ATLAS PUB Note
L ATL-PHYS-PUB-2022-017 <7

EXPERIMENT
25th March 2022

SimpleAnalysis: Generator-level Analysis
Framework

The ATLAS Collaboration

Almost all Beyond the Standard Model (BSM) searches in ATLAS provide auxiliary information
uploaded to HEPData which can be used to, for example, reinterpret the search results on
other BSM models than those evaluated in the search. This information often includes
generator-level (truth) acceptance maps and C++ analysis code snippets defining all of the
signal regions in the analysis. Inside of ATLAS, the SimpleAnalysis generator-level analysis
framework is used to calculate the truth-level acceptance maps with the uploaded C++ analysis
fragments as well as for some systematic uncertainty evaluations. This framework is now
publicly available and presented in this note. For validation, a search for supersymmetry
(SUSY) in a final state with one lepton and two-b-jets is evaluated through this framework.

© 2022 CERN for the benefit of the ATLAS Collaboration.
Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

1 Introduction

SimpleAnalysis (SA) is an analysis framework in C++ designed to run on the output of event generators
(generator-level information, or fruth) which is used in most ATLAS Supersymmetry (SUSY) results since
2016. Similar in scope to for example Rivet [1] and MadAnalysis [2], SA provides a software framework
for encoding high energy physics analyses in a compact, easy to use format that captures the majority
of published analysis selections. It is used internally in ATLAS to run on data formats belonging to the
ATLAS Data Model (Derived Analysis Object Data, or DAOD files) [3], but can also run over HepMC [4]
output or a simple form of ROOT [5] ntuples. SA provides various helper functions for complex kinematic
variables typically used in SUSY analyses, encapsulates custom efficiency maps, and contains additional
utilities for serializing more complex multi-variate analysis techniques such as neural networks and boosted
decision trees. The outputs are used by ATLAS to compute truth acceptances and selection efficiencies for
HEPData publishing [6], and evaluate sources of theory systematics.

Most searches will provide acceptance and efficiency for a variety of Beyond-Standard-Model (BSM) signal
models described in Eq. (1). The acceptance (A) is defined as the fraction of signal events accepted in the
generator-level analysis provided by SA. The acceptance is highly dependent on the final state particles and
kinematics of the signal model under study. The efficiency on the other hand mostly captures detector
and reconstruction effects, such as reconstruction and identification inefficiencies, object resolutions and
selections which cannot be included at generator level. The efficiency is much less model dependent
unless the analysis uses objects with large variation in reconstruction efficiency or primarily selects
misreconstructed events. The efficiency is calculated from the “acceptance times efficiency” (A ® €) as
extracted from the actual analysis using fully reconstructed quantities.

generator réco

n. n, A®
__ Taccept __ Taccept _ &
A= generator’ A®e= preco = &€= A (0
total total

Most SUSY analyses published by ATLAS re-implemented their analysis selections at generator-level in a
single C++ file for SA and published that file to HEPData. This enables external and internal collaborators
to more easily reinterpret each analysis result on different SUSY and other BSM models which were not
considered by the original analysis. New signal events can be generated and filtered through the provided
selection file to calculate the truth acceptance for the new model and, together with the model cross section,
used to predict the number of events expected in each signal region. A crude efficiency correction can
be applied based on the typical signal efficiency numbers published for the analysis in HEPData. For
signal models which differ significantly from the original ones, the efficiency is better estimated using
a fast detector simulation which emulates the reconstruction inefficiencies and resolution effects. Such
a simulation is not provided by SA, but through a conversion script, it is possible for SA to run on the
output of a DELPHES simulation which has been tuned to match the efficiency of a specific analysis. The
expected number of signal region events can either be directly compared to provided model-independent
limits or input into a likelihood fit [7-10] to possibly provide stronger exclusion limits. The reinterpretation
procedure can be validated by applying the procedure to the original models of the analysis and comparing
the results to the truth acceptance and selection efficiency maps provided in HEPData. This framework can
be utilized for summary or combination efforts, evaluating hundreds of thousands of models scanned over in
phenomenological MSSM (pMSSM) studies such as those done by ATLAS in Run 1 [11]. For fast or large
scale studies, such reinterpretations, while less accurate, complement the full analysis reinterpretations

such as those provided by the RECAST [12-15] and REANA [16] tools which are currently only available
inside the collaboration.

The portion of the framework used to compute generator-level acceptances and efficiencies is now available
to external collaborators. This allows non-ATLAS users to easily compile and execute the analysis at
generator level as a first step towards analysis reinterpretation. The code release also provides the full
details of the various helper functions used to keep the analysis selection code short and simple to read.

