a similar configuration to the Pixel De-
tector to provide additional tracking measurements. The barrel region is located at
255 < R < 549 mm and consists of four concentric cylindrical layers, comprising of 2112
of the 4088 modules. The remaining modules are combined to produce the two end-cap

detectors, each consisting of nine disks.

Although the layout of the modules differs in the barrel and end-cap regions their struc-
ture is similar. Each module consists of four wafers each containing 768 silicon strips,
two on the top and two on the bottom, offset by a stereo angle of 40 mrad. The offset of
the modules reduces noise in the detector and allows for 2D track reconstruction. The
intrinsic measurement accuracies for the barrel layers are 17um in the R — ¢ plane and
580 pwm along the z-axis; the end-caps also have an intrinsic accuracy of 17 um in the

R — ¢ plane and 580 pm in R [33].
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3.2.3.3 Transition Radiation Tracker (TRT)

The TRT is the outermost component of the ID and utilises gas filled straws to provide
further tracking of charged particles through to the calorimeters. The different tech-
nology also allows stand-alone electron identification. The TRT consists of 73 layers of
straws laying parallel to the beam pipe at 554 < R < 1082 mm and covers the region
up to |n| < 1. 224 end-cap layers split evenly between the two sides cover the remaining
range of 1 < || < 2. In total there are 372,000 straws of 4 mm thickness [36]. The
straws contained in the barrel region are 144 cm in length, the end-cap straws are 37

cm in length.

As a charged particle passes through the TRT it leaves a trail of ionisation electrons.
Each straw contains an anode wire running from one end to the other, the ionisation elec-
trons will drift to the anode. This drift time is used to give a hit location of the charged
particle. Furthermore, as ultra-relativistic charged particles pass through boundaries to
different media transition radiation photons are produced, these characteristic photons

can be used to distinguish between pions and electrons.

3.2.4 Calorimeters

ATLAS calorimetry systems are situated outside of the 2 T solenoid field surrounding
the ID. There are two types of calorimeter in the ATLAS detector. The electromagnetic
(EM) calorimeter measures the energy of electromagnetically interacting particles and

the hadronic calorimeter (HCAL) measures the energy of strongly interacting particles.

Each of the calorimeters consist of a barrel region and two end-caps, one on each side, re-
sulting in a complete ¢ coverage and measurements up to |n| < 4.9 [33]. The calorimeter
layout can be seen in figure 3.8. An important consideration in the design is the depth
of the calorimeters in order to maximise containment of electromagnetic and hadronic
jets while minimising punch through of jets into the surrounding muon chambers. The
total thickness of the ATLAS calorimeter system was chosen to ensure a good E:,TC”SS
measurement whilst keeping the total size and hence the cost of the detector to a min-
imum. An accurate reconstruction of missing energy is extremely important for the

physics analysis described within this document.

3.2.4.1 Electromagnetic Calorimeter

Of the two calorimeters the EM calorimeter is situated closest to the ID. It uses lead

absorber plates and liquid argon as an active detector medium to measure the incident
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FIGURE 3.8: Schematic diagram of ATLAS calorimetry [33]

energy of electromagnetic showers produced by electrons and photons. It also helps

distinguish between different particle types by accurately measuring shower shapes.

The EM calorimeter is divided in to a barrel part (|n| < 1.475) and two end-caps
(1.375 < |n| < 3.2). The barrel section is constructed of two identical half barrels with
a 4 mm gap at z = 0, each end-cap is divided into two coaxial wheels: An outer wheel
(1.375 < |n| < 2.5) and an inner wheel (2.5 < |n| < 3.2). Each section of the EM
calorimeter is designed with an accordion geometry, as shown for a barrel module in

figure 3.9. This geometry gives complete ¢ symmetry and helps to avoid any azimuthal

gaps.

3.2.4.2 Hadronic Calorimeter

The hadronic calorimeter consists of barrel and end-cap regions which utilise different
technologies to measure the energy of incident hadronic jets. The barrel region of the
hadronic calorimeter consists of a sampling calorimeter using steel as an absorber and
scintillating tiles as the active material; it surrounds the EM calorimeter barrel and is
sensitive up to |n| = 1.0. Two further barrels extend the 7 coverage of the hadronic
calorimeter barrel region to 0.8 < |n| < 1.7. The scintillating light is read out by
fibres connected to photomultiplier tubes. The hadronic calorimeter end-caps (HEC)
are located behind the EM calorimeter end-caps providing coverage in the range 1.5 <
In| < 3.2. Like the EM calorimeter the HEC utilises liquid argon as the active material,

however, due to the high radiation conditions a copper absorber is used instead of lead.
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3.2.4.3 Forward Calorimeter

The forward calorimeter (FCal) provides extra EM and hadronic calorimetry in the
forward regions of the detector, 3.1 < |n| < 4.9. Each end-cap is split into three
longitudinal sections that again use liquid argon as an active material. The first section
uses copper as an absorber and is optimised to measure EM interactions. The remaining

two sections use tungsten and are optimised for hadronic measurements.

3.2.5 Muon Spectrometer

The Muon Spectrometer (MS) is the outermost component of the ATLAS detector. It
offers precise momentum measurements of the particles escaping the calorimetry system
as their trajectories are bent by the toroidal magnets. As neutrinos will not interact
with the detector at all the only particles measured are muons. Barrel and end-cap
regions consist of several precision tracking and triggering chambers offering sensitivity
in the region |n| < 2.7 and triggering to |n| < 2.4. A schematic diagram of the MS can

be seen in figure 3.10.
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FIGURE 3.10: A schematic diagram of the Muon Spectrometer [33].

The precision tracking chambers in the barrel region use mainly Monitored Drift Tubes
apart from the innermost layer in the region 2.0 < |n| < 2.7 where Cathode Strip
Chambers are used. For triggering purposes Resistive Plate Chambers are used in the

barrel and Thin Gap Chambers used in the end-caps.

3.2.6 Triggers

Running at its design luminosity of 103* cm™2s~! the proton-proton interaction rate
within the ATLAS is approximately 1 GHz, far beyond the maximum 200 Hz recording
rate constrained by technological limitations. A fast on-line trigger system is required

to reduce the initial data to a manageable level [37].

The ATLAS trigger system is split into three levels. A hardware based trigger, L1, and
two software based triggers, L2 and the Event Filter (EF) [33]. Combined, the L2 and
EF are known as the High-Level Trigger (HLT). This system is outlined in figure 3.11.
The criteria required to pass each level of the triggering system can be changed using a

trigger menu depending on the running conditions of the LHC.

The L1 trigger uses information from the calorimeter and muon chambers to make
an on-line trigger decision: It is designed to reduce the data rate to around 75 kHz.

Interesting events which contain high E7 objects such as photons and electrons, jets
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FIGURE 3.11: A block diagram of the ATLAS Trigger System [37].

and harmonically decaying 7 leptons as well as events containing high missing transverse

energy are identified in the detector and passed on to the HLT for further processing.

The HLT consists of two software based triggers. First the L2 trigger uses more refined
event selection using information from the whole detector; the L2 trigger reduces the
data rate to 2 kHz. The EF uses reconstruction algorithms similar to those used in the
full ATLAS reconstruction, here the data rate is reduced to the required 200 Hz. The
complex algorithms used in the EF cause around 4 seconds of read out latency compared
to 40 ms at L2 and 2.5 ps at L1. Following the HLT data is separated into different

streams and recorded for offline analysis.

3.2.7 Monte Carlo and Detector Simulation

Most physics analyses on ATLAS rely on simulated data in order to compare measured
data to predictions when a data-driven estimate of the background is not possible.
Furthermore, simulation of predicted signals is required to test new hypotheses and
achieve a model dependant understanding of results. Raw Monte Carlo (MC) data is

generated using one of many generator packages, [38] provides an overview.

The raw MC data must then pass through ATLAS detector simulation [38] in order to
provide an accurate representation of real data being measured by the detector. Stable

particles with a lifetime, c7, greater than 10 mm and the decay products of other unstable
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particles are passed through either full GEANT [39] or fast [40] detector simulation.
In fast simulation interactions with the ATLAS calorimeter system are parametrised in
order to reduce the amount of CPU time taken to produce MC whilst maintaining an

accurate simulation of the detector.



Chapter 4

Event and Object Reconstruction

In order to provide meaningful physics it is essential to identify and reconstruct indi-
vidual physics objects. This chapter describes the reconstruction of the physics objects
used by the analyses discussed in this thesis. Details given are relevant to both the 8
TeV b-tagging and Higgs analyses described in chapters 5 and 6 respectively. As would
be expected over time prescriptions change with better understanding of the detector
and any discrepancies between the definition of physics objects in the two analyses will

be made apparent.

4.1 Primary Vertex

When reconstructing events it is important to have a clear definition of the primary
vertex. Here the primary vertex is defined as the vertex which, from all reconstructed
vertices, has the largest sum of associated track transverse momentum squared, Zp%

It is also required to have at least three associated tracks with pr > 400 MeV.

4.2 Leptons

The accurate reconstruction of electrons and muons is important to the analysis de-
scribed in chapter 6 in order to reject events which contain either. Electrons are identi-
fied by energy deposits in the electromagnetic calorimeter matched with tracks recorded
by the ID. Muons generally do not deposit much energy in the calorimeters and can be

reconstructed using track segments from the muon chambers and ID.

Leptons can be selected based on a choice of selection criteria; loose, medium or tight.

The criteria for each is increasingly stringent increasing the purity of the samples at the

29
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cost of efficiency. In the analyses described in this thesis loose leptons are used. The

loose lepton requirements are outlined below as they offer the best efficiency.

Loose leptons are required to have a transverse momentum, pr > 7 GeV. Furthermore
in order to ensure the lepton is isolated to reject leptons from semi-leptonic b-decays
further selection criteria must be met; the scalar sum of the py of all tracks, other than
the candidate lepton track, within a cone of radius 0.2 centred on said lepton must be

<10% of the pr of the lepton.

Electrons must have |n| < 2.47 as well as passing the ’very loose likelihood’ requirement
described in [41]. Electron energies are calibrated in the data using reference processes
such as Z — ee and scale factors are applied to ensure that simulations match the

recorded data. More information on this procedure can be found in [41].

Loose muons are identified and categorised based upon selection criteria designed to
maximise acceptance [42]. Combined or segment-tagged muon are reconstructed in both
the muon spectrometer and the ID within |n| < 2.7. Calorimeter muons are identified
if an inner detector track within || < 0.1 can be associated to an energy deposit in
the calorimeter. Calorimeter muons recover acceptance in areas of the detector where
there is limited muon chamber coverage. Standalone muons are reconstructed only in
the muon spectrometer in the range 2.5 < |n| < 2.7 they are used to increase acceptance

in 17 where there is limited ID track coverage.

Muons with an ID track must pass further selection cuts in order to remove muons which
are not associated to the primary interaction. In order to reject interactions caused by
cosmic muons, muon track selection cuts are made on track impact parameters. Tracks
are required to have dg < 0.1 mm and zyp < 10 mm where dj is the transverse impact
parameter and is defined as the distance between the point of closest approach of a
track to the primary vertex in the transverse, R-¢, plane; zg is the longitudinal impact

parameter, it is the corresponding z position at this point, figure 5.3 illustrates this.

Although they are not used in the analyses discussed in this thesis two further categories
of leptons exist, medium and tight. It is useful to introduce them here as they are

discussed at several points throughout this document.

Medium leptons must pass the loose selection as well as a series of other more stringent
criteria. They are required to have Er > 25 GeV. Medium muons must be reconstructed
in both the muon spectrometer and ID within || < 2.5. Calorimeter and stand-alone

muons are rejected.

Finally, tight leptons offer the most pure selection; electrons must pass the 'very tight

likelihood’ criteria [41]. The lepton energy must be 4% or more of the sum of the energy
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FIGURE 4.1: Electron reconstruction efficiency as a function of n and ER* [41].

from calorimeter deposits contained within a cone of radius 0.3 centred around the
candidate lepton, not including the lepton. Track isolation requirements are tightened;
the scalar sum of the pr of all tracks, other than the candidate lepton track, within a
cone of radius 0.2 centred on said lepton must be <4% of the pr of the lepton. Lepton
reconstruction efficiency varies as a function of n and E’Tniss7 figure 4.1 shows this for

the different selection criteria.

4.3 Jets

Proton-proton collisions at the LHC will produce quarks and gluons. Due to the short
range of the strong force and colour confinement, partons, are not directly observable;

instead, a shower of particles known as a jet is observed in the detector.

Jets are identified by energy deposits in calorimeter cells. These deposits are clustered
together using clustering algorithms and jets are then identified by a jet-finding algo-
rithm, of which there are several available. Any definition of a jet must have both
infra-red and collinear safety [43]. Infra-red safety ensures that particles within a jet
which don’t originate from the fragmentation of the hard scattered parton do not change
the number of jets counted. Collinear safety ensures jet reconstruction is not affected
by additional collinear radiation, for example if the transverse energy is split into two
parts. Figure 4.2 (a) and (b) illustrates possible problems caused by algorithms which

do not have infra-red or collinear safety.

In the analyses described in chapters 5 and 6, jets are reconstructed from topological

energy clusters in the calorimeters [44]. A clustering algorithm identifies seed cells which
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FIGURE 4.2: Illustration of problems caused by jet algorithms with (a) no infra-red
and (b) no collinear safety [43].

have significant energy compared to expected background noise. Neighbouring cells are
added to the cluster if they pass a reduced signal to noise threshold. Jets then are

reconstructed using an anti-k; algorithm [45] with a distance parameter, R = 0.4.

In MC, jets are calibrated so that jet energy, on average, corresponds to the energy of
the associated stable particles. Jets are corrected using pr and 1 dependant scale factors
[46, 47]. The calibration takes into account corrections for pileup, vertex location and
the energy and direction of the jets. Prior to the EM+JES calibrations jet energies are
corrected for the contribution of pileup interactions using a jet area based technique.

Further details of this can be found in [48].

Further corrections are applied using a multi-variate approach utilising the jets internal
properties; global sequential calibration (GSC) [46] improves the jet resolution without
changing the average calibration. The GSC uses variables which are correlated to the
calorimeter response to the jet. It sequentially applies corrections to improve the jet
energy resolution and to make the jet response, R, less dependant whether the jet is

more quark- or gluon-like. R is defined as

R =< pheee /plrth > (4.1)
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where ph® and p#" are the reconstructed and truth jet missing transverse momentum.

Applying a selection cut on the fraction of tracks associated with a jet originating from
the primary vertex, the jet vertex fraction, helps to suppress jets originating from pileup
events. Associated tracks are identified within AR < 0.4 around the jet axis. As pileup
jets tend to have a softer spectrum jets with pr < 50 GeV falling within the inner tracker
acceptance, |n| < 2.4, are required to have a jet vertex fraction (JVF) greater than 0.5.
The JVF is a discriminent which measures the probability that a jet originated from a

particular vertex.

Reconstructed jets are used in the analyses if they meet certain selection criteria. Jets
must have pp > 20 GeV and |n| < 4.5. Jets which are used in any dijet calculations
must have |n| < 2.5, as b-jet tagging algorithms can be only applied in this range. For
this reason, jets used in the b-tagging analysis outlined in Chapter 5 must also have

In| < 2.5, here the jets must have pr > 15 GeV.

Jets which are reconstructed from MC are categorised into four flavours; b-, ¢-, 7- or
light-jets. By assessing the hadron/lepton content of a cone of radius 0.4, centred on
the jet axis the jet flavour can be defined. If the jet contains a corresponding hadron or
lepton, with pp > 5 GeV, flavour is assigned to the jet in a hierarchical fashion following
the order listed above. If is not classified as a b-, ¢- or 7-flavour jet then it is considered

to be a light (u,d,s or gluon) jet.

4.3.1 b-Tagging

Jets originating from the decay of a b-quark are identified using b—tagging algorithms
which utilise certain features of b-jets, in particular their long lifetimes. Chapter 5.2

describes various b-tagging algorithms in detail.

The b-tagging efficiency is defined as the fraction of b-jets produced by collisions that
are correctly identified by the b-tagging algorithms. This efficiency is measured in data
and the MC is corrected by applying a pr dependant data/MC efficiency scale factor to
the MC efficiencies [49-52].

4.4 Missing Transverse Energy

In any given event recorded the majority of particles produced in a collision are expected
to leave some signature in the detector. As neutrinos do not interact with the detector,
their presence may be inferred by reconstructing the missing transverse momentum,

miss
ET .
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Case Order Keep p Keep e  Keep jet
AR(jet,e)<0.4 1 - Yes No
AR(jet,,u)<0.4 2 Nep, <3 - Ny, > 4
AR(p,e)<0.2 3 if not Calo pif Calo p -

TABLE 4.1: Prescription for overlap removal showing the order in which ambiguities
are considered and the outcome of overlap removal given certain criteria.

Emiss 53] is defined as the negative vector sum of the transverse momenta associated
with all calibrated physics objects (jets, electrons, muons, tau leptons and photons), as

well as the energy clusters which are not associated with physics objects.

A track based calculation of the missing transverse energy can also be useful. The missing
transverse momentum, pl\F/ﬁss, is defined as the negative vector sum of the transverse
momenta of tracks associated to the primary vertex with pp > 500 MeV and |n| <
2.4. This variable is used in the analysis described in chapter 6 to reject non-collision
backgrounds measured in the calorimet. Non collision backgrounds generally consist of
beam induced backgrounds, cosmic particles and detector noise. Fake missing transverse
energy can be identified if the missing transverse momentum measured does not point
in the same direction. Missing transverse momentum is also used to define the multi-jet

background template used in the analysis, a more detailed explanation of its use can be

found in section 6.

4.5 Removal of Overlapping Objects

During event reconstruction it is important not to double count energy deposits in the
calorimeter. The removal of overlapping objects is carried out following the procedure
outlined in table 4.1 where the assessment order is outlined as well as the overlap criteria
at each stage. Ny refers to the number of tracks matched to the jet with pp > 0.5 GeV.
The requirement on this variable was motivated to maximise the signal acceptance in the
VH analysis, described in chapter 6, whilst avoiding counting muons from semi-leptonic

b- and c- decays as signal muons.



Chapter 5

Estimating 0-Tagging Efficiency

Uncertainties in Monte Carlo

As discussed in section 4 many physics analyses undertaken using ATLAS data require
that jets originating from the decay of b-quarks are correctly identified. Due to the energy
restrictions of the LHC current data driven methods of estimating the b-tagging efficiency
are statistically limited to low jet pr; these data driven calibrations are described in
[49-52]. Previously for jets with pp >140 GeV the derived scale factor from the highest
pr bin was applied and the systematic uncertainty doubled. In this chapter a Monte
Carlo (MC) based study is discussed where b-tagging efficiencies are calculated for a
range of pr and 7 bins. A detailed study of the effect of systematic uncertainties on
the measurements provides an important cross check of the data driven results and
furthermore the superior statistical power of the Monte Carlo allows the study to extend

the pr range of the calibration.

