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Abstract

Developing Free Electron Lasers (FEL) using Laser
Plasma Acceleration opens great hopes for compact labor-
atory scale light sources. The COXINEL line developed at
Synchrotron SOLEIL (France), after having been installed
at Laboratoire d’Optique Appliquée (France), has been
moved to Helmholtz-Zentrum Dresden-Rossendorf
(HZDR) (Germany) for using high-quality electron beam
generated by the 150 TW DRACO laser. After proper elec-
tron beam transport, seed and undulator radiation temporal,
spectral and spatial overlaps, the seeded Free Electron La-
ser driven by the DRACO laser plasma accelerator has
been observed in the UV. Good agreement is found be-
tween measurements and simulations.

INTRODUCTION

Accelerator based light sources are nowadays knowing
a very large development, serving for a variety of scientific
investigations. Among them, Free Electron laser originates
from the laser invention [1, 2], where the gain medium con-
sists of relativistic electrons in the magnetic field of an un-
dulator, leading under certain conditions to an electron
bunching and coherent emission [3]. After the first infra-
red [4] and visible [5] FELs in the oscillator configuration,
and coherent harmonic generation in the UV-VUYV [6, 7],
Self-Amplified Spontaneous Emission (SASE) was devel-
oped starting with long wavelengths [8]. FEL operation
was then extended to shorter ones down to the X-ray range
[9], thanks to high quality electron beams provided by
photo-injectors and state-of-the-art accelerators, which
performance have been updated in view of the next gener-
ation colliders. Longitudinal coherence is improved with
external seeding [10] and self-seeding [11].

Laser Plasma Acceleration (LPA) concept [12] was also
proposed after the laser discovery. An ultrashort and in-
tense laser focused in a gas cell/jet excites a plasma
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oscillation, leading to a strong longitudinal accelerating
field. High power lasers using chirped pulse amplification
[13] boosted experimental demonstrations with hun-
dred MeV range beams with few percent energy spread
[14-16]. It opened the hope for driving FELs with LPA[17,
18] considering using a 5 fs- 1 PW laser leading to an LPA
with 1.74 GeV, 0.1 % energy spread, 10 prad divergence,
20 um beam size, 1 nC charge and 150 kA peak current.

LPA experimental results kept progressing, reaching
~100 GV/m accelerating field with electron beams up to
8 GeV [19], 0.4%—1.2% energy spread [20], nC charge [21,
22], few fs bunch duration [23], and low emittance
(~mm-mrad) [24]. These electron beam features, not sim-
ultaneously achieved, do not reach yet the ones currently
achieved on conventional accelerators but they approach to
what is needed for an FEL application with an adequate
beam handling. Indeed, the first LPA based FEL has been
demonstrated at SIOM with state-of-the-art LPA perfor-
mance and three undulator segments at 27 nm in the SASE
regime [25]. The second LPA driven FEL has been
achieved on COXINEL (COherent X-ray source INferred
from Electrons accelerated by lasers) at HZDR in the
seeded configuration at 267 nm [26], enabling for an im-
proved longitudinal coherence. After describing the design
of COXINEL, its first preliminary results when installed at
Laboratoire d’Optique Appliquée (LOA), the seeded FEL
achieved at HZDR is presented.

COXINEL PREPARATION
COXINEL Design

Initial discussions between Laboratoire d’Optique Ap-
pliquée and Synchrotron SOLEIL for feasibility experi-
ment to drive an FEL with LPA started in 2010. The COX-
INEL line was designed considering a 200 MeV electron
beam with a 1 mrad RMS divergence, 1 pm RMS beam
size, 3.3 fs RMS bunch length, 34 pC charge, 1% energy
spread, 1 mm-mrad normalised emittance. In the line de-
sign, the 1 mrad divergence (as compared to a typical
100 urad on conventional accelerator) is handled via a

THXD1
3903

e=ga Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.




14th International Particle Accelerator Conference,Venice, Italy

JACoW Publishing

ISBN: 978-3-95450-231-8

ISSN: 2673-5490

doi: 10.18429/JACoW-IPAC2023-THXD1



3903

THXD: MC03.3 - Novel Particle Sources and Acceleration Techniques (Invited)

THXD1

Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.


@2z Content from this work may be used under the terms of the CC BY 4.0 licence (© 2022). Any distribution of this work must maintain attribution to the author(s), title of the work, publisher, and DOI.

