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PROCURADOR - Eu vim tratar do seu pedido de aumento; o senhor quer ganhar mil 

escudos. Infelizmente, o meu parecer não era favorável. ... 

GALILEU (mexendo em seus papéis) - Meu caro amigo, com quinhentos escudos eu não 

vivo. 

GALILEU - ... Quem sabe um belo dia o senhor mostra aos cavalheiros do Conselho esta 

pequisa sobre a lei da queda dos corpos (mostra um maço de papéis), e pergunta se 

isto não vale uns escudos a mais. 

PROCURADOR - Vale infinitamente mais. Senhor Galileu. 

GALILEU - Infinitamente não, senhor, quinhentos escudos. 

(in A vida de Galileu, Bertold Brecht. Abril Cutural, SP) 



GALILEU -   A prática da ciência me parece exigir notável coragem,   Ela 

negocia com o saber obtido através da dúvida. Arranjando saber a respeito de 

tudo e para todos, ela procura fazer com que todos duvidem. Ora, a maior parte 

da população é conservada, pelos seus príncipes, donos de terra e padres, numa 

bruma luminosa de supertições e afirmações antigas, que encobre as maquinações 

dessa gente. A miséria de muitos é velha como as montanhas e segundo os púlpitos 

e as cátedras, ela é indestrutível como as montanhas. 0 nosso recurso novo, a 

dúvida, encantou o grande público, que arrancou o telescópio de nossas mãos, para 

apontá-lo paxa os seus carrascos. Estes homens egoístas e violentos, que haviam 

se aproveitado avidamente dos frutos da ciência, logo sentiram que o olho frio da 

ciência pousara numa miséria milenar, mas artificial que obviamente poderia ser 

eliminada, através da eliminação deles. Eles nos cobriram de ameaças e de ofertas 

de suborno, irresistíveis para almas fracas. Entretanto, seremos ainda cientistas, se 

nos desligarmos da multidão? Os movimentos dos astros tornaram mais claros, mas 

os movimentos dos poderosos continuam imprevisíveis. ... Vocês trabalham para 

quê? Eu sustento que a única finalidade da ciência está em aliviar a canseira da 

existência humana. E se os cientistas, intimidados pela prepotência dos poderosos, 

acham que basta amontoar saber, por amor ao saber, a ciência pode ser transformada 

em aleijão, e as suas novas máquinas serão novas aflições, nada mais. Com o tempo, 

é possível que vocês descubram tudo o que haja por descobrir, e ainda assim o seu 

avanço há de ser apenas um avanço para longe da humanidade. 0 precipício entre 

vocês e a humanidade pode crescer tanto, que ao grito alegre de vocês, grito de quem 

descobriu alguma coisa nova, responda um grito universal de horror. ... 

(in A vida de Galileu, Bertold Brecht. Abril Cutural, SP) 



RESUMO 

Neste trabalho desenvolvemos um estudo de algumas consequências observacionais de 

universos multiplamente conexos. Para o caso de um universo plano, escolhemos a topologia 

de um toro plano e estudamos a distribuição de imagens neste tipo de universo. Em 

um universo com topologia com dimensões compatíveis com os dados obtidos pelo 

satélite COBE, demonstramos que existe a possibilidade de efetuar observações impossíveis 

de serem efetuadas em um universo com topologia trivial. Para o caso de um universo 

hiperbólico, utilizamos a topologia descrita por H.V. Fagundes (Ap.J.(1989)338,618) e 

estudamos associações de galáxia e quasares com redshifts discordantes. Obtivemos que 

existe a possibilidade de que o número de conjunções seja superior ao esperado em um 

universo com topologia trivial. 

Palavras chaves: cosmologia - quasares - galáxias 

Áreas de Conhecimento: 1.05.01.03-07 1.04.04.04-0 1.04.04.03-1 1.04.04.01-5 



ABSTRACT 

In this Work, we analised some observational consequences of a multiply connected 

universes. In the flat universe with torus-like topology we analysed the images 

distributions. The size of universe was constrained through analysis of Cosmic 

Microwave Backgound Anisotropy obtained by COBE satelite, and we obtained that 

in this kind of universe we can do some observations that are impossible to be done in 

universe with trivial topology. For hyperbolic universe, we used a toplogy described 

in [23] to study quasar-galaxy associations with discordant redshift. We concluded 

that in these universe, the number of quasar-galaxy associations may be higher that 

the expected in universe with trivial topology. 

Key words: cosmology - quasars - galaxies 
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INTRODUÇÃO 

Cosmologia 

0 modelo padrão da cosmologia, conhecido como o modelo do Big-Bang, é construído 

tendo como base as equações de Einstein da Relatividade Geral conjuntamente com 

o Princípio Cosmológico que estabelece que o Universo é homogêneo e isotrópico. 

O Princípio Cosmológico aparenta a primeira vista, ser uma aproximação para 

descrever o Universo, no entanto, os dados observacionais indicam fortemente a 

sua validade. A isotropia sendo confirmada pelas observações da radiação cósmica 

de fundo que possui um espectro de corpo negro, com uma temperatura atual da 

ordemMe Tq ~ 3K. Esta radiação foi detectada pela primeira vez por Penzias e 

Wilson em 1964 [51], e interpretada por Dicke e colaboradores [16], como sendo a 

radiação cósmica de fundo prevista por G. Gamow na década de 40 (veja p.ex., [8]). 

Medidas recentes do satélite COBE [46] e experimentos com foguetes [37], indicam 

para a radiação cósmica de fundo, um espectro de corpo negro a uma temperatura 

de To = 2.735 ± 0.017/^. Mas a extrema isotropia da radiação cósmica de fundo foi 

utilizada por alguns autores para criticar o modelo do Big-Bang [4], sob a alegação 

de que no momento do desacoplamento o raio do Universo seria muito menor do 

que as dimensões da região atualmente observada através da radiação cósmica de 

fundo [15], gerando o chamado Problema do Horizonte. Um outro problema alegado 

para a não aceitação do modelo do Big-Bang é a de que este modelo não explica 

de maneira satisfatória a geração de flutuações na densidade necessárias para a 
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formação das estruturas em grande escala observadas no Universo. No entanto 

com o advento dos modelos inflacionários [1, 38, 43] tornou-se possível uma solução 

para o Problema do Horizonte, além de fornecer possíveis mecanismos para gerar 

as flutuações necessárias para a geração das estruturas em grande escala observadas 

no Universo (para uma revisão recente veja [11, 47]). Os resultados recentes obtidos 

com o satélite COBE [54] indicam a existência de uma anisotropia na radiação 

cósmica de fundo que pode ser interpretada como tendo origem nas flutuações na 

densidade para a formação das estruturas em grande escala observadas no Universo. 

A homogeneidade do Universo é obtida - indiretamente - pela medida da recessão 

das galáxias, observadas pela primeira vez por E.Hubble na década de 20 [41]. A 

chamada lei de Hubble, estabelece que a velocidade de recessão v das galáxias é 

proporcional a sua distância à nossa Galáxia,isto é, v = Hod onde Ho é a. constante 

de Hubble, cujo valor estimado é (citado em [50]) 

Ho = 67 ± 8km s“^Mpc~\ 

A radiação cósmica de fundo, a sua isotropia, a recessão das galáxias, conjun- 

tamente com a abundância de elementos leves, notadamente hidrogênio, deutério, 

hélio e o lítio [50, 61] são fortes evidências que confirmam as previsões do modelo 

padrão para o Universo. 

Quasares 

Os quasares desde a sua descoberta, tem gerado polêmicas a cerca da sua origem e 

natureza. O que era surpreendente para muitos era a luminosidade extremamente 

elevada associada aos quasares, muito maior do que a observada em qualquer objeto 

até então detectado no Universo. Uma das saídas para explicar a alta luminosidade 

associada aos quasares, era assumir que o redshift associado a eles não era de origem 

cosmológica. Com isso, a luminosidade destes objetos seria muito reduzida. No 
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entanto, com o acúmulo de dados observacionais e a elaboração de modelos mais 

acurados para os quasares, tornou-se claro que o redshift dos quasares era realmente 

de origem cosmológica. Análises de dados de outras galáxias com núcelos ativos, 

indicam a existência de uma continuidade evolutiva entre estes objetos [60]. Dessa 

forma a natureza cosmológica do redshift dos quasares possui atualmente uma boa 

base observacional. 

No entanto, alguns autores (veja [4] e suas referências e [50] para um contraponto) 

defendem o ponto de vista de que a origem dos quasares não deve ser cosmológica, 

estando na verdade associados com galáxias, podendo inclusive ter a sua origem 

como objetos ejetados das galáxias. A origem fundamental dos argumentos utiliza- 

dos pelos autores acima^ (especialmente por Arp), é de que existem associações de 

quasares de alto redshift com galáxias de baixo redshift muito acima do esperado 

estatisticamente, e de que em alguns casos, esta associação se faz através de uma 

ligação física entre a galáxia e o quasar, o que seria impossível se o redshift do quasar 

fosse de origem cosmológica (v. p.ex. [2, 3, 4, 10]). Apesar da origem cosmológica 

do redshift dos quasares ter originado uma série de debates (v. p.ex. [32, 60]), atu- 

almenfe é aceito que a sua origem é realmente cosmológica. Em relação ao excesso 

de associações entre galáxias e quasares, Weedman argumenta que ([60, pagina 29]): 

... These arguments are strictly statistical in nature and easy to check, in the sense 

that necessary calculations are straightforward. What has not easy is that curious 

features of quasar configurations are pointed out after the fact, without predictive 

power. 

e ([60, pagina 37]) 

... only requirement for obtaining meaningful scientific results is to define before 

testing^ what correlations are to be tested with the sample avaiable. 

^além da questão da luminosidade associada a estes objetos 

^enfatizado no original 
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Topologia do Universo 

As equações correspondentes ao modelo padrão para o Universo descrevem ape- 

nas as suas propriedades locais. As propriedades globais do Universo, tem sido 

muito pouco exploradas em cosmologia, e quando isto é efetuada, a sua aplicação e 

confrontação com dados observacionais não são diretas (veja p.ex. [19, 33, 34]), di- 
f 

ficultando a sua comprovação . E interessante notar que alguns autores ([39, página 

136], veja também [59, página 95]), descartam a possibilidade de que o Universo 

possua uma topologia não trivial, mais especificamente, que seja multiplamente 

conexo, pois neste caso. o grupo de isometria seria reduzido, e o Universo deixaria 

de ser isotrópico em contradição com os dados observacionais. Zeldovich [63], ar- 

gumenta que essa anisotropia levaria a um momento de quadrupolo suficientemente 

alto para ser medido. No entanto, trabalhos posteriores mostram claramente que a 

não isotropia inerente à variedade, não implica necessariamente em um alto valor 

para anisotropia da radiação cósmica de fundo, podendo inclusive ser invocada para 

explicar não somente a isotropia [35, 21], como uma possível anisotropia de origem 

topológica [58]. Em relação ao momento de quadrupolo, Fang e Houjun [29] demons- 

tram que a sua influência não seria suficiente para gerar dados contraditórios com as 

observações. Dessa forma o argumento inicial da redução do grupo de isometria para 

universos multiplamente conexos, não traz consequências mensuráveis na radiação 

cósmica de fundo - um dos principais dados observacionais que qualquer modelo 

para o Universo deve satisfazer. Trabalhos recentes indicam que caso a topologia 

do Universo seja toroidal, a detecção da anisotropia na radiação cósmica de fundo 

pelo satélite COBE [54] estabelece um limite inferior para as dimensões da célula 

fundamental [55, 57, 58]. 

As prováveis consequências observacionais de um Universo com topologia não 

trivial, passaram a ser exploradas apenas recentemente [14, 20, 23, 28, 30, 35, 40, 56]. 