This chapter will outline details of the analysis with a focus on the most up to date
results using tagging algorithms and MC recommended for 2012 analyses. It should be
noted that results are also available for tagging algorithms and MC recommended for
use in 2011 physics analyses; throughout the chapter any differences in approach will
be documented as well as overall comments on results; however, a full breakdown of the

2011 analysis is not shown.

5.1 Samples and Event Selection

The simulated data used in this analysis comprises of ¢f samples generated by POWHEG

interfaced to PYTHIA [54]. The parton showering and hadronisation is generated

35
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according to the Perugia2011C tune [55, 56] which uses the CTEQL1 PDF. In total
the tt sample comprises of ~10 million events. In order to improve statistics at high
jet pr a complimentary set of simulated multi-jet data is used. The multi-jet MC is
generated using PYTHIA 8 and split into eight different samples based on their leading
jet pr. In total this analysis uses ~21 million events taken from the five leading pr
samples. Similarly, the 2011 analysis used simulated top data generated by POWHEG
interfaced to PYTHIA. However the analysis was not extended to higher pr with any

supplementary multijet samples.

Selection cuts are applied to the simulated data in order to ensure the quality of the
jets and tracks. For the MC analysis tracks are required to have p%:"“k > 4 GeV and
be within |n| of 2.5. Each track is required to leave at least 7 silicon hits, comprising of
at least two pixel and at least four SCT hits. There are further requirements placed on

the pr and 7 of jets; p7¢t > 15 GeV within |n| of 2.5.

5.2 b-Tagging Algorithms

There are several b-tagging algorithms which are available for use by analysis groups.
Each algorithm produces an tag weight, w, which allows for a discrimination between

b-, c- and light-flavour jets to be made, w is defined as

— o

for discrimination between b- and c-jets and

Y o2

for discrimination between b- and light-jets, where P,, P. and P, are the probability of
the identified jet being a b, ¢ or light flavoured jet as output by the tagging algorithm.
The purity of b-jets in the sample increases with w, however, after making a selection

based on w the b-jet selection efficiency decreases.

This analysis provides calibration for a selection of b-tagging algorithms, further detail on
these algorithms is provided below. Table 5.1 outlines the algorithms used and for each
the working points which are calibrated in this analysis. Working points are defined by
placing a cut on w, each working point corresponds to a particular integrated b-tagging

efficiency. The different algorithms are described in the following sections.
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FIGURE 5.1: Normalised tag weight distributions for b-jets produced using the various
b-tagging algorithms with MC for the 2011 analysis
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Arbitary Units

Algorithm Working Points (%) | 2011 | 2012
SVO0 50 v -
IP3D + SV1 50, 60, 70 v -
JetFitterCombNN | 57, 60, 70, 80 v -
JetFitterCombNNc | 50, 55 v -
MV1 60, 70, 75, 80 v v
MVlec 50, 57, 60, 70, 85 - v
JetFitterCharm loose, medium - v

TABLE 5.1: An overview of the b-tagging algorithms and their working points which

are used in this analysis
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FIGURE 5.2: Normalised tag weight distributions for b-jets produced using the various
b-tagging algorithms with MC for the 2012 analysis
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5.2.1 SVO

SVO0 is a lifetime based b-tagging algorithm, which explicitly reconstructs a displaced
vertex using the tracks produced in the decay of a long lived b-hadron. As an input
the SVO0 algorithm uses a selection of tracks from the decay which pass quality selection

criteria. Tracks are then assigned to a secondary vertex through AR matching.

The algorithm produces several two track vertices which are displaced from the primary
vertex. The two track vertices must pass selection quality criteria before being used to
reconstruct a secondary vertex; firstly they must be fit with a X2 | 4.5, secondly, to
ensure that the vertex is incompatible with the primary vertex the measured distance
between the primary and secondary vertex measured in three dimensions must have a
X2; 6.25. Figure 5.1(a) shows the tag weight distribution for the SV0 tagging algorithm
as used in this analysis. More information on the SV0 tagging algorithm can be found
in [57].

5.2.2 IP3D + SV1

The SV1 tagging algorithm reconstructs secondary vertices based on a similar principal
to the SVO algorithm, however, a likelihood ratio technique is able to take advantage of
three vertex properties to increase discriminating power: the invariant mass of all tracks
associated to the vertex; the ratio of the sum of the energies tracks in the vertex to the

sum of the energies of all tracks in the jet; and the number of two-track vertices.

The IP3D algorithm takes advantage of the 3D impact parameters of tracks to iden-
tify b-jets. The transverse, dy, is defined as the distance between the point of closest
approach of a track to the primary vertex in the transverse, R — ¢, place; the longi-
tudinal impact parameter, zg, is the z position at this point, figure 5.3 illustrates this.
Impact parameters (IP) are important quantities to consider when selecting b-jets since
B hadrons and mesons are long-lived particles resulting in a non-zero lifetime signed
1P, figure 5.4 shows the behaviour of the dy distribution for different flavour jets. The
IP3D uses these differences and other IP information in a likelihood ratio technique to

identify b-jets.

Due to the similar likelihood methods used by SVO and IP3D they are able to be easily
combined by summing the weights produced by the individual tagging algorithms; figure
5.1(b) shows the combined tag weight distribution. More information on both the SV1
and IP3D algorithms can be found in [58].
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5.2.3 JetFitterCombNN

JetFitterCombNN is a neural network based algorithm which takes inputs from the IP3D
and JetFitter[59] algorithms [58]. JetFitter approximates a flight path for the b- and
c-hadrons by exploiting the topology of decays within the jet. Jets are then selected us-
ing a likelihood method taking similar inputs to the SV1 algorithm. JetFitterCombNNc
works in a similar way, however, the inputs are tuned differently in order to discriminate
better for c-jets. The tag weight distribution for both JetFitterCombNN and JetFitter-
CombNNec can be seen in figure 5.1(c) and 5.1(d) respectively. JetFitterCharm is used in
the 2012 analysis and is an improved version of the JetFitterCombNN algorithm, which
is trained to reject charm. Unlike the other algorithms JetFitterCharm assigns jets into

three categories; loose, medium or fail, as can be seen in figure 5.2(c).

5.2.4 MV1 and MVlc

The MV1 tagging algorithm is a neural-network based algorithm which uses the tag
weights of other b-tagging algorithms; IP3D, SV1 and JetFitterCombNN as inputs.
The tag weight distribution can be seen in figure 5.1(e) and 5.2(a) for 2011 and 2012
respectively. The MV1c algorithm is calibrated for the 2012 analysis and uses a similar
approach to MV1, however the neural-network is trained to reject both charm and light,

the tag weight distribution can be seen in figure 5.2(b).

5.3 Uncertainty in Measurements of )-Tagging Efficiencies

from Monte Carlo

The b-tagging efficiency, €, is defined as the fraction of jets originating from the decay
of a b-quark that are identified (‘tagged’) by the tagging algorithm. When calculating
efficiencies from MC simulation it is important to understand the associated uncertainty.
A range of systematic effects therefore need to be investigated; each effect is discussed
in detail in the following section. Uncertainties are applied to both the 2011 and 2012

analyses unless it is stated otherwise.

In order to calculate the total uncertainty in a given pr or n bin the effect of each
individual uncertainty is measured in a given bin and then added in quadrature. For each
bin, using the tag weight distribution, a nominal efficiency, €,ominal, can be calculated
by calculating the fraction of events which lie below the given tag weight, an associated
statistical error is also calculated. This nominal efficiency can be normalised to 1 in order

to compare to the data driven b-tagging scale factors. Systematic effects are considered
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and applied one by one; for each pr or n bin a new efficiency is calculated using the
same method. Taking the difference between the nominal and shifted efficiency gives an
estimate on the effect of each systematic uncertainty in each bin. The total uncertainty

is then symmetrised around the nominal efficiency.

5.3.1 Impact Parameter Resolution

In Monte Carlo the detector is simulated with perfect alignment, however the real de-
tector is not perfectly aligned; furthermore its alignment can only be known to finite
accuracy. This results in the IP distributions for Monte Carlo being narrower than those
seen in data; an effect which must be accounted for when calculating efficiencies. The
Monte Carlo dy and zy are smeared with respect to the primary vertex so that the IP
distributions match the data. To calculate these smearing factors the IP distributions
are measured in data; a selected track which was used in the primary vertex determi-
nation is removed and the primary vertex is then refitted to produce a new vertex, the
IPs are then measured relative to this new primary vertex [60]. The effect is propagated
through to the efficiency measurement by re-running the b-tagging algorithm and recal-
culating the efficiencies. The IP distributions with their respective smearing can be seen
in figures 5.5(a) and 5.5(b).

5.3.2 Tracks With Shared Hits

Within the ATLAS detector protons collide at extremely high energies resulting in large
track multiplicity and high track densities. This occasionally results in more than one
charged particle depositing energy in a single detector channel. In such an event the
two associated tracks will have a shared hit in the detector. In this analysis a track is
flagged as having shared hits if there are one or more shared hits in the pixel detector
or at least two shared hits in the strips of the SCT. Unlike the pixel detector, the silicon
strips in the SCT provide a precision measurement in the R — ¢ direction and only
a loose constraint orthogonal to this, this means shared hits are more common in the
SCT, as can be seen in figure 5.6; in comparison approximately 98% of tracks in the
pixel detector have no shared hits. In order to ascertain the impact of shared hits in the
detector, 50% of tracks which have been identified as having shared hits are randomly
selected and removed from each event. The b-tagging algorithm is then re-run and the

efficiencies are re-calculated.
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5.3.3 Fake Tracks

Due to pile up, high track multiplicity and high density of hits in the silicon detectors,
fake tracks are sometimes reconstructed in the tracker. The number of fake tracks is
uncertain as several different sources can contribute to the total number of fake tracks
seen in the detector. For example, material interactions or dead sensors can produce
incomplete track information leading to fake tracks. The uncertainty on the number of

fake tracks must be taken into account when calculating the b-tagging efficiencies.

In this analysis a track is identified as fake in the simulation if the probability that it is
a true track is below a certain value. This track probability is taken from the MC and is
calculated using a likelihood track matching method described in [61]. An uncertainty is
estimated by throwing away a random 50% of tracks which are identified as fake before

re-running the b-tagging and obtaining new efficiencies.

5.3.4 Track Multiplicity

The number of tracks measured in a b-jet carries uncertainty from two sources; the
difference between the number of charged particles produced from the B hadron decay
in simulation compared to data and the efficiency of reconstructing a track in the ATLAS
detector. It is possible to take in to account both sources of uncertainty by comparing
data to MC in a tt dominated sample. The top dominated region gives a good estimate
of the associated uncertainties in the track multiplicity distribution because it is pure in
b-jets. The distribution can be seen in figure 5.7. A scale factor is determined by taking

the ratio of data to MC.
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completely dominating in this region.

To calculate the uncertainty on the measurement of b-tagging efficiency events are re-
weighted based on the calculated scale factor. Efficiencies are then re-calculated and

compared to the nominal efficiencies.

5.3.5 Jet Axis Resolution

The decay of B hadrons results in a jet of particles which leave tracks in the inner detector
and deposit energy in the calorimeter. The jet axis is defined by energy measurements
in the calorimeter. Due to the nature of the detector the two measurements may vary
with respect to one an other. The jet axis measurement is important to b-tagging as
the signed IP which are used in many b-tagging algorithms are measured with respect

to the jet axis.

The resolution of the measurement of the jet axis resolution is underestimated in Monte
Carlo simulation, therefore it must be smeared in order to match data. To estimate the
systematic effect of the jet axis resolution on the efficiency measurement in Monte Carlo
the jet ¢ and n distributions are smeared by a Gaussian with width of 0.004 and 0.008
respectively [60]; b-tagging is then re-run and efficiencies are calculated. The effect of

this smearing is shown in figure 5.8.
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5.3.6 Jet Energy Scale and Resolution Uncertainty

Measurement of jet energy carries many different sources of uncertainty. If the jet energy
is different in MC and data then the jet pr spectrum may be biased and cause changes
in the binned efficiency measurements. It is therefore important to understand the effect

that jet energy uncertainties have on b-tagging efficiencies.

Several sources of uncertainty are considered, a detailed discussion of the JES and as-
sociated uncertainties is found in [62]. In general uncertainties are split into four broad
categories; detector description, physics modelling, statistics and modelling, and mixed
detector and modelling uncertainties. In each case the jet energy is shifted up and
down by the given uncertainty, b-tagging is then re-run, efficiencies are calculated and

compared to the nominal efficiency.

5.3.7 b-Fragmentation

The transition of a b-quark into stable particles, b-fragmentation, is a complex pro-
cess and can not be fully described pertubativley, instead it relies on phenomenological
models. In order to estimate the effect of the mismodeling of b-fragmentation on the
efficiency measurements information is taken from the MC to produce a fragmentation
function to be compared to data. In this analysis the fragmentation function, denoted
as x, is defined as the ratio of B hadron energy in the rest frame of the fragmentation
string to the maximum possible energy it could have recoiling against the b-quark at the

other end of the string.

The value of the fragmentation function is not stored on the MC. Instead it must be
estimated from information which is stored. Using 2011 MC the resultant fragmentation
function can be seen in figure 5.9 compared to experimental results from OPAL [63]. The
ratio of the derived fragmentation function to the experimental fragmentation function
is calculated and used to re-weight events on a jet by jet basis. The effect of this re-
weighting can be seen in figure 5.10. Following the re-weight efficiencies are calculated
and compared to their nominal values to give an estimate on the uncertainty. For 2012
the b-fragmentation uncertainty is assessed in separate MC-to-MC scale factors which

deal with theoretical uncertainties.

5.4 Results

Efficiencies are calculated as a function of pr or 7, efficiencies can also be seen normalised

to 1 in order to compare with the scale factors calculated using data driven methods. The
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FIGURE 5.11: b-Tagging efficiency (left) and scale factor (right) vs pr (top) and vs 7

(bottom) for the MV1 tagger at a working point giving 70% efficiency. The coloured

bands show the total, symmetrised, systematic uncertainty on each point. The b-tagging

scale factors are also shown, as a function of pr and 7. Scale factors show the efficiency
normalised to one.

contribution from each systematic uncertainty is added in quadrature and symmetrised.
Results are shown for the MV1 tagger at a working point with 70% efficiency using the
uncertainties described above for the 2012 analysis, details of the further working points
for the MV1c algorithm and the other b-tagging algorithms as outlined in table 5.1 can
be found in appendix A.

5.4.1 b-Tagging Efficiency

b-tagging efficiency measures the efficiency with which a jet originating from a true
b-quark is is tagged by a b-tagging algorithm. Figure 5.11 shows efficiency and scale
factor vs pr and 7. Scale factors and their associated uncertainties as derived from
a data driven analysis [67] are also shown as a function of pr, the scale factors are
consistent with the results from the MC analysis. A more detailed breakdown of the

contribution of each uncertainty in each bin can be seen in table 5.2.
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5.4.2 c¢-Tagging Efficiency

The tagging algorithms can also be used to identify a c-jet, the c-tag efficiency is calcu-
lated in the same way but for the probability of identifying a true c-jet, results can be

seen in table 5.12. A breakdown on the various uncertainties can be seen in tables 5.3.

5.4.3 Mistag Efficiency

The mistag efficiency is defined as the fraction of jets originating from light-flavour decays
which are mistagged as b-jets by the b-tagging algorithm. The mistag efficiency as a
function of pr and 7 can be seen in figure 5.13 A breakdown on the various uncertainties

can be seen in table 5.4.

5.4.4 r7-Tagging Efficiency

Finally the tagging algorithms are able to identify 7-flavour jets, figure 5.14 shows 7-
tagging efficiency as a function of pr and 7. A breakdown on the various uncertainties

can be seen in table 5.5.
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5.4.5 Conclusion

MC studies on the flavour tagging efficiency of various tagging algorithms are performed
using 2011 and 2012 MC as a function of pp and n have been carried out. A wide
range of systematic uncertainties are studied providing an estimate of the uncertainty.
The MC studies provide a cross-check of data driven results and due to the superior

statistical power provide a better estimate of the total systematic uncertainty at high

pr-

The total uncertainty on measuring b-tagging efficiency in 2012 MC ranges from 1.3%
to 20.6% in the pp range 20-1200 GeV. Jet axis-resolution uncertainties in 7 and ¢
are dominant in the lowest pp bins, where as the uncertainty due to shared hits in the
detector dominate at pr > 200 GeV, the total uncertainty in the intermediate bins takes
contributions from a wide range of systematic effects. Results for c-jets show a similar

pattern with the total uncertainty ranging from 6.2% to 39.0%.

Uncertainties in mistag rate are generally larger ranging from 19.1% to 59.1% with
fake tracks within the detector and IP effects contributing as the dominant systematic
uncertainties. Due to there being fewer statistics in the MC analysis when tagging 7-jets
it is only possible to estimate systematic effects up to 800; here the total uncertainties
range from 4.7% to 43.1% with large contributions from shared hits and fake tracks

within the detector.

