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Abstract: We consider a multi-scalar field model in the Jordan frame, which can be seen as a two-
scalar field model where the Brans–Dicke field interacts in the kinetic part with the second scalar
field. This theory under a conformal transformation reduces to the hyperbolic inflation. We show that
scaling solutions and the de Sitter universe are provided by the theory. In the study of asymptotic
dynamics, we determine an attractor where all the fluid sources contribute in the cosmological fluid.
This attractor is always a spiral, and it can be seen as the analogue of the hyperbolic inflation in the
Jordan frame.
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1. Introduction

Brans and Dicke proposed a scalar field gravitational theory that embodied Mach’s
Principle [1]. In Brans–Dicke theory, the presence of the scalar field is essential for the
existence of the gravitational field, because the scalar field is non-minimally coupled to
gravity. That is, the gravitational theory is defined in the Jordan frame [2]. This gravi-
tational theory has been widely studied before for the description of various epochs of
the cosmological history, see for instance [3–11] and references therein. The Brans–Dicke
theory belongs to the family of modified theories of gravity and the scalar field can attribute
dynamical degrees of freedom provided by higher-order theories, such as in the case of the
f (R)-theory [12].

On the other hand, General Relativity is a theory defined in the so-called Einstein frame.
There exists a geometrical map that connects the Jordan frame to the Einstein one and vice
versa [13]. The two frames are related under the action of a conformal transformation [14].
The two frames have different metric tensors, which are conformally related, thus the
physical properties of a given theory in the two frames should be compared, and the
problem of the selection of the physical frame follows [15]. The latter has been a subject of
debate in the last decades and there are various studies on this analysis. The two frames
are only mathematically equivalent, while the physical properties of a gravitational theory
rarely survives. For instance, a singular solution in the one frame can be read as a solution
without singularity in the other frame [16–18].

A gravitational model that has drawn the attention of cosmologists over the last
years is a multi-scalar field model in the Einstein frame, which provides the hyperbolic
inflation [19]. In this theory, the inflation field [20], which drives the dynamics of the
rapid expansion of the universe, consists by two scalar fields that interact in the kinetic
components of the Lagrangian function [19]. Specifically, the dynamics of the two scalar
fields are defined on a two-dimensional hyperbolic space. This model is also known as
Chiral theory, and it has been widely studied in the literature before [21–30]. This two-scalar
field model for the exponential scalar field potential admits an attractor, which can provide
the asymptotic behavior of the hyperbolic inflation. In particular, it was found that this
inflationary solution is described by a stable spiral in terms of dynamical systems [31].
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In this study, we propose a new multi-scalar field model defined in the Jordan frame
and under the application of a conformal transformation it is equivalent to the hyperbolic
inflationary model, or the Chiral model. One of the scalar fields is the Brans–Dicke field
while the second scalar field is coupled to the Brans–Dicke field only. The main idea of
this study is to investigate if there exists an analogue of the hyperbolic inflation in the
Jordan frame and to compare the physical properties of the two-scalar field model in the
Einstein and Jordan frames. In order to achieve our goal we apply methods from the
dynamical systems and we investigate the stationary points for the field equations and we
study their stability criteria. The dynamical analysis is an important mathematical tool for
the qualitative study of a gravitational theory. It has been applied in various models in
order to test the cosmological viability of theories as also to reconstruct the cosmological
history [32–38]. The plan of the paper is as follows.

In Section 2, we present the multi-field cosmological model of our consideration and
we derive the field equations in the case of a spatially flat isotropic and homogeneous
geometry. In Section 3, we show the existence of exact solutions of special interest; in-
deed, we prove that the field equations can be solved explicitly and the scaling and de
Sitter solutions are provided by the proposed theory. The main analysis of this study is
presented in Section 4. In particular, we perform a detailed analysis of the dynamics of
the field equations by using dimensional variables in the Hubble normalization approach.
We show that there exists an analogue of the hyperbolic inflation in the Jordan frame.
Finally, in Section 5, we draw our conclusions and we extend our discussion in the case of
anisotropic spacetimes.

