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Abstract

In this paper we discuss an improved Riemann—Hilbert method, by which arbitrary
higher-order soliton solutions for the derivative nonlinear Schrodinger equation can
be directly obtained. The explicit determinant form of a higher-order soliton which
corresponds to one pth order pole is given. Besides the interaction related to one
simple pole and the other one double pole is considered.
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1 Introduction

The derivative-type nonlinear Schrodinger equations have several applications in
plasma physics and nonlinear fiber optics. In plasma physics, the equation (also
called DNLS-I)

ig, + ¢, +i(lg1°9), = 0 (1

describes small-amplitude nonlinear Alfvén waves propagating parallel to the ambi-
ent magnetic field [9, 13]. In nonlinear optics, the modified NLS i.e. the equation (1)
plus the nonlinear term |g|2q describes the case of subpicosecond optical pulses [3,
6]. Recently Moses et al. has experimentally demonstrated that the equation (also
called DNLS-IT)
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ig, + g, +ilgl’q, =0 2)

describes the propagation of the self-steepening optical pulses without self-phase
modulation [14]. In the view of inverse scattering theory they are gauge equivalent
[23] to the following equation [7] (also called DNLS-III)

. L1
ig,+q. —iq°q + Elql“q =0, A3)

where the asterisk denotes the complex conjugate, so we take DNLS-III as an exam-
ple to present our work. The above derivative-type equations are important inte-
grable models. In addition, there are more general integrable generalizations, such
as the high-order Kaup—Newell equation [18], the generalized mixed nonlinear
Schrodinger equation [19], Kundu equation [11], Kundu-Eckhaus equation [5, 11].
Much research has been conducted for them, here we will not dwell on a detailed
exposition of various results. The Eq. (3) are the compatible condition of the follow-
ing linear differential equations

v, =Xy, v, =Ty, 4)

where
X =—ilc; + 10 + %|q|20'3,

: . . i 1
T ==2ik'o3 +24°0 +Xlql0; +i4030, + 7lql’o; = 500, - 0.0)

_( 0 ¢
Q(x7t)_<_q>k O>a

05 is one of the Pauli matrices

0 1 0 —i 10
“1=\1 o) 227\i o) %BT\o-1)

It is known that Zakharov first given higher-order solitons for the NLS equation
corresponding to a double pole [24]. Subsequently higher-order solitons have also
been studied for the modified KdV equation [22], the sine-Gordon equation [21] and
so on. So far various methods have been developed to deal with higher-order soli-
tons, for example the usual Riemann—Hilbert (RH) method [20], generalized Dar-
boux transform [8, 12], d-method [10], robust inverse scattering transform [4] et al..
In this paper, to avoid the difficulty of calculating residue conditions with multiple
poles, different from the work [25, 26] we generalize Olmedilla’s idea [16] to the
framework for RH method and arbitrary higher-order soliton solutions for the deriv-
ative nonlinear Schrodinger equation can be directly obtained.

This paper is arranged as follows. In Sect. 2, we summary the inverse scatter-
ing method for DNLS-III. In Sect. 3, we derive the explicit determinant form of a

and the potential matrix
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higher-order soliton which corresponds to one pth order pole. In Sect. 4, the interac-
tion related to one simple pole and the other one double pole is displayed.

2 Summary of the Inverse Scattering Method for the DNLS Equation
Firstly, we summarize the already well-known results [15] for the DNLS-III that

will be used in our study. In this section we solve the initial value problem for the
DNLS-IIT with the following zero boundary condition (ZBC) at x — oo:

A, 4D =0, 5)

meanwhile the complex function g(x) satisfies

/ [x"*|1g(x)|dx < 0.