MC extrapolation is currently provided for 2012 ATLAS physics analyses for jets up
to 1.2 TeV for b-, - and l-jets, and to 800 GeV for 7 flavoured jets; above this range
statistical uncertainties become dominant. Without MC extrapolation many analyses
which require high pr jets would not be possible, one such analysis searches for higgs pair
production where the higgs decay to four b-jets [68]. Figure 5.15 shows the individual
relative impact on the expected limit from each of the systematic sources considered in
the analysis; b-tagging is dominant across the whole range; however, it is much larger at
high ppr. Without the MC extrapolation this would be the case across much more of the
range. In the future the MC analysis could be combined with the data-driven analyses

to reduce the systematic uncertainty on the measured b-tagging scale factors.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 0.9 0.2 0.6 0.1 0.2 0.2 0.1 0.2 0.5 0.5 0.5 0.6 4.7 14.4
Plie Up -0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.3 0.1 0.1 -0.3 0.9 3.8
Track Multiplicity 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.4 0.2 0.3 0.2 -0.7 0.8
Smear 7 -3.3 -1.5 -0.8 -0.4 -0.5 -0.8 -0.7 -1.3 -1.4 0.4 1.1 3.4 2.6 -13.9
Smear ¢ -4.1 -2.1 -1.4 -0.9 -0.7 -1.0 -1.2 -2.0 -2.7 -0.3 1.3 1.8 7.6 21.3
Shared Hits -0.8 -0.1 0.2 0.6 0.8 1.0 1.4 1.4 2.9 4.6 8.7 14.6 17.5 -47.7
Smear dy -1.7 -0.9 -0.4 -0.2 -0.3 -0.3 -0.5 -0.9 -1.1 -0.2 0.4 -0.2 -4.0 5.9
Smear zg -1.5 -0.7 -0.4 -0.2 -0.3 -0.2 -0.3 -0.6 -0.8 -0.0 0.1 2.4 -1.2 9.6
Fake Rate -1.3 -0.6 -0.1 0.1 0.2 -0.0 0.0 -0.3 -0.3 1.3 2.2 5.3 3.6 73.8
Total Syst 6.1 2.9 1.8 1.3 1.3 1.7 2.0 3.0 4.5 4.9 9.2 16.2 20.6 93.4
Stat Err 0.9 0.6 0.6 0.5 0.4 0.5 0.5 0.7 0.8 0.9 0.5 1.2 16.2 74.5
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.1 0.1 0.2 0.2

Plie Up 0.2 0.2 0.1 0.1

Track Multiplicity 0.3 0.3 0.3 0.5

Smear n -1.3 -1.3 -1.6 -1.6

Smear ¢ -1.8 -2.0 -2.2 -2.4

Shared Hits 0.6 0.8 1.4 1.6

Smear dj -0.7 -0.9 -1.0 -0.9

Smear z -0.4 -0.7 -1.2 -0.8

Fake Rate -0.5 -0.4 -0.2 0.0

Total Syst 2.5 2.8 3.5 3.6

Stat Err 0.3 0.4 0.5 0.8
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TABLE 5.2: A breakdown of the contribution of the systematic uncertainties for each pr (top) and n (bottom) bin using the MV1 tagger at 70%
efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 4.0 4.7 4.5 6.2 3.6 3.1 1.7 2.3 0.5 1.0 1.0 1.8 21.4 6.3
Plie Up 1.1 0.1 -0.0 0.3 -0.5 1.1 -0.6 -0.2 0.5 0.5 0.4 0.1 -0.2 -3.4
Track Multiplicity 0.7 0.6 0.1 0.3 0.2 0.5 -0.2 -0.0 0.7 0.5 0.9 0.9 1.7 -0.1
Smear 7 -4.3 -1.0 -1.5 -1.9 0.7 -0.3 -3.1 -0.1 0.7 0.0 8.0 3.0 5.6 -7.6
Smear ¢ -6.5 -1.4 -0.4 -2.5 -1.1 -2.3 -8.4 -0.3 0.9 1.5 8.4 3.0 -3.5 9.4
Shared Hits -1.0 0.0 1.5 2.1 3.3 3.2 3.7 6.2 6.6 8.1 14.1 15.4 23.5 -80.2
Smear dy -3.6 -1.3 -4.1 -2.7 2.7 -2.7 -7.6 -3.4 -3.5 -3.8 2.1 -4.5 7.8 -72.0
Smear zg -4.4 -3.1 0.2 -4.3 -2.2 -3.6 -3.3 -1.0 -3.6 -2.5 0.1 -0.7 4.5 -10.7
Fake Rate -0.7 1.4 -0.9 0.7 0.5 1.0 -2.1 1.0 3.1 3.6 10.1 9.4 19.6 12.8
Total Syst 10.6 6.2 6.5 8.9 6.2 6.9 13.0 7.6 9.0 10.2 21.1 19.2 39.0 109.9
Stat Err 3.4 3.4 3.7 4.2 3.7 4.1 4.2 4.0 2.7 2.5 2.3 3.3 18.9 65.6
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.2 0.2 0.8 0.3

Plie Up 0.4 0.5 -0.1 0.3

Track Multiplicity 0.3 0.7 0.3 0.4

Smear 7 -2.0 -1.5 2.0 -1.3

Smear ¢ -1.7 -2.5 0.6 -5.8

Shared Hits 3.2 3.8 5.5 4.0

Smear dy -4.4 -4.8 -0.6 -1.4

Smear z -1.4 -2.9 -4.1 -6.0

Fake Rate -0.2 0.8 3.8 2.6

Total Syst 6.3 7.4 8.2 9.8

Stat Err 1.7 1.9 2.5 3.7

TABLE 5.3: A breakdown of the contribution of the systematic uncertainties for each pr (top) and n (bottom) bin using the MV1 tagger at 70%
efficiency for c-jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 3.7 1.8 8.7 10.1 4.4 5.5 6.2 6.4 2.6 2.5 2.0 2.1 23.1 34.0
Plie Up 1.1 0.1 2.4 2.0 0.3 0.0 3.0 -0.2 0.3 1.6 -0.1 0.8 -0.5 2.6
Track Multiplicity 0.8 1.6 1.0 1.8 0.9 0.4 1.7 1.4 0.9 0.7 0.5 0.5 -0.2 3.7
Smear 7 -2.2 2.0 -4.4 -8.0 7.1 2.2 8.6 0.2 1.0 0.1 -4.5 3.5 3.8 9.2
Smear ¢ -0.1 -2.6 -1.9 1.0 2.9 9.9 7.8 -2.1 1.0 2.7 -7.6 1.1 8.7 0.9
Shared Hits 1.1 0.2 -2.1 2.0 5.8 2.7 4.5 8.5 9.3 10.7 15.8 23.9 36.0 73.3
Smear dy -5.3 -4.2  -104  -9.0 =75 -17.2 -9.2 -10.7 -10.7 -13.0 -15.6 =77 -6.9 -17.7
Smear zg -8.2  -14.7 -175 -254 -9.2 -155 -13.9 -8.7 -16.4 -10.9 -10.2 -5.3 13.8 -79.1
Fake Rate 30.8 16.1 11.7 12.6 10.5 10.9 15.2 8.9 16.1 14.5 19.1 27.0 36.4 18.6
Total Syst 32.7 22.6 25.7 32.6 19.1 28.3 26.8 19.7 27.2 25.1 32.3 37.5 59.1 116.5
Stat Err 4.7 6.4 7.6 9.5 8.1 9.8 8.9 8.6 5.1 4.5 2.9 4.1 22.4 47.0
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.8 0.6 1.4 1.4

Plie Up 0.5 1.0 0.4 1.8

Track Multiplicity 1.3 0.7 1.3 1.3

Smear 7 0.4 0.0 -3.1 2.9

Smear ¢ -2.6 -2.6 -0.6 5.7

Shared Hits 2.4 3.8 4.6 7.3

Smear dy -14.1 -8.3 -8.0 -4.2

Smear z -2.3 -11.9 -28.2 -16.3

Fake Rate 10.7 18.1 22.3 29.4

Total Syst 18.3 23.7 37.3 35.3

Stat Err 3.5 3.9 4.2 4.0

TABLE 5.4: A breakdown of the contribution of the systematic uncertainties for each pr (top) and n (bottom) bin using the MV1 tagger at 70%
efficiency for mistagged jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800
Jet Systs 1.5 0.6 2.9 3.2 1.1 0.8 0.8 1.5 1.3 4.2 1.4 3.3
Plie Up -0.0 -0.3 -0.5 -0.8 -1.1 -1.2 -1.1 -1.6 -1.6 -2.1 -2.4 -12.2
Track Multiplicity  -0.3 -0.7 -1.0 -1.5 -1.8 -2.2 -2.6 -3.3 -3.5 -5.4 -4.2 -2.9
Smear 7 0.3 1.1 0.5 0.7 1.2 1.9 3.2 0.9 1.0 -5.4 -0.8 2.2
Smear ¢ 0.4 0.8 -0.2 0.0 0.5 0.2 1.6 -0.6 -1.9 -11.7 -10.5 3.4
Shared Hits 1.3 2.3 2.2 3.3 3.8 4.9 7.6 7.9 9.7 12.5 13.6 -19.1
Smear dy 0.4 0.7 0.2 -0.2 -0.4 -0.8 -0.5 -1.6 -1.7 -6.1 1.1 24.9
Smear zg -0.0 0.4 -0.3 -0.9 -0.0 -0.6 -0.0 -14 -0.6 -4.5 2.0 6.5
Fake Rate 4.4 4.1 2.8 3.3 2.8 2.8 4.0 2.2 1.4 -5.8 2.2 25.4
Total Syst 4.9 5.1 4.7 6.0 5.5 6.6 9.8 9.4 11.0 21.6 18.2 43.1
Stat Err 0.7 0.6 0.7 0.8 0.7 0.9 1.1 1.5 2.9 8.6 14.4 85.4
7
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.2 0.2 0.2 0.3

Plie Up -0.8 -0.5 -04 -0.6

Track Multiplicity -1.6 -1.1 -0.9 -1.5

Smear 7 0.7 1.0 1.5 1.3

Smear ¢ 0.0 0.3 0.8 0.4

Shared Hits 3.0 3.1 4.3 3.5

Smear dy 0.4 -0.5 -0.1 -0.4

Smear zg 1.2 -1.1 -1.3 -14

Fake Rate 2.4 3.0 5.3 6.5

Total Syst 4.5 4.7 7.2 7.8

Stat Err 0.4 0.5 0.6 0.9

efficiency for 7-jets. Values show the percentage error for each point.

TABLE 5.5: A breakdown of the contribution of the systematic uncertainties for each pr (top) and n (bottom) bin using the MV1 tagger at 70%
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Chapter 6

ZH — vvbb Physics Analysis

6.1 Introduction

The search for the Standard Model Higgs boson is a key goal of the LHC program. Since
the LHC switched on many analyses have searched for and ruled out a wide area of phase
space. In 2012, both ATLAS [23] and CMS [24] published results showing evidence for a
new narrow resonance decaying in to a pair of photons, a pair of Z bosons or a pair of W
bosons. This resonance was thought to be the Higgs boson and further study confirmed
its discovery. The mass of the Higgs boson was measured to be around 125 GeV [69].
The discovery of the Higgs boson has already been discussed in more detail in section

2.3.

Observing the decay of this particle to a pair of b-quarks would offer the first observation
of direct coupling of the Higgs to quarks. This observation is extremely important as
at the measured mass of 125 GeV the Higgs boson is predicted to predominately decay
to a pair of b-quarks with a branching ratio of &~ 58% [70]. This is illustrated in figure
2.4. Despite having such a high branching ratio a direct analysis of H — bb is made
impossible by the high multijet background. Instead associated production mechanisms
are utilised where the Higgs is produced in association with a Z or W boson (referred
to collectively as a V' boson). Feynman diagrams showing these processes can be seen

in figure 6.1.

The leptonic decay of the associated vector boson helps distinguish the Higgs decay from
the large multijet background. This chapter outlines one such decay channel where a
Higgs boson is produced in association with a Z boson, which decays into two neutri-
nos; hereafter referred to as the O-lepton channel. Similarities between the other 1- and
2-lepton decay channels (illustrated in figure 6.1) make it preferable to perform com-

plimentary analyses which can be analysed and interpreted collectively. Although this

o8
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FIGURE 6.1: Feynman diagrams showing Higgs associated production mechanisms
with a vector boson decaying to b-quarks (a) ZH — wvvbb, (b) WH — lvbb and (c)
ZH — 1lbb

chapter will primarily discuss the O-lepton analysis, results will also be shown for the

overall VH associated production channel.

The analysis presented in this chapter is the culmination of over three years work. Only
the state of the art analysis is discussed. Details of intermediate analyses worked on
by the author can be found in [71-73]. The analysis presented is based on work done
towards the published VH analysis [74]. It is, however, independent in the fact that
all inputs and results have been produced by the author, where this is not the case it

will be made clear. Some of the selection criteria in the presented analysis have been
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updated to improve on the published result. Section 7.1 outlines any differences between

the presented and published analyses and compares the results.

The remaining sections of this chapter discuss details of the analysis. First section 6.2
introduces the data and MC samples used. Section 6.3 discusses the selection of events
which are used within the analysis to train and evaluate the multivariate analysis (MVA)
described in 6.5. Section 6.6 outlines the various systematic uncertainties associated with
the analysis. Finally section 6.7 introduces the statistical method used to extract a result

and set limits on the search.

6.2 Data and Monte Carlo Samples

The data used in this analysis is the full 2012 ATLAS proton-proton data collected at
Vs = 8, TeV corresponding to a total integrated luminosity of 20.3 fb~!. Data from
ATLAS is split into different periods, A-M, based on run number. As the Z boson in the
0-lepton analysis decays to two neutrinos, data is selected by E%1iSS triggers as outlined
in table 6.1. More details of the trigger choice and implementation can be found in

section 6.3.2.

Trigger Object | Data Period | Run Number Trigger Name Luminosity (fb™T)
B <160 A -Bb5 200804 - 203680 | EF xe80T _tclew_loose 1.919
GeV B6-L 203719 - 215643 | EF xe80_tclew_loose 18.132
E{pniss > 160 A-B5 200804 - 203680 EF xe80_tclew 2.126
GeV B6 - L 203719 - 215643 | EF xe80_tclew_loose 18.132

TABLE 6.1: Outline of the different EVsS triggers used in the analysis and their asso-
ciated data luminosities.

Simulated signal and background MC are all generated at at same centre of mass energy
as the data, \/s = 8 TeV.

A signal sample is produced for each of the ZH production mechanisms; ¢q¢ — ZH
and gg — ZH. Although the quark anti-quark annihilation process dominates ZH
production, gluon-gluon fusion contributes approximately 5%. This approximation is,
however, a function of py due to top quark loop processes [75], the uncertainty increases
with pp. The ¢ signal sample is generated using PYTHIAS [76] and the CTEQG6L1
[77] parton distribution functions (PDFs) along with the AU2 [78, 79] tune for the
parton shower, hadronisation and multiple parton interactions. The gg signal sample is
generated using the POWHEG generator [80-82] interfaced to PYTHIAS with the CT10
PDFs [83], again using the AU2 tune.
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The main backgrounds to the analysis are W/Z+ jets and ¢t production with additional
background contributions from single-top-quark, multijet and diboson (WW, WZ and
Z7) processes. MC is used in this analysis for all backgrounds apart from the multijet
background which is derived using a data driven method, details of which can be found
in section 6.4. The MC is corrected and normalised in control regions. Table 6.2 lists

the various background MC used in the analysis along with their associated generators.

In order to increase the number of events generated and therefore minimise the statistical

uncertainty fast simulation is used for the majority of background samples.

Process \ Generator
Signal
qq — ZH — vvbb/1lbb PYTHIAS
g9 — ZH — vubb/llbb | POWHEG+PYTHIAS
q§ — WH — lvbb PYTHIAS
Vector boson + jets
W — v SHERPA 1.4.1
Z[yx — 1l SHERPA 1.4.1
Z — vv SHERPA 1.4.1
Top-quark
tt | PowHEG+PYTHIA
Single Top
t-channel ACERMC+PYTHIA
s-channel PowHEG+PYTHIA
Wt PowHEc+PYTHIA
Diboson
wWw PowHEG+PYTHIAS
W2z PowHEG+PYTHIAS
Z7 PowHEG+PYTHIAS

TABLE 6.2: A summary of the backgrounds used in the analysis shown with their
associated generators.

Each event recorded within the ATLAS detector is subject to so called ‘pile-up’ events
occurring due to soft interactions between protons during a bunch crossing. These
interactions result in extra particles measured by the detector which can affect the
performance of the detector. In order to account for pile-up events, from minimum-
bias interactions are simulated and overlaid on the signal and background MC events.
The average number of interactions per bunch crossing, < p >, is dependant on the
luminosity of the beam. As run conditions may change throughout data taking the
MC must be appropriately re-weighted to match the measured < p > in a given data

collecting period.
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6.3 Event Selection

The 0-lepton analysis requires a Higgs boson which decays into a pair of b-quarks, ob-
served in the detector as jets, with an associated Z boson that decays into a pair of
neutrinos, the presence of which is inferred by missing transverse energy in an event.
This section will describe the process of selecting relevant data and discuss how the
analysis sensitivity is maximised by separating the data into several different categories.

The physics objects used are those defined in section 4.

6.3.1 Preselection

It is essential that the data and MC simulations used in the analysis are accurate and
reliable. Before any selection cuts are made event cleaning is undertaken in order to
account for any problems with the data. These cleaning cuts are standard throughout

ATLAS and account for data quality and known problems in reconstruction.

Data is required to pass a good run list (GRL) which identifies runs where part of the
detector was not fully operational. The GRL is produced by the ATLAS collaboration
during data taking. Further cleaning cuts remove events which have been identified

utilising parts of the detector with known defects, such as hot tile cells in the calorimeter.

6.3.2 Trigger

In order to maximise the acceptance of data into the analysis three E}niss triggers are
utilised. Triggers are selected depending on the run conditions and event E%liss, as

outlined in table 6.1.

To maintain accuracy throughout the analysis the triggers should be studied and well
understood. This is of particular importance in the region where the trigger is not
100% efficient; the turn-on. Studies were undertaken by the analysis group in order to
understand this turn-on region. Detailed information on this study can be found within

the internal note [84]. This section will describe some of the key points and observations.

The Ejriliss trigger efficiency, €, as a function of the measured ’offline’ E:,riliss can be seen
in figure 6.2 [84] where it is refered to as EF MissingET. Offline refers to the fact that
the measurement is taken by the offline, L1, trigger. After the trigger is applied there
is a disagreement between data and MC in the turn on curve. The dependence can
be measured and corrected for with scale factors by studying an orthogonal dataset

collected using an independent trigger. W — pv+ jets and Z — ppu+ jets samples are
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FIGURE 6.2: Comparison of data and MC EX** distributions (a) before and (b) after

triggers have been applied [84]. Prior to the triggers data is well described by the MC;

dependence between the trigger efficiency and the measured EX' causes mismodelling
before corrections are applied.

acquired using a muon trigger. To mimic Z — vv events muon spectrometer information
is not included in the E;‘Fiss calculation. This data can then be used to calculate the ¢

at each level using the general equation

n passed trigger

€ =

. 6.1
n passed independent trigger (6.1)
The efficiency for each level of the trigger is calculated. The product of the calculated
efficiencies gives the total efficiency of the trigger, erota- The efficiencies calculated
using equation 6.1 are plotted as a function of Ejnliss and fitted to parametrise the turn-
on curve. An example of this can be seen in figure 6.3 for the EF _xe80_tclcw loose

trigger [84].

Scale factors can be calculated as a function of E{Fiss by taking the ratio of the fitted

efficiency curves for data and MC
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FIGURE 6.3: EF _ze80_tclcw_loose trigger efficiency calculated using W — uv events
[84].

_ Eff(MET)pata

sf=% FF(MET)yc

(6.2)

Figure 6.4 shows a comparison of scale factors calculated using W — pv and Z — up
events [84]. It is shown that the scale factors agree within 3%, this difference is used as

a systematic uncertainty.

6.3.3 Lepton Selection

Leptons in the analysis are labelled as loose, medium or tight as outlined in section 4.2.

In the ZH — vwbb analysis only events which contain no loose leptons are kept.

6.3.3.1 Lepton Inefficiency Study

It is possible to study the lepton efficiency in O-lepton events using events taken from the
orthogonal 1-lepton analysis. Using the method outlined below systematic uncertainties

are calculated for various SM backgrounds.