2. Cosmological Model

Consider the multi-scalar field Action Integral:

SA =
∫

dx4√−g
[

1
2

φR +
1
2

ωBD
φ

gµνφ;µφ;ν +
1
2

F2(φ)gµνψ;µψ;ν + V(φ, ψ)

]
, (1)

where φ
(

xk
)

and ψ
(

xk
)

are two scalar fields that we assume inherit the symmetries of the
background space and in general they interact through the function F(φ) and the potential
function V(φ, ψ).

Scalar field φ
(

xk
)

is the Brans–Dicke scalar field [1] coupled to gravity and ωBD is the

Brans–Dicke parameter [9], with ωBD 6= − 3
2 . We remark that for ωBD = 0, the Brans–Dicke

field describes the higher-order derivatives of f (R)-gravity [12], while for ωBD = − 3
2 , the

Brans–Dicke field does not describe real degrees of freedom.
For the Action Integral (1), the gravitational field equations are

φGµν =
ωBD

φ

(
φ;µφ;ν −

1
2

gµνgκλφ;κφ;λ

)
−
(

gµνgκλφ;κλ − φ;µφ;ν

)
+ gµνV(φ, ψ)− F2(φ)

(
ψ;µψ;ν −

1
2

gµνgκλψ;κλ

)
, (2)

and the equations of motion for the two scalar fields

(2ωBD + 3)
(

gµνφ;µν

)
− φV,φ + 2V − 1

2

(
F2
)

,φ
ψ̇2 = 0 , (3)

gµν

(
ψ;µν +

(
ln
(

F2
))

,φ
φ;µψ;ν

)
= 0. (4)

The gravitational model (1) has not been defined as arbitrary. More specifically, the
multi-scalar field Action Integral (1) can be seen as the equivalent of the hyperbolic inflation
in the Jordan frame for a specific functional form of F(φ). Indeed, when we perform the
conformal transformation ḡ = φgij, the Action Integral (1) in the Einstein frame reads
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SA =
∫

dx4√−g
[

1
2

R− 1
2

gµνΦ;µΦ;ν −
1
2

F2(Φ)eω̄Φgµνψ;µψ;ν − V̄(Φ, ψ)

]
, (5)

where Φ ' ln φ is a new scalar field minimally coupled to gravity and ω̄ = ω̄(ωBD). We
observe that the hyperbolic inflation is recovered when F(Φ) = const. or F(Φ) = eκ̄Φ, that
is, F(φ) ' φκ .

In the hyperbolic inflation, for the scalar field potential V̄(Φ, ψ) it holds, V̄,ψ = 0 and
V̄(Φ) is an exponential function, thus in this work, for the dynamical analysis we shall
assume the power-potential V(φ) = V0φλ. Let us focus in the case where V(φ, ψ) = V(φ).

We assume the isotropic and homogeneous background space described by the spa-
tially flat Friedmann–Lemaître–Robertson–Walker (FLRW) geometry with line element

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (6)

in which a(t) is the scalar factor. The Hubble function is defined as H = ȧ
a , in which ȧ = da

dt .
The FLRW geometry admits six isometries, the three translations and three rotations of the
three-dimensional flat hypersurface. Because we consider the scalar fields to inherit the
symmetries of the background space we find φ = φ(t) and ψ = ψ(t).

We derive the Ricciscalar

R = 6

[
ä
a
+

(
ȧ
a

)2
]

. (7)

By replacing in (2), the modified Friedmann’s equations are derived

− 3H2 = 3H
φ̇

φ
− ωBD

2

(
φ̇

φ

)2

− 1
2

F2(φ)

φ
ψ̇2 − 1

φ
V(φ) , (8)

−
(

3φH2 + 2φḢ
)
= 2Hφ̇ +

ωBD
2φ

φ̇2 +
1
2

F2(φ)ψ̇2 + φ̈−V(φ) (9)

Furthermore, the equations of motion for the two scalar fields read

ωBD

(
φ̈− 1

2

(
φ̇

φ

)2

+ 3Hφ̇

)
+ 6H2φ + φ

(
3Ḣ + V,φ −

1
2

(
F2
)

,φ
ψ̇2
)
= 0 , (10)

ψ̈ + 3Hψ̇ +
(

ln
(

F2
))

,φ
φ̇ψ̇ = 0. (11)

The field Equations (8) and (9) can be written in the equivalent form

3H2 = ρe f f , (12)

2Ḣ + 3H2 = pe f f , (13)

where we have defined

ρe f f = −3H
φ̇

φ
+

ωBD
2

(
φ̇

φ

)2

+
1
2

F2(φ)

