

---

# CMS Physics Analysis Summary

---

Contact: cms-pag-conveners-susy@cern.ch

2017/03/22

## Search for the pair production of Higgsinos in pp collisions at $\sqrt{s} = 13$ TeV in final states with Higgs bosons and large missing transverse momentum

The CMS Collaboration

### Abstract

Results are reported from a search for new physics in proton-proton collisions leading to an experimental signature with two Higgs bosons and large missing momentum in the direction transverse to the beam axis. This signature can arise in the context of supersymmetry, where a broad class of models predicts the electroweak production of a pair of Higgsinos, each of which can decay via a cascade process to a final state with a Higgs boson and the lightest supersymmetric particle (LSP). The LSPs remain undetected, producing the large missing transverse momentum characteristic for these events. The search uses a  $35.9 \text{ fb}^{-1}$  sample of proton-proton collision data at  $\sqrt{s} = 13$  TeV, accumulated by the CMS experiment at the LHC. The observed event yield in the signal region is found to be consistent with the expected standard model background predicted from control regions in the data. Higgsinos with mass in the range  $225 - 770$  GeV are excluded at 95% CL using a simplified model framework for the production and decay of approximately degenerate Higgsinos in the context of gauge mediated supersymmetry breaking.



## 1 Introduction

2 The discovery of a Higgs boson with a mass  $m_h \approx 125$  GeV [1–6] at the electroweak scale  
 3 provides a new tool that can be used in searches for particles associated with physics beyond  
 4 the standard model (SM). Particles predicted by models based on supersymmetry (SUSY) [7–  
 5 14] are expected in many cases to decay into Higgs bosons with significant branching fractions,  
 6 and in some cases, the presence of a Higgs boson can become a critical part of the experimental  
 7 signature [15–17].

8 In this analysis, we perform a search for processes leading to Higgs-boson pair production in  
 9 association with large magnitude of the missing transverse momentum vector,  $\vec{p}_T^{\text{miss}}$ , with each  
 10 Higgs particle decaying via its dominant decay mode,  $h \rightarrow b\bar{b}$ , which has a branching fraction  
 11 of around 60%. Such a signature can arise, for example, in models based on SUSY, in which  
 12 an electroweak process can lead to the production of two supersymmetric particles, each of  
 13 which decays into a Higgs boson and another particle that interacts so weakly that it escapes  
 14 detection in the apparatus. The search uses an event sample of proton-proton collision data  
 15 at  $\sqrt{s} = 13$  TeV, corresponding to an integrated luminosity of  $35.9 \text{ fb}^{-1}$ , accumulated by the  
 16 CMS experiment at the CERN LHC. Searches for this and related decay scenarios have been  
 17 performed by ATLAS [18, 19] and CMS [15, 17, 20] using 7 TeV and 8 TeV data. In particular,  
 18 this analysis is based on an approach developed in Ref. [15].

19 While the Higgs particle completes the SM, the low value of its mass raises fundamental ques-  
 20 tions that suggest the existence of new physics beyond the SM. Assuming that the Higgs boson  
 21 is a fundamental (that is, non-composite) spin-0 particle, stabilizing its mass at the electroweak  
 22 scale is a major theoretical challenge, referred to as the gauge hierarchy problem [21–26]. Specif-  
 23 ically, without invoking new physics, preventing the Higgs boson mass from being pulled by  
 24 quantum loop corrections to the cutoff scale of the theory, which can be taken as, for example,  
 25 the Planck scale, requires extreme degree of fine tuning of the theoretical parameters. Instead,  
 26 this stabilization can be achieved through a variety of mechanisms extending the SM, such as  
 27 supersymmetry (SUSY) or extra dimensions.

28 A class of so-called natural SUSY models [27–30] contain the ingredients necessary to stabilize  
 29 the Higgs boson mass at the electroweak scale, and are thus the object of intensive searches  
 30 at the LHC. In any SUSY model, additional particles are introduced such that all fermionic  
 31 (bosonic) degrees of freedom in the SM are paired with corresponding bosonic (fermionic) de-  
 32 grees of freedom in the extended theory. In natural SUSY models, certain classes of partner par-  
 33 ticles are expected to be light. These include the four Higgsinos ( $\tilde{H}_{1,2}^0, \tilde{H}^\pm$ ), both top squarks,  
 34  $\tilde{t}_L$  and  $\tilde{t}_R$ , which have the same electroweak couplings as the left- ( $L$ ) and right- ( $R$ ) handed top  
 35 quarks, respectively; the bottom squark with  $L$ -handed couplings ( $\tilde{b}_L$ ); and the gluino ( $\tilde{g}$ ). Of  
 36 these, the Higgsinos are generically expected to be the lightest, but in contrast to the squarks  
 37 and the gluino which couple via the strong force, the Higgsinos only couple via electroweak  
 38 interactions, greatly suppressing their production cross sections. Furthermore, in natural sce-  
 39 narios, the four Higgsinos are approximately degenerate in mass, so that transitions among  
 40 these SUSY partners would typically produce only very soft additional particles, which do not  
 41 contribute to the experimental signature.

42 More generally, the gaugino and Higgsino fields can mix, leading to mass eigenstates that are  
 43 classified either as neutralinos ( $\tilde{\chi}_i^0, i = 1 - 4$ ) or charginos ( $\tilde{\chi}_i^\pm, i = 1 - 2$ ). If the  $\tilde{\chi}_1^0$  is the lightest  
 44 supersymmetric particle (LSP), it is stable in  $R$ -parity [31] conserving models and, because of  
 45 its weak interactions, would escape experimental detection. Searches for the direct production  
 46 of such particles can be performed using signatures involving initial-state radiation, in which

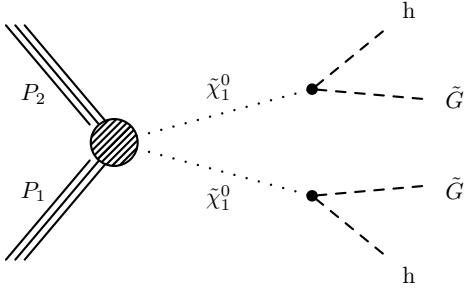



Figure 1: Diagram for the gauge-mediated-symmetry-breaking signal model,  $\tilde{\chi}_1^0 \tilde{\chi}_1^0 \rightarrow hh\tilde{G}\tilde{G}$  (TChiHH), where  $\tilde{G}$  is a Goldstino. The NLSPs  $\tilde{\chi}_1^0$  are not directly pair produced, but are instead produced in the cascade decays of several different combinations of neutralinos and charginos, as described in the text.

47 a hadronic jet or energetic photon is radiated before the hard-scattering of the partons. The  
 48 jet or photon then recoils against the missing transverse momentum. Such monojet searches  
 49 have been performed by both ATLAS [32] and CMS [33], but, thus far, no signals have been  
 50 observed.

51 While crucial to addressing the question of naturalness, the detection of particles in a nearly  
 52 degenerate Higgsino sector that contains the LSP poses a major experimental challenge. How-  
 53 ever, there is an alternative scenario in which the lightest Higgsino/neutralino is not the light-  
 54 est supersymmetric particle, but the next- to-lightest supersymmetric particle (NLSP). The LSP  
 55 can be another particle that is generic in SUSY models, the Goldstino ( $\tilde{G}$ ). The Goldstino is  
 56 the Nambu-Goldstone particle associated with the spontaneous breaking of global supersym-  
 57 metry and is a fermion. In a broad range of models in which SUSY breaking is mediated at  
 58 a low scale, such as Gauge Mediated Supersymmetry Breaking (GMSB) models [34, 35], the  
 59 Goldstino is nearly massless on the scale of the other particles and becomes the LSP. If SUSY is  
 60 promoted to a local symmetry, leading to gravity, the Goldstino is “eaten” by the SUSY part-  
 61 ner of the graviton, the gravitino ( $J = 3/2$ ), and provides two of its four degrees of freedom.  
 62 In the region of parameter space involving prompt decays to the gravitino, only the degrees  
 63 of freedom associated with the Goldstino have sufficiently large couplings to be relevant, so  
 64 it is common to denote the particle in either case as a Goldstino. In these GMSB models, the  
 65 Goldstino mass is generically at the eV scale.

66 If the lighter neutralinos and charginos are dominated by their Higgsino content and are thus  
 67 nearly mass degenerate, their cascade decays can all lead to the lightest neutralino,  $\tilde{\chi}_1^0$  (now  
 68 taken to be the NLSP), plus soft particles. Integrating over the contributions from various  
 69 allowed combinations of produced charginos and neutralinos ( $\tilde{\chi}_1^0 \tilde{\chi}_2^0, \tilde{\chi}_1^0 \tilde{\chi}_1^\pm, \tilde{\chi}_2^0 \tilde{\chi}_1^\pm, \tilde{\chi}_1^\pm \tilde{\chi}_1^\mp$ ) there-  
 70 fore leads to an effective rate for  $\tilde{\chi}_1^0 \tilde{\chi}_1^0$  production [36, 37] that is significantly larger than that  
 71 for any of the individual primary pairs resulting in a boost to the experimental sensitivity. The  
 72 Higgsino-like NLSP would then decay via  $\tilde{\chi}_1^0 \rightarrow (\gamma, h, Z)\tilde{G}$ , where the Goldstino can lead to  
 73 large  $\vec{p}_T^{\text{miss}}$ . The branching fractions here depend on a number of parameters including  $\tan \beta$ ,  
 74 the ratio of the Higgs vacuum expectation values, but the branching fraction for  $\tilde{\chi}_1^0 \rightarrow h\tilde{G}$  can  
 75 be substantial. As a consequence, the signature  $hh + \vec{p}_T^{\text{miss}}$  with  $h \rightarrow b\bar{b}$  can provide sensitivity  
 76 to the existence of a Higgsino sector in the important class of scenarios in which the LSP mass  
 77 lies below the Higgsino masses.

78 Figure 1 shows the pair production of two  $\tilde{\chi}_1^0$  NLSPs, each decaying via  $\tilde{\chi}_1^0 \rightarrow h\tilde{G}$ , where  
 79 it is assumed that the NLSPs are each fed by the production of  $\tilde{\chi}_1^0, \tilde{\chi}_2^0$ , and  $\tilde{\chi}_1^\pm$  as described  
 80 above. This situation arises when the mass splittings among charginos and neutralinos are

81 large enough ( $\gtrsim 100$  MeV) so that the decays to  $\tilde{\chi}_1^0$  occur promptly, while also small enough  
 82 so that the additional soft particles fall out of acceptance. This scenario, in which other poten-  
 83 tial NLSP decay modes are ignored, is a SUSY simplified model [38–40] and is designated by  
 84 TChiHH.

## 85 2 Detector

86 The central feature of the CMS detector is a superconducting solenoid of 6 m internal diam-  
 87 eter, providing a magnetic field of 3.8 T. Within the solenoid volume are the tracking and  
 88 calorimeter systems. The tracking system, composed of silicon-pixel and silicon-strip detec-  
 89 tors, measures charged particle trajectories within the pseudorapidity range  $|\eta| < 2.5$ , where  
 90  $\eta \equiv -\ln[\tan(\theta/2)]$  and  $\theta$  is the polar angle of the trajectory of the particle with respect to the  
 91 counterclockwise proton beam direction. A lead tungstate crystal electromagnetic calorimeter  
 92 (ECAL), and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel  
 93 and two endcap sections, provide energy measurements up to  $|\eta| = 3$ . Forward calorime-  
 94 ters extend the pseudorapidity coverage provided by the barrel and endcap detectors up to  
 95  $|\eta| = 5$ . Muons are identified and measured within the range  $|\eta| < 2.4$  by gas-ionization de-  
 96 tectors embedded in the steel magnetic flux-return yoke outside the solenoid. The detector is  
 97 nearly hermetic, permitting the accurate measurement of  $\vec{p}_T^{\text{miss}}$ . A more detailed description  
 98 of the CMS detector, together with a definition of the coordinate system used and the relevant  
 99 kinematic variables, is given in Ref. [41].

## 100 3 Simulated event samples

101 The analysis makes use of several simulated event samples for modeling the SM background  
 102 and signal processes. While the background estimation in the analysis is performed from con-  
 103 trol samples in the data, simulated event samples are used to propagate uncertainties as well as  
 104 build understanding of the characteristics of the background events selected by this analysis.

105 The production of  $t\bar{t}$ +jets,  $W$ +jets,  $Z$ +jets, and QCD multijet events is simulated with the Monte  
 106 Carlo (MC) generator MADGRAPH5\_AMC@NLO 2.2.2 [42] in leading-order (LO) mode. Single  
 107 top quark events are modeled at next-to-leading order (NLO) with MADGRAPH5\_AMC@NLO  
 108 for the  $s$ -channel and POWHEG v2 [43, 44] for the  $t$ -channel and  $W$ -associated production. Addi-  
 109 tional small backgrounds, such as  $t\bar{t}$  production in association with bosons, diboson processes,  
 110 and  $t\bar{t}t\bar{t}$  are similarly produced at NLO with either MADGRAPH5\_AMC@NLO or POWHEG.  
 111 All events are generated using the NNPDF 3.0 [45] set of parton distribution functions (PDF).  
 112 Parton showering and fragmentation are performed with the PYTHIA 8.205 [46] generator with  
 113 the underlying event model based on the CUETP8M1 tune detailed in Ref. [47]. The detector  
 114 simulation is performed with GEANT4 [48]. The cross sections used to scale simulated event  
 115 yields are based on the highest order calculation available.

116 Signal events for the TChiHH simplified model are generated for 33 values of the Higgsino  
 117 mass between 200 GeV and 1000 GeV. The mass of the LSP (the Goldstino) is fixed to 1 GeV. The  
 118 yields are normalized to the NLO + next-to-leading-logarithmic (NLL) cross section [36, 37].  
 119 The production cross sections are calculated assuming mass degeneracy for  $\tilde{\chi}_1^0$ ,  $\tilde{\chi}_2^0$ , and  $\tilde{\chi}_1^\pm$ . All  
 120 SUSY decays in the simplified model are taken to be prompt, though the lifetime of a true phys-  
 121 ical model would depend on the mass splitting between the Higgsino states and may be long-  
 122 lived for very nearly degenerate states. Both Higgs bosons in each event are forced to decay  
 123 to  $b\bar{b}$ , which is accounted for by scaling with the branching fraction. The events are generated  
 124 in a manner similar to that for the SM backgrounds, with the MADGRAPH5\_AMC@NLO 2.2.2

125 generator in LO mode using the NNPDF 3.0 PDF set and followed with PYTHIA 8.205 for showering and fragmentation. The detector simulation is performed with the CMS fast simulation  
 126 package [49] with scale factors applied to account for differences with respect to the full simu-  
 127 lation used for backgrounds.

