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We present a multi-parameter family of positive maps between spaces of arbitrary but finite 
dimensions. This framework facilitates the construction of Entanglement Witnesses (EWs) specifically 
designed for systems living in d1 × d2 dimensions. A sufficient condition for positivity is presented. 
Interestingly, it is shown that all EWs constructed this way are equivalent to a single realignment-
like criterion which for d1 and d2 are different is in general stronger than the original realignment 
criterion. We illustrate effectiveness of this criterion considering examples of Positive Partial Transpose 
entangled states in 4 × 4 and 3 × 4 dimensions.

Quantum entanglement is one of the crucial resource for modern quantum technologies like quantum 
cryptography, quantum communication, and quantum computation1,2. One of the main problem of the 
entanglement theory is to devise appropriate criteria which enable one to distinguish separable and entangled 
states2,3. The identification of entangled states, in particular, presents a formidable challenge, underscored by 
its classification as an NP-Hard problem in mathematical terms4. Hence, the pursuit of viable techniques for 
detecting entangled states takes on paramount importance. Entangled states are referred to as states that are not 
separable, and separable states refer to states that can be represented as follows5:

	
ρ =

∑
piρ

(1)
i ⊗ ρ

(2)
i ,� (1)

where 0 ≤ pi ≤ 1 and 
∑

pi = 1. It is not easy at all to determine whether or not a given state can be expressed 
in the aforementioned form. As a result, there is a pressing need for more effective methods for the detection 
of entanglement. Over time, diverse techniques have emerged for this purpose. For low-dimensional bipartite 
systems, i.e. qubit-qubit and qubit-qutrit, the separability poblem is completely solved by the well known Peres- 
Horodecki criterium which states that a state is separable if and only if it is positive under partial transpose 
(PPT), that is, ρΓ = (I ⊗ T )ρ ≥ 06,7. However, for higher dimensional systems the separability problem is 
notoriously difficult. In higher dimensions one should search for other criteria of entanglement, many of which 
have been reviewed in3. The most important ones are called Entanglement Witnesses (EW), (cf.8 for a review). 
An EW refers to a Hermitian operator W, which has negative eigenvalues but has the following property:

	 Tr(W σ) ≥ 0, ∀σ ∈ S,

where S is the set of all separable states. Therefore, a negative expectation value for W on a state ρ, then means 
that ρ is entangled. Alternatively, one can think of W as a block-positive operator, i.e.

	 ⟨ψ, ϕ|W |ψ, ϕ⟩ ≥ 0, ∀ ψ ∈ H1 ∀ ϕ ∈ H2,

which has negative eigenvalue when acting on the whole Hilbert space H1 ⊗ H2. Hence, any entangled state ρ 
of a bipartite system can be detected a suitable entanglement witness such that T r(W ρ) < 02,3,8,9.

The well-known criterion based on positive maps2,7 states that if ρ is separable, then (I ⊗ Φ)ρ ≥ 0 for all positive 
maps Φ. Actually, it is well known that any entanglement witness W can be written in the form

	 W = (I ⊗ Φ)|ϕ+⟩⟨ϕ+|,
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where Φ is a positive (but not completely positive) map, and |ϕ+⟩ = 1√
d

∑d−1
µ=0 |µµ⟩, is a maximally entangled 

state7. In other words, W is the Choi-matrix of the map Φ, which due to its lack of complete positivity can have 
negative eigenvalue.

Apart from positive maps or entanglement witnesses criteria there exist other well known effective methods for 
entanglement detection. One example is a realignment (or computable crossnorm (CCNR)) criterion10–12. This 
criterion proved to be very effective in the detection of PPT entangled states2 (cf. the recent review13).

In this paper we construct a large class of positive maps which satisfy simple condition which does guarantee 
the positivity of the map. Equivalently, we provide a large class of entanglement witnesses in d1 ⊗ d2 quantum 
systems. The structure of this paper is as follows: In Sect. 2 we present the main results (Theorem 1). Interestingly, 
several well known maps/witnesses belong to this class. We illustrate this result by several examples. Moreover, 
we relate our result to so called mirrored witnesses14,15. Section 3 shows that our class of witnesses is essentially 
equivalent to a single realignment-like criterion (Theorem 3). The power of this criterion is then illustrated by 
two examples of 4 ⊗ 4 and 3 ⊗ 4 systems. Final conclusions are collected in Sect. 4.