φ
ψ̇2 +

1
φ

V(φ) , (14)

pe f f = 2H
φ̇

φ
+

ωBD
2

(
φ̇

φ

)2

+
1
2

F2(φ)

φ
ψ̇2 − φ̈

φ
− 1

φ
V(φ) . (15)

3. Exact Solutions

We investigate the existence of exact solutions of special interest for the cosmological
evolution. Indeed, we search for scaling solutions, a(t) = a0tp, exponential power-law
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a(t) = a0eH0t . For the analysis in this Section we consider an arbitrary potential func-
tion V(φ).

Equation (11) gives the solution

ψ̇(t) = ψ0a−3φ−2κ . (16)

where in the following we shall assume that ψ0 is a non-zero constant, otherwise we end to
the usual Brans–Dicke theory.

For the power-law scale factor a(t) = a0tp, from (8) and (9) with the use of (16), we
end with the second-order ordinary differential equation

φ̈ + ωBD
φ̇2

φ
− p

t
φ̇− 2p

t2 φ + t−6pψ2
0φ−2κ = 0. (17)

A closed-form solution for the field equations is

a(t) = a0tp , φ = φ0t2 1−3p
1+2κ , ψ(t) =

1 + 2κ

1− 2κ

ψ0

1− 3p
φ−2κ

0 t
(1−3p)(1−2κ)

1+2κ , (18)

with ψ0 given by the expression

ψ0 = ±
√

2φ
1
2+κ
0√

1 + 4κ + κ32

√
11p− 21p2 − 1 + 2κ − 6p2κ + 4pκ2 − 2ωBD(1− 6p + 9p2), (19)

and potential function

V(φ(t)) =
(1− 2κ − p(17 + 4κ(3 + κ) + 6p(κ(2κ − 5)− 6)))

(1 + 2κ)2 φ0t
2(3p+2κ)

1+2κ , (20)

that is

V(φ) =
(1− 2κ − p(17 + 4κ(3 + κ) + 6p(κ(2κ − 5)− 6)))

(1 + 2κ)2 φ
1+2κ
1−3p
0 φ

− 3p+2κ
1−3p . (21)

In the special case where κ = − 1
2 , it follows p = 1

3 , ψ0 =

√
2(1+2q1)−3q2

1(1−ωBD)
3 and

potential function V(φ(t)) = − 1
2 (q1(3q1 − 10)− 4)t−2+q1 φ0, that is,

V(φ) = −1
2
(q1(3q1 − 10)− 4)

(
φ

φ0

)1− 2
q1

φ0. (22)

Moreover, the de Sitter universe is recovered when

φ̈ + ωBD
φ̇2

φ
− H0φ̇ + e−6H0tψ2

0φ−2κ = 0. (23)

We easily find that Equation (23) admits an exponential closed-form solution, thus,
the field equations provide

a(t) = a0eH0t , φ(t) = φ0e−
6H0
1+2κ t , ψ(t) = ψ0φ−2κ

0 e−3H0
1−2κ
1+2κ t, (24)

with

ψ0 = ±
√

6H0
√
−(7 + 2κ + 6ωBD)

1 + 2κ
, (25)

and potential

V(φ(t)) = 6H2
0

6 + κ(5− 2κ)

(1 + 2κ)2 φ0e−
6H0
1+2κ t, (26)



Universe 2022, 8, 199 5 of 11

that is

V(φ) = 6H2
0

6 + κ(5− 2κ)

(1 + 2κ)2 φ. (27)

However, for κ = − 1
2 we end with the closed-form solution ψ0 = 0 and φ(t) = φ0eφ1t

with linear potential function. This solution is not of special interest because the second
scalar field, ψ does not contribute in the cosmological fluid.

4. Dynamical System Analysis

In order to perform the dynamical analysis, we consider the new variables in the
H-normalization:

x =
φ̇

φH
, y2 =

V(φ)

3φH2 , z =
ψ̇F(φ)√

6φH
, (28)

and
λ = φ(ln V(φ)),φ , κ = φ(ln F(φ)),φ , dτ = Hdt . (29)

Furthermore, we assume the exponential potential V(φ) = V0eλφ and the power-law
function F(φ) = φκ , thus parameters λ and κ are constants. We proceed with the isotropic
background space.