14th International Particle Accelerator Conference,Venice, Italy

ISBN: 978-3-95450-231-8

strong transverse focusing [27, 28] right after the gas jet to
avoid for emittance chromatic growth [29]. The large en-
ergy spread (1% as compared to typically 0.01% on con-
ventional acceleration) is mitigated by a magnetic chicane:
the slice energy spread is reduced by the chicane decom-
pression factor and the bunch duration lengthens by the
same factor, while the peak current decreases accordingly.
One can take further advantage of the energy/position cor-
relation introduced in the chicane to synchronize the elec-
tron beam transverse focusing with the light progress along
the undulator, in the so-called “chromatic matching” re-
gime [28]. The electron beam transport has been modelled
including collective effects such as space charge and co-
herent synchrotron radiation [30]. FEL sensitivity to pa-
rameters has been studied [31]. The FEL features were an-
alysed [32], showing a red-shifted FEL resulting from the
chicane induced energy chirp coupled with undulator dis-
persion and fringes resulting from the inferences between
the seed and the FEL, from which an FEL pulse reconstruc-
tion could be foreseen.

COXINEL Equipment

The so-called QUAPEVA quadrupoles designed for the
strong focusing are built with permanent magnets enabling
gradients up to 200 T/m with 50 % variability while main-
taining the magnetic axis [33-35]. The chicane made of
four electromagnetic dipoles powered by a Sigmaphi
power supply reduces the energy spread and allows for the
seed mirror insertion. An electromagnetic dipole dump is
installed at the end of the chicane. Four electromagnetic
quadrupoles located upstream the undulator are fed by
10 A power supplies from Sigmaphi. Four electromagnetic
correctors are distributed along the line (after the LPA
chamber, after the chicane, at undulator entrance and exit).

For going along with the compact LPA driving the FEL,
short period high field undulators are preferred [36]. Three
different 2-meter long undulators have been used for COX-
INEL: first the spare SOLEIL In Vacuum Undulator of
20 mm period (IVU20), replaced by the Cryogenic perma-
nent Magnet Undulator of 18 mm period (CPMU18#2) op-
erated at room temperature at LOA and then the IVU20#8
for the HZDR, since the CPMU18#2 was needed at SO-
LEIL [37, 38]. The magnetic field first harmonic B, versus
gap g fitted from the measurements B, = 2.58exp[—3.37 g
+0.095g?] provides a maximum deflection parameter K,
of 2.47 at 4 mm minimum gap.

The COXINEL line is equipped with five motorized
electron beam imagers at the exit of the LPA, at the chicane
centre, at the entrance and exit of the undulator. The im-
agers consist of a scintillating screen, an imaging optics
and a camera (Basler acA640 for the first one at LPA exit,
HAMAMATSU, ORCA Flash 4.0 for the others), with res-
olutions of 150 pm for the first imager at the LPA exit, 4.7
um in horizontal and vertical for the second imager located
in the chicane for single shot emittance measurement, 6.0
(6.4) (resp. 6.5 (6.8)) um in horizontal (vertical) at the un-
dulator entrance (resp. exit) and 4.7 um in horizontal and
vertical for the beam dump imager. Turbo Integrating Cur-
rent transformers (ICTs) from Bergoz, are located just after
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he LPA chamber and at the undulator exit [39]. The radia-
tion is collected after the dipole dump by a plano-convex
Fused Si of 40 cm focal length followed by plano-concave
Fused Si of — 20 cm focal length. This optical set up ena-
bles to image the radiation along the undulator, either on
an UV camera (Hamamatsu ORCA-II UV) or on a 2D
spectrometer (Horiba/Jobin-Yvon iHR320) equipped with
a CCD camera.

The different components have been prepared, pre-as-
sembled with the mechanical and vacuum components and
aligned on their specific girders [40-42].

COXINEL FIRST RESULTS AT LOA

Mastered Electron Beam Transport

The COXINEL line has been installed in February
March 2016 and aligned in Salle Jaune at LOA. The
60 TW, 800 nm, 30 fs FWHM Ti:Sapphire laser is used for
the LPA. Even though COXINEL was designed consider-
ing a colliding scheme [16], the LPA was operated mainly
in the ionization injection scheme with the laser focused
into a supersonic jet filled a gas mixture (99% Helium, 1%
Nitrogen) with a focal spot of 12 x 15 pm? FWHM.

