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Abstract
In this paper we discuss an improved Riemann–Hilbert method, by which arbitrary 
higher-order soliton solutions for the derivative nonlinear Schrödinger equation can 
be directly obtained. The explicit determinant form of a higher-order soliton which 
corresponds to one pth order pole is given. Besides the interaction related to one 
simple pole and the other one double pole is considered.

Keywords  Riemann–Hilbert problem · Inverse scattering transform · Higher-order 
soliton · The derivative nonlinear Schrödinger equation · Residue condition

1  Introduction

The derivative-type nonlinear Schrödinger equations have several applications in 
plasma physics and nonlinear fiber optics. In plasma physics, the equation (also 
called DNLS-I)

describes small-amplitude nonlinear Alfvén waves propagating parallel to the ambi-
ent magnetic field [9, 13]. In nonlinear optics, the modified NLS i.e. the equation (1) 
plus the nonlinear term |q|2q describes the case of subpicosecond optical pulses [3, 
6]. Recently Moses et  al. has experimentally demonstrated that the equation (also 
called DNLS-II)

(1)iqt + qxx + i(|q|2q)x = 0
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describes the propagation of the self-steepening optical pulses without self-phase 
modulation [14]. In the view of inverse scattering theory they are gauge equivalent 
[23] to the following equation [7] (also called DNLS-III)

where the asterisk denotes the complex conjugate, so we take DNLS-III as an exam-
ple to present our work. The above derivative-type equations are important inte-
grable models. In addition, there are more general integrable generalizations, such 
as the high-order Kaup–Newell equation [18], the generalized mixed nonlinear 
Schrödinger equation [19], Kundu equation [11], Kundu–Eckhaus equation [5, 11]. 
Much research has been conducted for them, here we will not dwell on a detailed 
exposition of various results. The Eq. (3) are the compatible condition of the follow-
ing linear differential equations

where

and the potential matrix

�3 is one of the Pauli matrices

It is known that Zakharov first given higher-order solitons for the NLS equation 
corresponding to a double pole [24]. Subsequently higher-order solitons have also 
been studied for the modified KdV equation [22], the sine-Gordon equation [21] and 
so on. So far various methods have been developed to deal with higher-order soli-
tons, for example the usual Riemann–Hilbert (RH) method [20], generalized Dar-
boux transform [8, 12], 𝜕̄-method [10], robust inverse scattering transform [4] et al.. 
In this paper, to avoid the difficulty of calculating residue conditions with multiple 
poles, different from the work [25, 26] we generalize Olmedilla’s idea [16] to the 
framework for RH method and arbitrary higher-order soliton solutions for the deriv-
ative nonlinear Schrödinger equation can be directly obtained.

This paper is arranged as follows. In Sect.  2, we summary the inverse scatter-
ing method for DNLS-III. In Sect. 3, we derive the explicit determinant form of a 

(2)iqt + qxx + i|q|2qx = 0

(3)iqt + qxx − iq2q∗
x
+

1

2
|q|4q = 0,

(4)�x = X� , �t = T� ,

X = − i�2�3 + �Q +
i

2
|q|2�3,

T = − 2i�4�3 + 2�3Q + i�2|q|2�3 + i��3Qx +
i

4
|q|4�3 − 1

2
(QQx − QxQ)

Q(x, t) =

(
0 q

−q∗ 0

)
,

�1 =

(
0 1

1 0

)
, �2 =

(
0 − i

i 0

)
, �3 =

(
1 0

0 − 1

)
.
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higher-order soliton which corresponds to one pth order pole. In Sect. 4, the interac-
tion related to one simple pole and the other one double pole is displayed.

2 � Summary of the Inverse Scattering Method for the DNLS Equation

Firstly, we summarize the already well-known results [15] for the DNLS-III that 
will be used in our study. In this section we solve the initial value problem for the 
DNLS-III with the following zero boundary condition (ZBC) at x → ∞:

meanwhile the complex function q(x) satisfies

2.1 � The Direct Scattering Problem

2.1.1 � Jost Solution and Analyticity

For the oriented curve Σ = ℝ
⋃

iℝ (see Fig. 1) in complex �-plane, we define J± as 
the Jost solutions of the Lax representation (4) which obey the boundary conditions

Let

(5)lim
x→±∞

q(x, t) = 0,

∫
∞

−∞

|xn||q(x)|dx < ∞.