For the spatially flat FLRW spacetime, the field equations in the new variables read

1−
(

3
2ωBD

)
−
(√

ωBD
6

x−
√

6
2
√

ωBD

)2

− y2 − z2 = 0 (30)

(6 + 4ωBD)
dx
dτ = 6

(
1 + (3 + 2λ)y2 + z2(4κ − 3)

)
− x(6ωBD + x(7ωBD + 6))

+x
(
ωBD(1 + ωBD)x2 + 6(λ−ωBD)y2 + 6(2κ + ωBD)z2) ,

(31)

(3+2ωBD)
y

dy
dτ = −(3 + 4ωBD + λ(3 + 2ωBD))x + ωBD(1 + ωBD)x2

+6
(
2 + ωBD + (λ−ωBD)y2 + (2κ + ωBD)z2) ,

(32)

(3+2ωBD)
z

dz
dτ = −(3 + 4ωBD + κ(6 + 4ωBD))x + ωBD(1 + ωBD)x2

−6
(
1 + ωBD + (ωBD − λ)y2)+ 6(2κ + ωBD)z2 .

(33)

From Equation (30) and for ωBD > 0, variables (x, y, z) take values on the sphere with
radius 1 +

(
3

2ωBD

)
and center the point

( √
6

2
√

ωBD
, 0, 0

)
. However, for ωBD < 0, variables

(x, y, z) are without boundaries. Thus, for ωBD < 0 Poincare variables should be used in
order to perform a complete analysis.

At this point it is important to mention that the field equations are invariant on the
discrete transformations y→ −y and z→ −z, thus without loss of generality we select to
work on the branch y > 0.

From (30) we replace variable y and we end with a two-dimensional system on the
variables (x, z).

The stationary points A = (x(A), z(A)) of the reduced system are

A±1 =

(
−2,±

√
−1− 2

3
ωBD

)
, A±2 =

(
3±
√

9 + 6ωBD
ωBD

, 0
)

,

A±3 =

(
6

λ− 2κ
,±
√

λ(λ + 5)− 3− 2κ(2 + λ)− 6ωBD

λ− 2κ

)
,

A4 =

(
2(λ + 2)

1− λ + 2ωBD
, 0
)

.
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Points A±1 describe asymptotic solutions where only the kinetic parts of the two scalar
fields contribute to the cosmological fluid, that is, y

(
A±1
)
= 0. The points are real and

physically accepted when ωBD > − 3
2 , while the effective equation of state parameter is

we f f
(

A±1
)
= 1

3 (1− 4κ). Thus, points A±1 describe acceleration when κ > 1
2 .

Points A±2 are real when ωBD > − 3
3 while they provide y

(
A±2
)
= 0, which means that

only the kinetic part of the scalar field φ, contributes to the cosmological solution Moreover,
we f f

(
A±2
)
= 6+3ωBD±2

√
9+6ωBD

3ωBD
, that is, we f f

(
A+

2
)
< − 1

3 for − 3
2 < ωBD < 0.

For the stationary points A±3 we calculate y
(

A±3
)
=

√
(2κ−1)(2κ−λ−3)

λ−2κ and we f f
(

A±3
)
=

1 + 2(1+2κ)
λ−2κ . The points are real when (2κ − 1)(2κ − λ− 3) > 0 and ωBD < 1

6 (λ(λ + 5)−
3 − 2κ(2 + λ)). In these asymptotic solutions, all the components of the scalar fields
contribute to the cosmological fluid. Specifically, they can be seen as the set of the hyperbolic
inflationary solutions when we f f

(
A±3
)
< 0, in the Jordan frame.

Finally, point A4 provides y(A4) =

√
5−λ(4+λ)−6ωBD

√
3+2ωBD√

3(λ−1−2ωBD)
, we f f (A4) =

1+λ(9+2λ)−6ωBD
3(1−λ+2ωBD)

.