The electron beam generation is optimised and charac-
terized with a first electron spectrometer, located 355 mm
from the gas jet, consisting of a removable permanent mag-
net dipole (1.1 T field, 10 cm length) and a phosphor screen
imaged on a CCD camera, providing a spectral resolution
varying between 2.7 and 3.8% between 50 and 280 MeV.
Electrons were generated with a broad energy spectrum. In
2017-2018, the typical slice vertical divergence measured
on the spectrometer was typically of 3.5 mrad. The hori-
zontal divergence is deduced from the vertical one, using a
normalization factor measured on the first screen without
QUAPEVAs.

The electron beam has been rapidly transported [43] but
it appeared essential to motorize the QUAPEVAs under
vacuum to insert or remove them for new characterization
and readjustments of the electron beam. The first ICT that
had initially been installed in the LPA generation chamber
was moved downstream, out of the LPA chamber, to avoid
false detection. In order to properly transport the electron
beam and reproduce the expected electron beam profiles
from the transport modelling with BETA [44], a beam-
based alignment method was tried but the stability of the
electron beam was not sufficient to get conclusive results.
A Beam Pointing Alignment Compensation (BPAC)
method was then developed, using the transfer matrix re-
sponse of the line and the ability to move vertically and
horizontally each QUAPEVA independently. Such a BPAC
allows both the position and the dispersion of the electron
beam to be adjusted independently [45]. An observed slight
tilt on the beam image was attributed to skew quadrupolar
components of the QUAPEVAs, that have been further cor-
rected in the magnetic measurement laboratory [46, 47].

Shock injection [48] was also tested and appeared less
stable, so ionization injection was preferred for first align-
ment steps. A slit was then inserted in the chicane to reduce
the electron beam energy spread [49] in ionization
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injection. Further improvements on the LPA tuning ena-
bled to limit the divergence and improve the charge den-
sity.

Controlled Undulator Radiation

LPA based undulator radiation had been previously ob-
served on different experiments [50-52]. On COXINEL,
the transverse undulator radiation was first measured using
several bandpass filters and compared to simulations [43].
Then, the undulator resonant wavelength was adjusted
while varying the undulator gap [53]. The first harmonic
spectral bandwidth was controlled by adjusting the energy
spread via the slit located in the chicane, showing a good
agreement with simulations of the beam transport and un-
dulator radiation (with SRW code [54]) and analytical ex-
pressions.

FEL Search

In view of a seeded FEL demonstration, a seed was first
prepared with High order Harmonics generated in Gas at
200 and 270 nm, and then with an EKSMA kit at 270 nm
for easier operation out of vacuum. For FEL search, the
electron and the seed were spatially overlapped by imaging
in the undulator, spectrally tuned on the spectrometer, syn-
chronised with a photodiode and then by spatial interfer-
ence for the first attempts, and then with a Hamamatsu
FESCA streak camera for the second trials. Despite the im-
provements after an upgrade of the laser, the electron beam
quality with 1.5 mrad divergence and 1.5 pC/MeV was still
too far from the baseline reference parameters and the
seeded FEL demonstration could not be achieved at LOA.

COXINEL LINE INSTALLATION AT
HZDR

Feasibility Studies and Preparation

The electron beam results achieved with the DRACO la-
ser being close to the COXINEL baseline reference case, it
was considered to move the line at HZDR in case of an
unsuccessful FEL search at LOA. Feasibilities studies in
2020-2021 covered the adaptation to the infrastructure (see
Fig. 1), new electron beam measurements at 200 MeV, the
energy of interest for a seeded FEL at 270 nm on COXI-
NEL, followed by the adjustment of the electron beam
transport and FEL modelling with GENESIS [55]. The
QUAPEVAs have been modified with Phytron motors for
better vacuum compatibility. A new in-vacuum undulator
has been built because the one used at LOA was needed for
other purposes. A new server with an update version of
TANGO was prepared. It was decided to move in Septem-
ber 2021.
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Figure 1: Implementation of the COXINEL line in HZDR
LPA cave.

Line Transport and Installation

The line was transported and installed in the HZDR cave
at the end of October 2021 (see Fig. 2), with members of
different SOLEIL groups (mechanical engineering, vac-
uum, magnet and insertion devices, power supplies, diag-
nostics, alignment). The girders and the different equip-
ment have been aligned with a theodolite and a laser
tracker, taking the cross reference of the HZDR laser posi-
tions and fiducial references taken on the magnet measure-
ment bench for the undulator.