This study was undertaken using the 2013 analysis baseline selection [71]. Two orthog-

onal samples, chosen before any kinematic selection, are used in the study:

e S0: O-lepton analysis events
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FIGURE 6.4: Comparison of EF _ze80_tclcw_loose scale factors as a function of Eiss
calculated using W — pv and Z — pp events [84].

e S1: 1-lepton analysis events, including those which are triggered by the E%‘iss

triggers. Events must contain at least one reconstructed electron or muon

Both sample 0 and sample 1 must then pass the 0-lepton kinematic selection criteria.

Furthermore all events are required to have EX5(nomuon) > 120 GeV.
Due to the selection the total number of events,

N =ngp + ng1, (6.3)
is constant under a change in lepton efficiency of S1, ¢;. Here ngy and ng; are the

number of events in SO and S1 respectively. A loss of events in SO will result in an

increase of events in S1.

N =nlgg +n'g; = nlso + (1 + €1)ns1, (6.4)

where nly, and ny; represent the number of events in SO and S1 after a change in €.

From equation 6.4 it can be shown that,

!
€1ng1 = ng; —ng1 = dngi, (6.5)
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where dng; is the change in the number of events in S1. By equating 6.3 and 6.4

e1ng1 = —(nsg — nso), (6.6)

or,

€1nsg1 = —dnso. (6.7)
The fraction change in the number of events in SO is therefore,

dngso _ _61@ (6.8)
150 150

This gives the lepton inefficiency in 0-lepton events, ¢y. The terms on the right can be
obtained from the MC, ngg and ng; are the total integrated number of events in the
relevant sample and €; can be calculated using muon and electron efficiency systematics

from the 1-lepton analysis:

Slup - Sldown

6.9
Slup + Sldown’ ( )

€ =
where S1,;, and 5144,y are the total number of events in sample B after applying muon
or electron efficiency systematic shifts taken from the 1-lepton analysis [71], see section

6.6 for more details.

The study was undertaken separately for 2-jet and 3-jet events in the relevant analysis
backgrounds; tt, single top, W, WW and W Z. Results can be seen in a range of p¥ bins
for electrons and muons, here p¥ is the transverse momentum of the vector boson, in
table 6.3 and 6.4 respectively. The uncertainties on lepton inefficiency vary from 0.1% to

2.8%, in general the inefficiency is smaller for muons than electrons and increases with

pY..

These scale factors are then applied as normalisation uncertainties to the relevant back-

ground processes.

6.3.4 Jet Selection

Selected jets are used to define the Higgs boson decay. Jets are selected following the

criteria given in section 4.3.
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Veto Efficiency (%)

Background | B (GeV) 2 et 3ot
120-160 0.92 0.75

tt 160-200 1.47 1.30
200+ 2.67 2.06

120-160 0.57 0.50

Single Top 160-200 1.32 1.03
200+ 2.74 2.07

120-160 0.59 0.46

W 160-200 1.26 1.06
200+ 2.80 1.91

120-160 0.42 0.23

wWw 160-200 1.00 0.58
200+ 1.80 0.98

120-160 0.10 0.11

W2z 160-200 0.20 0.20
200+ 0.29 0.27

TABLE 6.3: Electron efficiency in the 0-lepton events.

Veto Efficiency (%)

Background | E}'® (GeV) 2 jet 3 et
120-160 0.73 0.68

tt 160-200 0.83 0.71
200+ 1.02 0.81

120-160 0.55 0.48

Single Top |  160-200 0.78 0.66
200+ 1.20 0.90

120-160 0.58 0.48

w 160-200 0.80 0.65
200+ 1.19 0.80

120-160 0.46 0.27

ww 160-200 0.62 0.34
200+ 0.75 0.39

120-160 0.11 0.11

wWZzZ 160-200 0.13 0.12
200+ 0.12 0.12

TABLE 6.4: Muon efficiency in the O-lepton events.

Two types of jets are used in the analysis. Signal jets must have py > 20 GeV and || <

2.5. Forward jets must have pr > 30 GeV and be within 2.5 < |n| < 4.5.

In order to increase the sensitivity of the analysis several jet categories are utilised,

separated by the number of signal, forward and b-tagged jets. Events containing two

b-tagged jets are then further categorised.
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FIGURE 6.5: An illustration of the different b-tagging categories used in the analysis
as a function of b-tagging efficiency.

Events are first split into jet categories. Events which contain exactly two signal jets
and no forward jets are labelled as ‘2-jet” events, while events which have a total of three
signal and/or forward jets are labelled as ‘3-jet’ events. One of the jets, which is to be

used in the dijet mass calculation, from each event must have pr > 45 GeV.

Both 2- and 3-jet events are then further divided into one of five b-tagging categories,
‘T, ‘MM, ‘LL°, ‘1T or ‘0T’. The categories are defined by the number of b-tagged
jets within the event. The MVlc tagging algorithm (see section 5.2.4) is used at several
operating points to identify and label b-jets as outlined in table 6.6 and illustrated by
figure 6.5. Events with two b-tagged jets are categorised as tight-tight (TT), medium-
medium (MM) or loose-loose (LL). A b-tagged jet is exclusive to one category, it is
placed in the group with most stringent criteria that it passes. Events with only one
inclusive b-jet, passing the loose, medium or tight criteria, are labelled as '1T’. Events
with no loose b-jets are labelled as ‘0T’. Furthermore 3-jet events where all three jets
pass the loose b-tagging criteria are rejected. An overview of the jet categories is given
in table 6.5.
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Signal Jets | Forward Jets | b-tag Category
TT
MM
2 0 LL
1T
0T
TT
MM
Total = 3 LL
1T
0T

TABLE 6.5: An overview of the different jet categories used within the analysis.

Category b-jet Efficiency (%) | c-jet RF | l-jet RF | 7-jet RF

loose (L) 79.85 3.04 29.12 6.40
medium (M) 70.00 534 | 13576 | 14.90

tight (T) 49.99 26.22 | 1388.28 | 120.33

TABLE 6.6: An overview of the different b-jet categories used within the analysis

selected by the MVlc b-tagging algorithm. Associated b-jet efficiency and ¢, [ and

7 rejection factors, RF, (1/efficiency) are taken from di-leptonic ¢ events with a p;
threshold of 20 GeV, given in [84].

6.3.4.1 3-Jet Study

When defining the 3-jet category studies were undertaken to determine the optimal
selection criteria. This section outlines one such study performed by the author. In the
published analyses [71, 72, 74] events where the two highest pr jets, in a 3-jet event, did
not pass the inclusive b-tagging criteria were rejected. A simple MC study is presented
investigating the effect of keeping all 3-jet events where any two jets pass the inclusive
b-tagging requirements. In this study my, distributions, reconstructed using the two
b-tagged jets, are compared by calculating the significance of signal over background
events. The calculated significance takes into account the shape of the distribution by

calculating the bin by bin significance and adding in quadrature:

2
ns.
significance = Z — Signal (6.10)

bins NBackground
Events were selected inclusive of b-tagging category based on the selection criteria out-
lined in previous sections. Figure 6.6 shows the my, distribution where the two b-tagged

jets are also required to be the two leading pr jets, here on known as sample A. Figure
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FIGURE 6.6: my, distribution when the two b-tagged jets are also required to be the
two leading pr jets
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FIGURE 6.7: my, distribution when all 3-jet events containing exactly 2 b-tagged jets
are kept.

6.7 shows the my, distribution where all 3-jet events containing exactly 2 b-tagged jets

are kept, sample B.

Table 6.7 summarises the amount of background and signal MC present in each sample.

Although sample A rejects more background events, it does so at the cost of signal

events. It is also apparent comparing figure 6.6 and 6.7 that the shape of the total

background is different. In sample A contributions from background processes result in

a peak near to the simulated Higgs mass of 125 GeV, where as in sample B the peak
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Emis (GeV) anal Evgnts Ba;kground E])?:/ents SiAgniﬁcarge
90 - 120 2.3 3.3 879.7 2154.7 0.087 | 0.109
120 - 160 3.6 5.1 785.1 2067.5 0.124 | 0.159
160 - 200 2.0 2.8 214.0 631.6 0.130 | 0.161

200+ 2.8 4.0 162.4 455.39 0.227 | 0.282
Inclusive 10.8 15.3 2040.1 5125.3 0.249 | 0.314

TABLE 6.7: Comparison of signal and background event yields and significance for
3-jet jet events. Sample A rejects events where the two b-tagged jets are not also the
leading pr jets. Sample B is inclusive of any 3-jet events with exactly two b-tagged jets.

is shifted to a lower value of my,. This shift improves the overall significance due to
increased contributions in the signal region. Table 6.7 also compares the significance of
the two samples for a range of E?iss. The inclusive ErTniSS shows an increase in significance
of ~ 26% between sample A and B, similar improvements can be seen in all of the E%liss
bins. It was concluded that 3-jet events should contain exactly two jets which pass the

inclusive b-tagging criteria independent of their rank in pp.

6.3.4.2 Truth Tagging

The MVlc b-tagging algorithm provides powerful discrimination against non-b-jets. It
is therefore difficult to produce enough MC to provide a large enough sample of events
with the requirement of two reconstructed b-tagged jets when there is no true b-jet.

Truth tagging is used to increase the MC statistics in the W/Z+ jets backgrounds.

The method uses distributions of the tagging efficiencies above the loose operating point
for each background, the distributions are parameterised as a function of jet flavour,
pr and 7. For each jet a random efficiency is sampled from the distribution and the
corresponding MV1c output weight is assigned. Instead of applying a selection cut on the
b-tag weight events are weighted by the efficiency of the jet passing the loose operating

point.

This method is only utilised for events where there is no truth b-jet matched to either
of the reconstructed jets. In the case where one of the reconstructed jets has a truth jet
matched to it the original weight of each jet is cut on. More information on the truth

tagging procedure can be found in [84].
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6.3.5 Kinematic Selection

Once events have passed the preselection and have been split into the different jet cat-
egories, further kinematic selection is applied to increase the signal over background
ratio. Kinematic selection achieves this by taking advantage of the differences between

the signal and SM backgrounds in a variety of distributions.

The definition of the physics objects used in the following selection cuts has already been
described in section 4 and unless otherwise stated will follow the outlined conventions.
Throughout this section the reconstructed Higgs boson is denoted by H and is always

constructed from the vectoral sum of the two b-tagged jets in the event.

It has already been shown that the E%iss triggers used in this analysis are not 100%
efficient at EXS < 120 GeV (see section 6.3.2). Analysis of the trigger turn on region
is difficult, therefore events with E:,rfliss < 120 GeV are rejected from the multivariate
(MVA) analysis. Work has been undertaken to understand this low EXS region of
the analysis. Although the author did not contribute to these studies, inputs from this
region are used in the final result. An explanation of the treatment of low EXS events

can be found in [84].

In previous iterations of this analysis a cut-based approach was used [72, 73] where
selection cuts were placed on various distributions in order to maximise signal over
background in the final di-jet mass distribution, which was used as the discriminant. In
the MVA analysis many of the selection criteria have been loosened or dropped. Some
further kinematic selection is, however, undertaken. Table 6.8 summarises the analysis

event selection.

. Jet Categor

Variable 5ot 81y 3ot
Episs > 120 GeV > 120 GeV
praiss > 30 GeV > 30 GeV

AR(j1, j2) > 0.7 (EPss < 200 GeV) | > 0.7 (B3 < 200 GeV)

Aqs(E%l?S?p&I}lSS) < g < %

Ap(EF, jets) >1.5 > 15
St > 120 GeV > 150 GeV

TABLE 6.8: A summary of the kinematic event selection for the MVA analysis.

Events selected for the MVA analysis must have E%liss > 120 GeV, as well as p?iss >
30 GeV to remove events which contain fake EXSS. Selection cuts on the angular sep-
aration between the two signal jets, AR(j1,j2), helps reduce the vector boson + jets
background. Further topological cuts help to significantly reduce the multi-jet back-

ground; the azimuthal angle between EITniss and p?iss, A(;S(E%‘iss,p?%) < 7/2, ensures
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the E%ﬁss measured in the tracker and calorimeter are measured in the same direction;
the azimuthal angle between E%ﬁss and any jet, A(Z)(E:,riliss, jets) > 1.5, to ensure the dijet-
pair and E{Fniss are back to back. Finally the scalar sum of the jet transverse momenta,

> pZ; ti, must reach a minimum value which is dependant on jet multiplicity.

6.4 Multijet Background

Multijet processes have an extremely large cross section resulting in final states con-
taining jets. Searches for H — bb in associated production channels suffer from large

multijet backgrounds.

Rare instrumental effects in the high cross section multijet processes make simulation
difficult and CPU intensive. For example jets in multijet backgrounds can be mistagged
as leptons and photons and fluctuations in jet energy measurements results in fake E%liss.
Although the cross section of multijet processes is considerably lower at high E%liss it is
still large compared to the Higgs production cross section. Data driven estimates are,

therefore, necessary.

In this analysis a so-called ‘ABCD’ method is used to estimate the multijet contribution
to the various signal regions. A two-dimensional plane is constructed using two weakly
correlated variables; A¢(ERSS, piss) the azimuthal separation between ERiSS and piiss
and A¢(E7H}iss, jet), the minimum azimuthal separation between ErTniSS and any jet within

an event. An illustration of this can be seen in figure 6.8.

These two variables were chosen such that the multijet background has a different shape
from the electroweak background and signal. The signal region must contain real E%HSS
from the neutrinos, in this case one would expect the Ejnliss, measured in the calorime-
ter, and p?iss, measured in the tracker, to point in the same direction. Fake E%liss
produced by fluctuations in jet energy measurements can be identified if the E{,I}iss lies
close to a jet. A signal region can therefore be defined by a high value of AQS(E:,rE‘iSS, jet)
and a low value of A(;S(E}niss,p?iss). By studying MC the optimal selection cuts were
obtained for the different regions. Regions B and D, and A and C are separated by
Ag(ERss pmiss) = /2, regions B and D cover the range 0 < A@(EWSS jet) < 0.4, A
and C cover A¢(ERSS jet) > 1.5.

The multijet background shape is taken from region C, where there is a large multijet
contribution, by subtracting the total non-multijet MC background from data. This
shape can then be normalised into region A, the signal region, by taking the ratio of

multijet events in region B to D:
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|A¢'(E11;niss’ p¥11‘55) |
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0.4 15 min Ag(ETSS, jet)

FIGURE 6.8: An illustration of the 2-dimensional plane used to estimate the multijet
contribution to signal region A.

Nmultijet (A) -

x N(C). (6.11)

In order to reduce statistical fluctuations caused by low statistics, b-tagging restrictions
are dropped in regions B, C and D. A normalisation factor, Rp(p) is calculated as the
probability of an event in region B (or D) passing the b-tagging requirements of that

category. Equation 6.12 then becomes:

=

(B)

Nmultijet(A) = N(D)

x N(C) x Rp. (6.12)

Templates of the multijet background are produced for 2- and 3-jets in the LL, MM,
TT, 1 tag and 2 tag categories. A summary of the number of events found in each can
be seen in table 6.9. In total the multijet background amounts to less than 1 % of the
total background.

6.5 Multivariate Analysis Technique

A MVA can be used to increase the sensitivity of an analysis beyond the reach of tra-
ditional techniques which use a signal discriminant to separate signal from background.
The analysis presented here uses a Boosted Decision Tree (BDT) [85] which naturally

builds upon earlier iterations where a single discriminant, the dijet mass, was used
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Jets | b-tag Region | MJ Events | EW Events | MJ/EW (%)

LL 35.87 3843.39 0.93

MM 24.98 1719.60 1.45

2 TT 13.69 1164.54 1.18
1 tag 354.91 79057.18 0.45

0 tag 290.97 436017.45 0.07

LL 8.17 1688.90 0.43

MM 14.97 2457.31 0.61

3 TT 21.21 4923.94 0.48
1 tag 99.79 54252.56 0.23

0 tag 126.80 193637.38 0.05

TABLE 6.9: Summary of the number of multijet, MJ, events found in each category
of the analysis. As well as the total electroweak, EW, background events.

[71-73]. The BDT uses many variables to take advantage of kinematic and topologi-
cal features of the selected events, as well as b-tagging information to provide a better

separation of signal and background.

A decision tree is a natural progression from the dijet mass analysis as at each stage of the
algorithm variables are split by a selection cut, see figure 6.9 [85]. Starting with a root
node containing a pre-selected training sample of signal and background events input
variables are tested one by one to determine which delivers the best separation. Each
input variable is tested at a defined number of points in order to determine its optimal
selection cut. In this analysis the training sample used is defined by the selection outlined
in section 6.3. If separation has increased the root node is split into two daughter nodes
using the optimal selection cut. This process is repeated on each daughter node until
some ‘stop’ criteria is met. The resultant nodes are are called leaf nodes and labelled as

signal, s, or background, b, depending on their purity.

At each node the BDT checks to see if separation of s and b has increased using the

Gini-index [85]

G =p(l-p), (6.13)

where p is the purity of the sample given by

(6.14)

If the sum of G for the two daughter nodes, after being weighted to the same number of

events, is less than G of the parent node then separation has increased.
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FIGURE 6.9: A schematic representation of a simple decision tree, x;, j, k represent
the selection cuts on input variables [85].

BDTs are susceptible to instabilities caused by poor statistics in the training sample.
Take, for example, the case where two input variables are of a similar discriminating
power. The BDT algorithm selects one variable to cut on, however, the apparent sepa-
ration was caused by a fluctuation. This decision then changes the structure of the BDT
in later nodes possibly leading to a substantially different result. This problem can be
overcome by constructing many decision trees (a forest) from the same training sample.
A technique known as ‘boosting’ reweights the training sample in each of the trees and

takes a weighted average to produce the final discriminant.

In this analysis adaptive boost (AdaBoost) is used [85]. AdaBoost constructs the first
tree using the nominal training sample, following trees are first re-weighted by a common

weight, a, given by

a= , (6.15)

where err is the rate of misclassification in the leaf nodes of the previous tree i.e. the rate
that s is incorrectly classified as b or visa-versa. The rate of misclassification is defined
by the purity of the node. Signal nodes should have a purity > 0.5 and background
nodes should have a purity of < 0.5. The weights are then renormalised ensuring the

sum of the weights of the entire sample remains constant.
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6.5.1 Analysis Training

The analysis trains BDTs for 2-tag events with E%liss > 120 GeV; LL, MM and TT
events are combined in the training. Separate BDTs are trained for the 2- and 3-jet
categories. The 2-jet region is more sensitive therefore training separate BDTs for 2-
and 3-jet events allows the analysis to gain sensitivity, furthermore extra variables are

used to maximise the sensitivity of the 3-jet catagory.

In order to maximise statistics and use all of the selected events in an unbiased manner
two BDTs are trained for each category. Half the events, sample A (B), from the training
sample are used for training the BDT, the performance of the BDT is then evaluated
using the other events from sample B (A). In data a random choice is made to determine
which sample the event is added to. After being evaluated the two samples are summed

together.