The point is real for (5− λ(4 + λ)− 6ωBD)(3 + 2ωBD) ≥ 0.
We proceed with the stability analysis of the stationary points so that we can build the

cosmological history.
The eigenvalues of the linearized system around points A±1 are

e1
(

A±1
)
= 1− 2κ , e2

(
A±1
)
= −2(2κ − λ− 3) , (34)

which means that for
{

λ < −2, κ > 1
2

}
and

{
λ > −2, κ > 3+λ

2

}
, the stationary points have

negative eigenvalues, which means that they are attractors. For the stationary points A±2
we find

e1
(

A±2
)
= ±

(1− 2κ)
(

3 +
√

3(3 + 2ωBD)
)

2ωBD
, (35)

e2
(

A±2
)
= ±3(1− λ + 2ωBD) + (1− λ)

√
3(3 + 2ωBD)

ωBD
. (36)

Hence, point A+
2 is an attractor when

{
λ ≤ −2,− 3

2 < ωBD < 0, κ < 1
2

}
,
{
− 2 <

λ < 1, λ2+4λ−5
6 < ωBD < 0, κ < 1

2

}
and

{
λ > 1, 0 < ωBD < λ2+4λ−5

6 , κ > 1
2

}
. On the

other hand, point A−2 is an attractor when
{

λ ≤ −5,− 3
2 < ωBD < 0, κ < 1

2

}
,
{
− 5 < λ <

−2,− 3
2 < ωBD < λ2+4λ−5

6 , κ < 1
2

}
.

For the stationary point A4, the eigenvalues are

e1(A4) =
5− 4λ− λ2 + 6ωBD

λ− 1− 2ωBD
, (37)

e2(A4) =
3 + 4κ − 5λ + 2κλ− λ2 + 6ωBD

λ− 1− 2ωBD
. (38)

It follows that the stationary point A4 is an attractor when
{

λ < −2, ωBD > (λ−1)(5+λ)
6 ,

κ < 5λ−3+λ2−6ωBD
2(2+λ)

}
,
{

λ = −2, ωBD > − 3
2

}
,
{
−2 < λ ≤ 1, ωBD > λ−1

2 , κ > 5λ−3+λ2−6ωBD
2(2+λ)

}
and

{
λ > 1, ωBD > (λ−1)(5+λ)

6 , κ > 5λ−3+λ2−6ωBD
2(2+λ)

}
.

Finally, for the points A±3 the eigenvalues e1,2
(

A±3
)

are studied numerically. In
Figure 1, we present regions in the two-dimensional plane (λ, κ) for various values of the
variable ωBD. What is important is that the stationary points, when they are attractors, are
spirals, which is in agreement with the hyperbolic inflation in the Einstein frame.
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In Figure 2, we present the qualitative evolution for the effective equation of the
state parameter for various values of the free parameters (ωBD, λ, κ) where the hyperbolic
inflation is a future attractor. The qualitative evolution of the dimensionless variables
(x, y, z) are presented in Figure 3.
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2
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κ
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± are attractors, ωBD=1

-4 -2 0 2 4
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4

λ

κ

Im(e1,2)≠0, ωBD=1

-4 -2 0 2 4

-4

-2

0

2

4

λ

κ

Points A3
± are attractors, ωBD=-1

-4 -2 0 2 4

-4

-2

0

2

4

λ

κ

Im(e1,2)≠0, ωBD=-1

-4 -2 0 2 4

-4

-2
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-4 -2 0 2 4

-4
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Figure 1. Region plots of the real and imaginary parts of the eigenvalues e1,2
(

A±3
)

in the plane (λ, κ)

for ωBD = 1, ωBD = −1 and ωBD = −2. Left column is the region where the eigenvalues have
negative real parts and right column is the region where the imaginary parts of the eigenvalues
are nonzero.
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Figure 2. Qualitative evolution of the we f f with a future atractor point A+
3 . Left Figure is for

(κ = 5, λ = −3.5), and ωBD = 0.1 (solid line), ωBD = 0.2 (dashed line) and ωBD = 0.3 (dotted line).
Center Figure is for (ωBD, κ) = (0.1, 5), λ = −3.5 (solid line), λ = −3.6 (dashed line) and λ = −3.7
(dotted line) . Right line is for (ωBD, λ) = (0.1,−3.5), κ = −3.5 (solid line), κ = −3.6 (dashed line)
and κ = −3.7 (dotted line) .
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Figure 3. Qualitative evolution of the dimensionless variables (x, y, z) for various values of the free
parameters (ωBD, κ, λ). First row is for (κ = 5, λ = −3.5), and ωBD = 0.1 (solid lines), ωBD = 0.2
(dashed lines) and ωBD = 0.3 (dotted lines). Second row is for (ωBD, κ) = (0.1, 5), λ = −3.5 (solid
lines), λ = −3.6 (dashed lines) and λ = −3.7 (dotted lines) . Third row is for (ωBD, λ) = (0.1,−3.5),
κ = −3.5 (solid lines), κ = −3.6 (dashed lines) and κ = −3.7 (dotted lines) .
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Analysis at Infinity