Results
Notations and conventions
Let Hd be the Hilbert space of dimension d and L(Hd) the space of linear operators acting on Hd. The convex set of 
positive operators is denoted by L(Hd)+. A vector space of linear operators L(Hd) is equipped with the Hilbert-
Schmidt inner product ⟨A, B⟩ := Tr(AB†). In what follows we consider maps Φ : L+(Hd1 ) −→ L+(Hd2 ).

Consider two orthonormal bases of Hermitian operators in L(Hd1 ):

	

{
Γ0 = Id1 /

√
d1, Γi; i = 1, . . . , d2

1 − 1
}

, Tr(ΓαΓα′ ) = δαα′ ,

and in L(Hd2 ):

	

{
Ω0 = Id2 /

√
d2, Ωk; k = 1, . . . , d2

2 − 1
}

, Tr(ΩβΩβ′ ) = δββ′ ,

where Γi (i > 0) and Ωk  (k > 0) are traceless operators.

A state of a quantum system is denoted by ρ ∈ D(Hd), where D(Hd) ⊂ L(Hd)+ is the convex subset of 
positive operators with unit trace. Any Hermitian operator X ∈ L+(Hd1 ) can be expanded as

	
X =

d2
1−1∑

α=0

xαΓα = x0√
d1

Id1 + x · Γ,� (2)

where x0 ∈ R and x = (x1, . . . , xd2
1−1) is a generalized Bloch vector16–18. When X is a rank-1 operator, it 

necessarily holds that Tr X2 = (Tr X)2 which leads to

	 ∥x∥2 = x2
0(d1 − 1).� (3)

where ∥x∥2 =
∑d2

1−1
i=1 x2

i . Similarly, any Hermitian operator Y in L(Hd2 ) can be represented as

	
Y =

d2
2−1∑

β=0

yβΩβ = y0√
d2

Id2 + y · Ω.� (4)

Consider now a linear map Φ : L(Hd1 ) → L(Hd2 ) defined by

	
Φ(Γα) =

d2
2−1∑

β=0

RβαΩβ , � (5)

or equivalently

	
Φ(X) =

d2
1−1∑

α=0

d2
2−1∑

β=0

Rβα Tr(ΓαX)Ωβ ,� (6)

where the matrix R is parameterized as follows

	
R =

(
R00 s
t Λ

)
� (7)
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with t ∈ Rd2
2−1, s ∈ Rd2

1−1, and Λ ∈ Md2
2−1×d2

1−1 is a real matrix. This map induces the following affine 
transformation on the level of generalized Bloch vectors

	

(
y0
y

)
=

(
R00 s
t Λ

) (
x0
x

)
.� (8)

Equivalently one has the following relation

	 Φ(X) = Φ(x0Γ0 + x · Γ) = (R00x0 + s · x)Ω0 + (x0t + Λx) · Ω.� (9)

Note that in particular 

	1.	� Φ is trace-preserving iff s = 0 and R00 =
√

d1
d2

,

	2.	� Φ is unital iff t = 0 and R00 =
√

d2
d1

.Finally, let us recall the following result (known as a Mehta’s lemma, cf. 

Refs.19,20).

Proposition 1  Let A be a Hermitian d × d matrix. If

	
Tr A2 ≤ (Tr A)2

d − 1 ,� (10)

then A is positive matrix.

A class of positive maps
Given a quantum map Φ characterized by the affine transformation on the generalized Bloch vector 
x −→ Λx + x0t, our goal is to find the condition on this affine map which guarantees positivity of Φ.

Theorem 1  A map Φ, implementing the affine transformation (8), is positive if the following condition holds

	
√

d2 − 1∥t∥ +
√

d1 − 1∥s∥ +
√

(d1 − 1)(d2 − 1)∥Λ∥∞ ≤ R00,� (11)

where ∥Λ∥∞ is the operator norm of Λ and is equal to λmax which is the largest singular value of Λ.

Proof  Due to linearity of the map, it suffices to prove the statement only for rank-1 positive operators X. For 
such X (see (3)), we have

	 Tr Φ(X) = y0
√

d2 = (R00x0 + s · x)
√

d2

and

	
Tr Φ(X)2 =

d2
2−1∑

β=0

y2
β = (R00x0 + s · x)2 + ∥x0t + Λx∥2.