This note documents the public part of the SA framework. The analysis codes that have been uploaded to
HEPData across various analyses will in addition be co-located [17, 18] with the framework for convenience.
Section 2 describes the overall structure of the SA framework as well as the associated documentation. This
code has been validated for each analysis implementation, as shown in Section 3 for the SUSY electroweak
one lepton, two b-jet analysis [19].

2 Code Structure

SimpleAnalysis provides an executable standalone program which can read user-supplied generator-level
events, filter them through one or more selected analysis selection codes and calculate the acceptance
(weighted fraction of accepted events) for each signal region. Optionally, histograms and ntuples filled by
each analysis code for more detailed studies can be enabled. Currently, SA requires the input events to be
either in an ATLAS-specific DAOD format, in HepMC format or in the form of a ROOT [5] ntuple. The
latter contains a small set of standard variables like four vectors of all generator-level leptons and jets from
the hard-scatter process as well as the missing transverse momentum. A python script is also provided to
convert from the ROOT output format of Delphes to the SA ROOT ntuple format in order to simplify the
inclusion of a fast detector simulation, though Delphes will need to be tuned to the specific analysis of
interest.

There are two pieces of code in SA that are public: the framework which contains all of the machinery
for driving the analysis, and the analysis code implementation for the analyses which have already been
made public. In addition, the SA public documentation [20] using mkdocs [21] is available. The SA
public documentation is a living document that describes the technical details of the code, the interface, the
SA specific ntuple and how to use SA. The documentation contains a tutorial that should be followed to
understand how to use the framework described in this note. Section 2.1 provides a high-level overview of
how the ATLAS Collaboration organizes the associated code repositories and the development workflow.
Section 2.2 discusses fundamental pieces of the SA application interface.

2.1 Code Organization

There are three important locations that contain public resources associated with the SA framework.

» Top-level: https://gitlab.cern.ch/atlas-sa/simple-analysis/
e Framework: https://gitlab.cern.ch/atlas-sa/framework

¢ Documentation: https://simpleanalysis.docs.cern.ch/

https://gitlab.cern.ch/atlas-sa/simple-analysis/
https://gitlab.cern.ch/atlas-sa/framework
https://simpleanalysis.docs.cern.ch/

The framework contains the functionality for computing the object kinematics, including the more complex
variables such as object-based E%“iss significance and neural network scores, or loading in published
efficiency maps associated with a particular analysis. For most use cases, all interaction will be with the
public top-level repository. This is organized as shown in Listing 1 and contains:

* SimpleAnalysisCodes: the individual analysis codes with associated data files (BDT weights,
ONNX files, efficiencies, etc...) described in more detail in Section 2.2,

* Ext_RestFrames: a submodule providing RestFrames [22], a recursive jigsaw reconstruction
package used by a few SUSY analyses,

e and SimpleAnalysisFramework: a submodule providing the SA framework, which contains
definitions and functionality for performing generator-level analysis.

In addition to these core pieces, the top-level repository ships docker images in the associated GitLab registry
for running the code without needing to compile [23]. As ATLAS continues to release more search results,
new SA implementations will be added to the top-level repository. If those SA implementations require
additional functionality from the SA framework, the framework will be updated and the corresponding
submodule link in the top-level repository will also be updated.

— CMakeLists.txt

— CODE_OF_CONDUCT .md

—— Dockerfile

—— Ext_RestFrames (submodule)

— LICENSE

— README .md

—— SimpleAnalysisCodes

— CMakeLists.txt

— data

— StopOnelLepton2016_BDT-tN_diag_high.weightsl.xml
— StopOnelLepton2016_BDT-tN_diag_high.weights2.xml
—— StopOneLepton2016_BDT-tN_diag_low.weightsl.xml
— StopOneLepton2016_BDT-tN_diag_low.weights2.xml
— StopOneLepton2016_BDT-tN_diag_med.weightsl.xml
— StopOneLepton2016_BDT-tN_diag_med.weights2.xml

L— ZeroLepton2018-SRBDT-GGo4_weight2.xml

—— ANA-SUSY-2016-16.cxx

L— ANA-SUSY-2019-08.cxx

—— SimpleAnalysisFramework (submodule)
— ci

— docs

— scripts

L— Delphes2SA.py

Listing 1: A pared-down overview of the structure of the top-level repository of SimpleAnalysis.