Estes trabalhos assumem uma seção espacial compacta para o Universo, mesmo 
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nos casos em que a curvatura é nula ou negativa. Um dos atrativos dos espaços 

compactos para a seção espacial do Universo, é de que teríamos um Universo de 

dimensões finitcis e consequentemente com um número finito de objetos. E no caso 

dcis dimensões do Universo, isto é, da célula fundamental, serem suficientemente 

reduzidas, teríamos um acesso a todo Universo, o que não seria possível se a seção 

espacial não fôr compacta. Neste caso, as dimensões da célula ou poliedro funda- 

mental (ver seção 1.2 para mais detalhes) assumem um papel importante, pois caso 

ela não seja suficientemente pequena ou pelo menos menor do que as dimensões 

do horizonte visível do Universo, as diferenças observacionais de um Universo com 

topologia trivial não serão perceptíveis. 

Objetivos 

No nosso trabalho, procuramos ampliar o estudo das consequências observacionais 

de universos com topologia não trivial, procurando explorar os efeitos possíveis de 

serem medidos com técnicas observacionais atualmente disponíveis. Analisamos 

dois ti^os de universos com seção espacial compacta, um para o caso hiperbólico, 

com o objetivo de explorar a sua propriedade de serem localmente homogêneos mas 

globalmente inomogêneos, com o intuito de verificar a possibilidade de explicar de 

uma maneira topológica as associações de quasares e galáxias com redshifts dis- 

cordantes. 0 outro caso foi de um universo com topologia de um toro plano 

no qual analisamos como a topologia afeta a distribuição dos objetos no céu. Ao 

contrário dos outros autores que basicamente analisaram ou estruturas em grande 

escala [20, 26, 30, 40, 56] ou objetos que assumiam como sendo pontuais ou sem 

estrutura aparente [14, 28] para um universo com topologia de um toro plano, nós 

analisamos a influência em objetos com estruturas tais como jatos e similares. 
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Capítulo 1 

COSMOLOGIA 

1.1 O modelo de Friedmann 

Utilizando apenas o Princípio Cosmológico, podemos obter tanto a métrica como 

o tensor energia momento do Universo. A métrica para um Universo homogêneo e 

isotrópico deve ser do tipo Robertson-Walker [61] 

dr^ 
ds^ = df - a\t) 

1 — 
+ r^dd^ + sin'* 6 d<j/ (U) 

onde Oi^t) é denominado fator de escala, e â; = 0, ±1 é uma constante relacionada 

com a curvatura do Universo. O tensor energia-momento deve ser semelhante a de 

um fluido perfeito [61] 

Tij = P9ij + {v + p)uiUj (1.2) 

onde i,j = 0,1,2,3 e p,p são funções apenas de í, e u, é o quadri-vetor velocidade 

do observador em comovimento com o fluido cósmico. É importante notar que 

tanto a métrica como o tensor energia-momento dados acima, são independentes da 

equação do campo gravitacional, estando relacionados apenas com as propriedades 

de simetria contidos no Princípio Cosmológico (ver por exemplo capítulo 13 de [61]). 

Utilizando apenas a métrica de Robertson-Walker (equação 1.1) é possível obter 

uma série de informações sobre o Universo que são independentes da equação de 

campo utilizado para descrever o campo gravitacional. 
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Capítulo 1. COSMOLOGIA 7 

A distância própria entre dois observadores é dada em função da métrica por [42] 

\ 11/2 
dOadoP \ 

J.-l 9ap - 
9oo V 

dx°‘dx^ (1.3) 

onde a,l3 = 1,2,3. Com isso, a distância da origem a um ponto r com 9,(j) fixos, 

para o caso da métrica de Robertson-Walker é dada por 

('-d 

(a{t) arcsin r se fc = +1 

a{t)r se k — 0 (1-5) 

a(/)arcsinh r se Â; = —1 

Derivando a equação 1.4 em relação ao tempo próprio í, obtemos a lei de Hubble 

relativística 

i = à{t)f{r) 

à{t) 

a{t) 
l{t) 

(1.6) 

(1.7) 

de forma que a constante de Hubble é dada por H = a{t)fa{t). 

Outra relação importante obtida apenas com a utilização da métrica, é o redshift 

Z dado por 

Utilizando gij e Tíj dados nas equações 1.1 e 1.2 podemos resolver a equação de 

Einstein, 

Rii - \9iiR = -STrGTij (1.10) 

obtendo cis soluções relativas aos modelos de Friedmann 

ã 47tG. „ , 
- = H-3rf (1.11) 

Ao — Al 

Al 

a{to) 

a{ti) 
- 1. 

(1.8) 

(1.9) 
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fà\^ SttG k 

Võj “ 

A equaçãx) 1.12 pode ser reescrita como 

k rSTrG 
,3i/2 

H^[n -1] 

(1.12) 

(1.13) 

(1.14) 

onde Çl = pjpc é o parâmetro de densidade, e pc = 3íí^/(87rG) é a densidade crítica, 

que correponde a densidade de um universo plano, isto é, k = 0. Obtemos assim, 

uma relação entre a geometria da seção espacial do Universo, e o seu conteúdo de 

matéria, dada por 

< 0 espaço hiberbólico, 

íí \ =0 espaço plano, (1-15) 

> 0 espaço esférico. 

Como trabalharemos com espaço hiperbólico (capítulo 3), é conveniente expressar 

a métrica de Robertson-Walker em outro sistema de coordenadas além do cartesiano. 

Para um espaço hiperbólico é conveniente reescrever a equação 1.1 como 

ds^ = a^(r]){dT]^ — d\^ — sinh^ + sin^ 6d(f>'^]} (1-16) 

onde introduzimos a variável rj que está relacionada com a coordenada temporal 

t através de dt = a dp. A variável x corresponde à distância própria medida em 

unidades do fator de escala a(í), isto é, pela relação (ver equação 1.5) 

l/a = X- (1.17) 

Com estas cordenadas, a trajetória de um raio de luz é dada pela equação drj = 

didx- Neste caso, um raio de luz que parte em um instante t(r]) e atinge a origem 

do sistema de coordenadas em um instante t{r]o) satisfaz a equação x — tJo — rj. No 
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caso de um Universo sem pressão, p = 0, que corresponde ao período dominado pela 

matéria, obtemos como soluções para o modelo de Friedmann as equações : 

a = ao(coshp —1) 

t = ao{smh.Tj — T]) 

Com isso, podemos obter uma relação entre Q, e rj 

n= ——T 
cosh T] + í 

Utilizando a métrica dada em 1.16, o redshift Z é dado por 

cosh TJo — l 
Z(x) = 1 

(1.18) 

(1.19) 

(1.20) 

(1.21) 
cosh(x - ij„) - 1 

onde Xí Vo correspondem respectivamente ao instante de emissão e recepção da 

luz. Notemos que rjo corresponde ao horizonte visível do observador. Com isso, 

da equação 1.20 obtemos uma relação entre a densidade e as dimensões do horizonte 

visível do Universo. 

1.2 Variedades 3-D em Cosmologia 

Na seção 1.1 desenvolvemos um modelo que depende das equações do campo gra- 

vitacional utilizadas para descrever o Universo. No entanto, é desejável sempre 

que possível, analisar o Universo de maneira independente das particularidades da 

teoria utilizada. Para isso, podemos considerar o Universo como sendo uma var- 

iedade (M, p), onde g é uma métrica lorentziana. A imposição de uma métrica 

lorentziana para variedade não é uma restrição forte, pois basta que a variedade ad- 

mita uma métrica positiva definida, para que possua uma métrica lorentziana [34]. 

No caso específico da cosmologia, assumiremos que a seção espacial seja uma var- 

iedade riemanniana completa. Onde uma variedade M é denominada completa, se 

para qualquer ponto pcM, uma geodésica X : R M partindo de p é definida para 

qualquer parâmetro tcR [13]. 
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O Princípio Cosmológico pode ser descrito de uma maneira formal para uma 

dada variedade, utilizando a noção de isometria. Para isso representamos o espaço- 

tempo como uma variedade 4-dimensional, que é folheado com subvariedades 3- 

dos observadores em comovimento com o fluido cósmico. Assim, temos a seguinte 

descrição do Princípio Cosmológico [59] 

homogeneidade : se dados dois pontos p,çeE(í), existe uma isometria que leva p 

em q, S(í) é homogêneo. 

isotropia ; seja uma congruência de curvas do tipo tempo, ortogonais a E(í), e um 

ponto p pertencente a uma dessas curvas com vetor tangente u em p. Sejam 

dois vetores si,S2 unitários e ortogonais a u em p. Se existir uma isometria 

que mantém p e u fixos, e leva 5i em S2, então S(t) é isotrópico em p. 

Notemos que um espaço que é isotrópico em todos os pontos é também homogêneo, 

a recíproca não sendo verdadeira. 

1.3 Forma espacial 

Consideremos dois vetores X,Y de M linearmente independentes, que formam um 

subespaço 2-dimensional <t de Tp{M). A curvatura seccional K{p,a) em um ponto 

peM é definido em termos dos vetores X^Y através da relação [9] 

dimensionais do tipo espaço, isto é, o Universo é descrito por M = S(í) x onde 

E(í) corresponde à seção espacial do Universo, que é ortogonal as linhas de mundo 

(1.22) 

ou utilizando as coordenadas locais Ei, tais que X Ei,Y — E, onde 

>, podemos expressar as componentes do tensor de curvatura através 

de 

Rijki — 9ii9jk)- (1.-23) 
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Se K{p,a) = Ko para todo atTp{M), e todo peM, então a variedade M é um 

espaço de curvatura constante. Neste caso é possível demonstrar (Teorema de Car- 

tan [13, Corolário 2.3, página 133]) que existem vizinhanças U de p e V áe q, e uma 

isometria <f) : U V. Esta é a definição de homogeneidade local (veja por exem- 

plo [17]), sendo que anteriormente na definição de homogeneidade para o Princípio 

Cosmológico foi apresentada a sua versão global. No modelo padrão para a Cos- 

mologia, com a utilização do Princípio Cosmológico, a seção espacial do Universo 

é descrita por um espaço de curvatura constante. As variedades completas de cur- 

vatura constante recebem o nome de formas espaciais. Neste tipo de variedade, basta 

a curvatura seccional para determinarmos o tensor de curvatura. Se multipli- 

carmos a métrica por uma constante positiva arbitrária, a curvatura seccional será 

dividida pela mesma constante (veja equação 1.23), logo o que importa é o sinal da 

curvatura seccional, e não o seu valor numérico para caracterizar o espaço. Assim, 

temos três possíveis valores para a curvatura seccional de um espaço de curvatura 

constante Ko = il,0, caracterizando as três possíveis geometrias para o Universo. 

A Relatividade Geral nos fornece apenas informações locais, e não globais. As- 

sim, qualquer variedade que satisfaça localmente as soluções obtidas pela Relativi- 

dade Geral, é a princípio uma variedade aceitável como modelo para o Universo. 

Apesar de termos apenas três possíveis valores para a curavatura seccional, exis- 

tem outros espaços que apesar de serem caracterizados localmente por uma das 

três geometrias, são globalmente distintos. Normalmente são explorados somente 

os espaços simplemente conexos R", 5" ou ií", no entanto é possível obter outras 

variedades que sejam isométricas a uma das três variedades anteriores, portanto 

que satisfazem localmente os modelos de Friedmann. No caso de espaços planos é 

possível construir seis diferentes espaços orientáveis, e nos outros casos, as possi- 

bilidades são infinitas (ver p.ex. [19]). Isto quer dizer que temos a disposição uma 

grande gama de possíveis seções espaciais para o Universo a serem exploradas. 
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1.4 Construindo espaços compactos 

Como a seção espacial dos Universos de Friedmann são 3-dimensionais, seria útil 

se houvesse um esquema de classificação destas variedades. Mas esta é ainda uma 

área de intensa pesquisa entre os matemáticos (veja por exemplo [53]) e ainda não 

existe uma classificação das variedades 3-dimensionais disponível para aplicação. 

No entanto é possível construir algumas variedades 3-dimensionais compactas que 

podem ser utilizadas em cosmologia. Uma dessas maneiras, é criar uma rede de 

células de forma a preencher todo espaço , tal como é feito por exemplo no estudo 

dcLS redes cristalinas em estado sólido. 

Como vimos na seção 1.3, os únicos espaços de curavtura constante que temos 

são R^, ou (em três dimensões), ou são isométricos a um destes espaços. 