(6)J±(x, �) → e−i�
2x�3 , x → ±∞.

Fig. 1   The complex �-plane, showing the regions D± where ℜ(𝜆)ℑ(𝜆) > 0 (grey) and ℜ(𝜆)ℑ(𝜆) < 0 
(white), respectively
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then

which is equivalent to Volterra integral equation

Denoting D± = {𝜆 ∈ ℂ| ±ℜ(𝜆)ℑ(𝜆) > 0} , as shown in Fig.  1. By performing 
the Neumann series (cf. [1]) on the Volterra integral equations (8), we know that 
U−1(J−1) and U+2(J+2) can be analytically extended to D+ and continuously extended 
to D+

⋃
Σ , while U+1(J+1) and U−2(J−2) can be analytically extended to D− and 

continuously extended to D−

⋃
Σ , where the subscripts 1 and 2 identify matrix col-

umns, i.e., U± = (U±1,U±2).

2.1.2 � Scattering Matrix

Abel’s theorem implies that for any solution �(x, �) of the Lax representation (4) 
one has �x(det�) = 0 . Since limx→±∞ J±e

i�2�3x = I for � ∈ Σ , we have

It follows that ∀� ∈ Σ both J+ and J− are two fundamental matrix solutions of the 
scattering problem (4). Define the scattering matrix S(k)

where S = {sij} . Rewrite it by component

Furthermore we obtain

where W(f, g) is the Wronskian of f and g and reflection coefficients

U±(x, �) = J±(x, �)e
i�2x�3 ,

(7)
U±x = −i�2[�3,U±] + �QU± +

i

2
|q|2�3U±,

U±(x, �) → �, x → ±∞,

(8)U±(x, 𝜆) = � + ∫
x

±∞

e−i𝜆
2𝜎̂3(x−y)(𝜆Q(y) +

i

2
|q|2𝜎3)U±(y, 𝜆)dy.

det J±(x, �) = 1.

(9)J−(x, �) = J+(x, �)S(�),

(10)J−1(x, �) =s11(�)J+1(x, �) + s21(�)J+2(x, �),

(11)J−2(x, �) =s12(�)J+1(x, �) + s22(�)J+2(x, �).

s11(�) = W(J−1, J+2), s22(�) = W(J+1, J−2),

𝜌(𝜆) =
s21

s11
, 𝜌̃(𝜆) =

s12

s22
.
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From the analytic property of Jost solutions, s11(�) can be analytically extended to 
D+ and continuously extended to D+

⋃
Σ , while s22(�) can be analytically extended 

to D− and continuously extended to D−

⋃
Σ.

2.1.3 � Symmetry Conditions and Discrete Spectrum

By virtue of the uniqueness of the Jost solutions, we have the following symmetry 
conditions

So

and

If s11(�n) = 0, n = 1,… ,N , the eigenfunctions J−1(x, �) and J+2(x, �) at � = �n must 
be proportional, i.e.

where �n is a complex valued constant. Owing to the relations (13), we have

then

where 𝛾̂n = −𝛾n, 𝛾̌n = 𝛾∗
n
, 𝛾̃n = −𝛾∗

n
 . That is, the discrete spectrum is the set

This distribution is shown in Fig. 1.

2.1.4 � Asymptotics as � → ∞

The Wentzel–Kramers–Brillouin (WKB) expansion can be used to derive the 
asymptotic of modified Jost solutions. In fact, we know that U± are analytic in ℂ∕Σ , 
then we can write an asymptotic expansion for U± when � → ∞

(12)J±(�) = �3J±(−�)�3, J±(�) = i�2J
∗
∓
(�∗)(i�2)

−1.