129 Finally, to model the presence of additional proton-proton collisions from the same or adjacent  
 130 beam crossing as the primary hard-scattering process (“pileup” interactions), the simulated  
 131 events are overlaid with multiple minimum bias events, which are also generated with the  
 132 PYTHIA 8.205 generator with the underlying event model based on the CUETP8M1 tune.

## 133 4 Event reconstruction and analysis variables

134 The reconstruction of physics objects in an event proceeds from the candidate particles iden-  
 135 tified by the particle-flow (PF) algorithm [50, 51], which uses information from the tracker,  
 136 calorimeters, and muon systems to identify the candidates as charged or neutral hadrons, pho-  
 137 tons, electrons, or muons. Charged particle tracks are required to originate from the event  
 138 primary vertex (PV), defined as the reconstructed vertex, located within 24 cm (2 cm) of the  
 139 center of the detector in the direction along (perpendicular to) the beam axis, that has the high-  
 140 est value of  $p_T^2$  summed over the associated charged particle tracks.

141 The charged PF candidates associated with the PV and the neutral PF candidates are clustered  
 142 into jets using the anti- $k_T$  algorithm [52] with distance parameter  $R = 0.4$ , as implemented  
 143 in the FASTJET package [53]. The estimated pileup contribution to the jet  $p_T$  from neutral PF  
 144 candidates is removed with a correction based on the area of the jet and the average energy  
 145 density of the event [54]. The jet energy is calibrated using  $p_T$ - and  $\eta$ -dependent corrections;  
 146 the resulting calibrated jet is required to satisfy  $p_T > 30 \text{ GeV}$  and  $|\eta| \leq 2.4$ . Each jet must also  
 147 meet loose identification requirements [55] to suppress, for example, calorimeter noise. Finally,  
 148 jets that have PF constituents matched to an isolated lepton, as defined below, are removed  
 149 from the jet collection.

150 A subset of the jets are “tagged” as originating from b quarks using DeepCSV [56], a new b-  
 151 tagging algorithm based on a deep neural network [57]. The DeepCSV discriminator employs  
 152 the same set of observables used by the combined secondary vertex (CSV) algorithm [58, 59],  
 153 except that the track selection is expanded to include the leading six tracks, further improving  
 154 the b-jet discrimination. In this analysis we use all three of the DeepCSV algorithm working  
 155 points, loose, medium, and tight, defined as the values of the discriminator cut for which the  
 156 rate for misidentifying a light-quark jet as a b jet are 10%, 1%, and 0.1%, respectively. The  
 157 b-tagging efficiency for jets with  $p_T$  in the 50-150 GeV range is approximately 84%, 66% and  
 158 45% for the loose, medium and tight working points, respectively, and gradually decreases for  
 159 lower and higher jet transverse momenta.

160 The missing transverse momentum,  $p_T^{\text{miss}}$ , is given by the magnitude of  $\vec{p}_T^{\text{miss}}$ , the negative  
 161 vector sum of the transverse momenta of all PF candidates [50, 51]. Correspondence to the true  
 162 undetectable energy in the event is improved by replacing the contribution of the PF candidates  
 163 associated with a jet by the calibrated four-momentum of that jet. Filters are applied to reject  
 164 events with well defined anomalous sources of  $p_T^{\text{miss}}$  arising from calorimeter noise, beam halo,  
 165 dead cells, and other effects.

166 Two types of lepton candidates are defined: *veto* leptons are used to suppress contamination  
 167 from leptonic decays in the search region, while *signal* leptons are defined with tighter require-  
 168 ments and are used in the single-lepton and dilepton control regions. Electrons are recon-

169 structed by associating a charged particle track with an ECAL supercluster [60]. Veto (signal)  
 170 candidate electrons are required to have  $p_T > 10 \text{ GeV}$  ( $p_T > 20 \text{ GeV}$ ) and  $|\eta| < 2.5$ , and are  
 171 required to satisfy identification criteria designed to minimize any misidentification of light-  
 172 parton jets, photon conversions, and electrons from heavy flavor hadron decays as prompt  
 173 electrons. Muons are reconstructed by associating tracks in the muon system with those found  
 174 in the silicon tracker [61]. Veto (signal) muon candidates are required to satisfy  $p_T > 10 \text{ GeV}$   
 175 ( $p_T > 20 \text{ GeV}$ ) and  $|\eta| < 2.4$ .

176 To preferentially select leptons that originate in the decay of  $W$  and  $Z$  bosons, leptons are re-  
 177 quired to be isolated from other PF candidates. Isolation is quantified using an optimized ver-  
 178 sion of the “mini-isolation” variable originally suggested in Ref. [62], in which the transverse  
 179 energy of the particles within a cone in  $\eta$ - $\phi$  space surrounding the lepton momentum vector  
 180 is computed using a cone size that scales with the inverse of the transverse momentum of the  
 181 lepton. For more details on the precise definition of the lepton isolation used in this analysis,  
 182 see Ref. [63] The combined efficiency for the signal electron reconstruction and isolation re-  
 183 quirements is about 50% at a  $p_T^\ell$  of 20 GeV, increasing to 65% at 50 GeV and reaching a plateau  
 184 of 80% above 200 GeV. The combined reconstruction and isolation efficiencies for signal muons  
 185 are about 70% at a  $p_T^\ell$  of 20 GeV, increasing to 80% at 50 GeV and reaching a plateau of 95% at  
 186 200 GeV.

187 The dominant background in the analysis arises from the production of  $t\bar{t}$  single-lepton events  
 188 in which the lepton is a  $\tau$  decaying hadronically or is a light lepton that is not reconstructed or  
 189 fails the lepton selection criteria, including the  $p_T$  threshold and the isolation requirements. To  
 190 reduce this background, we veto events with any additional tracks corresponding to leptonic  
 191 or hadronic PF candidates. To reduce the influence of tracks from extraneous pp interactions  
 192 (pileup), isolated tracks are considered only if their nearest distance of approach along the  
 193 beam axis to a reconstructed vertex is smaller for the primary event vertex than for any other  
 194 vertex.

The requirements for the definition of an isolated track differ slightly depending on whether the track is identified as leptonic or hadronic by the PF algorithm. For leptonic tracks, we require  $p_T > 5 \text{ GeV}$  and  $I_{tk} < 0.2$ , where  $I_{tk}$  is the scalar  $p_T$  sum of other charged tracks within  $\Delta R \equiv \sqrt{(\Delta\phi)^2 + (\Delta\eta)^2} < 0.3$  of the primary track, divided by the  $p_T$  value of the primary track. For hadronic tracks, we apply slightly tighter requirements to reduce hadronic (non- $\tau$ ) signal loss:  $p_T > 10 \text{ GeV}$  and  $I_{tk} < 0.1$ . Since the isolation sum does not include neutral-particle candidates, the isolation distributions and efficiencies of leptonic tracks should be similar to those of pions from single-prong  $\tau$  decays. To minimize the signal inefficiency due to this veto, isolated tracks are considered only if they satisfy

$$m_T(tk, \vec{p}_T^{\text{miss}}) \equiv \sqrt{2p_T^{\text{tk}} p_T^{\text{miss}} [1 - \cos(\Delta\phi_{tk, \vec{p}_T^{\text{miss}}})]} < 100 \text{ GeV}, \quad (1)$$

195 where  $p_T^{\text{tk}}$  is the transverse momentum of the track and  $\Delta\phi_{tk, \vec{p}_T^{\text{miss}}}$  is the azimuthal separation  
 196 between the track and  $\vec{p}_T^{\text{miss}}$ .

197 The majority of QCD multijet events in the high- $p_T^{\text{miss}}$  search region have jets with undermea-  
 198 sured momenta and thus a spurious momentum imbalance. A signature of such an event is a jet  
 199 closely aligned in direction with the  $\vec{p}_T^{\text{miss}}$  vector. To suppress this background, we place the fol-  
 200 lowing requirements on the angle  $\Delta\phi_i$  between the  $i$ -th highest- $p_T$  jet and  $\vec{p}_T^{\text{miss}}$  for  $i = 1, 2, 3, 4$ :  
 201  $\Delta\phi_1 < 0.5$ ,  $\Delta\phi_2 < 0.5$ ,  $\Delta\phi_3 < 0.3$ , and  $\Delta\phi_4 < 0.3$ . No such requirement is placed on other jets.

202 The transverse hadronic energy  $H_T$  is defined as the scalar sum of the transverse momenta  
 203 of the jets satisfying the criteria described above. Similarly,  $N_{\text{jets}}$  is the number of such jets,

204 and  $N_{b,L}$ ,  $N_{b,M}$ , and  $N_{b,T}$  the number of these jets tagged with the loose, medium, and tight b-  
 205 tagging working points, respectively. By definition, the jets identified by each b-tagging work-  
 206 ing point form a subset of those satisfying the requirements of looser working points.

207 A single-lepton control sample is used to study the  $t\bar{t}$  background. To avoid possible signal  
 208 contamination from SUSY processes leading to leptons, a maximum requirement is imposed  
 209 on the transverse mass of these events:

$$m_T(\ell, \vec{p}_T^{\text{miss}}) \equiv \sqrt{2p_T^\ell p_T^{\text{miss}} [1 - \cos(\Delta\phi_{\ell, \vec{p}_T^{\text{miss}}})]} < 100 \text{ GeV}, \quad (2)$$

210 where  $\Delta\phi_{\ell, \vec{p}_T^{\text{miss}}}$  is the difference between the azimuthal angles of the lepton momentum vector  
 211 and the missing momentum vector,  $\vec{p}_T^{\text{miss}}$ .

212 To optimize signal efficiency and background rejection, we define the following mutually ex-  
 213 clusive b-tagging categories:

- 214 • **2b category**: two tight b-tags ( $N_{b,T} = 2$ ,  $N_{b,M} = 2$ ),
- 215 • **3b category**: two tight b-tags and a medium b-tag ( $N_{b,T} \geq 2$ ,  $N_{b,M} = 3$ ,  $N_{b,L} = 3$ ),  
 216 and
- 217 • **4b category**: two tight b-tags, a medium b-tag, and a loose b-tag ( $N_{b,T} \geq 2$ ,  $N_{b,M} \geq 3$ ,  
 218  $N_{b,L} \geq 4$ ).

219 The 2b category is used as a control sample to determine the kinematic shape of the back-  
 220 ground. Most of the signal events lie in the 3b and 4b categories. This categorization was found  
 221 to have superior performance with respect to different combinations of working points. For in-  
 222 stance, the simpler option of only using medium b-tags results in a loose 2b control sample that  
 223 has a larger contribution from QCD, and a tight 4b sample with smaller signal efficiency.

224 To study various sources of background with higher statistical precision, we also define the  
 225 following b-tag categories with looser requirements:

- 226 • **0b category**: no medium b-tags ( $N_{b,M} = 0$ ),
- 227 • **1b category**: one medium b-tags ( $N_{b,M} = 1$ ).

228 We will use  $N_b$  as a shorthand when discussing b-tag categories as an analysis variable, and  
 229  $N_{b,L}$ ,  $N_{b,M}$ , and  $N_{b,T}$  when discussing numbers of b-tags for specific working points.

The principal visible decay products in signal events are the four b jets that arise from the decay of the two Higgs bosons. Additional jets may arise from initial-state radiation, final-state radiation or pileup. In order to reconstruct both Higgs bosons, we choose the four jets with the largest DeepCSV discriminator values, i.e., the four most b-like jets. These four jets can be grouped into three different pairs of Higgs boson candidates. Of the three possibilities, we choose the one with the smallest mass difference  $\Delta m$  between the two Higgs candidate masses  $m_{H_1}, m_{H_2}$

$$\Delta m \equiv |m_{H_1} - m_{H_2}|. \quad (3)$$

230 This method exploits the fact that signal events contain two particles of identical mass, without  
 231 using the known value of the mass itself. Methods that use the known mass to select the best  
 232 candidate tend to sculpt an artificial peak in the background.

Only events where the masses of the two Higgs boson candidates are similar,  $\Delta m < 40$  GeV, are kept. We then calculate the average mass as

$$\langle m \rangle \equiv \frac{m_{H_1} + m_{H_2}}{2}. \quad (4)$$

233 As discussed in Section 6, we define the Higgs boson mass window as  $100 < \langle m \rangle \leq 140$  GeV.

After selecting the two Higgs boson candidates, we compute the distance  $\Delta R$  between the two jets in each of the  $H \rightarrow b\bar{b}$  candidate decays. We then define  $\Delta R_{\max}$  as the larger of these two values

$$\Delta R_{\max} \equiv \max(\Delta R_{H_1}, \Delta R_{H_2}). \quad (5)$$

234 In the typical configuration of signal events,  $\Delta R_{\max}$  is small because the Higgs bosons tend to  
 235 have non-zero transverse boost and, thus, the two jets from the decay of a Higgs boson tend to  
 236 lie near each other in  $\eta$  and  $\phi$ . In contrast, for semileptonic  $t\bar{t}$  background events, three of the  
 237 jets typically arise from a top quark that decays via a hadronically decaying W boson while the  
 238 fourth jet arises from a b quark from the other top-quark decay. Therefore, three of the jets tend  
 239 to lie within the same hemisphere while the fourth jet is in the opposite hemisphere. One of  
 240 the Higgs boson candidates is thus formed from jets in both hemispheres, and  $\Delta R_{\max}$  tends to  
 241 be larger than it is for signal events.