In order to facilitate this development workflow, ATLAS maintains an internal repository shown in Figure 1
which also uses a submodule of the public SimpleAnalysisFramework repository. This ensures that the

atlas-sa/simpleanalysis atlas-phys-susy-wg/SimpleAnalysis

o
j=1] 1]
ol] .
(o] 'l
£
B o
v JPtag 060\
______ --" %\)\0@
atlas-sa/framework €«=--=-=======-=°""
Public ATLAS Internal

Figure 1: Overview of the GitLab repositories for the ATLAS SimpleAnalysis framework and their git relationship.

framework is actively developed to add any improvements or fixes required for an analysis — public or
internal. This internal repository contains private code such as our fast detector simulation implementation
as well as the SA implementations for analyses not yet made public. Whenever ATLAS wants to publish an
analysis code, it requires a one-time manual copy operation to the public top-level repository, along with
an update to the framework submodule if needed.

The code currently must be compiled and run on top of ATLAS software [24], atlas/analysisbase.
This software is compiled and provided by ATLAS in docker images. The GitLab repository for SA
provides a container registry[23] for these pre-built docker images containing SA binaries. The primary
expectation is that external users will not implement new analyses within this framework, but use, and
possibly tweak, the analyses that have already been implemented and published in the GitLab project.

2.2 Code Implementation

Listing 10 contains a pared-down example of an analysis code implementation which is contained in a
single C++ file. It tends to be fairly readable, compact code that documents the analysis. An example of SA
execution is shown in Listing 2.

simpleAnalysis -a EwkOnelLeptonTwoBjets2018 my-evtgen.hepmc

Listing 2: An example of running a generator-level analysis using the top-level interface on the one lepton, two b-jet
analysis [19].

2.2.1 Analysis Code Names

Analyses implemented in the project have names following the pattern ANA-SUSY-XXXX-YY. These are
called “Glance Identifiers” [25] and are unique identifiers within ATLAS for referencing analyses. This will

be associated with a human-readable analysis name within the framework, such as ANA-SUSY-2019-08
mapping to EwkOneLeptonTwoBjets2018! as demonstrated in Listing 3.

#include "SimpleAnalysisFramework/AnalysisClass.h"
DefineAnalysis(EwkOneLeptonTwoBjets2018)

Listing 3: A snippet of SimpleAnalysisCodes/src/ANA-SUSY-2019-08.cxx [26] showing how the analysis
name is defined.

This mapping makes it fairly easy for anyone to identify the associated public page for the given analysis.
One can refer to the documentation? for SA to get links to the corresponding analyses as well.

2.2.2 Analysis Objects

Kinematic objects are loaded into the AnalysisEvent and retrieved via getter functions such as those
shown in Listing 4.

// baseline objects

auto baseEle = event->getElectrons(7,2.47, ELooseBLLH);

auto baseMuon = event->getMuons(6,2.70, MuMedium | MuNotCosmic | MuZ®5mm);
auto baselets = event->getJets(20.,4.5);

auto met_Vect = event->getMET();

auto weights = event->getMCWeights();

Listing 4: A snippet of SimpleAnalysisCodes/src/ANA-SUSY-2019-08.cxx [26] showing how to retrieve
kinematic objects from an event.

For example, event->getElectrons(7,2.47, ELooseBLLH) will retrieve electrons that pass the

ELooseBLLH isolation requirement. The full SA API is described in detail in the documentation [20] and
the source code [26].

2.2.3 Region Definitions and Event Selection

Regions for an analysis can be defined as shown in Listing 5 and events can be flagged as being accepted as
shown in Listing 6 by specific regions.

// Preselection for debugging
addRegions({"presel_1L", "presel_2]", "presel_bb", "presel_met", "presel_mbb"});

Listing 5: A snippet of SimpleAnalysisCodes/src/ANA-SUSY-2019-08. cxx [26] showing how to define regions
in an analysis.

I See https://gitlab.cern.ch/atlas-sa/simple-analysis/-/blob/master/SimpleAnalysisCodes/src/
ANA-SUSY-2019-08.cxx.
2Seealistofanalysiscodesavailableathttps://simpleanalysis.docs.cern.ch/analyses/

https://gitlab.cern.ch/atlas-sa/simple-analysis/-/blob/master/SimpleAnalysisCodes/src/ANA-SUSY-2019-08.cxx
https://gitlab.cern.ch/atlas-sa/simple-analysis/-/blob/master/SimpleAnalysisCodes/src/ANA-SUSY-2019-08.cxx
https://simpleanalysis.docs.cern.ch/analyses/

In Listing 5, addRegions is a function that takes a std: : vector<std: : string> of region labels. These
are used to define branches (of type float, to hold event weights) in the resulting ROOT: : TTree. Every
event from the input file will be processed and correspond to an entry in the tree. To identify an event as
falling within a region, the corresponding accept("regionName™) call is used as shown in Listing 6.
This allows an analyser to flag an event as being accepted by multiple non-disjoint regions at the same
time.

if(N_signalLept == 1 & N_baseLept == 1) accept('presel_1L");
if(N_signallets<=3 && N_signallets >= 2) accept('"presel_21");

Listing 6: A snippet of SimpleAnalysisCodes/src/ANA-SUSY-2019-08.cxx [26] showing how regions can
accept events.