Inserting these two expressions in Mehta’s lemma we find that the sufficient condition for positivity of Φ(X) 
reads

	
(R00x0 + s · x)2 + ∥x0t + Λx∥2 ≤ (R00x0 + s · x)2d2

d2 − 1 .� (12)

or, equivalently,

	
∥x0t + Λx∥ ≤ |R00x0 + s · x|√

d2 − 1
.� (13)
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 The above condition still depends upon the input (x0, x). Moreover, it is highly asymmetric in (t, s). Now, using 
(13) we derive a condition which does not depend on (x0, x) and uses only the parameter R00, vectors t, s, and 
the matrix Λ.

Let us observe that

	 ∥x0t + Λx∥ ≤ ∥x0t∥ + ∥Λx∥ ≤ |x0|∥t∥ + ∥Λ∥∞∥x∥ = |x0|
(
∥t∥ + ∥Λ∥∞

√
d1 − 1

)
,� (14)

where in the last equality we have used the relation ∥x∥ = |x0|
√

d1 − 1. Moreover,

	 R00|x0| − ∥s∥∥x∥ ≤ |R00x0 + s · x|,� (15)

and hence using again ∥x∥ = |x0|
√

d1 − 1, one finds

	 |x0|
(
R00 − ∥s∥

√
d1 − 1

)
≤ |R00x0 + s · x|.� (16)

 This way we found an upper bound

	
∥x0t + Λx∥ ≤ |x0|

(
∥t∥ + ∥Λ∥∞

√
d1 − 1

)
,� (17)

for the lhs of (13), and a lower bound

	
|x0|

(
R00 − ∥s∥

√
d1 − 1

)
≤ |R00x0 + s · x|,� (18)

for the rhs of (13). It is, therefore, clear that if

	
∥t∥ + ∥Λ∥∞

√
d1 − 1 ≤ R00 − ∥s∥

√
d1 − 1√

d2 − 1
,� (19)

holds, then (13) is trivially satisfied and hence the map Φ is positive. After rearranging the terms one obtains

	
√

d2 − 1∥t∥ +
√

d1 − 1∥s∥ +
√

(d1 − 1)(d2 − 1)∥Λ∥∞ ≤ R00� (20)

which ends the proof. □

Corollary 1  When d1 = d2 = 2, the above condition simplifies to

	 ∥t∥ + ∥s∥ + ∥Λ∥∞ ≤ R00.� (21)

For unital trace-preserving maps in equal dimensions d1 = d2 = d, where t = s = 0, the above condition simpli-
f﻿ies to

	
∥Λ∥∞ ≤ 1

d − 1 .� (22)

In particular for d1 = d2 = 2, formula (22) reduces to ∥Λ∥∞ ≤ 1 and defines a necessary and sufficient condition 
for positivity for trace-preserving unital maps.

It should be stressed that condition (11) is sufficient but not necessary for a map Φ to be positive.

Examples of entanglement witnesses and positive maps
Let us review some well known examples EWs and positive maps in connection to a sufficient condition (11).

Example 1  Transposition map T is unital and trace-preserving and hence s = t = 0, and R00 = 1. Taking {Γα} 
as generalized Gell-Mann matrices one finds

	 T (Γα) = ±Γα,

depending on whether Γα is symmetric or anti-symmetric. Hence ∥Λ∥∞ = 1 and the condition (11) is satisfied 
only for d1 = d2 = 2.
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Example 2  Reduction map Φ : L(Hd) → L(Hd) is defined via21

	 Φ(X) = Id Tr X − X.� (23)

One finds s = t = 0 and R00 = d − 1. Now,

	 Φ(Γk) = −Γk, k = 1, . . . , d2 − 1,

and hence ∥Λ∥∞ = 1. Clearly condition (11) is satisfied since

	
∥Λ∥∞ = R00

d − 1 ,� (24)

for all dimensions d. Note, that reduction map can be immediately generalized as follows22

	
Φ(X) = Id Tr X −

d2−1∑
k,ℓ=1

Λℓk Tr(ΓkX)Γl,� (25)

with arbitrary Λkℓ satisfying ∥Λ∥∞ ≤ 1. In particular for Λkℓ being an orthogonal matrix.