(13)
s11(�) = s11(−�), s12(�) = −s12(−�), s21(�) = −s21(−�),

s22(�) = s22(−�), s11(�) = s∗
22
(�∗), s12(�) = −s∗

21
(�∗)

(14)𝜌(𝜆) = −𝜌(−𝜆), 𝜌̃(𝜆) = −𝜌∗(𝜆∗).

(15)J−1(x, �n) = �nJ+2(x, �n),

s11(�) = 0 ⟺ s11(−�) = 0 ⟺ s22(−�
∗) = 0 ⟺ s22(�

∗) = 0,

(16)

J−1(−𝜆n) = 𝛾̂nJ+2(−𝜆n),

J−2(−𝜆
∗
n
) = 𝛾̌nJ+1(−𝜆

∗
n
),

J−2(𝜆
∗
n
) = 𝛾̃nJ+1(𝜆

∗
n
),

Z = {�n,−�n, �
∗
n
,−�∗

n
}.

(17)U±(x, �) = U±,0 +
U±,1

�
+

U±,2

�2
+ O

(
1

�3

)
.
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Substituting the above expansion into the Eq. (7) and utilizing the expressions for s11 
and s22 , we have

and

2.2 � The Inverse Scattering Problem

2.2.1 � Riemann–Hilbert Problem and Reconstruction Formula

In order to construct RH problem, introduce the sectionally meromorphic matrices

From the Eqs. (10) and (11) we obtain the jump condition

where

Recalling the asymptotic behavior of the scattering coefficients, it is easy to obtain 
that

From the Eq. (7) we can reconstruct the potential q(x, t) from the solution of the RH 
problem as follow

2.2.2 � Residue Conditions and Solution for RHP

To solve the RHP, introduce the Cauchy projectors P± over Σ:

If f±(�) is analytic in the region D± and f±(�) → 0 as |�| → ∞ , then

U±(x, �) ⟶ I, |�| ⟶ ∞

s11(�) → 1, s22(�) → 1.

M+(x, �) =

[
U−1

s11
,U+2

]
, M−(x, �) =

[
U+1,

U−2

s22

]
.

M+(x, �) = M−(x, �)(I + G(�)),

G(𝜆) =

(
−𝜌(𝜆)𝜌̃(𝜆) 𝜌̃(𝜆)e−2i𝜆

2x

𝜌(𝜆)e2i𝜆
2x 0

)
.

M±(x, �) → I, |�| → ∞.

(18)q(x, t) = 2i lim
�→∞

�[M(�;x, t)]12.

P±[f ](�) =
1

2�i ∫Σ
f (� )

� − (� ± i0)
d� .

(19)P±(f∓)(�) = 0, P±(f±)(�) = ±f±(�).
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Furthermore, we can obtain the residue conditions from the equations (15) and (16)

where Cn =
�n

s�
11
(�n)

.
Applying P− to both sides of the expression (10) and P+ to both sides of the 

expression (11), meanwhile, taking advantage of the formulae (19) and the above 
residue conditions, we have

2.2.3 � Time Evolution

The time evolution of the scattering data can be determined by the time part of the Lax 
representation (4). By the calculation (cf. [1] for details) we have

2.3 � The Soliton Solutions for the DNLS Equation

We now consider the potential q(x, t) for which the reflection coefficient �(�) van-
ishes. As usual, in the case there is no jump from M+ to M− across the continuous 
spectrum, and the Eq.  (20) reduce to an algebraic system. Next we take 1-soliton 
solution as an example.

