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Chapter 1

Introduction

1.1 Conformal Field Theory in Physics and Mathematics

Conformal quantum field theory in two dimensions has stimulated many new developments
in both mathematics and physics and has catalyzed much fruitful interaction between these
two fields. There are various good reasons to study these theories, and we will list a few
of them.

One motivation for physicists to investigate these theories comes from statistical me-
chanics: in the description of critical phenomena the renormalization ‘group’ has turned
out to be a very powerful tool. Applying it in the infra-red direction, the key idea is to
look at the system at a larger and larger scale, taking in a sense a poorer and poorer
magnifying glass. Technically this is achieved by integrating out degrees of freedom be-
longing to a larger and larger length scale. This way one obtains a flow on the space of
all (effective) theories. At the critical point fluctuations occur at all length scales, hence
the trajectory of the critical point under the renormalization group contains a point which
the renormalization transformations leave fixed. Evidently, at the fixed point the effective
theory is covariant under rescaling; in fact, one can argue [17] that this is not only true
for rescalings, but also for general conformal mappings: at this point the theory can be
described by a conformal field theory. We will see that in the case of two dimensions, this
leads to particularly powerful tools; in this thesis we will restrict ourselves to this case.

A second important motivation from physics is string theory: any vacuum configuration
of the string corresponds to a conformal field theory [77]. In string theory, point particles
are replaced by one-dimensional objects, strings. Evolving in time, the string sweeps out a
two-dimensional surface, the world sheet, which is the analogue of the world line of a point
particle. The coordinates of space-time (or some internal space) can then be interpreted
as fields defined on this world sheet. Any action now inherits — at least at the classical
level — not only symmetries from those of the target space, but symmetries also arise from
the fact that the action should be invariant under reparametrizations of the world sheet.
The latter include in particular conformal transformations, so that one ends up with a
conformal field theory, defined on the world sheet.

Quantum field theories in two dimensions show various particularly interesting features.
In four dimensions a quantum field theory can only describe particles with either bosonic or
fermionic statistics: exchanging two particles introduces a phase of +1 to the wavefunction.
In two dimensions the situation is more involved: the phase depends in general on the path
along which the particles have been exchanged. Therefore, it is not the permutation group
which governs the statistics but rather the braid group, leading to anyons which generalize
the notion of bosons and fermions in higher dimensions. Braid group statistics [38,40] which
is in particular realized in two-dimensional conformal field theories has been proposed e.g.
as one clue to the understanding of phenomena like high 7y superconductivity or the



fractional quantum Hall effect.

A slightly more abstract motivation for the study of conformal field theories is that
they provide specific examples of quantum field theories which are by far more tractable
than conventional quantum field theories are. Quantum field theory has turned out to be a
key concept in many branches of physics, ranging from the standard model of elementary
particle physics to applications in condensed matter physics, e.g. in the description of
superconductivity.

Also for pure mathematics, quantum field theory in general, and conformal field the-
ory in particular, has turned out to provide a most inspiring source for intuition. It
has not only provided new insight in existing fields (a good example for this is mirror
symmetry [144], which, for the quantum field theory, simply corresponds to two different
conventions for the assignment of u(1) charges, but gives surprisingly deep insight into
the problem of ‘counting’ curves on certain varieties), but has also provided new links be-
tween hitherto (nearly) unrelated areas of mathematics, involving e.g. C*-algebras, their
representation theory, infinite-dimensional Lie algebras, commutative algebra, the theory
of modular forms, number theory, differential and algebraic geometry, singularities and
catastrophe theory, link polynomials, just to name a few fields.

One other spin-off of conformal field theories are topological field theories which can
be obtained e.g. by twisting certain N = 2 superconformal theories; topological quantum
field theories have turned out to be a powerful tool to address various issues in algebraic
topology and geometry. We will construct explicit examples for N = 2 superconformal
theories in this thesis. In a different way, conformal field theories are also closely related to
topological field theories in three dimensions, e.g. Chern-Simons theories which allow for
the construction of link invariants and invariants of three-manifolds. Also, there are close
connections to other types of quantum field theories which are of mathematical interest,
e.g. Toda field theories, and to integrable systems.

We have been careful to call quantum field theory only a source for intuition; unfor-
tunately the mathematical status of quantum field theory at present is far from being
satisfactory. In fact, many fundamental aspects remain to be clarified: e.g. a rigorous def-
inition of a path integral is still missing for many classes of quantum field theories, e.g. for
gauge theories. In general, all non-perturbative features deserve a better understanding.
We therefore feel that it is very important to have examples in which on can calculate many
quantities at a non-perturbative level. One part of this thesis will therefore be devoted to
a special construction of conformal field theories, the so-called coset construction, which
allows for an exact description of many interesting conformal field theories.

We want to emphasize that looking at examples is not a luxury, or simply a remedy for
physicists’ lacking knowledge of higher mathematics. Experience has shown that this way
sometimes also surprising new insight can be obtained; a good example for this phenomenon
is again the discovery of mirror symmetry [144].

The rest of this introduction is organized as follows: we will explain some of the aspects
of conformal field theory which are relevant for this thesis. Then we will present several
concrete examples of conformal field theories which will be basic ingredients and funda-
mental examples: free bosons compactified on a circle, WZW theories, and coset conformal
field theories. We conclude the introduction by giving an outline of the rest of this thesis.



1.2 Coniormal 1ield theory

1.2.1 The chiral symmetry algebra

A conformal field theory is by definition a (two-dimensional) field theory that is conformally
invariant in the sense that the space of all fields carries a representation of the conformal
group respectively of the conformal algebra. This should be compared e.g. to the definition
of a Lorentz covariant theory in which the fields carry representations of the Lorentz group
and in which, as a consequence, the excitations can be classified by representations of the
relevant group respectively algebra.

At this point, one ought to define what ‘fields’ are. For a rigorous definition — which,
however, is beyond the scope of this introduction — one should therefore first choose an
axiomatic framework like e.g. the Wightman axioms [136], or the algebraic theory of su-
perselection sectors [79]. However, each of these systems has to be slightly modified to be
applied to two-dimensional conformal field theories, in the sense of the bootstrap approach
of Belavin, Polyakov and Zamolodchikov [12], so we refrain from presenting a more care-
ful analysis at this place and encourage the reader to think of ‘fields’ as operator valued
distributions over (Euclidean) space-time. Assuming that space-time is compact, we are
led to consider theories which are defined on two-dimensional compact Riemann surfaces.
The operators themselves are linear mappings of some Hilbert space; the construction of
these spaces in concrete examples will be addressed in this thesis.

Although we deal with quantum field theories we will never use path integrals. In
fact, even if we disregard the problem of defining path integrals rigorously and decide to
work at a purely formal level, it is not clear at all whether for all of the models we are
going to discuss a path integral formulation does exist. The purely algebraic formulation of
quantum field theories we are going to use may not directly appeal to geometric intuition;
however, it has the crucial advantage that it allows for many exact calculations and that
it therefore enables us to explore quantum field theories with non-perturbative methods.

In particular, we do not describe these theories by a Lagrangian density. In fact, thereis
no general argument known why any quantum field theory should be associated to an action
or even be a ‘quantization’ of a classical field theory. In the case of coset conformal field
theories there are several different proposals for Lagrangians and we are, at present, far from
having reached a complete understanding. In practice, in the Lagrangian approach mostly
results have been reproduced which had already been derived in the algebraic approach (see
e.g. [143] where some of the results of [103] are rederived): this nicely demonstrates that
the algebraic approach is superior in its computational power to the geometric approaches
using Lagrangian densities. Many ‘global’ questions are especially difficult to address in a
Lagrangian framework. One example for such global issues is modular invariance, which
e.g. leads, as we will see below, to the phenomenon of field identification in coset conformal
field theories; it is therefore not surprising that this effect has not been noticed in the
description of these models as gauged sigma-models [64,132].

Let us now have a closer look at conformal field theories in two dimensions; since the
description of local quantum field theories which are also conformally invariant involves
several subtleties [58,107] we will use here for simplicity a setting that is tailored to the
application of conformal field theory to string theory and statistical mechanics. Then
we can assume that space-time is Euclidean and compact; we restrict ourselves for the
time being to the case of a Riemann surface of genus 0. From complex analysis it is
well known that the mappings of the (compactified) complex plane that preserve angles



are precisely the holomorphic mappings. Given the real coordinates z°,z* it 1s therefore
natural to introduce complex coordinates 2,z by z,z = #' +iz?. All infinitesimal conformal
transformations are then generated by mappings

z— z+¢€, where ¢,=—2z""1. (1.2.1)
The corresponding generators on functions
l, =—2""8, resp. [,=—z""0, (1.2.2)
then span a Lie algebra with commutation relations
Ly lm] = (n —m) Ly s (1.2.3)

and analogously for I. In the sequel, our strategy will be to consider z and Z as two
independent complex variables, much in the spirit of ‘Wirtinger calculus’, and to set z
equal to the complex conjugate of z only at the end of our calculations.

It has been shown that the only anomaly the algebra (1.2.3) can develop in a quantum
field theory can be described by a central element C', which by definition commutes with any
other element of the algebra. This assertion, known as the Liischer-Mack theorem [105],
only assumes that the Wightman axioms hold, that the system is invariant under dilatations
and that there exists a conserved symmetric energy-momentum tensor. The algebra which
reflects the conformal symmetry in a two-dimensional quantum field theory is therefore the
Virasoro algebra Vir:

C
[Lny Lin) = (n —m)Lpym + E(n3 —1n)bntm0, [C,L,] =0. (1.2.4)
The same facts can also be described using the energy-momentum tensor: conformal
invariance of the theory implies that it is traceless. It has a purely holomorphic zz-
component T'(z) and a purely anti-holomorphic zZz-component T(z) . These components
can be thought of as generating functionals for the generators L,:

T(z) =Y L.z "% (1.2.5)

ne’l

The eigenvalue of Ly on a representation plays an important role: it is called the conformal
dimension. Its fractional part has the same value for all eigenvectors of Ly in one irreducible
representation 7; it will be denoted by A(7).

It follows that the fields should carry a representation of Vir @ Vir for two complex
variables z and zZ. Due to this direct sum structure, it is sufficient for many aspects to
restrict oneself to z and objects depending holomorphically on z. Again, there are more
rigorous arguments in one of the axiomatic frameworks [107]. Each of these halves is
called a chiral conformal field theory, which is effectively a one-dimensional theory, more
precisely a one-dimensional theory on the circle, 2 € S': the fact that the fields depend
holomorphically on z implies that, to describe the theory on the complex plane, it is
sufficient to describe it on the unit circle.

However, we will see that even from a purely mathematical point of view conformal field
theory is not just representation theory of the Virasoro algebra. For instance, the value ¢
of the central element C appearing in (1.2.4), the conformal or Virasoro anomaly, is the
same for any representation occurring in a given conformal field theory. Nonetheless, the



representation theory of the Virasoro algebra plays an important role and, fortunately, this
theory is well developed. As it turns out, certain values of the central charge c are especially
interesting: here only finitely many inequivalent unitary irreducible representations exist:
in this case a theory is called rational.

From a physical point of view rationality is not a fundamental property of a conformal
field theory. However, it is of utmost practical importance, since it allows to perform
many explicit calculations. This way one can explore many structures which are highly
interesting from a mathematical point of view, e.g. rational fusion rings or rational Hopf
algebras [137,46], a structure closely related to quantum groups.

For the Virasoro algebra rationality requires [71] that the value of the central charge
cis ¢ = 1—6/m(m + 1), where m is m = 3,4,.... The series of rational conformal
field theories with these values of the central charge is called the Virasoro-minimal series.
However, for many interesting applications, e.g. in string theory, higher values of ¢ are
required. In order to have still rational theories, one extends the Virasoro algebra to some
larger algebra, a so-called WW-algebra, and looks for the irreducible representations of this
algebra. The latter is also called the chiral symmetry algebra or symmetry algebra W of
the conformal field theory. However, not any extension of the Virasoro algebra defines a
conformal field theory; rather, locality of the theory requires that also on the modules of
W the conformal weight is uniquely defined modZ. One important example in this thesis
are WZW theories, in which the symmetry algebra is the semi-direct sum of the Virasoro
algebra Vir and an affine Lie algebra; they will be discussed in some detail below. Let us
remark that minimal series also occur for chiral algebras larger than the Virasoro algebra.

Analogously to the conformal algebra, which is covered by the Liischer-Mack theorem,
in a quantum conformal field theory with symmetry algebra W there can arise central
elements in the chiral algebra. In any representation that occurs in a quantum field theory
these central elements have to be represented by numbers; the fundamental reason for this
is that central charges are never local. There is also a practical argument: we will see below
that frequently one needs expressions in terms of these charges which only make sense for
numbers.

Since in physics one imposes the condition that the energy is bounded from below, the
class of irreducible highest weight representations is singled out in our considerations. The
corresponding fields which transform like the highest weight under the symmetry algebra
are usually called primary fields. Primary fields are thus in one-to-one correspondence with
the irreducible representations present in a conformal field theory.

1.2.2 Characters and modular invariance

An important tool for the description an irreducible representation of a chiral algebra is its
character. Characters are functions of one or several complex variables, which are defined
as traces of operators over the vector space which carries the irreducible representation.
The most important character, which can be defined for any chiral algebra, is the Virasoro
specialized character. It is a function of one complex variable 7, which is convergent in the
upper complex half-plane. It is defined as

Xg(7) i= trp e2m(Lo=3g) | (1.2.6)

A crucial observation is that the space of characters of the relevant representations of the
chiral algebra carries a representation of SLs(Z), the double covering of the modular group.



On the modular parameter 7 the modular group acts as

b
TH&, a,byec,deZ , ad—bc=1. (1.2.7)
et +d
The covering SLs(Z) of the modular group is freely generated by two elements S,
T modulo the relations S? = (ST)3, S* = 1, for the modular group PSLy(Z) this is
supplemented by the relation S = 1. S and T are represented on the modular parameter
T as

1
T:7r—7+1 and S:7+— ——; (1.2.8)

u
the corresponding unitary matrices on the space of characters are correspondingly referred
to as S-matrix and T-matrix:

1
XR(T—I- 1) = ZTRR’ XR’(T) and XR —; ZSRR’ XR’( ) (129)

RI

From the definition (1.2.6) we see that T' is a diagonal unitary matrix while S turns out
to be a symmetric unitary matrix. We will see below that knowing the characters as
functions of 7 typically is not sufficient to determine S and 7'; one has rather to use the
full characters.

Recall that as a consequence of the ‘Wirtinger’ split into z and z we decomposed a
conformal field theory into two chiral halves and consequently we obtain characters as
functions of 7 and 7 for the two chiral halves. To recover the full conformal field theory,
one has to match both halves: for the coordinates this is done by the prescription that z
should be the complex conjugate of z. Fields of the conformal field theory now carry a
representation of the direct sum of both chiral algebras W & W . For the conformal field
theory we have to specify how often the irreducible representation labelled by ¢ of W is
combined with the irreducible representation j of W: these non-negative integer numbers
Z;; can be combined into a matrix Z. The partition function of the conformal field theory
is then

- EXl zJXJ ) 0 (1.2.10)

where ultimately we have to set 7 to the complex conjugate of 7.

To qualify as a partition function of a physical theory, the matrix Z has to fulfill
a number of consistency requirements. It has to be positive and, since in a physical
theory the representation with lowest eigenvalue of Ly, the vacuum, has to be unique, the
corresponding matrix element Zy, has to be Zgo = 1. We will always use the index ‘0’
to refer to the vacuum. So far we have considered the conformal field theory only on the
complex plane, i.e., after compactification, on Riemannian surfaces of genus 0. Consistency
of the theory at higher genus can be shown to imply that the partition (1.2.10) is invariant
under the modular transformations (1.2.7). This is equivalent to the requirement that both
the S-matrix and the T-matrix commute with Z:

12,8 = [2,T] = o. (1.2.11)

There is, of course, always a trivial solution to these constraints: simply set Z to the
identity matrix. We will refer to this modular invariant as the trivial, diagonal or A-type
invariant. The fact that the space of characters should carry a unitary representation of
SLy(Z) turns out to be quite a powerful restriction. The example of coset conformal field



theories shows that its implementation is a highly non-trivial task. Also the problem ot
constructing a modular invariant partition function for a given set of characters turns out to
be very difficult: all modular invariant partition functions have been classified only in very
few cases, e.g. for the WZW theories based on A&l), the Virasoro minimal models [65,19,20],
and, recently, also for Agl) [60]. Part of this thesis is therefore devoted to the development
of new tools for their construction.

1.2.3 Fusion rings

We will now introduce the last piece of structural information about conformal field theory
needed in this thesis: the fusion rules. Field theory provides us with an associative product
of the fields, the operator product: upon forming radially ordered products, the fields realize
a closed associative operator product algebra. A large amount of information about the
operator product algebra is already contained in the fusion rules of primary fields ®; = ¢,
which can be written as formal products, t x5 = >, ./\/;jk k. ./\/;jk counts the number of
times that k appears in the operator product of ¢ and 7. It is important to realize that this
product of two representations of the chiral algebra is not the usual tensor product. This
is in fact quite easy to see: otherwise e.g. the central charges would add up, ciot = ¢1 + 2,
whereas the fusion product yields fields in the same conformal field theory, having the same
central charge.

Depending on whether one considers this product over the ring of integer numbers Z or
over the field of rational numbers Q, one obtains the structure of a fusion ring respectively
of a fusion algebra. These are associative and commutative algebras (respectively rings)
with a conjugation and unit, for which a distinguished basis exists (containing the vacuum
‘0’) in which the structure constants are non-negative integers: M’; € I>o.

We will deal with fusion rings in more detail in Section 5.1 of this thesis. One can
show that the so-called fusion matrices N; with entries (./\/;);c = M’; can be simultaneously
diagonalized by a unitary matrix S. For a conformal field theory it can be argued [111,138]
that S is just the symmetric matrix that implements the modular transformation 7 — —%
on the characters that was introduced in the previous section, leading to the Verlinde

formula [138]
k Sit S5k

N El: S (1.2.12)
One finds that charge conjugation is an involutive automorphism i — i1 of the fusion
ring. It is non-trivial precisely in the case when it is not the modular group PSLy(Z), but
rather its twofold cover SL,(Z) that acts on the space of primary fields. The S-matrix
elements involving conjugate fields are complex conjugates: S;+; = SF.
Automorphisms of fusion rings play an important role, since a deeper analysis of the
consistency requirements on higher genus [110,28] shows that any modular invariant par-
tition function that belongs to a fully consistent conformal field theory can be described
by an automorphism of the fusion rules on top of an extension of the chiral algebra. It
should be noted that more requirements than just modular invariance are necessary for
the existence and consistency of a conformal field theory; it is thus not surprising that
we will encounter modular invariant partition functions which cannot correspond to any

conformal field theory.



1.0 Simple currents

As it turns out, the units of a fusion ring, i.e. those elements which possess an inverse, are
of considerable importance. They are called simple currents. We will sketch in this section
their most important properties; for reviews see [45,130].

It is easy to see that a simple current J can be equivalently characterized as a primary
fields for which the fusion product with the conjugate field just yields the vacuum &, = 1,
JxJT =1, or for which the fusion rules are simple in the sense that on the right hand side
of J % ¢ for any primary field ¢ there occurs just one primary field with multiplicity one.

Due to the associativity of the fusion product, the product of two simple currents is
again a simple current. Simple currents thus form an abelian group under multiplication,
which is called the center of a conformal field theory. Since there are only finitely many
simple currents present in a rational theory, we can define the order of a simple current
to be the smallest positive integer N such that J¥ = 1. Any simple current organizes the
primary fields into orbits; the length of any orbit divides the order N of the simple current.

For any simple current J we can associate to any primary field ¢ a rational number
modZ, the monodromy charge Q(¢):

Qi) :=A(J)+ A(t) — A(J x7) mod Z. (1.3.1)

Here A(7) is defined as in Subsection (1.2.1). It can be shown that the monodromy charge
is additive under the operator product; note that the monodromy charge describes relations
between T-matrix elements of fields on the same simple current orbit.

Simple currents can also be shown to provide relations between S-matrix elements of
fields on the same simple current orbit. In a unitary theory the following relation holds
true [130,86]:

Spigun = 2P0 )2miaQ () 2rinaQ() g, (1.3.2)

The relations between S-matrix as well as T-matrix elements can be combined and used
to construct modular invariants.

In fact, one can construct modular invariants for any simple current in a subgroup of the
center, the effective center. The effective center is the group of all simple currents whose
conformal dimension multiplied by the order of the current is an integer; this condition
has to be imposed to guarantee T-invariance.

Assume that the simple current J of order N is an element of the effective center. Then
the following matrix Z describes a modular invariant [126,130]: the only vanishing matrix
elements are between fields on the same simple current orbit; the non-vanishing elements
are given by

Z; yvi = Mult(s) §0(Q(3) + gQJ(J)). (1.3.3)

Here §(1)(z) is equal to one if  is an integer and zero otherwise; Mult(:) is the multiplicity
of the orbit, i.e. the order N of the simple current divided by the length N; of the orbit of
i.

It can be shown that if the center is the cyclic group generated by the simple current
J, then this is the only simple current invariant, i.e modular invariant which has non-zero
matrix elements only for fields which are on the same orbit of some simple current. If
the center is not cyclic, the situation is more involved and there is an additional freedom
in choosing Z, parametrized by the so-called discrete torsion; for more details we refer

to [100].



The form of the modular invariant (1.3.3) becomes particularly simple if J has integer
conformal dimension; it reduces to

2

: (1.3.4)

N;—1
E XJn;

n=0

N
7= Y =
n,Q(3)=0 N;

where N denotes again the order of J and N, the length of the orbit of ¢. Note that,
since V; divides N, there is always a positive integer in front of the complete square; this
observation will be crucial in many applications. Also note that only fields with vanishing
monodromy charge occur. We will refer to invariants of this type as integer spin simple
current invariants.

The modular invariant given in (1.3.4) has the following interpretation: the chiral
algebra W is enlarged by adding the simple currents to it. Any irreducible representation
of the larger algebra W' decomposes into irreducible representations of W/, what explains
the complete squares. Not any irreducible representation of W will be contained in an
irreducible representation of YW': this is encoded in the requirement that only irreducible
representations of W occur for which the monodromy charge vanishes.

The interpretation of the multiplicities is slightly more involved: on general grounds
[110,28] any inequivalent irreducible representation of W' has to appear precisely once; a
multiplicity in front of the complete square indicates that there are several inequivalent
representations of ¥/’ which reduce to the same representation of /. Therefore, the
corresponding expression should be interpreted as several distinct primary fields in the
conformal field theory with the enlarged chiral algebra. Fields with higher multiplicities
are termed ‘fixed points’ of the simple current.

Whether such an invariant describes a fully consistent conformal field theory has not
been proven rigorously up to now; however, there are arguments from the comparison to
orbifolds [100] that the theory should be consistent. In that case, one would like to compute
the S-matrix (and as a consequence also the fusion ring) of the new theory. The S-matrix
of the original theory provides some constraints (in particular it already determines the
S-matrix elements which involve at least one field of multiplicity 1); however determining
those elements involving two fixed points, what is usually called ‘resolving the fixed points’,
is a problem that is not fully solved up to now.

1.4 Examples

In this section we present a few basic examples of conformal field theories: the free boson
compactified on a circle and WZW theories. Both are not only interesting in themselves,
but they also serve as building blocks for the coset conformal field theories, which will be
introduced in the next section.

1.4.1 WZW Theories

A Wess-Zumino-Witten (WZW) theory is a conformal field theory whose chiral symmetry
algebra is the semidirect sum of the Virasoro algebra with an untwisted affine Lie algebra;
its energy-momentum tensor is quadratic in the currents, i.e., in the generators of the affine
algebra.



Affine Lie algebras can be constructed as follows: for any reductive complex Lie algebra
g with generators J* and commutation relations

[Je,J% = fJe (1.4.1)

the corresponding untwisted affine Lie algebra g can be constructed by extending the loop
algebra with generators J2, n € Z and commutation relations

[is Il = fo* T (1.4.2)
by one central element K and a derivation D = —Ly. This gives the commutation relations
o, 2] = f0E 4 Kmk®Spino, o, K] =0,  [-D,J%=mJs  (143)

where x denotes the Killing form of g.

Any untwisted affine Lie algebra contains the corresponding reductive Lie algebra as a
subalgebra: the generators of the form J§, the zero-modes, form the horizontal subalgebra.
Many quantities of interest of a WZW theory can be described entirely in terms of this
subalgebra and of the eigenvalue k of the central element K. k is related to the level kY
by kY = @k where 0z is the highest root of g. The level k¥ does not depend on the
normalization of the Killing form of g; for unitary theories k¥ is a non-negative integer.

One possibility to realize the Virasoro algebra explicitly in terms of the affine Lie algebra

is the Sugawara construction which uses the quadratic Casimir operator:
L, := b E Je, Jb (1.4.4)
n = Kab * - A.
2(]{3\/ gV) b m4n m

where :: denotes a normal ordering prescription and g¥ the dual Coxeter number of g which
is essentially the eigenvalue of the quadratic Casimir operator in the adjoint representation.
The factor (k¥ + g¥)~! in the definition of L, makes sense in a quantum field theory only
if k¥ is a number rather than an operator, as was mentioned in Section 1.2. The Virasoro
central charge ¢ can now be expressed in terms of kY; it is
kY dimg
c(g, k") = Wig (1.4.5)
The primary fields of a unitary WZW theory with diagonal modular invariant are in
one-to-one correspondence with the integrable highest weights, i.e., with the dominant
integral weights A of g that satisfy

(A,bg) <k. (1.4.6)

Only finitely many weights of g fulfill these conditions: WZW theories are therefore rational
conformal field theories; this feature will also carry over to the coset conformal field theories
to be discussed in the next section. To illustrate rationality we have depicted in Figure 1.1
the dominant affine Weyl chamber of the affine Lie algebra Agl) at various levels k¥. The
figure shows the weight space of the simple Lie algebra A, which describes the horizontal
projection of the weights of the affine Lie algebra Agl). The six arrows represent the six
roots of A,. The dominant affine Weyl chamber at level k¥ = 5 is shaded in light grey;
integral weights are marked by dots. Due to condition (1.4.6) the Weyl chamber contains
only finitely many integrable highest weights which are in one-to-one correspondence to

10



the primary fields of the WZW theory. In darker grey we have shaded the ‘interior’ of the
dominant Weyl chamber; this is nothing but the translate of the Weyl chamber at level
kY = 2 by the Weyl vector p = Y7, A(;), with A(;) the fundamental weights of g (note that
in the case of A; the Weyl vector is equal to the highest root fz). For many purposes, e.g.
the considerations in Part IT of this thesis, it will be convenient to use the weights shifted
by the Weyl vector.

Figure 1.1: Dominant affine Weyl chamber of A&l) at various levels kV.

The conformal dimension of a primary field with highest weight A is

ha = heg)(A) = %. (14.7)

This immediately gives the T-matrix; the S-matrix is given by the Kac-Peterson formula
[92]
2mi

SAAI = N Z 51g11(w) exp[—m

weWw

(w(A + p), A+ p))- (1.4.8)

Here the summation is over the Weyl group W of the horizontal subalgebra g; the normal-
ization N follows from the requirement that S should be unitary.

Let us give one example to which we will refer later on frequently: the situation is par-
ticularly simple for g = D, at level one. Then there are four primary fields corresponding
to the singlet (0), vector (v), spinor (s), and conjugate spinor (c) representation of Dy, or,
in other words, to the conjugacy classes of the Dy weight lattice; their conformal dimension
is

0 for 0,
h=4¢ 1/2 for v, (1.4.9)
d/8 for s,c.
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The modular matrix § of Dy at level £V = 1 reads

111

1 -1 -1
T
1 -t i

S((Da)) = 3 (1.4.10)

—_ = = =

The simple currents of all WZW theories have been classified in [48,43]. Except for the
case of Eg at level k¥ = 2, they are of the form kYA(;), where kY is the level and A;) a
cominimal weight, i.e. the Coxeter label a; is equal to one. (Coxeter labels are defined as
the coefficients of the highest root 6z in a basis of simple roots:

Og= a;a ) (1.4.11)

The action of simple currents on the set of integrable highest weight representations corre-
sponds in these cases to the automorphisms of the affine Dynkin diagrams; the monodromy
charge is proportional to the conjugacy class of the representation.

To fix the notation, let us describe the simple currents of WZW theories (for the
numbering of the simple roots we use the convention of [90]): For A, the center is isomorphic
to the cyclic group Z,,1; it is generated e.g. by J = kA(;). For B and C type theories, there
is a single simple current besides the identity primary field; this current will be denoted
by J (the corresponding highest weight is kA for B,, and kA(,) for C, theories). For
D, type theories, there are three non-trivial simple currents, corresponding to the highest
weights kA1), kA(;), and kA(,_,); they are denoted by J,, J;, and J., as their fusion rules
are isomorphic to the multiplication of the vector (v), spinor (s), and conjugate spinor
(c) conjugacy classes. For Eg there is a simple current of order three, J = kA(;) and
J? = kA(s), and for E; a simple current of order 2, J = kAg). Es has only a simple current
at level k¥ = 2, while G5 and F; do not have simple currents at all.

1.4.2 The free boson

Our second example is a single free boson. If it is compactified on a circle of rational radius
squared, the corresponding conformal field theory turns out to be rational. For simplicity
we will refer to these theories as WZW theories with horizontal subalgebra u(1).

The primary fields ¢q of these theories are labelled by u(1)-charges Q € {0,1,,..., N —
1}, where the number A of primaries is related to the radius of the circle. The conformal

dimension of a u(1)-primary of charge @ is Q*/2N . The S-matrix elements of a u(1) WZW
theory are

1

Spg = exp(—27i PQ/N). (1.4.12)

=

For u(1) WZW theories, the fusion rules read ¢p * ¢y = Sp,gmoar> and hence any
primary field is a simple current. The conformal central charge of a single free boson is
c=1.

12



1.0 Coset coniormal neld theories

1.5.1 The Coset Construction

The subclass of WZW models has the big advantage that it presents examples of conformal
field theories which are particularly manageable, since the representation theory of the
chiral algebra is known. However, it is not too hard to see that for many purposes this
subclass is not comprehensive enough.

The expression (1.4.5) for the conformal anomaly c shows that c is greater or equal to
the rank of g, in particular ¢ > 1. However, there are interesting conformal field theories
for which c is smaller than one: the Virasoro minimal models. These models do not only
play a special role in the representation theory of the Virasoro algebra, but they also have
interesting applications in physics, especially in statistical mechanics. In fact, one finds
the following central charges for the models listed below:

critical Ising model c= %

e ) 7
tricritical Ising model c= 15
critical three states Potts model c= %
tricritical three states Potts model c= g

A more abstract reason which makes it desirable to enlarge the class of models under
consideration is that WZW models have a rather special chiral algebra. For some applica-
tions, e.g. the construction of superstring vacua (cf. Chapter 4 of this thesis), one would
also like to realize superconformal algebras and their extensions. More complicated W-
algebras also play an important role in the programme of classifying all rational conformal
field theories: the programme is first to classify all JW-algebras and then to work out their
representation theory.

From the practical side, one frequently studies concrete examples in order to get hints
on more general structures; the discovery of Galois symmetry of conformal field theories
described in Part II of this thesis is a good example. Now, it is difficult to get control
on whether observations made within such a limited framework like WZW theories can be
generalized to other conformal field theories. Fortunately, as we will see, many observations
directly apply also to the larger class of coset conformal field theories.

The coset construction [72,73] allows within the framework of affine Lie algebras to
obtain an explicit description of a large class of conformal field theories. The idea is to
associate to any pair g, h of reductive Lie algebras for which h is a subalgebra of g, a
conformal field theory called the coset theory and denoted by

Clg/hl, - (1.5.1)

The embedding h — g induces an embedding of the corresponding untwisted affine Lie
algebras h — g. In practical calculations, one has at this point to determine the precise
form of the affinization: e.g. if g is simple, then the level k; of any simple summand h; of h
is related to the level kY of g by k; = I;k", where I; is the Dynkin index of the embedding
h; — g.

By definition [73], the Virasoro generators of the coset theory are obtained by subtract-
ing the Virasoro generators of the WZW theory based on h from the ones of the WZW
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theory based on g: L8/" := L& — L". Since the Virasoro generators of the coset theory
commute with any generator J? of h,

[qun/h,JZ] = [ng - meJZ] =0, (1'5'2)
we see that
(L8, L8/ = L8, L8] ~ [Ly, L}, (15.3)

and that, as a consequence, the generators Lg/h span a Virasoro algebra with central charge

Cg/h = Cg — Ch-

1.5.2 Branching rules

So far we have only dealt with algebras; in order to check whether the definition of the
coset Virasoro algebra leads to a well-defined conformal field theory, one also has to specify
the spectrum of primary fields of the theory. As it turns out, to obtain the primary fields
of the coset theory is a somewhat delicate issue. However, equation (1.5.2) shows that
the coset Virasoro algebra acts in the same way on all vectors of the same module of h.
Therefore the branching spaces H4 which arise in the decomposition of the g-module H§

into h-modules H};\,

s =P (Hr @ ™) (1.5.4)

are natural candidates for the modules of the coset Virasoro algebra. (Here A and ) stand
for integrable highest weights of g and h, respectively, if g and h are simple, and similarly
in the general case.)

The candidates for the characters are therefore the so-called branching functions b4,
which are the coeflicient functions in the decomposition

(1) = EA: b (7) xa(7) (1.5.5)

of the characters X, of g with respect to the characters x, of h.

Branching functions have a definite behaviour under modular transformations which
suggests that the coset theory associated to the embedding h — g might be essentially
something like g @ h*, where the notation ‘*’
modular transformation matrices of the WZW theory based on h should be used. Note
that if S and T generate a representation of the modular group, the same is true for 5*

indicates that the complex conjugates of the

and T*. If there exists a conformal field theory whose characters transform according to

this complex conjugate representation, it is called the complement of the h theory [130].
To check whether this guess can be correct, it is instructive to look at a simple example:

the critical Ising model with ¢ = % which can be realized with h = A&l) at level 2 diagonally

embedded into g = Agl) ® Agl), both algebras at level 1. Any candidate for a primary
field can now be described by three labels, ®™. [,m and n are the Dynkin labels of
the highest weights; the fact that all representations are unitary restricts [ and m to the
values I,m = 0,1 and n» to n = 0,1,2. Since c is less than one, the field contents of this
theory follows already from the representation theory of the Virasoro algebra: we expect
the following primary fields and find them realized as
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Field A realized as

vacuum 0 PP | B!

twist field 1/16 | 9 | ®1°

energy operator | 1/2 | &3t | ®%°

Any field that does not appear in this table turns out to have vanishing branching
function. In our example, this can be explained by the group theoretical selection rules for
the couplings of two spins which can be expressed by the condition [ + m — n = 0 mod 2.
We do not only find that some of the ‘fields’ we would naively expect to be present vanish,
but we also realize that all fields we expect from the representation theory of the Virasoro
algebra seem to appear twice. This is clearly in conflict with the requirement of a unique
vacuum. However, this requirement is absolutely crucial for the consistency for a conformal
field theory: on the level of the fusion ring, the vacuum gives the unital element which must
be unique; on the level of representation spaces, the vacuum corresponds to the identity
operator which also is unique. Closer inspection shows that also modular invariance is
spoiled and the restriction of the S-matrix to non-vanishing fields is not unitary any more,
since certain rows respectively columns coincide.

As it turns out, this situation generalizes for arbitrary coset conformal field theories:
several branching functions vanish, and several of the non-vanishing branching functions
coincide. One can imagine three different reasons why branching functions vanish:

o Group theoretical selection rules, as we have seen in the case of the Ising model.

e The occurrence of ‘unexpected’ null states in the Verma module: they certainly
occur in conformal embeddings. (Conformal embeddings [9,125] are by definition
those embeddings for which the coset central charge ¢ vanishes; hence they describe
a trivial coset conformal field theory.)

There are, however, a few exceptional cosets known where null vectors occur ‘unex-
pectedly’: the so-called mavericks cosets [30,31].

e There is also a more technical combination argument [129]; however, since there is
no example known where this applies, we refrain from explaining it at this place.

One might hope to cure the situation by simply forgetting about the ‘fields’ with van-
ishing branching function. But this inevitably leads to inconsistencies since, in general,
S-matrix elements between vanishing and non-vanishing branching functions do not vanish,
so that one would spoil the unitarity of the S-matrix this way.

1.5.3 Field identification

For the generic case, when only group theoretical selection rules have to be implemented,
there is, fortunately, a conceptual framework to address the situation at least on the level
of characters and representations of the modular group: simple currents. Recall that the
monodromy of a simple current of a WZW theory is proportional to the conjugacy class
of the corresponding representation. Therefore, non-vanishing ‘fields’ can be characterized
by the fact that their monodromy charge vanishes for a subgroup of the center of g & h*.
We will call this subgroup the identification group; its elements are called identification
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currents. They are specific tensor products, to be denoted as (J(g)/J(h))7 of the simple
currents of the WZW theories that underly the coset theory. To determine the identification
group explicitly is the first step in the process of setting up a coset conformal field theory
in practice.

An important property of identification currents is that branching functions related by
them are identical. This can be easily seen:

bi(—1/7) _ X;Subi(r) ¥, Sibi(r)
in(_l/T) Ej Sjijbj(T) Ej Sije%'iQ(j)bj(T) ’
which is equal to 1 since only allowed fields, i.e. precisely the fields for which the monodromy

charge Q)(j) vanishes, contribute to the sum.
This calculation shows that the conformal dimension is constant on each orbit and that

(1.5.6)

in particular all identification currents have integer conformal weight since they are on the
orbit of the identity. It is now natural to use the modular invariant expression (1.3.4) as a
candidate for a partition function; notice that due to the selection rule Q(7) = 0 only non-
zero fields occur in (1.3.4). Since now within one complete square all branching functions
are identical, we are led to the following consequence:

The true primary fields of a coset conformal field theory are defined as equiva-
lence classes, they are the orbits of the identification group.