Example 3  Consider a map Φ : L(Hd1 ) → L(Hd2 ) defined via

	
Φ(X) = Id2 Tr X −

d2
1−1∑

α=0

d2
2−1∑

β=0

Oβα Tr(ΓαX)Ωβ ,� (26)

where O is an d2
2 × d2

1 isometry, i.e. if d1 ≥ d2 one has OOT = Id2
2

. It provides a generalization of (25). In24 it 
is shown that (26) defines a positive map. For Φ defined in (26) one has

	 R00 =
√

d1d2 − O00 sk = O0k, tℓ = Oℓ0 Λkℓ = −Okℓ.

Example 4  Any 2-qubit entanglement witness W can be represented as follows

	
W =

3∑
µ,ν=0

Tµνσµ ⊗ σν ,� (27)

with σµ ∈ {I, σx, σy, σz}, and 16 real parameters Tµν . Authors of Ref.25 analyzed a particular scenario when 
one has an access to the limited resources and consider EW with diagonal correlation tensor Tkl = ckδkl 
(k, l = 1, 2, 3) only, that is,

	
W = α I ⊗ I +

3∑
k=1

(
tk I ⊗ σk + sk σk ⊗ I

)
+

3∑
k=1

λkσk ⊗ σk,� (28)

with real parameters α, sk, tk, λk . This reduces the number of independent parameters from 6 elements 
Tkl = Tlk  to 3 real parameters λk . The above form is justified by the fact that the mean values of single qubit 
operators σk ⊗ I and I ⊗ σk  for i = 1, 2, 3 can be derived by simply ignoring the statistics on one side. There 
are six 1-parameter families of rank-1 projectors |φ⟩⟨φ| of the form (28):

	

|φ1⟩ = a
∣∣ϕ+〉

+ b
∣∣ϕ−〉

, |φ2⟩ = a
∣∣ψ+〉

+ b
∣∣ψ−〉

, |φ3⟩ = a
∣∣ϕ+〉

+ b
∣∣ψ+〉

,

|φ4⟩ = a
∣∣ϕ−〉

+ b
∣∣ψ−〉

, |φ5⟩ = a
∣∣ϕ+〉

+ ib
∣∣ψ−〉

, |φ6⟩ = a
∣∣ϕ−〉

+ ib
∣∣ψ+〉

,

where 
∣∣ϕ±〉

 and 
∣∣ψ±〉

 are the Bell states, and a, b ∈ R such that a2 + b2 = 1. Hence, there are six 1-parameter 
families of optimal EWs of the form Wk := |φk⟩⟨φk|Γ. For example one finds for W1: R00 = a2 + b2 = 1
, s = t = (0, 0, 2ab), and λ1 = −λ2 = a2 − b2, λ3 = a2 + b2 = 1. Hence, inequality (11) reduces to 
4|ab| + 1 ≤ 1 which implies that either (a = 1, b = 0) or (a = 0, b = 1). It shows that only four optimal EWs 
|ϕ±⟩⟨ϕ±|Γ and |ψ±⟩⟨ψ±|Γ satisfy inequality (11).
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A sufficient condition for complete positivity
As a byproduct of our analysis let us formulate the sufficient condition for complete positivity.

Proposition 2  A positive map (5) is a completely positive if the following condition holds:

	
∥s∥2 + ∥t∥2 + Tr(ΛΛT ) ≤ R2

00

d1d2 − 1 .� (29)

Proof  According to a celebrated theorem of Choi26, a map is completely positive if its Choi matrix

	
CΦ = d1(Id1 ⊗ Φ)(|ϕ+⟩⟨ϕ+|) =

d1∑
m,n=1

|m⟩⟨n| ⊗ Φ(|m⟩⟨n|),� (30)

is positive. One finds

	
CΦ =

∑
α,β

RβαΓT
α ⊗ Ωβ ,� (31)

and hence

	
CΦ = R00√

d1d2
Id1 ⊗ Id2 + 1√

d2
s · ΓT ⊗ Id2 + 1√

d1
Id1 ⊗ t · Ω +

∑
k,i

ΛkiΓT
i ⊗ Ωk,� (32)

from which we find

	 Tr(CΦ) = R00
√

d1d2, Tr(C2
Φ) = R2

00 + ∥s∥2 + ∥t∥2 + Tr(ΛT Λ).� (33)

Mehta’s Lemma (10) implies (29) which completes the proof. □

Example 5  As an example consider the trace-preserving qubit maps Φ with diagonal elements Λij = δijλi. 
Then the condition for positivity of the map is given from (11) to be

	
√

t2
1 + t2

2 + t2
3 + λmax ≤ 1,� (34)

and the condition of complete positivity is given from (29) to be

	
∥t∥2 +

∑
i

λ2
i ≤ 1

3 .� (35)

We shoud emphasize that since the Mehta’s condition is a sufficient conditions, the above inequalities determine 
only a subset of positive and completely positive maps. For example, if we restrict ourselves to unital maps, then 
the condition (29) is given by

	
λ2

1 + λ2
2 + λ2

3 ≤ 1
3 ,

which is a sphere of radius r = 1√
3  and is a subset of the Fujiwara-Algoet tetrahedron23

	 |λ1 + λ2| ≤ 1 + λ3 |λ1 − λ2| ≤ 1 − λ3.