(o]

2.1 The Direct Scattering Problem
2.1.1 Jost Solution and Analyticity

For the oriented curve X = R [ JiR (see Fig. 1) in complex A-plane, we define J, as
the Jost solutions of the Lax representation (4) which obey the boundary conditions

J, (x,4) - e_i’lzm, X = +o00. 6)
Let
190
A
Im(A
e | b
_/1" .Ah
- = . >
_Ah A /1:
D_
—10

Fig.1 The complex A-plane, showing the regions D, where R(4)TJ(4) > 0 (grey) and R(A)F(1) <0
(white), respectively
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U, (x, ) = J, (x, A)e ™,

then

. i
U, =—-iA’[o;, U]+ AQU, + §|q|263Ui,

@)
U,(x,4) = I, x> oo,
which is equivalent to Volterra integral equation
N ey i
U.(x, 1) =1+ / eHREDAQO) + 7l U, Ady. ®)
+oo

Denoting D, = {4 € C| = R(D)STJ(4) > 0}, as shown in Fig. 1. By performing
the Neumann series (cf. [1]) on the Volterra integral equations (8), we know that
U_,(J_;)and U,,(J,,) can be analytically extended to D, and continuously extended
to D, |JZ, while U,,(J,,) and U_,(J_,) can be analytically extended to D_ and
continuously extended to D_ | J X, where the subscripts 1 and 2 identify matrix col-
umns, i.e., U, = (U, U,,).

2.1.2 Scattering Matrix

Abel’s theorem implies that for any solution y(x, 1) of the Lax representation (4)
one has d,(dety) = 0. Since lim Jie”z“»*x = [ for A € Z, we have

X—+00

detJ, (x, 4) = 1.

It follows that VA € X both J_ and J_ are two fundamental matrix solutions of the
scattering problem (4). Define the scattering matrix S(k)

J_(x, 2) =J,.(x, A)S(A), )
where § = {s;}. Rewrite it by component

J_1 (x5, A) =5 (MW, (x, ) + 55, (AT 5 (x, 4), (10)

J_z(x, A) =S12(A)J+1(x, A) + 322(/1)]+2(x, )«). (l 1)
Furthermore we obtain
S11(}») = W(J_1,J+2)» 522(}») = W(J+13J_2),

where W(f, g) is the Wronskian of fand g and reflection coefficients

S S
p(A) =2, =2
S1 RY%)
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From the analytic property of Jost solutions, s;,(4) can be analytically extended to
D, and continuously extended to D, | J Z, while s,,(4) can be analytically extended
to D_ and continuously extended to D_ | J X.

2.1.3 Symmetry Conditions and Discrete Spectrum

By virtue of the uniqueness of the Jost solutions, we have the following symmetry
conditions

J.() = 03] (Do, T, (A) = iopJ (3 (ioy) ™. (12)
So
S = $1(=A), 515D = =spp(=A), 531 (D) = =83, (=),
51 (A) = 5y (=) 51, (D) = (A, 515(A) = =5, (%) (13)
and
(A = —p(=A),  FA) = —p"(A°). (14)

Ifs;,(4,) =0,n=1,...,N, the eigenfunctions J_, (x, A) and J ,(x, 4) at A = A, must
be proportional, i.e.

J—l(xs An) = ynJ+2(-xa An)’ (15)
where y,, is a complex valued constant. Owing to the relations (13), we have
then
T_i(=4) = Pl aa (=),
J_o(=4)) = Vpd i (=4)), (16)
J_z(i:) = 77,,J+1(/1:)s

where 7, = —y,.7, =7

n

, ¥, = —v,. That is, the discrete spectrum is the set
Z = A=Ay Ay, =471
This distribution is shown in Fig. 1.

2.1.4 Asymptoticsas A — oo

The Wentzel-Kramers—Brillouin (WKB) expansion can be used to derive the
asymptotic of modified Jost solutions. In fact, we know that U, are analytic in C/Z,
then we can write an asymptotic expansion for U, when A — oo

Ui,l U¢,2 1
Upe2) = Uy + — + — +O(F>' a7
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Substituting the above expansion into the Eq. (7) and utilizing the expressions for s,
and s,,, we have

Ui(x’i)_)l7 |j’| —>
and

sll()’) = 1, Szz(j.) s 1.