This is commonly referred to as field identification [68]. In other words, the coset
theory is in fact rather different from g @ h*: we have to associate physical fields not with
individual branching functions, but rather with certain equivalence classes of them.

To conclude let us remark that for the maverick coset conformal field theories [30,31] the
situation is far from being understood; interestingly enough, there are in all cases modular
invariants which can be used to implement a consistent field identification. However, these
are exceptional invariants rather than simple current invariants as in the case of ordinary
coset conformal field theories.

1.5.4 Field Identification Fixed Points

As long as all orbits of the identification currents have equal size, the orbits are precisely
the physical primary fields we are after. The situation is more involved if the orbits have
different lengths [103]; the number of representatives on a orbit is in any case a divisor of
the length N of the orbit of the identity field. Orbits with less than N representatives are
referred to as ‘fixed points’ of the identification currents.

These fixed points cause a serious problem: recall that all branching functions in a
complete square in (1.3.4) are identical. So, in order to have a unique vacuum, we want
to keep just one representative of every orbit, i.e. divide Z by N2. Now doing this naively
would entail non-integer coefficients in the putative character of the shorter orbits, the
fixed points; clearly this is inadmissible for a character, which counts states and therefore
must have integer coeflicients.

Let us pause at this point to make some general remarks: the phenomenon of ‘field
identification’ can be placed in a broader context: the coset construction can be seen as a
special example of a reduction procedure. As a common feature of reduction processes, we
observe that first class constraints (i.e. constraints that generate gauge transformations)
can be required by consistency conditions. E.g. in gauge theories, in a Hamiltonian for-
mulation, one such consistency requirement is the uniqueness of the time evolution. In
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the example at hand, coset conformal field theories, modular invariance is required for
consistency. The analogy to gauge theories can be pushed even further: in both cases the
constraints ‘generate’ the identifications. There is even an analogue to the fixed points:
reducible connections (for some of the properties of reducible connections see e.g. [98,81]),
i.e. connections which have non-trivial stabilizer under the action of the gauge group.
Unfortunately only little is known about the effects of these connections in physical theo-
ries (for a closer study of these connections in the case of an SU(2) gauge theory on the
four-dimensional sphere S* we refer the reader to [53]).

In the case of coset conformal field theories, the prefactors in (1.3.4) suggest — as in
the case of D-invariants — that every fixed point f of length Ny < N should correspond to
N/N; distinct physical primary fields. Again there is the problem of fixed point resolution:
in this case not only the full S-matrix, but also the characters for the individual physical
fields are unknown. Some information is already contained in S, the S-matrix obtained
by the action of the identification currents from the original S-matrix. This leads to the
following ansatz [129,123] for the S-matrix elements in a coset theory with fixed points:

N.N;
N

where i =1,2,...,N/N, and 5 = 1,2,..., N/N; label the fields into which the naive fields
e and f are to be resolved if they are fixed points.

After having resolved the fixed points, S and the corresponding extension of T' must
form an unitary representation of SLs(Z); this implies sum rules

Sef ‘I’ ]-‘Ef

i 9

Seit, = (1.5.7)

N/N. N/N;
ST =0= Y T (1.5.8)
=1 7=1

for the S-matrix elements of the fields f;. Note that if either e or f is not a fixed point, the
sum rule tells us that I' vanishes. So I' is non-zero only for pairs of resolved fixed points,
in which case it has also to be symmetric under simultaneous exchange of (e,) and (f,7),
since the total S-matrix S must have this property.

It is a surprising empirical observation [130] that in most cases consistent I' matrices
can be described in terms of a different WZW theory, the so-called fized point theory. We
will see in Chapter (3.7) that even in the case when the fixed point theory is not a WZW
theory the structure of I' is surprisingly close to that of a WZW theory.

Resolving a fixed point also amounts to considering fields having different characters
Xy, i-e., the naive branching function x; of the ‘unresolved fixed point’ must be modified
to have integer coefficients after dividing by N2. It turns out that this can be done by
adding an appropriate multiple of a character X, of the fixed point theory. Again, modular
invariance implies a sum rule, namely

N/Ny
> Xg = Xg - (1.5.9)
=1

Only after having found a consistent solution for I' and the character modifications x,
one can speak of a conformal field theory given by a coset. Unfortunately, no general results
concerning existence or uniqueness of a resolution procedure are known. Also, fixed point
resolution has been implemented in practice only in very few cases: for the minimal series
of the N = 1 superconformal algebra and for N = 2 superconformal coset theories, the
Kazama-Suzuki models [96,97]. For the latter models, the fixed point resolution procedure
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has been worked out in [123] for the special case of hermitian symmetric cosets; the general
case [54] will be presented in Chapter 2 of this thesis.

We conclude this introduction to coset conformal field theories with two remarks: from
what we have explained it is clear that a ‘Lie algebraic coset’ (1.5.1) as it stands is far
from defining a conformal field theory. We point out that the correspondence between
Lie algebraic cosets and coset conformal field theories is also not one-to-one: first, also for
cosets a modular invariant has to be chosen; each choice will describe a different conformal
field theory. The problem of classifying all these modular invariants is a particularly hard
one: in principle any modular invariant of the tensor product g @ h* that is compatible
with the field identification is admissible. Unfortunately, the modular invariants for g
and h separately have not been classified, and, even worse, the problem of classifying all
invariants of g @ h* does not even factorize to that of classifying the invariants of g and h
separately.

Conversely, it also turns out that different combinations of algebras g and subalgebras
h can describe one and the same conformal field theory. One example of this phenomenon
which will be explained in this thesis in some detail are level-rank dualities: cosets for which
level and rank (or some simple functions thereof) are interchanged turn out to describe
the same conformal field theory. The problem of counting all conformal field theories that
can be described by a Lie algebraic coset is therefore rather different from the problem of
counting all cosets.

1.6 Owutline of the thesis

We now give an outline of the rest of this thesis. A particularly interesting subclass
of conformal field theories are those which are not only invariant under the conformal
symmetry described by the Virasoro algebra, but even under a larger algebra, the N = 2
superconformal algebra.

The study of N = 2 superconformal theories was initially motivated by string theory: a
tensor product of these theories with central charge ¢ = 9 can be used as the inner sector in
a heterotic string compactification. In this application, N = 2 superconformal symmetry
on the world sheet — together with charge quantization — implies that the spectrum of the
string is space-time supersymmetric [10].

An independent motivation to study these models comes from their beautiful intrinsic
structure and their deep connection to other objects in mathematical physics. For example,
these theories can be ‘twisted’ to obtain two-dimensional topological quantum field theories.

In Part I of this thesis we will use the coset construction to construct concrete examples
for N = 2 superconformal theories. In Chapter 2 we classify all coset models of the Ka-
zama-Suzuki form that have N = 2 supersymmetry and can be used as the inner sector
in a string compactification. The field identification and fixed point resolution structure
of these models is worked out, and several general properties of N = 2 coset theories are
proven (e.g. the formula (2.3.14) for the number of elements of the identification group).

An important structure present in N = 2 superconformal theories is the chiral ring
[103]: for appropriately chosen N = 2 coset conformal field theories the ring structure
of the chiral ring determines the number of massless generations in the corresponding
compactification of the heterotic string; also the relation to topological field theories is
mainly through this ring. The structure of the chiral ring of N = 2 coset theories is
explored in Section 2.4; Hasse diagrams which are described in Appendix 2.A are a useful
tool for these calculations.
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As 1t turns out, several cosets lead to the same conformal field theory; a systematic
reason for this phenomenon are level-rank dualities which are proven in Chapter 3. They
make heavy use of level-rank dualities for WZW theories which are also described in Chap-
ter 3. The results of these two chapters are applied in Chapter 4 to the construction of
string vacua. To this end several projections have to be implemented; we describe how
this can be done using simple currents and how this prescription leads to the definition
of the extended Poincaré polynomial. The extended Poincaré polynomial is then used to
compute the massless spectra of all string vacua that can be constructed by the use of
N =2 coset models.

To show that the cosets described in Part I give rise to consistent conformal field
theories, field identification fixed points have to be resolved using fixed point theories. In
some cases, the fixed point theory is not a WZW theory; however, we will see in Chapter 3
that level-rank dualities allow to determine an S-matrix which implements the resolution
at the level of representations of the modular group. To identify a conformal field theory
that might correspond to this matrix (and hence the character modifications) it is natural
to try to determine which of the fields should be the identity, and then use the Verlinde
formula (1.2.12) to compute the corresponding fusion ring. A priori one would expect
that using the wrong primary field as the identity ‘0’ in (1.2.12) would lead to non-integer
fusion rule coeflicients. Surprisingly, many choices seem to be equally good. In many cases
the fusion rule coefficients turned out to be integer, though in no case were they positive.
However, it was always possible to find a set of signs €(¢) and a new matrix S;; = €(¢)e(5)S;
that made all the coeflicients positive. There is a second surprise: the fusion rules obtained
from (1.2.12) for different choices of the vacuum ‘0’ turned out to be identical up to some
permutation of the fields.

Inspired by this observation one can investigate WZW models in a similar way, and finds
that some of the primary fields other than the identity could play the role of the identity
in the above sense. It is natural to look now for some underlying symmetry of the modular
matrix S, and it turns out that indeed such a symmetry exists. It can be described using
the Galois group of the algebraic number fields which contain the generalized quantum
dimensions. This new symmetry of rational quantum field theories which is the subject of
Part IT of this thesis turned out to be extremely powerful. We will see in Chapter 5 that
it can be used to construct automorphisms of fusion rings as well as modular invariant
partition functions.

In Chapter 6 these new tools will be applied systematically to the fusion ring of WZW
theories. We will see that both exceptional and simple current modular invariants can
be explained by Galois theory. Using Galois symmetry several infinite series of previously
unknown exceptional automorphism invariants for WZW theories based on algebras of type
B and D are found.

In these investigations, it turned out that — at least in the case of WZW theories —
Galois symmetry can be further generalized. These symmetries which we call quasi-Galois
symmetries will be the subject of Chapter 7. These quasi-Galois symmetries have various
applications: they lead to sum rules for the elements of the modular matrix S which can
be used for the construction of modular invariants. Moreover, they relate WZW theories
at different levels and provide a powerful algorithm for the computation of the branching
rules of conformal embeddings.
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Part 1

N =2 Superconformal Coset Models

In Part I of this thesis we investigate a particularly interesting subclass of conformal
field theories: N = 2 superconformal coset theories. In Chapter 2 the field identification
problem, including fixed point resolution, is solved for these models and some general
results for generic N = 2 coset theories are proven. In Chapter 3 level-rank dualities
between several infinite series of these models are shown; they make use of level-rank
dualities for B, (', and D type WZW theories, which are also described in some detail.
Finally, in Chapter 4 we use the coset theories introduced in Chapter 2 as subtheories
in N = 2 tensor products with ¢ =9, which are taken as the inner sector of heterotic
superstring compactifications.



Chapter 2

Non-Hermitian Symmetric N =2 Coset Models

In this chapter, the field identification problem, including fixed point resolution, is solved
for the non-hermitian symmetric N = 2 superconformal coset theories. Thereby these
models are finally identified as well-defined modular invariant conformal field theories.
Further, some general results for generic N = 2 coset theories are proven: a simple formula
for the number of identification currents is found, and it is shown that the set of Ramond
ground states of any N = 2 coset model is invariant under charge conjugation.

2.1 N = 2 superconformal theories

While the conditions necessary for the consistency of a superstring theory seem to be too
weak to pinpoint a ‘theory of everything’, string theory remains an interesting approach
to unify the fundamental interactions including gravity. Furthermore, the study of strings
has given new and deep insight in various topics in mathematics and physics so that there
are good reasons, beyond possible direct application to phenomenology, to have a closer
look at the structures arising in string theory.

A class of two-dimensional field theories for which this point of view is particularly
justified are the N = 2 superconformal theories which are needed for the inner sector of
(heterotic) string theories. The enlarged (N = 2) world sheet supersymmetry for the right-
moving part of the theory is in this case dictated [135,10] by the requirement of space-time
supersymmetry, a property imposed for phenomenological reasons, such as to ‘solve’ the
gauge hierarchy problem. In the present chapter, we consider theories for which N = 2
supersymmetry is present in the left-moving part as well; just like in the generic case, these
N = 2 theories are interesting in their own right, as they are singled out by the presence of
new structures such as the ring of chiral primary fields and the connection with Calabi- Yau
manifolds [103]. Furthermore, there exist deep relations between N = 2 superconformal
field theories and conformal field theories in general, including the interpretation of the
fusion ring of any rational conformal field theory as a deformation of the chiral ring of
some N = 2 theory [69,87,104,24].

There exist several approaches to construct the inner sector of a heterotic string the-
ory: non-linear sigma models with a Calabi-Yau manifold as their target space [18], the
description in terms of Landau-Ginzburg potentials [78,108], and exactly solvable mod-
els (these approaches are closely interrelated, but the question to which extent they are
equivalent has not yet been resolved completely). By exactly solvable we mean that all
correlation functions can (at least in principle) be calculated exactly. Among the solvable
superconformal field theories there are free field constructions employing the Coulomb gas
approach [29], and theories constructed by algebraic methods. In the algebraic approach
the coset construction [73] plays a prominent rdle, for it allows to obtain many supercon-
formal theories within the framework of affine Kac-Moody algebras.
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In [97) Kazama and Suzuki considered coset models C of the form

Clg @ so(2d) /hl, . (2.1.1)

Here g stands for a semi-simple Lie algebra, and h is a reductive subalgebra of g; the integer
d is defined as 2d = dim g — dim h, while the integer k denotes the level of the affinization
g = g1 of g. As shown in [97], the symmetry algebra of such coset models always contains
the N = 1 superconformal algebra.

It was also investigated [96] for which models the symmetry algebra is indeed enlarged
to an N = 2 superconformal algebra. Although the proof of the classification turned out
to be not quite complete [133], a complete list of all N = 2 coset theories of the form
(2.1.1) was obtained. Indeed the following conditions are necessary and sufficient for a
coset theory of the form (2.1.1) to have N = 2 superconformal symmetry:

1. The embedding h — g has to be regular.

2. The number
n :=  (rankg — rank h) (2.1.2)

must be an integer.

3. Denoting the simply connected compact Lie groups having § and h as their Lie
algebras by GG and H, respectively, the coset manifold

G

NG (2.1.3)

has to be Kahlerian.

Up to now the following theories solving these constraints have been considered in the
literature:

e Tensor products of N = 2 minimal models [66], including models which employ
non-diagonal and non-product modular invariants [128,49,131,106,50].

e Tensor products of the so-called projective cosets [37], corresponding to coset theories
of the form

Clsu(n + 1) @ so(2n); /su(n) & u(1)], . (2.1.4)

For these models non-diagonal modular invariants have been investigated, too [3].

e Tensor products of arbitrary hermitian symmetric coset theories (‘HSS-cosets’) with
the diagonal modular invariant [123].

Note that N = 2 minimal models can be considered as projective cosets with n = 1, and
projective cosets are a subclass of the hermitian symmetric cosets.

From the classification [96,133] of N = 2 superconformal coset models in the Kaza-
ma-Suzuki framework it is well known that there exist even more models that possess
N = 2 superconformal symmetry; the hermitian symmetric coset theories constitute only
a subclass. In this chapter we shall consider the general case. The chapter is organized as
follows. First, we recall in Section 2.2 the classification of N = 2 superconformal coset
models obtained in the Kazama-Suzuki framework. As a by-product we prove a simple
characterization of hermitian symmetric spaces which differs from the one given in the
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standard literature. Based on the general classification, we then provide a complete list
of all non-hermitian symmetric cosets that can be used in tensor products with conformal
central charge ¢ = 9.

We proceed by specifying the conformal field theories defining the cosets of our interest.
This is necessary because a ‘Lie-algebraic coset’ C as it stands in (2.1.1) is in itself far from
defining a consistent modular invariant conformal field theory. We emphasize that although
the theories described in this chapter have been introduced as formal cosets (2.1.1) already
in 1989, they have previously not been shown to describe consistent conformal field theories.
(By consistency of a conformal field theory we understand among other requirements that
the characters of the theory carry a (projective) unitary representation of the modular
group. Note that up to now it is even unknown whether a conformal field theory can
be associated with every coset, and if so, whether this theory is unique.) To define the
theories, we first determine the precise form of the affinization of the subalgebras involved.
In particular we identify, in Subsection 2.3.1 the level of the u(1)-subalgebra that is present
in each of the models.

Moreover, as is well known [68,129], in order to obtain a modular invariant partition
function, ‘fields’ in the coset theory have to be ‘identified’. Problems arise when the
length of the identification orbits is not constant; orbits of non-maximal length have to
be ‘resolved’ [129,130], which in general is a rather delicate issue. In Subsection 2.3.2
of this chapter we determine these identification rules. Furthermore we derive a formula,
valid for any N = 2 coset theory of the form (2.1.1), for the order of the abelian group
that is generated by the identification currents; this provides a convenient check for the
completeness of the identification rules. The resolution of fixed points is dealt with in
Subsection 2.3.3.

Finally, we derive in Section 2.4 a formula giving the full superconformal u(1)-charge
of any Ramond ground state in terms of the length of an associated element of the Weyl
group. (This length is conveniently calculated by means of Hasse diagrams; the diagrams
corresponding to our models are described in Appendix 2.A.) This result is used to show
that the set of Ramond ground states of any N = 2 coset model is invariant under charge
conjugation.

2.2 Classification

In [97] a supersymmetric extension of the coset construction [73] was used to obtain a
large class of superconformal coset models. By bosonizing the fermions of the super WZW
theories involved in the construction of these models, one arrives at a level one so(2d);
WZW theory. As a consequence, the models can be written as

Clg @ so(2d); /h], . (2.2.1)

In the sequel we will adopt the notation of [96] and denote indices referring to generators
of the algebra g by capital letters A, B, ..., indices referring to the subalgebra h by a,b,...,
and indices referring to the set g\ h, and hence also to so(2d), by @,b, ... . Thus in particular
the currents generating g are denoted by jA, and the so(2d) algebra is generated by dim g/h
fermions j2. Denoting the structure constants of g by f4Z, the currents

jod s i b
Jo=J— Ef‘%agb] (2.2.2)
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then specity the embedding of h in g @ so(2d). * From the embedding (2.2.2) we can read
off the levels of the simple subalgebras h; of

= 1>

h=hou(l)™ = QBE ®u(1)™. (2.2.3)

Namely,

k(h)) = L; (k4 g¥) — hY, (2.2.4)
where g¥ and k) denote the dual Coxeter numbers of g and h;, respectively, and where I; is
the Dynkin index of the embedding h; < g, i.e. the relative length squared of the highest
roots 6 of g and 6; of h;,

(9, bg)
I := . 2.2.5
(6:,6:) (2:2.5)
gHere and below we refer to an untwisted affine Kac-Moody algebra with horizontal algebra
f as f = f(1) and to the Heisenberg algebra (1) by its horizontal subalgebra u(1). Also, we
use the short hand notation f; if f = f() is at level k.)
With (2.2.4), the conformal central charge of the coset theory becomes

(6g,0g)(k + g") '

The symmetry algebra of the models (2.2.1) always contains the N = 1 supersymme-
try algebra. To find a second supercurrent G2, one starts with the most general ansatz
expressing a spin 3/2 current of the coset theory (2.1.1) in terms of the currents J4 and
the fermions j° [96],

Cc —

N | W

(dim g — dim h) (2.2.6)

2 @ 27 i -a .5 X
G*(2) = £ (hap :5°": =3 Sape 5°5°5°) (2.2.7)
Here the colons denote normal ordering, and S is a totally antisymmetrical tensor. This
ansatz mimics the structure of the first supercurrent G* for which h; and Sy are given
by the Killing form kz; and by the structure constants fzz;, respectively.
The calculation of the relevant operator products that involve G*(z) shows that the fol-

lowing set of equations for h and S is necessary and sufficient for enlarged supersymmetry:

ha = —hg, haghse = —bae, (2.2.8)
W foe = [%hges (2.2.9)
fabe = haphgzfP2 + cyclic permutations in a,b and ¢, (2.2.10)
Sape = haﬁhzqhﬁfﬁ‘ﬁ- (2.2.11)

The condition (2.2.8) means that % is a complex structure on G/H, which is h-invariant
by (2.2.9). (2.2.10) is a consistency condition, while (2.2.11) can be used to eliminate S
from the problem.

This set of equations can also be understood in more geometrical terms. Namely, let t
denote the orthogonal complement of h with respect to the Killing form & of g (this is well
defined since, g being semi-simple, & is non-degenerate). Then the model C[g ® so(2d), /h],

! Unless stated otherwise, we use the summation convention, i.e. equal upper and lower indices should
be contracted.
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is N = 2 supersymmetric if and only if there exists a direct sum decomposition of vector
spaces,

t=f, 0L, (2.2.12)

which obeys the conditions that dimt, = dimt_, that t, and t_ separately form closed
Lie algebras, and that the restriction of the Killing form to t; and to t_ vanishes,

Kity = 0. (2.2.13)

This geometric characterization is in fact rather easy to prove [96]. Suppose first that
the theory C[g @ so(2d);/h], is N = 2 supersymmetric. Define t1 to be the eigenspaces
corresponding to the eigenvalues +i of the complex structure h. Then the relations t =
t; &t and dimt; = dimt_ are immediate. Using (2.2.8) to (2.2.11), it is also easy to
show that

a 4b L. a5 ab\ &
[#3,85] = 5 (if % £ 5%) £, (2.2.14)

where t3 denotes the component of ¢* in t;. Thus the elements of t, close under the Lie
bracket. Finally, for arbitrary r1, s1 € ty the antisymmetry (2.2.8) of h implies k(ry,s+) =
Fik(hry,s:) = tik(ry,hsy) = —k(ry,s+) = 0, so that (2.2.13) holds. Conversely,
given a decomposition like (2.2.12), define A by requiring ty to be the eigenspaces of h
corresponding to the eigenvalues +i, assuring that the second equation of (2.2.8) is fulfilled.
Then (2.2.9), (2.2.10) can be shown to follow from the fact that ty are subalgebras, while
(2.2.13) implies the first part of (2.2.8). Namely, for arbitrary r,s € t one has r =7, +r_
and s = s; + s_ with ry,sy € ty, and therefore s(hr,s) = s(iry —ir_,sy + s-) =
ik(ry,s-) —ik(r_,s4) = —k(ry +r_,isy —is_) = —k(r, hs).

Our task is now to classify embeddings satisfying (2.2.8) to (2.2.11), or, equivalently,
(2.2.12) and (2.2.13). As the following remarks show, we can assume that g and h are of
equal rank. In [96] a sequential method has been introduced which allows us to reduce
N = 2 coset theories with rankh < rankg to the equal rank case. (It is worthwhile
mentioning that the validity of this sequential algorithm has been proven in [96] only as
far as the N = 2 superconformal algebras of the models are concerned. As for the field
contents, the general belief is that for a chain of embeddings f < h < g the coset theory
C[g/f] carries the structure of the tensor product of the theories C[g/h] and C[h/f], albeit
a non-product modular invariant must be used. This is easy to see if no field identification
is necessary, and should also hold in the case when the identification currents do not
have fixed points.) To apply the sequential method, one needs an intermediate subalgebra
satisfying )

h C h@u(1)™k8rekh 5 (2.2.15)

(direct sum of Lie algebras). Such an intermediate algebra exists only [133] for the so-called
regular subalgebras. A regular subalgebra h < g is by definition (see e.g. [85]) a subalgebra
for which every generator associated to a root of the subalgebra h is also associated to a
root of the overlying algebra g; all other subalgebras are called special. In [133] it was
shown that the cosets derived from special subalgebras never have enlarged supersymmetry;
correspondingly we can restrict ourselves in the sequel to regular subalgebras, and hence
the sequential algorithm is applicable. Regular subalgebras have been classified by Dynkin
[32]; their Dynkin diagram must be a subdiagram of the extended Dynkin diagram of the
overlying algebra (the extended Dynkin diagram of a simple Lie algebra g coincides with
the Dynkin diagram of its affinization g = g(*)).
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In short, we can restrict our attention to regular embeddings satistying rank g =rank h.
We now turn to the classification of such embeddings generating N = 2 superconformal
coset theories. From the N = 2 conditions (2.2.8) to (2.2.11), one easily deduces that

FUh g f2 =0 (2.2.16)

for all ¢, d. We will denote by A, A_, and Af the sets of roots of t,,t_, and h, respectively,

and define
Do 1= E Q. (2.2.17)

&€A+

Writing (2.2.16) in a Cartan-Weyl basis and comparing prefactors, we find
(T0,7) =0 iff v € Af. (2.2.18)
This relation implies that
[N &H,T*]=0 forall T*ch, (2.2.19)

&€A+

where by H' we denote the generators of the Cartan subalgebra, i.e. that h contains a
u(1) ideal with generator Ysca, a;H*. Thus the embedding h — g is such that the Dynkin
diagram of h is obtained from the extended Dynkin diagram of g by removing at least two
nodes. One can also show [96] that

(%,8) = (B,B) > 0 (2.2.20)
for all 3 € A,.

We claim that the subalgebras yielding N = 2 superconformal cosets are precisely dia-
gram subalgebras, i.e. subalgebras whose Dynkin diagram is contained in the non-extended
Dynkin diagram of g. Moreover, if the Dynkin diagram of h is obtained from that of g by
removing more than one node, then the sequential method alluded to above can be applied
to reduce the theory to a tensor product; hence we can assume that only a single node is
deleted. We will denote by 2, the label of this distinguished node of the Dynkin diagram
of g; thus, for example, a(®) is the corresponding simple g-root that is not a root of h.
Note that the notation 7, introduced in (2.2.17) was chosen with foresight; for instance,
denoting the fundamental g-weights by A;), the relation (2.2.18) can be rephrased as

Do < A, (2.2.21)
(the constant of proportionality, obtainable with the help of the strange formula, reads

1232, G, ; ’

(2.2.22)

where G;; = (A(;), A(;)) denotes the metric on the weight space of g, i.e. the inverse of the
symmetrized Cartan matrix).

To prove the above claim, we have to show that the highest root 65 of g is not a root
of h. If 3 were a root of h, then according to (2.2.18) it would satisfy (.,05) = 0. But
this is not allowed, as can be seen with the help of the decomposition of 8z in terms of the

simple g-roots a?, .
rank g

g = > a;al. (2.2.23)
=1
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Namely, the coeflicients a; on the right hand side of (2.2.23), known as the Coxeter labels of
g, are positive integers, and hence the inequality (2.2.20) implies (9., 05) = >_; a; (9., ad) >
Yaea, a;(a®, &) > 0. Thus fz is not a root of h, so that h is a diagram subalgebra of g.

The converse is seen as follows. Given a diagram subalgebra h of g, assign the root & of
t to belong to A, and A_, respectively, iff it is a positive respectively a negative root of g.
Since we assumed that g and h have equal rank, this prescription yields a decomposition of
t of the form (2.2.12). It is now straightforward to check that the vector spaces generated
by the elements corresponding to Ay satisfy the geometrical formulation of the N = 2
conditions. Namely, nilpotency (2.2.13) is immediate from the well-known properties of
the Killing form in a Cartan-Weyl basis; the dimensions of t; and t_ coincide because
positive and negative roots of g\ h come in pairs; and the assertion that t. close under the
Lie bracket can be verified by using the fact that (9,,a) >0iff a € A,.

Clearly, the N = 2 conditions (2.2.8) to (2.2.11) are particularly simple if the structure
constants f;;. vanish. As we will see shortly, the corresponding coset manifold is then a
hermitian symmetric space. In this case we automatically have rank h = rank g. Moreover
using the Jacobi identity together with the relation

2/% frea = 1P fion = 9”65, (22.24)

it is easy to show that

Feae has £ = g¥ hay. (2.2.25)

Similarly as with (2.2.18), another useful relation is obtained by writing (2.2.25) in a
Cartan-Weyl basis; comparing prefactors one finds

(70,7)= D (@,9)=g" iff 7€ Ay, (2.2.26)

&€A+

With these results, we are in a position to classify all subalgebras yielding hermitian
symmetric spaces. Let us first sketch the way these spaces are usually described in the
mathematical literature (see e.g. [82]). Given fz; = 0, it is possible to define an involutive
automorphism o of the Lie algebra g such that the subalgebra left invariant by o is equal to
h, namely o(7T?) := T?, o(T?) := —T?. Lie algebras admitting such an automorphism are
called orthogonal involutive Lie algebras and have been classified by Cartan; a complete list
can be found e.g. in [82, p. 354]. Because of (2.2.19), among the orthogonal involutive Lie
algebras one only has to consider those whose fixed algebra contains a u(1) ideal. Finally,
one verifies by inspection that for all such Lie algebras the N = 2 conditions are fulfilled.

(The nomenclature used above arises from the following geometrical setting. The fact
that g and h form an orthogonal involutive Lie algebra can be shown to be equivalent to the
property that the homogeneous space G/H, with G and H the compact simply connected
Lie groups corresponding to g and h, is a Riemannian globally symmetric space. These
spaces are defined as follows. For a Riemannian manifold, a neighbourhood of any point
p of the manifold can be described by mapping a sphere in the tangent space at p on the
neighbourhood; via this map the reflection about the origin of the tangent space (the pre-
image of p) induces a mapping 7 of this neighbourhood. If 7 is an isometry, the manifold is
called a locally symmetric space; if in addition 7 can be extended to a global isometry, the
manifold is called a globally symmetric space. It can be shown that all globally symmetric
spaces are homogeneous spaces, i.e. isomorphic to the quotient of a simply connected Lie
group by a closed subgroup. In this geometrical context the condition (2.2.19) means that
G/ H carries in addition an almost complex structure J which is hermitian, i.e. the metric g
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Table 2.1: Hermitian symmetric coset theories (HSS) and their Virasoro charges

Clg/h], c name
ClAmin—1/Am-1® An_1 ®u(1)], 3kmn/(k+m+n) | (4, m, n, k)
C[Bni1/B. ®u(1)], 3k(2n +1)/(k+2n+1) | (B, 2n+ 1, k)
C[Dpi1/D, ®u(1)], 6kn/(k +2n) | (B, 2n, k)
C[Cn/An_1 @ u(1)], 3kn(n +1)/2(k +n+1) | (C, n, k)
C[Dn/An—1 ®u(1)], 3kn(n —1)/2(k +n —2) | (D, n, k)
C[Es/Ds ® u(1)], 48k /(k +12) | (ES, k)
C|E;/E¢ ® u(1)], 81k/(k +18) | (E7, k)

satisfies g(JX,JY) = g(X,Y) for all elements X, Y of the tangent space. It can be shown
that for homogeneous spaces this automatically implies that J is Kéhlerian, i.e. covariantly
constant. In the general case where f;5: is non-vanishing (which is the situation in which
we are interested in the present chapter), the homogeneous space G/H is no longer a
Riemannian globally symmetric space, but as was shown in [96], it is nonetheless still a
Kahlerian space iff the N = 2 conditions are fulfilled. We remark that for our purposes
these geometric characterizations are of little use. In fact, one of the main achievements
of the theory of homogeneous spaces was precisely to recast the problems in purely Lie
algebraic terms, which finally provided a powerful handle on the geometric objects.)

Alternatively, the classification of hermitian symmetric spaces can be found by the fol-
lowing simple prescription [33]: the hermitian symmetric spaces are obtained by deleting a
node of the Dynkin diagram of g that corresponds to a so-called [48] cominimal fundamen-
tal weight, i.e. a fundamental g-weight A such that a; = 1 in the decomposition (2.2.23)
of the highest g-root 65. To prove this characterization, we proceed as follows. Multiplying
both sides of (2.2.23) with 9, as defined in (2.2.17), one obtains

rank &
(90,05) = > . ai(a, ad). (2.2.27)
=1 acAy

Now suppose that 65 is a root of h. Then according to (2.2.18) one has Yaea, (@,0) = 0.
Given the fact that the Coxeter labels a; are positive, we thus learn from (2.2.27) that
(%0, a?) = 0 for all simple roots. But then (2.2.18) and (2.2.26) imply that all simple
roots of g are contained in h, and hence g = h, showing that the coset would be trivial in
this case. Thus again we conclude that 6z cannot be a root of h. From (2.2.26) we then
learn that the left hand side of (2.2.27) equals g". The right hand side can take this value
only in the case when exactly one simple root of g with Coxeter label equal to 1 is not
contained in h. Now using the classification of regular subalgebras [32], it is straightforward
to check that one obtains in this way exactly the same list as before.

In Table 2.1 we recall the list of all HSS models and their Virasoro charges (the short-
hand notation displayed in column 3 is taken from [37]). We now return to the general
case. Let us stress that we are in a position to give a complete list of all N = 2 coset
models. However, even when grouping these theories (of which there are infinitely many)
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Table 2.2: Non-hermitian symmetric coset theories relevant for ¢ = 9 tensor products

Clg/hl,, c name
ClBy/An_1 @ u(1)] 2 n(n+1) 3n’ (BA,n, k)
n/ St DI g "M k+on—1 "
24(n — 1)?

C[B./Bn-2 ® A1 ® u(1)], 12n — 15 — P — (BB,n,k)
C[Cn/Crr & u(1)] 6n—3——" | (CCn k)
n/Un-1 u k n Etnal , T,

ClCs/A1 ® Ay ® (1) 21— | (¢3,k)
3/A1 1ou k k14 y
ClCs/As & Ay @ u(1)] 36— 02| (04, k)
4/ A2 1ou k k15 y
150
C[Ds/A1 ® A1 ® A; D u(l)], 27 — 756 (D4, k)
324
C[Ds/A, ® A; & A; ®u(1)], - 15 (D51, k)
ClDs/As ® Ay @ u(1)] 39— 224 | (D5a, )
5/413 1ou k k18 2,
ClFs/Cs @ u(1)] 15— 5 | (4 k)
4 k19 ’
50
54
ClG2/AT ® u(1)], -1 (G2:,k)

into a finite number of series, this list still remains rather long, and we will not present it
here in full detail. Rather, we list only those models that can be used as factor theories in
tensor products with conformal central charge ¢ = 9 (as well as some other models which
fall into infinite series that contain models relevant for ¢ = 9). The interest in these models
comes from superstring theory where they can be used for the inner sector of heterotic
string vacua [67], and from the possible relation with Calabi- Yau manifolds and with
Landau-Ginzburg theories.

The result of our classification is presented in Table 2.2, where we supply the coset the-
ories together with their conformal central charge (as calculated according to (2.2.6)) and
with a short-hand name that derives from the Lie algebras involved. From the classifica-
tion of regular subalgebras described above, the relevant embedding h — g is determined
uniquely by the pair g, h of Lie algebras for all entries in Table 2.2 except for the two
models with g = G,. In the latter cases we use the superscripts ‘<’ and ‘>’ to indicate
that the A;-subalgebra corresponds to the short and long simple root of G5, respectively.

For convenience we have grouped some models in the table in three series. From the
above remarks it should be clear that there is no physical distinction between the models
within these series and the other models. The different appearance is a mere artifact of
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our string theory-oriented condition on the central charges. We also emphasize that the
list in Table 2.2 does not contain all N = 2 coset theories with central charge ¢ < 9. Their
number is much larger, but most of them cannot be combined with other known N = 2
theories to obtain ¢ = 9 tensor product theories. For instance, we have not included the

model C[Dg¢/Ds @ A1 ® u(1)],, which has ¢ = 51 — k‘:_% . For level k = 1 the conformal

central charge is ¢ = I—i’ < 9, but there does not exist any N = 2 model with ¢ = % which
could be tensored with this theory to arrive at a ¢ = 9 conformal field theory.

Note that the number of the models so obtained is relatively small. This can be traced
back to two simple facts. First, if g is a Lie algebra of A type, all subalgebras lead to
coset theories of the HSS type. Second, for any fixed Lie algebra g, the central charge
of the coset theory grows rather fast when one moves the node with label 7, away from
the ‘margin’ of the Dynkin diagram of g towards the inner part (note that except for
A, all cominimal fundamental weights, i.e. those leading to hermitian symmetric cosets,
correspond to marginal nodes).

2.3 Specification of the coset theories

As already emphasized, the ‘Lie-algebraic coset’ as it stands in (2.1.1) is in itself far from
defining a consistent modular invariant conformal field theory. In this section we will
provide a detailed specification of the conformal field theory.

In fact, the first step to do so was already taken in the previous section when we
computed the levels (2.2.4) of the semi-simple part of the subalgebra h, i.e. of the simple
ideals in the decomposition (2.2.3), which in the case of our interest reads

h=hou(l)= @ hi o u(1). (2.3.1)

But the abelian ideal of h must be specified as well.

2.3.1 The u(1) subalgebra

The conformal field theory corresponding to a u(1) algebra has Virasoro charge ¢ = 1. As
all ¢ = 1 conformal field theories have been classified [27,15] and their field contents is
known, it is sufficient to have a look at the conformal dimensions occurring in the conformal
field theory we are after, which, as we shall show now, in turn are fixed by the embedding.

The direction of the u(1) in root space is given by 9,. From the embedding (2.2.2) we
read off the precise form of the u(1)-generator Q; it is proportional to

Q(z) = (0o, H(2)) + E (To, @) WU ~%(2). (2.3.2)

&€A+

Here :¥*¥~%: denotes the fermion number operator for the complex fermion that is asso-
ciated to the root a; it takes integer values in the Neveu-Schwarz sector and half-integer
values in the Ramond sector; H stands for the Cartan subalgebra currents of g.

By replacing 9, in (2.3.2) by an appropriate multiple v, of 7,, all eigenvalues of Q
can be taken to be integers. We will assume that we have chosen the smallest multiple
fulfilling this requirement (otherwise we would be forced later on to introduce additional
identification currents that have a non-trivial component only in the u(1) part), and write

Bo= Y &= & vo; (2.3.3)

&€A+
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the number &, turns out to be an integer or half integer in all cases except for the model
of type G2: for which ¢, = 5/3. The operator product of @ with itself then reads

o) Q) ~ (2.3.4
with
N = (vo,v0) k + _22 (vo,&)2 = (V0,0 )(k + ¢). (2.3.5)

Denote by ¢ a canonically normalized free boson, satisfying i9p(z)i0p(w) ~ (2 — w)™2.
Expressing Q in terms of ¢, i.e. @ = v/ Nidy, we obtain the energy-momentum tensor

1 1
T=—-:10p10p:= —: . 2.3.
5 i0pidyp N Qo (2.3.6)
Thus the conformal dimension A of a primary field is
2
A= Q (2.3.7)

T 2N
with @ the u(1)-charge of the field, i.e. the eigenvalue of Q.