One can also just stop processing an event early with a return statement as in Listing 7. Combining early
termination with accept provides a user-friendly way for building up a single-bin or multi-bin analysis.

if(N_baseLept != 1 || N_signalLept != 1) return;
if(N_signalJets>3 || N_signallets < 2 || N_signalBJets != 2) return;
if(mt< 50. || met < 220.) return;

Listing 7: A snippet of SimpleAnalysisCodes/src/ANA-SUSY-2019-08. cxx [26] showing the use of return
for halting the processing of an event.

2.2.4 Multivariate Analysis Variables

Many searches are relying on multivariate analysis techniques such as boosted decision trees or neural
networks for their event selection. In many cases these can also be evaluated meaningfully at generator
level, and SA provides several helper functions for easily including some types of boosted decision trees
and neural networks into the analysis code. In Listing 8 is an example of how to initialize a neural network
stored in the open standard ONNX [27] format and calculate its value.

addONNX("4jets", "OneLeptonMultilets2018_4jets.onnx");

MVA* = getMVA("4jets");

value = MVA->evaluate(nn_input_vector);

Listing 8: A snippet of code showing how to include and use a neural network in an analysis.

2.2.5 Additional Branches

Lastly, analysis teams might also provide additional output variables in the tree, alongside the regions,
by using ntupVar as in Listing 9. The code currently supports simple numeric types: int, float,

vector<int>, and vector<float>. If there is no call to fill the branch for a given event, perhaps because
of early termination via return, then this will be filled in with its corresponding C++ default value? for
the branch type.

ntupVar("AnalysisType", (baseMuon.size() == 1) ? 2 : 1);

Listing 9: A snippet of SimpleAnalysisCodes/src/ANA-SUSY-2019-08.cxx [26] showing how to create a new
branch and fill it.

3 Implementation Validation

Analyses for SUSY in ATLAS implement the generator-level analysis code using the SimpleAnalysis
framework. As part of the implementation, the analysis team performs validation using Monte Carlo samples
by comparing events at the generator-level against the events at reconstruction-level. This comparison is
done with the generator-level events as-is and with an ATLAS-internal fast detector simulation applied,
which is not available in the public version of this framework. The purpose of the validation is to ensure
that the generator-level analysis code accurately reflects the selection used in the full analysis. Since
differences are expected due to reconstruction inefficiencies and resolution effects, applying the fast detector
simulation makes it easier to detect possible selection code mistakes. In this section, the one lepton, two
b-jet analysis [19] is used to demonstrate the validation.

The analysis targets signal events with a leptonically decaying W boson and a Higgs boson decaying into
a bb pair. The signal regions are required to have exactly one lepton (electron or muon), and either two
or three jets, of which two must be b-tagged. Thus all distributions shown in this section use a loose
preselection summarised in Table 1. The standard validation study in Section 3.1 is done by comparing
distributions of events at the generator-level and reconstruction-level, while Section 3.2 shows the impact
of overlap removal.

Each validation study looks at six different kinematic variables:

* leading jet pr,

* leading lepton pr,

e transverse mass, mr,

* invariant mass of the two b-jets, m,;,

* number of b-jets, without the b-jet preselection, and

* missing transverse momentum, ET"*.

More details about the object definitions and how the kinematic variables are constructed can be found in
Ref. [19].

3 Typically zero-initialized.

Preselection

]Vlepton =1
EMss | > 50GeV
mr > 50 GeV
Nie € [2.3]
Nh-jet =2

Table 1: Overview of the loose pre-selection criteria used for the SimpleAnalysis validation of the the one lepton, two
b-jet analysis [19].

3.1 Yields at preselection

Figure 2 compares reconstruction-level kinematic distributions with generator-level distributions before
and after a fast detector simulation. The largest impact on the overall normalisation of the generator-level
distributions originates from the b-tagging efficiencies. Other object identification and reconstruction
efficiencies considered mostly affect the kinematic distributions at low transverse momenta.

3.2 Impact of overlap removal

A single particle can be reconstructed as multiple physics objects, for instance an electron and a jet, and all
ATLAS searches therefore apply a overlap removal procedure to remove objects that may be duplicates.
Knowledge of the overlap removal procedure performed in an analysis is crucial to reproduce the final
analysis results. Figure 3 shows the impact the overlap removal procedure has at generator-level using two
kinematic observables and one signal mass point. Without the correct overlap removal, many events end
up having additional objects in the final state, resulting in them not surviving the analysis selections.