Input variables were selected based up on their separating power. Starting with mg,
variables were added to the BDT one by one to ensure that they increased overall
separation. Table 6.10 outlines the MVA input variables used in this analysis. Figures
6.10 and 6.11 show the input variables split into signal and background for the 2- and

3-jet selections respectively.

Input Variable | 2 3
E%liss
P
P
Mph
AR(by,bs)
|An(by, ba)|
Ag(V, bb)
MVic(b1)
MVic(b2)

P

Mphj

AN N N R N N NN R
AN N N N N NN NN

TABLE 6.10: Input variables used in the analysis for the 2- and 3- jet MVA.

The BDT output for 2- and 3- jet training samples can be seen in figures 6.12 (a) and

(b) respectively, again split in to background and signal.
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FIGURE 6.10: BDT input variables split into signal (blue) and background (red) for
2-jet selection.

6.6 Systematic Uncertainties

This section will give an overview of the systematic uncertainties used within the analy-
sis. Experimental systematic uncertainties take into consideration the corrections to the
efficiency and/or calibration of simulated physics objects, the modelling of the various
background and signal processes, along with uncertainties associated to the data such
as luminosity, triggering and the data driven determination of the multijet background.
Many of the uncertainties discussed are provided by independant ATLAS analyses or
are the result of independant stuides by the VH analysis group. A more detailed ex-
plaination of the uncertainties can be found in [84] or, when relevant, by following the

citations given for each study.
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6.6.1 Uncertainties Associated with Physics Objects

The uncertainties associated with physics objects are generally provided by independant
analyses which provide ATLAS wide prescriptions. The following section will outline

the uncertainties and the method by which they are applied to the analysis.

6.6.1.1 Leptons

The uncertainties on lepton efficiciency in 0-lepton events have already been discussed
in some detail in section 6.3.3.1. The two orthogonal analyses, 1- and 2-lepton, have
their own associated lepton uncertainties which take into account the electon and muon
triggers [86, 87|, isolation efficiency, energy measurment and resolution [88, 89]. The

impact of these uncertainties is very small, generally less than 1%.

Lepton energy and resolution uncertainties are estimated by shifting lepton energies up

and down and then in each case reselecting events [88, 89].

The electron and muon isolation efficiencies are applied using scale factors derived
through a tag-and-probe method. Efficiencies are calculated as a function of pp and
|| in both data and MC. The MC efficiency is then corrected to data by applying the

calculated scale factor. Further detail can be found in [84].

6.6.1.2 Jets

Jets carry several sources of systematic uncertainty applied to the jet energy scale (JES),

jet energy resoultion (JER) and the jet vertex fraction (JVF).

In total there are 56 uncertainties associated with the JES [90], a detailed discussion of
which can be found in [91]. The uncertainties are provided as uncorrelated components
and can therefore be treated as independant sources of uncertainty in the analysis. Con-
tributions to the total JES uncertainty come from the various in-situ calibration analyses,

n-dependent modelling, behaviour of high-pr jets, pile-up and jet flavour response.

In total the combined systematic uncertainty from JES ranges from ~ 3% for jets with
pr = 20 GeV to ~ 1% for jets with pr = 1 TeV. A summary of the JES uncertainty
used in this analysis as a function of pr and 7 can be seen in figures 6.13 (a) and 6.13

(b) respectively.

Further uncertainties, determined from MC studies, are applied to the b-jet energy scale

[90]. The uncertainty of the calorimeter response is measured by comparing the single
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hadron response measurement [92] in different MC simulations. Uncertainties range from

1.5% to 3.0% and are applied in addition to the previously described JES uncertainties.

The JER has two components contributing to the total uncertainty [93], one for all jets
and a one specifically for b-jets [94]. In each case uncertainties were determined by MC
to data resolution comparisons. The impact of these systematic uncertainties was then
measured on the analysis by smearing the jet pr spectrum by a Gaussian, centred on
1, with a width equal to the true resolution plus the relative uncertainty. In total the
combined systematic uncertainty from JER ranges from ~ 10 — 20% for jets with pp =

20 GeV, depending on nje to < 5% for jets with pp > 200 GeV.

6.6.1.3 Missing Transverse Energy

The systematic uncertainty associated to E{pniss is based upon the energy calibration
and resolution of energy clusters within the calorimeter which have not already been
associated with another physical object as defined in 4. Systematic variations of other
physical objects are all propagated through the E%ﬂss calculation. In total an uncertainty

of ~ 8% comes from the E¥SS energy calibration and ~ 2.5% from the resolution [95].

6.6.1.4 Flavour Tagging

The systematic uncertainties associated to flavour tagging using the MVlc algorithm
are provided through pr and MVl1c output dependant scale factors which correct the
measured MC efficiency to data [96]. Each scale factor carries an uncertainty which
takes into account the associated experimental, theoretical and statistical uncertainties.

Scale factors are provided for b-, ¢- and light-flavour jets.

6.6.2 Uncertainties Associated with Signal and Background Modelling

The O-lepton analysis presented here and the 1- and 2-lepton associated production
channels are complimentary analyses which share modelling systematics. The wide
phase space of the three analyses allows for detailed studies of the different backgrounds.
Associated systematic uncertainties have been studied in detail by the analysis group
[74]. This section will outline the treatment of these systematics, more detail can be
found in [74, 84].

In general, uncertainties have been assessed focusing on the quantities used in the limit-
extraction fit, see section 6.7, and those which are input into the BDT, see section 6.5.

Where possible, dedicated control regions are used, dominated by the background in
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FIGURE 6.14: Distributions of the MV1c b-tagging algorithm output for the 1-tag
control regions for (a) 0-, (b) 1- and (c) 2-lepton analyses used to constrain the Z/W+
jets backgrounds [74].

question, to directly compare data to MC simulation. W and Z+ jets and tt back-
grounds are studied in this way, figure 6.14 gives an example of the 1-tag control regions
used to constrain the Z/W+ jets background in the fit. The multijet background is esti-
mated using a data driven method, see sec 6.4. Section 6.6.2.1 discusses the systematic

uncertainty applied to this background.

Other MC backgrounds can be studied by comparing distributions produced by a variety
of MC generators to the nominal generator used for each background, see table 6.2 for

a list of nominal generators. When comparing generators each variable is considered



Chapter 6. ZH — vvbb Physics Analysis 84

individually for each background. The variable which has the largest discrepancy for
any studied generator to the nominal provides the uncertainty. This uncertainty is then
symmeterised and propagated through into the BDT distribution. If the uncertainty
covers variations from other generators the systematic is sufficient otherwise the variable
which causes the next most discrepancy is considered in addition and the process is

repeated until the systematic uncertainty covers all generator variations.

Modeling studies showed that the in some cases the MC shape was different to that
which was measured in data [74, 84]. Additional systematic uncertainties are applied:
The tt top-quark pr distribution is reweighted at generator level [97] and a systematic
uncertainty is applied as half the shifted value. The A®(j, j2) distribution is reweighted
for Z +Ul, W + Il and W + ¢l components and again a systematic uncertainty of half
the shifted value is applied. For all other Z/W +jets components the distrbution is not
corrected for, instead a systematic uncertainty covers the full correction. A correction

to pg is applied to the Z-+jets background.

Table 6.11 [74] outlines the overall uncertainty applied to the various backgrounds used

in the presented analysis.

Signal sample cross sections and branching ratios carry an associated uncertainty [98,
99] from the choice of scale and PDF. Further shape and accpetance uncertainties,
after kinematic selection, also arise from this choice. These uncertainties are estimated
following the procedure outlined in [100] and [101]. A summary of the signal modelling

systematic uncertainties is given in 6.12 [74].

Cross section scale and PDF uncertainties are taken from the CERN yellow report [102],
see table 6.13. Uncertainties are higher for the gg process due to one-loop induced sub-
processes shown in figure 6.15 [103]. An additional factor is taken into account for the

ratio of 2- and 3-jet events.

QCD scale acceptance and p¥ shape uncertainties are measured by comparing different
signal MC produced with varying renormalisation and factorisation scales MC produced
with the nominal values, as prescribed in [104]. Acceptance uncertainties due to the
choice of PDF are estimated using a similar method prescribed by [105], however, this

time PDF uncertainty is varied.

6.6.2.1 Multijet

The multijet background is determined through a data driven method, see sec 6.4. In
total it accounts for < 1% of the total background. Two methods were used to estimate

the uncertainty associated with the measurement
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Z+jets
Z1 normalisation, 3/2-jet ratio 5%
Zcl 3/2-jet ratio 26%
Z+ hf 3/2-jet ratio 20%
Z+ hf/Zbb ratio 12%
Ag(jety, jeta), py, mpp Shape only
W+jets
W1 normalisation, 3/2-jet ratio 10%
Wel, W+ hf 3/2-jet ratio 10%
Wbl /Wbb ratio 35%
Wbe/Wbb, Wee/Wbb ratio 12%
Ag(jety, jeta), py, mpp Shape only
tt
3/2-jet ratio 20%
High/low pY. ratio 7.5%
Top quark pT, mpp, Elfmss Shape only
Single top
Cross section 4% (s-, t-channel), 7% (Wt)
Acceptance (generator) 3%-52%
Mpp, Prbo Shape only
Diboson
Cross section and acceptance (scale) 3%-29%
Cross section and acceptance (PDF) 2%-4%
Mpp Shape only

TABLE 6.11: A summary of the background modelling systematics used within the

presented analysis taken from [74].

Signal
Cross section (scale) 1% (qq), 50% (gg9)
Cross section (PDF) 2.4% (qq), 17% (g9)
Branching ratio 3.3%
Acceptance 1.5% — 3.3%
3-jet acceptance (scale) 3.3% — 4.2%
p¥. shape (scale) Shape only
Acceptance (PDF) 2% — 5%
p¥. shape (NLO EW correction) Shape only
Acceptance (parton shower) 8% — 13%

TABLE 6.12: A summary of the signal modelling systematics used within the presented
analysis taken from [74].

e Vary the upper and lower A¢(ERSS jet) selection which define the different re-
gions, see figure 6.8. This test ensured that the predicted number of multijet events

is not sensitive, within the systematic uncertainty, to the number of MC events

used in the method.
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FIGURE 6.15: Feynman diagrams for the one-loop induced gg — ZH sub-processes.

my GeV qq — ZH g9 — ZH
o (pb) Scale (%) PDF (%) | o (fb) Scale (%) PDF (%)
115 0.4995 +1.0 +2.3 36.34 +50.0 +19.0
120 0.4366 +1.0 +2.5 34.39 +50.0 +12.8
125 0.3828 +1.0 +2.3 32.46 +50.0 +16.9
130 0.3365 +1.0 +2.4 30.60 +50.0 +14.2
135 0.2971 +1.0 +2.5 28.79 +50.0 +16.4

TABLE 6.13: Inclusive cross sections and related uncertainties for q¢ — ZH and
99 — ZH production at /s = 8 TeV. Uncertainties are derived from the CERN yellow
report [102].

e Calculate the b-tagging rate using region D rather than B to ensure the differ-
ent selection of events give an estimate which is consistent within the systematic

uncertainty.

As a result of these studies an uncertainty of 100% is placed on the background measure-
ment for each region. The uncertainties are treated as uncorrelated. For more details
see [84].

6.7 Statistical Procedure

This section will outline the statistical procedure used to obtain a meaningful result from
the analysis. The procedure is based on the CLg [106] method where results are derived
based on the level of agreement between the observed data and either a background only,

null, or a background plus signal hypothesis. It is used to extract a signal strength, u,



Chapter 6. ZH — vvbb Physics Analysis 87

defined as the ratio of the measured Higgs boson production cross section times the
H — bb branching ratio relative to the SM value and set exclusion limits on the cross
section times branching fraction of H — bb. An introduction to hypothesis testing can
be found in section 6.7.1. The application of such methods to this analysis is then

discussed in section 6.7.2.

6.7.1 Introduction to Hypothesis Testing

This section attempts to give a generalised introduction to hypothesis testing methods
utilised by ATLAS in the search for new physics. Detailed explanations and discussion
of these methods can be found in [106] [107].

6.7.1.1 Introduction to the Likelihood Function

It is useful to first consider the simple example of a single histogram of an output variable
from an analysis. From this histogram it is possible to measure the expected signal, s;,
and background, b;, in each bin, as predicted by MC, along with the number of recorded

data events d;.

Next consider two different hypotheses which are defined by the signal strength, . The
null or background only hypothesis expects no signal to be present in the data; u = 0.
The signal + background hypothesis expects there to be a signal present in the data, on
top of the expected background; p = 1.

Using a likelihood function it is possible to find the value of 1 which results in the best
overall agreement between the predicted number of signal 4+ background events, p;, and

the actual data yield in each bin. Here p; is defined as

pi(p) = bi + ps;. (6.16)

It is clear that in the null hypothesis there is no predicted signal.

In each bin of the histogram agreement between p; and d; can be measured with a

Poisson probability term, L; [106],

d;
L; = pi(n) e Pi(n)

. , (6.17)

L; reaches a maximum when p; and d; are equal. The likelihood function, £, is defined

as the product of poisson probability terms over all bins,
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=1 (6.18)

L is used to test the overall agreement of p; and d;. It reaches a maxiumum for the most
likely value of p. Converting the likelihood to a log likelihood converts the product term
to a summation. The log likelihood is easier to handle mathematically and is therefore

generally prefered.

6.7.1.2 Nuisance Parameters

In reality such a simplified likelihood model does not work in an analysis such as the
one presented in this thesis. It does not take into account all of the information known
about the signal and background predictions. In particular it does not account for
the associated systematic uncertainties. These uncertainties are incorporated into the

statistical model as a set of nusiance parameters (NP).

Each NP is given a range of values which it may take, together the NPs are denoted by
0. In the analysis described here NPs are input in the form of histograms at the nominal
and +1c0 level. The histograms can be used to define either shape or normalisation
uncertainties. The likelihood function can then vary each NP along with p in order to

find a maxiumum. Equation 6.19 is explicitly written as

N :
bi(0) + ps; (0)% _, .
L1, 0) :H( (6) dl-L! (6)) e bi(0)+pusi(0) (6.19)

6.7.1.3 Control Bins

It is sometimes possible to take additional measurements from control regions in order
to constrain a certain NP. For example normalisation of backgrounds can be constrained
if there is sufficient statistical power in the data. An additional term is added to the
likelihood function taken from a control histogram in a region dominated by a particular

background,

p) = T O 5O st [T O 0 gy

=1 7j=1

where the control histograms are denoted by j.
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6.7.1.4 Profile Likelihood Ratio

A profile likelihood ratio is used to test a hypothesised value of u [106],

) = : (6.21)

where 6 is the set of values for # which maximise £ for a given hypothesised value of p
and 0 and i are the set of values which give the absolute maximum value of £. £(u,6)

is known as the conditional maximum-likelihood function and L£(f,#) the maximised

unconditional likelihood function.

In reality many physics analyses contain more than one channel. It is possible to combine

these as a product into the profile likelihood ratio [108]

Nchannels

)‘(M)multi—region = )\(,U) (6.22)
7=1

6.7.1.5 Statistical Tests

As well as extracting a best fit signal strength, the profile likelihood ratio allows further
statistical tests to be carried out giving information on the hypothesis. A test statistic,
qu, is used [106] to quantify agreement between a proposed hypothesis and the measured

data,

gy = —2In),,. (6.23)

The test statistic can be constructed in different ways to provide information about the

proposed hypothesis.

An exclusion limit is set on the largest signal strength which is compatible with the
measured data. This allows a given hypothesis, e.g. there is a SM Higgs + background
in the data, to be excluded to a given confidence level. The test statistic is defined as
[106],

—2InA o< p,
Qu = { S (6.24)
0 > .
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The test statistic is set to zero when i > p as when setting an upper limit data with
i > p does not represent less compatibility with p than the data obtained and therefore
should not be taken as part of the rejection region of the test. This can then be used to

calculate a p-value for a hypothesised value of u given by [106],

Pp = /Oo f(qMIM)qu- (6.25)

Gu,0bs

The p-value quantifies the level of agreement between the measured data and hypothesis.
Here g, 0ps is the observed test statistic and f(g,|u) is the function given by the test
statistic for a given p. The value of @ which corresponds to p, = 0.05 gives an upper

limit to p at a 95% confidence level.

By assuming the background only hypothesis and setting © = 0 the background only

hypothesis can be tested in a similar way. The test statistic is constructed as,

—2lnXg >0,
q = { (6.26)

0 o <0.

The test statistic can be then used to ask what is the probability that the observed signal
strength, [i, is seen given the background only hypothesis. The data is only considered to
show a lack of agreement with the background only hypothesis if an upward fluctuation is
seen. Although a downward fluctuation could point to a deviation from the background
only hypothesis, the downwards deviation would not be compatible with new signal
events. Again a p-value can be calculated to quantify the level of agreement between

the measured data and given hypothesis,

po = /OO f(q0l0)dqo. (6.27)

4

Using the calculated pg a statistical significance, Z, can be calculated,
Z=¢ (1 - po), (6.28)
where ¢! is the quantile of the normal distribution. The value of Z shows how many

standard deviations the observed signal strength is from the background only hypothesis

of p=0.
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6.7.2 VH Analysis Fit Overview

This section will describe the VH analysis fit which uses information from all three of
the VH analysis channels to extract a best fit value of u. The signal hypothesised is
the SM Higgs boson. In the case where results are presented for an individual analysis
channel the same method has been used, however, only the relevant analysis regions and
NP are input into the fit. The statistical procedure has been developed by the analysis
group and is based upon the RooStats framework [109, 110].

Using information from various input histograms produced from the three analyses a
binned likelihood function is constructed as the product of Poisson-probability terms,
see section 6.7.1. For each bin from each histogram in each analysis region a probability
term is calculated based on the number of data events and the expected signal and

background events, given by equation 6.17.

In total there are 38 analysis regions based upon the selection outlined in section 6.6; 27
are taken from the 2 b-tag signal regions and 11 from the 1-tag region. Table 6.14 gives
an overview. Each of the three analyses provides inputs for two p¥ regions; 0 < p¥ < 120
GeV and p¥ > 120 GeV for the 1- and 2-lepton analyses and 100 < p¥ < 120 GeV and
p¥ > 120 GeV for the 0O-lepton analysis. In the 1-lepton analysis the electron channel is
only used in the p¥ > 120 GeV region. Each region is then separated into 2- and 3-jet
categories with the exception of the low Ejnliss region of the 0-lepton analysis where only
2-jet inputs are provided to the fit. Finally these regions are once again split based on

their b-tagging catagory.

The MVlc distribution is used as the discriminant for all of the 11 1T regions included
in the fit. The myy, distribution is used for the 3 low ErTniSS 2-jet, 2-tag regions of the
O-lepton analysis. The remaining 24 2-tag (LL or MM, TT) regions use the BDT output
as a discriminant, see section 6.5. In the 0- and 2- lepton analyses the MM + TT
regions are merged together for each jet and p¥ region [84]. Figures 6.16-6.26 show
the distributions which are used in the fit after normalisation. The prefit background

distribution is also shown.