Thus the u(1) theory in question is the conformal field theory of a free boson compact-
ified on a circle whose radius is adjusted (or, in other words, the chiral algebra is enlarged)
precisely in such a manner that the charges are identified modulo A/. 2 In the sequel we
will denote this theory by u(1),,. The relevant values of the integer N (as well as the
explicit values of the levels of the simple ideals h; computed according to (2.2.4)) for the
cases of our interest are provided in Table 2.3.

For hermitian symmetric cosets it was noticed [123] that A is always a divisor of

No(g,h), where

No(g,h) = Ic(g) - Ic(h) - (k + gY). (2.3.8)
Here I. stands for the index of connection (i.e. the number of conjugacy classes, which
is equal to the order of the center Z of the corresponding universal covering Lie group)
of a Lie algebra, and I.(h) = [[; I.(h;), where h; are the simple algebras which appear in
the decomposition h = @;h; of h into simple ideals. In fact, in most cases one even has
N = No(g,h); also, by introducing additional identification currents with a non-trivial
component only in the u(1) part one could use (as has been done in [123]) Noy(g,h) in
place of A/. For non-hermitian symmetric cosets, however, we encounter two cases, namely

(G2:1,k) and the models (BA,n, k) with n odd, where the value of A is larger than Ny(g, h).

2.3.2 Selection rules and field identification

Our next task is to identify the physical fields of the theories of our interest, as described
in Section 1.5. In the case N = 2 cosets, the branching functions bﬁg are the coefficient
functions in the decomposition

Xpx(T) = EA: bra(T) Xao(T) (2.3.9)

? Thus e.g. u(1), is the theory for which the extended algebra is the level one Agl) Kac-Moody algebra,
and u(1), =so(2);.
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Table 2.3: The values of the levels k; and of A for non-hermitian symmetric coset theories

name Clgr ® so(2d)1/ @z(ﬁz)k, @ u(l),]
(BA,n,k) ,neven | C[(Bn)r ®so(n?+n)1 [/ (An_1)kin1 ® u(l)n(k+2n_1)]
(BAm k) s modd | CU(Ba)e ® s0(n® + 1)1 / (An s )esos ®0(L)gngerzm )
(BB,3,k) CI(Ba)e  s0(14)1/ (Ar)ass © (Ar)ss © 0(L)ge o)
(BByn,k) v n>3 | Cl(Bo)e @ so(8n — 10) / (Br-s)iss @ (Ar)ern-a @ (1) pzo )
(CCym, k) Cl(Cole ® s0(4n — 211 / (Cos s © 0Ly
(€3, Cl(Ce)e ® s0(14)1/ (Ar)esa @ (An)aers @ (1))
(C,h) CU(Co)e & 302 | (An)sr & (Ar)esa @ (1))
(D4, k) Cl(Da)r @ 50(18)1 / (A1)k+a ® (A1)kra © (A1)rta B u(1)ys46))
(D5, k) Cl(Ds)e @ 50(30)1 / (A2)k+5 ® (A1)rre © (A1)rre ® 1(1)15045))
(D52, k) Cl(Ds)r @ 50(26)1 / (As)ira @ (A1)rre © 1(L)y(s1s)
(F4, k) Cl(Fa)r ®50(30)1 / (C3)r4s @ (1) y49)]
(G2, k) Cl(G2)e ® 50(10)1 / (A1)is2 © u(L)gi )]
(G2, k) Cl(G2)r @ 50(10)1 / (A1)sk+10 ® u(1)2(k+4)]

of the product of the characters of g and so(2d) with respect to the characters of h. Here
A and A stand for integrable highest weights of g and ﬂ, respectively, and ) for an allowed
u(1)-charge, while x denotes an integrable highest weight of so(2d) at level one, i.e. the
singlet (0), vector (v), spinor (s), or conjugate spinor (c) highest weight.

We have seen in Section 1.5 that the correct way to arrive at a modular invariant the-
ory is to interpret the primary fields of the coset theory in terms of equivalence classes
of branching functions [68,129, 83]; this prescription is usually referred to as field iden-
tification. Under the assumptions mentioned in Section 1.5.2, the equivalence relation is
uniquely determined by the conjugacy class selection rules. If all equivalence classes have
the same number of elements, one can simply define a primary field as an equivalence
class of branching functions. Its character is then just any of the (identical) branching
functions of its representatives, and accordingly the primary field can be denoted as @ﬁ”g,
where (A,x,,Q) is a representative combination of the relevant highest weights A of g,

A

x of s0(2d), A of h, and @ of u(1). If, on the other hand, several distinct sizes of equiva-
lence classes are present, fixed points have to resolved; this will be addressed in the next
subsection.

Our task is thus to find the relevant selection rules and deduce the identifications
implied by them. This is a straightforward exercise in group theory, but is still somewhat
involved owing to the non-trivial embedding of h in so(2d). A convenient way to state
these selection rules is to characterize the non-vanishing branching functions by the fact
that their monodromy charge with respect to the identification group Giq of the coset theory
vanishes. The identification group contains all identification currents; we will denote its
order by |Gia|. Its orbits on the branching functions are just the equivalence classes we
are looking for. To qualify as an identification current, a simple current must have integer
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conformal weight [130] (this allows for a simple check of our results for the identification
currents); this condition must be met because any identification current is a representative
of the equivalence class describing the identity primary field, and conformal weights are
constant modulo integers on each identification orbit.

To begin the description of identification currents for the theories of our interest, we
derive a formula for the order |Gi4| of the identification group of any N = 2 coset theory
of the form (2.1.1). This provides an important check for the completeness of the selection
rules that will be listed below. Our starting point is the formula [103]

Lx
el (2.3.10)

|Gia| =
Ly

Here L denotes the root lattice of a reductive algebra, and LY the corresponding coroot
lattice. The symbol ‘*’ is used to indicate the dual lattice; in particular (LV)* = LW,
where L% is the weight lattice. Writing the relation (2.3.10) in terms of the dual lattices
and denoting the volume of the unit cell by ‘vol’, we see that

LY)* v 1(Ls
|Gial = ‘( E)* = ‘—h = % (2.3.11)
(Lg) g vol(L")
Since the direction of the u(1) is orthogonal to h in weight space, it follows that
VOl(LEV) = Vol(LEV) 1= Vol(LEV) (2.3.12)
and
vol(Lg) = vol(Lﬁ) - Qs (2.3.13)
where Q;, is the u(1)-charge of the simple root al®). Thus
vol(te) A - 2.3.14
|gid|—QioWLEV)—Qio Lﬁ = @i, I.(h). (2.3.14)

A

Here I.(h) = II; I(h;) as in (2.3.8), and we made use of the fact that I.(h) = |LEV/LE| for
any simple Lie algebra h.

While the result (2.3.14) is completely general, the precise form of the group theoretical
selection rules must be determined in a case by case study. To do so, a rather tedious
investigation of the way h is embedded in g @ so(2d) is necessary. In particular a careful
handling of the embedding of h in so(2d) (best to be described in an orthogonal basis which
corresponds to the free fermion realization of so(2d);), which is a special > embedding, is
required. We list in Table 2.4 our results for the identification currents ¢; of all non-
hermitian symmetric N = 2 coset theories that can be used in ¢ = 9 tensor products. We
use the notation J = (J(8), J(=(2d)) / Jho gtha) ., J@M)), In the individual entries, we
write J, for the vector simple current, and J; and J, for the spinor and conjugate spinor
simple currents, respectively, of B and D type algebras, while for A type algebras, J stands
for the simple current that acts as p® — p*T1™°d("+1) on the Dynkin labels of a A,-weight
(this current is associated with a marginal node of the Dynkin diagram; it has maximal
order, and hence generates all simple currents of the theory); finally, for the u(1) part a
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Table 2.4: The identification groups for non-hermitian symmetric coset theories

name |Gid generators of Gig fixed p.
(BA,n,k) , I even n (J,l/J,k—I—?n—l) -
(BA,n,k) , nodd 2n (J,JV/J,2(]{3—|—277,— 1)) -

(J,1/J,1,0) ++

(BB,n,k) 4 { (J,1/1,J,4(k + 20 — 1)) { _
(CC,n, k) 2 (J,(J)" ) I, £(k +n + 1)) -
(J,1/J,J,0) +

(C3,k) 4 { Iy Jv [ 7,1, £2(k + 4)) { -
(C4,k) 6 (J,Jy | J,J,—(k + 5)) -
(Jey1/J,J,1,0) +

(D4, k) 8 { (J:,1/J,1,J,0) { +
(1,Jy / J,J,J, +(k +6)) -

(Joy Iy | I, J, 1, —(k + 8)) -

(D51, k) 24 { (Jo,1/1,7,7,0)) { +
(Jo,Jv [ 1,J,£(k + 8)) —

(D52, k) ’ { (Jiy1/J,J,0)) { +
(F4,k) 2 (1,1/J,%(k +9)) -
(G21, k) 2 (1, Jy [ J, £3(k + 4)) -
(G22, k) 2 (L Jv /[ J,£(k+4)) -

field is simply denoted by its u(1)-charge Q. Notice that in Table 2.4 we only give a set of
generators of the group Giq rather than all of its elements.

The way in which we arrived at these results is best described by giving an example.
Thus let us have a look at the coset theory denoted by (C4,k). We denote the Dynkin
labels of weights of g = C4 by A%, i = 1,2,3,4, of weights of h; = A, by A! and )2, of
weights of hy = A; by \*, and the u(1)-charge by Q. By analysing the embedding, we find
that these numbers must be related by

3AY +3A% — 6N 4+ 20! +4)% +3)* + Q = 0 mod 6, (2.3.15)

where 6N stands for the sum of six different eigenvalues of the Cartan generators of so(24),
which have integer values in the Neveu-Schwarz sector and half integer values in the
Ramond sector. We want to interpret this result as a relation for monodromy charges,
namely

Qua[C] + Quls0(24)] + Q[ As] + Qua[A1] + Qu[u(1)] = 0 mod 1. (2.3.16)

It is easily checked that N mod 7 is the monodromy charge with respect to the vector
current J, of so(2d), and that Q/p is the monodromy charge with respect to the current

8 This is not in conflict with the previously mentioned result [133] that N = 2 symmetry requires
regular embeddings. The part of the embedding that must be regular is h < g rather than h — so(2d).
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with u(1l)-charge — N /p of the u(l) theory. For the g and h; parts, the identification
currents can also be fixed uniquely, simply because all simple currents, as well as the
associated monodromy charges, of the corresponding WZW theories are known. We then
arrive at the combination

by = (J7 JV/J7 Ja_(k + 5)) (2'3'17)

of simple currents that has (2.3.16) as its monodromy charge. This current has order 6.
This coincides with the result of formula (2.3.14) for the order of the identification group,
and hence we have already found all identification currents.

2.3.3 Fixed points

If the equivalence classes described in the previous subsection have different sizes N;, the
identification procedure becomes more complicated. Note that the maximal size of a class
is equal to the size N = |Giq| of the equivalence class of the identity primary field, and
that any other allowed size is a divisor of N. The equivalence classes of size Ny < N
should correspond to N/N; distinct physical fields [129, 130]. The required resolution
of classes of non-maximal size into primary fields is problematic because not all necessary
pieces of information are directly supplied by the embedding; in other words, the resolution
potentially introduces some arbitrariness in the description of primary fields. In particular
we do not know the characters of the individual primary fields into which such a class f is
resolved. We do know, however, their sum, since modular invariance imposes the constraint

N X = Xy, (2.3.18)

where Xy denotes the original branching function of the class f.
Now given the naive S-matrix element Sy, between two fixed points f and g, one can
make the ansatz (1.5.7)

. NN
Stos = 3" Ssa + Tff (2.3.19)

for the full S-matrix between different fields f;, g; into which the fixed points are to be
resolved. The matrix I' introduced here must be symmetric (with respect to the double
index (f,7)), but a priori is otherwise arbitrary. Modular invariance can be shown to imply

the sum rules (1.5.8)
S rff=0=31. (2.3.20)
B j

To find a solution for I' we assume that with respect to the individual entries of the multi-
index (f,7) = (A, x, A, Q,17) it factorizes as

A7X7A7Q;AI7XI7AI7QI — AAI XXI AA’ Q QI .
L' = I'g) (so(2d))r(ﬁ) L atyPis (2.3.21)
where N
Pi=&;— ~1. 2.3.22
J J N ( )

Since in all cases of our interest the fixed points f have order N/N; = 2 and must therefore
be resolved into two fields, the fact that (2.3.22) can be factored out is an immediate
consequence of the sum rules (2.3.20). Following [130], with the factorization assumption
(2.3.21) we can identify in all cases a so-called fixed point conformal field theory, whose
characters can be added to the branching functions to get the full collection of primary
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helds; these characters are nothing but the summands A',(7) in the decomposition (2.3.18)
above.

This procedure of fixed point resolution is certainly quite important, because it is only
after having accomplished this task that we really deal with a well-defined conformal field
theory (it is even unknown whether the prescription works for an arbitrary coset theory, and
whether the conformal field theory it provides is unique). However, it is not difficult to see
that some important quantities we will be interested in, namely the number of generations
and anti-generations in a four-dimensional string compactification, can be obtained in our
case without a detailed knowledge of the resolution procedure (see also the comments in

Chapter 4).
In the third column of Table 2.4 we marked whether identification fixed points occur
in the theories in question. The following notation is used: ‘-’ indicates that fixed points

never occur in the corresponding theory; ‘+’ means that fixed points can occur, but not
at any of the levels that are relevant for ¢ = 9 tensor products (this typically happens
when we are only interested in low levels where the associated outer automorphisms of g
act freely on the integrable representations of g); finally ‘44’ is used to indicate that fixed
points occur and have to be resolved. Note that an identification current can possess a
fixed point only if it has vanishing u(1)-charge.

2.3.4 Modular invariants

It should be noted that the discussion of field identification in the previous subsections
refers only to one chiral half of the conformal field theory. For the full theory, one has to
use all fields as identification currents, i.e. as representatives of the identity primary field,
that have non-vanishing branching functions and are identification currents with respect to
both the holomorphic and the anti-holomorphic part. For example, for the N = 2 minimal
models this prescription implies the presence of left-right asymmetric identification currents
if the Deyen, Fg, or Fg type invariants of the associated A; WZW theory are chosen.

For the N = 2 theories of our present interest, we will confine ourselves to analyse
only the situation where the diagonal modular invariants of g, h and so(2d); are used.
As a consequence, the identification currents are just the left-right symmetric version of
the chiral currents listed in Table 2.4. The extension to any known non-diagonal modular
invariant is immediate; recall however that the classification of modular invariants of simple
Lie algebras (other than A; and A, and their tensor products) is far from being complete.

2.4 Chiral ring and Poincaré polynomials

In this section we present some results concerning the chiral ring of our theories. The
chiral ring is spanned by the collection of chiral primary fields of the theory; these fields
are by definition those primary fields which satisfy gsco = h/2. They generate the chiral
ring [103] of the theory; this is a finite-dimensional nilpotent ring R whose product is
the naive operator product lim, ., ¢(z)¢'(w). The reader should note that this product
is different from the one defined by the fusion ring: the conjugation is not the evaluation
with respect to the vacuum any more; rather the conjugate of the vacuum is the chiral
primary field with highest u(1) charge.

The information contained in the chiral ring is crucial for many applications; e.g. the
relation to topological field theories is mainly through this ring. It can also be used e.g. to
determine quantities relevant to string compactification: in Chapter 4 we will compute the
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quantities which are the most relevant ones for the phenomenological aspects, namely the
number of (anti-)generations for a compactification of the heterotic string to four space-
time dimensions.

For the models under consideration, it is in fact easier to work with the ground states
of the Ramond sector, which owing to spectral flow [103] provide equivalent information on
the theory. Namely, the chiral primary fields (with superconformal charge * gquco) are via
spectral flow in one to one correspondence with Ramond ground states (with superconfor-
mal charge gsuco — ¢/6). In all N = 2 coset models of the form (2.1.1) we can identify the
simple current in the Ramond sector which generates the flow; it is the unique Ramond
ground state with highest superconformal charge, which has been termed spinor current
in [123]. It is easily seen that one representative of the spinor current is the field

5 =855, (2.4.1)

with
Qs = (vo, pg — Pp)- (2.4.2)
Here pg = >°; A(;) and p;, are the Weyl vectors, i.e. half the sum of positive roots, of g and

of h, respectively.

The information on the multiplicities of chiral states with a given superconformal charge
is encoded in the Poincaré polynomial [103], which can be defined as a trace over the chiral
ring R, )

P(t,t) := Trp t™#. (2.4.3)

Here Jy denotes the generator of the superconformal u(1), and the barred quantities refer
to the second chiral half of the theory. In the sequel we will only consider the left-right
symmetric diagonal modular invariant; correspondingly we can restrict ourselves to one
chiral half and replace ¢t for the sake of simplicity by ¢.

2.4.1 Ramond ground states

To determine the ground states of the Ramond sector one can use a simple formula for the
g- and h-weights of these states which can be derived [103] by means of an index argument.
The advantage of this formula is twofold. First, in coset models it is usually difficult to
calculate the integer part of the conformal weight h of a primary field; for Ramond ground
states (which all have h = ¢/24), however, the index argument makes it possible to identify
the state without having to evaluate a formula for h. Second, the formula automatically
takes care of possibly arising null states; again, this is a rather delicate issue in the general

case. 5

Denote by W5 the Weyl group of g, by |Wg| its order, and by WE and |WE| the
analogous quantities for h. For any integrable g-weight A, the recipe of [103] provides
|Wg|/|Wi| Ramond ground states. The h-weight A of each of these Ramond ground states
is related to its g-weight by

A=w(A+pg) — Py - (2.4.4)

Here the weight A= (A, Q) incorporates both the weight A of the semi-simple part h of h
and the u(1)-charge Q. Also, the map w in (2.4.4) is the representative of any class of the

4 In the literature sometimes a normalization is chosen where %qsuco is the superconformal charge.
® Compare the remark about Eg singlets in Section 4.4 below.
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coset WE/WE possessing the property that A is a dominant integral highest weight of h;
each class of Wg / WE contains a unique representative w satisfying this requirement [99]. If

sign(w) = 1, then the highest weight of so(2d) that is associated to X is the spinor (s), while
for sign(w) = —1, it is the conjugate spinor (c). Note that pg — p; < Ai,), the constant of
proportionality being >.(Aj), Ai,))/(Aw,)s Aj,)) as can be deduced from (pﬁ,pg _Pﬁ) =0.
For an N = 2 coset theory C[g @ Dgq/h ® u(1)]x without fixed points, the number of

chiral primary fields is correspondingly [103]
u— Ne) [Wel (2.4.5)

Z(g)l (W]’

where N is the number of primary fields of the WZW theory based on g at level K, and Z(g)
is the center of the universal covering group whose Lie algebra is g (which is isomorphic to
the group of simple currents of the WZW theory). The factor 1/|Z(g)| takes care of the
necessary field identifications among representatives. In contrast, if an N = 2 coset theory
has fixed points, the number of Ramond ground states is larger than (2.4.5). Namely, each
primary field of g still gives rise to |WE|WE| representatives of chiral primaries, but in
addition for fixed points it is still true that (after resolution of fixed points) every Ramond
ground state has a representative whose g- and E—ngghts fulfill (2.4.4) and that every

equivalence class containing one representative with A = w(A + pg) — P; yields precisely
one Ramond ground state.

To implement the formula (2.4.4) on a computer, it is convenient not to start with the
weights of g, but rather to scan all dominant weights of h that are allowed by the selection
rules. For each such weight ) one determines the unique dominant integral g-weight which
lies on the same Wg—orbit as A + P; (if this g-weight is not integrable at the relevant
level of the affine algebra g(!), then the corresponding state has to be rejected). To do so,
one only has to know the action of the fundamental reflections w; € W (see e.g. [57]).
This method has the advantage that one needs not know the whole Ws-orbit of a highest
g-weight which, especially for large rank algebras, would require a lot of memory.

2.4.2 Poincaré polynomials

Having found the Ramond ground states, we can proceed to compute the Poincaré poly-
nomial of an N = 2 coset theory. To do so, we also need the superconformal charge of the
Ramond ground states. This charge is given by [97]

g £OQ
Gsuco = § A — . (246)
&€A+ k —I_ gv

Here &, = \/(170,170)/(1)0,1)0) = \/(k + ¢Y)(%0,70)/N is the number defined by (2.3.3), @ is

the u(1)-charge of the Ramond ground state, and A% € {3,—3} are the components of its

so(2d)-weight in the orthogonal basis. Unfortunately the index argument [103] leading to
(2.4.4) does not provide the full weight A, but only yields the information whether it is a
weight of the spinor or of the conjugate spinor module of so(2d), or in other words, only

the value of > 5ca. A% modulo 2. To translate (2.4.6) into a more convenient formula, we
proceed as follows. © Denote by A%_, AB | and AE the sets of positive roots, of negative

6 An analogous result has been obtained in [104] for simply laced hermitian symmetric cosets at level
one, and in [33,70] for all hermitian symmetric cosets in their free field realization.
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roots, and of all roots, respectively, of the Lie algebra g, and by AL‘E, A" the corresponding
quantities for h. For an arbitrary element w of the Weyl group Wg define

A= fa e AR | wl(a) € AR (2.4.7)

For any w € Wg, A8 is the disjoint union of AE_”] and A™!. We can express the image of
the Weyl vector pz under w as

w(pg) = %[ Yooa— > al, (2.4.8)
aeal acal®!
as is easily verified by applying w™! to both sides of the equation.
Given a subalgebra h of g, we call w € Wg h-positive [104], iff
AP c Al (2.4.9)
_l_ _l_ . . .

We claim that in order to compute Eaemj\a, we only need to identify the h-positive
representative w of the coset Wg/WE that appears in (2.4.4), and that the components

A of the so(2d)-weight A are given by
if ac Al
if aecAl

Aa:AwV:{ (2.4.10)

This can be seen as follows. Let a be an arbitrary element of AE_. For any highest h-weight

) we have (5\ + pﬁ,a) > (; as a consequence,

0 < (A4 p5,0) = (w(A + pg),a) = (A + pg,w (@), (2.4.11)

This shows that w™!(a) € Ag_, or in other words, that AE_ C AE_”]. Now the general form

of the Cartan currents of h reads

Hi=Hy+ Y a 0%, (2.4.12)

&€A+
As a consequence, under the embedding h — g@so(2d), the state with weight (w(A), ]\E‘ﬂ])

branches to _
A=wd)+3 X a-; ) a

aeal” acal”!
(2.4.13)
= w(A)—I—w(pg)—% Z o' —I-% Z a.
aeA[_:’]mAE aeA[_w]mAE

This reduces to w(A + pg) — pps e yields the correct result (2.4.4), iff w is h-positive.
]

Note that the weight (w(A), [\Eﬂ ) is always present in the weight system of the g @ so(2d) -
module with highest weight (A,s) or (A, c), because the Weyl group orbit of any weight of
a highest weight module with dominant integral highest weight is contained in the weight
system of the module.
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Inserting our result (2.4.10) into the formula (2.4.6) for the superconformal charge gsyco,
we obtain
Q)

k—l—gvl

To simplify this formula further, we recall that the length [(w) of a Weyl group element

w, which is defined as the minimal number of fundamental reflections needed to obtain w,
obeys [84, sect. 1.7]

qsuco — %(|AE|1_H] mA+| - |A[iﬂ] N A_|_|) —

(2.4.14)

(w) =AM N AL (2.4.15)

Using the identity
AP A AL+ 1AM N AL =4, (2.4.16)

we finally obtain

60
kE4gv -

The length of the relevant elements of W_g / WE can be obtained conveniently via the so-

called Hasse diagram of the embedding h — g (for some details, see the Appendix), and

hence the formula (2.4.17) is easily implemented in a computer program. For the spinor
current (2.4.1), one has w = id so that (2.4.17) reduces to

Qsuco — %d - l(w) (24:]_7)

(170,/)@ - pﬁ) - E

<uco =14 , 2.4.1
q (S) 2 L _I_gv 6 ( 8)

where the last equality follows with (2.2.6) and the strange formula.

We are now in a position to compute the Poincaré polynomials of the theories listed in
Section 2.2. For notational simplicity, we will present the Poincaré polynomials in the form
P(t%), with £ the smallest positive integer for which all values of £gco of chiral primary
fields are integers. We find that for the three series (BB, m + 2,1), (CC,2,2m + 1), and
(CC,2m + 2,1) with m € Z5¢, the Poincaré polynomials are given by a common formula,
namely £ = m + 2 and

m 2m+1
P™?) =3 +1) (t7 + 3™+279) 4 (3m 4 4) > . (2.4.19)
j:0 J:‘In-l—].

The Poincaré polynomials of the remaining models are listed in Table 2.5.

To conclude this subsection, we remark that the resolution of fixed points does not
alter the number of Ramond ground states. In other words, independently of its length
each identification orbit that contains a representative satisfying (2.4.4) provides exactly
one Ramond ground state [123].
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Table 2.5: Poincaré polynomials for non-hermitian symmetric coset theories

name { P(tY)

(BA,3,1) 411432 +483+3t*+¢°

(BA,3,2) 14 | 148+ +¢% +2¢10 4 ¢ + 3812 13 4 2(¢1* + 15 4+ £19)
—|—t17—|-3t18—|-t19—|-2t20—|-t21—|—t22—|-t24—|-t30

(BA,3,4) 6 | 1+ (t2+¢3)+3¢* 4265+ 9t +7¢7 +14¢8 +12¢°
—|—14t10—|—7t11—|—9t12—|—2t13—|—3t14—|—t15—|—t16—|—t18

(BA,4,1), (C3,1) , (G2,2) 2 (144t +14¢% 4 4¢3 +¢*

(BA,5,1) 41 1+582+10¢* +16¢° +10¢° + 5¢% +¢1°

(BA,6,1) 2| 14+6¢t+15¢%+52¢>+15¢* +6¢° +t°

(BB,3,3) 2 | 144t + 1782 +40¢> +17¢* 4 4¢° + 8

(BB,4,2) 3| 1+2¢+ 882+ 14 +35¢* +35¢° + 14¢° + 847 +2¢% +¢°

(CC,2,2),(CC,3,1),(G2:,1) | 5| 1+282+3(t3+t*)+2t5+1¢7

(cc,2,4),(CC,5,1) T11+282 +3t +585 +4(t8 +¢7) + 588 +3¢° 4241 +¢13

(cc,2,6), (CC,7,1) 9 | 1+282 +3¢* + 445+ 7t" + 5t +6(¢° +¢1°)
—|—5t11—|—7t12—|-4t13—|-3t15—|-2t17—|-t19

(CC,3,2), 2| 1+6t+16t2+6¢> 4+ t4

(CC,3,5), (CC,6,2) 3| 14+3t+12¢2 4208 +48(¢t* +t°) +20¢% +12¢7 + 38 +¢°

(CC,4,3) 2| 148t+29t* 4+ 64¢> +29t* 4 8¢° +t°

(C4,1) 2| 144t+15t*+40¢> +15¢* 4+ 4¢° +¢°

(D4,1) TI1+82+3t* + 45 +3(t8+¢7) + 4t +3¢° + ¢ - ¢13

(D51,1) 3|1+t +4¢2 4+ 1283 +22(t* +¢°5) + 1245 + 447 + ¢34+ ¢°

(D52,1) 9 | 1+82+2¢* + 385 +5¢" +4(t8+ 2+ 10 +¢M)
—|—5t12—|-3t13—|-2t15—|-t17—|-t19

(F4,1) 5 1+t+2(824+83)+9(t*+t°+t5+1¢7)
—|—2(t8—|-t9)—|-t10—|-t11

(G2:,1) 3|1456(24+¢)+1¢°

(G21,2) 18 1—|—t10—|—t12—|—t13—|—t14—|—t15—|—2t16—|—t17—|—t18—|—t19—|—2t20
—|—t21—|—t22—|-t23—|-2t24—|-t25—|—t26—|-t27—|-t28—|-t30—|-t40

(G2:,5) 3|1+t +4t2+8834+22(¢*+¢5)+8t8 +4t" +t8+¢1°
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<.4.0 Charge conjugation

From (2.4.19) and the results in Table 2.5 one can read off that the superconformal charges
of chiral primary fields lie between zero and ¢/3, as it must be. One also notes that
according to the results the Poincaré polynomials obey

P(t) = t* P(t7h). (2.4.20)

In terms of the Ramond sector this means that the collection of Ramond ground states is
symmetric with respect to the charge conjugation gsuco — —Gsuco-
In fact, using the formulee (2.4.4) and (2.4.17) it is possible to show that this is a generic

feature of all N = 2 coset theories of the form (2.1.1). To show this, consider along with an

arbitrary Ramond ground state @g’x = (1)1;5 also the field represented by @g: ’XI, with AT,

x’ and AT defined as follows. As before, x stands for either the spinor or conjugate spinor,
and we define x’ to be equal to x if d is even, and to belong to the opposite conjugacy class

if d is odd. Moreover,
AT = —wB__(A), (2.4.21)
o= —wh () (2.4.22)

maXx

(recall that w,___, denoting the longest element of a Weyl group W, acts as the negative

of the conjugation in the representation ring of a Lie algebra). In the definition (2.4.22),

h

w/l., is to be considered as an element of the Weyl group Wg. As a consequence, wI}LaX

acts on the ﬁ—weights like the usual conjugation of weights and maps ) to —@Q). Namely, by
virtue of (2.2.18) each fundamental Weyl reflection of WE, and thus any element of Wg,
acts on v, as the identity.

Using the identities pz = —wglax(pg) and Pp = —wgax(pﬁ), we see that the highest
weight AT + P; of h can be written as
5‘+ +pop = _wrﬁlax S‘—I_ P = _wrﬁlaxw A—I_ g
o Gt pp) (A+ ) an
= wr (AT + pg),
where )
wt = wgaxw w8 (2.4.24)

and where w is the Weyl group element introduced in (2.4.4). To calculate the sign of w,
which determines the so(2d) conjugacy class, we observe (by inspection) that for all simple
Lie algebras g the relation

=(=1)™* (2.4.25)

sign (w§,,)

is satisfied, where n . = |A§_| is the number of positive g-roots. Therefore

sign (w") = sign (wﬁ )sign (w€_ ) sign (w) = (—1)(dir’“g_dir’nﬁ)/2 sign (w), (2.4.26)

maXx maXx

and (2.4.4) now clearly implies that the state @g: = i again a Ramond ground state. Also

note that as a by-product we proved that along with w also w' is h-positive.

So far we have seen that the set of Ramond ground states is symmetric in the u(1)-
charge. The symmetry in the superconformal charge then follows from (2.4.17) together
with the identity

l(w) + l(w") = d. (2.4.27)
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This relation arises as follows. Let & be an arbitrary root in A;. Then either w™!(a) € A®

or (wh) l(a) € A%, because the map w — w* swaps exactly from negative to positive

roots of g\ h. Thus A, is the disjoint union of A NA™ and Ay ﬂA[iﬁ], which by (2.4.15)
and (2.4.16) proves the assertion.

Let us also note that the unique Ramond ground state with minimal superconformal
charge gsuco = —¢/6 (which via spectral flow corresponds to the identity primary field) is
obtained by applying the above prescription to the spinor current (2.4.1), and hence is
given by @ngs. For this field the relevant h-positive Weyl group element is w = wgaxw;gnax
so that (2.4.27) implies

(wh we )=d, (2.4.28)

W}_lﬂe by setting A = A = 0 in (2.4.4), one obtains g = > (pg + wrﬁlaxwglax(pg)) = 3 (pg —
wgax(pg)). Since the h-positive representative w8/ of Wg /Wi with largest length d is
unique [84], (2.4.28) shows that this representative is given by

we/h = wh € (2.4.29)

maXx maXx —~maXx

2.5 Conclusions

In this chapter we have presented a detailed analysis of non-hermitian symmetric N = 2
superconformal coset theories; in addition, we have proven some general statements on the
structure of any N = 2 coset theory. Concerning the non-hermitian symmetric coset
theories themselves, we have shown that they indeed allow for an interpretation as a
consistent conformal field theory; this lends further support to the expectation that any
coset theory, naively ‘defined’ as C[g/h],, possesses such an interpretation. In particular,
it was shown that the fixed points that arise in the process of field identification can be
resolved by the methods of [129].

To conclude, let us come back to the hypothesis that, given a chain of subalgebras
hy < hy < g, the coset theory C[g/h;], should correspond to the tensor product of the
two cosets C[g/hz], and C[hy/h;]., with a suitably chosen non-product modular invariant.
We emphasize that in the presence of fixed points this hypothesis is far from being proven.
With the methods employed in the present chapter it should be straightforward to examine
the structure of both C[g/h;], and the tensor product of C[g/h;], and Clhy/h;],, in detail,
and thereby test the hypothesis for any given chain of embeddings. To prove the equivalence
in full generality, however, still a deeper understanding of the structure of coset conformal
field theories seems to be necessary.

2.A Appendix: Hasse diagrams

The Hasse diagram [11] for an embedding h < g of a reductive Lie algebra in a simple
Lie algebra is the graph of the coset WE/WFN interpreted as a subgraph of the graph of
Wg, with the edges as prescribed by the Bruhat ordering of Wg. (Hasse diagrams also
arise in the description of the topological structure of generalized flag manifolds and of the
structure of the Bernstein-Gelfand-Gelfand-resolution of Verma modules.) The nodes of
the Hasse diagram correspond to those representatives of elements of WE/WE that send

a dominant g-weight A to a dominant h-weight ), i.e. to h-positive elements of Wg, and
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the integer : attached to an edge indicates that the two nodes connected by the edge
correspond to Weyl group elements w and w' related by w' = wg;w, with w;) the ith
fundamental reflection. For an embedding h — g for which the Dynkin diagram of h is
obtained by deleting the node with label i, from the Dynkin diagram of g, the Hasse
diagram is isomorphic to the Wg—orbit of Ag,), i.e. to the ‘restricted weight diagram’ that
one obtains when acting successively on the weight A(;,) with the fundamental reflections.

The Hasse diagrams for the embeddings relevant to hermitian symmetric cosets have
been described in [33]. Below we present the Hasse diagrams for some of the non-hermitian
symmetric cases which appear in Table 2.2 (the diagrams for the remaining cases, i.e. the
BA and BB series and the two D5 theories look more complicated, and we refrain from
drawing them here). 7

Hasse diagram of W(C,,)/W(C,_1):

1 2 3 n-1 n n-1 2 1

" The Hasse diagram of W (Fy)/W(Cs) can also be found in [22, p. 86].
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Hasse diagram of W(D,)/ W(A; ®© A1 @ Ay):

Hasse diagram of W (Fy)/W (Cs):

3
2 1
4 4 4
2 1
A d
3 3
1 2 3
2 1 1
1 . 2 3
-
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Hasse diagram of W(G2)/W (A7 ):

2 1

Hasse diagram of W(G5)/W(AY):
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Chapter 3

Level-Rank Duality of WZW Theories and of N =2
Coset Models

As it turns out, the same conformal field theory can be described by different Lie algebraic
cosets. In this chapter we show that certain infinite series of N = 2 superconformal coset
models introduced in Chapter 2 coincide; to this end we construct mappings between these
series. They make use of level-rank dualities for B, ', and D type WZW theories, which
are described in some detail. The WZW level-rank dualities do not constitute isomorphisms
of the theories; for example, for B and D type WZW theories, only simple current orbits
rather than individual primary fields are mapped onto each other. Nevertheless they lead
to level-rank dualities of N = 2 coset models that preserve the conformal field theory
properties in such a manner that the coset models related by duality are expected to be, in
fact, isomorphic as conformal field theories; in particular, the representation of the modular
group on the characters and the ground states of the Ramond sector are shown to coincide.
The construction also gives some further insight into the nature of the resolution of field
identification fixed points of coset theories.

3.1 Level-rank dualities

Level-rank dualities relate objects that are present in two different structures that are
connected to each other by exchanging the level (or possibly some simple function thereof)
and the rank of an affine Lie algebra (or some closely related algebraic structure). They
emerge in various areas of physics and mathematics: in WZW conformal field theories
[114,115,140,109,116] and the theories obtained from them via the coset construction [6];
in three-dimensional Chern-Simons theories [109, 113]; in the representation theory of
quantum groups with deformation parameter a root of unity [56,121] and of Hecke algebras
whose parameter is a root of unity [76]; and in the description of edge variables in fusion-
RSOS models [102].

Usually, level-rank duality merely implies certain non-trivial relations among quantities
of different theories, such as correlation functions or fusion rules of WZW models. In this
chapter, we describe several level-rank dualities which go much beyond such relations in
that they provide an isomorphism between the respective theories. We show that there
exist several such equivalences among infinite series of N = 2 superconformal coset theories.
More specifically, we describe the identifications

B,2n +1,2k+1) £ (B,2k+1,2n + 1),
B,2n,2k +1) = (B,2k +1,2n)p,
BB,n+2,1) = (CC,2,2n + 1),
CC,n,k) =2 (CCk+1,n—1).

(
(
( (3.1.1)
(
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Here the notations are taken from 37| and Tables 2.1 and 2.2 , compare also Tables 3.1 and
3.2 below. Let us note that isomorphisms between infinite series of coset conformal field
theories have been observed previously. For instance, the ¢ < 1 minimal conformal models
can be described [73] as C[(A41),, ,® (A1), /(A1),,_ ], but also [4] as C[(Crn-1); / (Cru—2); ®
(C1);]; in this case the field contents is tightly constrained by the representation theory of
the chiral algebra, so that it is relatively easy to construct an isomorphism as a mapping
between primary fields. Our result (3.1.1) demonstrates for the first time the presence of
such isomorphisms for N = 2 superconformal theories of arbitrarily high central charge.

