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OPEN A class of entanglement witnesses

and a realignment-like criterion

Vahid Jannesary?, Vahid Karimipour* & Dariusz Chruscifski?**

We present a multi-parameter family of positive maps between spaces of arbitrary but finite
dimensions. This framework facilitates the construction of Entanglement Witnesses (EWs) specifically
designed for systems living in d; X d2 dimensions. A sufficient condition for positivity is presented.
Interestingly, it is shown that all EWs constructed this way are equivalent to a single realignment-

like criterion which for d, and d- are different is in general stronger than the original realignment
criterion. We illustrate effectiveness of this criterion considering examples of Positive Partial Transpose
entangled statesin4 X 4 and 3 X 4 dimensions.

Quantum entanglement is one of the crucial resource for modern quantum technologies like quantum
cryptography, quantum communication, and quantum computation2. One of the main problem of the
entanglement theory is to devise appropriate criteria which enable one to distinguish separable and entangled
states>>. The identification of entangled states, in particular, presents a formidable challenge, underscored by
its classification as an NP-Hard problem in mathematical terms?. Hence, the pursuit of viable techniques for
detecting entangled states takes on paramount importance. Entangled states are referred to as states that are not
separable, and separable states refer to states that can be represented as follows>:

1 2
p=2pip§)®p§ ), (1)

where 0 < p; < land ) p; = 1.Itis not easy at all to determine whether or not a given state can be expressed
in the aforementioned form. As a result, there is a pressing need for more effective methods for the detection
of entanglement. Over time, diverse techniques have emerged for this purpose. For low-dimensional bipartite
systems, i.e. qubit-qubit and qubit-qutrit, the separability poblem is completely solved by the well known Peres-
Horodecki criterium which states that a state is separable if and only if it is positive under partial transpose
(PPT), that is, p*' = (I ® T')p > 057. However, for higher dimensional systems the separability problem is
notoriously difficult. In higher dimensions one should search for other criteria of entanglement, many of which
have been reviewed in®. The most important ones are called Entanglement Witnesses (EW), (cf.? for a review).
An EW refers to a Hermitian operator W, which has negative eigenvalues but has the following property:

Tr(Wo) >0, VYoe€S,

where § is the set of all separable states. Therefore, a negative expectation value for W on a state p, then means
that p is entangled. Alternatively, one can think of W as a block-positive operator, i.e.

(¥, p|Wlp,¢) 20, Vo € HiV ¢ € H,

which has negative eigenvalue when acting on the whole Hilbert space H1 ® H>. Hence, any entangled state p
of a bipartite system can be detected a suitable entanglement witness such that T'r (W p) < 0>38.

The well-known criterion based on positive maps®” states that if p is separable, then (I ® ®)p > 0 for all positive
maps ®. Actually, it is well known that any entanglement witness W can be written in the form

W=(I2e)e" ) e,
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where ® is a positive (but not completely positive) map, and [¢p1) = f Zu o |1e44), is a maximally entangled

state”. In other words, W is the Choi-matrix of the map ®, which due to its lack of complete positivity can have
negative eigenvalue.

Apart from positive maps or entanglement witnesses criteria there exist other well known effective methods for
entanglement detection. One example is a realignment (or computable crossnorm (CCNR)) criterion!'%-12. This
criterion proved to be very effective in the detection of PPT entangled states® (cf. the recent review!?).

In this paper we construct a large class of positive maps which satisfy simple condition which does guarantee
the positivity of the map. Equivalently, we provide a large class of entanglement witnesses in di1 ® d2 quantum
systems. The structure of this paper is as follows: In Sect. 2 we present the main results (Theorem 1). Interestingly,
several well known maps/witnesses belong to this class. We illustrate this result by several examples. Moreover,
we relate our result to so called mirrored witnesses'*!>. Section 3 shows that our class of witnesses is essentially
equivalent to a single realignment-like criterion (Theorem 3). The power of this criterion is then illustrated by
two examples of 4 ® 4 and 3 ® 4 systems. Final conclusions are collected in Sect. 4.