Res
�=�n

(
U−1

s11

)
= Cne

2i�2
n
xU+2(�n),

Res
�=−�n

(
U−1

s11

)
= Cne

2i�2
n
xU+2(−�n),

Res
�=�∗

n

(
U−2

s22

)
= −C∗

n
e−2i�

∗2
n
xU+1(�

∗
n
),

Res
�=−�∗

n

(
U−2

s22

)
= −C∗

n
e−2i�

∗2
n
xU+1(−�

∗
n
)

(20)

U+1(𝜆) =

(
1

0

)
+

N∑
n=1

Cne
2i𝜆2

n
xU+2(𝜆n)

𝜆 − 𝜆n

+

N∑
n=1

Cne
2i𝜆2

n
xU+2(−𝜆n)

𝜆 + 𝜆n
+

1

2𝜋i ∫Σ

𝜌e2i𝜁
2xU+2

𝜁 − (𝜆 − i0)
d𝜁 ,

U+2(𝜆) =

(
0

1

)
−

N∑
n=1

C∗
n
e−2i𝜆

∗2
n
xU+1(𝜆

∗
n
)

𝜆 − 𝜆∗
n

−

N∑
n=1

C∗
n
e−2i𝜆

∗2
n
xU+1(−𝜆

∗
n
)

𝜆 + 𝜆∗
n

+
1

2𝜋i ∫Σ−

𝜌̃e−2i𝜁
2xU+1

𝜁 − (𝜆 + i0)
d𝜁 .

𝜆n(t) = 𝜆n, 𝜌(t) = 𝜌e4i𝜆
4
n
t

𝜌̃(t) = 𝜌̃e4i𝜆
4
n
t, Cn(t) = Cne

4i𝜆4
n
t.
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Let 𝜌(𝜆) = 𝜌̃(𝜆) = 0 and N = 1 . From the Eq. (20) and the formula (18), we can 
obtain 1-soliton solution

where

Remark 1  If we consider N different zeros of s11(�) , By observation and calculation 
we can obtain the determinant form of N-soliton solution which is similar to the 
expression (29), this procedure will be elaborated in the next section.

3 � Higher‑Order Soliton Solutions for the DNLS Equation

In this section we generalize Olmedilla’s idea to the framework for RH method. If 
the potential q(x) decay rapidly enough at infinity, so that �(�) can be analytically 
continued above or below all poles {±�n}Nn=1 and 𝜌̃(𝜆) can be analytically continued 
below or above all poles {±�∗

n
}N
n=1

 ( cf. [1, 2]). The Eq. (20) can be simplified by vir-
tue of the residue theorem as follows:

where � = �2x + 2�4t , Γ is the union of a contour from ∞ to i∞ that passes above all 
poles {�n}Nn=1 and a contour from −∞ to −i∞ that passes below all poles {−�n}Nn=1 , Γ̄ 
is the union of a contour from −∞ to i∞ that passes above all poles {−�∗

n
}N
n=1

 and a 
contour from ∞ to −i∞ that passes below all poles {�∗

n
}N
n=1

 in the Fig. 1.
Supposing that �(�) has a pth order pole, we consider the Laurent series expan-

sion of �(�) around the point �n in the region D+ . From the symmetries (14), we have

where �0(�) and 𝜌̃0(𝜆) are analytic and satisfy the symmetries (14), �−i(i = 1, 2,⋯ , p) 
is a constant. Plugging the expressions (23) into (22), the integral equations (22) can 
be rewritten as

(21)q = −4|C1|e−i�Sech[2�(x + 4�t) + � + i�].

�2
1
= � + i�,

|C1|
�

�1 = e−(�+i�),

� = � + 2�x + 4(�2 − �2)t, � = arg(C1).

(22)
U+1(𝜆) =

(
1

0

)
+

1

2𝜋i ∫Γ

𝜌(𝜁)e2i𝜃U+2(𝜁)

𝜁 − 𝜆
d𝜁 ,

U+2(𝜆) =

(
0

1

)
+

1

2𝜋i ∫Γ̄

𝜌̃(𝜁)e−2i𝜃U+1(𝜁)

𝜁 − 𝜆
d𝜁 ,

(23)