The identifications (3.1.1) are constructed as one-to-one maps between the primary
fields of the respective theories. Both at the level of the representation of the modular group
and, hence, for the fractional part of the conformal dimensions and for the fusion rules,
and (by identifying Ramond ground states) at the level of the ring of chiral primary fields
we verify that these maps possess the properties needed for an isomorphism of conformal
field theories. Clearly one would like to extend the proof from the fusion rules to the full
operator product algebra. Because of the technical difficulties arising in the conformal
bootstrap (compare, e.g., [44]), this would be a quite formidable task. However, it is
reasonable to expect that any two N = 2 superconformal field theories that possess the
same value of the conformal central charge, the same fusion rules, and the same conformal
dimensions modulo integers are in fact isomorphic. ' We are therefore convinced that
the two coset theories in question furnish merely two different descriptions of one and the
same conformal field theory. In this context note that in general the conformal dimensions
of primary fields change with the ‘moduli’ of some class of conformal field theories. For
compatibility with the fusion rules, the number of primary fields must then depend on the
moduli as well (in fact, when deforming a rational conformal field theory by a massless
modulus one generically obtains an irrational theory, compare the situation at ¢ = 1). The
arguments in favor of the interpretation of the relations (3.1.1) as isomorphisms seem to
us already conclusive for any fixed choice of a pair of theories from the list (3.1.1); they
become even more convincing when one realizes that our identifications always come in
infinite series.

Similar remarks apply to the structure of the chiral ring. We can substantiate our ex-
pectation that there is not only a one-to-one map between the chiral primary fields of the
theories, but that the sets of chiral primaries also possess isomorphic ring structures, by
various arguments. First note that the identification of the sets of Ramond ground states
of two N = 2 theories implies that they possess the same Poincaré polynomial. From the
experience with coset constructions, the observation that there exist coset theories with
coinciding Poincaré polynomials is not very spectacular. However, we will see in Chapter
4 that not only the ordinary Poincaré polynomials, but also the extended Poincaré polyno-
mials (introduced in [123]) of the relevant theories appearing in (3.1.1) coincide [123,54];
2 note that the extended Poincaré polynomial describes explicitly part of the structure of
the chiral ring, whereas the ordinary Poincaré polynomial essentially counts multiplicities.
Second, the mapping between Ramond ground states, and thus also between chiral primary
fields, leaves the superconformal charge ¢ invariant. When proving this, it is important
that (in contrast to the case of generic primary fields of a coset theory) for Ramond ground

! In the non-supersymmetric case, examples are known [124] where conformal field theories for which
these data coincide are nevertheless distinct theories. These theories have conformal central charge a
multiple of 8 and contain only a single primary field.

? Surprisingly, it seems that in fact for all N = 2 coset theories for which the ordinary Poincaré
polynomials are identical, the same holds for the extended Poincaré polynomials as well.
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states not only can we easily compute the conformal weight exactly (and not just modulo
integers), but also the superconformal charge ¢ (cf. formula (2.4.17)). In addition, the ring
product of the chiral ring is highly constrained by the fusion rules. Namely, since the ring
product is defined as the operator product at coinciding points, the fusion rules (together
with naturality [110]) determine which of the structure constants of the chiral ring are
non-zero. Finally, the charge conjugation on the fusion ring is implemented by the fusion
coeflicients Mjo, and thus our map respects charge conjugation, too. In particular, the
charge conjugation behavior of the Ramond ground states is respected. Since conjugation
on the chiral ring is induced by the ordinary charge conjugation on the Ramond ground
states via spectral flow (which means that there is a highly non-trivial interplay between
the chiral ring and the representation of the modular group on the characters), it follows
that the map is compatible with the conjugation of the chiral ring.

As it turns out, the identifications (3.1.1) are also interesting in the context of the
field identification problem that arises in coset conformal field theories. Namely, field
identification fixed points are mapped on non-fixed points, so that the duality provides
additional insight into the procedure of fixed point resolution. (The resolution procedure
for field identification fixed points shows up in two different ways: for models of BB type,
or of B type with rank and level odd, fixed points are mapped on longer orbits, while for
B type theories at odd level and even rank the resolution is accomplished by mapping on
pairs of so-called spinor-conjugate orbits.)

The plan of this chapter is as follows. The various level-rank dualities (3.1.1) of coset
theories are consecutively dealt with in Sections 3.6 to 3.9 (the isomorphism statements are
made in the equations (3.6.1), (3.7.1), (3.8.1), and (3.9.1), respectively). These sections
make heavy use of underlying level-rank dualities for the WZW theories [112,109] the coset
models are composed of. For the benefit of the reader we describe the relevant aspects of
these dualities in some detail in Sections 3.2 to 3.4, in a formulation that is adapted to the
needs in N = 2 theories, making in particular frequent use of simple current terminology.

To conclude this introduction to the subject, let us mention that level-rank dualities for
N = 2 coset theories have first been conjectured, for hermitian symmetric cosets, in [97];
this conjecture just relied on the symmetry of the conformal central charges of the relevant
coset theories. Calculations of the spectra of N = 2 coset theories were first performed
in [37,123] for hermitian symmetric cosets, and in [54] for non-hermitian symmetric cosets.
The results of [123] provided some evidence that the dualities indeed exist; in particular,
it was realized that for B type theories at odd level and even rank the D type modular
invariant must be used rather than the diagonal one. In the present chapter, we combine
the level-rank dualities of WZW theories with the properties of simple current symmetries
to construct a map between the primary fields of the N = 2 coset theories in question
that makes the level-rank duality explicit and is expected to be an isomorphism of the
two conformal field theories. It is worthwhile to stress that the underlying level-rank
dualities of WZW theories are definitely not isomorphisms of conformal field theories.
In particular, these WZW dualities are typically not mappings between primary fields,
but rather between simple current orbits of (part of) the primary fields. As we will see,
this fits perfectly to the application to coset theories, because owing to the necessary
field identifications the physical fields of a coset theory can be characterized in terms
of combinations of simple current orbits only. In some cases this technical complication
makes the formulation of the mapping somewhat awkward (and adds to the length of
this chapter), but, nonetheless, the mappings are based on simple current symmetries, and
hence on natural objects of the underlying WZW theories. We shall show in the sequel that
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these mappings have the properties required for isomorphisms of conformal field theories.

In [97] it was conjectured that a relation between B type theories at even rank and
even level should exist, too. In this case non-diagonal modular invariants must be chosen,
but up to now it is not yet clear which of them could do the job. ® Finally, based on a
free field realization of the symmetry algebra, a level-rank duality for the A type hermitian
symmetric cosets has been shown to be present at the level of symmetry algebras [97]. It
would be interesting to explore these dualities by the techniques developed in the present
chapter.

3.2 B type WZW theories at odd level

In this section we will describe a map 7 between the WZW theories (B,,)2r+1 and (Bk)an+1
that has simple behavior with respect to the modular matrices T (i.e., with respect to
conformal dimensions modulo integers) and S. Thus the two theories that are connected
by 7 are related by exchanging twice the rank plus one (recall that B, = so(2n + 1)) with
the level of a B type affine Lie algebra; a relation of this type is called level-rank duality.
As mentioned in Section 3.1, such dualities emerge in various different contexts; here we
will concentrate on those aspects that are needed for the identifications of N = 2 coset
theories in Sections 3.6 to 3.9 below. The level-rank duality in question was first realized
n [109]; in the notation of [109], our map 7 corresponds to the map ‘tilde’ for B weights
that are tensors, and to the map ‘hat’ for spinor weights, respectively. To be more precise,
7 will be a one-to-one map between orbits with respect to the relevant simple currents J
of the two theories. Thus, to start, we note that the number of primaries of the (B,)2x+1
WZW theory, i.e., the number of integrable representations of the affinization of B, at
level 2k + 1, is

B st = i<2k—2l+3><l+7—3> — (4k 4 3n)(n+ k— )lnlkl;  (3.2.1)

of these,
n+k—1
FB2k+1 = ( k ) (3.2.2)

are fixed points, so that the number of orbits is 2 ™ —]I; k). This is invariant under n < k,

so that indeed a one-to-one map between the respective sets of orbits is conceivable.

For any integrable highest weight A = > | AiA(i) of (By)ak+1, denote by
¢y = A" mod 2 (3.2.3)

the conjugacy class of A. For brevity, we will often refer to A as a ‘tensor’ and as ‘spinor’
weight if ¢, = 0 and ¢, = 1, respectively. Consider now the components of A in the
orthonormal basis of the weight space; they read

n—1
=Y N +1A (3.2.4)

3 Also, none of these N = 2 models is relevant to string compactification. For us this is another reason
to refrain from investigating these dualities here.
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Adding to these numbers the components of the Weyl vector as well as a term 5 (1 —¢,)
such as to make the result integer-valued, one defines

n-1
GA)=L(A+p)+ 2L —c)) =Y N +n+1—i+1(A"—cy). (3.2.5)
j=i
Under the action of the simple current J that carries the highest weight (2k 4+ 1)A(y),
the numbers ¢;, :+ = 2,3,...,n, are invariant, while /; becomes replaced by 2k + 1 — /;.
As a consequence, we may characterize any orbit of J by a set of n positive integers i,
i =1,2,...,n subject to £; > le for ¢ < j as well as &1 < k + n, or in other words, by a
subset M, of cardinality |M,| = n of the set

M:={1,2,....,k+n}. (3.2.6)

Each such subset describes precisely one tensor and one spinor orbit (in particular, there
are as many spinor orbits as tensor orbits if the level of B, is odd), and conversely, any
integrable highest weight of (B, )ax+1 corresponds to precisely one of these subsets.

We are now in a position to present the map 7. First consider spinor weights A of
(By)2k+1. Given the associated subset My C M, define the complementary set

(£ = M,y = M\ My, (3.2.7)

where the numbers ZET) are to be ordered according to ZET) > ZET) for ¢ < 7. Since this

subset of M again satisfies ZET) < k + n, and is of cardinality k, it describes precisely one
orbit {7(A),J x7(A)} of integrable highest spinor weights of (Bg)ant+1. Also note that M,
describes a spinor fixed point iff £ +n € My (in contrast, there do not exist tensor fixed
points at odd level); thus spinor fixed points are mapped to spinor orbits of size two, and
vice versa.

Let us now check how the modular matrix T' transforms under the map 7. By combining
the formulee (1.4.7) and (3.2.7), and inserting the strange formula for the length of the Weyl
vectors, one finds

AA + AT(A) = [EjEMA j2 - (P,P) + EjEM.,(A) j2 - (p(T)7P(T))]/[4(k + n)]
= [ZMP 2 — L (4n® —n + 4K° — k)] /[4(k + n)] (3.2.8)

7=1
= s(k+n+2kn+1),

where p and p(™) denote the Weyl vectors of B, and By, respectively. (Recall that we choose

the representatives A and A(™) such that l71 < k+mnand 171(7) < k 4 n; as the conformal
dimensions of the elements of a spinor orbit differ by an integer, this means that for the
other member of a length-two orbit, the formula holds true modulo 7).

For tensors we will have to consider a definition of 7 that is different from that for
spinors [109]. Namely, while again the complement of M, in M plays a role, we now define
MT(A) by

(Y = Moy i={k+n+1-1]lec M\ M} (3.2.9)
By definition, this maps tensor orbits to tensor orbits, and again the image covers all such
orbits of (By)ant1 precisely once. For the sum of conformal dimensions we now obtain

Ar+Ary = [Ejem, (G — %)2 —(pyp) + Xjennm, (b +n + % —J)
— (P, 0] /14(k + n)] (3.2.10)
= sk(k+2n+1)— 5 icanm, J s
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which is a half integer. (Again this result is true for A such that ¢; < k+n, and analogously
for 7(A); the conformal dimensions of the elements of a tensor orbit differ by % plus an
integer, so that for the other members of the orbits, the formula still holds modulo 7/2).

One can visualize the map 7 in terms of Young tableaux Y(A), defined as having
£;(A) — Jca boxes in the ith row. The prescription (3.2.7) corresponds to forming the
complement with respect to the rectangular Young tableau Y (kA(,)), followed by reflection
at an axis perpendicular to the main diagonal. Similarly, the map (3.2.9) corresponds just
to reflection at the main diagonal. For example, consider the following mapping between
tensor orbits of the (self-dual) (B;); WZW theory (for better readability, we display, with
dotted lines, also the missing boxes that are needed to extend a tableau Y (A) to Y (kA(y))):

—————

——————————

(3.2.11)

According to the previous prescriptions, the corresponding orbits are {(1,2,0),(2,2,0)}
for the left hand side, and {(0,1,2),(3,1,2)} for the right hand side (here we write the
weights in the basis of fundamental highest weights), and indeed these orbits are mapped
onto each other by (3.2.9). Considering, instead, the left hand side as a Young tableau for
a spinor orbit, namely for the fixed point (1,2,1), it is mapped via (3.2.7) to the spinor
orbit {(1,0,3),(3,0,3)}, i.e.

—————

———————————————

(3.2.12)

As further examples, consider the mappings
- - H
T e
and
B N
e 510

between orbits of (Bs)g (left) and (Bs)7 (right). The first of these corresponds to the
tensor orbits {(1,2,0),(4,2,0)} < {(0,1,1,0),(3,1,1,0)}, and the second to the spinor
orbits {(1,2,1), (3,2, 1)} < {(1,1,0,3)}.

Above, we have already obtained all information that we need about the modular
matrix 7. Next we want to determine the behavior of the S-matrix under the map 7.
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We first recall that the Weyl group W of B,, acts in the orthonormal basis by all possible
permutations and sign changes of the components. This implies that

) sign (w) exp [k7—|r——1n (w(A+p), A"+ p)] = (21)" det; ;M;(A, A'), (3.2.15)

weWw

where

m (A +p) G;(A" + P)]
k+n )

Inserting this identity into the Kac-Peterson formula (1.4.8) for the S-matrix, one arrives

at

M (A, A') :=sin [

(3.2.16)

Spa = (=) D222 () T2 det; s M(AL AY). (3.2.17)

Now of course this result for the S-matrix refers to particular highest weights A and A'.
However, what we really would like to compare are not the S-matrix elements for individual
weights, but S-matrix elements for orbits with respect to simple currents. Now within an
orbit, the sign of S depends on the choice of the representative (except if only tensor weights
are involved). Thus if we want to interpret (3.2.17) as an equation for orbits, we have to
keep in mind that when evaluating the equation we have to employ specific representatives
(namely, those with the smaller value of ¢;). For the application to coset theories it will
be crucial that the sign in (3.2.17) is correlated with the alternative whether the relation
(3.2.10) between conformal weights holds exactly or only modulo %Z.
An analogous computation as for (3.2.17) yields
Saym(any = (—1FETDPREEL(E 4 n) 7k det jMj(A, A) (3.2.18)

T

with

7 D (A7) 4 p™) £7(A) 4 p(f))]
k+n )

To relate the numbers (3.2.17) and (3.2.18), we first note that M;;(A, A’) can be viewed
as a n X n sub-matrix of the (k + n) x (k 4+ n) matrix

M;(A, A7) := sin [ (3.2.19)

Agt) := sin

(7 (i—3)(G —3)/(k+n)] for cy=cy=0,
ts . . .
Ay e Agztz = sTn[(ﬂ' (.1, — %3])/(1{: +n)] for ¢, =0, ¢, =1, (3.2.20)
Ay = sin[(mi(y — 3)/(k + n)] for ¢4, =1, ¢4, =0,
AE;S) :=sin[(737)/(k + n)] for ¢y, =¢, =1,
t,7 =1,2,...,k + n. Similarly, Mij(A,A') is a k X k sub-matrix of
sin[(m(k+n+1—i)(k+n+1—7))/(k+n)
= (—1)Hathtntl Agt) for ¢y, =c, =0,
A= sinf(r(k+n+1—9)7)/(k+n)] = (—1)" AL for ¢y =0, ¢, =1,
sin[(mi(k +n+ 1 —§)/(k+n)]=(-1)" AL for ¢y =1, ¢y =0,
AE;S) for ¢y =cp=1.
(3.2.21)

More precisely, the two submatrices are such that together they cover each value of
¢ and j precisely once. As a consequence, one can use (a simple case of) the so-called
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Jacobi-theorem [89] to relate 5y yi to 5. (4) (o The theorem states that for any invertible
matrix A whose rows and columns are labelled by a set H, one has for I, J C H with

IUJ=H,InJ =0, that
det [(A™1);; = (=17 (det A)" (det A) 55 (3.2.22)
with T = H\I,J = H\J, and

Sr=34 Zs=) 7 (3.2.23)

jel jeJ

Writing Sy 5» = adet Ary, S;(py-(ary = B det A7z and det [(A™")];; = 8det Ay, applica-

tion of this theorem yields

Saar = (D) (By8) 7S, 4y ) (3.2.24)

with I = My, J = My, and A as defined in (3.2.20). (Actually, the definition of § implies
the assumption that det Ar; # 0 for all choices of I and J. This turns out to be true for
all cases we are interested in. Moreover, in some cases in fact § does not depend on the
choice of I and J at all.)

An explicit expression for the number a can be read off (3.2.17), while when determining
the parameters 3, v, §, one has to distinguish between tensors and spinors. If both A and
A’ are tensors, then by straightforward calculation one finds

8= (_1)k(k—1)/2(_1)k(k+n+1)+27+27 2k/2_1(k + n)_k/Z,

3.2.25
3 = (LD )26, 5= (2)(k + ) (3:2:29)
When inserted into (3.2.24), this yields, upon use of the identity X7 + X; = Efi{‘] =
(k+n)(k+n+1)/2[109],

SA’AI = S (A),T(A')' (3226)

T

Note that this implies that 7 connects tensor orbits with identical quantum dimension.
(Since simple currents have quantum dimension 1 and quantum dimensions behave multi-
plicatively under the fusion product, the quantum dimension is constant on simple current
orbits.)

If A is a tensor and A’ is a spinor, one obtains *

B = (1) HSr2M 1 (k) 2,

5= (_1)(k+n)(k+n—1)/2 2(1—k—n)/2(k T n)(k—l—n)/Z, § = 2n—f(A’) (k 4 n)_", (3'2'27)
where
, 1 for A’ a fixed point,
f(A) = . (3.2.28)
0 for A’ an orbit of length two.
Thus in this case [109]
Syar = (—1)Frintrt 2 gf 012 g - (3.2.29)

4 Notice that if A is a tensor, then the order of the rows of;lij is actually to be read backwards such as to

satisfy the requirement that the numbers obey ZET) > Z;T) for ¢ < j; this contributes a factor (—1)’“(’“—1)/2
to 8. If A’ is a tensor, the same factor arises from an analogous re-ordering of columns. In particular, for
both A and A’ tensors, these factors cancel out.
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(Again, the sign depends on the choice of representative of the tensor orbit. It is as given
in (3.2.29) if the representative with smaller value of ¢; and 0 is taken.) In particular, for
spinors the quantum dimensions of the orbits of A and 7(A) differ by a factor /2 for orbits
of length 2, and by a factor 1/4/2 for fixed points.

Analogously, for A a spinor and A’ a tensor, one obtains (3.2.29) with X; replaced by
Y and f(A') replaced by f(A). Finally, if both A and A’ are spinors, we again have to
distinguish between several cases. Observing that A is a fixed point iff K + n € M,, and

that Ags,il_n = AE:_IS_LJ. = sin(7j) = 0, we conclude that

T

SA’AI - S (A)’T(AI) — 0 (3230)

if A is a fixed point and A’ belongs to a length-two spinor orbit or vice versa. In contrast,
if both A and A’ are fixed points, S, ,, vanishes but ST(A),T(A,) does not, and the other way
round for both A and A’ belonging to length-two spinor orbits.

3.3 B type theories at even level versus D type at odd level

In this section we present a map 7 relating (Bg)s, and (D,)sx41 that behaves similarly
as the one described in the previous section. However, for (By)s, we now have to restrict
ourselves to tensor weights; for these, we define ¢ and /; as in (3.2.4) and (3.2.5). In
contrast to odd level, now the map is no longer one-to-one on the simple current orbits.
Rather, some of the orbits of (Bg)s, (namely, those tensors which are fixed points; in
contrast to odd level, fixed points now must be tensors) correspond to two distinct orbits
of (Dn)2k+1-

For (D,)sk+1, the components of a weight A in the orthonormal basis are
GA) =02 + LA+ AT fori=1,2,..,n—2,

1 n—1 n 1 n—1 n (331)
fn_lzg(A —|—A), Enzg(—A —|—A)

At odd level, all orbits (with respect to the full set of simple currents, which is generated
by Js for odd n, and by J; and J, for even n) consist of four fields. Each such orbit of
integrable highest weights contains precisely one representative that satisfies A° > A' and
A" — A™ € 27, implying that Li(A)eZand k>4 >4y > ... > {,. From now on we
restrict our attention to this particular representative. Thus the numbers

GA) =LA +p) =Li(A) +n—i (3.3.2)
satisfy 0 < lZ(A) <k+mn—1lforz=1,2,...,n—1, and |Zn| < k. As it turns out, a special
role is played by those orbits for which £, = 0; we will refer to such orbits as spinor-

symmetric. Analogously, orbits that are transformed into each other upon changing the
sign of £, (# 0) are called ‘spinor-conjugate’ to each other.

We define now a map 7 between the orbits of (D,,)2r+1 and the tensor orbits of (By)an
as follows. To an orbit of (D, )41 Wwith representative A we associate the subset M, of

M ={1,2,...,k+n} by
My :={|l:(AN)|+1]7=1,2,...,n}. (3.3.3)

Then the (tensor) weight 7(A) of (By)2n is defined by the requirement that the set M. (,) (the
connection between A and M, for (By)s2, is defined in the same way as for (Bg)2nq1 in
Section 3.2) is given by

{67y = M. py:={k+n+1-1|1c M\ M}. (3.3.4)
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Note that we have chosen our conventions for (D, )41 (in particular the constant term
‘+1%in (3.3.3)) in such a manner that the prescription (3.3.4) is formally the same as (3.2.9)
in Section 3.2. Furthermore, 7(A) is a fixed point iff k +n € M, (4, i.e.,iff 1 & My, i.e.,iff
A is not spinor-symmetric. Note also that this map is not one-to-one on the orbits. Rather,
non-spinor-symmetric (D, )2r+1weights which transform into each other upon interchanging
£"~! and {" are mapped on the same weight of (By)s,. (As we will see later on, this is
precisely the behavior we need in coset theories in order to implement the fixed point
resolution.)

We now consider the behavior of the modular matrices 7' and S under the map 7. For
the sum of conformal dimensions one finds

An+ D) = [Sienm, 3° = (ps0) + Zienrn, 3° — (07, 2] /[4(k + 1 — 3)]
= R(E+2n+1) = 5 ¥ emm, J

which is always a half integer. The Weyl group of (D, )2x+1 corresponds in the orthonormal
basis to permutations and to even numbers of sign changes of the components, so that the

(3.3.5)

Kac-Peterson formula for the S-matrix leads to

Spa = (=) D29n272 (4 — )72 [det; (ME(A, AY) +i™ det; ;M (A, A)], (3.3.6)

where o (A LA
M8, A) = cos [ZREA TP GV p)y
J 2k +2n —1
2 bi(A 1 ) E(A' + p) (3.3.7)
_ N o 2m LA+ p) (A +p
MG(AA) = sin | ST — ].
Note that det(M;;(A,A’)) = 0 whenever A or A’ are spinor-symmetric. For later conve-

nience we denote by SX:I)V the numbers obtained from (3.3.6) when replacing M;(A, A’)

by zero, i.e.,

n(n—1)/20m/2— n -1 —-1)
SEL = (1" (o — 1) dety gy ear,, cos | r— ]. (3.3.8)
2

The S-matrix of (Byg)a, can be calculated analogously as described in the previous
section for (Bg)ant1- The result is
k(k—l)/22k/2—1(k T %)—k/2
7r(k—|—n—|—%—i)(k—|—n—|—%—j)]- (3.3.9)

’ detieM\MA,jeM\MA, sin [ k+n— 1
2

ST(A),T(A’) = (_]‘)

Combining (3.3.8) with (3.3.9), we can use the Jacobi-theorem together with the identity
sin[r (k+n+5—i)(k+n+5—j)/(k+n—3)] = (1) cos[r (i—1)(j —1)/(k+n—3)]
to obtain again a relation like (3.2.24), namely

Sﬁl = (_1)21+21a (576)_157(1&),7-(1&')- (3.3.10)
The parameters are this time calculated as [109]
a = (_1)k(k—1)/2(_1)k(n+k+1)+21+212k/2—1(k +n— %)—k/2
B = (—1)nr=1/297/2=2(f 4 — %)—n/z,
v = 2(—1)Fr)ktn=1)/2((f 4 — %)/2)(k+n)/2,
§ — 20044 (2 (& . — L)),

?

(3.3.11)
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where

0 if A is spinor-symmetric,
s(A) == pmorsy (3.3.12)
1 else.
This leads to
Sih = 205 - (3.3.13)

(When interpreting this equation as a relation between simple current orbits, one must
take the specific representative of the orbit of the D type WZW theory described above.
Otherwise (3.3.13) becomes modified by a phase. However, as only tensors of the B type
WZW theory are involved, the phase does not depend on the representative of the orbits
of the B theory.) Recalling that det(M;(A,A")) =0, ie., Sy = SX:}V, if A or A’ are

spinor-symmetric, this means in more detail that

Spar for A and A’ spinor-symmetric,

Sy a/2 for A spinor-symmetric, A’ non-spinor-symmetric,

Sra)ran = (3.3.14)

or vice versa,

SX:,)V/AL for A and A’ non-spinor-symmetric.

3.4 C type WZW theories

When considering C' type WZW theories, we are in a more convenient position than previ-
ously. Namely, one can construct a map 7 between individual fields and not just between
simple current orbits. °

We consider again the components of A in an orthogonal basis of the weight space.
However, for convenience we multiply the components of the orthonormal basis by a factor
V2, because we then have to deal with integral coefficients only. The components of
a weight A in this non-normalized basis read £;(A) = >7_; A, Again we add to these
numbers the components of the Weyl vector, i.e., we define

L) = (At p) =S M bnt1—i. (3.4.1)

j=i

This time the integrability condition (1.4.6) implies, for (C, )k, that

E+n>0>... >8>0y >...>40,>1. (3.4.2)

Thus we can describe every weight A uniquely by a set of n positive integers {;, i =
1,2,...,n, subject to ¢; > {; for + < j as well as ¢; < k + n, that is, by a subset M, of
cardinality n of the set M = {1,2,...,k + n}. Given such a subset M,, we define 7(A)
through the complementary set {ZET)} = M, := M \ My, where again the numbers ZET)
are to be ordered according to ZET) > ZET) for 2 < 5. Since this subset of M again satisfies

ZET) < k+mn, and is of cardinality k, it describes precisely one integrable highest weight 7(A)
of (Cr)n. (In terms of Young tableaux, the map corresponds to forming the complement
with respect to the rectangular Young tableau Y (kA(,)), followed by reflection at an axis
perpendicular to the main diagonal.)

5 In the notation of [109], our map 7 is the composition of the maps ‘p’ of Section 2 and ‘tilde’ of
Section 1 of [109].
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As 1n the previous sections, it is straightiorward to calculate the quantity Ay + A (y).
Taking care of the extra factor %

5 in the scalar product that is caused by our normalization
of the /;, one obtains

Ax+ 28y = [355em, 52— (p0) + 5 Dientny 52 — (0675 6] [[2(F + n + 1))
= [ 2?2{‘;‘2 — L (2n® 4 3n® + n + 2K% + 3k* + k)] /[2(k + n + 1)]

= %kn,
(3.4.3)
where p and p(™) denote the Weyl vectors of C,, and C}, respectively.
Proceeding to the modular matrix S, we note that the Weyl group of C, acts in the
orthogonal basis by permutations and arbitrary sign changes, implying that

S sign (w) exp [—— (w(A + p), A’ + p)] = (2)" deti jJMy;(A, A) (3.4.4)
weWw k +n
with £(A V(A )
N N e (TN F p) (N 4 p
M (A, A') :=sin [ Pa— ] . (3.4.5)
Thus the Kac-Peterson formula for the S-matrix yields
Spa = (1) D292 (| o 4 1) det; jMj(A, AY) (3.4.6)
and similarly,
Spaymany = (MY (R m 4 1) ety s M (A, ). (3.4.7)

Now M;;(A,A’) can be viewed as a n X n sub-matrix, and A;iij(A, A') as a k X k submatrix,
of the (k+n) x (k+ n) matrix A4;; :=sin[(7ij/(k+n+1)],¢,5 € {1,2...,k+ n}, such that
the two submatrices together cover each value of ¢ and j precisely once. As a consequence,
the Jacobi-theorem is again applicable, leading to the relation (3.2.24) between S, ,, and
S (A),r(A)" The numbers a, 3, v, 6 in that relation are this time found to be

T

o = (_1)n(n—1)/2 2n/2(k +n+ 1)—17,/2, /8 _ (_1)k(k_1)/22k/2(k L 1)—k/2,

y = (=1)*Ftn=1)/2((} 4 4 1)/2)(k47)/2, §=(2/(k+n+1))r. (3.4.8)

When inserting this into (3.2.24), we make use of the identities X; = n(n + 1)/2 + r(A)
and Y7 = k(k +1)/2 + r(A"), where

r(A) := Z&(A) , (3.4.9)

which is modulo 2 the conjugacy class of the C,-weight A (also, r equals the number of
boxes in the Young tableau Y (A) that is associated to A). One then obtains

Spar = (1) W)tk g - (3.4.10)
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Table 3.1: Some N = 2 superconformal coset theories and their Virasoro charges

name Clgx @ (Da)1/ @i(hi)g, & (u(1)) ] ¢
K(2n
(B,2n+1,K) | C[(Bni1)k ® (Dant1)1/ (Bn)kt2 @ (u1)a(k +2ns1)] ?;( J(r22n++11)
Kn
(B,2n,K) Cl(Dnt1)x ® (D2n)1 / (Dn)k+2 © (v1)a(x +2n)] Kfj T on
(BB, 3,K) Cl(B3)k ® (D)1 / (A1)2k18 © (A1) K43 ® (w1)2(k 45)] - Kg—j5
(BB,n,K),n>3| C[(Bn)k ® (Dan—s)1/ 24 1)2
(Bn-2)k+4 ® (41)K+2n-3 ® (ul)Z(K—I—Zn—l)] 12n - 15 - %
n2
(CC,n,K) Cl(Cr)k ® (Dan-1)1/(Cn-1)k+1 ® (“1)2(K+n+1)] bn — 3 - K —fn +1

3.5 Coset theories

In this section we collect some information on N = 2 coset theories; for those theories
which correspond to non-hermitian symmetric coset, part of the information was already
displayed in the previous chapter. We will repeat it here to fix the notation and to give
some information on hermitian symmetric coset cosets we will use below as well.

The theories of interest in this chapter are listed in Table (3.1), together with their
central charges. The identification currents of these theories (including the simple current
that implements the D type modular invariant in the case of (B,2n + 1, 2k)) are displayed
in Table (3.2) together with their order N.

Among the theories of our interest, only the cosets of CC type and (B,2n,2k + 1) do
not possess any fixed points. If fixed points are present, one has to give a prescription for
finding the physical fields, i.e. ‘fixed point resolution.” Every fixed point of length N; has
to be resolved in N/N; distinct physical fields.

We will label the primary fields ® of a N = 2 coset theory C[g @ Da/h @ u(1)]x by the
weights carried by the primaries of the WZW theories it is composed of, i.e.,

&= (Ax/ Q) (3.5.1)

with A and X integrable highest weights of the g and h algebras, x a conjugacy class of Dy,
and Q € {0,1,,...,AN'— 1} a u(1)-charge. However, as a consequence of the necessary field
identification, this labelling is not one-to-one. Rather, all combinations of labels that are
connected via the action of the identification currents describe one and the same primary
field; moreover, fixed point resolution introduces an additional label 7 according to

Bac = (A,x/ 2, Q) (3.5.2)

The conformal dimension of the field ¢ is modulo integers

A(®) = Ag)(A) + Ap,(x) — Amy(A) — Ay(@)s (3.5.3)
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Table 3.2: Identification currents for N = 2 coset theories

name N | Independent identification currents

J, (J,0/J,0)

B,2n+ 1,2k +1) | 4 )

(B,2n+1,2k+1) {J@) (J,J. /0, %4(k +n + 1))
Jay = (J,0/J,0)

(B,2n + 1,2k)|D 8 J(2) (J Jy /0 ﬂ:?(?k + 2n + 1))
Js) = (4,0/0,0))
Jy = (Jy,0/ J,0)

B,2n, K 8 () ’

( ) { Jy 1= (Jey (Jo)" / Joy (K + 27))
Jay = (J,0/J,0,0)

(BB,n, K) 4 {J(2) (7,0/0,J,£(K + 2n — 1))

(CC,m, K) 2| Joyi= (3 (L) 4K 40+ 1))

where A(g)(A) and A(h)()‘) are defined as in (1.4.7), A(p,)(x) is given in (1.4.9), and
A(ul)(Q) = Q?/2/N. The superconformal charge q is modulo 2 given by

- Ea:xa - Kéj—QgV : (3.5.4)

Here x* are the components of x in the orthonormal basis of the Dy weight space, For
the theories of our interest, one has ¢ = n for (B,2n,K) and (CC,n,K), {,c =n + 1 for
(B,2n+1,K), and & = 2(n — 1) for (BB,n, K).

In order to identify the chiral rings of N = 2 coset theories, we will again look at the
Ramond ground states. Any Ramond ground state has at least one representative

$, = (A,x,\) (3.5.5)

for which A and ) are related through a Weyl group element w € W according to [103]
A+ pp = w(A + pg) .- (3.5.6)
Here A incorporates both the weight A of the semi-simple part h of h and the u(1)-charge

@), and
{ s for sign (w) =1,
X =

(3.5.7)
¢ for sign (w) = —1.

Furthermore, the Weyl group element w has to be chosen in such a manner that A is a
highest weight of h (this fixes uniquely one representative of each element of the coset

Wg/Wr). The superconformal charge g (including the integer part) of a Ramond ground
state is given by the formula (2.4.17)

d £.Q

that relates g to the u(1)-charge @ and to the length /(w) of the Weyl group element w
that appears in (3.5.6) (&, is the number introduced in (3.5.4)).

q(®r) =

(3.5.8)
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2.0 [V = 2 coset models ol type b odd values oI rank and level

3.6.1 The map 7

We are now going to describe a one-to-one map 7 between the primary fields of the N = 2
superconformal coset theories (B,2n + 1,2k + 1) and (B,2k +1,2n +1). We will show
that this map leaves the modular matrices S and T invariant and, moreover, provides a
one-to-one map between chiral primary fields. Correspondingly we consider the two coset
theories as isomorphic conformal field theories and write

T
(B,2n+ 1,2k + 1) & (B,2k +1,2n + 1). (3.6.1)

This is in contrast to the level-rank duality of the underlying WZW theories which is far
from providing an isomorphism of conformal field theories.

To start, let us mention two simple necessary requirements for such an identifica-
tion to exist. First, from Table 3.1 we read off that the Virasoro central charge of
(B,2n + 1,2k + 1) is Cypyq 9041 = %, which is invariant under exchanging n and
k. It was precisely this observation [97] that led to the idea of level-rank duality of these
theories. Second, we see that the two theories possess the same number of (Virasoro
and u(1l)) primary fields. Namely, for the coset theory (B,2n + 1,2k + 1) the number of

primaries can be expressed as

BB _ nD 1 1 B B B B
Vont1,2k+1 = N2n+1,1 N8(k—|—n—|—1) (E [Nn—l—l,Zk-I—l Nn,2k+3 - Fn—|—1,2k-|—1 Fn,2k+3]

) (3.6.2)
+2- 1 F7?+1,2k+1 F7{3,2k+3)

in terms of the numbers NfL’K of primary fields and F}f’K of fixed points of the B type
WZW theories. Here the first two factors come from D,,,; at level one and from the
u(1) theory, respectively. The numbers in the bracket refer to the theories B,.; at level
2k + 1 and B, at level 2k + 3; the term in square brackets corresponds to the orbits of
length four, with the factor ;5 taking care of the selection rule and the identification of
order four (one quarter of the possible combinations of quantum numbers of the individual
theories gets projected out, and each identification orbit has four members), and the second
term corresponds to the fixed points, the factor of 2 being due to the resolution procedure
(for the fixed points, the factor of 11—6 is replaced by % because none of the fixed points is
projected out by the selection rule encoded in Jiy)). Inserting N£1 =4 and Nj; = N as

well as the formulee (3.2.1) and (3.2.2) for NfL’K and Ff’K, (3.6.2) becomes

2kn E+n+1 E+n+1
Bhaen =2t hra- T (KT (M) ey

Obviously, for (B,2k + 1,2n + 1) one obtains the same number of primaries.

After these preliminaries, we now present the map 7 alluded to above. Suppose we are
given a specific representative (A,x /A, Q) of a field ® as described in (3.5.1); then we map
the simple current orbits of A and A on their images under the map 7 that was introduced
in Section 3.2. Thus

T(®) = (r(\)xr /7(A), Q). (3.6.4)

with 7 as defined in (3.2.7) and (3.2.9), and with x7 and Q7 to be specified below. Now
the objects on the right hand side of (3.6.4) are just representatives of primary fields, and
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not yet the primary fields themselves. In particular, the quantities xy and ()7 are to be
considered as orbits, and only after fixing representatives of the orbits of () and 7(A) are
they fixed as well, so that x7 becomes an element of {0,v,s,c} and Q7 an integer between
0 and A. To describe the physical fields, we have to implement the identification currents.
According to Table 3.2, in the present case there are two independent identification currents
Jay and J(3). As Jq) = (J,1/J,0) acts trivially on the Dy and u(1) parts, it is convenient
to first restrict the attention to J(;)-orbits and to implement J(,y later on. Provided that
no fixed points are present, ® for fixed choice of x7 and Q7 we have to deal with a total of
four representatives of two J(;)-orbits.