Results

Notations and conventions

Let Hy be the Hilbert space of dimension dand L ( Hg) the space of linear operators acting on H. The convex set of

positive operators is denoted by L(Hg) ™. A vector space of linear operators L( Hy) is equipped with the Hilbert-

Schmidt inner product (A, B) := Tr(AB"). In what follows we consider maps ® : L™ (Ha,) — L*(Ha,).
Consider two orthonormal bases of Hermitian operators in L(Hg, ):

{ro = Io, /\/di, Ts; i = 1,...,d§—1}, Tr(Caln) = Sous
and in L(Hg,):
{Qo — Iay/\/da, Qu: k:1,...,d§—1}, Te(QpQ) = 855,

where I'; (¢ > 0) and Qx (k > 0) are traceless operators.

A state of a quantum system is denoted by p € D(Hy), where D(Hq) C L(Hy)" is the convex subset of
positive operators with unit trace. Any Hermitian operator X € L (Hg, ) can be expanded as

d?-1
Zo
= 2
X = z;)xaa ﬁ1d1+xr )
where 2o € R and x = (21,...,242_ 1) is a generalized Bloch vector'®"!8. When X is a rank-1 operator, it

necessarily holds that Tr X2 = (Tr X) )? which leads to

Ix[|* = 25 (d1 — 1). ®)
2
where ||x||? = Zj; Il 7. Similarly, any Hermitian operator Y in L(Hy,) can be represented as
dz—1
Y = Z Ys{ls = Lz2 +y- (4)

Consider now a linear map @ : L(Hgq,) — L(Hg,) defined by

d2-1
Ta) = Y RpaQ, 5)
B=0
or equivalently
d2-1d2-1
B(X) =Y Y Rpa Tr(TaX)0s, (6)
a=0 B=0
where the matrix R is parameterized as follows
R= (RtOO S) (7)
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2 2
witht € R27 , s € Ri~! and A € M, 42-1xd2—1 1 @ real matrix. This map induces the following affine
transformation on the level of generalized Bloch vectors

(v)=( D)) ®
Equivalently one has the following relation
D(X) = P(xol'o+x:T) = (Rooxo + s - x)Q0 + (zot + Ax) - Q. 9)
Note that in particular

1. & istrace-preserving iff s = 0 and Rop = %,

2. ®isunitalifft = 0 and Roo = 4/ Z—f .Finally, let us recall the following result (known as a Mehta’s lemma, cf.
Refs.1920),

Proposition 1 Let A be a Hermitian d X d matrix. If

Tr A% <

then A is positive matrix.

A class of positive maps
Given a quantum map & characterized by the affine transformation on the generalized Bloch vector
x — Ax + xot, our goal is to find the condition on this affine map which guarantees positivity of .

Theorem 1 A map ®, implementing the affine transformation (8), is positive if the following condition holds
Vidz = 1t] + vdi = 1Js[| + v/ (d1 = 1)(dz = D)[[Alloc < Roo, (11)

where ||A||oo is the operator norm of A and is equal to Ao Which is the largest singular value of A.

Proof Due to linearity of the map, it suffices to prove the statement only for rank-1 positive operators X. For
such X (see (3)), we have

Tro(X) = yo\/g = (Roowo +s - X)\/£

and

sy

2 1

2

Tlr@(X)2 = y% = (Rogxo+s-x)2+ Hmot—&-AXH?
8=0

Inserting these two expressions in Mehta’s lemma we find that the sufficient condition for positivity of ®(X)
reads

(R()()ZE() +s- X)2d2

A (12)

(Rooa)o +s- X)2 + ont + AXH2 <

or, equivalently,

‘Rooxo +s- X|

Vda —1

lzot + Ax|| < (13)
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The above condition still depends upon the input (o, x). Moreover, it is highly asymmetric in (t, s). Now, using
(13) we derive a condition which does not depend on (xg, x) and uses only the parameter Roo, vectors t, s, and
the matrix A.
Let us observe that

llzot + Ax|| < [lzot]l + [[Ax]| < |zo| 1t]] + | AllolIxI] = f2ol (It + | Alle v/di — 1), (14)
where in the last equality we have used the relation ||x|| = |zo|v/d1 — 1. Moreover,