Para construir estas variedade compactas, utilizamos um grupo com ação total- 

mente descontínua em uma variedade M. A definição de um grupo P que age de 

maneria totalmente descontínua em uma variedade M sendo [9, 13]: 

• para cada 7eP sendo j ^ e, existe uma vizinhança U áe x eM que satisfaz a 

condição 'yU D Í7 = 0 . 

Assim, construimos as variedades compactas através da ação de um subgrupo 

do grupo de isometrias P, que age de maneira totalmente descontínua, no espaço 

de recobrimento universal M. Onde M é isométrico a ou Com isso, 

podemos obter uma variedade M que é isométrica a M/F, com a métrica induzida 

pela aplicação de recobrimento w : M —>■ MfT [45]. 

Assim, consideremos uma variedade M qualquer com um certo grupo de isome- 

tria F. Seja um subconjunto (subespaço ) F de M, que seja fechado e convexo, e 

que satisfaça as seguintes condições : 

1. as faces de F são identificadas pela ação de F, onde as faces são variedades 

de dimensão m — 1, sendo m =dim(M), de forma que a fronteira de F 
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é obtida pela união das faces de F\ 

2. M = [j^F, onde 7eF; 

3. F ri7 F= 0, 1 T^r, onde F é o interior de F. 

Nesse caso dizemos que F é um Poliedro Fundamental sob a ação de F [6]. 

Neste processo de construção , temos uma conexão entre a topologia e a teoria 

dos grupos, ou seja, transformamos um problema topológico - a obtenção das formas 

espaciais - em um problema algébrico, mais especificamente a um problema da teoria 

dos grupos. 

Consideremos por exemplo, o toro que é obtido pela identificação em pares das 

faces de um paralelepípedo (veja a figura 2.1). Esta identificação pode ser descrita 

através das relações 

9x^ * ^ ^ ^ ^ "F ‘^x — 0? Fl, i2,... 

9y’'-y ^ y + nyly Uy - 0, ±1, ±2,... (F24) 

•. z z + = 0, ±1, ±2,... 

onde í^,ly,lz são as dimensões das bordas do paralelepípedo. As transformações 

acima pertencem a um subgrupo do grupo de isometrias de R^, e correspondem ao 

grupo das translações finitas, de forma que é isométrico à jZ^. 

1.5 Espaços globalmente inomogêneos 

Como vimos acima, a homogeneidade de uma variedade M é descrita pela existência 

de uma isometria (j) entre dois abertos t/, VcM. Esta definição de homogeneidade, de- 

fine na realidade uma homogeneidae local da variedade. As variedades simplesmente 

conexas F", 5” e F" são todas globalmete homogêneas, no entanto as variedades 

construidas pela ação de um subgrupo F de isometrias, formando o espaço quociente 

M/r não são necessariamente homogêneas globalmente [19]. 
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Para que uma variedade M/T seja homogênea, é necesário que P seja um grupo 

de translação de Cliíford de M [62]. Dizemos que uma isometria cf) é uma translação 

de Cliíford, se a distância de p a (f>{p) fôr constante. No caso do espaço plano 

a translação de Cliíford é simplesmente a translação usual, enquanto no espaço 

hiperbólico, a translação de Cliíford se reduz à transformação identidade [62, Lema 

2.7.4.]. Dessa forma, o espaço compacto obtido por i7"/r será homogêneo, somente 

se r fôr o grupo das translações finitas de i?". No caso hiperbólico //"/P, a única 

variedade homogênea é somente 77”. Portanto, qualquer espaço hiperbólico com- 

pacto será necessariamente não homogêneo globalmente. 

Vamos considerar o grupo P completo de isometrias de M, de forma que dados 

q,peM\ existe um aet tal que cr{p) h-í- q. Seja agora um subgrupo P de P, com 7cP, 

sendo que no espaço quociente M/T, temos que p = 7roç = 7ro 7(p), onde tt é a 

aplicação de recobrimento tt ; M M. Se M/P fôr homogêneo, 7 é uma translação 

de Cliíford, pela definição acima. Logo, 6^ é constante, isto é, dados dois pontos 

p, qtM , a distância entre p e 7(p) é a mesma que a distância entre q e 7(9). Isto 

é, se definirmos a distância entre dois pontos x,y por D{x,y), temos em um espaço 

homogêneo a igualdade 

D{p,7ÍP)) = D{q,-f{q)). (1.25) 

Outra maneira de descrever a homogeneidade global é utilizando as noções de laço 

geodésico e ângulo de laço (veja [24, teorema 3.2, pag 211], para uma demonstração 

da equivalência entre as duas construções ). Seja a;(A), 0<A<1 um segmento de 

geodésica em E, tal que x(l) = a:(0), e 7eP, onde E é isométrico a S/P. Dizemos 

que o par (a:, 7) forma um laço geodésico em S. Com isso, temos o levantamento x e 

o segmento de geodésica (x, 7Í) em S. A distância entre dois pontos x,y é definido 

por D{x, y) e o comprimento de um laço por L[x, 7). No caso de um laço geodésico e 

a curva obtida pelo seu levantamento, temos a relação L(x, 7) = D[x, 7Í). 0 ângulo 

do laço 7(x,7) é definido como o ângulo entre as direções iniciais x(0) e finais x(l) 
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do laço (1,7), e é dado por cos“^ < í(0),r(l) >, onde < , > é o produto interno 

definido pela métrica em S, e t é um vetor unitário dado por d/dX. Com essas 

definições dizemos que E é globalmente homogêneo se, dados x, x'eT,, tivermos [24] 

L{x,m) = L{x\-f) (1.26) 

cos~‘ < r(0),r(l) > = cos-^ < t’(0),í’(l) > . (1.27) 

Caso uma dessas condições sejam violadas, a variedade é dita globalmente in- 

omogenea. 



Capítulo 2 

UNIVERSO PLANO COMPACTO - 

2.1 O toro plano 

Vamos considerar o caso de um universo plano, com topologia de um toro T^. Como 

vimos no capítulo anterior, este tipo de universo pode ser obtido através da identi- 

ficação em pares das faces de um paralelepípedo, onde identificamos as faces ABC D 

com EFGH, DCGH com ABFE, e ADHE com BCGF (figura 2.1). Neste caso, 

o espaço de recobrimento universal é 7?^, e o subgrupo das isometrias é dado pelas 

translações em R^, representado pelo gerador onde 

= {x + nj^,y,z) 

9y’'{x,y,z) = (x,y + nyly,z) (2.1) 

9z"{x,y,z) = {x,y,z + nj^). 

Como localmente as propriedades do Universo com topologia são as mesmas 

de um Universo plano com topologia trivial, as fórmulas obtidas para o universo de 

Friedmann padrão podem ser usadas mesmo no caso de um universo com topologia 

T^. Assim, para as simulações utilizamos as fórmulas padrão para um universo 

plano; a distância própria D de um objeto ao observador em função do redshift Z 

sendo [52] 
2c 

DIZ) = - 
vTTz 

(2.2) 

16 
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Figura 2.1: Poliedro fundamental para o toro 

e o “look-back time” r: 

r = 
3H (1 + Z)N\ • 

(2.3) 

Serldo que a distância D de uma imagem ao observador é dada por 

O \J{Xo Tlxlx)^ d" (í/o "k d* i^o "b ^2^2)^ — \9 (2^01 Voi ^0 (2.4) 

0 número de imagens possíveis de serem observadas depende claramente das 

dimensões lx,ly,lz da célula fundamental. Se Zmax é a distância máxima que um 

objeto pode ser observado, o número de células necessários na direção do eixo i é 

dado por 

Tii = lAÍT i — 
h H 

1 

x/TTz 
(2.5) 

onde XAÍT indica que devemos extrair a parte inteira mais um da expressão entre 

as chaves. 
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2.1.1 Dimensões da célula fundamental 

Do ponto de vista observacional, precisamos determinar as dimensões da célula 

fundamental, cissim como as orientações das suas faces. Foram propostos alguns 

métodos para esse fim, utilizando imagens de aglomerados de galáxias [56], quasares 

e galáxias [31, 14] e imagens da Via Láctea [28]. Apesar de ainda não ser possível 

determinar com certeza se a topologia do Universo é T^, os resultados obtidos pe- 

los autores acima indicam que se a topologia do Universo for de fato as suas 

dimensões seriam maiores do que o proposto originalmente [20, 56]. 

As propostas para obter as dimensões da célula fundamental, dependem da 

hipótese de que ou conhecemos a evolução dos objetos, ou assumimos que estes ob- 

jetos não evoluam muito entre uma imagem e outra. Estas condições não são sempre 

possíveis de serem obtidas. Uma outra maneira para determinar as dimensões da 

célula fundamental é com a utilização dos resultados obtidos pelo satélite COBE 

nas medidas da anisostropia da radiação cósmica de fundo [54]. Resultados recentes 

indicam que se a topologia do Universo for toroidal, então os dados do COBE são 

incompatíveis com um Universo de dimensões reduzidas como proposto em [20]. 

Em [58] utilizando a hipótese de uma pertubação (adiabática) na densidade para 

a formação de estruturas em grande escala no Universo, de forma que a flutuação na 

temperatura em grande escala seja dada (em um Universo de Einstein - de Sitter) 

por [29, 49]: 

1 Hq 6]^exp{iyh ■ n) 
2 c2 ^ jfc2 

= J2aTYr(n) (2.7) 
/,m 

onde 

«r = Ç (2.8) 

sendo j[ a função esférica de Bessei de ordem /, Assumindo uma invariância por 

(2.6) 
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rotação para o coeficiente aj", obtemos [58] 

onde PxiPyiPz são números inteiros. A grandeza Lfy (veja 2.9) fornece a razão entre 

a escala da célula fundamental e do horizonte. Em [58] foi efetuado um estudo 

com diversas razões i/y, obtendo que a escala mínima aceitável é de Ljy — 0.8 

correspondendo a um valor L = 2400A“^ Mpc, com um nível de confiança de 95%. 

Como comparação, as análises de Fagundes e Wichowski [28] através da procura de 

possíveis imagens da Via Láctea em um catálogo de galáxias e quasares, resultaram 

em uma estimativa de L ~ 2300/i~^, um valor bem próximo do obtido em [58]. 

Assim para os nossos cálculos utilizamos o valor mínimo obtido no trabalho de 

Stevens, Scott e Silk [58] para o tamanho da célula fundamental. Utilizamos para 

a constante de Hubble o valor Ho = 50 km/(s Mpc) de forma que a célula funda- 

mental (uma célula cúbica, isto é, Ix = ly = C) neste trabalho tem a dimensão de 

L = 4800 Mpc. O sistema de coordenadas está orientado de forma que a origem está 

no centro geométrico da célula fundamental, e os eixos das coordenadas intercep- 

tam as^faces ortogonalmente. Denominamos fonte qualquer objeto localizado dentro 

da célula fundamental, imagem os objetos localizados fora da célula fundamental e 

simplesmente objeto quando esta distinção não fôr necessária. 

2.2 Imagens com o mesmo redshift 

Para que duas ou mais imagens possuam o mesmo redshift a condição 

\g'^{xo,yo,Zo)\ = \g'^{xo,yo',2o)\ (2.10) 

deve ser satisfeita, onde {xo,yo-,Zo) são as coordenadas da fonte. Podemos escrever 

as coordenadas em termos das dimensões IxCyi C da célula fundamental; 

o ^x^x X, 
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Vo — 

onde no caso de um objeto dentro da célula fundamental, os a, satisfazem a condição: 

Utilizando a equação 2.4, a condição 2.10 pode ser reescrita como: 

3 
5]] {(n,-- m.) [n,-+ m; + 2a,]}/■ = 0 (2.11) 
i=l 

onde xi = x, X2 = y, xa = .3:. Como os n,m são números inteiros a equação 2.11 

impõe uma forte restrição para que uma fonte possua mais de uma imagem com o 

mesmo redshift. 

Para lx,ly e Iz arbitrários temos as possíveis soluções: 

1 n,- = 

2 n,- + m,- = —2o;,-, 

sendo que no máximo dois termos devem satisfazer o critério 1 para que a solução 

não seja trivial. No caso de se satisfazer o item 2, como e m,- são números inteiros, 

obtemos a restrição: 

No caso em que o, = ±1/2 a fonte está exatamente sobre a face na qual o eixo x, 

é ortogonal, assim a fonte com = 1/2 é a mesma que a fonte com a = —1/2. A 

condição q, = 0 indica que a fonte está no plano x, = 0. 