Now observe that, owing to the selection rule implemented by J(;), the conjugacy
classes of A and A coincide, so that we only need to consider combinations of tensors with
tensors, or of spinors with spinors. In the case of tensors of both (By,11)2k+1 and (Bp)ak+s,
fixed points do not occur. Further, modulo Z, the conformal dimensions of the two J(y)-
orbits differ by %, precisely as the conformal dimensions of the corresponding fields of
(B,2n 4+ 1,2k + 1). To start with the definition of 7, we now simply choose the J(;)-orbit
that has conformal weight equal to Ay — A, modulo Z. Due to the identification current
J(2), this choice actually does not constitute any loss of generality (but it simplifies some
formulee further on). Namely, each of the J;y-orbits O lies on the same orbit with respect
to J(2) as another Jiq)-orbit whose values of x7 and Q7 differ from those of O in such a
manner that the values of Ay, — A, differ by % mod 7.

For spinors, both J(1)-orbits in question have identical conformal weight. The freedom
to choose one of the orbits turns out to be closely connected with the issue of fixed point
resolution. Namely, the property of 7 to map WZW fixed points on WZW-orbits of length
two and vice versa, translates into the following property of 7: any ‘unresolved fixed
point’ is mapped on two distinct fields, and vice versa, such that the non-fixed points of
one theory precisely describe the resolved fixed points of the other theory. In case that
just one of the orbits in either the ‘numerator’ or the ‘denominator’ of the coset theory is
a fixed point, we have exactly the reversed situation in the dual theory.

Having fixed the B parts of the theory, we extend the definition of 7 to the u(1) and
D, parts by the following definitions: the D, part remains unchanged, i.e. x7 =x, while
the u(1)-charge is transformed according to

QL for ¢, =0 and xe€{0,v},
2n + 1)L for ¢, =0 and x€ {s,c},
gr=—q+ & ) : to,cf (3.6.5)
Q(2k + 1)L for ¢, =1 and x€{0,v},
(2n — 2k — Q)L for ¢4, =1 and x€ {s,c}.
Here, for convenience, we use the abbreviation
L=2k+n+1), (3.6.6)

and all u(1)-charges are understood modulo A" = 4L. (Thus L is one quarter of the u(1)-
charge of the primary field that extends the chiral algebra of the u(1) theory, and hence
the appearance of this number in (3.6.5) is quite natural.)

The definition of 7 is not yet complete, of course, as we still have to make precise its
meaning when acting on, or mapping to, resolved fixed points. Nevertheless already at this

& Note that in order to have a fixed point of the coset theory, we must have a fixed point in all WZW
theories that make up the coset.
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stage we can verily that 7 as defined above satisfies the following properties:

1. The result is independent of the particular choice of the representative of the original

field ®. 7

2. The conformal weights A of fields related by 7 are equal modulo 7, which implies that
the modular T-matrices of the two theories coincide. This is in fact already the maximal
information about conformal dimensions that we could hope to prove in the general case,
because for primary fields of a coset theory (other than Ramond ground states of an N = 2
theory), it is very hard to compute the integer part of the conformal weight.

3. The superconformal u(1)-charges coincide modulo 2 (again, except for Ramond ground
states it is hard to show that the charges coincide exactly).

Actually, the two last-mentioned properties (together with a prescribed choice of the orbits
of 7(A) and 7(X), such as the one discussed above) already specify uniquely x7 and Q7 for
fields that are not fixed points. Thus our choice x7 =x and Q7 as in (3.6.5) is the only
possibility that allows for 7 to possess the required properties.

4. The elements of the modular S-matrices corresponding to non-fixed points coincide
after properly taking into account the field identification. As we will show in the next
subsection, the same is true for fixed points; it follows that both theories possess the same
fusion rules and, together with the first observation, that their characters realize isomor-
phic representations of SL(2,Z). If the B weights of one field are tensors and those of
the other field are spinors, (1.5.7) implies that the corresponding S-matrix element of the
full theory is simply the product of the respective WZW S-matrix elements if the spinors
are fixed points, and twice this product if the spinors are not fixed points. For the dual
theory, the corresponding factor of two is provided by our map 7 through the factor /2
that appears (both for the ‘numerator’ and the ‘denominator’ of the coset theory) in the
transformation (3.2.29) of S-matrix elements of the B type WZW theories under 7.

5. 7 maps the unique Ramond ground state ®{** with highest superconformal charge
q = § of one theory to the corresponding Ramond ground state of the dual theory. (This
check is particularly important, as this field is the simple current that generates spectral
flow.) Namely, for this field there is a standard representative (compare Section 2.4.1)
PR =(0,s/pg — 95)7 and 7 maps this particular representative to the analogous repre-

sentative of the highest Ramond ground state of the dual theory.

3.6.2 Fixed points

& we now come to

In order to prove that these statements pertain to the full coset theories,
the more detailed description of the action of 7 on fixed points, as promised. (The fixed
point resolution will be interesting also from a different point of view, see the remarks after
(3.6.13) below.) As it turns out, this is a somewhat subtle issue. We will first deal with
the case when an unresolved fixed point is mapped on a pair of non-fixed points. In fact,
we have so far only specified on what pair of fields a fixed point gets mapped, and noticed

that the number of the fields is the right one. But each unresolved fixed point gives rise to

7 Also, applying the analogous prescription 77 to the transformed field 7 (®) brings us back to the field
® of the original theory, thus justifying the name duality.

8 Recall that only after fixed point resolution, we are allowed to interpret the object C[Q/E]K as a
genuine conformal field theory.
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two distinct physical fields, and so we have to describe which ot the resolved fixed points is
mapped to which field. To settle this question, it is not sufficient to look at the fractional
part of the conformal dimensions A and superconformal charges g, because for the two
resolved fixed points the conformal dimensions and superconformal charges must coincide
modulo Z and 27, respectively. Thus we have to resort to the modular matrix S.

In order to simplify notation, we first look at those parts of the theory which behave non-
trivially under the identification current that has fixed points, which is Jyy = (J,1/J,0).
In other words, we restrict our attention to the theory (Bpt1)2k+1[(Bn)2k+3]*, where we use
the symbol ‘*’ to indicate that the complex conjugates of the modular S- and T-matrices
are to be considered (compare the remarks after (1.5.5)). As has been shown in [130], the
matrices I'() appearing in (1.5.7) and in the factorization (2.3.21) are given, up to certain
phases, by the S-matrices of the WZW theories (C,,)r and (Cp—1)k+1. We denote these
phases, to be determined below, by w,, and w,_;, respectively.

In terms of the components /;, the relation between fixed points and the corresponding
fields of the fixed point theory is given by

(9 = 1) (3.6.7)

for: = 1,2,...,n. In other words, for the S-matrices the resolution of fixed points amounts
to simply deleting the row and the column with : = & + n + 1 of the matrix A as defined
in (3.2.20). But it was precisely this row that made the S-matrix elements vanish if fixed
points were involved. Now once more we can use the Jacobi-theorem for the (k+n)x (k+n)
matrix M;; = sin[(7i7)/(k + n + 1)] to relate the S-matrix of the fixed point resolution to
the S-matrix of the images of the fixed points. We find that

S'AA'S'M' = EWp_1Wp (_1)EAA'+E’\’\'+1ST(A)T(A')ST(A)T(A') . (3.6.8)
Here S denotes the S-matrix of the fixed point resolution, while

Saar = D14 Y 1, (3.6.9)

€My 1€EMy,
and Y,y is the sum of the analogous numbers for the theory in the ‘denominator.” Fur-
ther, e = ¢, o € {1,—1} depends on the particular action of 7 on resolved fixed points.

Namely, the left hand side of (3.6.8) is to be multiplied with the matrix P = %( _11_11 >

On the right hand side of (3.6.8) this is reflected by the fact that the subscripts actu-
ally do not refer to an orbit, but to a specific representative; the sign of the right hand
side changes when one changes from one representative to the other representative of the
orbit. The two representatives, which will be denoted by 7(A,)s and 7(A, )<, can be
described as follows. For any orbit {¢s,Joa} of a B type WZW theory denote by A
the representative with smaller values of /1, and by A the other one; then (A A)s =
(T(A)<,7(A)<) = (7(A)5,7(A)5), while (A, A)< := (7(A)<,7(A)5) = (7(A)5,7(X)<), with
the two equivalent states mapped onto one another by the action of the identification cur-
rent J1). Now the value of ¢ depends on whether the first of the resolved fixed points is
mapped to 7(A,A)s and the second to 7(A, )<, or the other way round. As we will see, a
consistent prescription for this choice can be given for which ¢ precisely cancels the further
possible signs in (3.6.8).

To compute the phases w, and w,_;, we first note that, given a representation (ST')* =
5%, §* =1 of SL(2,2), the only rescalings of S and T' which again lead to a representation
of SL(2,27) are

T — e™m/8T S e mm/2 g, (3.6.10)
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We can determine the integer m in the first of these rescalings from the global shift in the
conformal dimensions that is present in the fixed point theories as compared to the C type
WZW theories. In the case of our interest we have for (By41)2k+1 the shift Ay~ A =
(6k 4+ 2n + 3)/24, and analogously for (B,)ak+3. Subtracting the two shifts, one finds
m = —2. With (3.6.10), this implies that for the resolution one should take minus the
product of the S-matrices of the C' type theories rather than simply their product. In
other words, w,_jw, = —1, and hence (3.6.8) reduces to

Sant S = 5(—1)2AA'+2""' Sr(0)yr(A)Sr0)r( - (3.6.11)

To complete the construction of 7, we first investigate the restrictions that are obtained
from requiring that the S-matrix is left invariant. Let us choose an arbitrary fixed point
$;=(A, ) to start with, and denote the resolved fixed points by ®;,, as in (2.4.10). We
can now map P, either to 7(A, )5 or to 7(A, M)« (and, correspondingly, ®;_ to 7(A, )<
and to 7(A,A)s, respectively). After fixing this choice, the requirement that the S-matrix
should be invariant already fixes 7(®;:) for any fixed point ®; uniquely. Namely, assume
that the first possibility, ®;, +— 7(A, A)s, is chosen; then we have to map ®p (A, N)s,
& — T(A, X)) if the number Xy = Zpp + Xy computed according to (3.6.9) is even,
while if X4 is odd, the map must be ¢y — (A, XN ), ®p — 1(A',X)s. With this
prescription, one obtains ¢, = (—1)%s#', and hence (3.6.11) reduces to the desired equality

where on the left hand side 7,j € {+, —}, while on the right hand side 7(3),7 (j) € {<,>}.
This not only works for any fixed choice of f’, but also for all S-matrix elements Sy sn,
because Xfign = Xy + Yygpn. The latter identity also implies that the choice of reference
fixed point ®; is immaterial.

As long as we only take care of the S-matrix, the alternative to choose ®; — 7(A,X)s
or &5, — 7(A,A)< means that there are two different allowed mappings on the fixed points.
But according to (2.4.10) the characters of ®; and ®;_are different; ®; has more states
with minimal conformal weight. Therefore by looking at the characters one can remove
the ambiguity in the definition of 7. However, since this reasoning can be applied to any
fixed point, it has also to be checked whether the constraints obtained from different fixed
points are compatible. In practice, this is quite difficult to check, as it requires a detailed
analysis of the characters. But there is a rather general argument that the consistency
conditions coming from the characters are compatible with those originating from the
S-matrix. Namely, defining for any fixed point f the function

Xo(4) 7= Xa(f)s ~ Xr(f)o> (3.6.13)

it is easy to verify that the functions X transform under the modular group exactly like
the character modifications X; = (x;, — x;_)/2v. In itself, this does not yet imply that
XT(f) and X, are necessarily equal, but the fact that the result holds for an infinite series is
a rather strong hint that they indeed coincide. (Note that it directly follows from (2.4.10)
that only X as defined in (3.6.13), and not —X can be a sensible character; thus there is
in particular no sign ambiguity in defining X'.)

In principle, we should perform the same kind of reasoning as above also for resolved
fixed points that occur as the images of non-fixed points. However, due to the duality
property of the map 7 the arguments needed for this analysis closely parallel the arguments

given above, so that we refrain from repeating them here.
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At this point it is worth recalling that there does not exist a general proot that the
fixed points of a coset theory can be resolved in a unique way [130]. In the present case,
the manner in which the resolution procedure described in [123] fits the duality map 7 is,
however, so non-trivial that it is hard to imagine that there could exist another prescription
for the resolution that would be compatible with duality as well. Note that the extended
Poincaré polynomials of the theories considered here should obey level-rank duality for
any possible resolution, because according to quite general arguments [123] (compare also
Chapter 2) the extended Poincaré polynomial of an N = 2 coset theory does not depend
on the details of the resolution procedure.

3.6.3 Ramond ground states

Finally we turn our attention to the chiral ring of the theories. According to the formula
(2.4.5), the number of representatives of Ramond ground states with a fixed (Bpnt1)2k+1
weight is given by the relative size

[Wg| 2" (n+ 1)
& =2(n+1 6.14
Wl 2l (nt1) (3.6.14)

of the Weyl groups. After implementing the resolution of fixed points, one finds that
the dimension of the ring is indeed invariant under the exchange of n and k; this is a
direct consequence of the much stronger result [123] that the (ordinary, and also even the
extended) Poincaré polynomials of the theories coincide.

Our goal is now to show that the map 7 defined above maps every Ramond ground
state to a Ramond ground state of the dual theory with identical superconformal charge.
To do so, we first note that the relation (3.5.6) between A and A can be reformulated in
terms of the sets My and M), and of the charge (), as follows. Take a highest g-weight
A described by the set My, and consider it as ordered with respect to the magnitude of
the elements. The action of any Weyl group element w is then to permute the elements
of My and to multiply them with a sign: the 2(n + 1) special elements of the classes of
Wg/WE that appear in (3.5.6) are characterized by the property that they choose among

the n 4+ 1 elements of M, a particular element {; which gets placed before all the other
elements and change its sign or not, leaving all other signs unchanged. We will denote such
a Weyl group element that maps the ¢th basis vector e; of the orthonormal basis on +e;
and respects the ordering of all other basis vectors by wgi). By inserting the explicit form
of the roots a in the orthonormal basis into (2.4.15), it is straightforward to calculate the

length of the elements wgi). We find
(wi)=i-1 and  l(w{))=2n+1)-1, (3.6.15)

where n + 1 is the rank of the algebra. This result reflects the linear structure of the
associated Hasse diagram of the embedding B, — B,y [33].

For the Ramond ground state defined by acting with wz(i) on A, the u(1)-charge @ is
given by +2/; for spinors and :l:(217i — 1) for tensors. Opposite sign choices correspond to
choosing charge-conjugate Ramond ground states. As a consequence, the map 7 automat-
ically respects the charge conjugation properties of the Ramond ground states and, hence,
is compatible with the conjugation isomorphisms of the chiral rings of the theories. As

mentioned in Section 3.1, this compatibility must in fact hold on rather general grounds.
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Next we remark that not all representatives of a Ramond ground state are of the form
(3.5.6) (recall that (3.5.6) is a formula for representatives, and not for physical fields). To
be able to employ the relation (3.5.6), we therefore pick a specific representative of any
combination of simple current orbits of weights A and A that describes a Ramond ground
state. After applying the map 7 in the form (3.6.4), (3.6.5) to this specific representative of
a Ramond ground state ®g, we obtain a specific representative of the primary field 7(®g)
of the dual theory. What we have to show is that 7(®g) is again a Ramond ground state,
and we will do this by employing the formula (3.5.6). Of course, generically the particular
representative of 7(®g) with which we are dealing in the first place cannot be expected
to be of the form (3.5.6). As we will see, it is indeed sometimes not of this form, but as
was shown in [103] there is always at least one representative of the Ramond ground state
fulfilling (3.5.6).

Suppose, to start with, that A and A are both s%)inor weights and that the Ramond
ground state is given by the Weyl group element wi+) acting on A. Recalling that the
index ¢ of wz(—l_) refers to the fact that My \ My = {/;}, and observing that via the map 7
on the WZW theories, i.e., upon forming the complement relative to {1,2,...,k +n + 1},
this is transformed to the relation M )\ M) = {lz}, we learn that there exists a Weyl
group element wy of the dual theory that relates () and 7(A) in the correct manner and
is given by one of the two elements wgi), with ¢, determined by the requirement ZE;) = 7.
To decide which of these two elements is the correct one, we observe that owing to the
latter relation Q7 must be equal either to @ or to —@Q; from (3.6.5) (together with the
explicit form of the identification currents) it follows that in fact Q7 = —Q. In summary,
using the sets M,(n) and M,(4), and the sign of Q7 relative to the sign of @, we fix a
unique Weyl group element w; of W(Bjy1); in fact, a more detailed analysis shows that
i, =k+n—Q/2—1+3,ie wr= w,(c:_)n_Qﬂ_i_l_?,. To verify that this Weyl group element
indeed provides us with a Ramond ground state, the only thing that we still have to do is
to check that it yields the proper Dy part. ® While in the foregoing discussion we fixed the
representative with respect to Jiz) by x7 =x, the present choice of representative for the
charge ()7 implies that x7 must be given by

xr = (J,)" 9%, (3.6.16)
Now the formulee (3.6.15) for the length of Weyl group elements tell us that
l(w)—lwr)=n—-k—Q/2 (3.6.17)
and, hence, recalling that the sign of w is equal to (—1)4*),
sign (w) sign (wg) = (—1)HEr) = (Z1)kntQ/2, (3.6.18)

In view of (2.4.4), this shows that (3.6.16) is indeed fulfilled. Furthermore, plugging (3.6.17)
into the formula (2.4.17) for the superconformal charge of Ramond ground states, it follows
that &z and 7(®g) have the same superconformal charge (exactly, and not just modulo
2).

The reasoning above applies also to the case w = wg_), as the two cases are clearly
dual to each other. If both A and A are tensor weights, the situation is slightly more

® In some cases we also must show that the correct J(1)-orbit out of two possibilities is chosen. This
happens when an ‘unresolved fixed point’ is resolved into two fields whose conformal weights differ by
an integer. The discussion of fixed points in the previous subsection shows that indeed the right orbit is
chosen.
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complicated. This is because /; gets mapped under 7 to é;} = g + 1 — 4;. If the Ramond
ground state is defined by w = w§+), this shows that Q = 2¢; — 1 should be mapped on
Q1 = L — @, implying that ws involves no minus sign. While in the foregoing discussion
we always chose the representative of the field by requiring that Ay — Ay should be an
integer, we now have to fix the representative by requiring that Q7 = —Q+ L, which, owing
to the second identification current J(s), is always possible. This choice of representative
leads to

x7 = (J,)" (@D 2, (3.6.19)

Again, a Weyl group element w; for the dual theory is completely fixed and can be shown
to be given by w; = wE-|Q_2|-1)/2—n+i—1 . It follows that l(w) — l(wg) =n — % + 1, so that

sign (w) sign (wy) = (—1)"T(1=Q)/2 (3.6.20)

implying that the correct mapping (3.6.19) of the Dy-weights is reproduced and, also, that
the superconformal charge is left invariant. It is also clear that we have chosen the right
J1y-orbit, because A is conserved modulo 7 under 7 and because the relevant different
J(1y-orbits differ in their conformal weight by 1 modulo Z.

For w = wg_), the discussion must be slightly changed. This time @ = —(2(2 —1)is
mapped on Q7 = —L — @, i.e., we have to choose a different representative, leading to
xr = (J,)"T2H(@+1)/2 x Explicit calculation shows that w, = wz(:'r)t—(Q—I—l)/Z’ leading to

l(w) — l(wy) =n — 2k — %, which gives the right transformation of the Dy part and
implies identity of superconformal charges.
Thus we have proven that 7 always maps Ramond ground states to Ramond ground

states with identical superconformal charge.

3.7 Type B coset models with level and rank not congruent
modulo 2

In the same spirit as before, we can deal with the other level-rank dualities mentioned in
the introduction. As the discussion often closely parallels the one of the previous section,
we will usually be rather brief and shall only mention some new features. In the present
section we use the map 7 for B type algebras at even level to relate the coset theory
(B,2k + 1,2n) with the D type modular invariant to (B,2n,2k + 1) with the diagonal
modular invariant, i.e.,

T

(B,2k+1,2n)p = (B,2n,2k +1). (3.7.1)

According to Subsection 3.5, taking the D-invariant amounts to incorporating the integer
spin simple current J(3) := (J,1/1,0) into the chiral algebra. This introduces further fixed
points which can have order 2 or 4 and which have to be resolved, but it also has the
crucial advantage that it leaves us with tensors of the B algebras only, so that the map 7
constructed in Section 3.3 is applicable.

The choice of the Jiq)-orbits is now immaterial. This is because the presence of J(s)
implies that 7(A,A)< = 7(A,X)s, so that any pair of tensor orbits of the B type WZW
theories, combined with a Dg-weight and a u(1)-charge, corresponds to a single physical
field. However, we still have to take into account the additional identification current

JoayxJigy = (1,Jy /1,£2L), where L := 2k + 2n + 1.
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Again the general form of the map 7 1s given by (3.6.4) (recall that on the right hand
side of (3.6.4) only a representative of 7(®) is given). Starting from a fixed representative
of a field or a fixed point ® of the B type coset theory at even level and odd rank, we obtain
all representatives of 7(®) by using the map 7 and the identification currents of the coset
theory at even rank and odd level. Moreover, with the help of the identification currents
we can also fix uniquely a representative of 7(®) for which 7(A) and 7()) are tensors and
which has the same conformal weight as the chosen representative of ®. Note that fixed
points are mapped on a spinor-conjugate pair of orbits, which reflects the resolution of
fixed points. In particular fixed points of order two and of order four are mapped on two
and four fields, respectively.

One can now show again that there is a unique mapping 7 that preserves both the
superconformal charge ¢ modulo 2 and the conformal dimension A modulo integers; it is
given by

—-Q+QL for x € {0,v},
Qr = { _Q+(2k+1)QL for x € {s,c}, (3.7.2)

and

J) T @-N/2% for x € {s,c}. (3.7:3)
To check this, one has to make use of the fact that the representatives of the orbits of the
D type WZW theories that were chosen above always have vanishing monodromy charge
relative to (Js,1/ Js,0).

Of course, again 7 must be complemented by a prescription on the fixed points. This
time the fixed point theory is not a WZW theory; rather, it is closely related to certain
conformal field theories, denoted by the symbol B, that were described in [130]. In fact,
the existence of the map 7 suggests that the S-matrix and characters of the B theories
are related to a D type WZW theory, and it should be interesting to explore the level-
rank duality further to gain deeper insight in the structure of these peculiar conformal
field theories. Finally, it is again possible to prove that the modular S-matrices are iden-
tical and that Ramond ground states are mapped on Ramond ground states with equal

Xy — { EJV)Q/2X for x € {0,v},

superconformal charge.

3.8 BB versus CC theories

In this section we present the isomorphism

T

(BB,n+2,1) = (CC,2,2n +1). (3.8.1)

To relate the non-hermitian symmetric cosets (BB,n + 2,1) and (CC,2,2n + 1) we first
notice the isomorphism Cs = B, of simple Lie algebras. This allows us to make use once
again of the map 7 of Section 3.2 to relate the (B, )s theory appearing in (BB,n + 2,1)
with the (Bs)ant1 = (C3)ant1 part of (CC,2,2n+1). The (B,+2)1 part, on the other hand,
is comparatively easy to deal with, because it has only three integrable highest weights,
and because the identification current Ji;) strongly restricts their combination with weights
of the other parts. Namely, (B, )s-weights that are tensors must be combined with either
the tensor weight A = 0 or the tensor weight A = A(;) of (Bny2)1, while spinors are
to be combined with the spinor weight A(,12) of (Bni2)1; furthermore, J(;) introduces an
additional identification, implying that in the case of tensors we can characterize the B part

completely by a (B, )s-weight and by the difference Ay — Ay of the conformal dimensions.
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Also, by using the identification current J(;) of the ('C' models, we can choose without loss
of generality for a fixed representative of ® the representative of the Cs-orbit in such a
way that it has conformal dimension Ay — Ay modulo integers. For spinor fixed points we
have again an ambiguity which is connected to the issue of fixed point resolution.

This time, the mapping 7 has to be complemented not only by a mapping on the D,
and u(1) parts, but also on the (A;)a,42 part of the theory. Thus

®= (A7X/A7#7Q)7
7(®) = (r(A),x1 [ 11, Q1)

where p and p7 are A;-weights (recall that €7 = A;). It is easy to see that equality of the
superconformal charges modulo 2 is equivalent to the relation x7 = (J,)?x. In fact one

(3.8.2)

can show again that there is a unique mapping that preserves the fractional part of A, as
well as ¢ modulo 2. Namely, choosing the weights of the B parts in the manner described
above, for tensors in the B parts one needs

] -Q+QL for x €4{0,v},
Qr = { —Q+(Q+1)L for x€ {s,c} (3.8.3)

with L = 2n + 4, while for spinor weights in the B parts we must set

] —Q+ L for xe{0,v},
Qr = { —-Q for x € {s,c}. (3.8.4)

The corresponding prescription for the weight p of (A;)am+2 is, independent of the value
of x,
Jhp forecy =¢, =0,
Hr =

3.8.5
,u forc¢y = ¢, =1. ( )

Fixed points have to be dealt with more carefully again. Using general simple current
arguments, it is easy to see that the S-matrix element between a fixed point and any other
spinor has to vanish. At first sight, this might seem inconsistent, because the S-matrix
element between two non-fixed point spinors of (B,)s does not vanish in general, whereas
both are mapped on fixed points with respect to J(;) of the Cs-theory, and the S-matrix
of the image vanishes. However, spinors of (B,)s are always combined with the spinor
weight A(nia) of (Bmy2)1; now SA(n+2)A(1L+2) vanishes and, hence, the same is true for the
corresponding S-matrix element of the coset theory.

We can use the Jacobi-theorem to relate the S-matrix arising in the resolution of the
fixed points to the S-matrix of the C'C theory. The resolution is this time accomplished by
mapping the fixed point on an orbit of length two. Calculation shows that the product of
the S-matrix elements of A;, Dy, and u(1) differs from the corresponding S-matrix-element
of the C'C coset theory by a factor of ¢(—1)P*%9 where P and Q are the u(1)-charges of
the BB theory and where the sign ¢ depends on the specific action of 7 on fixed points
analogously as discussed after (3.6.9). In a similar manner as we dealt with the factor
(—1)* in Section 3.6, it can be shown that the action of 7 can be chosen in such a way
that ¢(—1)P*% is the correct sign for obtaining equality of the full S-matrices. A parallel
argument also shows that this definition of 7 reproduces the correct identification between
the characters of the resolved fixed points and those of the corresponding fields of the
CC theory. Let us also mention that the factors stemming from the S-matrix of (B12)1
precisely compensate the different size of the identification group in the case of non-fixed
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points; for fixed points they assure, together with the factors of /2 appearing in (3.2.29),
the equality of the S-matrices.

It is by now not too difficult to verify that the mapping 7 fulfills the same properties
as in the cases treated in the previous sections. Besides preserving ¢ and A as well as
the modular S-matrix, we see that 7 maps again the Ramond ground states with highest
superconformal charge onto each other, proving again the isomorphisms of the spectral
flows. It is also possible to check that Ramond ground states are mapped on Ramond
ground states with the same superconformal charge quite in the same way we did before.
Owing to the presence of the additional A;-subalgebra, the arguments are, however, slightly
more complicated, and we refrain from presenting the technical details here.

3.9 Duality in the CC series

Here we construct a map 7 between the N = 2 superconformal coset models (CC,n,k)
and (CC,k + 1,n — 1), which as in the previously discussed cases leaves S and T invariant
and identifies the rings of chiral primary fields,

T
(CCyn,k) = (CCk+1,n—1). (3.9.1)
The definition of the map 7 will be such that

T((Ax/2,Q)) = (r(A),xr [ 7(A), Q1) - (3.9.2)

This is formally very similar to the analogous definition (3.6.4) in Section 3.6, but its
contents is quite different. Namely, this time the underlying map 7 of the C' type WZW
theories was defined on representatives of simple current orbits rather than on the orbits
themselves (see Section 3.4). Correspondingly, (3.9.2) is a map between representatives as
well, and hence we will have to check that the relevant quantities of the coset theories do
not depend on the choices of representatives. Therefore we will be a bit more explicit than
in the two previous sections.

We begin again by checking the conformal central charge and the number of primaries.
According to Table 3.1, the Virasoro charge of (C'C,n, k) is equal to —3 + 6n(k + 1)/(k +

n + 1), and hence is invariant under exchanging n < k + 1. The number of primaries of

the (C,)r WZW theory is Ngk = < n ;I; k > Furthermore, the coset theory does not have
any fixed points, and hence the number of primary fields of (CC,n, k) is

k+n

n—1

1 k+n
z/fg =~ Ngk N2131—1,1 Nf—1,k+1 N21(k—|—n—|—1) =2(k+n+1) ( n ) (

; ) . (3.9.3)

where the first factor % takes care of the selection rule and the identification of order two.
Obviously, the number of primaries of the (CC,k + 1,n — 1) theory is given by (3.9.3),
too.

Next we present the map 7. In (3.9.2), 7 is to be taken as the map defined after (3.4.2),
and x7 and ()7 are defined by

{ (J,)knt@+lx for x € {s,c},
X7 = (

3.9.4
J )1 C9x  for x € {v,0}, ( )
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and

Or = { —Q for x € {s,c}, (3.9.5)

| -Q+k+n+1 for xe{v,0}.

Note that already in terms of representatives, the map 7 squares to the identity, 7 o7 =
id. Also, combining the expression (3.5.3) for the conformal dimension of ® with the result
(3.4.3) for the conformal dimensions of the C' type WZW theories, one can again show
that 7 is the only map that preserves ¢ modulo 2 and the fractional part of the conformal
weight A, as well as the S-matrix. To check the last-mentioned property, it is important
to make use of the selection rules encoded in the identification current J).

As already emphasized, the map 7 must provide a mapping between fields rather than
only a mapping between formal combinations of weights of the underlying Lie algebras.
The following remarks show that the mapping is indeed well defined on physical fields.

1. The map (3.9.2) is consistent with the selection rules, i.e., it maps allowed fields to
allowed fields. Note that the dependence of ()7 on x is necessary to fulfill the selection rule
encoded in J(y), (explicitly, the selection rule reads r(A) +7(A)+no 4+ Q = 0 mod 2, where
r(A) is the number defined in (3.4.9), which modulo 2 is equal to the conjugacy class of A,
and where o is 0 in the Neveu-Schwarz sector and 1 in the Ramond sector).

2. Identification currents are mapped onto identification currents: 1°
(07 0 / 0, 0) L) ((n - 1)A(k+1)7 (JV)k+1 /nA(k)7 j:(k +n+ 1)) ’

3.9.6
(BA ¢y (J)™/ (B + 1D)A,_py, £(k +n + 1)) L. (0,0/0,0). (399

Computation shows that the products of S-matrices of the respective WZW theories co-
incide (one has to make use once again of the selection rules, which imply cancellation of
the factors (—1)"(4) that are present in equation (3.4.10)). This implies that in fact the
two representatives of one physical field ® are mapped on the representatives of the corre-
sponding physical field 7(®) of the dual theory, or, in other words, that we can interpret
T also as a mapping of physical fields.

3. The two representatives of the Ramond ground state with highest u(1)-charge are ex-
changed:

T
(0,5/0,n) «— ((n —1)Ay,,), (J,)*t1s/ nA gy, —n),
(BA gy, (Jo)"s [ (k + 1) Ay, —k — 1) <2 (0,5/0,k +1).

In other words, in terms of fields we have proven compatibility of the map 7 with spectral

(3.9.7)

flow.

To show that 7 maps Ramond ground states on Ramond ground states, again we first
check the dimension of the chiral ring. We have to use the formula (2.4.5) with N = Ngk,
|Z| = |Z(C,)| =2, and
Wl 2" n!

—> = =2n. 3.9.8
Wil 2 ie—1) " (3:98)
Thus pS% = n NS, = (n + k)!/((n — 1)!'k!), which is invariant under n — k+ 1. Of

course, this also follows from the observation that the (ordinary and extended) Poincaré

10 This does not furnish a group isomorphism between the groups that describe the fusion rules of the
identification currents. Since these groups are isomorphic to Z,, such an isomorphism would necessarily
be trivial.
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polynomials of the theories (CC,n,k) and (CC,k + 1,n — 1) are identical, as we will see
in Chapter 4.

To analyse the Ramond ground states in more detail, first recall that in the orthogonal
basis the action of the Weyl group is given by permuting the components and multiplying
them with a sign, and has thus the same structure as in the case of B type Lie algebras. This
allows us to use the same notation for Weyl group elements as in Section 3.6. Furthermore,
the roots of B type and C type algebras differ only by normalization factors, and these are
irrelevant for the determination of the length of Weyl group elements. As a consequence,
the formulee (3.6.15) are valid for C' type Lie algebras, too (and the Hasse diagram of
the embedding C,,_; — C, is again linear, compare Appendix 2.A). Correspondingly, the
reasoning below will be very similar to that of Section 3.6. The relation (3.5.6) between
the weights A and ) implies that in terms of the numbers /; introduced in (3.4.1), the
Cpn_1-weight A of a Ramond ground state ®p is related to the C,-weight A by

L) = L (w(d)), (3.9.9)

and also )
Q| = £i(w(A)) (3.9.10)

for some Weyl group element w. When we characterize A and A by the sets M, and M),
this translates into

My = My \ {4}, (3.9.11)

where f, = £Q is an arbitrary element of M, (recall that iy > 0). Again the freedom in
the choice of the sign of @) reflects the invariance of the set of Ramond ground states under
charge conjugation. An analogous description applies to the image 7 (®g) of the Ramond
ground state. Now 7 fixes uniquely the transformation of all weights, and

M.y =M\ My = (M\ My)U{L} = M.ayU {£}, (3.9.12)

so that 7(A) and Q7 are related to 7(A) by the formula (3.5.6) with a suitably chosen Weyl
group element w,.

To verify that 7(®g) is again a Ramond ground state, it is now sufficient to check
that 7 gives the correct weight in the D, part of the theory. The Weyl group elements

w and w, are uniquely fixed by the weights A and ), respectively by their images under
)

B

the Weyl group element wy is given by w,(c:_)n_Q_i +2 » Which implies that
l(w) —l(wr) =n—k —1— Q. From this equation we can derive not only the equality of

75 for w = w
superconformal charges, but also the behavior on the Dy part; we have
sign (w) sign (wy) = (—1) W) = (_1)kn+ire (3.9.13)

which reproduces the prescription given in (3.9.4). This shows that 7 maps Ramond
ground states on Ramond ground states, as claimed, and thus completes our arguments
that the map 7 fulfills the requirements for the isomorphism (3.9.1) of conformal field
theories, analogously as for the other isomorphisms of (3.1.1).
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Chapter 4

Applications to String Theory

4.1 Introduction

In this chapter we apply the results of Chapter 2 to string compactification: we use the non-
hermitian symmetric coset N = 2 coset theories introduced in Chapter 2 as subtheories
in N = 2 tensor products with ¢ =9, which are taken as the inner sector of heterotic
superstring compactifications.

To this end several projections have to be implemented on the tensor product; in Section
4.2 we describe these projections in the language of simple currents. The information on
the chiral ring which is necessary to perform these projections can be conveniently encoded
in the so-called extended Poincaré polynomial [123] which is described in Section 4.3.

The extended Poincaré polynomial can be deduced from the ordinary Poincaré poly-
nomial and the action of the so-called spinor current; it can be used to compute the
massless spectra of these compactifications, i.e. the number of massless generations and
anti-generations. In Section 4.4 we present the complete list of all tensor products of coset
theories that involve at least one non-hermitian symmetric coset theory and have central
charge ¢ = 9, providing thus consistent vacua for heterotic string compactification to four
space-time dimensions [67]. When combined with the list of tensor products involving only
minimal models [49] and with the corresponding list for hermitian symmetric spaces [37],
this completes the list of all tensor products of NV = 2 coset theories that can be obtained
from cosets of the type (2.1.1). Note that the set of all string vacua is much bigger than
the set of all tensor products of coset theories, as in general by choosing different modular
invariants of the g- and h- WZW theories one gets different string vacua. However, to ob-
tain this set is, at present, beyond reach, as a complete classification of modular invariants
is still lacking for WZW theories based on simple Lie algebras other than A; and A,.

Finally, in Section 4.5 we conclude with a brief summary and an outlook on possible
further work.

4.2 Heterotic string compactification and simple currents

To build out of a tensor product Cy of N = 2 superconformal field theories with ¢ = 9
a heterotic string theory, one has to perform several projections. We will sketch in this
section how this can be described in terms of simple currents and explain the resulting
prescription encoded in the ‘extended Poincaré polynomial’. In a second step we shall
comment on the case ¢ = 3 + 6n . This case is of much practical interest as we have to
resort to it in some cases to remove ambiguities in the resolution of fixed points. Note
that in this section we do not make any assumption on how the N = 2 theories have been
constructed. The results we will derive in this section are therefore valid for any N = 2
theory.
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Atter splitting off the contribution of the bosonic space-time coordinates and applying
the bosonic string map [35], we can describe the heterotic string in a conformal field theory
language as the tensor product

(Ds)1 @ (Es)1 ®Co . (4.2.1)

The first two factors will provide for the right movers the gauge multiplet, for the left movers
they describe the contribution of the fermions. As the only purpose of the Eg factor is to
provide a phase in the S-matrix such that the fermions are correctly reproduced, we will
drop it in our discussion from now on.

Any superconformal field theory has a simple current T — the generator of world sheet
supersymmetry — which of order two and conformal dimension h = 3/2. We say that pri-
mary fields which have monodromy charge 0 with respect to 7% are in the Neveu-Schwarz
sector, fields with monodromy charge 1/2 in the Ramond sector. By the ‘superpartner’ of
a primary field ¢ we will denote the primary field Tr x¢. Note that ¢ and Tr x¢ are distinct
primary fields and that in particular T itself is a primary field.