> 20T T T T TR > 18T T e e
8 C ATLAS Simulation Preliminary ~— Reconstruction-level ul 8 [ATLAS Simulation Preliminary ~— Reconstruction-level |
Q 18— {s=13Tev, 139 b Fast simulation-level - 3 16— {s=13TeV, 139 fb* Fast simulation-level —
-~ 1 i (xilxgv Xg) = (700, 150) GeV — Generator-level j ~ £ (Xf/ng X?) = (700, 150) GeV — Generator-level 3
é E I MC Statistical Uncertainty _g 14— [MC Statistical Uncertainty]
T = G 12 3
12 £ 3]
F 10 =
10~ C 3]
£ 8 =
8 C 7
E 6 3
6[— E]
= =
4= F
2k 2
0: P P P S B N S G:HH\H‘m""\""\HH\HH\HH\‘HH—.—!H*
100 200 300 400 500 600 0 50 100 150 200 250 300 350 400 450
Leading jet p__[GeV] Lepton p_ [GeV]
(a) Leading jet pr (b) Leading lepton pr
S o R B L R R A I o I I I B B B
[0} ATLAS Simulation Preliminary =~ —— Reconstruction-level ~ 0] C ATLAS Simulation Preliminary =~ —— Reconstruction-level =
2 [Vs=13TeV, 139" Fast simulation-level] 9 40; {s=13TeV, 139 fb* Fast simulation-level =
- 12? (X?ng XS) = (700, 150) GeV — Generator-level] ~ £ (lexg. XZ) = (700, 150) GeV —— Generator-level]
§ E [MC statistical Uncertainty § 35 = [McC Statistical Uncertainty
E 10 7 4 30 E
8 - 25E- 3
] 20E- 3
6 - E 3
] 15 =
4 E E
L 10~] =
2 = — 3
r I — 5 =
C L= 1 E E
P IR BN IR B IR I A 0 = 1 e | g
100 200 300 400 500 600 700 800 60 80 100 120 140 160 180 200
m; [GeV] my, [GeV]
(c) Transverse mass (d) Di-b-jet invariant mass
? T : : : : i S B I I I I IR I
'S 120~ ATLAS Simulation Preliminary =~ — Reconstruction-level — 8 [ATLAS Simulation Preliminary ~ = Reconstruction-level b
i [(s=13TeV, 139 fb" Fast simulation-level] 3 F (s=13Tev, 139 b Fast simulation-level =
[0 XS = (700, 150) GeV — Generator-level] - 141 (/X3 X3) = (700, 150) GeV — Generator-level 4
100 O [Mc statistical Uncertainty] 5 C [Mc statistical Uncertainty]
-] £ 12]
80— — 10 |
60—] 8 =
[] 6 -
40— — -
L] 4 —
20— —]
L i 2 —
0 I I I I I L A N N N AU AN iy £
0 1 2 3 4 5 100 200 300 400 500 600 700 800
b-jet multiplicity ET*° [GeV]
(e) Number of b-jets (f) Missing transverse momentum

Figure 2: Comparisons of the kinematic distributions of key observables at generator- and reconstruction-level. The
benchmark signal point with m(¢}/)Zg), m()2(1)) = 700, 150 GeV is shown. Generator-level distributions without
(dark purple) and with fast simulation (light purple) are compared to reconstruction-level distributions (orange). Only
the MC statistical uncertainty is included in the error bars. For Subfigure (e) the requirement of two b-tagged jets has
not been applied. The overflow appears in the last bin.

10

Entries / 40 GeV

Entries / 50 GeV

Entries

]
[ATLAS Simulation Preliminary =~ —— Reconstruction-level 4
12= Ef 013 Ier 139 fb™* Fast simulation-level (with OR]]
[Oafxg X)) = (700, 150) GeV — Fast simulation-level (no OR) |
10— [MC Statistical Uncertainty |
8 E
6; — ;
aF]
°r E
Ol L L L L T 1
100 200 300 400 ~ 500 600
Leading jet P, [GeV]
(a) Leading jet pr
L L e s BB
71— ATLAS Simulation Preliminary ~ — Reconstruction-level —
£ 6: 013 IeV, 139 fo* Fast simulation-level (with ORY]
6 (XEIXZ' Xl) = (700, 150) Gev — Fast simulation-level (no OR)_]|
E [McC statistical Uncertainty E
= 3
4 =
3F .
2F
= =
G:“\HH\HH\HH\HH\HH\HH\HH:
100 200 300 400 500 600 700 800
m; [GeV]
(c) Transverse mass
70— T T T T ™]
[ATLAS Simulation Preliminary — Reconstruction-level 3
60l ng 13TeV, 139 bt Fast simulation-level (with ORJ]
C (Xilxz' Xl) = (700, 150) Gev —— Fast simulation-level (no OR) J
C [Mc statistical Uncertainty
50— -
40 =
30F -
20— -
10— -
1 ! ! l ! [
0 0 1 2 3 4 5
b-jet multiplicity
(e) Number of b-jets