The impact of systematic uncertainties, as outlined in section 6.6, on the signal and
background expectation is estimated by a set of NPs following the method described in
section 6.7. Systematic uncertainties are constrained in the fit by Gaussian probability
density functions. Further NPs deal with the normalisation of the various background
processes to data. These NP are constrained by log-normal probability density functions
to prevent negative normalisation values. The main backgrounds; tt, Wbb, Wel, Zbb
and Zcl are left to float freely in the fit as the data has sufficient statistical power to

constrain them.
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O-lepton (100 < EZ"® < 120) | O-lepton | 1-lepton | 2-lepton
1T MVlec MVlec MVlec MVlc
btagsing category | My BDT BDT BDT
MM My BDT BDT BDT
TT mMpp BDT

TABLE 6.14: An overview of the distributions used as input to the likelihood fit where

BDT is the evaluated boosted decision tree discriminant trained in the given regions.

The 1- and 2- lepton channels are further divided into two pY. regions (p¥. < 120 GeV

and pY¥. > 120 GeV). All of the analysis channels are also divided in to 2- and 3- jet

regions aside from the low EXS region of the 0-lepton analysis which only provides
inputs for the 2-jet catagory.

Some of the systematics can have shape variations given by the input histogram tem-
plates. Due to limited statistical power in parts of the analysis events migrating in and
out of the selection cause fluctuations adding a statistical component to the template

which is not a true part of the uncertainty.

In order to account for this a series of smoothing and pruning procedures are applied to
the NPs. These procedures first try to remove the fluctuations by merging bins within
the nominal templates, then NPs which have a small impact on the analysis and fall
below certain criteria are removed from the fit. Full details can be found in [84]. After
pruning there are 184 NP entering the fit a table of which can be found in appendix B
taken from [84].

It is possible to assess the impact of NP on the signal strength and rank the NP. Figure
6.27 shows the ten highest ranked systematics which cause the biggest impact on the
fitted signal strength in the combinend 0-, 1- and 2-lepton (012) fit. To assess the
impact of the NP whilst properly accounting for correlations with other NP the fit is
performed again with each NP fixed to its post-fit value shifted up and down by its
nominal uncertainty, all other NPs are allowed to vary. The amount by which the fitted

signal strength is shifted gives a measure of the impact of the considered NP.

Results of the fit are presented through several statistical tests, as outlined in section
6.7. The best fit signal strength [i is obtained by maximising the likelihood function
with respect to all parameters. Expected results are obtained using the fitting procedure
described by replacing the data with the expectation from simulations and setting all of

the NPs to their best fit values.

6.7.3 MVA Training at Different Mass Points

The presented analysis has been optimised for a Higgs boson mass of 125 GeV. Results,

however, are shown for a variety of mass points around 125 GeV, see section 6.5. The
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FIGURE 6.16: Post-fit distributions of the dijet mass for the low ER regions of the
O-lepton analysis; (a) LL, (b) MM and (c) TT. The fitted background is shown through
the various stacked MC histograms along with the observed data points and expected
signal for a 125 GeV SM Higgs boson. The pre-fit background is also shown.

myy distribution is the most powerful discriminant in the BDT and its performance

therefore is reduced at mass points other than 125 GeV. A study was undertaken to

show that analysis sensitivity at mass points other than 125 GeV could be improved by

training the BDT individually for each mass point.

The simultaneous fit is run using inputs from the O-lepton analysis for the following mass
points: 110, 115, 120, 125, 130, 135 and 140 GeV, for two different training methods.

e (a) The BDT is trained using only the 125 GeV signal sample
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FIGURE 6.17: Post-fit distributions of the MV1c tag weight from the 0-lepton analysis
1-tag regions; (a) 2-jet low EX* (b) 2-jet and (c) 3-jet. The fitted background is shown
through the various stacked MC histograms along with the observed data points and
expected signal for a 125 GeV SM Higgs boson. The pre-fit background is also shown.

e (b) The BDT is trained individually for the specific mass point under consideration

The result of the different training can be seen in figure 6.28 for the O-lepton analysis
defined in [74]. Figure 6.28 (a) shows the 125 GeV training and 6.28 (b) shows the
individual mass point training, table 6.15 gives a comparison between the two results.
The result at 125 GeV is, as expected, the same. However, it can be clearly seen
that at mass points other than 125 GeV by training the BDT for that mass point the

analysis gains sensitivity. This is particulary apparent at the extreme mass points which
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FIGURE 6.18: Post-fit distributions of the MV1c tag weight from the 1-lepton analysis
1-tag regions for p¥. < 120 (a) 2-jet and (b) 3-jet, and p¥. > 120 (c) 2-jet and (d) 3-jet.
The fitted background is shown through the various stacked MC histograms along with
the observed data points and expected signal for a 125 GeV SM Higgs boson. The
pre-fit background is also shown.
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FIGURE 6.19: Post-fit distributions of the MV1c tag weight from the 2-lepton analysis

1-tag regions for p¥. < 120 (a) 2-jet and (b) 3-jet, and p¥. > 120 (c) 2-jet and (d) 3-jet.
The fitted background is shown through the various stacked MC histograms along with
the observed data points and expected signal for a 125 GeV SM Higgs boson. The

pre-fit background is also shown.
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Post-fit distributions of the BDT output from the O-lepton analysis

2-tag regions for ERss > 120 2-jet (a) LL and (b) MM+TT, and 3-jet (¢) LL and (d)

MM+TT. The fitted background is shown through the various stacked MC histograms

along with the observed data points and expected signal for a 125 GeV SM Higgs boson.
The pre-fit background is also shown.
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FIGURE 6.21: Post-fit distributions of the BDT output from the 1-lepton analysis 2-

tag regions for p¥. < 120 2-jet (a) LL and (b) MM and (c) TT. The fitted background is

shown through the various stacked MC histograms along with the observed data points

and expected signal for a 125 GeV SM Higgs boson. The pre-fit background is also
shown.
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FIGURE 6.22: Post-fit distributions of the BDT output from the 1-lepton analysis 2-

tag regions for p¥. < 120 3-jet (a) LL and (b) MM and (c) TT. The fitted background is

shown through the various stacked MC histograms along with the observed data points

and expected signal for a 125 GeV SM Higgs boson. The pre-fit background is also
shown.



Chapter 6. ZH — vvbb Physics Analysis

100

o LB B o e i e e R © e e IR I e e e e
« r Data 2012 . — Data 2012 =
S E ATLAS Internal -0 ] p ATLAS Internal -0 (10
~ 1600 f5-gev JLdt=203 1 %5“’050” = @ Vs=8TeV [Ldt=203 1" %g'b“"" E
% [ 1lep., 2jets, 2 Loose tags = Single top ] % 1 lep., 2 jets, 2 Medium tags I Single top =
2 14001~ pv>120 Gev ) Multiet = 4 pY>120 GeV ) Multiet 3
L LT I W+hf . w T I \W+hf —
o W-cl - W-cl -
1200~ wai = S E
I Z+hf B I Z+hf —
Z22 Uncertainty 1 Bl 222 Uncertainty 3
1000__ ..... Prefitbackground ] pAABeee.s 0 awm Pre-fit background _-
E . = VH(bb)x120 4 BT i, = VH(bb) x40 E
800 M 4 0B Tl 3
6008 : 3 3
400 - 5
200F~ . SR 0909090 =l 5
C , o] =i SO el
o B L o e e B B B B e B B B B R o L L L B B B o B B R B B N R
o E +: o 2F E
O ocezeesqueces . 3 e
g ] gk
805’H\Hw\www\www\wm\wm\wm\mw\uw\m’ 8 Ev b b b L s
-1 -08 -06 -04 -02 0 02 04 06 08 1 -1 -0.8 -0.6 -04 -0.2
BDT,,
(a) (b)
= LR A RARE RARE RN WAPARALE R
S 800 ATLAS Internal B VH(bD) (1=1.0) 3
a Vs=8TeV [Ldt=20.31b" I Diboson 3
2 . i tt =
% 700 1lep., 2 jets, 2 Tight tags [ Single top -
> pY>120 GeV [ Multijet 3
L T I \W+hf e
I Z+hf —
600 Uncertainty =
..... Pre-fit background
500 == VH(bb) x30 3
k] AE T T \\‘\\\‘\\\‘\\\;
9] E E|
r 2E =
% 0;.“-._.74.7““%.‘47” ’E
| | ! ! | ! ! ! Ly o
8 Bl b b b b by b Ly Ly 3
-1 -08 -06 -04 -02 0 02 04 06 08 1
BDT,,

(c)

FIGURE 6.23: Post-fit distributions of the BDT output from the 1-lepton analysis 2-
tag regions for p¥. > 120 2-jet (a) LL and (b) MM and (c) TT. The fitted background is
shown through the various stacked MC histograms along with the observed data points
and expected signal for a 125 GeV SM Higgs boson. The pre-fit background is also

shown.
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FIGURE 6.24: Post-fit distributions of the BDT output from the 1-lepton analysis 2-

tag regions for p¥. > 120 3-jet (a) LL and (b) MM and (c) TT. The fitted background is

shown through the various stacked MC histograms along with the observed data points

and expected signal for a 125 GeV SM Higgs boson. The pre-fit background is also
shown.
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FIGURE 6.25: Post-fit distributions of the BDT output from the 2-lepton analysis

2-tag regions for p¥. < 120 2-jet (a) LL and (b) MM+TT, and 3-jet (c) LL and (d)

MM+TT. The fitted background is shown through the various stacked MC histograms

along with the observed data points and expected signal for a 125 GeV SM Higgs boson.
The pre-fit background is also shown.
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FIGURE 6.26: Post-fit distributions of the BDT output from the 2-lepton analysis

2-tag regions for p¥. > 120 2-jet (a) LL and (b) MM+TT, and 3-jet (c) LL and (d)

MM+TT. The fitted background is shown through the various stacked MC histograms

along with the observed data points and expected signal for a 125 GeV SM Higgs boson.
The pre-fit background is also shown.
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FI1GURE 6.27: Impact of the top ten ranked NP in the combined 012 fit on the fitted
signal strength, . The NP are listed in order of rank down the y-axis. The black circles
show the deviation of the NPs from the nominal pre-fit values expressed in terms of
standard deviations with respect to the nominal pre-fit uncertainties. The black lines
show the post-fit uncertainties on the given NP relative to the pre-fit value, measured
by the bottom x-axis. The red circles and lines show the corresponding values for NP
which float freely in the fit. The blue box shows the fractional variation of the signal
strength, measured by the top x-axis. These variations are calculated by performing
the fit again with each NP fixed to its post-fit value shifted up (dashed box) and down
(open box) by its nominal uncertainty with all other NPs are allowed to vary.

benifit more from the retraining as they are further away from 125 GeV. The respective

sensitivity gain is around 39% and 70% for the 110 GeV and 140 GeV mass points.
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Mass Expected Observed
(GeV) 125 GeV Training | Mass Training | 125 GeV Training | Mass Training
110 1.29 0.93 1.41 1.00
115 1.21 1.03 1.13 1.07
120 1.23 1.19 1.11 1.09
125 1.38 1.34 1.25 1.61
130 1.93 1.81 1.92 2.11
135 2.97 2.33 3.72 2.62
140 5.21 3.06 6.06 4.35

TABLE 6.15: Expected and observed significances for the published VH analysis [74]
shown with and without individual mass point training on the MVA.
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o o
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FIGURE 6.28: Expected exclusion limits as a function of Higgs Mass for the O-lepton
analyses defined in [74], (a) shows the result using 125 GeV training and (b) shows the
result for individual mass point training



Chapter 7

Results

This chapter will present the results of the analysis presented in section 6. The 0-lepton
MVA inputs to the fit, where E}mss > 120 GeV, have been produced independently
from the published analysis [74], any differences are outlined in section 7.1. The low
E%liss inputs are produced through a separate cut based analysis, details of which can be
found in [74]. The 2-lepton inputs used in the fit are produced following [74] however the
selection of 3-jet events has been changed to that described in section 7.1. The 1-lepton

inputs to the fit are identical to those used in the published result.

7.1 Differences to Paper Analysis

The results presented in this thesis are based on the analysis presented in [74]. It is,
however, independent in the fact that the inputs have been produced using a different
analysis framework. It should be noted, the framework has been verified through analysis
cut flows and cross checks of the 0- and 2- lepton analyses, it was also used to produce

the 2-lepton inputs used in the paper.

There are some small improvements in selection and implementation to the paper. Pri-
marily the selection of 3-jet events. The 3-jet events in the 0- and 2-lepton analyses are
selected based on the studies presented in section 6.3.4.1. Furthermore, the selection
has been updated to include forward jets; events containing a total of 3 signal 4+ forward

jets are labelled as 3-jet.

Any other discrepancies are due to the different analysis chains. The published analysis
[74] uses centrally produced ATLAS ntuples. The analysis presented here is undertaken
using ntuples produced independently. This difference allowed for a detailed cross check

of the published result.
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7.2 Results

Results have been obtained following the statistical procedure outlined in 6.7 using the
0-, 1- and 2- lepton analysis inputs simultaneously, henceforth referred to as the 012 fit.
This section will present the outcome of this fit, as well as the individual O-lepton fit
results. Postfit plots have already been shown in figures 6.16 - 6.26. The impact of NPs

has also been discussed in section 6.7.2.

Figure 7.1 shows the 95% confidence level upper limits on SM Higgs boson cross section
times branching ratio for pp — V(H — bb) in the mass range 110 - 140 GeV. The
observed limit for my = 125 GeV is 1.6 times the SM value compared to an expected
value of 0.8 in the absence of any signal. For the O-lepton only fit, figure 7.3 the observed
limit for myg = 125 GeV is 1.6 times the SM value compared to an expected value of
1.3.

The corresponding pg value tests the probability of obtaining the observed result assum-
ing the background only hypothesis. Figure 7.2 and 7.4 show the expected and observed
po as a function of my for the 012 and 0-lepton only fit respectively. The combined fit
sees an excess with an observed (expected) significance of 2.10 (2.50), the 0-lepton only

fit sees an excess with an observed (expected) significance of 0.40 (1.50).

The best fit values of the signal strength, fi, for mpy = 125 GeV are shown in figure 7.5
for individual channels and the combined fit. The resulting i = 0.84'_F8f§52 and for the
0-lepton only fit i = O.22Jj8:g§.

7.2.1 Comparison to Published Results

Section 7.1 has already highlighted the improvements which have been made from the

published analysis, this section offers a direct comparison to the 8 TeV data results.

Table 7.2.1 compares the measured significance of the different channels at the 125 GeV
mass point. Results are compared for the 0- and 2-lepton channels and the combined
012-lepton fit. Values are shown for the observed and expected significances, as well
as a so called Asimov significance. The Asimov significance is obtained by defining a
pseudo-dataset built from MC, the Asimov dataset, where all NPs are set to 0 and scale
factors set to 1. The error on each bin of the Asimov dataset is Poisson. The Asimov
dataset, unlike real data, will not have fluctuations. However, the associated errors are
the same as one would obtain with real data. When the Asimov dataset is fit, scale

factor and NP errors correspond to the constrains one would get from real data without
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FIGURE 7.1: Observed (solid) and expected 95% CL cross-section upper limits, as

a function of my, obtained through the simultaneous 0-, 1- and 2-lepton fit. The

expected upper limit is given for the background only hypothesis (dashed) and with

the injection of a 125 GeV Higgs boson (dotted). The dark and light bands represent
the 1o and 20 ranges of the background only expectation.
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FIGURE 7.2: Observed (solid) and expected pgy values, as a function of my, obtained
through the simultaneous 0-, 1- and 2-lepton fit. The expected pg is shown for several
values of my (dashed), as well as for mpy = 125 GeV (dotted).
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95% C.L. limit on O'/O'SM

FIGURE 7.3:
a function of my, obtained through the O-lepton fit.
given for the background only hypothesis (dashed) and with the injection of a 125 GeV
Higgs boson (dotted). The dark and light bands represent the 1o and 20 ranges of the
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FIGURE 7.4: Observed (solid) and expected py values, as a function of my, obtained
through the 0-lepton fit. The expected py is shown for several values of my (dashed),

as well as for my = 125 GeV (dotted).
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FIGURE 7.5: The best fit signal strength, ji, for my = 125 GeV shown with associ-
ated uncertainties for (a) the individual 0-, 1- and 2-lepton analyses and the combined
simultaneous fit result, (b) ZH and WH processes and the combined simultaneous fit

result.
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0-Lepton

Thesis Paper
Asimov 1.62 1.59

Expected | 1.54 1.48

Observed | 0.33 -0.38

2 Lepton

Thesis Paper
Asimov 1.32 1.26

Expected | 1.29 1.22

Observed | 1.16 1.20

012 Combined
Thesis Paper
Asimov 2.52 2.50
Expected | 2.53 2.53
Observed | 2.08 1.68

TABLE 7.1: Comparison of published [84] and presented Asimov, expected and observed
significance at my = 125 GeV.

any statistical fluctuations. The Asimov significance is therefore a good indication of

analysis improvement.

Improvements are seen in both the 0- and 2-lepton analysis, the Asimov significance
increases from 1.59 to 1.62 and 1.26 to 1.32 respectively. In the overall fit the Asimov
significance increases from 2.50 to 2.52. The observed combined significance is seen to
increase from 1.68 to 2.08 times the standard model value. This is driven by an increase

seen in the 0-lepton analysis.

The best fit signal strength for the 0-lepton analysis is measured to be i = 0.22f8:g§,

compared to the f = —0.258“. 2860 in the published analysis. The published result mea-
sured a low i due to a data deficit observed in the most sensitive bins of the BDT output

[74]. The overall value of the best fit signal strength is measured to be i = 0.84f8f13,52

compared to i = 0.65Jj8flfo measured in the published analysis. This increase is due to

the changes in the 0 and 2-lepton analyses.

7.3 Summary

A search for the SM Higgs boson decaying in to a pair of b-quarks produced in association

with a Z boson using 20.3fb~! of v/& TeV ATLAS proton-proton data has been presented.
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Results have been shown for the ZH — vvbb channel, presented in section 6. As well
as for a combined analysis with two other associated production channels; WH — [vbb
and ZH — 1lbb.

The search is performed using a BDT analysis. Each of the three channels are categorised
by the number of leptons, jets and b-tagged jets, as well as the transverse momentum
of the associated vector boson. A complex simultaneous fit uses the BDT output as
a discriminant along with b-tagging information from the MVlc algorithm. In the low
E{Fiss region of the O-lepton channel the my, distribution is used as the discriminant.
The fit considers the impact of systematic uncertainties as a series of NP and extracts
a best fit value for the signal strength by comparing the agreement between collected

data and simulated MC events.