To obtain supersymmetry on the world sheet also for the tensor product of supersym-
metric theories, we have to align the boundary conditions in the various theories such that
the fields are either all in the Ramond or all in the Neveu-Schwarz sector. This alignment
is precisely achieved by enlarging the chiral algebra by all bilinears Tr)Tx) which have
conformal dimension 3. In the D5 part we set T#(® := J,, which is, just like any other
primary field of (Ds);, a simple current as well.

Space-time supersymmetry requires the projection on even ! values of the u(1) charges
[66]. To implement this projection we use the fact that any N = 2 superconformal theory
has a second simple current: the Ramond ground state Ry with highest u(1) charge. It has

24
The desired projection it is thus equivalent to including the integer spin simple current

Stot := (Js, Ro) in the chiral algebra. Here J; is the spinor simple current of (Ds)i. Siot
has been termed spinor current in [123]. We will see below that its presence in the chiral
algebra assures the existence of a space-time gravitino in the corresponding heterotic string
spectrum.

conformal dimension h = its monodromy charge is half of the superconformal charge.

In conformal field theory language a heterotic string theory thus amounts to a conformal
field theory (4.2.1) with the modular invariant generated by the integer spin simple current
Siot and all bilinear combinations Tp(i)TF(j).

We are now in a position to recover the massless spectrum of the heterotic string. To
obtain the proper interpretation we recall that in one chiral sector of the theory, e.g. for
left movers, we have to apply the bosonic string map: the Dy @ Eg part is mapped on a
s0(2); theory by interchanging vector and scalar and changing the sign of the spinor and
conjugate spinor representation in the partition function. This map preserves the modular
transformation properties and allows for a description of the fermionic coordinates of the
string.

In a purely bosonic description, massless fields are characterized by the property h =
h = 1. Let us first explain how in this formulation the generic part of the string spectrum
arises which provides the supergauge- and supergravity-multiplets. Two fields that occur
in any N = 2 theory in the inner sector are the vacuum and the two Ramond ground states
with highest and lowest u(1)-charge. The massless right moving fields that are tensored
with the vacuum of the inner sector have conformal weight ~ = 1 and, due to the charge

! Here we formulate the condition after applying the bosonic string map, what explains the difference
to what the reader might expect, namely projection on odd values [66].

76



selection rule, ¢ = 0,4+2. These conditions are fulfilled for the currents of Es & D5 and
the transverse bosons. In the modular invariant described above these fields are paired
with the following left movers: (J,,0) what yields for the transverse bosons the graviton
(as well as an antisymmetric tensor and the dilaton as the trace) and for the currents the
gauge multiplets. Applying Sio in the left moving sector yields the superpartners of the
gauge bosons and the graviton.

In the right moving sector, we also find in the complete square of the identity the
fields Siot and Stotf, as well as the 0 of D5 tensored with the u(1)-current of the N = 2
algebra. According to the branching of the adjoint representation of Fg to the adjoint
representation, the spinor, conjugate spinor and scalar of Dy, these fields extend the gauge
symmetry from Eg® D5 to Es ® Fs. In particular cases, if more fields are present, one can
even further extend both the gauge symmetry for right movers and the supersymmetry for
the left movers.

To explain how massless (anti-)generations transforming in the 27 respectively 27 rep-
1

resentations of Fg arise, we remark that massless states that are vectors of D5 have h = 5

and ¢ = +1 in Cy, i.e. they are (anti-)chiral fields. Acting twice with Sioi! on the vector
tensored with a chiral primary field with ¢ = 1 yields a spinor tensored with a Ramond
ground state and in a second step 0 tensored with an anti-chiral state with ¢ = —2; these
states combine in a 27 of Fg. Starting with an anti-chiral field and applying S, instead
we obtain states transforming in a 27 of Es. These states can be paired with spinors or
conjugate spinors in the left moving sector; together they give rise to the generations and
anti-generations and their C'PT conjugates.

To extract information on the spectra we introduce the following notation: denote by
h?? the number of fields which are in both the left and the right moving part of Cy chiral
primaries and have superconformal charge p respectively g¢; p, ¢ are integers smaller than
d := ¢/3. These numbers can be seen as analogues to the Hodge numbers of a Calabi-Yau
threefold. In fact, we find the usual symmetries: hA?? = h?P, as we started from a left
right symmetric invariant, and h?? = h9"%97P  due to the conjugation symmetry on the
chiral ring. Note that if the vacuum is not paired with any chiral primary field other than

the unique chiral primary field with ¢ = £, we have %' = h%2 = 0; in the corresponding

?
heterotic string compactification neither gauge symmetry nor space-time supersymmetry
is extended. As this is the most interesting case we will restrict ourselves to it from now
on. The ‘Euler number’ is given by x := Y (—1)PT9h?1.

The discussion above shows that the number N,, of massless generations transforming
in the 27 representation of Fg is equal ? to A", or equivalently to the number of fields in
the theory, which are in both sectors spinors of Dy tensored with a Ramond ground state
with superconformal charge —%. The massless anti-generations N5 transforming in the 27
of E¢ can be correspondingly characterized by the fields which are spinors and Ramond
ground states with charge —1 in one sector and conjugate spinors and Ramond ground

2
states with charge —I—% in the other sector.

4.3 The extended Poincaré polynomial

To compute the massless spectrum of a heterotic string compactification we have to keep
track of the relevant simple current orbits. Let us first look at the orbits of Si,;: as we are

% Qur notation is different from the one used for Calabi-Yau manifolds: there the superconformal charge
in both sectors is defined with a relative minus sign, so the number of generations corresponds to the Hodge
number A1 = A2 of the manifold.
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only interested in the massless spectrum we start with an arbitrary Ramond ground state
(Jo, RY),...) . Suppose now that, on the orbit, we encounter ((J,)®v, (TF(i))Ei R}), where ¢;
is 0 or 1. This state — which is massive unless all ¢; vanish — is paired in the simple current
invariant with the original state in the other sector of the theory. But the chiral algebra
contains also all bilinears of the form (JV,TF(i)): we thus find within the same complete
square of the partition function the corresponding massless state, for which all ¢; vanish,
too. If the Dy part is a spinor this yields a generation; conjugate spinors correspond to
anti-generations.

The information on the orbit of S, is very conveniently encoded in the extended Poin-
caré polynomial [123]. To start with, we define it on each factor of the tensor product
separately. As any simple current has finite order, the orbit has some periodicity which we
first factor out for convenience: for any Ramond ground state R we define Ng to be the
smallest power of the spinor current such that (SV®)R is equal to R or TrR. We define
€(R) to be 41 in the first and —1 in the second case. The extended Poincaré polynomial
is now defined as :

14

P(t,z) = Zm[ E z™ — E z"]. (4.3.1)

R meFy neF_

The sum is over all Ramond ground states R, ¢ is the superconformal charge of the chiral
primary field connected via spectral flow. The sets F. are defined by the prescription:
m € Fy iff (Siot)™ R is a Ramond ground state and n € F_ iff (Sio1)" R is TF applied to a
Ramond ground state; in particular all m,n are even. The extended Poincaré polynomial
is not a polynomial in the new variable z, but rather a series with periodic coefficients. We
remark that we recover the ordinary Poincaré polynomial as P(t,0).

In fact, typically one deals with a tensor product of N = 2 coset theories rather than
with a single theory. The ordinary Poincaré polynomial P;.(t) of a tensor product is just
the product of the ordinary Poincaré polynomials P;(t) of the factor theories. The extended
Poincaré polynomial for a tensor product can be obtained by the following multiplication:
given the extended Poincaré polynomials P;(¢, z;) of the factors, first perform the ordinary
product of polynomials and then delete all terms in which the powers of the z; do not
coincide. This procedure implements the simple observation that, in order to have a
Ramond ground state of the tensor product, we need Ramond ground states in each factor
of the theory.

To compute the spectrum of the corresponding string compactification we have first
to check whether the gauge symmetry is extended or not. If it is not extended, then the
polynomial in z multiplying t° is equal to 1 + z%. The numbers N,, and N5- can then be
read off [123] from the extended Poincaré polynomial of a ¢ =9 theory. Namely, if P is

written as -
Pt,z) =D > algdgsig?™, (4.3.2)
7 m=0
then we find
M./2-1
Ny + Np= > o] (4.3.3)
m=0
and
M,/2-1
Ny, — Nyz= > (—1)malV), (4.3.4)
m=0
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Here M, denotes the smallest positive integer such that the (2M, +1)st power of the spinor
current is either equal to the spinor current itself or to its superpartner. The formulae
(4.3.3) and (4.3.4) implement the observation in the previous section that, since the action
of any of the bilinears (J,, Tp(i)) and of (S;01)? changes the conjugacy class in the Dy theory
we find generations if a,, > 0 and m = 0 mod 4 or a,, < 0 and m = 2 mod 4; the other
cases correspond to anti-generations. Note that in formula (4.3.3) it is assumed that a
fixed twisted sector m contributes either only generations or anti-generations so that the
contributions to a{!) do not cancel. A proof of this assumption can be found in [101].

For later application, it is necessary to slightly generalize this formalism such that it can
be applied to tensor products of cosets with conformal charge ¢ = 3 + 6n. Here in general,
we have no string interpretation at hand and we have to replace the Ds factor by some
other D, factor. However, we have to require that the current (J5, Ro), with conformal
weight r/8 + ¢/24 has integer spin. This fixes r to r = —2n — 1 mod 8. (We recover the
previous situation for » = 5,n = 1.) It is important to note that, as the S matrices of D,
and D, .4 coincide, the choice of r does not affect the fusion rules. (Note however, that the
T matrices coincide only for D, and D, 24.)

We now implement analogous projections, i.e. take the simple current invariant induced
by all bilinears in the Tx® and (Js, Ro), and obtain the extended Poincaré polynomial by
exactly the same prescription as in the ¢ = 9 case. Again massless states that are spinors
or conjugate spinors in Dy are Ramond ground states of Cs3.6,. The charge selection rule
implies that states paired with spinors have superconformal charge ¢ = —% mod 2 and for
conjugate spinors —I—% mod 2. The chiral primary fields connected via spectral flow have
thus charge ¢ = n mod 2 for spinors respectively n + 1 mod 2 for conjugate spinors. This
shows that we can recover the Euler number from the polynomials multiplying all odd
powers of ¢ in the extended Poincaré polynomial and summing up all contributions. We
remark that in general we can only read off >, h?9(£1)?* from the extended Poincaré
polynomial; this is sufficient to determine all Hodge numbers separately only for n < 1, if
the symmetry is not extended.

4.4 String spectra of N =2 coset models

Knowing the exact form of the Ramond ground states in N = 2 coset theories (cf. Section
2.4), we can calculate the massless spectrum of the string theory that employs a tensor
product of N = 2 coset model as its inner part, or more precisely, the numbers N,, of
‘generations’ and Ns5 of ‘anti-generations’ which carry the two inequivalent 27-dimensional
representations of the Eg part of the space-time gauge group of the string theory. One
possibility to find these numbers is, of course, the extended Poincaré polynomial introduced
in the previous section.

Another method is the ‘method of beta vectors’ that was introduced [66] in the context
of N = 2 minimal models; in principle this method has the additional benefit to provide in
addition the number N; of Fg singlets. In practise, however, this is not the most convenient
approach, as the dimensionality and structure of the lattice spanned by the beta vectors
depends strongly on the algebras involved, so that one would be forced into a lengthy case
by case analysis. (However, for the calculation of the number of massless states carrying
the singlet representation of the space-time gauge group Fg, the method of beta vectors is
still the only known algorithm. Unfortunately the knowledge of the Ramond ground states
is not suflicient to get the singlets. While for Ramond ground states the correct treatment
of null states is already implemented through (2.4.4), for general N = 2 coset theories the
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presence of null states makes the determination of the singlets a hard problem. In fact,
the singlet numbers have so far not been determined for (tensor products of) N = 2 coset
models other than the minimal ones. For the latter theories, the representation theory of
the N = 2 algebra gives a good handle on null states.)

To determine the exact form of the extended Poincaré polynomial in the case of N = 2
coset models is a somewhat tricky issue, as in fact we only know some specific representa-
tives of the fields which are Ramond ground states (the formula (2.4.4) does not provide
all members of an equivalence class), while for the calculation of P(¢,z) in principle all
representatives are required. Fortunately, one can show that the following procedure yields
the full result. Take a single representative for each Ramond ground state, and act on it
with all even powers of all representatives of S that have g-weight A = 0. This is sufficient
because of the fact, proven in the appendix of [103], that for any representative R of a
Ramond ground state there exists at least one representative R’ that belongs to the set
obtained via (2.4.4) and that has the same g-weight as R.

It follows from the considerations in the previous section that, if in P(¢,z) the highest
(and, due to charge conjugation invariance proven in Section 2.4.3, also the lowest) power
in t gets multiplied with more than two distinct powers of #, then additional gravitinos
that lead to extended space-time supersymmetry (respectively, additional gauge bosons,
yielding an extension of the space-time gauge group Fg to E; or Eg) are present. In the
tables below we have marked all models where this happens by an asterisk on the net
generation number. Note that in the tables we display the number of Fg multiplets even
if the gauge group gets extended. (All models of this type that appear in our list describe
in fact string propagation on the manifold K3 x T2, and hence have N,, = Nz = 21. The
number Ny of the associated E7 multiplets is in these cases Ny = N,; — 1 = 20, as one
generation-antigeneration pair becomes part of the gauge boson multiplet.)

As an illustration, we present one example of an extended Poincaré polynomial, namely
for the theory (G2:,2). This has the (somewhat atypical) property that to some powers of
t other than the highest and the lowest ones there are associated more than two different
powers of . The ‘polynomial’ reads

P8, 2) = { (1 +22) + t10(1 + 21°) + t12(1 + 2° + 2!® + 226) + 13 (1 — 219)
P (14 28 — 212 — 230) 4 15 (1 — 232) 4 £16(2 4 2t + 218 4 2222)
FET(1— 212) o+ 18 (1 4 22 + 218 4 20) + 19 (1 — 2%8)
—|—t20(2—w 212 4 218 — g4 430) 4 421 (] _ ®)
_I_t22 (1 _I_ w16 _I_ w18 _I_ w34) _I_ t23(1 _ w24)
P24 (2 4 221 4 218 4 232) + 125 (1 — 2t) + 26 (1 — 2b — 224 4 %)
_I_t27(1 20) _I_ t28(1 _I_ wlO _I_ w18 _I_ w28)
F 30 (1 4 226) + 40 (1 4 %)} (1 — %)L,
(4.4.1)
In the presence of fixed points the above prescription for obtaining the extended Poin-
caré polynomial is not yet quite complete, since from the quantum numbers of a fixed
point alone it cannot be decided whether a field into which the fixed point is resolved
and which appears in the orbit of another Ramond ground state is a Ramond ground
state (or the superpartner of a Ramond ground state) or not. In principle one could
resolve this ambiguity by using the full S-matrix of the theory to calculate the fusion

rules which, in turn, determine the orbits of the spinor current. But again, there is a way
to avoid this involved calculation, which has the additional benefit of showing that the
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results for the extended Poincaré polynomial do not depend as strongly on the details ot
the resolution as one might imagine. To this end we note that an important check of the
spectra obtained via the extended Poincaré polynomial is provided by the results of [16],
where an independent way to calculate the net generation number § N by means of the
ordinary Poincaré polynomial P(¢) was found. Namely,

1 ML 27id M
6N = Ny — Nz = - 3 p(efrdna/My (4.4.2)
5 r,s=0

where d(r, s) stands for the largest common divisor of the integers r and s.

Now since (4.4.2) determines the net generation number § N from the ordinary Poincaré
polynomial alone, § N cannot depend on the resolution procedure [123]. To determine the
correct extended Poincaré polynomial, we thus simply have to start with the most general
ansatz compatible with the prescriptions given above and calculate, for all possible values
of the unknown parameters that arise from the orbits containing resolved fixed points,
the net generation number for string vacua that involve the model under investigation as
one factor theory. If the net generation number generated this way does not fit the value
prescribed by (4.4.2), we can exclude the corresponding set of values for the unknown
parameters. To resolve all ambiguities uniquely, it is sometimes necessary to take into
account the result of the previous section that we can apply all formulas not only to tensor
products with ¢ = 9, but to tensor products with ¢ = 3 + 6n for any positive integer n as
well.

As an example, let us have a look at the theory (BB,4,2) which has ¢ = 9. The
analysis of the Ramond ground states shows that the coeflicient of ¢ in the extended Poin-
caré polynomial is the polynomial

14 + a 2% — arz? (4.4.3)

(multiplied with the irrelevant factor (1 + z®)~'). Here a; and a, are parameters arising
from the fixed point ambiguities just described; they must be integers between 4 and 7.
Now (4.4.2) shows that 6N = 0, so that (4.3.4) yields a; + a2 = 14, which in the given
range has the unique solution a; = a3 = 7. Once the exact form of the extended Poin-
caré polynomial is known, we can read off the number of generations and antigenerations
separately, namely N,, = N5> = 14.

We present the results of our calculations in Tables 4.1 to 4.3. In Table 4.1 we list
all tensor products that can be written as the tensor product of a ¢ = 6 and of a ¢ =3
theory and in which at least one factor is neither a hermitian symmetric coset nor the
model (CC,2,1) that will be dealt with separately. The un-numbered lines contain the
relevant non-hermitian symmetric theories, while the numbered lines provide the spectra
for those ¢ = 9 theories that are obtained by tensoring the ¢ = 6 part with the following
¢ = 3 models, respectively:

1-1-1,
1-4 A4,1,2,3),

or | ) (4.4.4)
2-2,
(€C,2,1)

(the theories 1 — 4 and (A4,1,2,3) possess the same extended Poincaré polynomial and
therefore yield the same spectrum). Here and below, the symbol ‘-’ is used to indicate
the tensor product, and a single integer k stands for the N = 2 minimal model at level k.
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Next we display, in Table 4.2, all tensor products that contain the model (C'C,2,1)
which has ¢ = 3, but do not contain any other non-hermitian symmetric coset theory. We
can tensor this model twice and use the five ¢ = 3 models listed in (4.4.4); as the model
(CC,2,1)itself occurs in that list, this includes tensoring three copies of the model. We can
also tensor it with 17 different combinations of minimal models and 27 other combinations
of hermitian symmetric cosets with ¢ = 6. ® Altogether, this yields 15x5-+4+17+27 = 123
models with ¢ = 9 that involve non-hermitian symmetric cosets and contain a ¢ = 3 part.

Finally, in Table 4.3 we list all tensor products having ¢ = 9 in which at least one factor
is not a hermitian symmetric coset and which do not contain a tensor product with ¢ = 3.
We find 75 models of this type. The number of theories that we count as different gets
reduced by various identifications among the total of 198 theories. We have taken care of
these identifications, thereby reducing the number of entries in the Tables 4.1 to 4.3 to
112.

As it turns out, the extended Poincaré polynomials for several theories that are defined
as distinct naive coset theories coincide. From the experience with coset constructions,
the observation that there exist a priori distinct coset theories with coinciding extended
Poincaré polynomials is not very spectacular. What is surprising, however, is that in fact
for all non-hermitian N = 2 coset theories for which the ordinary Poincaré polynomials are
identical (compare table 2.5 above), the same is true for the extended Poincaré polynomials.

The cases where this happens can be easily read off the tables as follows. If the extended
Poincaré polynomials of some theories are identical, these theories are listed together in
an un-numbered line; the numbered line(s) following this line then contain the theories
with which each of them can be tensored to obtain a ¢ = 9 theory. For instance, the line
preceding the lines numbered from 25 to 29 in Table 4.3 shows that the theories (C'C,2,2),
(CC,3,1) and (G2:,1) have identical extended Poincaré polynomials.

One systematic reason why the extended Poincaré polynomials of distinct Lie algebraic
cosets coincide are the level-rank dualities proven in Chapter 3. We have also taken into
account the known [123] fact that the extended Poincaré polynomials of the hermitian
symmetric cosets (4,1,2,3), (4,2,2,2),*(C,3,1), and (D, 5,1) coincide with those of the
tensor products 1-4, 1-1-1-1, 3-3, and 1-7 of minimal models, respectively.

4.5 Conclusions

In this chapter we have presented a detailed analysis of compactifications of the heterotic
string that contain non-hermitian symmetric N = 2 superconformal coset theories in their
inner sector. The spectra of string compactifications that we obtained are certainly not
spectacular, but rather similar to those obtained for previously analyzed classes of com-
pactifications. This confirms the by now common lore that extending the set of string
compactifications does not have a very large impact on the set of known spectra. The
results also confirm the experience that when employing more complicated conformal field

8 The list in [37], containing 28 hermitian symmetric cosets with ¢ = 6, is incomplete in several respects.
First, rather than (D,5,2) — 16, one must use the combinations (D, 5,2) and (D, 5,1) — 16. Further, it
was not realized that the coset theory (4, 1,2, 2) (appearing in three of the 28 theories) coincides with the
minimal model at level 8. Finally, the theories (B, 3,6) and (B, 6,3) which in [37] were supposed to be
identical, are in fact [123] distinct conformal field theories. Implementing these corrections, the number of
the models gets reduced by one, leading to the correct number of 27 models.

* However, in Table 4.3 we have nevertheless kept the entries # 17 and # 42 containing (4, 2, 2, 2),
because after identification with 1-1-1-1, they would correspond to entries in a different table, namely
Table 4.1.
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theories, the numbers of generations and anti-generations tend to be smaller than in the
case of simpler (say, N = 2 minimal) theories.

There still remain several directions for further work on the subject. First, one may
consider modular invariant combinations of characters of the g- and h- WZW theories other
than the diagonal one, in particular non-diagonal invariants of tensor product theories that
are not obtained from products of the invariants of the affine Lie algebras associated to the
individual factor theories. One may also investigate whether the coset theories, or at least
their tensor products with ¢ = 3n, might have a description in terms of Landau-Ginzburg
potentials or Calabi- Yau manifolds, or of orbifolds thereof (while it is generally assumed
that such a connection should exist, the arguments supporting this expectation are far
from being rigorous). To identify these different descriptions it would be very useful to
have a more detailed knowledge of the discrete symmetries of the models. One of these
discrete symmetries is obvious, namely the symmetry of the operator products induced
by conservation of the superconformal u(1l)-charge; but generically there may be further
symmetries, and it is not clear how one could find all of them. Of course, once discrete
symmetries are known, one can divide out some of them so as to obtain orbifolds of our
models.

We also mention that a complete computation of massless string spectra, i.e. including
the fields that are singlets under Fg, would clearly be welcome. To this end one would have
to compute the character decompositions by means of the Kac-Weyl character formula (in
order to identify null states and to obtain the integer part of the conformal weight of a
field), and implement the beta vector method known from tensor products of minimal
models. It is evident that this is a laborious procedure, and any alternative method would
be of great interest.

Another interesting aspect of the string spectra obtained in the chapter is that the
extended Poincaré polynomials P(¢,z), and hence the generation numbers N,, and N5> of
the associated string compactifications, of two theories are identical whenever the ordinary
Poincaré polynomials P(t) = P(t,0) are. This indicates that the structure of the extended
Poincaré polynomial is to a large extent already dictated by the information contained in
the ordinary Poincaré polynomial; in particular (compare [123]), in the presence of fixed
points the numbers of massless generations and anti-generations do not depend at all on
the details of the resolution procedure. A general proof of this observation is however still
lacking.
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Table 4.1: ¢ =9 tensor product theories that contain a ¢ = 6 part combined with a non-
hermitian symmetric factor (different from (CC,2,1)), and the associated generation and
anti-generation numbers

# Model N,, | N | 6N
(BA,3,1)

1 -2-1-1-1 21 211 *0

2 -2-1-4 31 7T 24

3 -2-2-2 39 3| 36

4 ~2-(CC,2,1) 31| 7| 24

(BA,4,1) or (C3,1) or (G2,2)

5 -1-1-1 21 211 *0

6 -1-4 31 7T 24

7 -2-2 31 7T 24

8 —(CC,2,1) 31| 7| 24

(BB,3,1) or (CC,2,3) or (CC,4,1)

9 -1-1-1-1 51 3| 48
10 -1-1-4 51 3| 48
11 -1-2-2 21 211 *0
12 ~1-(CC,2,1) 21| 21| *0

(BB,4,1) or (CC,2,5) or (CC,6,1)
13 -1-1-1 211 211 *0
14 -1-4 23 | 23 0
15 -2-2 44 8| 36
16 -(CC,2,1) 23 | 23 0
(CC,2,2) or (CC,3,1) or (G2:,1)
17 -3-1-1-1 21 211 *0
18 -3-1-4 21 211 *0
19 -3-2-2 21 211 *0
20 -3-(CC,2,1) 21| 21| *0
(CC,3,2)
21 -1-1-1 21 211 *0
22 -1-4 41 5| 36
23 -2-2 41 5| 36
24 -(CC,2,1) 41 5| 36
(G21,1)
25 -1-1-1-1 29 5| 24
26 -1-1-4 29 5| 24
27 -1-2-2 21 211 *0
28 ~1-(CC,2,1) 21| 21| *0
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Table 4.2: ¢ = 6 tensor products, and the net generation number § N for the ¢ = 9 models
obtained by tensoring in addition with (CC,2,1)

# Model (¢ = 6 part) | Ny, | N3z | 6N

1j1-1-1-1-1-1 21 211 *0
211-1-1-1-4 35 11| 24
311-1-1-2-2 21 211 *0
411-1-2-10 35 11| 24
511-1-4-14 51 3| 48
6|11-2-2-4 51 3| 48

712-2-2-2 61 1] 60
811-5-40 35| 35 0
911-6-22 43 19 | 24
10| 1-7-16 43 19 | 24
111-8-13 27 | 27 0
12 1-10-10 59 11 | 48
1312-3-18 39| 15| 24
14 12-4-10 45 9| 36
15|/2-6-6 55 7| 48
16 3-3-8 39| 15| 24
1714-4-4 60 6| 54
18 | (4,1,2,4) - 12 38| 20| 18
19 | (4,1,2,5) - 6 55| 7| 48
20 | (4,1,2,6) -1 1 21| 21| *0
21 | (4,1,2,6) — 4 23| 23| 0
22 | (4,1,2,7) - 3 30| 15| 24
23 | (4,1,2,9) - 2 45| 9| 36
24 | (4,1,2,15) - 1 43| 19| 24
25 | (4,1,3,3) - 5 21| 21| *0
26 | (A,1,3,4) - 2 51| 3| 48
27 | (4,1,3,5) - 1 21| 21| *0
28 | (4,1,3,8) 45| 9| 36
29 | (4,1,4,5) 41| 5| 36
30 | (4,2,2,4) 51| 3| 48
31 | (B,6,3) 21| 21| *0
32 | (C,2,3) - 2 51| 3| 48
33 | (C,2,6) 23| 23| 0
34 | (C,3,2) 21| 21| *0
35 | (C,4,1) - 1 35| 11| 24
36 | (D,5,2) 21| 21| *0
37 [(CC,2,1)-1-1-1 | 21| 21| *0
38| (C0,2,1) -1 4 51| 3| 48
39 | (CO,2,1) -2 -2 51| 3| 48
20| (00,2,1) - (CC,2,1) | 51| 3| 48
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Table 4.3: ¢ = 9 tensor products that contain a non-hermitian symmetric coset and cannot
be decomposed in the tensor product of a ¢ = 3 and a ¢ = 6 theory

# Model N,, | N | N
(BA,3,1)
1 -1-1-10 19| 19 0
2 -3-18 23 | 23 0
3 -4-10 27| 15| 12
4 -6-6 35 11 ] 24
5 - (4,1,2,9) 27| 15| 12
6 - (4,1,3,4) 31| 7| 24
7 ~ (B,6,2) 35| 11| 24
8 (0,2,3) 31| 7| 24
9 ~ (BA,3,1) 15| 15| 0
10 | (B4,3,2) - 12 12| 8| 4
11 | (BA,3,4) 14| 2| 12
12 | (BA,5,1) - 2 15| 15| 0
13 | (BA,6,1) 15| 15| 0
(BB,3,1) or (CC,2,3) or (CC,4,1)
14 -2-10 35 11 ] 24
15 -4-4 43 7] 36
16 - (4,1,2,6) 35| 11| 24
17 - (4,2,2,2) 51| 3| 48
18 | (BB,3,3) 17| 5 12
19 | (BB,4,2) 14| 14| 0
(BB,5,1) or (CC,2,7)or (CC,8,1)
20 -8 39| 15| 24
(BB,6,1) or (CC,2,9) or (CC,10,1)
21 -1-1 29 | 29 0
22 -4 441 14| 30
(BB,8,1) or (CC,2,13) or (CC,14,1)
23 -2 34| 34 0
(BB,12,1) or (CC,2,21) or (CC,22,1)
24 -1 43 | 43 0
(CC,2,2) or (CC,3,1) or (G2:,1)
25 -1-1-28 23| 23 0
26 -4 -28 29 | 29 0
27 -8-8 47| 11| 36
28 ~(4,1,2,12) 35| 17| 18
29 - (B,8,2) 4| 5| 36
(CC,2,4) or (CC,5,1)
30 ~(4,1,2,4) 2| 14| 15
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Table 4.3: continued.

# Model N,, | N3 | 6N
(CC,2,6) or (CC,T7,1)
31 - 16 27 | 27 0
32 | (CC,3,5) 0r (CC,6,2) | 20| 20 0
33 |1 (CC,4,3) 29 9| 20
34 | (C4,1) 15 7| 8
35 | (D4,1) - (4,1,2,4) 23| 11| 12
36 | (D5:,1) 12 0] 12
37 | (D52,1) — 16 19 | 19 0
38 | (F4,1) - 8 25 | 13| 12
(G21,1)
39 -2-10 17| 17 0
40 -4-1 23 11 12
41 ~(4,1,2,6) 17| 17| o
42 ~(4,2,2,2) 29| 5| 24
43 | (G2:,2) - 7 9| 9| o0
44 | (G2,5) 8| 8| 0
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Part 11

(Quasi-) Galois Symmetries in Conformal Field
Theory

In Part IT of this thesis we will develop new algebraic tools for the study of fusion
rings. After shortly reviewing the structure of fusion rings and their applications in physics
and mathematics, we will show that Galois theory of cyclotomic number fields provides a
powerful tool to construct automorphisms of a fusion ring and modular invariant partition
functions. In Chapter 6 these tools are applied to WZW theories; several new series of
exceptional modular invariants are found. In the case of WZW theories Galois symmetries
admit for a generalization which we call quasi-Galois symmetries. They are the subject of

Chapter 7.



Chapter 5

Galois Symmetry in Rational Conformal Field
Theory

5.1 Fusion Rings

Among the wealth of structures quantum field theory in two dimensions has revealed up to
now, fusion rings can be considered as objects of central importance for the description of
low-dimensional physics. We have already seen that they describe the coupling of primary
fields of W-algebras in conformal field theory; closely connected to that, they also describe
the composition of superselection sectors in the (C'*-algebraic approach to quantum field
theory. Moreover, they describe how tensor products of finite-dimensional representations
of reductive Lie algebras, of finite groups, or of associative (bi-)algebras decompose into
irreducible representations. The set of unitary representations of quantum groups with
deformation parameter a root of unity is turned by the truncated tensor product into
a fusion ring as well. Finally, after slightly relaxing the properties of the conjugation
involution, one can also describe the multiplication of (classes of) polynomials in any
quotient of a polynomial ring, e.g. the ring of chiral primary fields in N = 2 superconformal
field theories, and, closely connected to that, operator products in topological field theory.

The axioms describing a fusion ring can be abstracted from the structure present in the
family of all finite-dimensional representations of a compact Lie group. Let us therefore
have a look at this family. There are two operations: an addition, since the direct sum
of finite-dimensional representations is again a finite-dimensional representation, and a
multiplication, the tensor product. Any tensor product can be fully reduced into a direct
sum over irreducible representations:

La® Ly =@ N Lan . (5.1.1)
A
These operations are associative, commutative and distributive. The one-dimensional mod-
ule which carries the trivial representation acts as the identity under multiplication. There
is a distinguished basis, the irreducible representations, which contains the identity and in
which the structure constants A}, are non-negative integers.

In the formal treatment one also allows for negative multiplicities of irreducible repre-
sentations and thus obtains a unital ring over the integer numbers Z. One can also extend
the structure a little bit by admitting rational coefficients and obtain the closely related
structure of a fusion algebra over the field of rational numbers Q. Introducing negative
multiplicities is necessary to make contact to structures like rings and algebras for which
results from classical algebra are available. However, one has to pay a price for that: we
will see that it is quite difficult to take the positivity into account, which nonetheless is
essential for most physical issues.

Finally, taking the conjugate representation yields an involutive automorphism of the
fusion ring. The trivial module is self-conjugate; it plays a special role in the sense that the
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tensor product of two irreducible representations L, and L/ contains the identity if and
only if L, is conjugate to Ly, in which case the identity appears just once. The conjugation
can therefore be described by the evaluation of the tensor product with respect to the unit
element.

In this special example the distinguished basis contains infinitely many elements; how-
ever, any product of elements of the distinguished basis can be decomposed into only
finitely many irreducible representations: such fusion rings are called quasi-rational.

Axiomatically, a fusion ring can be described as an associative and commutative ring
over the integers 7 with unit element for which a distinguished basis exists which contains
the unit element and in which all structure constants are non-negative integers. The
evaluation of the product with respect to to the identity is required to describe an involutive
automorphism, the conjugation. We write the element conjugate to 7 as i*. Let us remark
that this system of axioms is not minimal; for a detailed discussion we refer the reader to
the review [45]. We call a fusion ring rational if it is finite-dimensional.

For any rational fusion ring with generators ¢;, ¢ € I (I some finite index set), and
fusion product ¢; x ¢; = D per ./\/;Jkgi;k with ./\/;jk € Z>g, the structure constants M’; can be
grouped into matrices

(Nt = N, (5.1.2)
the fusion matrices. They form a representation of the fusion ring, the regular represen-
tation. The axioms of the fusion ring imply that the fusion matrices A; commute among
each other and that the fusion matrix of 7 is the transpose of the fusion matrix of ¢,
Ni+ = (N;)'. Hence fusion matrices are in particular normal and can be simultaneously
diagonalized by a unitary matrix S.

Motivated by conformal field theory we single out a particularly interesting subclass of
fusion rings: modular fusion rings. A fusion ring is called modular if and only if the matrix
S which diagonalizes the fusion rules can be chosen to be symmetric and there is a diagonal
unitary matrix T with entries T3; = T; 6;; := e2”i(Ai_°/24)5ij, such that 7' and S generate a
finite-dimensional representation of SLy(Z), the twofold covering of the modular group. In
particular, S* = C', (§T)® = C, C? = 1. Here C denotes the charge conjugation matrix,
which is a permutation of order 2 and which can be written as Cj; = ¢, ..

The diagonalization of the fusion rules then takes the form

ko SieS 05k

./\/:J ; 5, (5.1.3)
This is the Verlinde formula; in the case of rational conformal field theory it was argued in
[111,138] that S is precisely the matrix which describes the transformation of the characters
under the modular transformation 7 +— —%. This is a far reaching insight which transcends
the mere framework of fusion rings.

The condition of modularity relates the eigenvectors of the fusion matrices to the pri-
mary fields and from (5.1.3) we can read off the eigenvalues,

Si;
So;’

(5.1.4)

which are labelled by primary fields j. These eigenvalues are called the (generalized)
quantum dimensions. Since all entries of the fusion matrices are non-negative integers, there
exists a unique eigenvector, the Perron-Frobenius eigenvector, for which all eigenvalues are
positive real numbers. These eigenvalues, the so-called main quantum dimensions, are
labelled by the vacuum 3 = 0; they will play an important role.
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Since the quantum dimensions are eigenvalues of the fusion matrices (which form
the regular representation of the fusion ring), it is clear that they form themselves one-
dimensional irreducible representations of the fusion ring:

Sit Sy

Ske
=N Nk 5.1.5
Sot Soe 2N (5:1.5)

kel Soe

Fusion rings have the important property that the irreducible representations given by the
generalized quantum dimensions already exhaust all inequivalent irreducible representa-
tions.

From their definition as roots of the characteristic polynomial

det(A1 — N;),

it follows that quantum dimensions are algebraic numbers. (The transcendental number T,
e.g., could not be a quantum dimension.) In addition, since characteristic polynomials are
normalized, in the sense that they have integral coefficients and that their leading coefficient
is 1, quantum dimensions are even algebraically integer numbers in some algebraic number
field L over the rational numbers Q. We will use these facts to employ number theoretical
tools in the study of fusion rings.

5.2 Modular invariance

One central problem in the application of fusion rings to rational conformal field theories
is that of finding all modular invariant partition functions. Unfortunately, despite a lot of
efforts in the last decade, this problem remains to a large extent unsolved. It is part of the
programme of classifying all rational conformal field theories, which in turn is part of the
even more ambitious programme of classifying all string theories.

The aim is to find a matrix Z that commutes with the generators S and T of the
modular group, and that furthermore is integer-valued, non-negative and has Zy = 1,
where 0 represents the identity primary field. The partition function of the theory has
then the form 3=, XiZijT;, where X; are the characters of the left chiral algebra and X_J
those of the right one (the left and right algebras need not necessarily coincide).

At present the classification is complete only for very few rational conformal field the-
ories. All modular invariant partition functions are known e.g. for the simplest RCFT’s,
whose left and right chiral algebra consist only of the Virasoro algebra [39,19,20]. The
next simplest case is that of WZW models, whose chiral algebra has in addition to the
Virasoro algebra further currents of spin 1. In general such a theory can be ‘heterotic’
(i.e. it may have different left and right Kac-Moody algebras) and both the left and right
chiral algebra may have more than one affine factor, but even in the simplest case — equal
left and right simple affine algebras — the classification is complete at arbitrary level only
for the cases A; [19,20] and A, [60]. Several other partial classification results have been
presented, see for example [88,59,61].

Although there is no complete classification, many methods are known for finding
at least a substantial number of solutions, for example simple currents [126] (see also
[13,7,2,86,36]), conformal embeddings [14], level-rank duality [94,141,5,114,115,139,55],
supersymmetric index arguments [142], selfdual lattice methods [119], orbifold construc-
tions using discrete subgroups of Lie groups [1], and the elliptic genus [124].