Entries / 30 GeV

Entries / 10 GeV

Entries / 50 GeV

N~]

N I B I L B B B e
F ATLAS Simulation Preliminary
g (s=13TeV, 139 fb*

E (xilxg, x‘;):(700, 150) GeV

—— Reconstruction-level E

Fast simulation-level (with ORH
— Fast simulation-level (no OR) J
[Mc statistical Uncertainty —

~

{2}

ul

C0 50 100 150 200 250 300 350 400 450

Lepton P, [GeV]

(b) Leading lepton pr
(0 e e LA A s e s I e o
[ATLAS Simulation Preliminary ~ —— Reconstruction-level 7
8; E:: 013 ;I'eV, 139 fb* Fast simulation-level (with ORE
6 (Xllxz’ Xl) = (700, 150) GeV —— Fast simulation-level (no OR)
E [MC Statistical Uncertainty E
A =
2k -3
o - =
8- =
6 =
= E
2E E
= I . -
60 80 100 120 140 160 180 200
my, [GeV]
(d) Di-b-jet invariant mass

S L B
E ATLAS Simulation Preliminary —— Reconstruction-level =
95_ Ef 13Tev, 139 fo* Fast simulation-level (with OFXE
8} (Xllxz' Xl) = (700, 150) GeV —— Fast simulation-level (no OR)E
= [Mc statistical Uncertainty o
= —
6 ’_I =
= =
S — 3
4 —
3 —
2F =
1= —
Bty R R R =

PO TR T
600 700 800
ET° [GeV]

. [
100 200 300 400 500

(f) Missing transverse momentum

Figure 3: Comparisons of the kinematic distributions of key observables at generator- and reconstruction-level.
The benchmark signal point with m(¢f/ £9), m(!) = 700, 150 GeV is shown. Fast simulation-level distributions
without (dark purple) and with (light purple) overlap removal are compared to reconstruction-level distributions
(orange). Without overlap removal, many events do not satisfy the analysis selections due to additional objects in the
final state. Only the MC statistical uncertainty is included in the error bars. For Subfigure (e) the requirement of two
b-tagged jets has not been applied. The overflow appears in the last bin.

11

© ® N L R W N =

#include "SimpleAnalysisFramework/AnalysisClass.h"
DefineAnalysis(EwkOneLeptonTwoBjets2018)

void EwkOneLeptonTwoBjets2018::Init() {
/) ..
// Preselection for debugging
addRegions({"presel_1L", "presel_2]", "presel_bb", "presel_met", "presel_mbb"});

}

void EwkOneLeptonTwoBjets2018: :ProcessEvent (AnalysisEvent *event) {
// baseline objects
auto baseEle = event->getElectrons(7,2.47, ELooseBLLH);
auto baseMuon = event->getMuons(6,2.70, MuMedium | MuNotCosmic | MuZO5mm);
auto baselets = event->getlets(20.,4.5);
auto met_Vect = event->getMET();
auto weights = event->getMCWeights();

// overlap removal
baseEle = overlapRemoval(baseEle, baseMuon, 0.01);
baseJets = overlapRemoval(baselets, baseEle, 0.2);

/)

// signal objects

auto signalEle = filterObjects(baseEle,7., 2.47, ETightLH | ED®Sigma5 | EZO5mm);

auto signalMuon = filterObjects(baseMuon,6., 2.7, MuDOSigma3 | MuZ®5mm | MuIsoFCLoose);
auto signallept = signalEle + signalMuon;

auto signallets = filterObjects(baselets, 30., 2.80, JVT120Jet);

auto signalBlets = filterObjects(signallets, 30., 2.8, BTag77MvV2cl0);

unsigned int N_baselept = baseEle.size() + baseMuon.size();
unsigned int N_signallLept = signalEle.size() + signalMuon.size();
unsigned int N_signallets = signallets.size();

unsigned int N_signalBlets = signalBJets.size();

float mt=0, m_CT=0, mbb=0, mlb1=0;
if (signallept.size()==1 && signalBJets.size()==2) {
mt = calcMT(signalLept[0], met_Vect);
m_CT = calcMCT(signalBJets[0],signalBlets[1],met_Vect);
mbb (signalBJets[0]+signalBJets[1]).MQ);
mlbl = (signalBJlets[0]+signalLept[0]).MQ);
}

if(N_signallLept == 1 &% N_baseLept == 1) accept('presel_1L");
if(N_signallets<=3 && N_signallets >= 2) accept('presel_21");
Y/