Dessa forma, para que tenhamos mais de uma imagem com o mesmo redshift 

para qualquer lx,ly,lz a fonte deve satisfazer um dos critérios, dados a seguir, onde 

os índices i,j,k representam qualquer permutação do terno (1,2,3): 

(2.12) 
0 

1. n,- = m,-. Ví, corresponde a solução trivial; 
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2. Ui = m,-, Uj = TUj, Uk +mk = —2ak‘. 

(a) se Qjt = 0 então a fonte está no plano = 0; 

(b) se Qfc = il/2, a fonte está em uma das faces Xk = úilkl2; 

3. Tii = m,-, Uj + ruj = —2aj, Uk + rrik — —2afc: 

(a) se aj = afc = 0, a fonte está sobre o eixo a:,; 

(b) se Oj = 0 e afc = ±1/2, a fonte está na intersecção do plano Xj = 0 e 

a face Xk = ±1/2; 

(c) se Qj = ±1/2 e afc = ±1/2, a fonte está na intersecção dos planos 

Xj = ±1/2 e Xk = ±1/2, isto é, em uma das arestas da célula 

fundamental, paralela ao eixo i,; 

4. m + m,- = -2q,-, Uj + ruj = —2aj, Uk + nik = -2afc: 

(a) se o:,- = 0, V,, a fonte está no centro da célula fundamental, isto é, a 

fonte é o observador; 

(b) se oci = 0, Oj = 0 e Ok = ±1/2, a fonte está na intersecção dos planos 

X,- = 0 e Xj = 0 e o eixo x*,; 

(c) se a = ±1/2, a = ±1/2, a = ±1/2, a fonte está em um dos vértices 

da célula fundamental. 

As condições acima podem ser resumidas basicamente em: fontes localizadas em 

um dos planos Xi = 0, ou em uma das faces x; = ±h/2, ou nas intersecções destes 

planos. 

Notemos que as restrições acima são válidas para valores arbitrários das di- 

mensões da célula fundamental. As restrições aos valores numéricos de n,m são 

obtidas pelo redshift máximo com a qual um objeto pode ser visto, e neste caso as 

dimensões da célula são importantes. Como ainda não existe um resultado confiável 

para uma possível dimensão para a célula, utilizaremos o resultado obtido em [58] 

(veja também [28]), e assumiremos que C = ly = C = 2400/i~^ (no entanto, veja 
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[57] que utilizando os dados do COBE obteve valores diferentes de [58]). Neste caso 

utilizando a equação 2.5 obtemos que |n,]max = 3 para h = 0.5 e jn.j^ax = 2 para 

h=l. 

O ângulo de separação de duas imagens de uma mesma fonte com o mesmo 

redshift pode ser obtido através da fórmula usual 

\/l^l • 1^ 

onde X, y são as coordenadas das imagens. No nosso Cclso sendo 

l"l = = I {' - 71^) 

a equação acima se reduz a 

(2.13) 

(2.14) 

COS A =   Y. + "i)(“i + 

[1(1-7*?)! 

(2.15) 

de forma que medindo o ângulo de separação A entre as imagens com o mesmo 

redshift torna-se possível determinar as dimensões da célula fundamental. 

Do resultado acima, temos que somente se a fonte estiver localizada em alguma 

região ou pontos privilegiados dentro da célula fundamental ela apresentará imagens 

com o mesmo redshift, sendo que estas imagens estarão distribuídas de maneira 

simétrica no céu. Dessa forma a existência de alguma fonte em uma das posições 

privilegiada.s dadas acima, faz com que seja possível a determinação das dimensões 

e orientação das faces da célula fundamental. Caso a fonte não esteja localizada 

exatamente em uma das posições priviliegidas dadas acima, as imagens sofrerão um 

desvio no redshift. Dependendo do deslocamento, essa diferença no redshift pode 

ser suficientemente pequena, de forma que as imagens ainda estariam próximas 

das posições simétricas. A diferença 8Z no redshift das imagens de uma fonte em 

i^o,yo,2o) e em {x^ + + 8y,Zo + e dada por 

 <5 
\/l + Z — 1 

8Z = (2.16) 
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onde é o redshift da imagem localizada em 

D = \j{Xo + nJxY + ivo + + (^0 + T^zhY (2-17) 

8 = 2Y,{cci + n,)8,U + 0{8l) (2.18) 
i=l 

Dessa forma o desvio 8Z depende da posição da fonte e das dimensões da célula, 

respectivamente a,-,e /,■ além do redshift da imagem e do desvio 8{ da posição 

privilegiada. 

Neste caso o ângulo A será dado por 

COS A ^ + 7% H ^ih{2ai + Ui + m.) 
^ 27,y,2 

COS A (2.19) 

onde D é dado pela equação 2.17 e cos A por 2.15. 

2.3 Simulações numéricas 

Para ilustrar os resultados apresentados na seção anterior, efetuamos algumas sim- 

ulações. Para isso consideramos fontes nas seguintes posições (os números entre 

parênteses são relativos às localizações dadas no parágrafo anterior): 

• em um dos vértices da célula fundamental (4c); 

-t-mj. = 1 Uy + my-l = l; 

• no eixo 2 do sistema de coordenadas (3a): 

Uj; -f rUj; = 0 ny A rriy = 0 = m,; 

• na face da célula fundamental ortogonal ao eixo x (2a): 

Ux + = 1 Uy = rriy n, = mj; 
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Tabela 2.1: Distribuição das imagens em um universo com toplogia T^. Coordenadas 

das fontes em Mpc. (a)=(2400 ,2400, 2400); (b)=(2390, 2390, 2390); (c)=(2300, 

2300, 2300) 

• em uma das arestas da célula fundamental (3c): 

Uj. + rrij. = 1 Uy + rUy = 1 = m^. 

Para cada uma das fontes acima, efetuamos um pequeno desvio nas coordenadas 

para determinarmos o desvio SZ no redshift. 

Nas tabelas 2.1,2.2,2.3 e 2.4 apresentamos os resultados dos nossos cálculos, 

mostrando as seguintes informações: coluna (1) identificação arbitrária do objeto; 

coluna (2) identificação da fonte; colunas (3),(4) e (5) identificação da célula a que 
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Tabela 2.2: Distribuição das imagens em um universo com toplogia T^. Coordenadas 

das fontes em Mpc. (a)=(0, 0 ,1750); (b)=(50, 0, 1750); (c)=(150,0,1750) 
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Tabela 2.3: Distribuição das imagens em um universo com toplogia T^. Coordenadas 

das fontes em Mpc. (a)=(2400, 100, -1450); (b)=(2390, 100, -1450); (c)=(2300, 100, 

-1450) 
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Tabela 2.4: Distribuição das imagens em um universo com toplogia T^. Co- 

ordenadas das fontes em Mpc. (a)=(2400, 2400, 945); (b)=(2390, 2390, 945); 

(c)=(2300,2300,945) 
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pertence o objeto; colunai (6),(7) e (8) coordenadas do objeto em termos de (Z, 9, (f>); 

coluna (9) ângulo (^, ver adiante (página 29) para maiores detalhes. Para cada fonte, 

separamos as imagens em grupos com o mesmo redshift básico (nas tabelas sepa- 

rados por linhas horizontais duplas) e dentro de cada grupo como varia o redshift 

ao deslocarmos a fonte (nas tabelas separados por linhas horizontais simples). Os 

objetos identificados com a letra (a) correspondem as imagens de fontes localizadas 

em uma das posições privilegiadas. Os objetos identificados com as letras (b) e 

(c) correspondem as imagens com fontes deslocadas das respectivas posições privi- 

legiadas. 

Notemos que as fontes produzem sempre grupos de imagens com o mesmo red- 

shift. Sendo que no caso mais favorável (fonte em um dos vértices, tabela 2.1) é 

produzida um grupo com oito imagens com o mesmo redshift Z = 1.3427 distribuideis 

de forma simétrica no céu. Temos quatro pares de imagens diametralmente opostas 

no céu: 1 e 8, 6 e 3, 2 e 4. Cada par estando separado do par mais próximo por 

um ângulo A9 ~ 70.55° de acordo com a equação 2.15. Mesmo no caso em que 

a fonte esteja em outras posições (ver tabelas 2.2,2.3 e 2.4) as imagens continuam 

distribvídas de maneira relativamente simétrica no céu. 

Mesmo que as fontes não estejam localizadas exatamente sobre as posições par- 

ticulares, mas com um desvio 6i destas posições, as imagens continuam distribuidas 

de maneira simétrica no céu, e com redshifts muito próximos. Nas simulações efe- 

tuamos dois desvios para cada fonte: uma de pequeno valor, e outra de cerca de 

100 Mpc da posição privilegiada. Na primeira situação procuramos limitar o desvio 

a uma região de maneira que o desvio SZjZ ficasse limitado a um valor inferior a 

cerca de 5%. 

Desta forma se tornaria possível determinar cls dimensões e a orientação da 

célula fundamental com a obtenção de um conjunto de objetos com valores do red- 

shift próximos. Note que como estamos observando as imagens de uma mesma 

fonte em instantes da sua evolução muito próximos não é necessário que tenhamos 
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antecipadamente qualquer conhecimento sobre o processo evolutivo destes obje- 

tos. Esta é uma diferença significativa dos métodos propostos por outros autores 

([14, 20, 23, 28, 30, 35]), na qual o conhecimento prévio pelo menos parcial do 

processo evolutivo se faz necessário. 

Temos assim a possibilidade de seguir a evolução de um objeto individualmente, 

de forma que não precisamos recorrer a uma amostra completa de objetos para um 

estudo evolutivo de uma classe específica de objetos. 

Com a existência de mais de uma imagem com o mesmo redshift de uma mesma 

fonte, temos a possibilidade de observar essas imagens de diferentes ângulos (ver 

figura 2.2). Nas tabelas 2.1,2.2,2.3 e 2.4 apresentamos na coluna 9, a grandeza (f , 

que definimos como sendo o ângulo entre a linha de visada do observador com uma 

orientação arbitrária do objeto. Escolhemos como sendo (^ = 0 o ângulo da linha de 

visada com a fontes. De forma que (f determina de quanto a imagem está rodada 

em relação a imagem da fontes. Assumimos por simplicidade que uma eventual 

estrutura tenha simetria axial. 

No^caso mais simples de pares diametralmente opostos no céu temos a possibil- 

idade de observar a parte posterior de um objeto (ver nas tabelas 2.1-2.4, a coluna 

referente a (p), No caso favorável de a fonte estar em um dos vértices da célula 

fundamental, temos condição de observar o objeto de diferentes ângulos, de forma 

que podemos reconstruir a sua imagem tri-dimensional . Tal tipo de observação é 

impossível de ser efetuada em um Universo de topologia trivial. 

Dessa forma teríamos a possibilidade de seguir a evolução não somente da lumi- 

nosidade do objeto, mas igualmente seguir a evolução das suas estruturas. Temos 

condição de testar a hipótese de que os quasares, blasares e as radio-galáxias são um 

mesmo objeto, apenas vistos de ângulos diferentes [5j. Este teste podendo ser efetu- 

ado com a observação efetiva de um mesmo objeto, o que nos permitiria determinar 

de maneira inequívoca a hipótese do modelo unificado. 
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Figura 2.2: Representação de uma distribuição de imagens em Um universo com 

topologia T^. 