2.2 The Inverse Scattering Problem
2.2.1 Riemann-Hilbert Problem and Reconstruction Formula

In order to construct RH problem, introduce the sectionally meromorphic matrices
U_, U_,
M= |—=L U, M (h=|U,,, =2
S11 §22
From the Egs. (10) and (11) we obtain the jump condition
M, (x, 2) = M_(x, ) + G(4)),

where

—p(DB(A)  p(A)e 24 >

G(4) = < p(i)eﬁ/lzx 0

Recalling the asymptotic behavior of the scattering coefficients, it is easy to obtain
that

M, (x,A) =1, |i] = co.

From the Eq. (7) we can reconstruct the potential g(x, ) from the solution of the RH
problem as follow

q(x, 1) =2i All)rgo AIM(Asx, D]5- (18)

2.2.2 Residue Conditions and Solution for RHP

To solve the RHP, introduce the Cauchy projectors P* over X:

[ ©
P = 5 |

If f,(A)1s analytic in the region D, and f, (1) — O as|A| — oo, then
PE(f(A) =0, PE(fIA) = £f. (D). (19)
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Furthermore, we can obtain the residue conditions from the equations (15) and (16)

U .
Res <—_1> = Cnez“lrzxxUJrz(ln),

=4, \ Sy

-1 112
Res | — ) = C,e?"*U,,(=4,),
A==\ S

U 4

) _ i g2
Res (22) == U,
A=Ak 2

-2 « —2ig*2
Res | —= ) = —Cre ™4 U, (1))
A==A\ Sp

Yn
81y (4)”

Applying P~ to both sides of the expression (10) and P* to both sides of the
expression (11), meanwhile, taking advantage of the formulae (19) and the above
residue conditions, we have

where C,, =

N 2iA2x
1 C,e24xU (1)
U+1(ﬂ) :<0> + Z - = /1_/;—2 n
n=1 n
N i CneZiAixU+2(_/1n) N L pe2i§2xU+2 dé’
~ A+ 4, 27 Js C—(A—i0)

- (20)
0) o Cre UL ()
U+2()') - 1 - r; T
_ ﬁ G Unh) 1 [ PP,
A+ A 27i Jy- & —(A+10) 77

n=1

2.2.3 Time Evolution

The time evolution of the scattering data can be determined by the time part of the Lax
representation (4). By the calculation (cf. [1] for details) we have

g4
A(t) = Ao plt) = peti!

~ ~ 4i) 4i)
p() = petnt,  C (1) = C,e.

2.3 The Soliton Solutions for the DNLS Equation

We now consider the potential g(x, ) for which the reflection coefficient p(1) van-
ishes. As usual, in the case there is no jump from M, to M_ across the continuous
spectrum, and the Eq. (20) reduce to an algebraic system. Next we take 1-soliton
solution as an example.
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Let p(4) = p(1) = 0 and N = 1. From the Eq. (20) and the formula (18), we can
obtain 1-soliton solution

q = —4|C, e Sech[2n(x + 4E1) + p + iv]. 1)
where

C .
/1% =&+, ui] — e—(ﬂ+1v)’
n

9 =w+26x+4E -, o =arg(C)).

Remark 1 If we consider N different zeros of s,,(4), By observation and calculation
we can obtain the determinant form of N-soliton solution which is similar to the
expression (29), this procedure will be elaborated in the next section.

3 Higher-Order Soliton Solutions for the DNLS Equation

In this section we generalize Olmedilla’s idea to the framework for RH method. If
the potential g(x) decay rapidly enough at infinity, so that p(1) can be analytically
continued above or below all poles {+4, }21:1 and p(A4) can be analytically continued
below or above all poles {+4} }51\1:1 (cf. [1, 2]). The Eq. (20) can be simplified by vir-
tue of the residue theorem as follows:

)1 AU
U, = <0> + %/FCTQIC,

= —2i0U
U= (1) + 55 [ 2 e,

where 6 = £2x 4+ 2¢*t, T is the union of a contour from oo to ico that passes above all
poles {4, }2\’ and a contour from —oo to —ioo that passes below all poles {—4, }

(22)

o
is the union of a contour from —co to ico that passes above all poles {— 1" }2\’:1 and a
contour from co to —ico that passes below all poles { 17 }iv=1 in the Fig. 1.