// Preselection

if(N_baseLept != 1 || N_signalLept != 1) return;

if(N_signallets>3 || N_signallets < 2 || N_signalBJets != 2) return;
if(mt< 50. || met < 220.) return;

ntupVar("AnalysisType", (baseMuon.size() == 1) ? 2 : 1);
Y/

return;

Listing 10: A snippet of the SA implementation for the one lepton, two b-jet analysis [19]. This can be found in the SA
framework under SimpleAnalysisCodes/src/ANA-SUSY-2019-08.cxx [26]. This version has been modified
for this note.

12

4 Conclusions

Searches for new physics often use complicated variables or non-trivial techniques that make reinterpretation
not-quite-so straightforward. Providing additional documentation in the form of an analysis implementation
that has been validated is helpful for disseminating results and reinforces a publication. ATLAS has now
released a project called SimpleAnalysis composed of the underlying base framework as well as the public
analysis code implementations (and data files). This public version of the code incorporates all published
analysis codes to date. This is the code being used for the generator-level SUSY studies, which was used
for calculating theoretical uncertainties as well as being used in global scans. A central location [26] keeps
all of the analysis codes that have been published to HEPData. The documentation [20] answers many
questions about the code and includes a tutorial describing how to run and debug the framework.

The ATLAS collaboration is providing the code and logic to help readers understand the precise analysis
techniques used, and SimpleAnalysis further enables the implementation of new analyses at generator-level.
At the same time, more complicated analysis techniques are exposed such as boosted decision trees or
neural networks. The analyses can be run over events in either ATLAS specific data formats, events in the
HepMC standard MC event record format or the output of Delphes.

References

[1] C. Bierlich et al., Robust Independent Validation of Experiment and Theory: Rivet version 3,
SciPost Phys. 8 (2020).

[2] E. Conte, B. Fuks and G. Serret,
MadAnalysis 5, A User-Friendly Framework for Collider Phenomenology,
Comput. Phys. Commun. 184 (2013) 222, arXiv: 1206.1599 [hep-ph].

[3] ATLAS Collaboration, ATLAS HL-LHC Computing Conceptual Design Report,
CERN-LHCC-2020-015, 2020, urL: https://cds.cern.ch/record/2729668.

[4] M. Dobbs and J. B. Hansen, The HepMC C++ Monte Carlo event record for High Energy Physics,
Comput. Phys. Commun. 134 (2001) 41.

[5] R.Brun and F. Rademakers, ROOT — An object oriented data analysis framework,
Nucl. Instrum. Meth. A 389 (1997) 81, 1ssn: 0168-9002.

[6] E.Maguire, L. Heinrich and G. Watt, HEPData: a repository for high energy physics data,
J. Phys. Conf. Ser. 898 (2017) 102006, arXiv: 1704.05473 [hep-ex].

[71 ATLAS Collaboration, Reproduction searches for new physics with the ATLAS experiment through
publication of full statistical likelihoods, ATL-PHYS-PUB-2019-029, 2019,
URL: https://cds.cern.ch/record/2684863.

[8] ATLAS Collaboration,
Implementation of simplified likelihoods in HistFactory for searches for supersymmetry,
ATL-PHYS-PUB-2021-038, 2021, urL: http://cdsweb.cern.ch/record/2782654.

[9] L. Heinrich, M. Feickert and G. Stark, pyhf: v0.6.2,
version 0.6.2, https://github.com/scikit-hep/pyhf/releases/tag/v0.6.2,
URL: https://doi.org/10.5281/zenodo.1169739.

13

https://doi.org/10.21468/scipostphys.8.2.026
https://doi.org/10.1016/j.cpc.2012.09.009
http://arxiv.org/abs/1206.1599
https://cds.cern.ch/record/2729668
https://doi.org/10.1016/S0010-4655(00)00189-2
https://doi.org/10.1016/S0168-9002(97)00048-X
https://doi.org/10.1088/1742-6596/898/10/102006
http://arxiv.org/abs/1704.05473
https://cds.cern.ch/record/2684863
http://cdsweb.cern.ch/record/2782654
https://github.com/scikit-hep/pyhf/releases/tag/v0.6.2
https://doi.org/10.5281/zenodo.1169739

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]
(21]
[22]

(23]

[24]

[25]

[26]

[27]

L. Heinrich, M. Feickert, G. Stark and K. Cranmer,
pyhf: pure-Python implementation of HistFactory statistical models, JOSS 6 (2021) 2823.