Roolwo| — [s|llIx]| < [Roozo +s - x|, (15)

and hence using again ||x|| = |zo|v/d1 — 1, one finds

‘$0|(R00 — HS”\/ dy — 1) < |R00:E0 +s- X‘. (16)

This way we found an upper bound

ot + Ax| < faol (It + |Alv/d — 1), (17)
for the lhs of (13), and a lower bound

|zol (Roo — [Isllv/d1 — 1) < |Rooxo + s - x|, (18)

for the rhs of (13). It is, therefore, clear that if

Roo — dr —1
ol + DAlle /=1 < RO =T, as)
=

holds, then (13) is trivially satisfied and hence the map & is positive. After rearranging the terms one obtains

Vidz = 1t] + v/dv = 1ls|| + v/ (d1 = 1)(d2 = D)[[ Al < Roo (20)

which ends the proof. O

Corollary 1 When dy = d2 = 2, the above condition simplifies to
1]+ [s]] + [[Alloo < Roo- 1)

For unital trace-preserving maps in equal dimensions d1 = d2 = d, where t = s = 0, the above condition simpli-

fies to

1
o < —.
1A lloo < —— (2)

In particular for dy = da = 2, formula (22) reduces to ||A||cc < 1 and defines a necessary and sufficient condition
for positivity for trace-preserving unital maps.

It should be stressed that condition (11) is sufficient but not necessary for a map & to be positive.

Examples of entanglement witnesses and positive maps
Let us review some well known examples EWs and positive maps in connection to a sufficient condition (11).

Example 1 Transposition map T is unital and trace-preserving and hences = t = 0,and Roo = 1. Taking {I's }
as generalized Gell-Mann matrices one finds

T(Ty) = +Ta,

depending on whether I', is symmetric or anti-symmetric. Hence ||A||cc = 1 and the condition (11) is satisfied
only fordi = dz = 2.
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Example 2 Reduction map ® : L(H4) — L(Hg) is defined via®!
O(X)=I,Tr X — X. (23)
One findss =t = 0 and Rop = d — 1. Now,
®(y)=-Tw, k=1,...,d° -1,

and hence ||A||cc = 1. Clearly condition (11) is satisfied since

Roo
A oo — 5 24
Al = T2 (4)
for all dimensions d. Note, that reduction map can be immediately generalized as follows?
d?—1
(I)(X) = Id Tr X — Z Agk Tr(FkX)I‘l, (25)
k,f=1
with arbitrary Ay satisfying || Aljcc < 1.In particular for Ax¢ being an orthogonal matrix.
Example 3 Consider amap ® : L(Hg,) — L(Ha,) defined via
d?-1d3-1
O(X) =T, TrX = > > Opa Tr(Ta X)), (26)
a=0 B=0

where O is an d3 x d? isometry, i.e. if d1 > d2 one has 00T =1 a2 It provides a generalization of (25). In?* it

is shown that (26) defines a positive map. For ® defined in (26) one has
Roo = \/did2 — Ooo sk = Ook, te=0Oe Age= —Oxe.

Example 4 Any 2-qubit entanglement witness W can be represented as follows

3
W=> Two.®o., (27)

p,v=0

with o, € {I,04,0y,0.}, and 16 real parameters T},,,. Authors of Ref.” analyzed a particular scenario when
one has an access to the limited resources and consider EW with diagonal correlation tensor Tk = cr0x:
(k,1 =1,2,3) only, that is,