In this chapter we show that Galois theory of cyclotomic number fields provides a
new powerful tool to construct systematically integer-valued matrices commuting with the
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modular matrix 5, as well as automorphisms of the fusion rules. Both prescriptions allow
the construction of modular invariants and offer new insight in the structure of known
exceptional invariants.

5.3 The Galois group and the modular matrix S

In this section we will show that Galois theory of cyclotomic number fields can be used
to construct fusion rule automorphisms and modular invariants of rational fusion rings.
Galois theory was proposed as a tool to study fusion rings in [26]; in [23] it was observed
that it can be applied to the elements of the modular matrix S to provide selection rules
for positive modular invariants.

The starting point is the last observation in Section 5.1, the fact that the generalized
quantum dimensions S;;/Sy are algebraically integer numbers in some algebraic number
field L over the rational numbers Q. The extension L/Q is normal [26], and hence (using
also the fact that the field @ has characteristic zero) a Galois extension; its Galois group
Gal(L/Q) is abelian. Invoking the theorem of Kronecker and Weber, it follows [26] that L
is contained in some cyclotomic field Q((,), where (, is a primitive nth root of unity.

Let us describe a few elementary facts about Galois theory of cyclotomic fields. Denote
by Z} the multiplicative group of all elements of Z,, = Z/nZ that are coprime with n. Note
that precisely these elements have an inverse with respect to multiplication. (For example,
the group (Z7y,-) = ({£1,+£3},- mod 10) is isomorphic to the additive group (Z4,+).)
The number ¢(n) of elements of 7}, is given by Euler’s ¢ function, which can be computed
as follows. If n = []; p;* is a decomposition of n into distinct primes p;, then one has

= o([]7*) = [T (") Hp""l —1) (5.3.1)

The Galois automorphisms (relative to Q) of the cyclotomic field Q({,) in which
Gal(L/Q) is contained are in one-to-one correspondence with the elements £ € 7. The
automorphism associated to each such ¢ simply acts as

oy i G (Ga) (5.3.2)

This implies in particular that £ = —1 corresponds to complex conjugation. Thus if the
fusion ring is self-conjugate in the sense that i = 7 for all ¢ € I, so that the S-matrix is
real, then the automorphism o(_;) acts trivially. In this case the relevant field L is already
contained in the maximal real subfield Q((, + (') of the cyclotomic field Q((,), which is
the field that is fixed under complex conjugation.

Applying an element o € Gal(L/Q) on equation (5.1.5) and using the fact that the
fusion coefficients A jk are integers and hence invariant under o, we learn that the numbers
07(Si;/S0;) , % € I, again realize a one-dimensional representation of the fusion ring. As the
generalized quantum dimensions exhaust all inequivalent one-dimensional representations
of the fusion ring [95, 25|, there must exist some permutation of the labels ;7 which we
denote by &, such that

(Sw Si""(j) )
So;” Sos(s)

The field M defined as the extension of Q that is generated by all S-matrix elements
extends L. The extension M/Q is again normal and has abelian Galois group [23], so that
Gal(M/L) is a normal subgroup of Gal(M/Q). Elementary Galois theory then shows that

0 — Gal(M/L) = Gal(M/Q) = Gal(L/Q) — 0, (5.3.4)

(5.3.3)
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with 2 the canonical inclusion and r the restriction map, is an exact sequence, and hence
Gal(L/Q) = Gal(M/Q)/ Gal(M/L). (5.3.5)

In particular any o, € Gal(M/Q), when restricted to L, maps L onto itself and equals
some element o, € Gal(L/Q). Conversely, any o, € Gal(L/Q) can be obtained this way.
Therefore by a slight abuse of notation we will frequently use the abbreviation o for both
o, and its restriction o;.

Working in the field M, it follows from (5.3.3) that for any o € Gal(L/Q) there exist
signs €,(¢) € {+1} such that the relation

731(55) = eo(i) - Soo; (5.3.6)

is fulfilled for all 7, j € I [23]. We note that the Galois group element ¢ and the permutation
¢ of the labels that is induced by o need not necessarily have the same order. However, it
is easily seen (see the remarks around (5.5.11) below) that an extra factor of 2 is the only
difference that can appear.

These observations can be extended in two directions: first, we show that Galois theory
can be used to construct automorphisms of the fusion rules. Second, we derive from Galois
theory a prescription for the systematic construction of integral-valued matrices in the
commutant of the modular matrix S, and hence of candidate modular invariants. We
describe how this method is implemented for WZW theories. As it turns out, our general
prescription is able to explain many of the modular invariants that are usually referred to
as ‘exceptional’.

5.4 Fusion rule automorphisms

We first show that, if the permutation ¢ induced by the Galois group element o leaves the
identity fixed,
(0) =0, (5.4.1)

then & is an automorphism of the fusion rules. To prove this, we first calculate

Soi Soiy  op(Soi)  €:(2) Sosi)
= UL( ) = = .
Soo Soo O'M(Soo) 60(0) Soo

(5.4.2)

Since So;/ S0, the main (i.e., zeroth) quantum dimensions, are positive, we learn that the
sign €,(¢) is the same for all ¢ € I,

(1) = €,(0) =: ¢, = const. (5.4.3)
Applying o on the Verlinde formula (5.1.3), we then find

€2 S, 1S5St |
Nt = o(Nt) = Yol — A 2O (5.4.4)

2 ¢ Su 5()a() -

Next we note that in terms of the cyclotomic field Q({,) 2 M DO L, the elements O €
Gal(L/Q) are simply the restrictions of elements Gy € Gal(Q((n)/Q); the latter act as

(o — (6n)Y and Gal(Q(()/Q) = 7% is the set of all such maps with £ coprime to n. In

particular, £ = —1 corresponds to complex conjugation; the associated permutation of the
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generators of the fusion ring is the charge conjugation C'. As the Galois group 1s abelian,
it follows that ¢ is compatible with charge conjugation,

5(i*) = (6(i))* . (5.4.5)

Together with (5.4.1), the results (5.4.4) and (5.4.5) show that, as claimed, & is an auto-
morphism of the fusion rules.
The presence of such automorphisms of the fusion rules can be understood as follows.
The ‘main’ quantum dimensions
S
Soo

all lie in a real field Loy that is contained in the field L generated by all (generalized) quan-
tum dimensions S;;/So;. The elements of the group Gaf(L/L)) leave the main quantum
dimensions invariant, and hence the associated permutations ¢ are fusion rule automor-

(5.4.6)

phisms. These automorphisms are thus a manifestation of the fact that the main quantum
dimensions do not exhaust the field spanned by all generalized quantum dimensions.

The general result is nicely illustrated by the example of complex conjugation. Suppose
that the fusion ring is non-selfconjugate, i.e. there is at least one ¢ € I such that it # 4.
Then the modular matrix S is complex, and as already mentioned the charge conjugation
C which acts as 7 — 1% is induced by o = 0(_1) € Gal(L/Q), i.e. 1T = 7,(7). As the main
quantum dimensions are real (which is equivalent to (0)™ = 0), G contains at least o as a
nontrivial element, and charge conjugation is the corresponding non-trivial automorphism.

As a second illustration, consider the extremal case G = Gal(L/Q)). This means that
all main quantum dimensions are rationals (and, since they are algebraic integers, in fact
even ordinary integers). This situation is realized e.g. for ¢ = 1 conformal field theories,
both for compactification of the free boson on a circle and for compactification on those
Z, orbifolds for which the number of fields is m? + 7 for some m € Z, as well as for the
(so(N?))2 and (su(3))s WZW theories. Consider e.g. the theory of a free boson on the
circle, with N € 27 primary fields. The fusion rules read p* ¢ = p + ¢ mod N, and the
modular matrix S has entries S,, = e ?"P4/¥_ The permutations induced by the Galois
group are parametrized by [, with [ and N coprime, and act like p — Ip mod N. This is
invertible just because [ and N are coprime, and clearly an automorphism. Thus G is the
full Galois group, G = Z}. Analogous considerations hold for the orbifolds and for the
WZW theories just mentioned.

Note that a permutation automorphism of generic order N does not directly lead to
a modular invariant since the corresponding permutation matrix II, generically does not
commute with S, but rather obeys S™'II_.S = II;!. For N = 2 (such as e.g. charge conju-
gation), I, does commute with S, and hence provides a candidate modular invariant. For
being indeed a modular invariant, II, also has to commute with the modular matrix 7T'; it
is not difficult to establish (see the remarks around (5.5.20) below) that any automorphism
of the fusion rules that fulfills (5.3.6) and commutes with the 7-matrix has order two.

Sometimes there also exist automorphisms of the fusion rules that cannot be obtained
from elements of the Galois group. This happens for instance if the S-matrix elements
of all fields that are permuted are rational numbers; in this situation, any element of the
Galois group necessarily leaves these fields fixed, and hence cannot induce the fusion rule
automorphism.
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2.0 1 he construction ol S-matrix invariants

As an easy consequence of the relation (5.3.6) between S;(;); and Sjj, it follows that for
any matrix Z which satisfies

(Z,8]=0, Z;€1 Vi,jes, (5.5.1)

the relation Z;(;ys(;) = €-(¢)€,(j) Zi; holds [23]. This leads to a selection rule for those
matrices Z which obey Z;; > 0 in addition to (5.5.1), and which hence provide a can-
didate modular invariant Z(7,7) = ¥, x;(7)Zs;x;(7) for the associated conformal field
theory (this restriction is a generalization of the ‘parity rule’ of [60] and the ‘arithmetical
symmetry’ of [120]).

Here we will go beyond the level of mere selection rules and show that Galois theory
can be used to construct modular invariants. Let us apply o' to the relation (5.3.6) and
permute the second label of S on the right hand side; then we have

Sij == 0'_10'(Sij) == 0'_1(60(7:)55,(1')‘7') == 60(7:)6(.,—1 (]) S(:,(i)(:,—l(j), (552)

where in the last equality one uses the fact that ¢,(¢) = +1 is rational and hence fixed
under o. Using (5.5.2) [ times, we obtain

Sij = a(i)e-1(7) Ssiiye—1(5) » (5.5.3)

where the signs ¢(¢) = €,,(¢) € {£1} are determined by € = ¢, through

e(i) = f_[o &1 (6™(5)) . (5.5.4)

We will employ the simple result (5.5.2), respectively (5.5.3), to show that to any element
of the Galois group one can associate a matrix Z which obeys (5.5.1).

Before proceeding, we should point out that a relation of the form (5.5.3) need not
necessarily stem from Galois theory. In the proof we actually use only this relation, but
not the information whether it is derived from Galois theory or not. ! In particular, we
need not assume that the signs ¢; are prescribed by some Galois group element o, but only
use that they are determined by the permutation 6. However, Galois theory constitutes
the only systematic tool that is known so far to derive such relations, even though it does
not provide an exhaustive list. (A situation where the symmetry property (5.5.3) of the
modular matrix S is satisfied in the absence of Galois symmetries is provided by mutually
local simple currents [130] of order two.)

Thus assume that ¢ is a permutation, of order N, of the index set I of a fusion ring
and satisfies a relation of the type (5.5.3), and define the integer N to be the order of the
associated map S;; — €,(7) Ss(i);. We can then show that for any set {f; [l =1,2,...,N} C
Z of integers that satisfy

fi=fa= fvoa, (5.5.5)

the matrix Z with integral entries

N-1
ij = Z fl El(k) 6‘7"0'.1(]6) (556)
=0

! This remark applies in fact equally to the considerations about fusion rule automorphisms above.

2 Considering simple currents of general order would amount to allow the €’s in (5.5.3) to be arbitrary
phases instead of signs. Unfortunately there are no nontrivial cases with N > 2 and (5.5.6) being real-
valued.
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commutes with the modular matrix 5. Namely, by direct calculation we have

(SZ ik — Z Z Sz] fl 6l Jo'l(k) Z flﬁl Si(:,l(k) (557)

J€I =0

as well as

ZS zk - Z Z flel zo'l(J) Jk - Z flel 1' _l(z)k
- jeI 1=0 (5.5.8)
E fia(6749)) - a(67H(5))e—i(k) S;5-1) = E freci(k) Sis-100) 5

=0

where in the transition to the second line we employed (5.5.3). Now one merely has to
replace the sum on [ in (5.5.8) by one on —! and use (5.5.5) to conclude that indeed
S and Z commute. The terms in the sum of (5.5.6) correspond to the elements of the
cyclic group that is generated by the element o appearing in (5.5.2); considering more
generally an arbitrary abelian group G whose generators satisfy (5.5.2), one proves that
the prescription (5.5.6) generalizes to

Zi= ) foeo(k) 80 (5.5.9)

ceG

with f, restricted by
fo =0t (5.5.10)
for all o € G.

Returning to the interpretation in terms of the Galois group, we note that according to
(5.3.6) the upper limit N of the summation in equation (5.5.6) is precisely the order of the
Galois group element o (in particular, Galois theory provides a relation of the type (5.5.3)
with —l = N —[), and recall that this order need not necessarily coincide with the order
of the permutation ¢ of the labels that o induces. However, the following consideration
shows that the distinction between N and N is actually not very relevant to applications.
First, at most a relative factor of 2 can be present; namely, since ¢ is of order N, one has
in particular 6V (0) = 0, which by (5.4.3) implies that the sign €_x is universal, and hence

O'ZN(Sij) = O'N(EJN SlJ) = (EJN)Z Sij = Sij, (5511)

so that o2V = id on M; thus either N = N or else N = 2N. Furthermore, for N = 2N
the terms in the formula for Z are easily seen to cancel out pairwise, so that the proposed
invariant is identically zero, and hence the case N N is rather uninteresting.

This result can also be obtained in a slightly different formulation: for any Galois
transformation o we define the orthogonal matrix

(Ho')ij = 60(7:) 5‘7',(:”' — €5-1 (]) 61',&—1,7' 5 (5512)
where in the second equality we used the relation
e (671(3)) = €5-1(3) (5.5.13)

which is obtained from the identity oco™'S;; = S;; when acting twice on the first label of

S.
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These orthogonal matrices can easily be shown to satisty the identities
(I,) ™! =M, = (II,)", (5.5.14)
and they implement the Galois transformations (5.3.6) in the following way:
oS =1,-S=5-T;". (5.5.15)
Now we can write (5.5.2) in matrix notation as (omitting the subscript o of II,,)

S =TS, (5.5.16)

or II71S = STI. Obviously the same identity holds with II replaced by its inverse, and by
adding these two relations we see that the matrix II + 17! = IT + T commutes with S. If
IT is equal to its own inverse one can take half this matrix, i.e. II itself.

The full Galois commutant is obtained by considering all sums and products of these
matrices. Because the matrices II form a representation of the Galois group Gaf(L/Q),
it is easy to see that the product of any two matrices of the form II + II7! is a linear
combination of such matrices with integral coefficients. Hence the most general integer-
valued S-invariant that can be obtained in this way is

Z= Y, f,+1;Y, (5.5.17)

(c,071)EG

where the sum is over all elements of the Galois group GG modulo inversion, and f, € Z.
Note that this derivation of S-invariants goes through for any matrix II that satisfies
(5.5.16), even if it did not originate from Galois symmetry. If such a new matrix II
commutes with all matrices IIg that represent Galois symmetries, one may extend the
Galois group G to a larger group G O G by including all matrices II - IIg. The most
general S-invariant related to G is then obtained by extending the sum in (5.5.6) to G.
As was observed in [23], Galois symmetry implies a relation that any modular invariant
7, irrespective of whether it is itself a Galois invariant, should satisfy. Indeed, using

0Z = Z and ¢S™! = (65)7', one derives Z = ¢Z = o(SZS7') = U, ZI0}!, ie. Z
commutes with II. If Z is an automorphism of order 2, then we have in addition the relation
S = 757, and hence Z is a ‘Galois-like’ automorphism that can be used to extend the
Galois group as described above. If Z is an automorphism of higher order or corresponds
to an extension of the chiral algebra, then it has different commutation properties with S,
and it cannot be used to extend the Galois group, but one can still enlarge the commutant
by multiplying all matrices (5.5.6) with the new invariant Z and its higher powers. In this
case the full commutant is considerably harder to describe, however.

We can make another statement about ¢ by assuming that it commutes with the 7'-

matrix, T;(;) = T;. Applying this property together with the relation (5.5.2) to the identity

jeI
which follows from (ST)® = §? = C, we obtain

Ea(i)eo_l(k) T[lS&(i)&_l(k)Tk_l = €,-1 (7, € _1 E S, 0] J(J)TJ(J)SJ(J)J—1(]€)
sel (5.5.19)
—= 60__1 (i)ea_l(k) Ta-_—ll(z)Sa'_l(z)a'_l(k)Ta-_—ll(k) .
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Thus

Sa'-—l(i)j = 60(7:)60_1 (l) S(:,(i)j (5520)
forall ¢,7 € I. As S is unitary, its rows are linearly independent, and hence (5.5.20) implies
that (i) = ¢7(3) for all ¢, i.e. that &% = id. Hence any o that fulfills (5.3.6) and commutes
with the T-matrix has order two. (Again, this result is just based on the property (5.5.2)
of &, and therefore is valid independently of whether ¢ comes from a Galois group element
o or not.) As we will see in the next chapter, at least for WZW theories a kind of converse
statement is also true, namely that any Galois group element of order two respects the
T-matrix up to possibly minus signs.

Due to the presence of the signs ¢,, the invariants (5.5.6) are generically not positive.
However, at least for order N = 2 one sometimes gets invariants that are completely
positive and moreover have a non-degenerate vacuum. The only required property of o is
that €,(7) is universal for all length-two orbits, while the sign for fixed points is arbitrary.
Fixed points with €,(¢) = —1 simply get projected out; in fact, the latter are the only fields
that can be directly projected out.

The kind of invariant that is defined by (5.5.6) depends on the vacuum orbit. If the
identity is a fixed point, the signs €(¢) are all equal to the same overall sign ¢, as shown in
Section 5.4. Then, for N = 2, the choice fo = 0 and f; = € in (5.5.6) immediately gives us
a positive matrix Z that commutes with S and generates a fusion rule automorphism. If
the vacuum is not fixed, the choice fo = 0, fi = €(0) leads to an invariant with an extended
chiral algebra in which at least the identity block is positive. It follows from unitarity of
S that in such an invariant not all coeflicients fi¢(z) can be positive (otherwise Z;; > 4,5,
and hence Zoo = 32, ;150 Z:;50; = YicrSoiSoi = 1, with equality only if Z;; = é;;; this is
clearly a contradiction). The only way to get a positive invariant is then that the negative
signs occur precisely for the fixed point orbits, which are then projected out. If N = 2 this
is indeed possible. Note that T-invariance still remains to be checked in both cases.

For N > 2 it is much harder to get a physical invariant. First of all there must
exist orbits that violate T-invariance, although such orbits might be projected out by the
summation in (5.5.6). It is in fact easy to see that no positive integer invariant can be
obtained from (5.5.6) if N is odd, for any choice of f;. If N is odd, all coeflicients except
fo come in pairs f;, f_;. It follows that Z;; = fymod2 for all j € I, and since Zoo = 1
this means that none of the fields is projected out. Then the unitarity argument given
above shows that a non-trivial positive invariant cannot exist. If N > 2 and even, hence
not a prime, one has to distinguish various kinds of fixed point orbits. Positive modular
invariants may then well exist, but we will not consider this more complicated case at this
place.

Let us stress that even if the matrix (5.5.6) contains negative entries, or does not com-
mute with 7', it can still be relevant for the construction of physical invariants, because the
prescription may be combined with other procedures in such a manner that the negative
contributions cancel out. For example one may use simple currents to extend the chiral
algebra before employing the Galois transformation, or it may happen that a certain lin-
ear combination with other known elements of the integer commutant of S is a physical
invariant.

5.6 Discussion

There are several striking similarities between Galois symmetries and simple current sym-
metries. First of all both are related to general properties of fusion rings, and not to
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particular (e.g. WZW) models. Both imply equalities among certain matrix elements of .S
up to signs or phases. Both symmetries organize the fields of the theory into orbits, whose
length is a divisor of the order N of the symmetry. In both cases one can give very simple
generic formulas for S-invariants, and in both cases the phenomenon of ‘fixed points’, i.e.
of orbits whose length is less than IV, occurs. In both cases such fixed points can appear
with multiplicities larger than 1 in certain modular invariants in which the chiral algebra is
extended. Note that this kind of structure is empirically observed in nearly all exceptional
(not simple current generated) invariants found thus far. However, we believe this is the
first time that at least in some cases the apparent ‘orbits’ and ‘fixed points’ of exceptional
invariants are actually related to an underlying discrete symmetry. This might in fact be
of some help in the still open problem of resolving fixed points of exceptional invariants.

There is also an important difference between Galois and simple current symmetries.
In the latter case one can give a general construction of invariants that are positive and are
also T-invariant. For Galois invariants it may well be possible to find a general criterion for
T-invariance (as we will see for WZW models), but positivity appears to be a much more
difficult requirement. There is, however, one set of S-invariants that is always positive,
namely those due to a Z, Galois symmetry that fixes the vacuum. In WZW models such
invariants (that also commute with T') are abundant: this includes all charge conjugation
invariants and also at least some of the simple current automorphism invariants that were
first constructed in [7]. Remarkably, very few exceptional ones are known.

Let us also note that formula (5.4.4) can be generalized to automorphisms ¢ which
change the vacuum, i.e. obey &(0) # 0 (and hence are not automorphisms of the fusion
ring as a unital ring). In this situation, (5.4.4) gets replaced by

SuSaSk
Nt = o(N4) = o( 21
ler ol

($)es (5)eo (k) Ss(4)155(3)15% (561

€o\l)€s\] )€s ¢(1)1°6(5) 1P (k)1 . . (k)

= = &(0)es(8)ex(5)ex (k) 50 Ns iy o(s) o

; e(0)S5(0)1 (0)7 %o (d) & (5)

where JN;* = 3,.c1 SinSjmSkm/ Sim- Note that the numbers A;* are well-defined only if

Sim # 0 for all m € I, in which case according to (5.6.1) they are actually integers; in the
present situation this condition is met because Ss(0); = €,(0)es () Sosi) # 0 for all 4 € 1.
This result can be interpreted as follows. Allowing also for negative structure constants,
we can introduce a second fusion product x,, with structure constants &(O)A/;jk,
same ring Z/|. Defining ¢; := €5(0)€,(2) Psi, it follows that b; *o gZ)j = EkeI./\/;jk br, i.e.
both fusion structures are isomorphic. Some special cases of this phenomenon have already
been noticed in [34]. While our argument uses symmetries of number fields, in [34] the
representation theory of the modular group is employed; thus our observation suggests a
relation between number fields and modular forms.

on the

In this chapter we have presented a procedure for constructing modular invariant par-
tition functions directly from symmetries of the matrix S, without any explicit knowledge
of its matrix elements. This method is valid for all rational conformal field theories, and
not a priori restricted to WZW models and coset theories, unlike conformal embeddings or
level-rank duality. Previously only two such methods were known, namely charge conjuga-
tion (actually an example of Galois symmetry) and simple currents, and usually the term
‘exceptional invariant’ was used to refer to anything else. By providing a third general
procedure, the results of this chapter define a new degree of ‘exceptionality’ for modular
invariant partition functions. Invariants satisfying this new definition of exceptionality do
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exist; this may be taken as an indication that still more interesting structure remains to
be discovered. We will see in Chapter 7 that there is in fact a non-trivial generalization
of Galois symmetry, at least in the case WZW theories, which we will call Quasi-Galois
symmetries.
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Chapter 6

Galois Modular Invariants of WZW Models

The set of modular invariants that can be obtained from Galois transformations is investi-
gated systematically for WZW models. It is shown that a large subset of Galois modular
invariants coincides with simple current invariants. For algebras of type B and D infinite
series of previously unknown exceptional automorphism invariants are found.

6.1 Introduction

In the previous chapter [47], we introduced a novel method for the construction of modular
invariants based on a Galois symmetry of the matrix S of a rational conformal field theory.
The main purpose of this chapter is to study in more detail the application of this new
method to WZW models.

We have seen that Galois symmetry organizes the fields of a CFT into orbits, and along
these orbits the matrix elements of S are algebraically conjugate numbers. Based on this
knowledge we can write down a number of integer-valued matrices P that commute with
S, but do not necessarily commute with 7" and are not necessarily positive. These matrices
span what we call the ‘Galois-commutant’ of S. This commutant can be constructed in a
straightforward manner from the Galois orbits, which in turn can be obtained by scaling
vectors in weight space by certain integers, and mapping them back into the fundamen-
tal affine Weyl chamber (for a more precise formulation we refer to Section 6.3 and the
appendix). This is a simple algorithm that can be carried out easily with the help of a
computer. The time required for this computation increases linearly with the number of
primary fields, and for each primary the number of calculational steps is bounded from
above by the order of the Weyl group. This should be compared with the computation of
the modular matrix S, which grows quadratically with the number of primaries, and which
requires a sum over the full Weyl group (although several shortcuts exist, for example
simple currents and of course Galois symmetry).

Our second task is then to find the positive T-invariants within the Galois commutant.
In some cases this can be done analytically. This class, which contains only simple current
invariants, is discussed in Section 6.3. In general however one has to solve a set of equations
for a number of integer coefficients. The number of unknowns can grow rather rapidly
with increasing level of the underlying affine Kac-Moody algebra — Galois symmetry is
a huge and very powerful symmetry — which is another limitation on the scope of our
investigations.

In practice we have considered algebras with rank < 8 and up to 2500 primary fields, but
this range was extended when there was reason to expect something interesting. Although
a lot of exploratory work has already been done on the classification of modular invariants,
only fairly recently new invariants were found [124] for F¢ and E; at rather low levels
(namely 4 and 3), showing that there are still chances for finding something new. Indeed,
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we did find new invariants, namely an infinite series of exceptional automorphism invariants
for algebras of type B at level 2, starting at rank 7, as well as for algebras of type D at
level 2. In addition we find for the same algebras some clearly unphysical extensions by
spin-1 currents. This is explained in Section 6.4. Other exceptional invariants that can be
explained in terms of Galois symmetry are presented in Section 6.5.

We have also considered the possibility of combining Galois orbits with simple current
orbits. In Section 6.6 we discuss two ways of doing that, one of which is to apply Galois
symmetry to simple current extensions of the chiral algebra.

To conclude this introduction we fix some notations. If Zy;, = Z;0 = 0 for all 7 # 0,
the matrix Z defines a permutation of the fields in the theory that leaves the fusion rules
invariant. We will refer to this as an automorphism invariant. Under multiplication such
matrices form a group which is a subgroup of the group of fusion rule automorphisms.
These are all permutations of the fields that leave the fusion rules invariant, but which do
not necessarily commute with S or T'. Finally there is a third group of automorphisms we
will encounter, namely that of Galois automorphisms. They act as a permutation combined
with sign flips, and may act non-trivially on the identity. It is important not to confuse
these three kinds of automorphisms.

If a matrix Z does not have the form of an automorphism invariant, and if the partition
function is a sum of squares of linear combinations of characters, we will refer to it as a
(chiral algebra) extension. If it is not a sum of squares it can be viewed as an automorphism
invariant of an extended algebra [110,28] (at least if an associated CFT exists).

A matrix Z corresponding to a chiral algebra extension may contain squared terms
appearing with a multiplicity higher than 1. Such terms will be referred to as ‘fixed
points’, a terminology which up to now was appropriate only for extensions by simple
currents. Galois automorphisms provide us with a second rationale for using this name.
Usually such fixed points correspond to more than one field in the extended CFT, and
they have to be ‘resolved’. The procedure for doing this is available only in some cases,
and then only for S, T', the fusion rules and in a few cases also the characters [129].

6.2 Galois Symmetry for WZW Models

Here we describe in detail how Galois scalings are implemented when the conformal field
theory in question is a WZW theory based on an untwisted affine Lie algebra g at integral
level k. Then the Galois group is a subgroup of Zf‘l(k+gv), where g¥ is the dual Coxeter
number of the horizontal subalgebra g of g (i.e. the subalgebra generated by the zero modes
of g) and M is the denominator of the metric on the weight space of g.

We label the primary fields by the shifted highest weight a with respect to the horizontal
subalgebra g, which differs from the ordinary highest weight by addition of the Weyl vector
p of g Thus a is an integrable highest weight of g at level k& + ¢V, i.e. the components a’
of a in the Dynkin basis satisfy

a'€Z5o fori=0,1,...,rank(g), (6.2.1)

where ¢° = k + g¥ — Ezr':k(g) f;a* with 6; the dual Coxeter labels of g. However, because
of the shift not all such integrable weights belong to primary fields, but only the strictly
dominant integral weights, i.e. the primary fields of the WZW theory correspond precisely

to those weights a which obey

a' € Zyo fori=0,1,...,rank(g). (6.2.2)
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A Galois transformation labelled by £ € Z3;(,,,v) acts as the permutation |23
Gy(a) = w(la). (6.2.3)
If we label the fields by the weights A = a — p which are at level k, this is rewritten as
5o(A) = d(¢ - (A+ p)) — p, (6.2.4)

That it is the shifted weight a rather than a — p that is scaled is immediately clear from
the formula (6.3.2) for the modular matrix S. In fact, it is possible to derive the formula
(5.5.2) directly by scaling the row and column labels of S by £ and £, respectively, using
(6.2.3). Galois symmetry is thus not required to derive this formula, nor is it required to
show that (5.5.6) commutes with S. Galois symmetry has however a general validity and
is not restricted to WZW models.

Substituting (6.2.3) into the formula (1.4.7) for WZW conformal weights one easily
obtains a condition for T-invariance, namely (/2 — 1) = 0 mod 2M(k + ¢g¥) (or mod
M(k+g¢Y)if all integers M a-a are even). Since £ has an inverse mod M(k+ g¢"), it follows
that £ = £7' mod M(k + g¥), i.e. the order of the transformation must be 2, what is also
true for arbitrary conformal field theories, as we have seen in Chapter 5.

Let us explain the prescription (6.2.3) in more detail. First one performs a dilatation
of the shifted weight a = (a',a?,...) by the factor £ € Lyp(kigv)- Now the weight {a
does not necessarily satisfy (6.2.2), i.e. does not necessarily correspond to a primary field.
If it does not, then the dilatation has to be supplemented by the horizontal projection
W = W(gq) of a suitable affine Weyl transformation. More precisely, to any arbitrary integral
weight b one can associate an affine Weyl transformation w such that either w(b) satisfies
(6.2.2), and in this case w is in fact unique, or else such that w(b) obeys (w0 (b))* = 0 for
some ¢ € {0,1,...,rank(g)} (in the latter case w(b) lies on the boundary of the horizontal
projection of the fundamental Weyl chamber of g at level k+g"). To construct the relevant
Weyl group element w for a given weight b as a product of fundamental Weyl reflections
w( (i.e. reflections with respect to the Ith simple root of g), one may use the following
algorithm. Denote by j; € {0,1,...,rank(g)} the smallest integer such that b < 0, and
consider instead of b the Weyl-transformed weight w,(b) with w0, := (;,); next denote by
j2 the smallest integer such that (i,(5))” < 0, and consider instead of () the weight
Watby (b) with wy := b(j,), and so on, until one ends up with a weight b, . ..y, (b) obeying
(6.2.2), and then w = W, ...wsw; is the unique Weyl group element which does the job.
(The presentation of an element w € W asa product of fundamental reflections is however
not unique; the present algorithm provides one specific presentation of this type, which is
not necessarily reduced in the sense that the number of fundamental reflections is minimal.)

It is worth noting that there is no guarantee that starting from an integral weight b one
gets this way a weight satisfying (6.2.2), but in the case where b is of the form b = fa with
a integrable and ¢ coprime with r(k + ¢), the algorithm does work. Here r denotes the
maximal absolute value of the oftf-diagonal matrix elements of the Cartan matrix of g, i.e.
r = 1 if g is simply laced, » = 2 for the algebras of type B and C and for F}, and r = 3 for
g = (5. (The property that £ is coprime with r(k+g¢") in particular holds whenever (6.2.3)
corresponds to an element of the Galois group, and hence for Galois transformations the
algorithm works simultaneously for all primary fields of the theory.) Namely, assume that
for some choice of a there is no choice of @ € W such that w(£a) obeys (6.2.2). This means
that any w(fa) lies on the boundary of some affine Weyl chamber, and hence the same
is already true for the weight fa. Then there must exist some non-trivial v € W which
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leaves £a fixed, v(£fa) = £a. Decomposing v into its finite Weyl group part v € W and its
translation part (k + ¢¥)t (with ¢ an element of the coroot lattice of g), this means that
we have fv(a) + (k + g")t = La, or in other words,

l(a—v(a))=(k+g")t. (6.2.5)

Now assume that £ is coprime with r(k + ¢g¥). This implies that there exists integers m, n
such that m¢ = nr(k + gv) + 1. Multiplying (6.2.5) with m then yields

a=v(a)+ (k+ gv)[mt —nr(a —v(a))]. (6.2.6)

Since for any integral weight a the weight r(a — v(a)) is an element of the coroot lattice,
the same is also true for the expression in square brackets, and hence (6.2.6) states that
the weight a stays fixed under some affine Weyl transformation. But a satisfies (6.2.2) and
hence the fact that W acts freely on such weights implies that this Weyl transformation
must be the identity. This implies that o must be the identity as well. Thus for ¢ coprime
with 7(k + gV) the assumption that w(£a) is not integrable leads to a contradiction.

In the general case where b is not of the form fa with a subject to (6.2.2) and £ coprime
with r(k + ¢g¥), the algorithm described above still works unless at one of the intermediate
steps one of the Dynkin labels becomes zero, which means that the weight lies on the
boundary of the fundamental affine Weyl chamber. In the latter case any Weyl image of
this weight lies on the boundary of some affine Weyl chamber as well, and hence we can
never end up with a weight that satisfies (6.2.2), i.e. in the interior of the fundamental affine
Weyl chamber. It may also be remarked that one can speed up the algorithm considerably
using not the weight b itself as a starting point, but rather the weight b = b+ (k-+g"¥)t that
is obtained from b by such a Weyl translation (k4 ¢¥)¢ for which the length of b becomes
minimal.

Finally, there is a general formula for the sign €4 namely

6o'(l)(a') =N Sign(w(l;a)) ) (627)

i.e. the sign is just given by that of the Weyl transformation w, up to an overall sign 7,
that only depends on o, [23], but not on the individual highest weight a. (Actually the
cyclotomic field Q({az(r+4vy) Wwhose Galois group is Z}‘V_,(k_l_g\/) does not yet always contain the
overall normalization A that appears in the formula (6.3.2) for S, but rather sometimes
a slightly larger cyclotomic field must be used [23] However, the permutation & of the
primary fields that is induced by a Galois scaling can already be read off the generalized
quantum dimensions, which do not depend on the normalization of S. The correct Galois
treatment of the normalization of S just amounts to the overall sign factor 7,, which is
irrelevant for our purposes.)

6.3 Infinite Series of Invariants

In this section we will discuss an infinite class of WZW modular invariants that can be
obtained both by a Galois scaling as well as by means of simple currents. Both Galois
transformations and simple currents organize the fields of a CFT into orbits. In general,
the respective orbits are not identical. In the special case of WZW models these orbits are
in fact never identical, except for a few theories with too few primary fields to make the
difference noticeable. However, since the orbits are used in quite different ways to derive
modular invariants, it can nevertheless happen that these invariants are the same.
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The Galois scalings we consider are motivated by the following argument. As already
mentioned, Galois automorphisms of the fusion rules arise if the field L) is strictly smaller
than the field L. In the case of WZW theories L is contained in the cyclotomic field
Q(CM(ktgv))s while the quantum Weyl formula [117]

Sap _ yp sinlra-a’/(k+g”)
S,p og,sin[rp-av/(k+gv)] (6.3.1)

shows that L) is already contained in Q({(x+4v)). Now as any element of Gaf(L/Q) can
be described by at least one element of Gal(Q((ar(r+4v))/Q), we do not loose anything
by working with the latter Galois group. Any Galois automorphism of the fusion rules
can now be described by at least one element of Gal(Q(Car(r+¢v))/L(0)). Unfortunately,
Loy is not explicitly known in practice; therefore we would like to replace L) by the
field Q(({z(k+gvy) in which it is contained. However, M is not always even, and hence we
consider instead of Q((yk+gv)) the smaller field Q((r4gv) and the corresponding Galois
group Gal(Q((m(ktgv))/Q(Chtgv)). The elements of this group are precisely covered by
scalings by a factor m(k+g¢")+ 1. This way we recover at least part of the automorphisms,
but due to the difference between Q((3(k+gv)) and Q({rigv), generically some of these
scalings do not describe automorphisms, but rather correspond to an extension of the
chiral algebra.

Consider now the Kac-Peterson (1.4.8) formula for the modular matrix S which reads
in terms of the shifted weights

w(a)-b
k+ gV

Sap = ./\/Za(w) exp[—2ni ] . (6.3.2)
Here N is a normalization factor which follows by the unitarity of S and is irrelevant for
our purposes, and the summation is over the Weyl group of the horizontal subalgebra of
the relevant affine Lie algebra; ¢ and b are integrable weights, shifted by adding the Weyl
vector p. In the following we will denote such shifted weights by roman characters a,b,...,
while for the Lie algebra weights a — p, b — p, ... we will use greek characters.

The scaling by a factor £ = m(k + ¢¥) + 1 is an allowed Galois scaling if the following
condition is fulfilled (note that m is defined modulo M):

(a) m(k+g")+1is prime relative to M(k +g"). (6.3.3)

We will return to this condition later. (Let us mention that even if condition (a) is not met,
the scaling by £ can still be used to define an S-invariant. We will describe the implications
of such ‘quasi-Galois’ scalings in the next chapter.)