## 242 5 Trigger and event selection

243 The data sample used in this analysis was obtained with triggers that require the value of  
 244  $p_T^{\text{miss}}$  to be greater than 100 GeV to 120 GeV, depending on the running period. This variable  
 245 is computed with trigger-level quantities, and, as result, it has somewhat poorer resolution  
 246 than the corresponding offline variable. The trigger efficiency, measured in samples triggered  
 247 by a high- $p_T$  isolated electron, rises rapidly from about 60% at  $p_T^{\text{miss}} = 150$  GeV to over 99%  
 248 for  $p_T^{\text{miss}} > 300$  GeV. Systematic uncertainties on this efficiency are obtained by comparing  
 249 the nominal trigger efficiency with that obtained in different kinematic regions, with different  
 250 reference triggers, and with the simulation. This uncertainty is about 7% for  $p_T^{\text{miss}} = 150$  GeV  
 251 and decreases to 0.7% for  $p_T^{\text{miss}} > 300$  GeV.

252 Several data control samples are employed to validate the analysis techniques and estimate  
 253 systematic uncertainties on the background estimates. The control sample for the principal  
 254 background from  $t\bar{t}$  events requires exactly one electron or one muon, while invisible Z boson  
 255 decays are studied with a control sample requiring two leptons consistent with a  $Z \rightarrow \ell\ell$  decay.  
 256 These data samples were obtained with triggers that require at least one electron or muon with  
 257  $p_T$  greater than 27 GeV or 24 GeV, respectively.

258 Signal events have four b jets from the decay of two Higgs bosons with little or no additional  
 259 hadronic activity and no isolated leptons. Thus, we select events with 4 or 5 jets, no veto  
 260 leptons or isolated tracks, at least two tight b tags,  $p_T^{\text{miss}} > 150$  GeV, high  $\Delta\phi$ ,  $\Delta m < 40$  GeV,  
 261 and  $\Delta R_{\max} < 2.2$ . These selection requirements, listed in the top half of Table 1, are referred  
 262 to as the *baseline selection*, while the bottom half of that table shows the further reduction in  
 263 background in increasingly more sensitive search bins.

264 After the baseline selection, more than 85% of the remaining SM background arises from  $t\bar{t}$   
 265 production. The contributions from events with a W or Z boson in association with jets are  
 266 about 10%. The background from QCD multijet events after the baseline selection is very small  
 267 due to the combination of  $p_T^{\text{miss}}$ ,  $\Delta\phi$ , and  $N_b$  requirements. The distributions of  $\langle m \rangle$ ,  $\Delta m$  and  
 268  $\Delta R_{\max}$  in the 4b category are shown in Fig. 2 in data and simulation for illustration only. The  
 269 background prediction is based on data control samples as described next.

270 As shown in Fig. 2, the  $p_T^{\text{miss}}$  distribution of the signal is highly dependent on the Higgsino  
 271 mass. Thus, to further enhance the sensitivity of the analysis we subdivide the search region  
 272 into four  $p_T^{\text{miss}}$  bins:  $150 < p_T^{\text{miss}} \leq 200$  GeV,  $200 < p_T^{\text{miss}} \leq 300$  GeV,  $300 < p_T^{\text{miss}} \leq 450$  GeV,

Table 1: Event yields obtained from simulated event samples scaled to  $35.9 \text{ fb}^{-1}$ , as the event selection criteria are applied. The category “ $\bar{t} + X$ ” is dominated by  $t\bar{t}$  (98.5%), but also includes small contributions from  $\bar{t}t\bar{t}$ ,  $\bar{t}W$ ,  $\bar{t}Z$ ,  $\bar{t}H$ , and  $\bar{t}\gamma$ . The category “V+jets” includes Z+jets and W+jets in all their decays. The category “Other” includes ZZ, WZ, WW, WH( $\rightarrow b\bar{b}$ ), and ZH( $\rightarrow b\bar{b}$ ). The event selection requirements listed above the horizontal line in the middle of the table are defined as the *baseline selection*. The trigger efficiency is applied as an event weight and is first taken into account in the  $p_T^{\text{miss}} > 150 \text{ GeV}$  row.

| $\mathcal{L} = 35.9 \text{ fb}^{-1}$             | Other | Singlet | QCD     | V+jets | $t\bar{t} + X$ | Total SM bkg.       | TChiHH<br>(225,1) | TChiHHH<br>(400,1) | TChiHHH<br>(700,1) |
|--------------------------------------------------|-------|---------|---------|--------|----------------|---------------------|-------------------|--------------------|--------------------|
| No selection                                     | —     | —       | —       | —      | —              | —                   | 10477.0           | 1080.4             | 84.0               |
| $0\ell$ , 4-5 jets                               | —     | —       | —       | —      | —              | —                   | 4400.5            | 542.4              | 44.5               |
| $N_{b,T} \geq 2$                                 | —     | —       | —       | —      | —              | —                   | 2479.4            | 304.2              | 23.8               |
| $p_T^{\text{miss}} > 150 \text{ GeV}$            | 122.3 | 1847.0  | 13201.4 | 2375.8 | 26797.7        | 44344.2 $\pm$ 778.5 | 487.0             | 201.7              | 20.2               |
| Track veto                                       | 91.4  | 1130.1  | 12251.8 | 1987.0 | 16910.1        | 32370.5 $\pm$ 770.5 | 455.1             | 193.2              | 19.8               |
| $\Delta\phi_{1,2} > 0.5, \Delta\phi_{3,4} > 0.3$ | 62.3  | 688.4   | 1649.0  | 1466.6 | 12027.0        | 15893.4 $\pm$ 482.6 | 258.4             | 161.0              | 17.4               |
| $ \Delta m  < 40 \text{ GeV}$                    | 35.9  | 366.0   | 831.9   | 745.5  | 7682.3         | 9661.6 $\pm$ 440.8  | 187.1             | 118.9              | 12.0               |
| $\Delta R_{\text{max}} < 2.2$                    | 14.2  | 138.2   | 147.0   | 336.9  | 3014.2         | 3650.5 $\pm$ 902    | 95.1              | 80.1               | 9.9                |
| $100 < \langle m \rangle \leq 140 \text{ GeV}$   | 3.8   | 42.3    | 14.0    | 75.2   | 992.0          | 1127.3 $\pm$ 10.1   | 70.4              | 61.1               | 8.1                |
| 3b + 4b                                          | 0.1   | 3.4     | 3.2     | 7.1    | 109.0          | 122.9 $\pm$ 3.9     | 53.0              | 46.1               | 6.2                |
| 4b                                               | 0.1   | 0.7     | 3.2     | 1.5    | 27.3           | 32.8 $\pm$ 3.4      | 35.4              | 32.0               | 4.4                |
| $p_T^{\text{miss}} > 200 \text{ GeV}$            | 0.1   | 0.3     | 3.2     | 1.1    | 9.4            | 14.1 $\pm$ 3.3      | 15.0              | 26.2               | 4.2                |
| $p_T^{\text{miss}} > 300 \text{ GeV}$            | 0.0   | 0.1     | 0.0     | 0.4    | 1.1            | 1.7 $\pm$ 0.2       | 2.4               | 11.6               | 3.4                |
| $p_T^{\text{miss}} > 450 \text{ GeV}$            | 0.0   | 0.0     | 0.1     | 0.1    | 0.1            | 0.1 $\pm$ 0.1       | 0.1               | 1.1                | 1.9                |

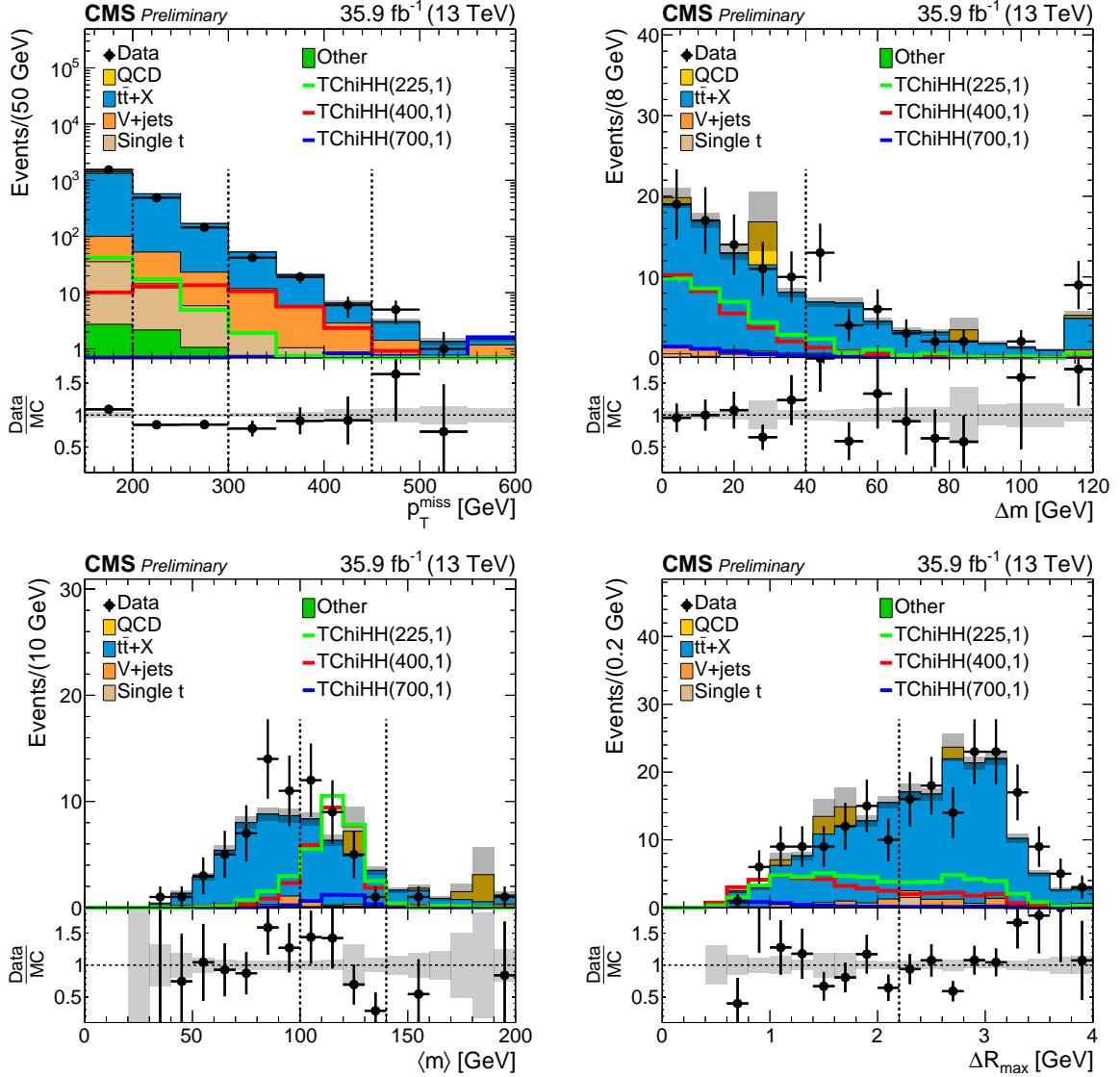



Figure 2: Distributions of  $p_T^{\text{miss}}$ ,  $\Delta m$ ,  $\langle m \rangle$ , and  $\Delta R_{\text{max}}$  for data and simulated background samples, as well as signal benchmark points for three values of the Higgsino mass. All plots include baseline requirements, and the  $\Delta m$ ,  $\langle m \rangle$ , and  $\Delta R_{\text{max}}$  distributions also include the 4b selection. The simulation is normalized to the data yields. The gray shading indicates the statistical uncertainty on the total simulated background.

273  $p_T^{\text{miss}} > 450$  GeV. The background estimation procedure described in Section 6 is then applied  
 274 simultaneously in each of the four  $p_T^{\text{miss}}$  bins. Details of the background control samples will  
 275 be given in Section 7 which covers the systematic uncertainties.

## 276 6 Background estimation

### 277 6.1 Method

278 The background estimation method is based on the observation that the  $\langle m \rangle$  distribution is ap-  
 279 proximately uncorrelated with the number of b-tags. As shown in Fig. 3, the  $\langle m \rangle$  shapes for the  
 280 three event categories used in the analysis agree within the available statistics. This behavior  
 281 can be understood by noting that the background in all three b-tag categories is dominated by

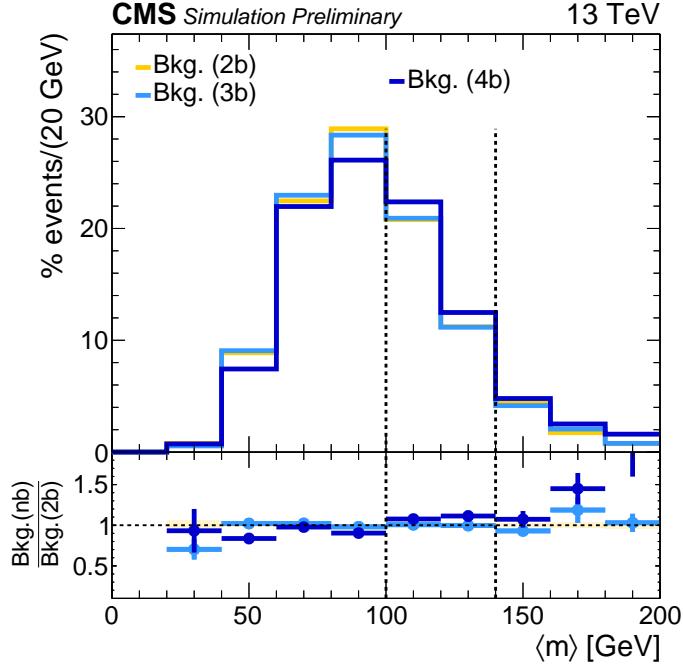



Figure 3: Comparison of the  $\langle m \rangle$  shape from simulated background samples among the three b-tag categories after baseline selection. Note that QCD is not included due to the poor statistics of the simulation.

282 events containing only 2 b quarks, with the additional b-tagged jets in the 3b and 4b categories  
 283 being mistagged light-quark or gluon jets. The background simulation indicates that less than  
 284 20% of the events in the 3b and 4b selection have more than 2 b quarks. As a result, the four  
 285 jets used to construct  $\langle m \rangle$  in the 3b and 4b categories have no distinct angular correlations as  
 286 compared to the jets used to construct  $\langle m \rangle$  in the 2b selection, and thus the shape of the average  
 287 mass distribution is independent of  $N_b$  for  $N_b \geq 2$ .