A comparison of the volumes of these two sets shows that 30 percents of the completely positive unital maps for 
qubits are detected by this simple use of Mehta’s criteria, figure (1).

Mirorred witnesses
The concept of a mirrored entanglement witness was introduced in Ref.14: given an entanglement witness W one 
defines a family

	 Wµ := µId1 ⊗ Id2 − W.� (36)

It is proved14 that there exists a minimal µ0 such that for all µ ≥ µ0, Wµ is non-negative on separable states. If 
WM := Wµ0  is an EW one calls (W, WM) a mirrored pair of EWs14.
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Proposition 3  If W satisfies (11), then for µ ≥ 2R00√
d1d2

, Wµ is non-negative on separable states.

Proof  indeed, if W is characterized by (R00, s, t, Λ) an operator Wµ is characterized by 
(µ

√
d1d2 − R00, −s, −t, −Λ). Hence, if W satisfies (11) and µ

√
d1d2 − R00 ≥ R00, then Wµ satisfies (11) as 

well. A condition µ
√

d1d2 − R00 ≥ R00 provides a lower bound µ ≥ 2R00√
d1d2

 □

Example 6  Consider an EW corresponding to the celebrated Choi map14,15

	
W =

2∑
i=0

(
2|i, i⟩⟨i, i| + |i, i − 1⟩⟨i, i − 1| − 3|ϕ+⟩⟨ϕ+|

)
,� (37)

where |ϕ+⟩ = (|0, 0⟩ + |1, 1⟩ + |2, 2⟩)/
√

3 is a Bell state. One easily finds R00 = 2, s = t = 0, and ∥Λ∥∞ = 1
, and hence

	
∥Λ∥∞ = R00

2 ,� (38)

that is, the inequality (11) is saturated. One has 2R00√
d1d2

= 4
3  and reproduces µ0 = 4

3  found in Ref.15.

Entanglement Witnesses and realignment-like criterion
Consider a bi-partite state living in Hd1 ⊗ Hd2  and represented by

	
ρ =

∑
α,β

CβαΓT
α ⊗ Ωβ .� (39)

Due to the celebrated realignment criterion10–12 one has

Proposition 4  If ρ is separable, then

	 ∥C∥1 ≤ 1.� (40)

Actually, the above criterion was recently generalized as follows27: let us introduce two square diagonal matrices:

Figure 1.  Example of qubit maps, with eigenvalues of affine transformation given by λ1, λ2 and λ3. Restricting 
to unital maps, the tethdrahedron shows the complete set of unital maps as derived from the Fujiwara-Algoet 
condition, the sphere shows those maps which are derived from Mehta’s condition. Its volume is approximately 
30 percent of the volume of the tethrahedron.
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	 D1(x1) = diag{x1, 1, . . . , 1}, D2(x2) = diag{x2, 1, . . . , 1},

where D1(x1) is d2
1 × d2

1 and D2(x2) is d2
2 × d2

2, and the real parameters x1, x2 ≥ 0. One proves27

Theorem 2  If ρ is separable, then

	 ∥D1(x1)CD2(x2)∥1 ≤ N1(x1)N2(x2),� (41)

where

	
N1(x1) =

√
d1 − 1 + x2

1
d1

N2(x2) =

√
d2 − 1 + x2

2
d2

,� (42)

for arbitrary x1, x2 ≥ 0.

Note that for (x1, x2) = (1, 1) the inequality (41) reproduces CCNR criterion. Moreover, for (x1, x2) = (0, 0) 
it reproduces separability criterion derived by de Vicente28. If d1 = d2, then CCNR criterion is stronger than 
the de Vicente criterion28. However, for bipartite states ρ with maximally mixed marginals ρ1 = Id1 /d1 and 
ρ2 = Id2 /d2, the de Vicente criterion is stronger than CCNR if d1 ̸= d2, and they are equivalent if d1 = d228. 
Here we prove the following result:

Theorem 3  The criterion (41) corresponding to (x1, x2) = (0, 0) is equivalent to the entire class of entanglement 
witnesses characterized by (11).