Urna outra possibilidade seria a de observar a evolução de um processo de colisão 

entre galáxias. Dependendo das condições seria possível observar a aproximação, a 

colisão e o processo de relaxamento após a colisão, de maneira que existiria a possi- 

bilidade de reconstruir a imagem 3-d de todo o processo. Consideremos por exemplo, 

que na tabela 2.3 a fonte designada pela letra a (coordenadas (x,y,x)=(2400,100, - 

1450) em Mpc) seja o centro geométrico de duas galáxias em colisão, e que essa 

colisão tenha ocorrido em Z = 2.3840. Neste exemplo, poderiamos observar as duas 

galáxias em processo de aproximação, por um período correspondente ao intervalo 

de redshift de Z = 3.6033 a Z = 2.3840 que corresponde a cerca de Ari ~ 8 x 10* 

anos, e o processo posterior a colisão de Z = 2.3840 a Z = 0.7042 ou cerca de 

At2 ~ 4.54 X 10® anos. Nestes intervalos de tempo podemos estimar a distância per- 

corrida, utilizando uma aproximação newtoniana para a queda livre de um campo 
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em um campo gravitacional: 

_ rp = Í-JgM, At (2.20) 

onde consideramos as duas galáxias com a mesma massa Mg ~ 1O*^M0 ~ 2 x 10'*'* g. 

No intervalo de tempo Ati, a distância pecorrida pela galáxia será assim da ordem 

de Ar ~ 0.11 Mpc. Dessa forma, em Z = 3.6033 as duas galáxias estarão separadas 

por um ângulo dado por [52]: 

ArH, r (1 + 

2c [^iTZ-l 
(2.21) 

que neste caso corresponde a cerca de 0 ~ 16”. Após a colisão, assumindo que uma 

galáxia passe pela outra e continuem a sua trajetória, em Z = 0.7042 elas estarão 

separadas por 0.35 Mpc, correspondendo a cerca de 0 ~ 44”. Estas separações 

angulares podem ser resolvidas pelos instrumentos atualmente disponíveis, de forma 

que estas observações seriam a princípio passíveis de serem efetuadas. Notemos 

que se considerarmos que as duas galaáxias estavame em repouso no “infinito”, a 

velocidade com a qual elas se aproximam no instante Z = 3.6033, pode ser estimado 

através da relação v = yJCMgjr^ de forma que neste caso obtemos v ~ 0.28 km/s. 

Dessa maneira, caso estas galáxias possuam uma velocidade peculiar, a separação 

angular poderia ser maior do que as obtidas acima, o que facilitaria a sua observação. 

Como o número de imagens de uma fonte depende das dimensões da célula 

fundamental, caso as dimensões sejam menores do que as obtidas com os resultados 

do satélite COBE [58], o número de imagens por fonte seria bem maior (veja a 

equação 2.5). Sendo o número de imagens n,m proporcional à caso as dimensões 

sejam a.s propostas por [20], isto é, Z, ~ 600 Mpc teriamos cerca de 500 vezes o 

número de imagens em relação ao caso por nós analisado {L ~ 4800 Mpc), de 

maneira que os efeitos seriam bem mais intensos do que os obtidos neste trabalho. 
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UNIVERSO HIPERBÓLICO COMPACTO 

3.1 Espaços globalmente inomogêneos 

Como vimos na introdução, a existência de associações quasares-galáxias com red- 

shift discordante em número maior do que o esperado, levou alguns autores a descar- 

tar a hipótese da origem cosmológica para o redshift dos quasares (veja [4] e suas 

referências). No entanto as indicações são de que os argumentos utilizados por Arp 

e colaboradores são falhos, pois o excesso de associações está dentro da margem de 

erro estatístico. 

Os argumentos contra a hipótese de Arp e colaboradores repousa na hipótese 

de que a topologia do Universo é trivial, ou pelo menos de que a seção espacial 

não é compacta. No entanto é possível buscar outras explicações para esse aparente 

excesso de associações , utilizando uma topologia diferente da usual para o Universo. 

Vimos no capítulo 2 de que efeitos devido a topologia do Universo podem nos levar a 

resultados distintos de um Universo com topologia trivial. Devido a sua propriedade 

de não homogeneidade global (seção 1.2), os universos com seção espacial hiperbólica 

e compacta nos permite uma riqueza maior de possibilidades do que o caso plano. 

Uma possibilidade é justamente de tentar explicar o excesso de associações quasar- 

galáxia como efeito de origem topológica. 

Analisamos esta possibilidade neste capítulo, e para isso nós escolhemos como 

32 
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Poliedro Fundamental dentre as listadas no artigo de Best [6], um icosaedro. Esta 

escolha sendo efetuada por ter sido a que melhor se adaptava ao projeto inciado por 

H.V. Fagundes há alguns anos atrás para o estudo de consequências observacionais 

em variedades hiperbólicas compactas (veja [23] e suas referências). 

3.2 Coordenadas de Minkowski e Klein 

Por estarmos trabalhando em um espaço hiperbólico, escolhemos um sistema de 

coordenadas denominadas coordenadas de Minkowki, e que satisfazem a relação: 

X^ + X^ + Xi-X! = -1. (3.1) 

No entanto ao invés das coordenadas de Minkowski, é conveniente utilizar as 

coordenadas de Klein que são coordenadas em um sistema projetivo [18], que nos 

permite uma representação compacta do espaço hiperbólico H^[23]. Com as coor- 

denadas de Klein, estabelecemos uma correspondência entre os pontos de e o 

interior de uma bola de raio unitário no espaço euclidiano ordinário. As coorde- 

nadas de Klein são obtidas das coordendas de Minkowski, simplesmente dividindo 

Xi,X\,X^ por X^. Nós representaremos as coordenadas de Klein sempre por letras 

minúsculas e as de Minkowski por letras maiusculas. 

Para os nossos cálculos é conveniente utilizar as coordenadas Que estão 

relacionadcLS com Xi,X2,X3,X4 através de 

Xi = sinh X sin ^ COS <?!> (3.2) 

X2 = sinhxsin^sinçi (3.3) 

X3 = sinhxcos^ (3.4) 

X4 = coshx- (3.5) 

ou em termos das coordenadas de Kleirx 

Xi = tanh X sin 0 COS (3.6) 
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X2 = tanh X sin ^ sin </> (3.7) 

xs = tanhxcos^ (3.8) 

Onde X é a mesma coordenada utilizada na métrica de Robertson-Walker (equação 

1.16). Utilizando as coordenadas de Klein, a distância d{x,y) de um ponto x ay é 

dada por 

d{x, ^ = acosh < —^ i (3.9) 

Caso o observador esteja localizado na origem do sistema de coordenadas, a distância 

de um ponto qualquer à origem tem uma forma mais simplificada, dada por [y — 0) 

d(x, 0) = atanh|x| (3.10) 

que é justamente x- Neste caso, o redshift do objeto localizado na coordenada x 

é calculada diretamente pela equação 1.21. Assim, é conveniente localizar sempre 

o observador na origem do sistema de coordenadas. Para efetuar a mudança de 

coordenadas com origem no centro do Poliedro Fundamental para um sistema com 

a origem nas coordenadas Xoi,s,i, ^obs,2, ^obs,3i ^obs,4 do observador, notemos que a 

equação 3.1 é a equação de um hiperbolóide. Dessa maneira, as transformações que 

procuramos deve ser análoga à transformação de Lorentz [18] 

X = X + - 1)^ 
/3 ■ X 

7^ 
1 

. 7(1 - /? • f) 
(3.11) 

onde 

7 = XobsA (3.12) 

13 = tanhxoò^- (3.13) 

Das equações 3.13 e 3.10 podemos ver que (3 é o vetor posição x^bs do observador. 
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3.3 Construção da seção espacial hiperbólica compacta 

Escolhemos como Poliedro Fundamental, um icosaedro que é um sólido regular, com 

vinte faces, e 12 vértices (figura 3.1) . Esta escolha é a mesma de [23], e é uma das 

listadas no artigo de L.A. Best [6]. Na tabela 3.1 apresentamos a identificação e as 

coordenadas angulares dos vértices, na tabela 3.2 as faces do Poliedro Fundamental 

- utilizamos a mesma notação de [23]- as faces identificadas estando colocadas lado 

a lado. 

G 

Figura 3.1: Icosaedro utilizado como Poliedro Fundamental (reproduzido de [23]). 

A escolha de um icosaedro para o Poliedro Fundamental, se fez basicamente 

devido às suas dimensões. Lembrando que os efeitos devido a topologia são mais 

perceptíveis nos casos em que as dimensões do Poliedro Fundamental são reduzidas. 

Ao contrário de espaços euclidianos, as dimensões de um Poliedro Fundamental em 

espaços hiperbólicos não são arbitrários. No caso do icosaedro que utilizamos; as 
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W = arctan 2 ~ 63.°4349 

Tabela 3.1: Coordenadas dos vértices do Poliedro Fundamental 

sua dimenões foram obtidas de [12], e são dadas na tabela 3.3, onde XfaceiXinsiXext 

são respectivamente as bordas do Poliedro Fundamental, o raio da esfera inscrita e 

da esfera circunscrita ao Poliedro Fundamental. 

Com os dados das tabelas 3.1,3.2 e 3.3 temos condições de recalcular a repre- 

sentação matricial dos geradores associados ao Poliedro Fundamental dado acima, 

tal como efetuado em [23]. A notação que usamos é a seguinte 

Fi^gkFk j,^'=l,2,...,20 (3.14) 

onde Fj é a j-ésima face, e Çk é a matriz que transforma a fc-ésima face para a 

j-ésima face, sendo que Çj é uma matriz 4x4. 

Da tabela 3.2 sabemos quais vértices devem ser identificados, p.ex, os vértices 

das face 1 e 11 estão identificados da seguinte maneira A B, D ^ G, I C e 

de maneira análoga para as outras faces. Como a matriz é 4 x 4, e temos apenas 

3 vértices por face, precisamos de mais um ponto que seja linearmente independente 

dos 3 vértices. Para isso, localizamos a origem do sistema de coordenadas no cen- 

tro geométrico do Poliedro Fundamental. Este ponto será transformado em uma 
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Tabela 3.2: Faces do Poliedro Fundamental. 

imagem, cujas coordenadas são dadas por 

(3.15) 

Podemos obter as coordenadas da imagem (Oi, O2, O3, 04)^, de maneira direta, 

notando que a distância entre a origem e a imagem será a mesma para todos os 

geradores, e corresponde ao dobro do raio da esfera inscrita x dada na tabela 3.3. 

As coordenadas angulares da imagem da origem são calculadas utilizando 

01 — sl^laXimagem ^imagem ^imagem — ~ ^ sin 6j COS xhi 

02 ~ sinh XiiTiajem sin 6imagem SÍH '^imagem — ~ ^ ” Xjt=l 

03 = sinh Ximagem COS 9imagem = ^OS 6i 

04 — COsh Ximagem COsh ^Xins 
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COsh^ X/ace COsh^ Xins COsh^ Xext 

3t2 Ít® 
4 4 4 

, _ n/5+1 
2 

Tabela 3.3: Dimensões do Poliedro Fundamental 

onde são as coordenadas angulares do i-ésimo vértice, Xin» o raio da esfera 

inscrita e Ximagem = 2x.ní ^ distância da origem à sua imagem. 

Com isso temos condição de obter as matrizes resolvendo a equação matricial 

çk = (3.17) 

onde as três primeiras colunas das matrizes M são as coordendas dos vértices, e 

a última coluna as coordenadas da origem e da sua imagem respectivamente em 

Mk,Mj (ver equação 3.15). Para obter as matrizes Çk foi desenvolvido um programa 

em FORTRAN 77 denominado CALC_GER primeiramente para p-Vax, e posterior- 

mente adaptado para a estação de trabalho HP 9000. Com isso re-obtivemos os 

geradores, como em [23], listados na tabela A.l do apêndice A, com precisão de seis 

digitos, sendo que em nossos cálculos utilizamos dupla precisão referente ao com- 

pilador HP-Fortran. Estes geradores formam um grupo não abeliano, e satisfazem 

as relações listadas na tabela 3.4[6j. Utilizaremos a seguir a nomeclatura usual no 

estudo de grupos combinatórios [44]. Denominaremos palavra uma sequência finita^ 

de geradores ÇiÇj ...Çr, relações as palavras idênticas à unidade (tabela 3.4), mas 

que não sejam as palavras triviais gig~^ = g^^gi = 1, e usaremos indistintamente 

letras ou geradores para os g^. O número de letras em uma palavra, define c seu 

Unclusive no caso de um único gerador, e sendo a “palavra vazia” o elemento unidade 
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9i9i29i2 = 1 

9z9\a9ia = 1 

959i&9i& — 1 

9^9\q9\ = 1 

9z9i99i = 1 

9i9i893 = 1 

9691897 — 1 

9io9i895 = 1 

9io9i994 = 1 

5io5'25'7 = 1 

Tabela 3.4: Relações entre os geradores gi 

tamanho. Cada palavra corresponde a um elemento do grupo, e portanto a uma 

célula do espaço que é uma réplica do PF, e o lugar da imagem em potencial. 