288 Taking advantage of this observation, we construct an ABCD method [63] using  $\langle m \rangle$  and the  
 289 b-tag categories as the two dimensions. Specifically, we define the HIG region as the events  
 290 with  $\langle m \rangle$  within the Higgs boson mass window, 100 to 140 GeV, and the SBD region as the sum  
 291 of all events outside the mass window up to  $\langle m \rangle < 200$  GeV. The SBD and 2b regions are the  
 292 sidebands, which are used to determine the background in the signal enriched HIG region for  
 293 the 3b and 4b events independently for each  $p_T^{\text{miss}}$  bin. In the limit that the b-tag category and  
 294  $\langle m \rangle$  are uncorrelated, the background HIG / SBD ratio is the same for the three b-tag categories

$$\left( \frac{\mu_{\text{HIG}}^{\text{bkg}}}{\mu_{\text{SBD}}^{\text{bkg}}} \right)_{\text{2b}} = \left( \frac{\mu_{\text{HIG}}^{\text{bkg}}}{\mu_{\text{SBD}}^{\text{bkg}}} \right)_{\text{3b}} = \left( \frac{\mu_{\text{HIG}}^{\text{bkg}}}{\mu_{\text{SBD}}^{\text{bkg}}} \right)_{\text{4b}} \equiv R_m, \quad (6)$$

where  $\mu_{nb,\text{SBD}}^{\text{bkg}}$  and  $\mu_{nb,\text{HIG}}^{\text{bkg}}$  are the estimated (Poisson) means of the background for each b-tag category ( $n = 2, 3, 4$ ) in the SBD and HIG search regions, respectively. The resulting background predictions are

$$\mu_{\text{3b,HIG}}^{\text{bkg}} = \mu_{\text{3b,SBD}}^{\text{bkg}} \times R_m \quad \text{and} \quad \mu_{\text{4b,HIG}}^{\text{bkg}} = \mu_{\text{4b,SBD}}^{\text{bkg}} \times R_m. \quad (7)$$

The *closure* of the background estimation method, that is, the ability of Eq. 7 to predict the

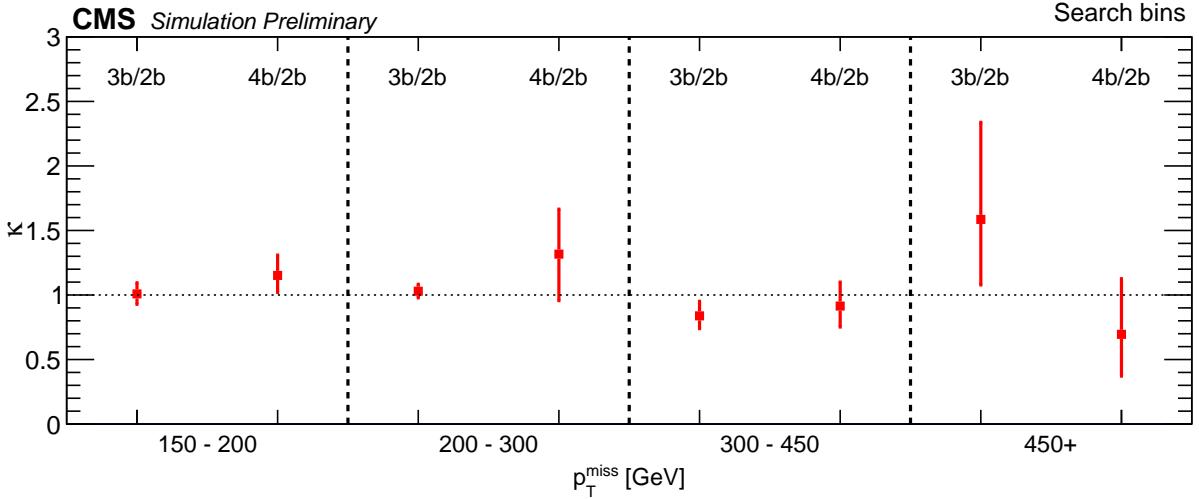



Figure 4: Values of the double-ratios  $\kappa_{3b}$  and  $\kappa_{4b}$  obtained from the background simulation for each of the  $p_T^{\text{miss}}$  bins.

background rates in the signal regions, is quantified with the double ratio  $\kappa$

$$\kappa_{nb} = \left( \frac{\mu_{\text{HIG}}^{\text{bkg}}}{\mu_{\text{SBD}}^{\text{bkg}}} \right)_{nb} / \left( \frac{\mu_{\text{HIG}}^{\text{bkg}}}{\mu_{\text{SBD}}^{\text{bkg}}} \right)_{2b}. \quad (8)$$

These  $\kappa$  factors measure the impact of any residual correlation between the b-tag category and  $\langle m \rangle$ . Figure 4 shows that the  $\kappa$  factors in simulation are consistent with unity for both the 3b and 4b regions across the full  $p_T^{\text{miss}}$  range, demonstrating the fundamental assumption of the ABCD method. In Section 7, we study the closure of the method in data control samples and estimate the associated systematic uncertainties on the background prediction.

## 6.2 Implementation

The method outlined in Section 6.1 is implemented with a likelihood function that incorporates the systematic uncertainties on the closure and accounts for signal contamination in the  $\langle m \rangle$  SBD and 2b sideband regions.

The likelihood function is the product of Poisson probability density functions, one for each observable, given by

$$\mathcal{L} = \mathcal{L}_{\text{ABCD}}^{\text{data}} \cdot \mathcal{L}_{\text{sig}}^{\text{MC}}, \quad (9)$$

$$\begin{aligned} \mathcal{L}_{\text{ABCD}}^{\text{data}} = & \prod_{m=1}^4 \prod_{n=2}^4 \text{Poisson}(N_{nb,\text{SBD},m}^{\text{data}} | \mu_{nb,\text{SBD},m}^{\text{bkg}} + r \cdot \mu_{nb,\text{SBD},m}^{\text{MC,sig}}) \times \\ & \prod_{m=1}^4 \prod_{n=2}^4 \text{Poisson}(N_{nb,\text{HIG},m}^{\text{data}} | \mu_{nb,\text{SBD},m}^{\text{bkg}} \times R_m + r \cdot \mu_{nb,\text{HIG},m}^{\text{MC,sig}}), \end{aligned} \quad (10)$$

$$\mathcal{L}_{\text{sig}}^{\text{MC}} = \prod_{m=1}^4 \prod_{n=2}^4 \text{Poisson}(N_{nb,\text{SBD},m}^{\text{MC,sig}} | \mu_{nb,\text{SBD},m}^{\text{MC,sig}}) \times \prod_{m=1}^4 \prod_{n=2}^4 \text{Poisson}(N_{nb,\text{HIG},m}^{\text{MC,sig}} | \mu_{nb,\text{HIG},m}^{\text{MC,sig}}), \quad (11)$$

where  $N^{\text{data}}$  and  $N^{\text{MC}}$  refer to the observed number of events in data and the simulation,  $\mu_{nb}^{\text{MC,sig}}$  is the expected number of signal events, and  $r$  is the strength of the signal. For each  $p_T^{\text{miss}}$  bin  $m$ , there are four main floating parameters describing the fitted background rates: the three sideband background rates  $\mu_{nb,\text{SBD},m}^{\text{bkg}}$  and the ratio  $R_m$ .

308 In Eq. (9),  $\mathcal{L}_{ABCD}^{\text{data}}$  accounts for the statistical uncertainty in the observed data yields in each of  
 309 the  $4 \times 6$  regions, and  $\mathcal{L}_{\text{sig}}^{\text{MC}}$  accounts for the uncertainty in the computation of the signal shape  
 310 due to the finite size of the MC samples.

311 The systematic uncertainties on the closure and the signal efficiency are described in the following  
 312 sections. These effects are incorporated in the likelihood function as log-normal constraints  
 313 multiplying the event rates with a nuisance parameter for each uncorrelated source of uncer-  
 314 tainty. These terms are not explicitly shown in the likelihood function above for simplicity.

315 The likelihood function defined in Eqs. (9)–(11) is employed in two separate types of fits that  
 316 provide complementary but compatible background estimates based on an ABCD model. The  
 317 first type of fit, which we call the *predictive fit*, allows us to more easily establish the agreement  
 318 of the background predictions and the observations in the null (i.e., the background-only) hy-  
 319 pothesis. We do this by excluding the observations in the signal regions in the likelihood (that  
 320 is, by not including the (3b,HIG) and (4b,HIG) bins in the products of Eq. (10)) and fixing  
 321 the signal strength  $r$  to 0. This procedure leaves as many unknowns as constraints: four *data*  
 322 floating parameters ( $\mu_{2b,\text{SBD}}^{\text{bkg}}$ ,  $\mu_{3b,\text{SBD}}^{\text{bkg}}$ ,  $\mu_{4b,\text{SBD}}^{\text{bkg}}$ , and  $R_m$ ) and four observations ( $N_{2b,\text{SBD}}^{\text{data}}$ ,  $N_{3b,\text{SBD}}^{\text{data}}$ ,  
 323  $N_{4b,\text{SBD}}^{\text{data}}$ , and  $N_{2b,\text{HIG}}^{\text{data}}$ ) for each  $p_T^{\text{miss}}$  bin. In the likelihood function there are additional floating  
 324 parameters associated with the signal yields, which have small uncertainties. As a result, the  
 325 estimated background rates in the control regions converge to the observed values in those  
 326 bins, and we obtain predictions for the signal regions that do not depend on the observed  
 327  $N_{3b,\text{HIG}}^{\text{data}}$  and  $N_{4b,\text{HIG}}^{\text{data}}$  yields. The predictive fit thus converges to the standard ABCD method,  
 328 and the likelihood machinery becomes just a convenient way to solve the system of equations  
 329 and propagate the various uncertainties.

330 Additionally, we implement a *global fit* which, by making use of the observations in the signal  
 331 regions, can provide an estimate of the signal strength  $r$ , while allowing for signal events to  
 332 populate the control regions. This is achieved by including all  $N_{nb,\text{SBD}}^{\text{data}}$  and  $N_{nb,\text{HIG}}^{\text{data}}$  observa-  
 333 tions, ( $n = 2, 3, 4$ ), in the likelihood function. Since there are six observations and four float-  
 334 ing background parameters in each ABCD plane, there are enough constraints for the signal  
 335 strength also to be determined in the fit.

## 336 7 Systematic uncertainties

### 337 7.1 Overview

338 The background estimation procedure described in Section 6 relies on the approximate inde-  
 339 pendence of the  $\langle m \rangle$  and  $N_b$  distributions. The closure of the method for each signal bin can be  
 340 quantified with the double-ratio  $\kappa$  (Eq. 8), expected to be unity in the case of  $\langle m \rangle$  and  $N_b$  being  
 341 uncorrelated. In the simulation, the  $\kappa$  factors are close to 1 (Fig. 4) because the following two  
 342 conditions are approximately true:

343 1. The distributions of  $\langle m \rangle$  and  $N_b$  are independent for each background category.  
 344 2. The relative abundance of each background component is independent of  $N_b$ .

345 These conditions are sufficient to ensure that the overall  $\kappa$  is unity, even when each background  
 346 has different  $\langle m \rangle$  shape (which is the case for the two main backgrounds,  $t\bar{t}$  and  $Z+\text{jets}$ ). In this  
 347 section, we present the data control sample studies that test these expectations together with the  
 348 resulting estimates for the systematic uncertainties on the closure of the background estimate  
 349 method for each search bin.

350 In Sections 7.2, 7.3, and 7.4, we study the first condition by defining dedicated data control re-  
 351 gions for  $t\bar{t}$ ,  $Z+jets$  and QCD multijet production and examining the closure of the background  
 352 estimation method for each of these individual background processes in the data. Then, in  
 353 Section 7.5, we use these data control samples to quantify the validity of the simulation predic-  
 354 tion that the background admixture is independent of  $N_b$  in each  $p_T^{\text{miss}}$  bin, the second closure  
 355 condition, by examining the modeling of the  $p_T^{\text{miss}}$  and  $N_b$  distributions for each background  
 356 source. Finally, Section 7.6 describes the prescription for combining the findings based on these  
 357 data control sample studies into a total systematic uncertainty on the background prediction in  
 358 each search bin.

## 359 7.2 Single-lepton $t\bar{t}$ control sample

360 To test whether the background estimation method works for  $t\bar{t}$ -like processes, we define a  
 361 single lepton control sample, which, like the search region, is dominated by single lepton  $t\bar{t}$   
 362 events and represents a similar kinematic phase space. Since the lepton is a spectator object  
 363 as far as the ABCD method is concerned—it is neither involved in the construction of the  
 364  $\langle m \rangle$  variable, nor correlated with the presence of additional b-jets—this control sample should  
 365 accurately capture any potential mismodeling of the  $\langle m \rangle$ - $N_b$  correlation that may be present in  
 366 the signal region.

367 For each of the 6 nominal ABCD planes, we construct a corresponding single-lepton ABCD  
 368 plane, where all cuts are kept the same except for removing the lepton and isolated track vetoes  
 369 and instead requiring exactly one signal lepton with  $p_T > 30$  GeV (to reach trigger plateau) and  
 370  $m_T < 100$  GeV (to avoid poorly reconstructed events and possible signal contamination from  
 371 other SUSY models). Given that the single lepton region is free of QCD contamination, the  $\Delta\phi$   
 372 cut is also removed. Since the presence of the lepton allows us to trigger on events with lower  
 373  $p_T^{\text{miss}}$ , we add two additional  $p_T^{\text{miss}}$  bins,  $p_T^{\text{miss}} < 75$  GeV and  $75 < p_T^{\text{miss}} \leq 150$  GeV, allowing to  
 374 study the  $p_T^{\text{miss}}$  dependence of the closure in a wider range. Except for the  $p_T^{\text{miss}} > 300$  GeV bin  
 375 where the contribution of single top production and  $V+jets$  can be altogether as high as  $\sim 25\%$ ,  
 376  $t\bar{t}$  accounts for over 90% of the events in this control region. Data-to-simulation comparison  
 377 shows good agreement for the  $\langle m \rangle$  distribution, as seen in Figure 5 (left), as well as for the  
 378 other Higgs reconstruction variables,  $\Delta m$  and  $\Delta R_{\text{max}}$ .