ATLAS Collaboration, Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC
Run 1 — interpreted in the phenomenological MSSM, JHEP 10 (2015) 134,
arXiv: 1508.06608 [hep-ex].

K. Cranmer and L. Heinrich,
Analysis Preservation and Systematic Reinterpretation within the ATLAS experiment,
J. Phys. Conf. Ser. 1085 (2018) 042011.

K. Cranmer and L. Heinrich,
Yadage and Packtivity - analysis preservation using parametrized workflows,
J. Phys. Conf. Ser. 898 (2017) 102019, arXiv: 1706.01878 [physics.data-an].

K. Cranmer and L. Yavin, RECAST: Extending the Impact of Existing Analyses, JHEP 04 (2011) 038,
arXiv: 1010.2506 [hep-ex].

ATLAS Collaboration,

Reinterpretation of the ATLAS Search for Displaced Hadronic Jets with the RECAST Framework,
ATL-PHYS-PUB-2020-007, 2020, urL: https://cds.cern.ch/record/2714064.

T. Simko, L. Heinrich, H. Hirvonsalo, D. Kousidis and D. Rodriguez,

REANA: A System for Reusable Research Data Analyses, EP] Web Conf. 214 (2019) 06034, ed. by
A. Forti, L. Betev, M. Litmaath, O. Smirnova and P. Hristov.

ATLAS Collaboration, SimpleAnalysis, version 1.1.0, 2022,

URL: https://doi.org/10.5281/zenodo.6365083.

ATLAS Collaboration, SimpleAnalysis, 2022,

URL: https://doi.org/10.5281/zenodo.6328569.

ATLAS Collaboration, Search for direct production of electroweakinos in final states with one
lepton, missing transverse momentum and a Higgs boson decaying into two b-jets in pp collisions at
\s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020) 691,

arXiv: 1909.09226 [hep-ex].

ATLAS Collaboration, SimpleAnalysis, UrL: https://simpleanalysis.docs.cern.ch/.
MkDocs Team, MkDocs, 2021, urL: https://www.mkdocs.org/.

P. Jackson and C. Rogan, Recursive jigsaw reconstruction: HEP event analysis in the presence of
kinematic and combinatoric ambiguities, Phys. Rev. D 96 (2017).

ATLAS Collaboration, SimpleAnalysis Registry,
https://gitlab.cern.ch/atlas-sa/simple-analysis/container_registry, 2021.
ATLAS Collaboration, Athena, ATL-SOFT-PUB-2021-001, 21.2.158, 2021,

URL: https://cds.cern.ch/record/2767187.

J. P. Araque Espinosa et al.,

A continuous integration and web framework in support of the ATLAS Publication Process, (2020),
arXiv: 2005.06989 [cs.DL].

ATLAS Collaboration, SimpleAnalysis Framework,
https://gitlab.cern.ch/atlas-sa/simple-analysis, 2021.

ONNX Community, Open standard for machine learning interoperability,
https://github.com/onnx/onnx, 2017.

14

https://doi.org/10.21105/joss.02823
https://doi.org/10.1007/JHEP10(2015)134
http://arxiv.org/abs/1508.06608
https://doi.org/10.1088/1742-6596/1085/4/042011
https://doi.org/10.1088/1742-6596/898/10/102019
http://arxiv.org/abs/1706.01878
https://doi.org/10.1007/JHEP04(2011)038
http://arxiv.org/abs/1010.2506
https://cds.cern.ch/record/2714064
https://doi.org/10.1051/epjconf/201921406034
https://doi.org/10.5281/zenodo.6365083
https://doi.org/10.5281/zenodo.6328569
https://doi.org/10.1140/epjc/s10052-020-8050-3
http://arxiv.org/abs/1909.09226
https://simpleanalysis.docs.cern.ch/
https://www.mkdocs.org/
https://doi.org/10.1103/physrevd.96.112007
https://gitlab.cern.ch/atlas-sa/simple-analysis/container_registry
https://cds.cern.ch/record/2767187
http://arxiv.org/abs/2005.06989
https://gitlab.cern.ch/atlas-sa/simple-analysis
https://github.com/onnx/onnx

	1 Introduction
	2 Code Structure
	2.1 Code Organization
	2.2 Code Implementation

	3 Implementation Validation
	3.1 Yields at preselection
	3.2 Impact of overlap removal

	4 Conclusions