𝜌(𝜆) = 𝜌0(𝜆) +

p∑
k=1

[
𝜌−k

(𝜆 − 𝜆n)
k
+ (−1)p−1

𝜌−k

(𝜆 + 𝜆n)
k

]
,

𝜌̃(𝜆) = 𝜌̃0(𝜆) −

p∑
k=1

[
𝜌∗
−k

(𝜆 − 𝜆∗
n
)k

+ (−1)p−1
𝜌∗
−k

(𝜆 + 𝜆∗
n
)k

]
,
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For the case of a reflectionless potential, i.e. 𝜌(𝜆) = 𝜌̃(𝜆) = 0 when � ∈ Σ , the inte-
gral equation (24) and (25) reduce to the system of linear equations. By calculation 
we have

where Ω = (Fij)p×p and Fij is a 2 × 2 matrix. We denote

and

From the formula (18), we have

(24)

U+1(�) =

(
1

0

)
−

p∑
k=1

�−k

�(k−1)
(

e2i�U+2(� )

�−�

)

�� k−1
|�=�n

−

p∑
k=1

(−1)k−1�−k

�(k−1)
(

e2i�U+2(� )

�−�

)

�� k−1
|�=−�n +

1

2�i ∫Σ

�(�)e2i�U+2(�)

� − �
d� ,

(25)

U+2(𝜆) =

(
0

1

)
+

p∑
k=1

𝜌∗
−k

𝜕(k−1)
(

e−2i𝜃U+1(𝜁 )

𝜁−𝜆

)

𝜕𝜁 k−1
|𝜁=𝜆∗

n

+

p∑
k=1

(−1)k−1𝜌∗
−k

𝜕(k−1)
(

e−2i𝜃U+1(𝜁 )

𝜁−𝜆

)

𝜕𝜁 k−1
|𝜁=−𝜆∗

n
+

1

2𝜋i ∫Σ

𝜌̃(𝜁)e−2i𝜃U+1(𝜁)

𝜁 − 𝜆
d𝜁 .

(26)H̃p = 𝜔p − ΩpHp, Hp = Ω∗
p
H̃p,

F11

ij
=

p∑
k=j

C
j−1

k−1
�−k

�(k+i−j−1)[(� − �)−1e2i�]

��i−1�� k−j
|�=�n,�=�∗n ,

F12

ij
=

p∑
k=j

C
j−1

k−1
(−1)k−1�−k

�(k+i−j−1)[(� − �)−1e2i�]

��i−1�� k−j
|�=−�n,�=�∗n ,

F21

ij
=

p∑
k=j

C
j−1

k−1
�−k

�(k+i−j−1)[(� − �)−1e2i�]

��i−1�� k−j
|�=�n,�=−�∗n ,

F22

ij
=

p∑
k=j

C
j−1

k−1
(−1)k−1�−k

�(k+i−j−1)[(� − �)−1e2i�]

��i−1�� k−j
|�=−�n,�=−�∗n

H̃p =
(
U+11(𝜆

∗
n
) U+11(−𝜆

∗
n
)

𝜕U+11

𝜕𝜆
(𝜆∗

n
) ⋯

𝜕(p−1)U+11

𝜕𝜆p−1
(−𝜆∗

n
)

)T

1×2p
,

Hp =
(
U+21(𝜆n) U+21(−𝜆n)

𝜕U+21

𝜕𝜆
(𝜆n) ⋯

𝜕(p−1)U+21

𝜕𝜆p−1
(−𝜆n)

)T

1×2p
,

𝜔p =
(
1 1 0 0 ⋯ 0 0

)T
1×2p

.

(27)q = −2iΛpH̃p,
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where

Using the expression (26) and (27), we obtain

The expression (28) can written into determinant form

where

Remark 2  If �(�) has r different poles, �1, �2,… , �r in the region D+ , and their order 
are p1, p2,… , pr respectively. The process of dealing with the general case is similar 
to one pth order pole. To illustrate it we give an example of the interaction between 
one simple pole soliton and the other double pole soliton in the next section.