For a Higgs boson my = 125 GeV best fit values of the signal strength are measured to be
o= 0.22Jj8:g§ for the O-lepton only fit and g = 0.84Jj8:§g for the combined simultaneous
fit. The observed (expected) deviation from the background only hypothesis corresponds
to 0.30 (1.50) for the O-lepton only fit and 2.10 (2.50) for the combined simultaneous
fit.



Chapter 8

Thesis Summary

The LHC is a tool which allows the study of fundamental particle physics at extremely
high energies. The four main experiments situated around the LHC enable a broad
physics program to be studied. This thesis has presented two analyses undertaken with
p — p data recorded by the ATLAS detector it highlights only a small contribution to a

vast amount of work which has been produced by the collaboration so far.

Chapter 5 presented a technical study using MC to investigate the b-jet efficiency and
estimate systematic uncertainties as a function of pp and n. This analysis resulted in
the implimentation of a MC extrapolation of the associated b-tagging uncertainties in
ATLAS data in high pr events; up to 1.2 TeV for b-, ¢- and I-jets, and to 800 GeV for
7 flavoured jets. The extrapolation for 2012 data is currently used throughout ATLAS

and is vital for analyses with a signal which contains several high pr jets.

Chapter 6 then presented a search for the Standard Model Higgs boson. The analysis
probes one particular decay channel where the Higgs boson, decaying into a pair of b-
quarks, is produced in association with another massive vector boson, identified through
a decay to two neutrinos. The MVA analysis is combined and simultaneously fit with
two other associated production channels. For a higgs Boson mpy = 125 GeV best fit
values of the signal strength are measured to be i = 0.22J_r8:g§ for the O-lepton only fit
and i = 0.84Jj8:§g for the combined simultaneous fit. The observed (expected) deviation
from the background only hypothesis corresponds to 0.30 (1.50) for the 0-lepton only
fit and 2.10 (2.50) for the combined simultaneous fit. The results are consistant with

the SM, however, a discovery of the Higgs boson decaying to a pair of b-quarks can not

be stated, further data and analysis is required.
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Appendix A

Estimating 0-Tagging Efficiency
Uncertainties in Monte Carlo
Results

This appendix contains tables of numbers for the tagging algorithms reccomended for
2012 physic analyses at several operating points. The tables show a breakdown of the

total systematic uncertainty on b-tagging efficiency as a function of pr and 7.
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pr GeV
20-30  30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 3.0 0.3 0.9 0.3 0.3 0.8 0.8 1.0 0.6 0.5 0.7 1.6 7.1 10.0
Plie Up 0.2 0.7 0.3 0.2 0.3 0.3 -0.1 0.2 0.4 0.1 0.2 -0.1 -0.6 -16.6
Track Multiplicity 1.0 0.8 0.6 0.6 0.7 0.5 0.5 0.4 0.8 0.7 0.8 0.7 3.0 -3.4
Smear 7 -5.6 -2.9 -1.1 -0.8 -0.9 -1.6 -1.1 -2.4 -3.2 -0.2 2.9 4.6 10.7 37.8
Smear ¢ -6.9 -3.5 -1.8 -1.2 -1.6 2.7 -1.7 -3.3 -5.2 -2.2 3.6 3.3 4.5 33.5
Shared Hits -1.3 0.2 1.1 1.3 1.9 2.2 3.3 3.6 5.6 8.2 16.7 24.8 22.6 24.7
Smear dy -2.9 -1.9 -0.7 -0.5 -0.7 -0.9 -0.7 -1.5 -1.5 -0.4 2.7 -1.4 5.0 5.0
Smear zg -1.9 -0.7 -0.7 -0.5 -0.0 0.2 0.2 -1.3 -0.1 0.6 1.3 4.1 14.2 14.2
Fake Rate -3.1 -1.4 0.0 0.2 0.1 -0.2 -0.1 -0.8 -0.9 0.6 3.9 7.6 8.4 20.9
Total Syst 10.5 5.3 2.8 2.2 2.8 4.0 4.1 6.0 8.5 8.6 18.0 26.9 31.7 64.9
Stat Err 1.8 1.2 1.1 1.0 0.8 0.9 1.0 1.2 1.6 1.8 1.2 3.4 22.5 36.6
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.2 0.2 0.3 0.4

Plie Up 0.3 0.3 0.2 0.5

Track Multiplicity 0.7 0.6 0.7 1.2

Smear 7 -24 -2.7 -2.7 -2.6

Smear ¢ -3.4 -4.0 -4.0 -3.7

Shared Hits 1.7 1.9 3.8 3.0

Smear dy -1.3 -1.7 -1.7 -2.1

Smear z -0.6 -0.9 -0.8 -0.7

Fake Rate -0.9 -1.3 -0.5 -0.5

Total Syst 4.9 5.8 6.5 6.0

Stat Err 0.6 0.7 1.0 1.6

TABLE A.1: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the MV1 tagger at 60%
efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 0.9 0.2 0.6 0.1 0.2 0.2 0.1 0.2 0.5 0.5 0.5 0.6 4.7 14.4
Plie Up -0.1 0.2 0.2 0.1 0.2 0.1 0.1 0.1 0.3 0.1 0.1 -0.3 0.9 3.8
Track Multiplicity 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.4 0.2 0.3 0.2 -0.7 0.8
Smear 7 -3.3 -1.5 -0.8 -0.4 -0.5 -0.8 -0.7 -1.3 -1.4 0.4 1.1 3.4 2.6 -13.9
Smear ¢ -4.1 -2.1 -1.4 -0.9 -0.7 -1.0 -1.2 -2.0 2.7 -0.3 1.3 1.8 7.6 21.3
Shared Hits -0.8 -0.1 0.2 0.6 0.8 1.0 1.4 1.4 2.9 4.6 8.7 14.6 17.5 -47.7
Smear dy -1.7 -0.9 -0.4 -0.2 -0.3 -0.3 -0.5 -0.9 -1.1 -0.2 0.4 -0.2 -4.0 5.9
Smear zg -1.5 -0.7 -0.4 -0.2 -0.3 -0.2 -0.3 -0.6 -0.8 -0.0 0.1 2.4 -1.2 9.6
Fake Rate -1.3 -06  -0.1 0.1 0.2 -0.0 0.0 -0.3 -0.3 1.3 2.2 5.3 3.6 73.8
Total Syst 6.1 2.9 1.8 1.3 1.3 1.7 2.0 3.0 4.5 4.9 9.2 16.2 20.6 93.4
Stat Err 0.9 0.6 0.6 0.5 0.4 0.5 0.5 0.7 0.8 0.9 0.5 1.2 16.2 74.5
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.1 0.1 0.2 0.2

Plie Up 0.2 0.2 0.1 0.1

Track Multiplicity 0.3 0.3 0.3 0.5

Smear 7 -1.3 -1.3 -1.6 -1.6

Smear ¢ -1.8 -2.0 -2.2 -2.4

Shared Hits 0.6 0.8 1.4 1.6

Smear dy -0.7 -0.9 -1.0 -0.9

Smear z -0.4 -0.7 -1.2 -0.8

Fake Rate -0.5 -0.4 -0.2 0.0

Total Syst 2.5 2.8 3.5 3.6

Stat Err 0.3 0.4 0.5 0.8

TABLE A.2: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the MV1 tagger at 70%
efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 0.6 0.3 0.5 0.2 0.2 0.2 0.1 0.1 0.2 0.2 0.1 0.3 3.3 14.5
Plie Up 0.1 0.0 0.1 0.1 0.1 -0.0 0.1 -0.0 0.2 0.0 0.1 -0.0 0.8 2.1
Track Multiplicity 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.1 0.2 -0.0 1.1 0.1
Smear 7 -1.7 -0.6 -0.4 -0.3 -0.1 -0.5 -0.3 -0.6 -1.4 0.1 0.0 1.1 0.8 -21.8
Smear ¢ -2.2 -0.8 -0.8 -0.6 -0.2 -0.7 -0.6 -0.8 -1.8 0.1 0.2 0.4 1.9 13.4
Shared Hits -0.5 0.0 0.1 0.1 0.4 0.3 0.4 0.5 0.5 1.7 3.4 6.3 9.9 0.2
Smear dy -1.2 -0.7 -0.4 -0.6 -0.3 -0.5 -0.4 -0.5 -1.3 -0.0 -0.3 -0.8 -2.6 -1.1
Smear zg -1.0 -0.6 -0.4 -0.6 -0.1 -0.4 -0.5 -0.6 -1.1 -0.3 -0.5 -0.0 -0.1 13.1
Fake Rate 07  -03 -00 -0.1 0.2 -0.1 -0.1 -0.1 -0.5 0.5 1.0 2.3 3.7 3.7
Total Syst 3.3 1.4 1.1 1.1 0.7 1.1 1.0 1.4 3.0 1.8 3.6 6.9 11.6 32.5
Stat Err 0.6 0.4 0.4 0.3 0.3 0.3 0.3 0.4 0.5 0.5 0.3 0.6 5.3 30.5
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.1 0.1 0.1 0.2

Plie Up 0.1 0.1 0.1 0.1

Track Multiplicity 0.1 0.1 0.2 0.3

Smear 7 -0.5 -0.7 -0.9 -0.6

Smear ¢ -0.7 -0.9 -1.3 -0.9

Shared Hits 0.2 0.2 0.4 0.7

Smear dy -0.6 -0.6 -0.9 -0.8

Smear z -0.2 -0.6 -1.3 -0.9

Fake Rate -0.2 -0.2 -0.3 0.2

Total Syst 1.2 1.5 2.3 1.8

Stat Err 0.2 0.2 0.3 0.5

TABLE A.3: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the MV1 tagger at 80%
efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 0.6 0.3 0.3 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 3.6 16.2
Plie Up 0.1 0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 -0.0 0.1 -0.0 -0.0 1.7
Track Multiplicity 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.1 0.1 0.0 -0.5 -0.8
Smear 7 -1.1 -0.4 -0.2 -0.2 -0.1 -0.5 -0.3 -0.5 -1.0 -0.1 0.0 1.1 0.5 -0.9
Smear ¢ -1.6 -0.5 -0.6 -0.5 -0.2 -0.7 -0.5 -0.7 -1.5 -0.3 0.1 0.4 0.1 8.0
Shared Hits -0.2 0.0 0.0 0.1 0.3 0.2 0.3 0.3 0.4 1.1 2.5 5.0 9.6 10.4
Smear dy -1.0 -0.7 -0.4 -0.5 -0.4 -0.5 -0.4 -0.6 -1.1 -0.3 -0.4 -0.8 -2.8 6.4
Smear zq -08 -05 -05 -06 -02 -05 -0.5 -0.5 -0.8 -0.5 -0.6 -0.1 0.6 -0.6
Fake Rate -0.4 -0.1 0.1 -0.0 0.1 -0.1 -0.0 -0.1 -0.4 0.4 0.8 2.2 2.7 12.2
Total Syst 2.5 1.1 0.9 1.0 0.6 1.1 0.9 1.2 2.4 1.4 2.7 5.7 11.0 25.0
Stat Err 0.5 0.4 0.3 0.3 0.2 0.3 0.3 0.4 0.5 0.4 0.3 0.5 4.3 15.0
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.1 0.1 0.0 0.1

Plie Up 0.1 0.1 0.1 0.1

Track Multiplicity 0.1 0.1 0.2 0.2

Smear 7 -0.4 -0.5 -0.7 -0.4

Smear ¢ -0.6 -0.8 -1.0 -0.6

Shared Hits 0.1 0.1 0.3 0.5

Smear dy -0.5 -0.6 -0.9 -0.5

Smear z -0.2 -0.5 -1.3 -0.9

Fake Rate -0.1 -0.2 -0.2 0.3

Total Syst 0.9 1.3 2.0 14

Stat Err 0.2 0.2 0.3 0.4

TABLE A.4: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the MV1 tagger at 85%
efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 1.2 0.2 0.7 0.3 0.3 0.4 0.3 0.3 0.5 0.4 0.7 0.2 5.7 15.6
Plie Up -0.0 0.4 0.2 0.1 0.2 0.0 0.0 0.2 0.2 0.0 0.1 -0.1 -0.3 3.3
Track Multiplicity 0.6 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.5 0.3 0.4 0.4 -3.0 -4.7
Smear 7 -3.8 -2.2 -0.9 -0.9 -0.7 -0.7 -0.8 -1.4 -1.3 0.6 1.8 4.0 9.7 -55.2
Smear ¢ -4.9 -2.8 -1.5 -1.4 -0.9 -1.0 -1.4 -1.8 -2.6 0.3 2.3 2.2 17.6 -146.5
Shared Hits -0.8 -0.0 0.5 0.7 1.3 1.6 2.0 2.3 4.2 6.2 114 18.0 25.0 -207.4
Smear dy -1.9 -1.5 -0.6 -0.5 -0.5 -0.2 -0.3 -0.7 -0.5 0.7 1.3 -1.3 1.6 -237.8
Smear zq -1.6 -1.0 -05 -06 -0.1 0.1 -0.2 -0.5 0.0 0.6 0.9 2.9 8.8 -33.9
Fake Rate -1.7 -0.9 -0.0 -0.0 0.2 0.2 0.1 -0.1 0.2 1.4 3.0 6.1 11.6 52.4
Total Syst 7.0 4.1 2.1 2.0 1.8 2.1 2.6 3.4 5.1 6.5 12.2 19.8 35.8 358.1
Stat Err 1.1 0.8 0.7 0.7 0.5 0.6 0.7 0.8 1.0 1.1 0.7 1.7 27.1 99.6
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.2 0.2 0.2 0.3

Plie Up 0.2 0.2 0.1 0.3

Track Multiplicity 0.4 0.4 0.4 0.6

Smear 7 -1.3 -1.7 -1.9 -2.0

Smear ¢ -1.9 -2.5 -2.6 -2.9

Shared Hits 1.2 1.3 2.1 2.2

Smear dy -0.5 -1.0 -1.0 -1.4

Smear z -0.2 -0.7 -1.1 -0.7

Fake Rate -0.4 -0.5 -0.1 0.1

Total Syst 2.7 3.5 4.2 4.5

Stat Err 0.4 0.4 0.6 1.0

TABLE A.5: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the MV1c tagger at 50%
efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30  30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 1.1 0.1 0.7 0.2 0.1 0.3 0.2 0.2 0.4 0.4 0.5 0.5 5.2 14.5
Plie Up 0.0 0.3 0.2 0.0 0.2 0.0 0.1 0.1 0.3 0.0 0.1 -0.2 0.3 -0.7
Track Multiplicity 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.5 0.2 0.4 0.1 -1.6 -2.1
Smear 7 -3.8 -1.9 -0.7 -0.5 -0.5 -0.7 -0.8 -1.3 -1.2 0.8 1.3 3.6 7.1 -13.9
Smear ¢ -4.6 -2.4 -1.4 -1.0 -0.7 -0.9 -1.3 -2.0 24 -0.4 1.6 1.4 14.0 -108.7
Shared Hits -0.9 -0.1 0.3 0.8 1.0 1.2 1.6 1.9 3.4 5.6 9.9 15.7 22.0 -217.2
Smear dy -2.0 -1.2 -0.3 -0.4 -0.2 -0.3 -0.4 -0.8 -0.6 0.4 0.6 -0.4 -0.2 -158.6
Smear zg -1.9 -0.5 -0.3 -0.3 0.0 -0.2 -0.3 -0.6 -0.6 0.4 0.3 2.9 2.0 -143.6
Fake Rate -1.6 -0.8 0.1 0.1 0.3 0.1 0.0 -0.2 -0.2 1.4 2.5 5.7 6.4 36.1
Total Syst 6.9 3.5 1.8 1.5 1.4 1.8 2.3 3.2 4.5 5.9 10.4 17.4 28.4 326.3
Stat Err 1.0 0.7 0.6 0.6 0.5 0.5 0.6 0.7 0.9 1.0 0.6 1.4 20.0 67.1
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.2 0.1 0.2 0.3

Plie Up 0.2 0.1 0.1 0.2

Track Multiplicity 0.4 0.3 0.3 0.6

Smear 7 -1.3 -1.3 -1.6 -1.8

Smear ¢ -1.9 -2.2 -2.3 -2.5

Shared Hits 0.9 1.0 1.7 1.9

Smear dy -0.7 -0.8 -0.8 -1.2

Smear z -0.3 -0.6 -1.1 -0.6

Fake Rate -0.4 -0.4 -0.2 0.0

Total Syst 2.6 3.0 3.6 3.9

Stat Err 0.3 0.4 0.5 0.9

TABLE A.6: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the MV1c tagger at 57%
efficiency for b-jets. Values show the percentage error for each point.