3 3
W:aI®I+Z(tkI®0k+skak®I>+Z>\kak®ak, (28)
k=1 =

with real parameters «, sk, tx, Ax. This reduces the number of independent parameters from 6 elements
Tri = Tix to 3 real parameters Ax. The above form is justified by the fact that the mean values of single qubit
operators o ® [ and | ® oy for ¢ = 1,2, 3 can be derived by simply ignoring the statistics on one side. There
are six 1-parameter families of rank-1 projectors |¢)(¢| of the form (28):

lp1) =alot) +b[¢7), lp2) =alt)+b[v7), |es)=al¢t) +blvT),
sy =al¢™ ) +b|vT), les)=alet)+ib|eT), lps) =alé™)+ib|vt),

where |¢i> and ’wi> are the Bell states, and a, b € R such that a? + b% = 1. Hence, there are six 1-parameter

families of optimal EWs of the form W} :— |gok><gok\ For example one finds for Wi: Roo = a? + 0% =1
, s=t=1(0,0,2ab), and A1 = —X2 = a? —b%, A3 =a®+b%>=1. Hence, inequality (11) reduces to
4labl+1 <1 Wthh 1mp11es that either (a = 1,b = 0) or (e = 0,b = 1). It shows that only four optimal EW's
|pE)(¢E|" and [pF) (pE|" satisfy inequality (11)
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A sufficient condition for complete positivity
As a byproduct of our analysis let us formulate the sufficient condition for complete positivity.

Proposition 2 A positive map (5) is a completely positive if the following condition holds:

R2
2 2 Ty < 0 29
sl + 1% + Tr(AAT) < 00— 29)
Proof According to a celebrated theorem of Choi?®, a map is completely positive if its Choi matrix
dy
Co = di(Ia; @ ®)(|¢" Mo ) = Y [m)(n| @ B(jm)(nl), (30)
m,n=1
is positive. One finds
_ T
Co =7 Rpals ® 9, 31)
a,B
and hence
Co= = L @ Ly + —=5-T7 @ Lay + —=I5, 8- 2+ 3 AulT ©
Vi, " Vi, PV A (32)
from which we find
Te(Co) = Roor/dida,  Te(C3) = R + [l + 6] + Te(ATA). (33)

Mehta’s Lemma (10) implies (29) which completes the proof. [J

Example 5 As an example consider the trace-preserving qubit maps ® with diagonal elements Aj; = &5 ;.
Then the condition for positivity of the map is given from (11) to be

12+ 12 + 12 + Moo < 1, (34)

and the condition of complete positivity is given from (29) to be
1
2 2
I* + X < 5. (35)

We shoud emphasize that since the Mehta’s condition is a sufficient conditions, the above inequalities determine
only a subset of positive and completely positive maps. For example, if we restrict ourselves to unital maps, then
the condition (29) is given by

/\§+A§+)\§,§%,
1
V3
A+ X2 <1+ A3 A1 —A2] <1 —As.

which is a sphere of radius r = —= and is a subset of the Fujiwara-Algoet tetrahedron®

A comparison of the volumes of these two sets shows that 30 percents of the completely positive unital maps for
qubits are detected by this simple use of Mehta’s criteria, figure (1).

Mirorred witnesses
The concept of a mirrored entanglement witness was introduced in Ref.!*: given an entanglement witness W one
defines a family

W, = ply, @ Iy — W. (36)

Itis proved14 that there exists a minimal o such that for all ;& > po, Wy, is non-negative on separable states. If
Ww := W,,, is an EW one calls (W, W) a mirrored pair of EWs!.
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Figure 1. Example of qubit maps, with eigenvalues of affine transformation given by A1, A2 and As3. Restricting
to unital maps, the tethdrahedron shows the complete set of unital maps as derived from the Fujiwara-Algoet
condition, the sphere shows those maps which are derived from Mehta’s condition. Its volume is approximately
30 percent of the volume of the tethrahedron.

Proposition 3 If W satisfies (11), then for i > 2200 VW, is non-negative on separable states.