4 � Example of the Solutions for DNLS Equation

4.1 � The Double Soliton Solution

In this subsection we consider the soliton solution related to one double pole. Let

Substituting the expressions (30) into the Eqs. (24) and (25), we obtain

where

Λp =
(
G1 Ĝ1 G2 Ĝ2 ⋯ Gp Ĝp

)
1×2p

,

Gj =

p∑
k=j

C
j−1

k−1
𝜌∗
−k

𝜕(k−j)(e−2i𝜃)

𝜕𝜁 k−j
|𝜁=𝜆∗

n
,

Ĝj =

p∑
k=j

C
j−1

k−1
(−1)k−1𝜌∗

−k

𝜕(k−j)(e−2i𝜃)

𝜕𝜁 k−j
|𝜁=−𝜆∗

n
.

(28)q = −2iΛp(I + ΩpΩ
∗
p
)−1�p.

(29)q = 2i
det Φ̃p

detΦp

,

Φp = I + ΩpΩ
∗
p
, Φ̃p =

(
0 Λp

𝜔p Φp

)
.

(30)

𝜌(𝜆) = 𝜌0 +
𝜌−2

(𝜆 − 𝜆1)
2
−

𝜌−2

(𝜆 + 𝜆1)
2
+

𝜌−1

𝜆 − 𝜆1
+

𝜌−1

𝜆 + 𝜆1
,

𝜌̃(𝜆) = 𝜌̃0 −
𝜌∗
−2

(𝜆 − 𝜆∗
1
)2

+
𝜌∗
−2

(𝜆 + 𝜆∗
1
)2

−
𝜌∗
−1

𝜆 − 𝜆∗
1

−
𝜌∗
−1

𝜆 + 𝜆∗
1

.

(31)H2 = 𝜔2 + Ω2H̃2, H̃2 = −Ω∗
2
H2,
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and

From the formula (29), we have

where

As shown in Fig. 2.

4.2 � The Solution Related to One Simple Pole and the Other One Double Pole

In this subsection we consider the soliton solution related to one simplie pole and 
the other one double pole. Let

𝜔2 =
(
1 1 0 0

)T
, Ω2 =

(
F11 F12

F21 F22

)
,

H2 =
(
U+11(𝜆

∗
1
) U+11(−𝜆

∗
1
)

𝜕U+11

𝜕𝜆
(𝜆∗

1
)

𝜕U+11

𝜕𝜆
(−𝜆∗

1
)
)T

,

H̃2 =
(
U+21(𝜆1) U+21(−𝜆1)

𝜕U+21

𝜕𝜆
(𝜆1)

𝜕U+21

𝜕𝜆
(−𝜆1)

)T

,

F11

11
=

[
�−1 + �−2(4i�1x + 16i�3

1
t)

�1 − �∗
1

−
�−2

(�1 − �∗
1
)2

]
e2i� , F22

11
= −F11

11
,

F21

11
=

[
�−1 + �−2(4i�1x + 16i�3

1
t)

�1 + �∗
1

−
�−2

(�1 + �∗
1
)2

]
e2i� , F12

11
= −F21

11
,

F11

12
=

�−2

�1 − �∗
1

e2i� , F21

12
=

�−2

�1 + �∗
1

e2i� , F12

12
= F21

12
, F22

12
= F11

12
,

F11

21
=

[
�−1 + �−2(4i�1x + 16i�3

1
t)

(�1 − �∗
1
)2

−
2�−2

(�1 − �∗
1
)3

]
e2i� , F22

21
= F11

21
,

F21

21
=

[
�−1 + �−2(4i�1x + 16i�3

1
t)

(�1 + �∗
1
)2

−
2�−2

(�1 + �∗
1
)3

]
e2i� , F12

21
= F21

21
,

F11

22
=

�−2

(�1 − �∗
1
)2
e2i� ,F21

22
=

�−2

(�1 + �∗
1
)2
e2i� , F12

22
= −F21

22
,F22

22
= −F11

22
.