Proof  consider an EW

	
W =

∑
α,β

RβαΓT
α ⊗ Ωβ = R00Γ0 ⊗ Ω0 + s · Γ ⊗ Ω0 + Γ0 ⊗ t · Ω +

∑
k,i

ΛkiΓT
i ⊗ Ωk,� (43)

and a bipartite state ρ ∈ D(Hd1 ⊗ Hd2 ) be a bi-partite density matrix given by

	
ρ =

∑
α,β

CβαΓT
α ⊗ Ωβ = 1√

d1d2
Γ0 ⊗ Ω0 + r1 · Γ ⊗ Ω0 + Γ0 ⊗ r2 · Ω +

∑
k,i

QkiΓT
i ⊗ Ωk.� (44)

One finds

	
Tr(W ρ) = R00√

d1d2
+ r1 · s + r2 · t + Tr(QΛT ).� (45)

In the above expression, the triple (r1, r2, Q) represent the data of the density matrix and the triple (s, t, Λ) 
represent the data of the entanglement witness W. Given ρ let us minimize Tr(W ρ) over all EWs from the class 
(11). one obviously has

	 s = −xr1, t = −yr2,� (46)

where x and y are positive constants. To choose Λ, we note the singular value decomposition of Q = OqO′, 
where O and O′ are orthogonal matrices and qij = qiδij , where qi are singular values of Q. Let Λ = O′T λOT

, where λij = −λmaxδij .

One has

	
Tr(QΛT ) = −λmax

∑
i

qi = −λmax∥Q∥1.� (47)

Putting everything together, we find

	
Tr(ρW ) = R00√

d1d2
− x∥r1∥2 − y∥r2∥2 − λmax∥Q∥1,� (48)

where ∥Q∥1 is the trace norm of Q. Now we have to minimize this with respect to the data of the entanglement 
witness (x, y, λmax) while respecting the condition (11), which now takes the form
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	 y
√

d2 − 1∥r2∥ + x
√

d1 − 1∥r1∥ + λmax

√
(d1 − 1)(d2 − 1) ≤ R00.� (49)

The above condition defines a simplex in the Cartesion space (x, y, λmax) with vertices v0 = (0, 0, 0), and

	
v1 =

(
R00

∥r1∥
√

d1 − 1
, 0, 0

)
, v2 =

(
0,

R00

∥r2∥
√

d2 − 1
, 0

)
, v3 =

(
0, 0,

R00√
(d1 − 1)(d2 − 1)

)
.� (50)

Since Tr(W ρ) is a linear function of (x, y, λmax), it achieves its minimum on one of the above vertices. One 
easily finds the value of Tr(Wiρ) corresponding to the vertex vi

	
Tr(Wiρ) = R00√

d1d2
Fi, i = 0, 1, 2, 3,� (51)

where F0 = 1, and

	
F1 = 1 − ∥r1∥

√
d1d2

d1 − 1 , F2 = 1 − ∥r2∥
√

d1d2

d2 − 1 , F3 = 1 − ∥Q∥1

√
d1d2

(d1 − 1)(d2 − 1) .� (52)

Positivity of the reduced density matrices ρ1 ∈ D(Hd1 ) and ρ2 ∈ D(Hd2 ) imply that F1 and F2 are always 
non-negative. The condition F3 ≥ 0 is equivalent to

	
∥Q∥1 ≤

√
(d1 − 1)(d2 − 1)

d1d2
,� (53)

which reproduces (41) for (x1, x2) = (0, 0). □

Example 7  In Ref.29 the following family of PPT entangled states in C4 ⊗ C4 is introduced

	

ρ = 1
N




1 . . . . 1 . . . . 1 . . . . 1
. 1

a
. . . . . . . . . . . . 1 .

. . 1 . . . . . 1 . . . . . . .

. . . a . . 1 . . . . . . . . .

. . . . a . . . . . . 1 . . . .
1 . . . . 1 . . . . 1 . . . . 1
. . . 1 . . 1

a
. . . . . . . . .

. . . . . . . 1 . . . . . 1 . .

. . 1 . . . . . 1 . . . . . . .