Para determinarmos todas as palavras necessárias para gerar os icosaedros viz- 

inhos ao PoUedro Fundamental, seguimos o procedimento dado a seguir: 

1. escolhemos um dos vértices u,, e listamos todos os geradores que trans- 

formam algum outro vértice no vértice u,-, isto é, 9m ■ Vm —>■ Vi 

2. selecionamos todos os geradores Çp que satisfaça 9p : Vp Vm , obtendo 

^ a palavra de duas letras 9m9p ■ 

3. repetimos os procedimentos acima para cada um dos vértices Vm 

4. para cada palavra de duas letras que não são triviais, ou não são relações 

(ver tabela 3.4, selecionamos os geradores g^, que satisfaça gm9p9q '• u, 

Vi , obtendo assim as palavras de três letras 

5. repetimos os procedimentos acima para todos os vértices u, - na realidade 

são necessários calcular apenas 6 vértices, pois para os outros 6 vértices 

as palavras podem ser obtidas simplemente achando as transformações 

inversas. 

A cada nova palavra obtida, verificamos se ela pode ser reduzida a uma paJavra 

de tamanho menor, ou se pode ser reescrita como uma outra palavra de.mesmo 
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palavras de duas letras 

979a 
912919 
92918 
9198 
9i97 
9i9i6 
91399 

9i96 
9s96 
9i79a 

D 
E 
F 
H 
J 
F- 
I- 

J ■ 
H 
L ■ 

► A 
■ A 
■ A 
> A 
A 
D 
D 

D 
■ F 
F 

9591A 
912918 
97916 
9ii9i2 
9ii97 

9895 
9795 

939a 
91395 
9299 

D ■ 
F - 
G- 
I - 
L - 
H ■ 
J - 
K 
J 
K 

B 
B 
B 
B 
B 

■ E 
E 

■ E 
■ I 

9ii9i9 
91896 
9298 
91299 
911920 
91693 
9119 A 

9ii9ia 
9i99ia 
96920 

E-*C 
G-^C 
E^C 
K-^C 
L^C 
I^G 
K-^G 
L^G 
L^H 
K J 

palavras de tres letras 

999ia9ii G 
55^6^20 K 

A 
F 

57516^18 
5l5Í/l6ff3 

E 
I - 

B 
H 

59ffl6ffl0 
?15ff3ff20 

C 
L 

D 
J 

Tabela 3.5: Relação das palavras de comprimento maior do que um, utilizadas para 

o cálculo das imagens. 

tamanho, utilizando as relações dadas na tabela 3.4, além das relações triviais 

9jgJ^ = = 1. Efetuando os procedimentos acima, obtivemos um total de 

12 icosaedros em torno de cada vértice. Estes 12 icosaedros são gerados por 5 

pífclavras de uma letra, 5 palavras de duas letras e 1 palavra de uma letra, sendo 

que a décima-segunda palavra é gerada pela tranformação identidade, isto é, g — 1. 

Na tabela 3.5 apresentamos as palavras de duas e três letras obtidas com o proced- 

imento acima, as outras palavras necessárias são obtidas das inversas das palavras 

listadas. 

Com este procedimento, obtemos 92 palavras (20 palavras de uma letra, 30 

palavras de duas letras e suas inversas, 6 palavras de três letras e suas inversas) para 

preencher todo o espaço vizinho ao Poliedro Fundamental, formando uma “camada” 

completa adjacente ao Poliedro Fundamental. Para gerarmos a segunda camada o 

número de palavras necessárias é muito maior do que as 92 necessárias para formar a 

primeira camada. No entanto, dependendo do que pretendemos calcular a primeira 

camada é suficiente. 
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Paxa isso consideremos um observador com coordenadas Xq. Calculamos a distância 

d{xy^Xg) (ver equação 3.9) dos vértices do Poliedro Fundamentai (com coordenadas 

x„) ao observador e determinamos o seu redshift Repetimos o procedimento 

para as imagens dos icosaedros gerados nas faces próximas do observador, obtendo 

os redshifts Se Z'„ dos vértices que não estão identificados com os vértices do 

Poliedro Fundamental satisfaz o critério Z'„ > Z^ax-, então não há necessidade de 

preencher a segunda camada. Por exemplo considere um observador sobre o eixo z 

localizado a uma distância \ — 0-75 da origem. Na face BGC é identificado a face 

ADI (ver tabela 3.2 e a figura 3.1), o vértice C' desse icosaedro colado está a um 

redshift — 8.39, para Í1 = 0.1. Assim se limitarmos o redshift a um máximo 

de Z-max = 3.5 não será necessário a introdução de uma nova camada de icosaedros, 

bastando a primeira camada. Esta verificação foi efetuada para cada observador 

durante as nossas simulações. 

Notemos que a necessidade ou não de colocar mais de uma camada depende não 

apenas de Zmax mas também do valor do parâmetro de densidade D. Por exemplo 

na mesma situação tratada anteriormente, mas com Cl = 0.2 o vértice C' terá um 

redshift Z' ^ ~ 14.26. No entanto caso se deseje que os efeitos devido a topologia 

não trivial do Universo sejam visíveis, o valor de Cl não pode ser arbitrariamente 

próximo da unidade. Utilizando as equações 1.20 e 1.21 obtemos a relação 

e no limite Z —>■ oo, x Vo- No caso de um universo multiplamente conexo como 

o por nós utilizado, devemos ter o raio da esfera circunscrita Xext menor do que 

Tjo para que os efeitos da topologia possam ser detectados observacionalmente. No 

nosso caso na qual utilizamos um icosaedro como Poliedro Fundamental, temos que 

Xext — 1-38, o que nos fornece um limite Cl < 0.64 como condição para que os efeitos 

da topologia possam ser considerados. O caso l.Ü corresponde a um universo 

com Xext » Vo, de maneira que os efeitos devido a topologia não trivial do universo 

(3.18) 
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seriam totalmente desprezíveis. 

3.3.1 Distribuição de imagens 

Vamos calcular a imagem de uma fonte localizada em um ponto p dentro do Poliedro 

Fundamental, com coordenadas de Klein (0,0, tanh 0.75). As imagens até a distância 

máxima Zmax = 4.0 são dadas na tabela 3.6. Aonde listamos os geradores utilizados 

Çi para gerar a imagem; o redshift Z; e as coordenadas angulares S, (f>, onde ê = 

90° —0 de maneira que o vértice G está sempre no norte (é > 0°) e o vértice D sempre 

no sul (é < 0°). Nesta tabela apresentamos também as imagens de uma fonte com 

coordenadas de Klein (0,0, tanh 0.5). Notamos que os laços geodésicos (ver definição 

na página 14)(p, 7) geram laços de diferentes comprimentos para distintos pontos. 

Tabela 3.6; Imagens de dois observadores até um redshift Zmax = 4.0. 6 e (j) em 

graus. 

Por exemplo, sendo p = (0,0, tanh 0.75), ç = (0,0, tanh 0.5), temos que L(p,ps) ^ 

L{q,g^). Logo, temos que a variedade utilizada não é homogênea. Uma consequência 

direta dessa não homogeneidade, é de que a localização do observador dentro do 

Poliedro Fundamental, torna-se importante. Não sendo dessa forma uma escolha 

arbitrária tal como no caso do toro plano tratado no capítulo 2 
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3.4 Cálculo das conjunções 

Para determinarmos as conjunções entre as galáxias e os quasares, precisamos de- 

terminar o ângulo entre estes objetos. Como estamos em um espaço hiperbólico, 

as formas utilizadas para o seu cálculo deve obviamente utilizar a trigonometria 

hiperbólica. 

Figura 3.2: Configuração para o cálculo da conjunção entre uma galáxia (G) e um 

quasar (Q). 

Na figura 3.2 apresentamos a configuração utilizada para o cálculo do ângulo 

entre uma galáxia (G) e um quasar (Q), do ponto de vista de um observado 0. 

Observacionalmete conhecemos os redshifts associados a cada objeto, de forma que 

podemos obter as distâncias OG, OQ e também a distância da galáxia para o quasar 

GQ. 0 ângulo A.íp de conjunção entre a galáxia e o quasar (figura 3.2) é dado pela 

relação da trigonometria hiperbólica [18] 

COS Aíp = 
tanh OP 

tanh OG 
(3.19) 

mas 

cosh OG cosh OP cosh GP ■ (3.20) 
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cosh õQ = cosh PQ cosh GP (3.21) 

logo 
coshGQ _ coshPQ 

cosh OG cosh O P 
(3.22) 

Mas, da figura 3.2 temos que OQ — OP + PQ, de forma que a equção 3.22 pode ser 

reescrita como   

= cosh OQ — sinh 0(5 tanh OP. (3.23) 
cosh OG 

Portanto, obtemos para o ângulo de conjunção a relação 

COS A<p = 
cosh OG cosh OQ — cosh. GQ 

\J(cosh^ OG — l)(cosh^ OQ — 1) 
(3.24) 

Assim, conhecendo cis distâncias OG, OQ, GQ podemos calcular o ângulo de 

conjunção At/? entre dois objetos. 

3.5 Simulação numérica 

Utilizamos na primeira etapa do nosso trabalho, o computador p-Vax instalado no 

Instituto. Mas devido a uma séries de problemas com esse computador, e com a 

aquisição da estação de trabalho HP 9000, transferimos os nossos programas para 

estas estações . Os programas foram todos escritos em linguagem HP-FORTRAN, 

que é uma versão melhorada do ANSI-FORTRAN. A seguir apresentamos uma breve 

descrição dos programas utilizados no nosso trabalho. 

Ger_Fonte - gerador de fontes randômicas 

Para as nossas simulações desenvolvemos um programa para criar uma dis- 

tribuição randômica utilizando a função interna RAN do HP-FORTRAN para gerar 

as fontes tanto para o universo compacto, como para o universo aberto. A geração 
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de fontes dentro do Poliedro Fundamental foi dividida em duas etapas, a primeira 

gerando as fontes entre x = 0 Xtnt que é o raio da esfera inscrita ao Poliedro Fun- 

damental. A distribução das fontes até este raio sendo a mesma tanto para o caso 

compacto, como para o caso aberto. A partir desse raio até Xext, o programa verifica 

se a fonte gerada está dentro do Poliedro Fundamental ou não. Essa verificação se 

íaz de uma maneira simples. Primeiramente verificamos próximo a qual face a fonte 

foi gerada. Formamos uma pirâmide tendo como base esta face, e o ápice estando 

localizado na fonte gerada. Ordenando de maneira adequada os vértices da base, 

calculamos o determinante 

det(u, x) = 

V\,2 - Ul,l 

Vl,3 - Ul.l 

xi - Ul,l 

V2,2 - V2, 1 

V2,3 - V2, 1 

X2 — v2, 1 

^3,2 — ^3,1 

^3,3 ~ '^3,1 

3^3 - U3,i 

(3.25) 

onde Vij é a i-ésima coordenada do j-ésimo vértice da face próxima a qual a fonte 

está localizada, e X{ a i-ésima componente da coordenada da fonte. Para cada 

face ordenamos os vértices de forma que o determinante det(u, x) seja positivo se a 

fonte estiver localizada dentro do Poliedro Fundamental. A partir de Xexti as fontes 

geradas pertecem apenas ao universo aberto. 