Supposing that p(4) has a pth order pole, we consider the Laurent series expan-
sion of p(4) around the point 4, in the region D, . From the symmetries (14), we have

p(2) = pou)+2 [u e y! m]

A (23)
P(A) = po(A) — Z[m +(=1y7! m]

where p((4) and p,(A) are analytic and satisfy the symmetries (14), p_;(i = 1,2, ---, p)
is a constant. Plugging the expressions (23) into (22), the integral equations (22) can
be rewritten as

@ Springer
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» k- 1)<€ U+z(§)>

U, () = < ) ZP k aé’kcl ’ |g=/1,1

0 24)
al ”(—“ = 1[0,
k=1 ¢4 +2
Z( Db = —a"+2—,ﬁ/g«TdC’
ok=1) ( UL, ©) )
0 c N =)
Uya(A) = <1) + k_le_kTM
gm0 (25)
2 o (—29) 520U, ()
_ - 1 p¢)e 1
R e D S S o+ — 2 e e
+ ) (=D, el R e R4

For the case of a reflectionless potential, i.e. p(4) = 5(41) = 0 when 4 € Z, the inte-
gral equation (24) and (25) reduce to the system of linear equations. By calculation

we have
Hp—a) -QH, H,= Q; s (26)

where Q = (F),,, and F; is a2 X 2 matrix. We denote

a(k+i—j—l)[(€ _ A)—leZif)]
11
F ij ch 1Pk

k=j

0A-1ogk=i le=t, =15
» L .
- a(k+t -j 1)[(4' _ )’) 16219]
12 _ y—1  1\k=1
F-j = kz=j Ck—l( 1) Pk aﬂ’._lagk—j |C=—ln,/1:/1:’
oMV — 1)
21
Fy = kz_; Ck 1Pk oA~k le=s, 1=-1>
» . o
. 0(k+t - 1)[(4« _ )’) 16219]
22 _ d=1 1\k=1
Fy = kz;, Ceet "D oy AAi-19ck=i |C=—ﬂn~1=—/12‘
and
H = U A U 1 U, 1 VU, r
» = Uen(4) i (=4) or ) o A 1x2p”
_ au, aPhy, T
H, = ( Uii(h) - Upni(=4) =24 o ot (A )>l><2p’
T
a)pz(l 1 0 O -0 0)1><2p'
From the formula (18), we have
q= —2iApFIp, 27
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where
Ay = (G G G G - G, G )1><2p’
» U
. k=D (e=210)
G = cty ——— |,
J = k—lp—k ()Ck_.] {=Ax

G = i Ci_—ll(_l)k_lpik% (=1
k=j
Using the expression (26) and (27), we obtain
g = =2\, +Q,Q) " w,. (28)
The expression (28) can written into determinant form

det d~)p
q=2i ,
det <I)p

(29)

where

Remark 2 1f p(4) has r different poles, 4;, 4,, ..., 4, in the region D_, and their order
are p,,p,, ..., p, respectively. The process of dealing with the general case is similar
to one pth order pole. To illustrate it we give an example of the interaction between
one simple pole soliton and the other double pole soliton in the next section.

4 Example of the Solutions for DNLS Equation
4.1 The Double Soliton Solution

In this subsection we consider the soliton solution related to one double pole. Let

P () P P
A)=py+ — ,
PN =r*r T " arar Taoa T,
o o* o* o’ p* (30)
(D) = o - - 1 1

- + - - .
(/1—/11‘)2 (/1+/1’1")2 A—A] A+ A
Substituting the expressions (30) into the Eqs. (24) and (25), we obtain

where
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_ T _(Fu Fp
w=(1 1 0 0). 92—<F21 ).