379 As described in Section 6, since the 3b and 4b categories are dominated by events with two  
 380 true B hadrons and one or two additional mistagged jets, similar jet topologies contribute to all  
 381 b-tag categories and thus the  $\langle m \rangle$  distributions of the reconstructed b-tag categories converge.  
 382 We validate this assertion in the single-lepton control sample by examining the value of the  $\kappa$   
 383 factor. Figure 6 shows the overall closure of the method in bins of  $p_T^{\text{miss}}$  both in the simulation  
 384 and in data. We observe good closure within the statistical uncertainties. As expected from the  
 385 simulation, the data  $\kappa$  values are consistent with unity across the full  $p_T^{\text{miss}}$  range.

386 To assign the final uncertainty on the closure of the method in  $t\bar{t}$ -like events, we take advantage  
 387 of the fact that the closure of the method is not expected to depend on  $p_T^{\text{miss}}$ . This is confirmed  
 388 within the available data and simulation statistics, shown in Fig. 6, as well as after loosening  
 389 the selection by removing the  $\Delta R_{\text{max}}$  cut. Additionally, from simulation we know that the true  
 390 B-hadron composition of each b-tag category does not depend on  $p_T^{\text{miss}}$ . We thus integrate  
 391 over  $p_T^{\text{miss}}$  to increase the statistical precision of the closure test and assign the larger of the  
 392 non-closure and the statistical uncertainty as the systematic uncertainty on the closure of the  
 393 method in  $t\bar{t}$ -like events. The results, shown to the right of the solid line in Fig. 6 correspond to  
 394 an uncertainty of 3% and 6% in the 3b and 4b bins, respectively.

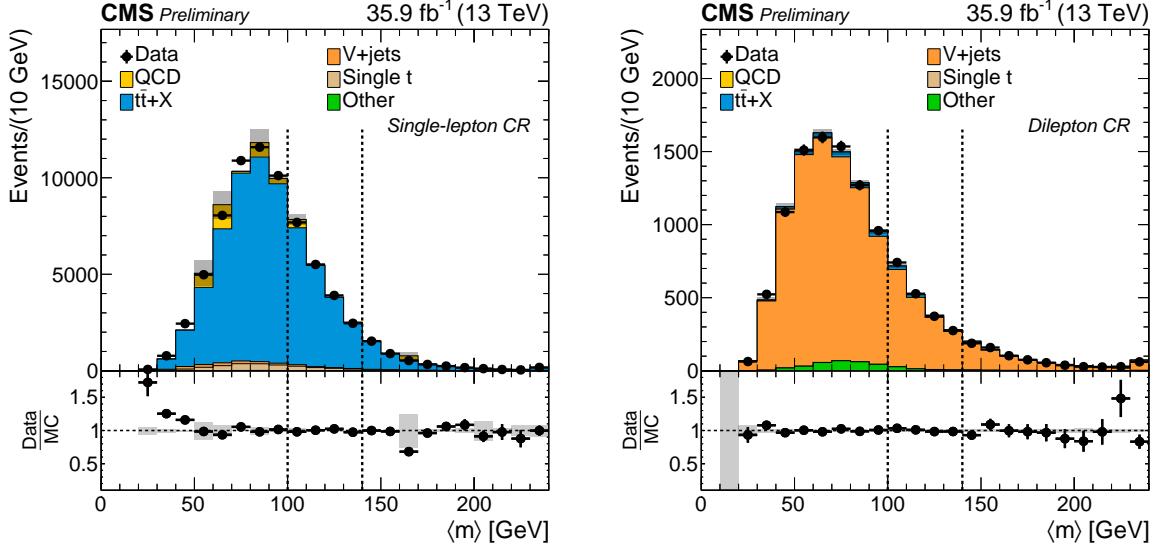



Figure 5: Comparison of the distribution of  $\langle m \rangle$  in data and simulation in the single-lepton control sample (left) and the dilepton control sample (right) integrated in  $p_T^{\text{miss}}$ . The simulation is normalized to the data yields. The gray shading indicates the statistical uncertainty on the total simulated background.

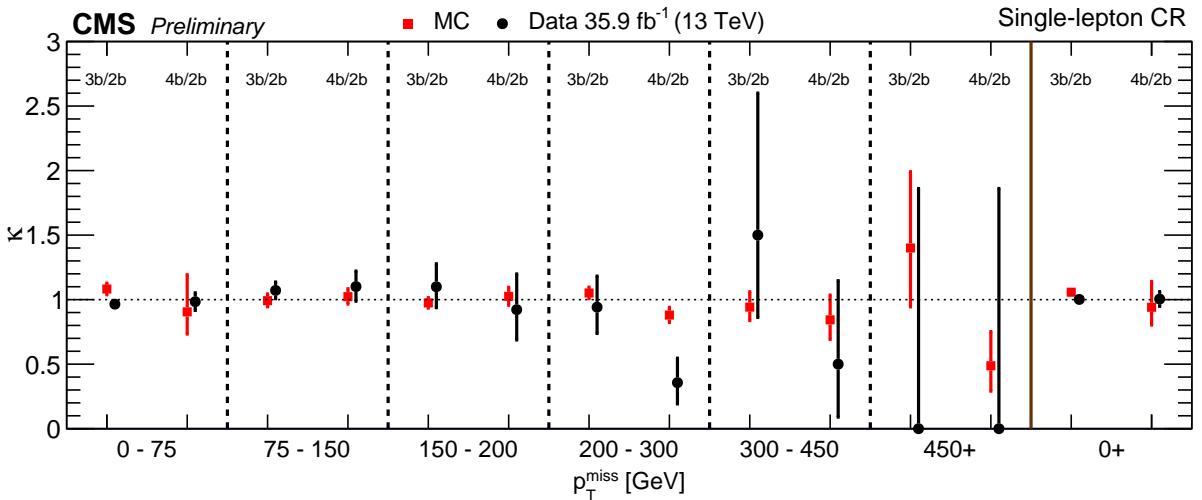



Figure 6: Comparison of the  $\kappa$  values found in the single-lepton control sample, for data and simulated events, for the 2b-3b and 2b-4b ABCD planes in each  $p_T^{\text{miss}}$  bin.

### 395 7.3 Z+jets control sample

396 As shown in Section 5, the second largest background is Z+jets, with the Z boson decaying  
 397 as  $Z \rightarrow \nu\nu$ . Similarly to the  $t\bar{t}$  case, we can validate the background estimation method for  
 398 Z+jets events by constructing a closure test in a representative data control sample rich with  
 399  $Z \rightarrow \ell\ell$  decays. However, given the small branching fraction of  $Z \rightarrow \ell\ell$  decays and the large  $t\bar{t}$   
 400 contamination associated with a high  $N_b$  selection, we test the method by constructing ABCD  
 401 planes with lower b-tag requirements, namely 1b/0b and 2b/1b. The additional 0b and 1b  
 402 categories are selected by requiring exactly 0 and 1 medium b-tags, respectively.

403 The  $Z \rightarrow \ell\ell$  control sample is constructed in a similar manner to the search region. Events  
 404 with 4 or 5 jets are selected, and the double-Higgs-boson reconstruction proceeds as described  
 405 in Section 4. We require two opposite-sign same-flavor signal leptons in the Z-mass window,  
 406  $80 < m(\ell\ell) \leq 100$  GeV, with the  $p_T$  of the leading lepton being greater than 40 GeV due to  
 407 trigger constraints. We remove the lepton and isolated track vetoes and, since the dilepton  
 408 requirement makes the contamination from QCD events negligible, we remove the  $\Delta\phi$  cut.  
 409 Since we do not expect real  $p_T^{\text{miss}}$  from the targeted DY+jets events, we additionally require  
 410  $p_T^{\text{miss}} < 50$  GeV, which reduces the contamination of other processes from 20% to 10%.

411 We divide the sample in bins of  $p_T(\ell\ell)$ , ensuring kinematic correspondence with the  $Z \rightarrow \nu\nu$   
 412 decays present in the various  $p_T^{\text{miss}}$  bins employed in the search region. Similarly to the single-  
 413 lepton sample, the presence of leptons allows us to study the closure for lower values of  $p_T(\ell\ell)$   
 414 as well. Figure 5 (right) shows both the high purity of the sample and the excellent data to  
 415 simulation agreement in the  $\langle m \rangle$  shape.

416 The validity of the extrapolation of the method to a sample consisting of lower b-tag multiplic-  
 417 ities is supported by the observation that all jets in V+jets events come from ISR, and thus their  
 418 kinematic properties are largely independent of the flavor content of the event. This expecta-  
 419 tion is confirmed in data by examining the overall closure of the method in bins of  $p_T(\ell\ell)$  as  
 420 seen in Fig. 7, where the values of  $\kappa$  found in the simulation and data are compared to unity.

421 Since we do not observe that the closure of the method has any dependence on  $p_T(\ell\ell)$ , we  
 422 proceed to combine all the  $p_T(\ell\ell)$  bins into one bin to the right of the solid brown line and  
 423 repeat the closure test with improved statistical precision. The 1b/0b test shown in Fig. 7 shows  
 424 a residual non-closure of 11%, which may be due to higher order effects beyond the precision  
 425 of this search. A similar 2b/1b test shows good closure but with a higher statistical uncertainty  
 426 of 19%. We proceed to assign the larger uncertainty of 19% as the systematic uncertainty on the  
 427 closure of the background estimate method for Z+jets events. The robustness of this result is  
 428 further corroborated by similar checks in a looser selection, without the  $\Delta R_{\text{max}}$  cut.

### 429 7.4 Systematic uncertainty on the QCD contribution

430 The systematic uncertainty for the QCD background is set by following the same procedure as  
 431 for the Z+jets background. Namely, we define a QCD-enriched control region by inverting the  
 432  $\Delta\phi$  cut. Then, since the high b-tag multiplicity region of the control sample has limited event  
 433 yield and high  $t\bar{t}$  contamination, we check the  $\langle m \rangle$ - $N_b$  independence in lower b-tag multiplicity  
 434 regions, the 1b/0b and 2b/1b ABCD planes. Due to the strong QCD suppression at high  $p_T^{\text{miss}}$   
 435 and high  $N_b$ , the purity of this sample in the lowest  $p_T^{\text{miss}}$  bin ranges from 87% to 67% with  
 436 increasing  $N_b$ . At high  $p_T^{\text{miss}}$ , the sample becomes dominated by Z+jets and  $t\bar{t}$  at low and high  
 437  $N_b$ , respectively.

438 Similarly, to the previous control regions we observe good agreement in the data-to-simulation  
 439 comparison in  $\langle m \rangle$  and, since there is no expected  $p_T^{\text{miss}}$  dependence and a higher purity at

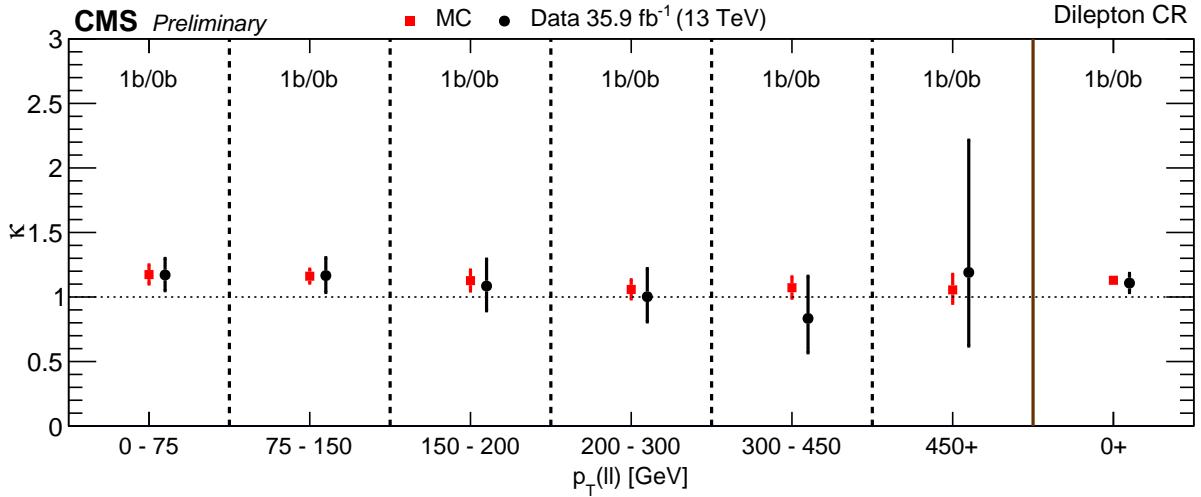



Figure 7: Comparison of the  $\kappa$  values found in the dilepton control sample, data and simulation, for the 1b/0b ABCD planes in bins of  $p_T(\ell\ell)$ .

440 low  $p_T^{\text{miss}}$ , we proceed to quantify the closure of the method after integrating in  $p_T^{\text{miss}}$ . Having  
 441 examined both the 1b/0b and 2b/1b ABCD planes, with and without the  $\Delta R_{\text{max}}$  cut, we observe  
 442 a maximum deviation of  $\kappa$  of 13%, which we assign as the systematic uncertainty on the closure  
 443 of the background estimate method for QCD events.

## 444 7.5 Impact of the background composition

445 Having evaluated the closure of the method for each individual background, we proceed to  
 446 study the impact of mismodeling the relative abundance of the different background sources.

447 Since the  $\langle m \rangle$  shape varies between background types as seen in Fig. 5, differences in the pro-  
 448 cess admixture in the 2b category vs the 3b or 4b categories will result in  $\langle m \rangle$ - $N_b$  correlation  
 449 and lead to non-closure of the method. From simulation, the background composition is ex-  
 450 pected to be independent of the b-tag category. The validity of this prediction relies on the  
 451 ability of the simulation to model the shape of the b-tag category distribution equally well for  
 452 each background. As an example, if a particular background has a harder  $N_b$  distribution than  
 453 predicted in simulation, while the  $N_b$  shape is well modeled for other backgrounds, then the  
 454 relative abundance of the mismodeled background would be underestimated, distorting the  
 455 total  $\langle m \rangle$  shape at high  $N_b$ . The final impact of such an effect in each bin will also be modulated  
 456 by the abundance of each background and therefore also relies on the modeling of the  $p_T^{\text{miss}}$   
 457 spectrum for each background.