. . . . . . . . . a . . 1 . . .
1 . . . . 1 . . . . 1 . . . . 1
. . . . 1 . . . . . . 1

a
. . . .

. . . . . . . . . 1 . . 1
a

. . .
. . . . . . . 1 . . . . . 1 . .
. 1 . . . . . . . . . . . . a .
1 . . . . 1 . . . . 1 . . . . 1




,� (54)

where dots represent zeros, and N = 4a + 4
a

+ 8 stands for the normalization factor, and it is shown that 
their entanglement can be detected by an entanglement witness, called Wext, which shows that these states are 
entangled in the interval 0 < a < 1. We now show that the interval of entanglement of these states is in fact 
much larger and covers the whole positive line 0 < a < ∞, except the point a = 1. To show this, the Q matrix 
corresponding to (54) is calculated, which turns out to be

	
Q = 1

(a + 1)2

(
A ⊕ A′ ⊕ B

)
,

where

	

A =




a
4 . . . . a

4
. a

2 . . . .
. . a

4
a
4 . .

. . a
4

a
4 . .

. . . . a
2 .

a
4 . . . . a

4


 , A′ =




− a
4 . . . . a

4
. . . . . .
. . − a

4 − a
4 . .

. . − a
4 − a

4 . .
. . . . . .
a
4 . . . . − a

4


 , B =




− (a−1)2

8 − a2+2a−3
8

√
3 − (a−1)a

2
√

6
3a2−2a−1

8
√

3 − (a−1)2

24 − a2+a−2
6

√
2

a−1
2

√
6

2a2−a−1
6

√
2 − (a−1)2

12


 ,

with singular values given as

	

{ |a − 1|
4 |a + 1| (×2), |a|

2(a + 1)2 (×6), (a − 1)2

4(a + 1)2

}
.
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This leads to

	
∥Q∥1 = 1

4
(a − 1)2

(a + 1)2 + 3 |a|
(a + 1)2 + 1

2

∣∣∣a − 1
a + 1

∣∣∣ .

Figure 2 shows that the value of γ = ∥Q∥1 is always larger than 
√

(d1−1)(d2−1)
d1d2

= 3
4  except for a = 1.

Note that by a < ∞, we are emphasizing that a should be a finite value. In fact, in the limit a → ∞, the state 
approaches to

	
ρ∞ = 1

4

(
|03⟩⟨03| + |10⟩⟨10| + |11⟩⟨11| + |22⟩⟨22|

)
,

which is obviously separable. Incidentally, this is the limiting case where γ approaches the value 3
4 .

Example 8  In Ref.9 Terhal introduced a family of UPB for 3 ⊗ n systems. Here we take n = 4 and show that our 
criterion (53) can detect the corresponding PPT entangled state in 3 ⊗ 4. The UPB states for the 3 × 4 system 
are:

	

|ψ0⟩ = 1√
2

|0⟩ ⊗ (|1⟩ − |3⟩), |ψ1⟩ = 1√
2

|1⟩ ⊗ (|2⟩ − |3⟩), |ψ2⟩ = 1√
2

|2⟩ ⊗ (|0⟩ − |3⟩), |ψ3⟩ = 1√
2

(|0⟩ − |1⟩) ⊗ |0⟩,

|ψ4⟩ = 1√
2

(|1⟩ − |2⟩) ⊗ |1⟩, |ψ5⟩ = 1√
2

(|2⟩ − |0⟩) ⊗ |2⟩, |ψ6⟩ = 1√
12

2∑
i=0

3∑
j=0

|i⟩ ⊗ |j⟩.

The PPT entangled state ρ = 1
6 (I −

∑6
i=0 |ψi⟩⟨ψi|) turns out to be

	

ρ = 1
60




5 −1 −1 −1 5 −1 −1 −1 −1 −1 −1 −1
−1 5 −1 5 −1 −1 −1 −1 −1 −1 −1 −1
−1 −1 5 −1 −1 −1 −1 −1 −1 −1 5 −1
−1 5 −1 5 −1 −1 −1 −1 −1 −1 −1 −1
5 −1 −1 −1 5 −1 −1 −1 −1 −1 −1 −1