\/d1d2,

Proof indeed, if W is characterized by (Roo,s,t,A) an operator W), is characterized by
(uv/did2 — Roo, —s, —t, —A). Hence, if W satisfies (11) and p+/di1d2 — Roo > Roo, then W, satisfies (11) as

well. A condition pv/dida — Roo > Roo provides a lower bound p > % Od

1d2
Example 6 Consider an EW corresponding to the celebrated Choi map!*1>
2
W= 3 (2l il + lii = 1 - 1= 36+ (7)
=0
where |¢T) = (]0,0) + |1,1) 4 |2,2))/+/3 is a Bell state. One easily finds Roo = 2,5 = t = 0,and ||Allcc = 1
, and hence
R
1Afloe = =57 (38)

that is, the inequality (11) is saturated. One has % = % and reproduces po = % found in Ref.!>.

Entanglement Witnesses and realignment-like criterion
Consider a bi-partite state living in Hq1 ® Hg, and represented by

T
p=> Coala ®Qp. (39)
B
Due to the celebrated realignment criterion!'%-12 one has
Proposition 4 If p is separable, then
1€l < L. (40)

Actually, the above criterion was recently generalized as follows?’: let us introduce two square diagonal matrices:
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Di(x1) = diag{x1,1,...,1}, Da(x2) = diag{z2,1,...,1},

where D1 (z1) is d% X df and D(z2) is dg X d%, and the real parameters 1, z2 > 0. One prove527

Theorem 2 If p is separable, then
[ D1(z1)CD2(22)[l1 < Ni(z1)N2(22), (41)

where

d1—1+$%

_ Jda—1+a3 4
d1 NQ(.TQ)— d2 s ( )

Nl(ﬂil) =

for arbitrary x1,x2 > 0.

Note that for (z1,z2) = (1, 1) the inequality (41) reproduces CCNR criterion. Moreover, for (z1, z2) = (0,0)
it reproduces separability criterion derived by de Vicente?®. If d; = d, then CCNR criterion is stronger than
the de Vicente criterion®®. However, for bipartite states p with maximally mixed marginals p1 = Iy, /d1 and
p2 = 14, /d2, the de Vicente criterion is stronger than CCNR if d; # d2, and they are equivalent if d; = do?8.
Here we prove the following result:

Theorem 3 The criterion (41) corresponding to (z1,z2) = (0, 0) is equivalent to the entire class of entanglement
witnesses characterized by (11).

Proof consider an EW

W:ZRBaFg(@Qﬁ :Rooro®Qo+S~F®Qo+Fo®t-Q+ZAMFiT®Qk7 (43)
a,B k,i

and a bipartite state p € D(Hg, ® Hg,) be a bi-partite density matrix given by

_ T _ 1 T
p—;c‘aafa@ma— m%@ﬁwrl-F®Qo+ro®rz-ﬂ+;QMFi O (4q)

One finds

Tr(Wp) = \/% +r1-s+ra-t+Tr(QAT). (45)

In the above expression, the triple (r1,r2, Q) represent the data of the density matrix and the triple (s, t, A)
represent the data of the entanglement witness W. Given p let us minimize Tr(WW p) over all EWs from the class
(11). one obviously has

s = —ari, t = —yra, (46)

where x and y are positive constants. To choose A, we note the singular value decomposition of @ = OqO’,
where O and O’ are orthogonal matrices and Qi = Qi di5, where g; are singular values of Q. Let A = o' x0T
, where A\ij = —Amazdij.

One has

TI‘(QAT) = —Amaz Z qi = _)\maxHQ”l (47)

Putting everything together, we find

R
T(pW) = 22—l — yleall® ~ Amasl Q. (49)

where ||@Q||1 is the trace norm of Q. Now we have to minimize this with respect to the data of the entanglement
witness (Z, ¥, Amaz ) While respecting the condition (11), which now takes the form
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yv/do — 1|r2|| + zv/d1 — 1||r1]| + Amazy/(d1 — 1)(d2 — 1) < Ropo. (49)

The above condition defines a simplex in the Cartesion space (z, ¥, Amaz ) With vertices vo = (0, 0, 0), and