Para gerar as fontes, fornecemos como parâmetro de entrada o número de fontes 

nfontes dentro do Poliedro Fundamental, o redshift máximo Zmax para as fontes no 

caso do universo aberto, e o parâmetro de densidade fio- 0 número de fontes a ser 

gerado para o caso do universo aberto, depende de pfonte que é a densidade númerica 

de fontes dentro do Poliedro Fundamental, que depende por sua vez do número de 

fontes nfontes 1 sendo que: 

  ^fontes 
P fonte — TT 

•'tco 

onde Vico — 4.686034 é o volume do icosaedro. 
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G_Im - cálculo das imagens para um universo compacto 

Uma vez gerado a distribuição de fontes dentro do Poliedro Fundamental, in- 

troduzimos cis coordenadas Xobs do observador, e recalculamos as coordenadas das 

fontes, tendo como origem as coordenadas Xobs utilizando a transformação dada 

pela equação 3.11. As imagens são obtidas através da relação 

X, imagem = G-Xf onte (3.26) 

onde X}onte■fXimagem são respectivamente as coordenadas da fonte e da imagem, e 

G é nma, das palavras listadas na tabela 3.5 ou uma das suas inversas. As imagens 

são calculadas até uma distância máxima Zmaxi Que é a mesma utilizada no cálculo 

da distribuição em um universo aberto. 

Conjtmção - cálculo das conjunções 

As conjunções são calculadas utilizando os arquivos gerados pelos programas 

G_Im para o caso de um universo compacto, e Ger_Fonte para o caso de um universo 

aberto. Utilizamos como parâmetro de entrada o ângulo máximo para a conjução 

Xifmax (equação 3.24), e o redshift Zg máximo para uma galáxia, e o redshift Z, 

mínimo para um quasar. Com este programa, determinamos a razão 

^conjxincao 
Tlr =   

f^total 
(3.27) 

onde Ticonjuncao é O número de conjunções obtidas, e utotai é o número de todas as 

possíveis combinações dois a dois de galáxias com quasares, isto é x n,, onde n^, n, 

são respectivamente o número de galáxias e quasares da simulação. Determinamos 

também se a conjunção é de origem topológica, verificando se o par quasar-galáxia 
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corresponde a um par fonte-imagem. São apresentados os redshifts de cada par de 

origem topológica e o ângulo de conjunção. 

3.6 Resultados 

Para o cálculo das conjunções efetuamos sempre simulações com uma distribuição 

em um universo de topologia trivial com curvatura negativa e uma distribuição em 

um universo com seção espacial hiperbólica compacta, tendo como PF um icosaedro. 

As simulações foram sempre efetuadas em pares de forma que pudéssemos comparar 

os nossos resultados com um padrão, no caso um universo de topologia trivial, para 

determinarmos a razão dada pela equação 3.27. 

Como não temos ainda a disposição um modelo definitivo para quasares e galáxias, 

consideramos como quasar os objetos com redshift maior que Z = 1.0 e galáxia os 

objetos com redshift Z < 0.9. Esta escolha tendo sido feita para evitar a introdução 

de modelos de evolução para os referidos objetos. Em todas as simulações foram 

escolhidas 10000 fontes dentro do Poliedro Fundamental. Para as imagens gerada.s 

foi introduzida um redshift de corte Zmax = 3.5, e o ângulo máximo de conjunção 

o valor de ânf = 5°. Este valor bastante alto^ para o ângulo de “conjunção”, foi 

escolhido devido ao pequeno número - em relação ao Universo real - de objetos uti- 

lizados na5 nossas simulações. Para o parâmetro de densidade utilizamos Q = 0.2, 

sendo que em [23] foi utilizado o valor ü = 0.1. Como o número de objetos Nobj é 

proporcional ao volume^ limitado por Z^axi obtemos 

Nob^Ll = 0.2) ~ 0.67íV,6j(í^ = 0.1). (3.28) 

Como o esforço computacional para os nossos cálculos é proporcional a a 

^Como comparação, 5° é aproximadamente o comprimento do braço do Cruzeiro do Sul, ou 

ainda dez vezes o diâmetro da Lua cheia. 

^No caso em que a densidade de objetos é constante. 
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escolha de ü = 0.2 ao invés de í) = 0.1, reduz o tempo T de : 

T(íí = 0.2) ~ 0.45 T(n = 0.1) (3.29) 

Efetuamos simulações com observadores em distintas posições dentro do PF para 

podermos verificar a influência da localização do observador nos resultados. Para 

cada observador foram efetuadas pelo menos dez simulações, sempre em conjunto 

com uma simulação em um universo de topologia trivial. 

Para as posições dos observadores procuramos escolher pontos com localização 

privilegiada e um observador localizado arbitrariamente dentro do PF: 

i - na origem do PF (1); 

ii - na linha que liga a origem a um dos vértices (2 a 6); 

iii - na linha que liga a origem ao ponto central de uma das faces (7 a 10); 

iv - em um ponto arbitrário distinto das escolhas acima (11 a 14); 

onde os números entre os parenteses correspondem aos números de identificação 

dcída na tabela 3.8 na coluna indicado por #. 

A distância x da origem ao observador foi escolhida como sendo x — 0-75 

em acordo com [23]. Mas em alguns caso variamos esta distância utilizando x = 

0.55 e X = 0.25 para verificarmos a influência da distância do observador ao centro 

do Poliedero Fundamental, na distribuição de imagens de origem topológica. Para 

cada observador localizado à distância x = 0.75 do centro do PF, escolhemos no 

mínimo dois observadores distintos, de forma que para cada situação acima efetu- 

amos pelo menos vinte simulações (para os caso em que x = 0.75). Cada par de 

simulação utilizou de 5 a 6 horas de CPU nas estações Apoio da HP instalados no 

IFT, resultando em um total aproximado de 700 horas de CPU. 

O número de n,, quasares e Ug galáxias para cada simulação foi em torno n, ~ 

18000 e Tij ~ 1700, dedendendo da simulação. Para as fontes 8,9 e 10 (ver tabela 
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# 

8 

9 

10 

í 

< n, > 

18668.36 ± 68.89 

18626.73 ± 87.33 

18296.27 ± 75.65 

18923.64 ± 72.62 

<Ug> 

1653.71 ± 36.01 

1766.27 ± 29.47 

1782.64 ± 31.64 

1608.82 ± 4.72 

Tabela 3.7: Número médio de de quasares e galáxias para algumas simulações 

3.8), obtivemos as médias dadas na tabela 3.7, onde apresentamos também as médias 

obtidas para o caso de um universo com topologia trivial (indicado com f), para o 

mesmo conjunto de simulações. 

3.6.1 Número relativo de conjunções e Número de pares qso-galaxia de 

origem topológica 

Se utilizarmos como nível de confiança uma relação de pelo menos 2cr, notamos que 

apenas as simulações com observadores 11 e 12 apresentam um número maior de 

conjunções do que a obtida em um Universo com topologia trivial, se considerearmos 

uma condição um pouco mais fraca ~ 1.5cr, o observador 7 também apresenta um 

número maior de conjunções relativo a um Universo com topologia trivial. As outras 

posições para os observadores não apresentam resultados significativos em relação 

aos obtidos para um Universo hiperbólico com topologia trivial. 

Dessa forma dependendo da localização do observador dentro do Poliedro Fun- 

damental, podemos obter um número maior de conjunções do que o seria obtido 

em um Universo com topologia trivial. O número de conjunções dependendo da 

distância ao centro do Poliedro Fundamental, e da posição angular. 

Em relação ao número de pares qso-galáxia de origem topológica, temos que 

exceto no caso dos observadores localizados em x = 0.25 (observadores 6,10 e 14) 

todos os outros observadores apresentam pares qso-galáxia de origem topológica. 
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# e <t> 

0.00 0.00 0.00) 

A% 

-0.83 ± 0.55 

< A^par > 

Õ 
2 
3 
4 
5 
6 

0.75 
0.75 
0.75 
0.55 
0.25 

180.00 
63.43 
0.00 
0.00 
0.00 

0.00 
72.00 
0.00 
0.00 
0.00 

-0.20 ± 0.89 
-0.54 ±0.73 
-0.19 ± 1.12 
-0.09 ± 1.06 
-0.72 ±0.96 

3.90 ± 1.66 
4.10 ± 1.85 
3.50 ±0.53 
3.60 ± 1.43 

0 
7 
8 
9 

10 

0.75 
0.75 
0.55 
0.25 

37.38 
100.81 
100.81 
100.81 

324.00 
72.00 
72.00 
72.00 

1.36 ±0.91 
0.87 ± 0.78 

-0.14 ±0.93 
-0.87 ± 1.41 

1.90 ± 1.10 
4.30 ± 1.64 
5.00 ± 1.41 

0 
11 
12 
13 
14 

0.75 
0.75 
0.55 
0.25 

57.00 
79.00 
79.00 
57.00 

173.00 
54.00 
54.00 

173.00 

±2.77 ±0.61 
±1.86 ±0.77 
-0.42 ± 1.20 
-0.68 ±0.95 

4.20 ±2.57 
3.30 ± 1.57 
4.30 ±2.21 

0 

Tabela 3.8: Porcentagem (A =< — 1) * 100 >) de conjunções de um universo 

com topologia não trivial em relação a um universo com topologia trivial; < Npar >'■ 
número de pares qso-galáxia de origem topológica. 

Dessa forma caso o Universo tenha í) < 1 e a topologia não seja trivial, existe 

a possibilidade de se obter um número maior de conjunções qso-galáxia com red- 

sh^fts discordantes do que seria esperado em um Universo de topologia trivial. Esta 

diferença depende da localização do observador dentro do Poliedro Fundamental. 

Assim a existência de um excesso de conjunções como proposto por alguns autores 

[2, 3, 10] no caso de um Universo Hiperbólico Compacto não gera necessariamente 

uma contradição com uma distribuição homogênea de quasares e galáxias, e de que 

a origem do quasares seja de fato cosmo lógica. O efeito de excesso sendo apenas 

devido a topologia não usual do Universo. Apesar de o efeito ser menor do que o 

proposto por H.C. Arp, talvez para um Poliedro Fundamental de menor dimensão 

(ver por exemplo [25]) o efeito possa ser mais acentuado devido a existência de um 

número maior de imagens de um mesmo objeto. 

Um outro resultado interessante é de que os pares qso-galáxia de origem topológica 

podem se apresentar como pequenos aglomerados, em concordância com o obtido 
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em [23]. Nas figuras 3.3 e 3.4 apresentamos algumas distribuições das conjunções 

de origem topológica obtidas com as nossas simulações. Sendo que a figura 3.3 é 

relativo ao observador localizado em (x, 0, <f>) = (0.75,0°, 0°) e a figura 3.4 ao obser- 

vador localizado em — (0.75,57°.00,173°.00). Nestas figuras apresentamos 

além da localização das galáxias e quasares, a localização dos vértices do Poliedro 

Fundamental. A orientação dos eixos foi escolhida de forma que a origem esteja lo- 

calizada no observador, e o eixos orientados de tal forma a manter a direção paralela 

aos eixos dados na figura 3.1, isto é, o eixo z paralelo ao eixo que liga os vértices 

G e D e o eixo x, paralelo ao eixo que liga o centro do Poliedro Fundamental ao 

centro da face ABC. Nas tabelas 3.9a,b apresentamos os redshifts das galáxias e 

dos quasares, e o ângulo de conjunção e a palavra'* utilizada para gerar a imagem 

de algumas das simulações apresentadas nas figuras 3.3 e 3.4. 

Das figuras 3.3 e 3.4 temos que as conjunções de origem topológica estão sempre 

concentrados em determinadas regiões. Isto ocorre devido ao fato de que apenas 

fontes localizadas nas vizinhanças de algumas posições podem apresentar imagens 

cujas geodésicas sejam vizinhas das geodésicas das suas fontes [23]. Dessa forma a 

pnscura de conjunções topológicas devem ser efetuadas em regiões que apresentam 

um número relativamente alto de conjunções. 