0T TSNNSIY 0J4D,) QUOPY UL SaLuIDILduy) fiouaworffs buibbng -q buryvwiysy vy xipueddy



pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 1.0 0.2 0.5 0.1 0.2 0.3 0.1 0.2 0.5 0.5 0.6 0.6 4.5 15.2
Plie Up -0.1 0.2 0.2 0.1 0.1 0.1 0.1 0.1 0.3 0.0 0.1 -0.3 0.9 3.9
Track Multiplicity 0.5 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.4 0.2 0.3 0.2 -0.7 0.8
Smear 7 -3.5 -1.6 -0.7 -0.5 -0.6 -0.8 -0.8 -1.2 -1.5 0.4 1.3 3.8 5.5 -12.3
Smear ¢ -4.3 -2.1 -1.4 -0.9 -0.7 -1.0 -1.2 -1.9 -2.6 -0.5 1.3 1.9 12.3 21.3
Shared Hits -0.7 0.0 0.2 0.7 0.8 1.1 1.5 1.8 2.8 5.1 9.2 15.1 18.5 -13.5
Smear dy -1.7 -0.9 -0.4 -0.3 -0.3 -0.4 -0.5 -0.7 -1.0 -0.0 0.5 0.1 1.3 8.6
Smear zg -14 -0.5 -0.4 -0.2 -0.3 -0.2 -0.4 -0.5 -1.1 0.3 0.3 2.9 2.7 10.7
Fake Rate -1.5  -0.7  -0.0 0.1 0.2 -0.0 -0.0 -0.2 -0.2 1.2 2.3 5.4 6.6 75.6
Total Syst 6.3 3.0 1.8 1.4 1.4 1.8 2.2 3.0 4.4 5.3 9.7 16.9 24.4 83.3
Stat Err 0.9 0.7 0.6 0.5 0.4 0.5 0.5 0.7 0.8 0.9 0.6 1.3 17.2 74.6
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.1 0.1 0.2 0.2

Plie Up 0.2 0.1 0.2 0.2

Track Multiplicity 0.3 0.3 0.3 0.5

Smear 7 -1.3 -1.3 -1.6 -1.8

Smear ¢ -1.9 -2.0 -2.3 -2.5

Shared Hits 0.7 1.0 1.5 1.8

Smear dy -0.7 -0.7 -1.0 -1.2

Smear z -0.3 -0.5 -1.3 -0.9

Fake Rate -0.5 -0.3 -0.2 -0.1

Total Syst 2.6 2.8 3.6 3.9

Stat Err 0.3 0.4 0.5 0.8

TABLE A.7: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the MV1c tagger at 60%
efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30  30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 0.8 0.2 0.4 0.1 0.1 0.2 0.1 0.1 0.4 0.4 0.3 0.6 4.5 14.6
Plie Up 0.0 0.1 0.1 0.1 0.1 0.0 0.1 0.1 0.3 0.1 0.1 -0.1 0.3 3.8
Track Multiplicity 0.4 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0.4 0.2 0.3 0.2 0.6 1.3
Smear 7 -2.8 -1.1 -0.8 -0.3 -0.3 -0.7 -0.8 -1.2 -1.5 0.3 0.5 2.3 4.4 -26.1
Smear ¢ -3.6 -1.4 -1.2 -0.8 -0.5 -0.7 -1.0 -1.7 -2.5 0.1 0.7 1.0 3.6 7.8
Shared Hits -0.7 -0.0 0.1 0.4 0.6 0.8 0.9 0.9 1.6 3.4 6.5 11.3 16.4 -14.3
Smear dy -1.8 -0.9 -0.5 -0.5 -0.3 -0.5 -0.7 -1.1 -1.4 0.0 -0.1 -0.7 -0.9 5.2
Smear zg -14 -0.7 -0.5 -0.6 -0.2 -0.4 -0.4 -1.0 -1.0 0.0 -0.1 1.1 -0.9 -1.8
Fake Rate -1.3 -0.4 -0.1 0.0 0.1 -0.0 -0.1 -0.3 -0.3 1.0 1.8 3.8 5.2 13.0
Total Syst 5.4 2.2 1.7 1.3 0.9 1.4 1.8 2.7 3.8 3.6 6.8 12.2 18.7 37.1
Stat Err 0.8 0.5 0.5 0.4 0.4 0.4 0.4 0.5 0.7 0.7 0.4 0.9 9.9 53.2
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.1 0.1 0.2 0.2

Plie Up 0.2 0.1 0.1 0.2

Track Multiplicity 0.3 0.2 0.3 0.5

Smear 7 -1.0 -1.0 -1.5 -1.3

Smear ¢ -1.4 -1.5 -2.0 -1.9

Shared Hits 0.4 0.5 0.9 1.2

Smear dy -0.8 -0.8 -1.2 -1.0

Smear z -0.3 -0.7 -1.3 -1.0

Fake Rate -0.5 -0.3 -0.2 0.1

Total Syst 2.0 2.2 3.2 3.0

Stat Err 0.3 0.3 0.4 0.7

TABLE A.8: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the MV1c tagger at 70%
efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 0.6 0.3 0.5 0.2 0.1 0.1 0.1 0.1 0.2 0.2 0.1 0.3 3.5 14.5
Plie Up 0.1 0.0 0.1 0.1 0.1 -0.0 0.1 -0.0 0.2 0.0 0.1 -0.0 0.7 2.2
Track Multiplicity 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.3 0.1 0.2 -0.0 1.0 -0.1
Smear 7 -1.7 -0.7 -0.4 -0.4 -0.2 -0.5 -0.4 -0.7 -1.4 0.2 0.1 1.1 0.9 -9.6
Smear ¢ -2.2 -08 -0.7 -07 -03 -0.7 -0.6 -0.8 -1.8 0.1 0.3 0.5 1.6 15.7
Shared Hits -0.5 -0.0 0.1 0.1 0.4 0.3 0.4 0.5 0.6 1.8 3.5 6.6 10.0 1.4
Smear dgy -1.2 -08 -03 -06 -04 -05 -0.4 -0.6 -1.3 -0.0 -0.3 -0.8 -3.0 -0.1
Smear zq -09 -06 -05 -06 -02 -04 -0.6 -0.6 -1.0 -0.3 -0.5 0.0 -0.5 13.8
Fake Rate -0.7 -0.3 -0.0 -0.1 0.1 -0.1 -0.1 -0.1 -0.4 0.5 1.0 2.4 3.9 4.0
Total Syst 3.3 1.5 1.1 1.2 0.8 1.1 1.1 1.5 2.9 1.9 3.8 7.1 11.9 27.6
Stat Err 0.6 0.4 0.4 0.4 0.3 0.3 0.3 0.4 0.5 0.5 0.3 0.6 5.4 30.9
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.1 0.1 0.1 0.2

Plie Up 0.1 0.1 0.1 0.1

Track Multiplicity 0.1 0.1 0.2 0.3

Smear 7 -0.6 -0.7 -1.0 -0.6

Smear ¢ -0.8 -1.0 -1.3 -0.9

Shared Hits 0.2 0.2 0.4 0.7

Smear dy -0.6 -0.6 -1.0 -0.7

Smear z -0.2 -0.6 -1.3 -0.8

Fake Rate -0.3 -0.2 -0.3 0.2

Total Syst 1.2 1.5 2.4 1.8

Stat Err 0.2 0.2 0.3 0.5

TABLE A.9: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the MV1c tagger at 80%
efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 0.5 0.3 0.2 0.2 0.1 0.1 0.2 0.2 0.2 0.2 0.1 0.1 3.6 16.2
Plie Up 0.0 -0.0 0.0 0.1 0.0 0.0 0.0 0.0 0.2 -0.0 0.1 -0.0 -0.1 1.8
Track Multiplicity 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.2 0.1 0.1 0.1 -0.4 -0.7
Smear 7 -1.0 -0.2 -0.2 -0.2 -0.1 -0.4 -0.3 -0.6 -0.9 -0.1 -0.0 1.0 -0.2 -0.8
Smear ¢ -1.4 -0.3 -0.6 -0.4 -0.2 -0.6 -0.5 -0.8 -14 -0.3 0.1 0.5 0.1 5.0
Shared Hits -0.2 0.1 0.0 0.1 0.3 0.2 0.2 0.3 0.3 1.1 2.4 4.8 8.5 11.2
Smear dy -1.0 -0.5 -0.4 -0.5 -0.4 -0.5 -0.4 -0.7 -1.1 -0.4 -0.4 -0.8 -3.1 6.8
Smear zq -08 -04 -05 -06 -03 -05 -0.6 -0.6 -0.8 -0.6 -0.6 -0.1 0.3 -0.5
Fake Rate -0.3 0.0 0.1 0.0 0.1 -0.0 -0.0 -0.2 -0.3 0.4 0.8 2.2 2.9 11.4
Total Syst 2.3 0.8 1.0 1.0 0.6 1.0 0.9 1.4 2.3 1.4 2.6 5.4 10.2 24.4
Stat Err 0.5 0.4 0.3 0.3 0.2 0.3 0.3 0.4 0.4 0.4 0.2 0.5 4.2 14.7
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.1 0.1 0.0 0.1

Plie Up 0.1 0.0 0.1 0.1

Track Multiplicity 0.1 0.1 0.1 0.2

Smear 7 -0.4 -0.4 -0.7 -0.4

Smear ¢ -0.5 -0.7 -0.9 -0.6

Shared Hits 0.1 0.1 0.3 0.4

Smear dy -0.5 -0.6 -0.9 -0.5

Smear z -0.2 -0.5 -1.3 -1.0

Fake Rate -0.1 -0.1 -0.2 0.3

Total Syst 0.9 1.2 2.0 1.5

Stat Err 0.2 0.2 0.3 0.4

TABLE A.10: A breakdown of the contribution of the systematic uncertainties for each pr (top) and n (bottom) bin using the MV1c tagger at 85%
efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 0.9 0.4 0.4 0.4 0.3 0.4 0.3 0.6 0.5 0.6 0.5 0.3 1.3 4.3
Plie Up -0.1 -0.2 -0.4 -0.2 -0.2 -0.1 -0.2 -0.1 -0.5 -0.1 0.0 0.3 -0.1 -1.5
Track Multiplicity  -0.4 -0.4 -0.4 -0.4 -0.5 -0.4 -0.4 -0.2 -0.6 -0.3 -0.1 0.3 -0.1 -0.2
Smear 7 2.3 1.2 0.8 0.6 0.9 1.3 1.7 1.7 2.2 -1.5 -1.1 -2.1 -2.0 11.8
Smear ¢ 3.0 1.8 1.5 1.0 1.0 2.0 2.3 2.8 3.4 -0.6 -1.3 -1.2 -3.2 10.1
Shared Hits 0.6 -0.2 -0.4 -0.7 -1.4 -1.7 -2.2 -2.3 -4.0 -7.1 -9.2 -8.1 -6.1 -1.8
Smear dy 1.5 1.3 0.9 0.5 0.6 1.4 1.7 1.7 2.5 0.1 0.0 0.7 -0.8 1.3
Smear zg 1.1 1.1 0.9 0.8 0.5 0.9 1.5 2.0 2.4 0.5 -0.4 -1.0 -0.1 0.8
Fake Rate 0.5 02  -05 -06 -0.7 -06 -0.1 0.0 0.3 -2.2 -2.9 -3.7 -3.1 -0.2
Total Syst 4.4 2.8 2.3 1.9 2.3 3.5 4.3 4.8 6.7 7.7 9.8 9.3 7.9 16.4
Stat Err 0.7 0.8 0.8 0.8 0.8 0.9 1.0 1.2 1.3 1.4 0.6 0.8 4.3 24.1
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.2 0.2 0.2 0.2

Plie Up -0.3 -0.2 -0.2 -0.3

Track Multiplicity -0.5 -0.4 -0.3 -0.4

Smear 7 1.6 1.4 1.6 1.1

Smear ¢ 2.4 2.5 2.1 1.4

Shared Hits -0.8 -1.5 -2.2 -1.2

Smear dy 1.6 1.4 1.1 1.3

Smear z 0.8 1.3 1.9 1.2

Fake Rate 0.4 -0.0 -0.6 -0.7

Total Syst 3.6 3.7 4.1 2.9

Stat Err 0.5 0.6 0.6 0.7

TABLE A.11: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the JetFitterCharm
tagger at loose% efficiency for b-jets. Values show the percentage error for each point.
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pr GeV
20-30 30-40 40-50 50-60 60-75 75-90 90-110 110-140 140-200 200-300 300-500 500-800 800-1200 1200-2000
Jet Systs 0.5 14 2.9 2.1 0.3 1.2 1.0 0.5 0.9 1.7 0.6 1.2 10.1 15.3
Plie Up -05 -05 -07 -03 -00 -04 0.1 0.3 -0.0 0.3 0.4 0.9 -0.0 -5.5
Track Multiplicity  -0.2 -0.1 -0.3 -0.4 -0.3 -0.4 -0.4 -0.1 -0.1 0.2 0.7 1.2 1.2 3.7
Smear 7 -1.0 -1.9 -1.5 -0.2 0.8 0.1 0.7 -2.1 -2.3 -2.1 -1.1 -1.4 -10.9 43.9
Smear ¢ -1.1 -1.6 -1.4 -1.4 0.4 1.3 0.3 -0.8 -4.1 2.7 -1.5 0.5 -25.1 42.0
Shared Hits -0.7 -1.4 -1.3 -0.6 -1.1 -1.7 -1.8 -2.8 -4.1 -4.3 -5.8 1.7 -5.8 -188.2
Smear dy 0.1 -1.6 0.2 -0.3 1.3 2.7 1.5 1.3 -1.7 4.0 0.5 1.5 -25.8 -20.5
Smear zg -0.1 -1.0 0.7 0.3 1.1 1.5 2.9 0.8 0.3 0.3 -0.6 0.5 -11.8 -55.0
Fake Rate -3.6 -4.0 -3.0 -2.7 -1.9 -2.4 -1.8 -2.8 -2.6 -2.2 -3.0 -1.1 -16.0 -2.1
Total Syst 4.0 5.4 5.0 3.8 3.0 4.7 4.3 4.9 7.0 7.4 6.9 3.5 44.1 207.0
Stat Err 2.2 1.9 1.9 1.9 1.6 1.9 2.0 2.4 2.9 3.2 1.5 2.4 12.0 81.6
n
0-0.6 0.6-1.2 1.2-1.8 1.8-2.5

Jet Systs 0.2 0.1 0.2 0.3

Plie Up -0.2 0.0 -0.1 -0.8

Track Multiplicity -0.5 -0.1 0.3 -0.2

Smear 7 -1.1 -1.3 -2.0 0.3

Smear ¢ -0.7 -1.9 -1.8 0.2

Shared Hits -1.0 -2.8 -3.6 -0.4

Smear dy 1.0 0.4 -0.9 0.3

Smear z 0.6 1.1 -0.8 0.7

Fake Rate -1.8 -2.5 -4.5 -3.4

Total Syst 2.8 4.6 6.5 3.7

Stat Err 1.1 1.3 1.5 1.9

TABLE A.12: A breakdown of the contribution of the systematic uncertainties for each pr (top) and 7 (bottom) bin using the JetFitterCharm
tagger at medium% efficiency for b-jets. Values show the percentage error for each point.
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Appendix B

Nusiance Parameters

This appendix contains a list of the NP used in the combined fit.

Signal Specific

Nusiance Parameter Region Applied Value Count
Ratio to SM cross section Signal Float 1
Branching Ratio Signal 3.3% 1
Scale Uncertainty qqV H Signal 1% 1
Scale Uncertainty ggZ H Signal 50% 1
NLO EW Correction Signal Shape only 1
Inclusive Acceptance Signal 1.5-3.4% 2
Scale Signal -1.9% - 4.1% 2
PDF Signal 2.1% - 5.0% 2
QCD Scale Signal Shape only 2
PDF Sets qqVH Signal 2.4% 1
PDF Sets ggZH Signal 17% 1

Total

\ 14 with Priors, 1 floating

TABLE B.1:

127

Signal specific NPs.
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Z+jets Specific
Nusiance Parameter Region Applied Value Count
Z1 normalisation All 5% 1
Z1 3/2 jet ratio 3 jet 5% 1
Zcl normalisation All Float 1
Zcl 3/2 jet ratio 3 jet 26% 1
Zbb normalisation All Float 1
Zbb 3/2 jet ratio 3 jet 20% 1
Zbl/ Zbb ratio 2 and 3 jet 12% 2
Zbe/ Zbb ratio All 12% 1
Zce/ Zbe ratio All 12% 1
Z + jets A® shape | Z +b/c, ZI, 2 and 3 jets | Shape only 4
Z + jets p¥. shape | Z +b/c, Zl in all regions | Shape only 2
Z + jets mpb shape | Z +b/c, Z1 in all regions | Shape only 2
Total ‘ 16 with Priors, 2 floating
TABLE B.2: Z+jets Specific NPs.
W +jets Specific
Nusiance Parameter Region Applied Value Count
W1 normalisation All 10% 1
W1 3/2 jet ratio 3 jet 10% 1
Wl normalisation All Float 1
Wel 3/2 jet ratio 3 jet 10% 1
Wbb normalisation All Float 1
Wbb 3/2 jet ratio 3 jet 10% 1
Wbl /Wbb ratio Py = [0 —90],[90 — 120], [120+] 35% 3
Wbe/Whb ratio All 12% 1
Wee/Wbe ratio All 12% 1
W + jets Ad shape W 4+ bb, W + cl, WI, 2 and 3 jets Shape only 6
W + jets p¥. shape | Wbb/cc, p¥. = [0 — 90], [90 — 120], [120+] | Shape only 3
W + jets p¥ shape Whe/bl, Wel, Wl in all regions Shape only 3
W + jets mpb shape W 4 bb 2 and 3 jet Shape only 2
Total \ 23 with Priors, 2 floating
TABLE B.3: W-+jets Specific NPs.
tt Specific
Nusiance Parameter Region Applied Value Count
tt normalisation 0,1 and 2 lepton Float 3
high /low pY. pY. > 120 GeV 7.5% 1
3/2-jet ratio 3-jet in 2 and 0+1 lepton 20% 2
Top pr All Shape only 1
myb shape All Shape only 1
E%liss shape All 1 lepton 1
Total ‘ 6 with Priors, 3 floating

TABLE B.4: tt Specific NPs.



Appendix B. Nusiance Parameters 129
Single ¢t Specific
Nusiance Parameter ‘ Region Applied \ Value \ Count
s-channel
Cross section All 4% 1
AcerMC vs Pythis+Powheg All 13 - 40% 1
Shower uncertainty All 4 - 8% 1
t-channel
Cross section All 4% 1
aMCatNLO vs AcerMC All -18 - 52% 1
Wt-channel
Cross section All ™% 1
AcerMC vs Pythis+Powheg All -15- 1% 1
Shower uncertainty All -3-5% 1
Total \ 8 with Priors, 0 floating
TABLE B.5: Single top specific NPs.
Diboson Specific
Nusiance Parameter | Region Applied Value Count
Scale All Shape only 2
PDF All 2 - 4% 1
mypb shape All Shape only 3
Total ‘ 6 with Priors, 0 floating
TABLE B.6: Diboson Specific NPs.
Single t Specific
Nusiance Parameter ‘ Region Applied ‘ Value ‘ Count
0-lepton
Normalisation ‘ 2 and 3-jet 1/2 tag > / < 120 GeV \ 100% \ 6
1-lepton
Normalisation 2-jet 1/2L/2M/2T and 3-jet 1/2 tag | 11 - 60 % 12
Template isosrack cut 2/3 jet, 1/2 tag Shape only 10
Reweight 2-jet 2-tag Shape only 2
2-lepton
Normalisation ‘ top e — u decorrelated ‘ 100% ‘ 1
Total ‘ 31 with Priors, 0 floating

TABLE B.7: Multijet specific NPs.
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Experimental
Nusiance Parameter Count
Luminosity
Total integrated luminosity 1
Error on profile 1
Leptons
Electron, trigger, reconstuction and ID efficiencies 1
Electron energy scale 1
Electron energy resolution 1
Muon trigger, reconstruction and ID efficiencies 1
Muon energy resolution from inner detector 1
Muon energy resolution from muon system 1
Isolation scale factors 1
Lepton veto efficiency (0-lep) 1
E%iss Trigger
W vs Z efficieny curve 1
Stat uncertainty of efficiency fit curve 1
Jet Energy Scale
Eigenvector decomposition of in-situ calibration 6
7 inter-calibration model 1
7 inter-calibration model stat 1
Calibration non closure 1
Pileup 3
NPV correction 1
b-jet energy scale 1
b-jet scale for i and v energy 1
Light quark vs gluon fraction 4
Light quark vs gluon response 4
Jet Energy Resolution
All jets 1
b-jet specific 1
Jet Quality
JVF 1
E%iss
Resolution of soft componant 1
Sacle of soft componant 1
Flavour Tagging
b-jet 10
c-jet 15
light-jet 10
AR(cc) bias from truth tagging 1
Generator dependent heavy flavour tagging efficiency 4

Total

80 with Priors, 0 floating

TABLE B.8: Experimental NPs.
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