For negative values of the Brans–Dicke parameter we define the new variables

X =
ρ√

1− ρ2
cos Θ , y =

ρ√
1− ρ2

sin Θ cos Φ , z =
ρ√

1− ρ2
sin Θ sin Φ

where we have replaced x =
√

6
|ωBD |

X− 3
|ωBD |

.
Assume now that we work on the region ρ > 1, that is, in order y ≥ 0, it follows

Θ ∈ [0, π) and Φ ∈ (−π
2 , π

2 ]
In the new variables the infinity is reached when ρ → 1. Thus, with use of the

use of the constraint equation, for ρ → 1 we end with the following system of ordinary
differential equations:

ρ̇ = 0 (39)

Φ̇ = −1
2

√
3

2|ωBD|
(2κ − λ) cos Θ sin(2Φ), Θ =

π

4
or Θ =

3π

4
. (40)

The first equation indicates that when the dynamical system lies at the infinity, it stays
at ρ→ 1. Moreover, from the second equation, it follows that Φ1 = 0, Φ2 = π

2 .
Hence, the stationary points B = (Θ(B), Φ(B)) are B1 =

(
π
4 , 0
)
, B2 =

(
π
4 , π

2
)

, B3 =( 3π
4 , 0

)
and B4 =

( 3π
4 , π

2
)
. For the points B1 and B3, we derive z(B1) = 0 and z(B3) = 0,

while for the points B2 and B4, we find y(B2) = 0 and y(B4) = 0.
As far as the stability properties of the points are concerned, we find that points B1 and

B4 are attractors for 2κ− λ > 0, otherwise for 2κ− λ < 0 points B2 and B4 are attractors on
the surface ρ→ 1.

5. Conclusions

Hyperbolic inflation is a two-scalar field model in the Einstein frame where the two
scalar fields lie on a hyperbolic plane. This model admits an attractor, which describes an
inflationary solution where the two scalar fields contribute to the cosmological solution.

In this piece of work, we consider a cosmological model of two-scalar fields in the
Jordan frame, which recovers the multi-field model of hyperbolic inflation under a confor-
mal transformation. The main motivation of this study is to investigate the nature of the
attractor that corresponds to the hyperbolic inflation under conformal transformations.

For our model, which is an extension of the Brans–Dicke, and in the case of a spatially
flat FLRW geometry, we performed a detailed analysis of the dynamics of the field equations
by using normal variables. The Brans–Dicke theory is recovered, however we found a
set of stationary points, namely A±3 , where all the components of the gravitational Action
Integral contribute to the cosmological solution. The asymptotic solutions at the points A±3
are scaling solutions, which can describe accelerated universes. Thus, these solutions can
be seen as the analogue of the hyperbolic inflation in Jordan frame.

Furthermore, surprisingly, points A±3 are stable spirals, which means that they are
in the same nature as the attractor of the hyperbolic inflation in the Einstein frame. That
is an interesting result because the physical properties and the stability properties of the
hyperbolic inflation remain invariant under conformal transformation.

At this point, we wish to briefly discuss the hyperbolic inflationary solution in the
presence of anisotropy. We assume the locally rotational Bianchi I spacetime with line element

ds2 = −dt2 + a2
(

e2σdx2 + e−σ
(

dy2 + dz2
))

, (41)

and by using dimensionless-like variables as before, we conclude that the isotropic in-
flationary solution described by the stationary points A±3 exist, with the same physical
properties as before, and the same stability properties. Hence, the hyperbolic inflation in
the Jordan frame is an isotropic attractor and can solve the isotropization problem as in the
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case of the Einstein frame. Finally, we conclude that no new anisotropic exact solutions are
provided by this model except that of that of the standard Brans–Dicke theory.

In a future work, we plan to investigate in detail the presence of curvature and
anisotropy in the initial conditions of the theory.
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