“•Neste contexto, “palavra” tem o significado dado na página 38 
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# Zgai 6 4> palavra 

1 0.5693 70.54 314.11 ^ 
2 0.5666 66.44 318.76 — 
3 0.6549 66.14 320.43 — 
4 0.7440 71.59 170.65 gn 
5 0.1010 51.36 177.03 — 
6 0.8056 68.30 171.45 515 
7 0.8197 68.82 170.10 515 
8 0.2626 58.07 170.37 ^rie 
9 0.7440 66.81 167.76 gie 

(a) 

^qso 

2.6804 
2.6414 
2.8214 

3.1356 
1.8293 
3.1708 
3.2461 
2.0619 
3.0871 

e 

67.27 
68.99 
70.15 
67.23 
54.13 
68.89 
68.75 
59.94 
68.14 

<t> palavra 

317.78 
317.04 
317.97 
168.38 
175.04 
168.57 
168.83 
173.55 
170.21 

916 
gi6 
916 

916916 
9l6 

916916 
916916 

916 
916 

A(/j 

4.73 
3.01 
4.61 
4.84 
3.19 
2.75 
1.19 
3.31 
2.63 

(b) 

Tabela 3.9: Pares qso-galáxia de origem topológica, para o observador localizado em 

(a):(Z, e, (f>) = (0.75,57°.00,173°.00), (b) (Z, 9, (f)) = (0.75,0°, 0°). ^ e em graus. 
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0 90 180 270 360 90 180 270 360 

Figura 3.3: Localização dos pares qso-galáxia de origem topológica, para o obser- 

vador localizado em {x,0,4>) = (0.75,0°, 0°). Galáxia (*), quasar (o), vértices (-!-). 
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D 90 180 270 300 90 *80 270 360 

Figura 3.4: Localização dos pares qso-galáxia de origem topológica, para o ob- 

servador localizado em = (0.75,57°.00,173°.00). Galáxia (*), quasar (o), 

vértices (d-). 



Capítulo 4 

COMENTÁRIOS FINAIS 

0 nosso estudo de algumas consequências observacionais de um Universo com seção 

espacial compacta permitiu a obtenção de alguns resultados muito interessantes. No 

caso de um Universo Plano, mas com topologia de um toro plano examinamos 

a possibilidade de se efetuar observações de objetos individuais com diferentes ori- 

entações espaciais, de forma a podermos reconstruir a sua imagem tri-dimensional, 

que de outra forma seria impossível. 

No caso do Universo Hiperbólico Compacto, o estudo de conjunções qso-galáxia^ 

com redshifts discordantes, que foi a nossa motivação inicial, a obtenção dos resul- 

tados em que se mostra a possibilidade de obter um número maior de conjunções do 

que o caso de um Universo com topologia trivial é muito interessante, e pode ser uti- 

lizado para explicar o aparente excesso dessas conjunções reportado por Arp e seus 

colaboradores. O importante a ser ressaltado é de que não se faz necessário nenhuma 

hipótese extra sobre a natureza dos quasares, bastando apenas que a sua distribuição 

seja homogênea. Simulações com outras topologias ou com um número mais real- 

ista de objetos dentro do Poliedro fundamental podem nos indicar de maneira mais 

clara a possibilidade da seção espacial do nosso Universo ter topologia não trivial. 

Topologias como a explorada em [25] pode ser uma extensão interessante para esse 

trabalho. 

É interessante notar que alguns autores tem desenvolvido estudos em universo 

55 
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com topologia não trivial, especialmenet no ceiso de Universo plano em contextos 

diferentes do nosso. Por exemplo [36, 48] desenvolvem estudo da geração da per- 

tubação na densidade inicial no Universo com topologia não trivial, sendo que em 

[36] assume-se que as dimensões da Li da célula fundamental sejam maiores do que 

as dimensões do Universo observável, de forma que os resultados sejam semelhantes 

aos obtidos para um Universo com topologia trivial. Em [48] é efetuada a extensão 

para o caso em que Li seja compatível com as dimensões do Universo visível de 

forma que o espectro das pertubações seja discreto. Em [26] é efetuado um estudo 

dessas pertubações para o caso de um Universo com seção espacial 5^ x R^, e em 

[27] e efetuada uma extensão para o caso x R. 

Universos com topologia não trivial, em especial do tipo tem sido utilizados 

por vários outros autores. Além de [57, 58] Sokolov [55] analisa os dados do satélite 

COBE utilizando uma topologia não trivial para o Universo, e recentemente M. 

Biesiada [7] analisou a possibilidade de que algumas fontes de raios-7 poderiam ser 

explicadas asssumindo uma topologia não trivial para o Universo. 

0 estudo de modelos cosmológicos com seção espacial compacta e topologias não 

triviais ainda é um campo ainda a ser explorado, seja do ponto de vista das con- 

sequências observacionais, seja do ponto de vista teórico, em especial para os casos 

em que a geometria não é plana ([24, 25]), devido entre outros motivos, a inexistência 

de uma classificação de variedades com dimensão maior que dois (veja por exem- 

plo [45] para o caso 2-dimensional, e [53] para o caso 3-dimensional)(veja também 

[22], onde é efetuado um estudo da classificação de geometrias 3-dimensionais de- 

senvolvido por W.P. Thurston [53], com utilização na classificação dos modelos de 

Bianchi e Kantowski-Sachs). 

Esperamos continuar nossos estudos dos modelos com topologia não trivial, am- 

pliando os nossos estudos através da análise de modelos de volumes menores, tais 

como o analisado em [25], para obter uma melhor compreensão destes modelos de 

universos compactos. 



Apêndice A 

Relação dos geradores 

Tabela A.l: Geradores 

: BGC ADI 

( 0.447214 -0.850651 

-0.525731 0.000000 

1.532624 1.113516 

0.585410 0.516054 

1.801707 1.588251 

1.479837 -2.186041 

1.351047 -0.981593 -2.186041 2.927051 

g\\ ■■ ADI 
( 

BGC 

0.447214 -0.525731 1.532654 

-0.850651 0.000000 1.113516 

-0.585410 -1.801707 1.479837 

-0.516054 -1.588251 2.186041 

g2 ■ ABC ICA 

( -1.085410 -0.262866 

-1.964167 -1.809017 

0.861803 -0.425325 

y -2.186041 -1.588251 

gi2 '■ ICA — ABC 

0.670820 0.834993 \ / -1.085410 -1.964167 

-0.688191 2.569845 -0.262866 -1.809017 

0.585410 -0.516054 0.670820 -0.688191 

-0.516054 2.927051 -0.834993 -2.569845 

0.861803 

-0.425325 

0.585410 

0.516054 

gz : DIK EFL 

^ 1.256231 -0.262866 0.223607 

-1.113516 0.809017 -2.389493 

-0.085410 1.113516 -0.138197 

1.351047 -0.981593 2.186041 

0.834993 

-2.569845 

-0.516054 

2.927051 

giz ; EFL 
l 

DIK 

1.256231 -1.113516 -0.085410 

-0.262866 0.809017 1.113516 

0.223607 -2.389493 -0.138197 

-0.834993 2.569845 0.516054 

1.351047 ^ 

0.981593 

2.186041 

2.927051 ^ 

2.186041 ^ 

1.588251 

0.516054 

2.927051 j 

-1.351047 ^ 

0.981593 

-2.186041 

2.927051 y 

57 
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Ç4 : KLD DEL 

/ 0.223607 -0.688191 

-1.538842 -0.500000 

-0.638197 -1.113516 

1.351047 0.981593 

gs : HJK GFB 

( 1.256231 -0.262866 

-1.113516 0.809017 

2.341641 0.525731 

y 2.702095 0.000000 

56 : GJH FGJ 

I 0.223607 -0.688191 

-1.538842 -0.500000 

1.170820 -0.525731 

1.669986 0.000000 

g^ : L3F —*■ ABE 

( 0.723607 2.752764 

-0.525731 0.000000 

-0.947214 -0.162460 

0.834993 2.569845 

58 : CGH ^ FEB 

( -0.085410 -1.639247 

-1.113516 0.809017 

-0.138197 0.425325 

y 0.516054 -1.588251 

59 AED 

( 1.532624 -1.113516 

-0.587785 -0.809017 

-1.756231 1.275976 

2.186041 -1.588251 

0.861803 

-0.951057 

-2.032624 

2.186041 

-1.085410 

-0.262866 

-0.138197 

-0.516054 

0.861803 

0.951057 

-2.032624 

-2.186041 

-0.447214 

-0.850651 

0.585410 

-0.516054 

-1.756231 

1.275976 

-1.032624 

-2.186041 

-0.447214 

0.000000 

-1.032624 

0.516054 

0.516054 

-1.588251 

-2.186041 

2.927051 

1.351047 

-0.981593 

2.186041 

2.927051 ^ 

-0.516054 ^ 

-1.588251 

2.186041 

2.927051 j 

2.702095 ^ 

0.000000 

-0.516054 

2.927051 

gi4 : DEL —► KLD 

( 0.223067 -1.538842 

2.186041 

-1.588251 

0.516054 

2.927051 

1.669986 

0.000000 

-2.186041 

2.927051 

-0.688191 -0.500000 

0.861803 -0.951057 

-0.516054 1.588251 

5Ti5 : GFB HJK 

( 1.256231 -1.113516 

-0.262866 0.809017 

-1.085410 -0.262866 

y -1.351047 0.981593 

5Ti6 ; FGJ -* GJH 

f 0.223607 -1.538842 

-0.688191 -0.500000 

0.861803 0.951057 

y 0.516054 1.588251 

^17 : ABE -* LJF 

( 0.723607 -0.525731 

2.752764 0.000000 

-0.447214 -0.850651 

y -2.702095 0.000000 

^18 ; FEB ^ CGH 

^ -0.085410 -1.113516 

-1.639247 0.809017 

-1.756231 1.275976 

-2.186041 1.588251 \ 

5^19 * A.ED —*■ KIH 

( 1.532624 -0.587785 

-1.113516 -0.809017 

-0.447214 0.000000 

-1.669986 0.000000 

-0.638197 

-1.113516 

-2.032624 

2.186041 

2.341641 

0.525731 

-0.138197 

-2.186041 

1.170820 

-0.525730 

-2.032624 

-2.186041 

-0.947214 

-0.162460 

0.585410 

0.516054 

-0.138197 

0.425325 

-1.032624 

-0.516054 

-1.756231 

1.275976 

-1.032624 

2.186041 

-1.351047 ^ 

-0.981593 

-2.186041 

2.927051 ^ 

-2.702095 '' 

0.000000 

0.516054 

2.927051 y 

1.669986 ^ 

0.000000 

2.186041 

2.927051 ^ 

-0.834993 ^ 

-2.569845 

0.516054 

2.927051 ^ 

-0.516054 '' 

1.588251 

2.186041 

2.927051 y 

-2.186041 ^ 

1.588251 

-0.516054 

2.927051 ^ 
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gio : CHI ^ 

^ -0.585410 

-0.951057 

0.670820 

^ 0.834993 

JKL 

2.327438 

1.309017 

0.688191 

-2.569845 

-0.138197 

0.951057 

0.585410 

-0.516054 

-2.186041 ^ 

-1.588251 

-0.516054 

2.927051 j 

g2o : JKL -* CHI 

' -0.585410 -0.951057 

2.327438 1.309017 

-0.138197 0.951057 

^ 2.186041 1.588251 

0.670820 

0.688191 

0.585410 

0.516054 

-0.834993 ^ 

2.569845 

0.516054 

2.927051 y 
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Errata 

• na página 6, substituir o texto “ ... com a curvatura do Universo.” na segunda linha 

após a equação (1.1) por: 

com a curvatura da seção espacial do Universo. 

• nas páginas 10-11, substituir o texto que se inicia após a equação (1.22) 

“ou utilizando as coordenadas ...” até “... espaço de curvatura constante.” na página 

11, por 

Se K(p,a) = Ko — constante para todo aeTp{M), e todo peM, então a variedade M 

é um espaço de curvatura constante. Neste caso utilizando coordenadas locais, tais 

que gij = (Ei,Ej), X = Y^a*Ei, Y = da equação (1.22) segue: 

Rijkl — ^o{9ik9jl 9il9jk') (1.23) 

• na página 16, modificar o início do primeiro parágrafo: “Vamos considerar o caso de 

um universo plano, com topologia de um toro T^.” 

por: 

Vamos considerar o caso de um universo de seção espacial plana, com topologia de 

um toro e métrica de Einstein-de Sitter ds^ = —dt^ -f a^{t) [dx^ -h dy'^ -f dz^], onde 

a[t) = [tjtoYI^ c to = 2j{ZHo) é a idade atual do universo. 

• na página 18, a equação (2.6) deve ser substituída por: 

s 1 ^ áiçexp(íyk • n) 
r“ 2 

(2.6) 