Roo ) < Roo ) Roo
mn=|——"7r——0,0), v2=(0, ——————, 0, v3=[0, 0, ——=|. (50)
<||r1||vd1—1 [r2]lv/d2 — 1 V(di —1)(d2 — 1)
Since Tr(W p) is a linear function of (x, Y, Amax), it achieves its minimum on one of the above vertices. One

easily finds the value of Tr(W;p) corresponding to the vertex v;

ROO
Vdida

TI‘(Wlp) = F; =0, 1, 2, 3, (51)

where Fyp = 1, and

dldz d1d2 dldQ
L=1— =1— I —
Gop Bl 20 B= 110 T

Fy=1— ||| (52)

Positivity of the reduced density matrices p1 € D(Hg, ) and p2 € D(Hg,) imply that F} and F» are always
non-negative. The condition F3 > 0 is equivalent to

(di —1)(d2 — 1)

< (53)
IQlh < o=,
which reproduces (41) for (z1, z2) = (0,0).0
Example 7 Tn Ref.?® the following family of PPT entangled states in C* ® C* is introduced
r . . . . . 1T . . .1
i 1
o1 . 1
a 1 .
a . 1
1 1 . 1 1
1 1 :
1 D! . 1
p= N 1 1 ) ) (54)
. a 1
1 1 1 . 1
1 1.
I
. 1 . T
B e A
1 T e e |

where dots represent zeros, and N = 4a + % + 8 stands for the normalization factor, and it is shown that
their entanglement can be detected by an entanglement witness, called Wey¢, which shows that these states are
entangled in the interval 0 < @ < 1. We now show that the interval of entanglement of these states is in fact
much larger and covers the whole positive line 0 < a < 00, except the point a = 1. To show this, the Q matrix
corresponding to (54) is calculated, which turns out to be

Q=—— (A0 A @ B)
(a+1)2 ’
where
4 % o4 B . ’ B _ (a—1)? 70,24»\2/0;73 7((1—\/17):1
. . e e e v 276
A= . % % . A = 3 _g . . B— 3a2-2a-1 _(a=1)? _a’ta-2
a oz g % i i ’ : 7‘% 26 6v2 T2
$ - - . 5 . R

with singular values given as

la — 1] |a] (a —1)*
{4|a—|—1| 2, sz %O 1@ty }
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Figure 2. A state (54) is entangled for 0 < a < oo; a # 1.

This leads to

2
(@-1*,, la_,

1(a— 1
”QHl:Z(aHV (a+1)2 "2

a—l’
a+1]"

(di—1)(d2—=1) _ 3

Figure 2 shows that the value of v = ||Q||1 is always larger than Tidy 5 except fora = 1.

Note that by a < 0o, we are emphasizing that a should be a finite value. In fact, in the limit a — oo, the state
approaches to

oo = i<|03><03| F10)(10] + [11)(11] + \22><22|)7

which is obviously separable. Incidentally, this is the limiting case where y approaches the value 3.

Example 8 In Ref.? Terhal introduced a family of UPB for 3 ® n systems. Here we take n = 4 and show that our
criterion (53) can detect the corresponding PPT entangled state in 3 ® 4. The UPB states for the 3 X 4 system

are:
1 1 1 1
o) = 100 @ (1) = 3D, ) = 51D ©(12) ~13), [a) = T52@ (0) = 13), W) = (100 = 1) @ o),
2 3
1 1 1 . .
[a) = (0 =12) @11, ) = == 0)@2), o) = - 22322: [y @13).

The PPT entangled state p = ¢ (I — Zf:() |13} (1i]) turns out to be

5 -1 —1[-1 5 —1]-1 -1 —1|-1 -1 -1
1 5 -1|5 -1 —1|-1 -1 —-1|-1 -1 -1
1 -1 5 |-1 -1 —1|-1 -1 —-1|-1 5 -1
T 5 1[5 -1 —I[-T T —I[-T —T I
5 -1 —1|-1 5 —1]-1 -1 —1|-1 -1 -1
1l -1 -1 —1)-1 -1 5 |-1 -1 -1]|5 -1 -1
= | =T =T T T35 5 -1 T -1 | (55)
1 -1 —1]-1 -1 —1|5 5 —1]|-1 -1 -1
1 -1 —1|-1 -1 —1|-1 -1 5 |-1 -1 5
T -1 1|1 T 5 [T T —I[5 -1 I
1 -1 5 -1 -1 —1|-1 -1 —-1|-1 5 -1
1 -1 -1]-1 -1 —1|-1 -1 5 |-1 -1 5