T
= (UG Ui 2e0p i)

- T
H, = < Uipi(4) Uy (=4)) %(11) a[;fl (_31)> >

and
. . 3
Fl Py + p_r(4idix + 16i4]1) P A0 g2 g
11 j’l _ )’T (/11 _ /14;)2 11 11
. . 3
2 Py + p_r(4idix + 16i4]1) P 6 pi2_ g
= A+ A (A + 472 " .
) i P2 i
Fll = 20 g2l A0 F12 g2l p2_ pll
RS —A 2T A 12 12 12 12
. . 3
Fll = p-1+ Py (44, x + 16i471) 205 A0 g2 pll
. (A4 = 4} (h—apr| 7 e

. . 3
1 lp_l +po@idx + 161410 2p, ]em, F2 g

Gy + 202 Gy + 200 20
P2 i P2 i
Fll — 8210, 21 _ 6219, F12 — —FZI,F22 — —F“.
22 (2'1 _ /1>1k)2 22 (/11 + /IT)Z 22 22 22 22

From the formula (29), we have

_det®,
q=2i ,
det @,

(32)

where

0 A

>, ¥ = (4idx + 16i431),
A= (r2 =px 5 =px 5 —rh)

As shown in Fig. 2.

4.2 The Solution Related to One Simple Pole and the Other One Double Pole

In this subsection we consider the soliton solution related to one simplie pole and
the other one double pole. Let

@ Springer
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— N W B W

Fig.2 p_, =i,p_, = 1,4, = 1 +1, the left: the 3D image of |¢|?, the right: the density image of |¢|?

2(A) = py + N P-1 P 01 01
0 (A=A4)%  (A+A4)2 A=A A+A A=A A+4i
5 5 r, rL, L, ) o, o',
p(/l)=p0_ ) N2 PR P w * "
(A=4]) (A+4]) A=Al A+A] A=A A+ A
(33)
Plugging the expressions (33) into the Eqs. (24) and (25), we have
H,=w,+ Q1,2[:11,2’ a,= —Qi,H,,, (34)

where

Fll F12 F13

T
w,=(1 1 0 0 1 1), Q,=(Fy Fy Fyl
F31 F32 F33

* * T
Hy,= (HQT Uin(4) U+11(_/12)) )
T

H,=(H U (d) Upi(=4))

and
9-1 g 21 9-1 g 12 21 2 11
Fll = R oo , F2=_p2 F2_-_Fpll
BT x BT x 13 13 13 13
-1 2i0 21 0 2i0 12 21 2 1
Fll= ——L %, =—=— ¢ FZ2=F) F3x=F)],
23 (AZ _ AT)Z 23 (AZ + AT)Z 23 23 23 23
. .3
Pl Py + p_r(4idx + 161471 _po 20 g2 _pn
31 /11 _ ﬂ; (/11 _ /1;)2 ’ 31 31
: 13
2 Py + p_(4idx + 16i471) B Py 20 g2 g2l
3 A+ A G+a2 7 3
P2 9ig 21 P2 g 12 21 22 11
F]l — el . F2 = s =F,, F:3=F,,,
279 - z 27T R 32 2 32 32
O-1  9ig 21 O-1 g 12 21 22 11
Fil = P S , =-F2 F2=_Fll
BT BT+ iz 33 33 33 33

2
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7
6 {
50]
40°
30]

20
104

Fig.3 p_, =1p_,=1,0_, =—-1,4 =1+41i,4, =2 +1, the left: the 3D image 0f|q|2, the right: the den-
sity image of |¢|?

From the formula (29), we have

det®, ,

1det(I)u’ 35)

qg=2
where

= 0 A
O,=1+Q,,Q7, ®,= ( 12 >
1,2 1,2%%12 1,2 sz ‘I’1,2

* * * * * )

A= (o, =00 o5 =00 o, -0, o), o

As shown in Fig. 3.

5 Conclusions and Discussions

We discussed the higher-order soliton solutions for DNLS-III equation by the
improved Riemann—Hilbert method in detail. The main idea is to require the poten-
tials g(x) decay rapidly enough at infinity so that the reflection coefficient p(4) or
p(4) can be analytically extended to the region D, . For p(A) has a pth order pole, by
virtue of the Laurent series expansion of p(4) we can obtain the explicit determinant
form of higher-order soliton solutions. Moreover these results can be applied to the
other derivative type NLS equations by gauge transform. In this paper the potentials
q(x) is considered under the ZBC, we know that under the nonzero boundary condi-
tion (NZBC) it is more complicated to solve double soliton solutions by the usual
RH method in the literature [17], in the near future we will generalize this idea to
the NZBC case.
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