−1 −1 −1 −1 −1 5 −1 −1 −1 5 −1 −1
−1 −1 −1 −1 −1 −1 5 5 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 5 5 −1 −1 −1 −1
−1 −1 −1 −1 −1 −1 −1 −1 5 −1 −1 5
−1 −1 −1 −1 −1 5 −1 −1 −1 5 −1 −1
−1 −1 5 −1 −1 −1 −1 −1 −1 −1 5 −1
−1 −1 −1 −1 −1 −1 −1 −1 5 −1 −1 5




.� (55)

The corresponding Q matrix is given by

Figure 2.  A state (54) is entangled for 0 < a < ∞; a ̸= 1.
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Q = 1

30

(
−J3×6 03×6 A
03×6 03×6 03×3

B 02×6 02×3

)
,

where

	

A =




3
√

3
√

3
2

0 −2
√

3
√

3
2

−3 −
√

3
√

3
2


 , B =

( 0 0 0 0 3 −3
0 0 0 −2

√
3

√
3

√
3

)
,

and the 3 × 6 matrix Jij = 1. The singular values of Q are found to be

	

{
1

2
√

10
,

1
5
√

2
,

1
5
√

2
,

1
5
√

2
,

1
5
√

2

}
,

and we find

	
∥Q∥1 = 1

2
√

10
+ 4

5
√

2
= 8 +

√
5

10
√

2
,

which is greater than 
√

(d1−1)(d2−1)
d1d2

= 1√
2 . This shows that the PPT state (55) is entangled.

Conclusions
Mehta’s lemma provides a simple sufficient condition for a Hermitian matrix to be positive. We have used this 
lemma to construct a large family of positive maps and characterized them in terms of their corresponding affine 
transformations, i.e. transformation of the so-called Bloch vector r −→ Λr + x0t. Using the correspondence 
between entanglement witnesses and positive (but not completely positive) maps, a multi-parameter family of 
entanglement witnesses for bipartite systems with different dimensions was constructed. This family is uniquely 
characterized by {R00, s, t, Λ} satisfying the very condition (13). Actually, several well-known positive maps 
belong to this family. Prominent examples are the reduction map21, its generalizations22, and the Choi map for 
d1 = d2 = 3. This shows that both decomposable and non-decomposable positive maps can be constructed this 
way. Interestingly, the transposition map belongs to this family but only if d1 = d2 = 2. Let us recall, that due to 
the seminal Peres-Horodecki results6,7 transposition map detects all entangled states whenever d1d2 ≤ 6. Hence 
the proposed construction is important for systems that allow for PPT entangled states. Both transposition, 
reduction, any many other well-known positive maps are both trace-preserving and unital. It should be stresses 
that presented method enables one to construct positive maps which are neither unital nor trace-preserving by 
including two nontrivial vectors s and t.

Interestingly, it is shown that this class of witnesses is equivalent to a single realignment-like criterion already 
analyzed by de Vicente28. It simply means that any entangled state which is detected by de Vicente criterion is 
also detected by some map, or equivalently an entanglement witness, from the above family. It should be stressed 
that contrary to the realignment-like criterion the method based on a particular entanglement witness does not 
require full state tomography and hence usually is more experimental friendly. The power of this criterion is 
illustrated by two examples of PPT entangled states in 4 ⊗ 4 and 3 ⊗ 4 systems.

It would be interesting to extend proposed construction for multipartite scenario. The multipartite 
generalization of realignment-like criteria was already analyzed by several authors27,30–32. Now, on the level of 
maps instead of positive maps Φ : L(Hd1 ) → L(Hd2 ) one considers linear maps

	 Φ : L(Hd1 ⊗ . . . ⊗ Hdn−1 ) → L(Hdn ),� (56)

which are positive but only on product positive operators from L+(Hd1 ) ⊗ . . . ⊗ L+(Hdn−1 ). Construction of 
such maps is much more demanding than construction of positive maps Φ : L(Hd1 ) → L(Hd2 ). Using similar 
techniques based on generalized Bloch vectors we plan to provide a similar construction of linear maps satisfying 
(56). In particular this method enables one to construct maps which are neither unital nor trace-preserving.

Another interesting problem is related to optimality. Optimal entanglement witnesses are of particular 
importance in entanglement theory2,8,33. It would be interesting to decide which sets of parameters satisfying

	
√

d2 − 1∥t∥ +
√

d1 − 1∥s∥ +
√

(d1 − 1)(d2 − 1)∥Λ∥∞ = R00,� (57)

that is, saturating inequality (11), give rise to optimal entanglement witnesses. We postpone these questions for 
the future work.
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