(32)q = 2i
det Φ̃2

detΦ2

,

Φ2 = I + Ω2Ω
∗
2
, Φ̃2 =

(
0 Λ2

𝜔2 Φ2

)
, 𝜒 = (4i𝜆1x + 16i𝜆3

1
t),

Λ2 =
(
𝜌∗
−1

− 𝜌∗
−2
𝜒 𝜌∗

−1
− 𝜌∗

−2
𝜒 𝜌∗

−2
− 𝜌∗

−2

)
.
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Plugging the expressions (33) into the Eqs. (24) and (25), we have

where

 and

(33)

𝜌(𝜆) = 𝜌0 +
𝜌−2

(𝜆 − 𝜆1)
2
−

𝜌−2

(𝜆 + 𝜆1)
2
+

𝜌−1

𝜆 − 𝜆1
+

𝜌−1

𝜆 + 𝜆1
+

𝜚−1

𝜆 − 𝜆2
+

𝜚−1

𝜆 + 𝜆2
,

𝜌̃(𝜆) = 𝜌̃0 −
𝜌∗
−2

(𝜆 − 𝜆∗
1
)2

+
𝜌∗
−2

(𝜆 + 𝜆∗
1
)2

−
𝜌∗
−1

𝜆 − 𝜆∗
1

−
𝜌∗
−1

𝜆 + 𝜆∗
1

−
𝜚∗
−1

𝜆 − 𝜆∗
2

−
𝜚∗
−1

𝜆 + 𝜆∗
2

.

(34)H1,2 = 𝜔1,2 + Ω1,2H̃1,2, H̃1,2 = −Ω∗
1,2
H1,2,

𝜔1,2 =
�
1 1 0 0 1 1

�T
, Ω1,2 =

⎛
⎜⎜⎝

F11 F12 F13

F21 F22 F23

F31 F32 F33

⎞
⎟⎟⎠
,

H1,2 =
�
HT

2
U+11(𝜆

∗
2
) U+11(−𝜆

∗
2
)
�T
,

H̃1,2 =
�
H̃T

2
U+21(𝜆2) U+21(−𝜆2)

�T

F11
13 =

�−1
�2 − �∗1

e2i� , F21
13 =

�−1
�2 + �∗1

e2i� , F12
13 = −F21

13 , F22
13 = −F11

13 ,

F11
23 =

�−1
(�2 − �∗1)2

e2i� , F21
23 =

�−1
(�2 + �∗1)2

e2i� , F12
23 = F21

23 , F22
23 = F11

23 ,

F11
31 =

[

�−1 + �−2(4i�1x + 16i�31t)
�1 − �∗2

−
�−2

(�1 − �∗2)2

]

e2i� , F22
31 = −F11

31 ,

F21
31 =

[

�−1 + �−2(4i�1x + 16i�31t)
�1 + �∗2

−
�−2

(�1 + �∗2)2

]

e2i� , F12
31 = −F21

31 ,

F11
32 =

�−2
�1 − �∗2

e2i� , F21
32 =

�−2
�1 + �∗2

e2i� , F12
32 = F21

22 , F22
32 = F11

32 ,

F11
33 =

�−1
�2 − �∗2

e2i� , F21
33 =

�−1
�2 + �∗2

e2i� , F12
33 = −F21

33 , F22
33 = −F11

33 .

Fig. 2   �−1 = i, �−2 = 1, �1 = 1 + i, the left: the 3D image of |q|2 , the right: the density image of |q|2
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From the formula (29), we have

where

As shown in Fig. 3.

5 � Conclusions and Discussions

We discussed the higher-order soliton solutions for DNLS-III equation by the 
improved Riemann–Hilbert method in detail. The main idea is to require the poten-
tials q(x) decay rapidly enough at infinity so that the reflection coefficient �(�) or 
𝜌̃(𝜆) can be analytically extended to the region D± . For �(�) has a pth order pole, by 
virtue of the Laurent series expansion of �(�) we can obtain the explicit determinant 
form of higher-order soliton solutions. Moreover these results can be applied to the 
other derivative type NLS equations by gauge transform. In this paper the potentials 
q(x) is considered under the ZBC, we know that under the nonzero boundary condi-
tion (NZBC) it is more complicated to solve double soliton solutions by the usual 
RH method in the literature [17], in the near future we will generalize this idea to 
the NZBC case.
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