458 Data-to-simulation comparisons show that the  $N_b$  distribution is indeed similarly modeled for  
 459  $t\bar{t}$ , Z+jets and QCD multijet production. The  $p_T^{\text{miss}}$  distribution in simulation is found to overes-  
 460 timate the data for large values of  $p_T^{\text{miss}}$  for  $t\bar{t}$  and Z+jets events, while the opposite is observed  
 461 for QCD multijet events. To provide an estimate of the potential impact of mismodeling of the  
 462 composition on the closure, we reweight the simulation using the data/MC comparisons and  
 463 then calculate the  $\kappa$  factors using the reweighted simulation, proceeding to assign 100% of the  
 464 shift in their values with respect to the nominal simulation as the uncertainty on the modeling  
 465 of the background composition. This test is performed after integrating 3b and 4b, and loos-  
 466 ening the  $\Delta\phi$  cut (requiring  $\phi_1 > 0.3$  and  $\phi_2 > 0.3$ ), in order to allow some QCD events to be  
 467 selected so that the propagation of the effect of the QCD on the total background is meaningful.  
 468 The resulting uncertainty is found to be within 4%.

## 469 7.6 Total systematic uncertainty determination

470 As described in Sections 7.2, 7.3, 7.4, and 7.5, we define individual data control regions for  $t\bar{t}$ ,  
 471  $Z+jets$  and QCD multijet production where we study the closure of the background estimation  
 472 method for each of these background processes in the data and validate the simulation pre-  
 473 diction that  $\kappa$  is consistent with unity for each of these backgrounds within the precision of  
 474 this analysis. We perform these studies in various looser selections to examine the ability of the  
 475 simulation to predict the closure of the method at high  $p_T^{\text{miss}}$  with better statistical precision. We  
 476 then use the data control regions to understand the modeling of the  $N_b$  and  $p_T^{\text{miss}}$  distributions  
 477 for each background, which directly translates into quantifying the ability of the simulation to  
 478 predict the relative abundance of the backgrounds in each search bin.

479 Finally, we employ these data control sample studies to assign a set of systematic uncertainties  
 480 on the overall  $\kappa$  for each search bin as follows:

1. The closure uncertainty for each background process obtained in data CRs is propagated  
 481 to the overall  $\kappa$  by varying the closure of the particular background in simulation in bins  
 482 of  $p_T^{\text{miss}}$  and  $N_b$ . The resulting shifts of the  $\kappa$  factors, ranging from 1% to 10% increasing  
 483 with  $p_T^{\text{miss}}$ , are assigned as systematic uncertainties with a 100% bin-to-bin correlation.
2. The level of non-closure due to the relative abundance of each background component  
 484 as a function of  $N_b$  is estimated by comparing the change in  $\kappa$  in simulation before and  
 485 after correcting the  $N_b$  and  $p_T^{\text{miss}}$  distributions of each background source according to  
 486 measurements in the data control samples. Its overall impact is 1–4% and it is taken as  
 487 100% correlated across the different analysis bins.
3. Since there are no known sources of  $p_T^{\text{miss}}$  dependence that are significant within the  
 488 context of the available data sample and no  $p_T^{\text{miss}}$  dependence is observed in the data,  
 489 the closure uncertainties for each background process derived in data are integrated in  
 490  $p_T^{\text{miss}}$ . Instead, having extensively validated the ability of the simulation to model both  
 491 the closure of the method for the individual backgrounds and the relative admixture of  
 492 the backgrounds in each search bin, we take the larger of the statistical uncertainty and  
 493 the non-closure for each bin in the simulation as the systematic uncertainty on the clo-  
 494 sure of the method as a function of  $p_T^{\text{miss}}$  and  $N_b$ . As seen in Fig. 4, this uncertainty ranges  
 495 from 8–15% in the lowest  $p_T^{\text{miss}}$  bin to 59–75% in the highest- $p_T^{\text{miss}}$  bin, and is assumed to  
 496 be uncorrelated between bins.

500 Due to the robustness of the background method, evidenced by the high-statistics data CR  
 501 studies integrated in  $p_T^{\text{miss}}$ , the final uncertainty is dominated by the statistical precision of  
 502 the simulation in evaluating the closure as a function of  $p_T^{\text{miss}}$ , described in the third item.  
 503 Nevertheless, each of the listed uncertainties is incorporated in the background fit as a log-  
 504 normal constraint in the likelihood function as described in Section 6.2, taking into account the  
 505 stated correlations.

## 506 8 Results and interpretation

507 The observed event yields in data and the total predicted SM background are listed in Table 2,  
 508 along with the expected yields for three Higgsino-mass scenarios. Two background estimates  
 509 are given: the predictive fit, which does not use the data in the signal regions and ignores signal  
 510 contamination in the other regions, and the global fit, which also incorporates the observations  
 511 in the (HIG,3b) and (HIG,4b) regions, as described in Section 6.2. Since we observed 0 events

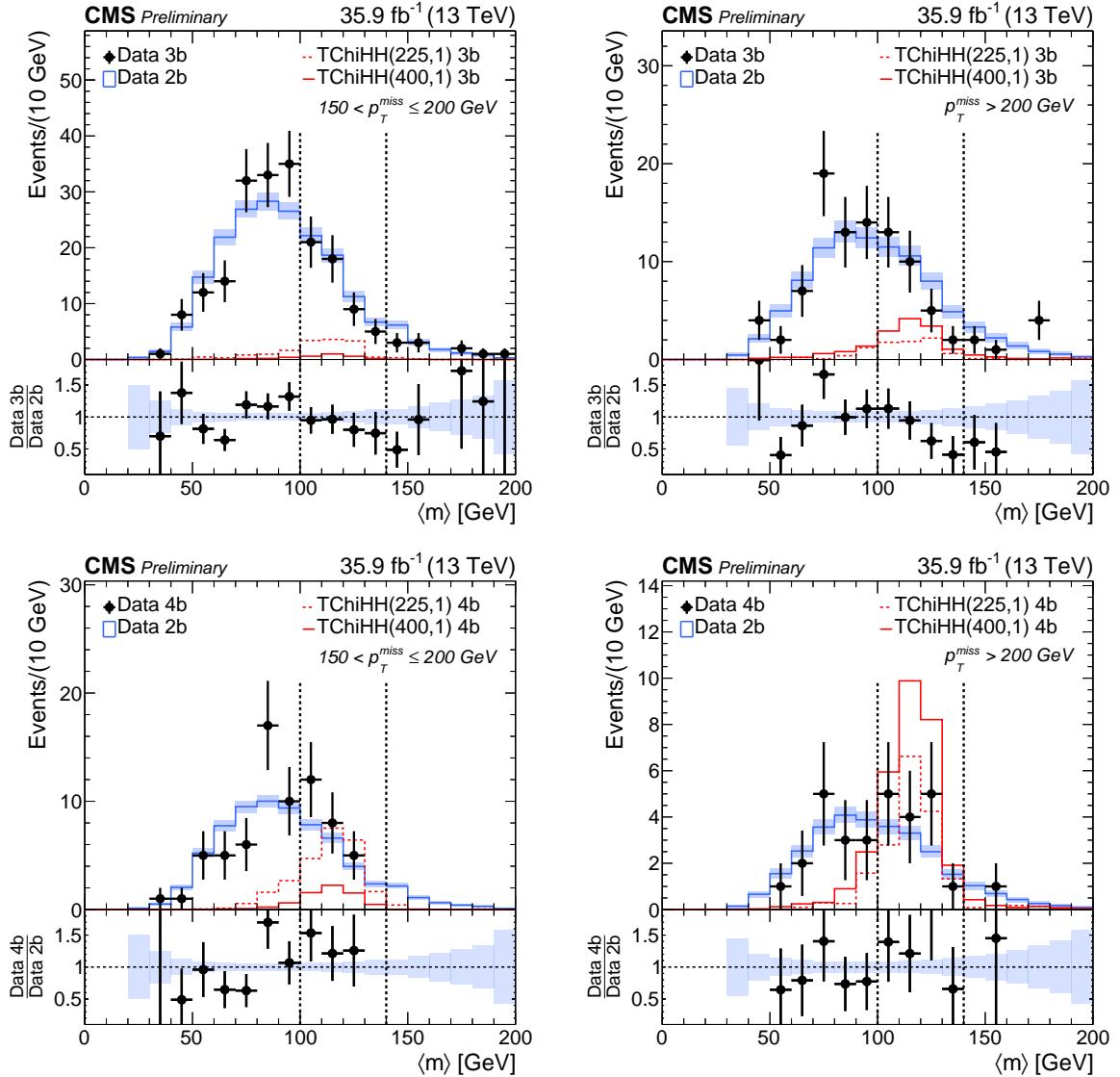



Figure 8: Distributions of  $\langle m \rangle$  in data and two signal benchmark models. The points with error bars show the data in the 3b (top) and 4b bins (bottom) for  $150 < p_T^{\text{miss}} \leq 200 \text{ GeV}$  (left) and  $p_T^{\text{miss}} > 200 \text{ GeV}$  (right). The histograms show the shape of the  $\langle m \rangle$  distribution observed in the 2b bin with an overall event yield normalized to those observed in the 3b and 4b samples. The shaded areas reflect the statistical uncertainty on the  $\langle m \rangle$  distribution in the 2b data. The ratio plots demonstrate that the shapes are in agreement.

512 in the (SBD, 4b) region, the parameter  $\mu_{4b,\text{SBD}}^{\text{bkg}}$  is fitted to be 0, pushing against its physical  
 513 boundary and leading to the underestimation of the associated uncertainty. We account for  
 514 this by including an additional uncertainty that makes the uncertainty on  $\mu_{4b,\text{SBD}}^{\text{bkg}}$  consistent  
 515 with having observed 1 event. In all cases, the event yields observed in data are consistent  
 516 with the predictions within  $2\sigma$ , and no pattern of deviations is evident.

517 Figure 8 shows the distributions in data of  $\langle m \rangle$  in the 3b and 4b bins for  $150 < p_T^{\text{miss}} \leq 200 \text{ GeV}$   
 518 and  $p_T^{\text{miss}} > 200 \text{ GeV}$ . In each plot, the renormalized histogram of the  $\langle m \rangle$  distribution in the  
 519 2b bin is overlaid for comparison. The shapes of the  $\langle m \rangle$  distributions are consistent. The  
 520 signal region (HIG) in  $\langle m \rangle$  lies between the two vertical dotted lines, and no significant excess  
 521 is observed, in either the 3b or in the 4b bins.

Table 2: Observed event yields (“Obs.”) for all control and signal regions in each of the four  $p_T^{\text{miss}}$  bins corresponding to  $35.9 \text{ fb}^{-1}$  of data. The predicted SM background rates (“Pred.”) in the (HIG,3b) and (HIG,4b) regions correspond to the values obtained with the predictive fit. The results of the global fit under the background-only hypothesis ( $r = 0$ ) are also shown. The expected signal yields for three values of the Higgsino mass are shown for reference.

| $\mathcal{L} = 35.9 \text{ fb}^{-1}$           | Global fit               | Pred.                | Obs. | TChiHH (225,1) | TChiHH (400,1) | TChiHH (700,1) |
|------------------------------------------------|--------------------------|----------------------|------|----------------|----------------|----------------|
| $150 < p_T^{\text{miss}} \leq 200 \text{ GeV}$ |                          |                      |      |                |                |                |
| SBD, 2b                                        | $1560.1^{+39.7}_{-38.5}$ |                      | 1559 | 5.9            | 1.0            | 0.0            |
| HIG, 2b                                        | $656.2^{+25.2}_{-24.6}$  |                      | 658  | 10.5           | 2.7            | 0.1            |
| SBD, 3b                                        | $140.3^{+10.8}_{-10.3}$  |                      | 145  | 4.6            | 1.0            | 0.0            |
| HIG, 3b                                        | $57.7^{+5.5}_{-5.2}$     | $61.2^{+8.4}_{-7.7}$ | 53   | 10.7           | 2.3            | 0.1            |
| SBD, 4b                                        | $48.1^{+6.4}_{-5.8}$     |                      | 45   | 5.4            | 1.1            | 0.0            |
| HIG, 4b                                        | $21.9^{+3.5}_{-3.2}$     | $19.0^{+4.6}_{-3.9}$ | 25   | 20.3           | 5.8            | 0.3            |
| $200 < p_T^{\text{miss}} \leq 300 \text{ GeV}$ |                          |                      |      |                |                |                |
| SBD, 2b                                        | $588.0^{+24.2}_{-23.5}$  |                      | 585  | 2.5            | 3.4            | 0.1            |
| HIG, 2b                                        | $333.1^{+17.9}_{-17.6}$  |                      | 336  | 6.2            | 6.6            | 0.3            |
| SBD, 3b                                        | $55.3^{+6.5}_{-5.9}$     |                      | 61   | 2.2            | 2.6            | 0.1            |
| HIG, 3b                                        | $30.6^{+3.9}_{-3.6}$     | $35.1^{+5.9}_{-5.5}$ | 25   | 5.7            | 6.5            | 0.3            |
| SBD, 4b                                        | $15.6^{+3.8}_{-3.1}$     |                      | 13   | 2.5            | 2.9            | 0.1            |
| HIG, 4b                                        | $11.4^{+3.0}_{-2.5}$     | $7.5^{+3.8}_{-2.7}$  | 14   | 12.6           | 14.4           | 0.8            |
| $300 < p_T^{\text{miss}} \leq 450 \text{ GeV}$ |                          |                      |      |                |                |                |
| SBD, 2b                                        | $72.4^{+8.7}_{-8.1}$     |                      | 74   | 0.1            | 2.0            | 0.2            |
| HIG, 2b                                        | $40.6^{+6.3}_{-6.0}$     |                      | 39   | 0.6            | 5.0            | 0.6            |
| SBD, 3b                                        | $5.7^{+2.2}_{-1.8}$      |                      | 4    | 0.1            | 1.7            | 0.1            |
| HIG, 3b                                        | $3.3^{+1.4}_{-1.1}$      | $2.1^{+1.4}_{-1.0}$  | 5    | 0.6            | 4.6            | 0.5            |
| SBD, 4b                                        | $1.9^{+1.4}_{-0.9}$      |                      | 2    | 0.1            | 1.9            | 0.2            |
| HIG, 4b                                        | $1.1^{+0.8}_{-0.5}$      | $1.1^{+1.0}_{-0.6}$  | 1    | 2.3            | 10.4           | 1.5            |
| $p_T^{\text{miss}} > 450 \text{ GeV}$          |                          |                      |      |                |                |                |
| SBD, 2b                                        | $5.4^{+2.5}_{-2.1}$      |                      | 5    | 0.0            | 0.2            | 0.2            |
| HIG, 2b                                        | $4.6^{+2.2}_{-1.9}$      |                      | 5    | 0.0            | 0.6            | 0.9            |
| SBD, 3b                                        | $0.6^{+0.8}_{-0.4}$      |                      | 1    | 0.0            | 0.1            | 0.2            |
| HIG, 3b                                        | $0.4^{+0.6}_{-0.3}$      | $1.0^{+1.6}_{-1.0}$  | 0    | 0.0            | 0.4            | 0.7            |
| SBD, 4b                                        | $0.0^{+0.3}_{-0.0}$      |                      | 0    | 0.0            | 0.2            | 0.2            |
| HIG, 4b                                        | $0.0^{+0.3}_{-0.0}$      | $0.0^{+1.2}_{-0.0}$  | 0    | 0.1            | 1.1            | 1.9            |