The corresponding Q matrix is given by
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1 —J3x6 | O3xs A
Q= %0 O3x6 | O3xe | O3x3 |,
B O2x6 | O2x3

where

3 V3
A= 0 —-2V3

-3 -3 /3

and the 3 x 6 matrix J;; = 1. The singular values of Q are found to be

p_(000 0o 3 -3
5=(0 00 23 V3 Vi)

N

1 11 1 1
{2\/10’5\/5’5\/5’5\/5’5\/5}’
and we find

Lo, 4 _8+5
2V/10  5v2 10v2
(d1—1)(d
d

1;227” = % This shows that the PPT state (55) is entangled.

IRl =

which is greater than

Conclusions

Mehta’s lemma provides a simple sufficient condition for a Hermitian matrix to be positive. We have used this
lemma to construct a large family of positive maps and characterized them in terms of their corresponding affine
transformations, i.e. transformation of the so-called Bloch vector r — Ar 4 zot. Using the correspondence
between entanglement witnesses and positive (but not completely positive) maps, a multi-parameter family of
entanglement witnesses for bipartite systems with different dimensions was constructed. This family is uniquely
characterized by {Roo, s, t, A} satisfying the very condition (13). Actually, several well-known positive maps
belong to this family. Prominent examples are the reduction map?, its generalizations??, and the Choi map for
di1 = d2 = 3. This shows that both decomposable and non-decomposable positive maps can be constructed this
way. Interestingly, the transposition map belongs to this family but only if d1 = d2 = 2. Let us recall, that due to
the seminal Peres-Horodecki results®’ transposition map detects all entangled states whenever d1d> < 6. Hence
the proposed construction is important for systems that allow for PPT entangled states. Both transposition,
reduction, any many other well-known positive maps are both trace-preserving and unital. It should be stresses
that presented method enables one to construct positive maps which are neither unital nor trace-preserving by
including two nontrivial vectors s and t.

Interestingly, it is shown that this class of witnesses is equivalent to a single realignment-like criterion already
analyzed by de Vicente?®. It simply means that any entangled state which is detected by de Vicente criterion is
also detected by some map, or equivalently an entanglement witness, from the above family. It should be stressed
that contrary to the realignment-like criterion the method based on a particular entanglement witness does not
require full state tomography and hence usually is more experimental friendly. The power of this criterion is
illustrated by two examples of PPT entangled states in 4 ® 4 and 3 ® 4 systems.

It would be interesting to extend proposed construction for multipartite scenario. The multipartite
generalization of realignment-like criteria was already analyzed by several authors?”*-32. Now, on the level of
maps instead of positive maps @ : L(Hg,) — L(Hag,) one considers linear maps

(I):L(Hdl ®"'®Hdn—1) _>L(Hdn)7 (56)

which are positive but only on product positive operators from Lt (Hg4, ) ® ... ® LT (Hg,_,). Construction of
such maps is much more demanding than construction of positive maps ® : L(Hg,) — L(Ha, ). Using similar
techniques based on generalized Bloch vectors we plan to provide a similar construction of linear maps satisfying
(56). In particular this method enables one to construct maps which are neither unital nor trace-preserving.

Another interesting problem is related to optimality. Optimal entanglement witnesses are of particular
importance in entanglement theory>®33. It would be interesting to decide which sets of parameters satisfying

Vdz = Hjt[| + v/dv = 1][s]| + v/(d1 = 1)(d2 = 1)|[Allec = Roo, (57)

that is, saturating inequality (11), give rise to optimal entanglement witnesses. We postpone these questions for
the future work.
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