SA < & — 4
Figure 2: Picture of the COXINEL line installed in HZDR
LPA cave.
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Figure 3: LPA e beam generated by the DRACO laser char-
acterized on the magnetic spectrometer.

The LPA is operated with the 100 TW branch of the
DRACO laser (30 fs FWHM, 2.1 J on target) in the tailored
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self-truncated ionization-induced injection [56] with 99 %
He-1 % N gas mixture. In such a configuration at 188
MeV, beam loading limits the energy spread to 6 % RMS
[21] and shaping the gas density profile induces a passive
plasma lens which provides moderate divergences (in the
horizontal plane of 0.8 mrad), leading to 6.3 pC/MeV
FWHM average charge density [26]. The electron bunch
duration estimate is of 14.8 fs FWHM [23]. Successive
spectra shown in Fig. 3 indicates the rather good stability
of the facility, with small energy deviation from shot to
shot.

COXINEL ELECTRON BEAM
TRANSPORT AND SPONTANEOUS EMIS-
SION AT HZDR

The envelops of the electron beam transport along the
COXINEL line are shown in Fig. 4 for three different elec-
tron beam energies.
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Figure 4: Electron beam envelops for different electron
beam energies (ELEGANT simulations [57]).

Electron beam transport along the COXINEL line was
carried out in December 2021 (see Fig. 5). Because of its
limited energy spread as compared to previous measure-
ments at LOA, the crossed shape on the electron beam im-
agers practically disappears. Up to 150 pC are measured
onto the ICT located at the exit of the undulator.
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Figure 5: First electron beam transport of the HZDR LPA
beam in COXINEL line (measured with the chromatic
matching optics) and undulator radiation (measured with a
slit optics with a slit close at 1 mm, leading to an energy
spread of 0.9 % rms).
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Undulator spontaneous emission was also measured, ex-
hibiting the expected characteristics (as shown in Fig. 5).

COXINEL SEEDED FEL AT HZDR

The Seed Preparation at 269 nm

The seed has been prepared by the HZDR team. A small
fraction of the LPA driver laser is frequency tripled
(EKSMA femtokit) with a group velocity compensation.
The seed is then spectrally and spatially filtered, and
stretched to 1 ps FWHM. The seed has a 3.9 nm (FWHM)
bandwidth. It is injected into the COXINEL line with an Al
mirror. The measured energy is of 0.8 pJ at injection and
of 0.5 pJ at the undulator exit.

Seed and Undulator Radiation Overlap

The seed and undulator radiation are spectrally tuned
looking at their spectra on the iHR320 Horiba-Jobin Yvon
spectrometer, spatially overlapped by imaging in the undu-
lator on a Hamamatsu ORCA-II UV camera and tempo-
rally synchronised looking at the arrival times with a
FESCA 100 Hamamatsu streak camera from HZDR.

Seeded FEL Evidence

First FEL search took place in February 2022. During
the first delay scan, the FEL signal was observed, as shown
in Fig. 6 [26]. The FEL is red-shifted, as expected [32].

200

100

Vertical axis (pixel)

250 260 270 280 290
Wavelength (nm)

Figure 6: First seeded FEL signal measured on COXINEL
at HZDR.

The FEL effect is confirmed by observing separately the
seed, the spontaneous undulator radiation and the FEL. The
measurements are in agreement with transport and radia-
tion calculations using measured electron parameters at the
source [26]. The quadratic charge dependence is confirmed
[26]. Dependence versus delay [26] is also studied and
compared to modelling: the red shift corresponds to the ex-
pectations from the simulations and analytic calculations
[26, 32]. The dependence versus delay provides an addi-
tional wavelength tuning. The undulator gap dependence
for wavelength tuning has also been checked. The expected
fringes resulting from the phase-locked interference of the
seed and the coherent are observed [26, 32], confirming the
longitudinal coherence of the COXINEL seeded FEL at
HZDR. The various measurements have been reconfirmed
during another experimental session in Nov. 2022.
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CONCLUSION

The first seeded FEL driven by a LPA is reported here in
the UV [26]. Such a success results mainly from the quality
of the HZDR LPA beams, following years on efforts on
beam quality. Still, for reaching shorter wavelengths, fur-
ther electron beam improvements are foreseen, paving the
way for first pilot user experiments.
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