Table 3: Range of values for the systematic uncertainties on the signal efficiency and acceptance for each analysis bin. Uncertainties due to a particular source are treated as fully correlated between bins, while uncertainties due to different sources are treated as uncorrelated.

| Source                                    | Fractional uncertainty [%] |               |               |
|-------------------------------------------|----------------------------|---------------|---------------|
|                                           | TChiHH(225,1)              | TChiHH(400,1) | TChiHH(700,1) |
| Trigger efficiency                        | 1–6                        | 1–6           | 1–6           |
| b tagging efficiency                      | 1–6                        | 1–5           | 2–5           |
| Fast sim. b tagging efficiency            | 3–11                       | 3–8           | 3–12          |
| Fast sim. of $p_T^{\text{miss}}$ spectrum | 14–72                      | 1–7           | 1–5           |
| Jet energy corrections                    | 8–42                       | 2–18          | 2–10          |
| Jet energy resolution                     | 2–45                       | 1–14          | 1–8           |
| Initial state radiation                   | 1–4                        | 1             | 1             |
| Jet ID                                    | 1                          | 1             | 1             |
| Pileup                                    | 1–21                       | 1–4           | 1–9           |
| Integrated luminosity                     | 3                          | 3             | 3             |

522 The absence of excess event yields in data is interpreted in the context of the Higgsino simplified  
 523 model discussed in Section 1. Table 3 shows typical values for the systematic uncertainties  
 524 associated with the expected signal yields for three models with different Higgsino masses. The  
 525 largest uncertainties arise from the jet energy corrections, jet energy resolution, pileup, and the  
 526 modeling of the  $p_T^{\text{miss}}$  spectrum by the fast simulation. These uncertainties can be as large as  
 527 70% for low Higgsino masses, models for which the  $p_T^{\text{miss}} > 150$  GeV baseline requirement has  
 528 low acceptance, but their impact is reduced for larger values of the Higgsino mass. Uncertainties  
 529 associated with the modeling of the b tagging range from 1% to 12%. The uncertainties  
 530 on the trigger efficiency, described in Section 5, range from 6% in the lowest  $p_T^{\text{miss}}$  bin to less  
 531 than 1% for  $p_T^{\text{miss}} > 300$  GeV. Uncertainties due the modeling of ISR, the efficiency of the jet  
 532 identification filter, and the total integrated luminosity are 1–4%.

533 A 95% confidence level (CL) upper limit on the production cross section of the GMSB higgsino  
 534 NLSP scenario is estimated using the modified frequentist  $CL_s$  method [64–66], with a  
 535 one-sided profile likelihood ratio test statistic in its asymptotic approximation [67]. Figure 9  
 536 shows the expected and observed exclusion limits for  $35.9 \text{ fb}^{-1}$ . The theoretical cross section at  
 537 NLO+NLL [36, 37] as a function of Higgsino mass is shown as a dotted line. The upper limit on  
 538 the cross section at a 95% confidence level is obtained from the global fit method, which takes  
 539 into account the expected signal contribution in all of the bins. This cross section is below the  
 540 theoretical cross section for Higgsino masses between roughly 225 GeV and 770 GeV, excluding  
 541 this mass range.

## 542 9 Summary

543 We have performed a search for an excess of events in proton-proton collisions in the channel  
 544 with two Higgs bosons and large missing transverse momentum, with each of the Higgs bosons  
 545 reconstructed in its  $h \rightarrow b\bar{b}$  decay. The data sample corresponds to an integrated luminosity of  
 546  $35.9 \text{ fb}^{-1}$  at  $\sqrt{s} = 13$  TeV. Because the signal is rich in b quarks, while the background is domi-  
 547 nated by  $t\bar{t}$  events, the analysis is binned in the number of b-tagged quarks. In each event, the  
 548 mass difference between the two Higgs-boson candidates is required to be small, and the av-  
 549 erage mass of the two candidates is used in conjunction with the number of observed b tags to  
 550 define signal and sideband regions. The observed event yields in these regions are used to ob-

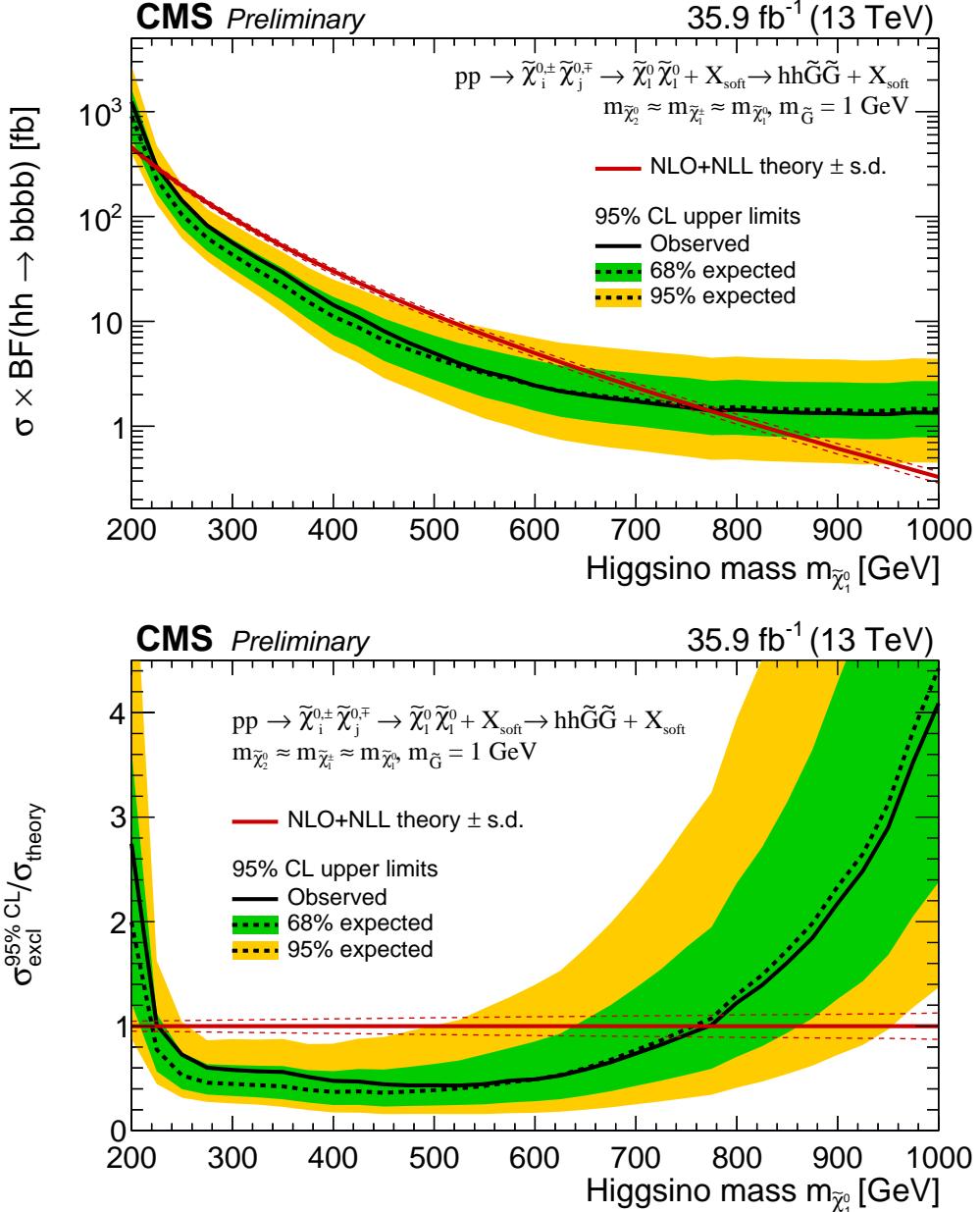



Figure 9: Top: excluded cross section times the  $hh \rightarrow b\bar{b}b\bar{b}$  branching fraction at 95% CL as a function of the Higgsino mass. The theoretical cross section is shown as a dotted line. Bottom: excluded cross section at 95% CL divided by the theoretical cross section as a function of the Higgsino mass.

551 tain estimates for the SM background in the signal regions without input from simulated event  
 552 samples. The data are also binned in regions of  $|\vec{p}_T^{\text{miss}}|$  to enhance the sensitivity to the signal.  
 553 The observed event yields in the signal regions are consistent with the background predictions,  
 554 leading to an excluded range of Higgsino masses extending from 225 GeV to 770 GeV at 95%  
 555 CL. The model used in the interpretation assumes that each Higgsino decays into a Higgs bo-  
 556 son plus a nearly massless lightest supersymmetric particle (LSP), which is weakly interacting.  
 557 Such a scenario occurs in Gauge Mediated Supersymmetry Breaking (GMSB) models, in which  
 558 the LSP is a Goldstino. The cross section calculation assumes that the Higgsino sector is mass  
 559 degenerate and sums over the cross sections for the pair production of all relevant combina-  
 560 tions of Higgsinos.

## 561 References

- 562 [1] ATLAS Collaboration, “Observation of a new particle in the search for the Standard  
 563 Model Higgs boson with the ATLAS detector at the LHC”, *Phys. Lett. B* **716** (2012) 1,  
 564 doi:10.1016/j.physletb.2012.08.020, arXiv:1207.7214.
- 565 [2] CMS Collaboration, “Observation of a new boson at a mass of 125 GeV with the CMS  
 566 experiment at the LHC”, *Phys. Lett. B* **716** (2012) 30,  
 567 doi:10.1016/j.physletb.2012.08.021, arXiv:1207.7235.
- 568 [3] CMS Collaboration, “Observation of a new boson with mass near 125 GeV in pp  
 569 collisions at  $\sqrt{s} = 7$  and 8 TeV”, *JHEP* **06** (2013) 081,  
 570 doi:10.1007/JHEP06(2013)081, arXiv:1303.4571.
- 571 [4] CMS Collaboration, “Precise determination of the mass of the Higgs boson and tests of  
 572 compatibility of its couplings with the standard model predictions using proton  
 573 collisions at 7 and 8 TeV”, *Eur. Phys. J. C* **75** (2015) 212,  
 574 doi:10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662.
- 575 [5] ATLAS Collaboration, “Measurement of the Higgs boson mass from the  $H \rightarrow \gamma\gamma$  and  
 576  $H \rightarrow ZZ^* \rightarrow 4\ell$  channels with the ATLAS detector using  $25 \text{ fb}^{-1}$  of pp collision data”,  
 577 *Phys. Rev. D* **90** (2014) 052004, doi:10.1103/PhysRevD.90.052004,  
 578 arXiv:1406.3827.
- 579 [6] ATLAS and CMS Collaborations, “Combined Measurement of the Higgs Boson Mass in  
 580 pp Collisions at  $\sqrt{s} = 7$  and 8 TeV with the ATLAS and CMS Experiments”, *Phys. Rev.*  
 581 *Lett.* **114** (2015) 191803, doi:10.1103/PhysRevLett.114.191803,  
 582 arXiv:1503.07589.
- 583 [7] P. Ramond, “Dual theory for free fermions”, *Phys. Rev. D* **3** (1971) 2415,  
 584 doi:10.1103/PhysRevD.3.2415.
- 585 [8] Y. A. Golfand and E. P. Likhtman, “Extension of the algebra of Poincaré group generators  
 586 and violation of P invariance”, *JETP Lett.* **13** (1971) 323.
- 587 [9] A. Neveu and J. H. Schwarz, “Factorizable dual model of pions”, *Nucl. Phys. B* **31** (1971)  
 588 86, doi:10.1016/0550-3213(71)90448-2.
- 589 [10] D. V. Volkov and V. P. Akulov, “Possible universal neutrino interaction”, *JETP Lett.* **16**  
 590 (1972) 438.

591 [11] J. Wess and B. Zumino, “A Lagrangian model invariant under supergauge  
592 transformations”, *Phys. Lett. B* **49** (1974) 52, doi:10.1016/0370-2693(74)90578-4.

593 [12] J. Wess and B. Zumino, “Supergauge transformations in four dimensions”, *Nucl. Phys. B*  
594 **70** (1974) 39, doi:10.1016/0550-3213(74)90355-1.

595 [13] P. Fayet, “Supergauge invariant extension of the Higgs mechanism and a model for the  
596 electron and its neutrino”, *Nucl. Phys. B* **90** (1975) 104,  
597 doi:10.1016/0550-3213(75)90636-7.

598 [14] H. P. Nilles, “Supersymmetry, supergravity and particle physics”, *Phys. Rep.* **110** (1984)  
599 1, doi:10.1016/0370-1573(84)90008-5.

600 [15] CMS Collaboration, “Searches for electroweak neutralino and chargino production in  
601 channels with Higgs, Z, and W bosons in pp collisions at 8 TeV”, *Phys. Rev. D* **90** (2014),  
602 no. 9, 092007, doi:10.1103/PhysRevD.90.092007, arXiv:1409.3168.

603 [16] CMS Collaboration, “Search for top-squark pairs decaying into Higgs or Z bosons in pp  
604 collisions at  $\sqrt{s}=8$  TeV”, *Phys. Lett. B* **736** (2014) 371–397,  
605 doi:10.1016/j.physletb.2014.07.053, arXiv:1405.3886.

606 [17] CMS Collaboration, “Search for top squark and higgsino production using diphoton  
607 Higgs boson decays”, *Phys. Rev. Lett.* **112** (2014) 161802,  
608 doi:10.1103/PhysRevLett.112.161802, arXiv:1312.3310.

609 [18] ATLAS Collaboration, “Search for supersymmetry in events with photons, bottom  
610 quarks, and missing transverse momentum in proton-proton collisions at a  
611 centre-of-mass energy of 7 TeV with the ATLAS detector”, *Phys. Lett. B* **719** (2013)  
612 261–279, doi:10.1016/j.physletb.2013.01.041, arXiv:1211.1167.

613 [19] ATLAS Collaboration, “Search for direct pair production of a chargino and a neutralino  
614 decaying to the 125 GeV Higgs boson in  $\sqrt{s} = 8$  TeV  $pp$  collisions with the ATLAS  
615 detector”, *Eur. Phys. J. C* **75** (2015), no. 5, 208,  
616 doi:10.1140/epjc/s10052-015-3408-7, arXiv:1501.07110.

617 [20] CMS Collaboration, “Searches for electroweak production of charginos, neutralinos, and  
618 sleptons decaying to leptons and W, Z, and Higgs bosons in pp collisions at 8 TeV”, *Eur.*  
619 *Phys. J. C* **74** (2014), no. 9, 3036, doi:10.1140/epjc/s10052-014-3036-7,  
620 arXiv:1405.7570.

621 [21] G. ’t Hooft, “Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking”,  
622 *NATO Sci. Ser. B* **59** (1980) 135.

623 [22] E. Witten, “Dynamical Breaking of Supersymmetry”, *Nucl. Phys. B* **188** (1981) 513,  
624 doi:10.1016/0550-3213(81)90006-7.

625 [23] M. Dine, W. Fischler, and M. Srednicki, “Supersymmetric Technicolor”, *Nucl. Phys. B* **189**  
626 (1981) 575, doi:10.1016/0550-3213(81)90582-4.

627 [24] S. Dimopoulos and S. Raby, “Supercolor”, *Nucl. Phys. B* **192** (1981) 353,  
628 doi:10.1016/0550-3213(81)90430-2.

629 [25] S. Dimopoulos and H. Georgi, “Softly Broken Supersymmetry and SU(5)”, *Nucl. Phys. B*  
630 **193** (1981) 150, doi:10.1016/0550-3213(81)90522-8.

631 [26] R. K. Kaul and P. Majumdar, “Cancellation of Quadratically Divergent Mass Corrections  
 632 in Globally Supersymmetric Spontaneously Broken Gauge Theories”, *Nucl. Phys. B* **199**  
 633 (1982) 36, doi:10.1016/0550-3213(82)90565-X.

634 [27] S. Dimopoulos and G. F. Giudice, “Naturalness constraints in supersymmetric theories  
 635 with nonuniversal soft terms”, *Phys. Lett. B* **357** (1995) 573,  
 636 doi:10.1016/0370-2693(95)00961-J, arXiv:hep-ph/9507282.

637 [28] R. Barbieri and D. Pappadopulo, “S-particles at their naturalness limits”, *JHEP* **10** (2009)  
 638 061, doi:10.1088/1126-6708/2009/10/061, arXiv:0906.4546.

639 [29] M. Papucci, J. T. Ruderman, and A. Weiler, “Natural SUSY endures”, *JHEP* **09** (2012) 035,  
 640 doi:10.1007/JHEP09(2012)035, arXiv:1110.6926.

641 [30] J. L. Feng, “Naturalness and the Status of Supersymmetry”, *Ann. Rev. Nucl. Part. Sci.* **63**  
 642 (2013) 351, doi:10.1146/annurev-nucl-102010-130447, arXiv:1302.6587.

643 [31] G. R. Farrar and P. Fayet, “Phenomenology of the Production, Decay, and Detection of  
 644 New Hadronic States Associated with Supersymmetry”, *Phys. Lett. B* **76** (1978) 575,  
 645 doi:10.1016/0370-2693(78)90858-4.

646 [32] ATLAS Collaboration, “Search for new phenomena in final states with an energetic jet  
 647 and large missing transverse momentum in pp collisions at  $\sqrt{s} = 8$  TeV with the ATLAS  
 648 detector”, *Eur. Phys. J. C* **75** (2015), no. 7, 299, doi:10.1140/epjc/s10052-015-3639-7,  
 649 arXiv:1502.01518. [Erratum: Eur. Phys. J.C75,no.9,408(2015)].

650 [33] CMS Collaboration, “Search for dark matter, extra dimensions, and unparticles in  
 651 monojet events in proton-proton collisions at  $\sqrt{s} = 8$  TeV”, *Eur. Phys. J. C* **75** (2015),  
 652 no. 5, 235, doi:10.1140/epjc/s10052-015-3451-4, arXiv:1408.3583.

653 [34] S. Dimopoulos, M. Dine, S. Raby, and S. D. Thomas, “Experimental signatures of  
 654 low-energy gauge mediated supersymmetry breaking”, *Phys. Rev. Lett.* **76** (1996)  
 655 3494–3497, doi:10.1103/PhysRevLett.76.3494, arXiv:hep-ph/9601367.

656 [35] K. T. Matchev and S. D. Thomas, “Higgs and Z boson signatures of supersymmetry”,  
 657 *Phys. Rev. D* **62** (2000) 077702, doi:10.1103/PhysRevD.62.077702,  
 658 arXiv:hep-ph/9908482.

659 [36] B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, “Gaugino production in  
 660 proton-proton collisions at a center-of-mass energy of 8 TeV”, *JHEP* **10** (2012) 081,  
 661 doi:10.1007/JHEP10(2012)081, arXiv:1207.2159.

662 [37] B. Fuks, M. Klasen, D. R. Lamprea, and M. Rothering, “Precision predictions for  
 663 electroweak superpartner production at hadron colliders with RESUMMINO”, *Eur. Phys. J. C* **73**  
 664 (2013) 2480, doi:10.1140/epjc/s10052-013-2480-0, arXiv:1304.0790.

665 [38] J. Alwall, P. Schuster, and N. Toro, “Simplified models for a first characterization of new  
 666 physics at the LHC”, *Phys. Rev. D* **79** (2009) 075020,  
 667 doi:10.1103/PhysRevD.79.075020, arXiv:0810.3921.

668 [39] J. Alwall, M.-P. Le, M. Lisanti, and J. G. Wacker, “Model-independent jets plus missing  
 669 energy searches”, *Phys. Rev. D* **79** (2009) 015005,  
 670 doi:10.1103/PhysRevD.79.015005, arXiv:0809.3264.

672 [40] D. Alves et al., “Simplified models for LHC new physics searches”, *J. Phys. G* **39** (2012)  
673 105005, doi:10.1088/0954-3899/39/10/105005, arXiv:1105.2838.

674 [41] CMS Collaboration, “The CMS experiment at the CERN LHC”, *JINST* **3** (2008) S08004,  
675 doi:10.1088/1748-0221/3/08/S08004.

676 [42] J. Alwall et al., “The automated computation of tree-level and next-to-leading order  
677 differential cross sections, and their matching to parton shower simulations”, *JHEP* **07**  
678 (2014) 079, doi:10.1007/JHEP07(2014)079, arXiv:1405.0301.

679 [43] S. Alioli, P. Nason, C. Oleari, and E. Re, “NLO single-top production matched with  
680 shower in POWHEG:  $s$ - and  $t$ -channel contributions”, *JHEP* **09** (2009) 111,  
681 doi:10.1007/JHEP02(2010)011, 10.1088/1126-6708/2009/09/111,  
682 arXiv:0907.4076. [Erratum: *JHEP* **02** (2010) 011].

683 [44] E. Re, “Single-top  $Wt$ -channel production matched with parton showers using the  
684 POWHEG method”, *Eur. Phys. J. C* **71** (2011) 1547,  
685 doi:10.1140/epjc/s10052-011-1547-z, arXiv:1009.2450.

686 [45] NNPDF Collaboration, “Parton distributions for the LHC Run II”, *JHEP* **04** (2015) 040,  
687 doi:10.1007/JHEP04(2015)040, arXiv:1410.8849.

688 [46] T. Sjöstrand et al., “An Introduction to PYTHIA 8.2”, *Comput. Phys. Commun.* **191** (2015)  
689 159, doi:10.1016/j.cpc.2015.01.024, arXiv:1410.3012.

690 [47] CMS Collaboration, “Event generator tunes obtained from underlying event and  
691 multiparton scattering measurements”, *Eur. Phys. J. C* **76** (2016), no. 3, 155,  
692 doi:10.1140/epjc/s10052-016-3988-x, arXiv:1512.00815.

693 [48] GEANT4 Collaboration, “GEANT4 — a simulation toolkit”, *Nucl. Instrum. Meth. A* **506**  
694 (2003) 250, doi:10.1016/S0168-9002(03)01368-8.

695 [49] CMS Collaboration, “The fast simulation of the CMS detector at LHC”, *J. Phys. Conf. Ser.*  
696 **331** (2011) 032049, doi:10.1088/1742-6596/331/3/032049.

697 [50] CMS Collaboration, “Particle flow event reconstruction in CMS and performance for jets,  
698 taus and  $E_T^{\text{miss}}$ ”, CMS Physics Analysis Summary CMS-PAS-PFT-09-001, CERN, 2009.

699 [51] CMS Collaboration, “Commissioning of the particle-flow event reconstruction with the  
700 first LHC collisions recorded in the CMS detector”, CMS Physics Analysis Summary  
701 CMS-PAS-PFT-10-001, CERN, 2010.

702 [52] M. Cacciari, G. P. Salam, and G. Soyez, “The anti- $k_t$  jet clustering algorithm”, *JHEP* **04**  
703 (2008) 063, doi:10.1088/1126-6708/2008/04/063, arXiv:0802.1189.

704 [53] M. Cacciari, G. P. Salam, and G. Soyez, “FastJet User Manual”, *Eur. Phys. J. C* **72** (2012)  
705 1896, doi:10.1140/epjc/s10052-012-1896-2, arXiv:1111.6097.

706 [54] M. Cacciari and G. P. Salam, “Pileup subtraction using jet areas”, *Phys. Lett. B* **659** (2008)  
707 119, doi:10.1016/j.physletb.2007.09.077, arXiv:0707.1378.

708 [55] CMS Collaboration, “Determination of jet energy calibration and transverse momentum  
709 resolution in CMS”, *JINST* **6** (2011) P11002,  
710 doi:10.1088/1748-0221/6/11/P11002, arXiv:1107.4277.

711 [56] CMS Collaboration, “Heavy flavor identification at CMS with deep neural networks”,  
 712 CMS Detector Performance Report CMS-DP-2017-005, CERN, 2017.

713 [57] D. Guest et al., “Jet Flavor Classification in High-Energy Physics with Deep Neural  
 714 Networks”, *Phys. Rev. D* **94** (2016), no. 11, 112002,  
 715 doi:10.1103/PhysRevD.94.112002, arXiv:1607.08633.

716 [58] CMS Collaboration, “Identification of b-quark jets with the CMS experiment”, *JINST* **8**  
 717 (2013) P04013, doi:10.1088/1748-0221/8/04/P04013, arXiv:1211.4462.

718 [59] CMS Collaboration, “Identification of b quark jets at the CMS Experiment in the LHC  
 719 Run 2”, CMS Physics Analysis Summary CMS-PAS-BTV-15-001, CERN, 2016.

720 [60] CMS Collaboration, “Performance of electron reconstruction and selection with the CMS  
 721 detector in proton-proton collisions at  $\sqrt{s} = 8$  TeV”, *JINST* **10** (2015) P06005,  
 722 doi:10.1088/1748-0221/10/06/P06005, arXiv:1502.02701.

723 [61] CMS Collaboration, “Performance of CMS muon reconstruction in pp collision events at  
 724  $\sqrt{s} = 7$  TeV”, *JINST* **7** (2012) P10002, doi:10.1088/1748-0221/7/10/P10002,  
 725 arXiv:1206.4071.

726 [62] K. Rehermann and B. Tweedie, “Efficient Identification of Boosted Semileptonic Top  
 727 Quarks at the LHC”, *JHEP* **03** (2011) 059, doi:10.1007/JHEP03(2011)059,  
 728 arXiv:1007.2221.

729 [63] CMS Collaboration, “Search for supersymmetry in pp collisions at  $\sqrt{s} = 13$  TeV in the  
 730 single-lepton final state using the sum of masses of large-radius jets”,  
 731 arXiv:1605.04608.

732 [64] T. Junk, “Confidence level computation for combining searches with small statistics”,  
 733 *Nucl. Instrum. Meth. A* **434** (1999) 435, doi:10.1016/S0168-9002(99)00498-2,  
 734 arXiv:hep-ex/9902006.

735 [65] A. L. Read, “Presentation of search results: The  $CL_s$  technique”, *J. Phys. G* **28** (2002) 2693,  
 736 doi:10.1088/0954-3899/28/10/313.

737 [66] ATLAS Collaboration, CMS Collaboration, LHC Higgs Combination Group, “Procedure  
 738 for the LHC Higgs boson search combination in Summer 2011”, Technical Report  
 739 CMS-NOTE-2011-005, ATL-PHYS-PUB-2011-11, CERN, 2011.

740 [67] G. Cowan, K. Cranmer, E. Gross, and O. Vitells, “Asymptotic formulae for  
 741 likelihood-based tests of new physics”, *Eur. Phys. J. C* **71** (2011) 1554,  
 742 doi:10.1140/epjc/s10052-011-1554-0, arXiv:1007.1727. [Erratum:  
 743 doi:10.1140/epjc/s10052-013-2501-z].