Under such a scaling one has

Sap = 08w =N T, e(w) exp[—2mi U0 (m(k + g¥) + 1)]

(6.3.4)

— e—27r1ma~bSab ,

where the last equality holds if mw(a)-b = ma - bmod 1 for all Weyl group elements w.
To analyze when this condition is fulfilled, first note that any Weyl transformation can
be written as a product of reflections with respect to the planes orthogonal to the simple
roots. For a Weyl reflection r; with respect to a simple root o; (: € {1,2,...,rank}) one
has in general

ri(a)-b :a-b—(a?a') o;ra ;b
= a-b— %ai-ai aibi 5 (635)



where a; and b; are Dynkin labels. Thus r;(a) - b equals a - 6 modulo integers if and only
if all simple roots have norm 2 (which is for all algebras our normalization of the longest
root), i.e. iff the algebra is simply laced. However, the derivation depends on this relation
with an extra factor m. This yields one more non-trivial solution, namely m = 2 for B,,
n odd. Note that for B,, with n even, one has M = 2 so that the only allowed scaling,
m = 2, yields a trivial solution. This is also true for all other non-simply laced algebras.

As is easily checked, the quantity a - b mod 1 is closely related to the product of the
simple current charges; we find:

An: b= —(n QIO
B, : -b=2n0(a)Q(d)

D, (nodd): a- b = 4nQ(a)Q(d) (6.3.6)
Dy (neven):  a-b=2Q,(0)Q.(b) + 20.(a)Q(a) + (n — 2)Qu(@Qu(s) O
FEs: a-b=309(a)Q(d)

E;: a-b=209(a)Q(d) .

Here Q(a) is the monodromy charge with respect to the simple current J of a WZW
representation with highest weight a (which is at level k4 g). This should not be confused
with the simple current charge of the field labelled by a, which we denote by Q(a). The
relation between these two quantities is

Qa) = Qla — p) = Q(a) — Qp) (6.3.7)

since the field labelled by a has highest weight a — p (which is at level k). The charge Q
(as well as @) depends only on the conjugacy class of the weight. The WZW theory with
algebra D,,n even, has a center Z, X Z, and simple currents J,,J, and J. = J, xJ,. It has
thus two independent charges, for which one may take @), and @,.

If p is on the root lattice, then Q(p) = 0 and the shift in (6.3.7) is irrelevant, i.e.
Q = @ mod 1. In general, either p is a vector on the root lattice, or it is a weight with
the property that 2p is on the root lattice. In the cases of interest here, p is on the root
lattice for A,, n even, D, with n = 0 mod 4 or 1 mod 4, and for Es. In all other cases
Q=9+ % mod 1 (if the algebra is D,,n = 2 mod 4, the charges affected by this shift are
Qs and Qc)

Note that the left hand sides of the relations (6.3.6) are always of the form INQ(a)Q(b)
or a sum of such terms, where N is the order of the simple current and [ is an integer.
The relation for B,, has an essential factor of 2 in the left hand side. Since the relations
are defined modulo integers we cannot simply divide this factor out. The most convenient
way to deal with it is to rewrite m in this case as m = 2m (we have already seen above
that m has to be even for B,). After substituting (6.3.6) into (6.3.4) we get generically

oS, = e 2mimNe(a)Qb)g . (6.3.8)

This formula holds for B, if one replaces m by m, and for D,,n even, if one replaces the
exponent by the appropriate sum, as in (6.3.6). We will postpone the discussion of the
latter case until later, and consider for the moment only theories with a center 7.

Now we wish to make use of the simple current relation

Synap = e2™mR0)G (6.3.9)

This is simplest if we can replace @ by (), and this is the case we consider first. This
replacement is allowed if p is on the root lattice, but this is not a necessary condition
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because of the extra factor Im/NN. Suppose & = @) + 5. Then we see from the foregoing
that N is even and [ odd. Replacing Q by @ in the exponent of (6.3.8) yields the extra
terms

1
HmNQ(a) + 3imNQ(b) + ZlmN , (6.3.10)

which should be an integer. Now NQ(a) (or NQ(b)) is an integer, which as a function
of a (or b) takes all values modulo N. Hence each of the three terms must separately be
an integer. The first two terms are integers if and only if m is even. Then the last one
is an integer as well, since N is even. Thus the condition that Q can be replaced by @ is

equivalent to
(b) mp is an element of the root lattice. (6.3.11)

We remind the reader that for B, this is valid with m replaced by m = %m. Hence
condition (b) is in fact not satisfied for B,, for any non-trivial value of m. In all remaining
algebras M (the denominator of the inverse symmetrized Cartan matrix) is equal to N.

If conditions (a) and (b) hold we can derive
0Sap = Sj-miNa(a)gp = Oq J-mINQ®)} - (6.3.12)
On the other hand according to (5.3.6) Galois invariance implies
0Sab = €5(a)Ssap = €5(b)Sa b - (6.3.13)

Furthermore if mp is an element of the root lattice, it is easy to see that the scale
transformation fixes the identity field: the identity is labelled by p, and transforms into
p' = p+m(k+ g")p. The second term is a Weyl translation if mp is on the root lattice.
In these cases p’ is mapped to p by the transformations described in the appendix, which
implies that the identity primary field is fixed. Then it follows that ¢ = 1, and hence we
find

Sj-miNQa)gp = Séap 5 (6.3.14)

or

Sa,,b - Sfa,,b ) (6315)

where 7a = J™VR@)5q. Then unitarity of S implies 640 = Y5 SrapS, = 2op Sabdp, = 1,
so that a = Ta, and hence ga = J - ™N@(a)g,

As described in Chapter 5, any Galois transform that fixes the identity generates an
automorphism of the fusion rules, and in this case we see that it connects fields on the
same simple current orbit. It is a positive S-invariant, but so far it was not required to
respect T-invariance. Thus the last condition we will now impose is

(¢) T-invariance. (6.3.16)

In general for simple currents of order N one has

h(J"a) = h(a) + h(J") —nQ(a) mod 1 (6.3.17)
and
h(J™) = W mod 1, (6.3.18)
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where r is the monodromy parameter, which is equal to k& for A, at level k, to 3nk mod 8
for D,, n odd, to 2k for Fs, and to 3k for E;. Condition (¢) amounts to the requirement
that the difference h(J ™N@(%)q) — h(a) of conformal weights be an integer. We have
R -TINO) = h(a) + h(TTN) + mINQ()Q(a)
= h(a) = smINQ(a) — (5(ml)* = mI)NQ(a)Q(a) .

For algebras of type A or E, the second term on the right hand side is always an integer, or

(6.3.19)

can be chosen integer: if N is odd, r is defined modulo N and hence can always be chosen
even (provided one makes the same choice also in the third term), whereas if N is even by
inspection one sees that m must be even as well in order for mp to be an element of the
root lattice, and hence mr/2 € Z. Then the only threat to T-invariance is the last term,
(3ml—1)mINQ(a)Q(a). This is an integer for any a if and only if (;ml—1)ml = 0 mod N.

Now we will determine the solutions to the three conditions (a), (b) and (¢) formulated
above. Any solution to these conditions will be a positive modular invariant of auto-
morphism type, that can be obtained both from Galois symmetry as well as from simple
currents.

Consider first Fg. Condition (b) is trivial, so that m has to satisfy (a) m(k+12)+1 #
0 mod 3, i.e. km + 1 # 0 mod 3, and (c¢) (km — 1)m = 0 mod 3. We may assume that
m # 0 to avoid the trivial Galois scaling. Then both conditions are satisfied if and only
if km = 1 mod 3. There is always a solution for m, namely m = k mod 3, unless k is a
multiple of 3.

Next consider F;. Now m has to be even in order that mp is a root, and this only
allows the trivial solution m = 0.

For A, the problem is a bit more complicated. As T-invariance must hold for any
monodromy charge Q(a), it is clearly sufficient to consider Q(a) = 3. Several cases have
to be distinguished. We start with odd N = n 4+ 1. Then condition (b) is automatically
satisfied. For even level £ = 25 the other two conditions read

(a) GCD(2jm+1,N)=1,

(¢) (jm+1)m =0mod N. (6.3.20)

The solution of the second equation depends crucially on the common factors of j and N.
It is easy to see that if j and N have a common factor p, then m is divisible by p as many
times as N. In particular, if N = p® and j contains a factor p, then the only solution is the
trivial one. To remove common factors, write 7 = j'q,, m = m’q, and N = N'q,, where g,
is the greatest common divisor of 7 and N, and ¢, consists of all the prime factors of g, to
the power with which they appear in N. Now the second equation becomes

(5'¢am’qs + 1)m’ = 0 mod N' . (6.3.21)

Now we know that N’ has no factors in common with j’, ¢, or g5, and hence we can find
a m' for which the first factor vanishes mod N’. This solution m' is non-trivial provided
N'#£1;if N' =1 the solution is m' =1 (or 0), i.e. m = 0 mod N.

The solution m' has no factors in common with N’. Hence we may write 2jm + 1 =
jm+(jm+1) = jm mod N' = j'¢,m'q, mod N', so that we see that 2jm + 1 and N’ have
no common factors. Furthermore 25m + 1 and ¢, have no common factors, since m has a
factor g,. Hence 2jm + 1 has no common factors with N = N'q,, and therefore the first
equation is also satisfied.

In addition to the solution described here, (6.3.21) may have additional solutions with
m' and N’ having a common factor. It is again easy to see that if m' contains any such
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prime factor, it must contain it with the same power with which it occurs in N'. Let us
denote the total common factor as py, which is in general a product of several prime factors.
Then the second equation reads

(5'¢am"pogp + 1)m” = 0 mod N" , (6.3.22)

where m' = m'"p, and N' = N"p,. We now look for solutions where m” and N” have
no further common factors. Such a solution does indeed exist, since the coefficient of m”
has no factors in common with N”. To show that the first condition is also satisfied one
proceeds exactly as in the foregoing paragraph.

When N is odd and k is also odd, we choose the even monodromy parameter r = k+ N,
and define 7 = @ The rest of the discussion is then exactly as before.

If N is even condition (b) implies that m must be even as well, and condition (c)
becomes (km/2 + 1)m = 0 mod N, or, writing m = 2¢, N = 2p, (kt + 1)t = 0 mod p.
Condition (a) reads GCD(km + 1, N) = 1, which is equivalent to GCD(2kt + 1,p) = 1.
Now we have succeeded in bringing the conditions in exactly the same form as (6.3.20),
and we can read off the solutions almost directly. The only slight difference is that above
N was odd, whereas here p can be odd or even. However, the value of N did not play any
role anywhere in the discussion following (6.3.20) (it was used to derive (6.3.20), though),
and hence everything does indeed go through.

If the algebra is D,, n odd, then we have to distinguish two cases. If n = 1 mod 4, then

condition (b) is trivially satisfied, and condition (a) reads
(a) GCD(m(k+2n—2)+1,4)=1, (6.3.23)

from which we conclude that mk (and hence mr = 3mk) must be even, so that just as for
A,, and E, the second term on the right hand side of (6.3.19) plays no réle. Condition (c)
thus reduces to

(¢) — (g(mn)2 —mn) =0mod 4, (6.3.24)
with k satisfying 3nk = r mod 8, or what is the same, nk = 3r mod 8. To substitute
this we multiply the first argument of (a) with n, which does not affect this condition.
Afterwards we use that » = 1 mod 4, and then the conditions simplify to

(a) GCD(Bmr+1,4)=1,

(c) —(gm2—m):0mod4.

(6.3.25)

If r is even, 7 = 2j, condition (c) then reduces to jm? — m = 0 mod 4. This clearly has a
non-trivial solution if 7 is odd (then m is odd), but only trivial solutions if j is even. If r
is odd the only solution to both equations is m = 2.

If n = 3 mod 4 this argument goes through in much the same way, but now solutions
for odd m are eliminated by condition (b).

6.3.1 Automorphisms from fractional spin simple currents

Nearly all these results can be summarized as follows. Define N=NifNisodd, N = N/2
if N is even. Decompose N into prime factors, N = pi* ...p;". Then the set of solutions
m consists of all integers of the form m = m”%p’fl .. .pf’, where k; = n; if the monodromy

parameter r is divisible by p;, and k; = 0 or k; = n; otherwise. The solutions are thus
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labelled by all combinations of distinct prime factors of N that are not factors of ». The
parameter m” for each solution in this set is the unique solution of the equation

1
§rlm"(p’1°1 ...pf’) =1mod N" , (6.3.26)
where N" = %, and r chosen even if N is odd. These automorphism invariants have
PP

both a Galois interpretation and a simple current interpretation: they can be generated by
the Galois scaling m(k + g¥) + 1 or alternatively by the fractional spin simple current J™.

These are precisely all the pure automorphisms generated by single simple currents
K = J™ of fractional spin which have a “square root”, i.e. for which there exists a simple
current K’ such that (K')? = K. Such a square root exists always if K has odd order,
but if K has even order it must be an even power m of the basic simple current J. The
condition on the common factors of » and NV has a simple interpretation in terms of simple
currents: If it is not satisfied, then there are integral spin currents on the orbit of J. If one
constructs the simple current invariant associated with J these currents extend the chiral
algebra, so that one does not get a pure automorphism invariant.

The condition that K must have a square root is a familiar one: in [126] the same
condition appeared as a requirement that an invariant can be obtained by a simple left-
right symmetric orbifold-like construction with “twist operator” LL¢. If K does not have
a square root and r is even, then there are additional invariants, which were described
in [126] and derived in [127]. Recently in [100] it was observed that these invariants could
be described as orbifolds with discrete torsion. It is quite interesting that precisely these
discrete torsion invariants are missing from the list of Galois invariants.

There is one exception, namely the automorphism invariants of Dy, at level 27, which
are Galois invariants even though they violate the foregoing empirical rule: In this case
N = 2, which is a factor of r. Indeed, they are generated by the current J, (or J.) which
does not have a square root. Technically the reason for the existence of this extra solution
is that this is the only simply laced algebra with p lying on the root lattice but N even.

6.3.2 Automorphisms from integer spin simple currents

Finally, we have to return to the case D,, n even. Since M = 2 in this case, the only
potentially interesting solution is m = 1. Hence Q is equivalent to ) if and only if p is on
the root lattice, which is true if and only if » = 0 mod 4. It is straightforward to derive

the analogue of (6.3.12):
ocSu = ij'm.Qs(a)szQc(a)J‘gn—2)va(a,)a’b . (6.3.27)

(Since the three currents and charges are dependent this is a somewhat redundant nota-
tion.) The solution m = 1 satisfies condition (a) if and only if the level is even. This
implies immediately that all three currents J,, J, and J. have integer spin, and we can
write the transformation of S in the following symmetric way:

oS = SJ‘zQs(a)Jch(a)Jsz(a)a’b . (6.3.28)

Since @, + Q. + @, = 0 mod 1 for any weight a, at least one of the charges, say @),, must
vanish. Then Q, = Q, mod 1, and the field a is transformed to J2@+(@) J2Q:(2)gq = J2Q:(a)q,
Since J, has integral spin and @,(a) = 0, this field has the same conformal weight as a,
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and hence 7T'-invariance is respected. Due to the symmetry in s,c and v the same is true
for any other field as well. Thus we do find an infinite series of modular invariant partition
functions. These are automorphism invariants, again with both a Galois and a simple
current interpretation, although this time they are due to simple currents of integer spin.
Invariants of this type have been described before in [122].

6.3.3 Chiral Algebra Extensions

Now we will examine what happens if we relax condition (b), i.e. we will consider the case
that the replacement of Q by @) leads to a different answer. This obviously requires that p
is not on the root lattice, and that the extra terms (6.3.10) are non-integral for some values
of Q. The latter is true if m is odd, or if the algebra is B,,n odd, and m = 2 (/n = 1).
Now we can write (omitting for the moment the case D,,n even)

0S8,y = e 2mimNQ)+31Q(B)+31g
_ o—milmN[Q(a)+1] g ) (6.3.29)
J—lmN[Q(a)+§]a’b
instead of (6.3.8). As before, a similar formula holds also for B,, n odd, with m replaced
by m = %m.
Since mINQ(a) is always integral and N is even, the exponential prefactor is in fact a
sign, and the result may be written as

oSa = n(a) SJ—lmN[Q(a)+%]a’b . (6.3.30)

Comparing this with (6.3.13) we find now that S, = w(a)Srqp, where w is the product
of the overall signs 7 and €, and 7a = JimNR (@) 3] 5q, Unitarity of S now gives 64,4 =
> SrapSh, = Yy w(a)SaSs, = w(a), which implies that w = 1, i.e. n = ¢, and that 7 is the
trivial map.

Also in this case the Galois transformation generates an automorphism that lies within
simple current orbits, and hence if it generates a positive modular invariant, it must be a
simple current invariant. The identity is not fixed in this case: it must thus be mapped to
a simple current. The candidate modular invariant has the form P = 1 + 5(0)II, where II
is the matrix representing the transformation (6.3.30).

Galois automorphisms of this type always have orbits with positive and negative signs.
A positive invariant can only be obtained if the negative sign orbits are in fact fixed points
of the Galois automorphism (these should not be confused with fixed points of the simple
current!). One sees immediately from (6.3.29) that the sign n(a) is opposite for fields of
charge Q(a) = 0 and Q(a) = % Since the former includes the identity we fix that sign to
be positive. Hence the orbits of charge % must be fixed points. This leads to the condition

— lmN[% + %] =0mod N, (6.3.31)
or, writing N = 2N’, Im(N' 4+ 1) = 0 mod 2N’. From this we conclude that N’ must be
odd and Im must be a multiple of N' = N/2.

We are now in the familiar situation of an extension by a simple current of order 2, and
clearly T-invariance will then require this current to have integral spin. The solutions can
now easily be listed:

Ay, level 4y (LjeZ),
Byi1, level 25 (Lj€2), (6.3.32)
E;, leveldj (5€2).
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Now consider D, for even n. Then p is not an element of the root lattice, but a vector
weight if n = 2 mod 4. Hence Q,(p) = Qc(p) = 5 and Q,(p) = 0. The transformation of S
1S now

_ 27i[Qs(a)+ Q.
O-Sab —e ﬂ'l[Q (a) Q (a)]SJ:[QS(a)_I_%]JZ[QC(GH_%]G’b ’ (6-3-33)

where we set m = 1, the only acceptable value. It is not hard to see that the resulting
S-invariant cannot be a positive one, since there do exist wrong-sign Galois orbits that are
not fixed points.

There are several simple current extensions that cannot be obtained from Galois sym-
metry, at least not in the way described here. Since we considered here only a single Galois
scaling, only Galois automorphisms of order 2 can give us a positive modular invariant [47]
(this is also true for the automorphism invariants discussed earlier in this section, as one
may verify explicitly). Hence there is a priori no chance to obtain extensions by more
than one simple current. However, some simple currents of order 2 are missing as well,
namely those generated by the current J* of Ay_1, the current J of B;,[ even, and the
currents J, of D; and J,,J. of Dy, with levels chosen so that these currents have integer
spin. Note that the existence of a modular invariant of order two implies the existence of
a “Galois-like” automorphism. This may suggest the existence of some generalization of
Galois symmetry that would also explain those invariants.

6.4 New Infinite Series

In this section we will describe several infinite series of exceptional invariants that we
obtained from Galois symmetry. They occur for algebras of type B and D at level 2 and
certain values of the rank. Let us start the discussion with type B, which is slightly simpler.

The new invariants occur for the algebras By, Big, Big, Bi7, Big, B2 etc., always at
level 2. The pattern of the relevant ranks n becomes clear when we consider the number
2n + 1, corresponding to the identity B,, = so(2n + 1); namely, 2n + 1 must have at least
two distinct prime factors. For example, for so(15) at level 2 we find the following three
non-diagonal modular invariants:

Pr = |Xo+ Xu)? 4+ 2 (| X + | Xs]? + | Xe|? + | X7|* 4 |Xs|? + | Xo|* + | X10|?) (6.4.1)

Pe = |Xol” + 120" + [Xa]* + | Xs]” + | Xs]* + | Xs|” + [Xs|” + (XaXg + XrXfp + c.c.) , (6.4.2)
Ps = |Xo + Xa|? + |Xa + Xo|* + | X7 + Xuol® + 2 (|Xs]? + | Xe|” + | As[?) - (6.4.3)
Here the labels : = 1,2...10 of &; denote the following representations:

(6.4.4)

[==JRN a0 ol =P

(0,0,0,0,1,0,0)
(0,0,0,1,0,0,0)
(0,0,1,0,0,0,0)
(0,1,0,0,0,0,0)
(1,0,0,0,0,0,0)

S W N~ O
PN TN N N N N

The first of these invariants is not new: it corresponds to the conformal embedding so(15) C
su(15). The fields ¢ = 4...10 are fixed points, each of which is resolved into two distinct
complex conjugate fields in the extended algebra. In su(15) the two fields originating from
the so(15) field ¢ are the antisymmetric tensor representations [4 + ¢] and [11 — ¢]. The
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invariant P; is in fact an integer spin simple current invariant. The other two B; invariants
are manifestly not simple current invariants.

The second By invariant is new, as far as we know, and can be explained in the following
way. The algebra A;, at level 1 has three distinct automorphism invariants which are
generated by the simple currents J, J* and J®°. They read

14 14 14
EXinw EXiXini, E?fi?ff4i, (6.4.5)
=0 =0 =0

respectively, where the labels are defined modulo 15. The first one is equal to the charge
conjugation invariant, and the last one is the “product” of the first two. The existence of
an A;4; automorphism implies relations among the matrix elements of the modular matrix
S of that algebra. Owing to the existence of the conformal embedding B, C Aj4,1, these
matrix elements are related to those of B7,. The precise relation is

Soo[A14,1] = 2S00[Br 2] ,
So,a+i[A1a,1] = So11-i[A121] = Soi[Br2) ,
SatiatrjlA1a1] = S11-i11-5[A141]

= Siyign-jlAuaa] = ST ey lAraa] = 385[Bra] +i%; .

(6.4.6)

Here ¥ denotes the fixed point resolution matrix. The first automorphism, charge conju-
gation, just sends ¢ to —¢ and hence acts trivially on the By, fields. The other two su(15)
automorphisms interchange the By, fields (4,9) and (7,10), leaving 5,6 and 8 fixed (in
addition one gets relations from the imaginary part on the matrix elements of ¥). This
implies relations like So4 = So9 and Sy7 = Sg10 for the B7, matrix elements. All these
relations hold also if the label 0 is replaced by 1, but we do not get any relations for matrix
elements involving the fields that are projected out, i.e. the fields 2 and 3. In the general
case, the absence of relations involving fields that get projected out implies that the auto-
morphisms of an algebra g do not lead to automorphisms for a conformal subalgebra h C g.
The present case is an exception, since all the fields on which the automorphism acts (and
in fact all the fields with labels 4,...,10) are fixed points of the By, simple current that
extends the algebra. Then the matrix elements S,; and S3; vanish for ¢ = 4,...,10 and
we need no further relations among them.

This explains the presence of the second invariant listed above. The third one is a linear
combination of the foregoing ones and the diagonal invariant: P3 = P; 4+ P, — 1. This is a
remarkable invariant: it looks like a normal extension by a spin 1 current, but it does not
follow from any conformal embedding. The only conformal embedding of B; at level 2 is
in su(15), and the corresponding invariant is P;, not Ps;. This implies in particular that
there cannot exist any conformal field theory corresponding to the modular invariant Ps!
In fact, it is not even possible to write down a fusion algebra for this invariant, because
there does not exist a fixed point resolution matrix. In [129] another example of this kind
was described, although that theory was unphysical for a somewhat different reason.

The existence of P; can also be seen as a consequence of the closure of the set of
Galois automorphisms. Each Galois modular invariant, automorphism invariants as well
as chiral algebra extensions, originates from a Galois symmetry of S, which acts on the
fields as a permutation accompanied by sign flips. For the “chiral extension” P53 this Galois
automorphism is represented by the matrix P; — 1. This set of Galois automorphisms will
always close as a group. Indeed, the automorphism underlying P; is simply the product

of that of P; and P-.
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By the same arguments there will be pure automorphism invariants for B,, » whenever
2n + 1 contains at least two different prime factors. The spin-1 extension always involves
an identity block plus n fixed points that yield each two su(2n + 1) level 1 fields (this
is true since all non-trivial representations of su(2n + 1) are complex). If there is only
one prime factor the only automorphism is charge conjugation, which acts trivially. When
there are K different prime factors there are 2K distinct pure Galois automorphisms for
su(2n + 1) at level 1, including the identity and the charge conjugation invariant. When
“projected down” to B, » these are related in pairs by charge conjugation, and we expect
therefore 251 distinct B, modular invariants of automorphism type. In addition there
is of course the invariant corresponding to the conformal embedding in su(2n + 1) itself.
In combination with the 2X~! — 1 non-trivial automorphisms this extension gives rise to as
many other invariants that look like conformal embeddings, but actually do not correspond
to a consistent conformal field theory.

How does this come out in terms of Galois symmetry? First of all the spin-1 extension
of the conformal embedding is in fact a simple current extension, and we have seen in the
previous section that it follows from Galois symmetry only for B,, with n odd. If n is odd the
Galois periodicity is 4(2n+1) for B,,» and 2(n+1)(2n+1) for As, 1. Hence the cyclotomic
field of the former is contained in that of the latter, so that all Galois transformations of
Ajn1 have a well-defined action on the modular matrix S of B, 5. In this case we may thus
expect 25X distinct Galois modular invariants, including the identity and the unphysical
invariants described above. If n is even the Galois periodicities are respectively 2(2n + 1)
and 2(n + 1)(2n + 1), so that also in this case all Galois transformations are well-defined
on B,. But due to the fact that the simple current invariant is not a Galois invariant, we
get only half the number of invariants now, namely 251,

For n odd the su(2n+ 1) simple current automorphisms are mapped to two B, modular
invariants: one physical automorphism and one chiral extension, which (except for the
one originating from the diagonal invariant, i.e. the conformal embedding invariant) is
unphysical. For n even each su(2n + 1) automorphism is mapped to just one B, invariant.
The diagonal invariant is mapped to the diagonal one of B,,, but it turns out that the non-
trivial automorphisms are mapped to either a pure automorphism or an unphysical chiral
extension, in such a way that the closure of the set of Galois automorphisms is respected.

Now consider algebras of type D. Again the crucial ingredient is the conformal embed-
ding so(2n), C su(2n);. In terms of D, fields the su(2n) characters are built as follows:
The identity character is the combination Xy 4+ X, and the antisymmetric tensor [n] has a
character equal to X, + X.. All other su(2n) representations are complex, and each pair of
complex conjugate representations arises from a resolved fixed point of the vector current
of D,. Even though D, has complex representations itself for n odd, these get projected
out, and all the non-real contributions to the su(n) modular matrix S arise from fixed
point resolution.

The center of the su(2r) WZW theory is Z»,, but the ‘effective center’ is Z,,. This means
that only the simple current J? of the su(2n) theory yields non-trivial modular invariants,
and that the order 2n current J may be ignored. It is easy to see that the field [r] has zero
charge with respect to J2, so that it is mapped onto itself by any automorphism generated
by powers of J2. This implies that, just as before, all su(2n) simple current automorphisms
act non-trivially only on resolved fixed points, and hence can be ‘projected down’ to D,,.
If n is prime, then the only automorphism is equivalent to charge conjugation, and hence
it projects down to the trivial invariant. Hence just as before we will get non-trivial D,
automorphisms whenever n contains at least two distinct prime factors, where the prime is
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now allowed to be two. The counting of invariants is the same as for B(,_1)/2 above. Again
they come in pairs: an automorphism and an unphysical extension by a spin-1 current.

All these invariants exist, but not all of them follow from Galois theory. Just as for
B,,, the automorphism invariants do, but the conformal embedding invariant does not
always follow. In fact, it never comes out as a result of the scalings discussed in the
previous section. However, if n = 3 mod 4 the simple current extension by the current J,
is an exceptional Galois invariant only at level 2 (see the Table 6.1). In that case all the
expected invariants are Galois invariants. For all other values of n only half of the expected
invariants are Galois invariants, and from each pair only one member appears, either the
automorphism or the unphysical extension.

There is still one interesting observation to be made here. If there are just two distinct
prime factors, and n = 6 mod 8, then the extra invariant is an unphysical extension.
Remarkably, however, that extension is a simple current invariant. It is equal to the
extension by J,, but it has additional terms of the form |X, + A}|?, where a and b are
fields that appear diagonally, as fixed points of order 2, in the normal simple current
invariant. The fields a and b are however on the same orbit with respect to the current
Js, which makes this a simple current invariant by definition. Nevertheless, it is not part
of the classification presented in [63], because that classification was obtained under a
specific regularity condition on the matrix S that is not satisfied here (indeed, D,, at
level 2 was explicitly mentioned as an exception in the appendix of [63]; the reason for it
being an exception is that all orbits except for the identity field are fixed points of one or
all currents). It also follows that this simple current invariant cannot be obtained using
orbifolds with discrete torsion, unlike the simple current invariants within the classification
of [100]. Hence the fact that it is unphysical is not in contradiction with the expectation
that simple current invariants should normally be physical.

In the previous case the automorphism would be obtained by subtracting the normal
spin-1 extension, and adding the identity matrix. Clearly the resulting automorphism is not
really exceptional, but is simply the automorphism generated by the spinor simple current
Js (or J., which at level 2 gives the same result). The same happens if the rank is 2 mod 8,
except that in that case the automorphism comes out directly as a Galois invariant. It is
listed in Table 6.1. To get really new automorphisms that are not simple current invariants
for n = 2 mod 8 or n = 6 mod 8 one has to consider cases where n contains three or more
distinct prime factors. Finally, if the rank is divisible by 4 the spinor currents have integer
spin, and do not interfere with the exceptional automorphisms discussed in this section.

6.5 Pure Galois Invariants

Here we list all the remaining Galois invariants of simple WZW models, i.e. not including
those described in the previous sections. All these invariants are positive and result directly
from a single Galois automorphism of order 2. Although the full Galois commutant was
investigated, in all but one case there is only a single non-trivial orbit contributing (in
terms of the formula (5.5.6) this means that f, is used to get Poo = 1, and apart from fp
only one other coefficient f, is non-zero.) The exception is the Es-type invariant of A4; at
level 28, which can also be interpreted as a combined simple current/Galois invariant, and
which is therefore included in Table 6.2. The results are listed in Table 6.1. The notation
is as follows:

o CE: Conformal embedding.
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e 5(J): Simple current invariant. The argument of S i1s the simple current responsible
for the invariant.

e RLD: Rank-Level Dual. The S-matrices of su(N)i, so(N)g and C,, are related to
those of respectively su(k)y, so(k)n and Cy , by level-rank duality. One might expect
that Galois transformations of one matrix are mapped to similar transformations of
the other. The relation is not quite that straightforward however, and we will not
examine the details here. The results clearly respect this duality.

e EA: Exceptional Automorphism. These are modular invariants of pure automorphism
type that are not due to simple currents. The only invariants of this type known so
far were found in [139], and appear also in Table 6.1.

e HSE: Higher Spin Extension, an extension of the chiral algebra by currents of spin
larger than 1 that are not simple currents. Some of these invariants can be predicted
using level-rank duality; all other known ones are related to meromorphic ¢ = 24
theories [124].

Note that there are some simple current invariants in this list. This is not in conflict
with the results of Section 6.3, as we did not claim that the list given there was complete.
The scales of the Galois transformations for which these simple current invariants are
obtained are interesting. For Ay, 1 and Dg,.3 these scales are equal respectively to
(2m + 1)(k + ¢¥) — 1 and 3(k + ¢¥) — 1. If the contribution —1 were replaced by +1,
they would be of the kind discussed in Section 6.3. In fact we can write these scales as
(=D)[(2m—1)(k+g")+1] mod 4m(k+g") and (—1)[(k+g")+1] mod 4(k+g"), respectively,
which shows that these Galois automorphisms are nothing but the product of a scaling of
the type discussed in Section 6.3 and charge conjugation. It can be checked that without
the charge conjugation one does not get a positive invariant: certain fields are transformed
to their charge conjugate with a sign flip. After multiplying with the charge conjugation
automorphism these fields become fixed points. The scale factor for Cy,,, 4m + 3, is of
the form (k + ¢¥) + 1, but for C, the arguments of Section 6.3 break down right from
the start, so that no conclusions can be drawn for this case. For the other simple current
invariants the scale factor does not have the right form, and hence the arguments of Section
6.3 simply do not apply.

6.6 Combination of Galois and Simple Current Symmetries

In Section 6.3 we have discussed a large set of invariants for which the Galois and simple
current methods overlap. If they do not overlap, it may be fruitful to combine them. To do
so we first have to understand how the orbit structures of both symmetries are interfering
with each other. This can be seen by computing 657,5. On the one hand, this is equal to

O'SJa’b = EJ(JG,) Sa'-.]a’b . (661)
On the other hand, it is equal to

a-[e2”iQ(b) Sw] = e2ﬂilQ(b)ea(a) Soap

6.6.2
== 60-(0,) SJlo"a,b . ( )
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Algebra | level | Galois scaling | Type Interpretation

A, 5 19 Extension CE C A;

Agm_1 2 8m? 4+ 8m + 1 | Extension S(J*™); RLD of Aj4m

Ay 3 11 Extension CE C Ay

Ay 2 31 Extension RLD of A4, 10

Cum 1 4m + 3 Extension S(J); RLD of C1 4m = A1,4m
Dgpmia |2 8m +1 Automorphism | S(Jy)

Dypys |2 24m + 17 Extension S(Jy)

Dy 3 49 Extension HSE; RLD of s0(3)14 = A1,2s
G, 3 8 Extension CE C Fg

G, 4 5 Automorphism | EA

G 4 11 Extension CE c D,

F, 3 5 Extension CE C D3

F, 3 11 Automorphism | EA

Eq 4 7 Extension HSE

E; 3 13 Extension HSE

Table 6.1: Pure Galois modular invariants for WZW models.

Here [ is the power to which o raises the generator of the cyclotomic field. In the first step
we used that the simple current phase factor is contained in the field M, which follows
from e2m@(}) — Stap/Sar € M. Using unitarity of S we then find that

6a'(Ja') - 6o'(a') ’
5] =J. (6.6.3)
Here J denotes the permutation of the fields that is generated by the simple current J.
Since [ is prime with respect to the order of the cyclotomic field, it is — at least in the
case of WZW models — also prime with respect to the order N of the simple current. If
N = 2 this means that [ must be odd so that J' = J, and hence we conclude that & and
J commute. For all other values of N they do not commute unless [ = 1 mod N, but at
least it is true that & maps simple current orbits to simple current orbits, and furthermore
it respects the orbit length.
If N =2 the simple currents yield the relation

S_]a Jb = e2ﬂ-i(Q(a)+Q(b)+2I)Sab (664)
among matrix elements of S, where r is the monodromy parameter. If r is even (which is
the case for simple currents of integer or half-integer spin) this relation takes the form

Sab = E(a)ﬁ(b)s.]a,.]b ) (665)

since the phase factors are in fact signs. This is precisely the form of a Galois symmetry,
as expressed in (5.5.2). We can represent this symmetry in matrix notation as

I,5M; =5, (6.6.6)

where II; = (II;)~! is an orthogonal matrix that commutes with the analogous matrices
representing the Galois group. Hence we can extend the Galois group by this transforma-
tion as explained in Chapter 5. Furthermore if r = 2 mod 4 the simple current invariant
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produced by J is a fusion rule automorphism that can also be used to extend the (alois
group.

We have not examined these extended Galois-like symmetries systematically, but we
will illustrate that new invariants can be found by giving one example. Consider A; at
level 10. One of the Galois invariants (invariant under S as well as T') is

Pr = |Xo+ Xo|? + | Xa+ Xuo|* + | X1 — Xo|® + 2| 5" + 2|27, (6.6.7)

where the indices are the highest weights (in the Dynkin basis). The only problem with this
invariant is that it is not positive. However, at level 10 we also have the D-type invariant

Py = |Xo|* + (X1 Xy + X X7 + c.c.) + [Xo]” + | X" + |5 |* + | X6|* + [Xs|” + | Xio|* , (6.6.8)
which is a simple current automorphism. If we now take the linear combination
Pr+P,—1, (6.6.9)

we get a positive modular invariant which is in fact the well-known Fg-type invariant.

There is a second way of combining simple currents and Galois symmetries. One can
extend the chiral algebra of the WZW model by integer spin simple currents. This projects
out some of the fields, so that the negative sign Galois orbits of some Galois invariants are
removed. It is essential that the Galois automorphisms respect the simple current orbits,
and that the matrix elements of S are constant on these orbits for the fields that are not
projected out. The simple current extension has its own S-matrix which can be derived
partly from that of the original theory. This matrix has the form (1.5.7)

~ N, N
Sa,,’,bj — N °

Sab + Xap Py - (6.6.10)

All general considerations regarding Galois transformations can be applied directly to this
new S-matrix. Clearly the matrix elements S,; which correspond to the primary fields
of the original theory that are not projected out belong to a number field M’ which is
contained in the number field M of the original theory. While P;; = §;; — % and N,N,/N
are both rational and hence transform trivially under Gafl(M'/Q), the presence of the
matrix Y, in (6.6.10) may require this number field to be extended to a field M > M (a
simple example is provided by the A; , WZW theory, which has a real matrix S, whereas
the S-matrix of the extended algebra A, ; is complex). Now because of the projections M
does not necessarily contain the original number field M; however, at the possible price of
redundancies we can consider an even larger number field M that contains both M’ and M.
When working with M, we do not loose any of the Galois transformations that act non-
trivially on the surviving matrix elements S,;. Note that any element of gaf(M /M) acts
trivially on S,; and hence induces a permutation which leaves non-fixed points invariant
and acts completely within the set of primary fields into which a fixed point gets resolved.
Further, for any element of gaf(M /Q) the associated permutation must act on the labels
a, b in the same way in both terms on the right hand side of (6.6.10). In particular, for
any matrix element involving only non-fixed points the action of a Galois transformation
on S already determines its action on S, since the two matrix elements are equal up to
a rational factor. The same is true for all matrix elements between fixed points and full
orbits, since in that case ¥ is absent, too. This is often already enough information to
determine the Galois orbits of the extended theory completely. The transformations of
the fixed point - fixed point elements of S are more subtle, and in principle would require
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Algebra | level Galois scaling | Simple current | Type Interpretation
A 10 7 J M Extension | CE C B,
Ay 28 11 J Extension | CE C G,
A, 9 17 J Extension | CE C Eg
A, 21 35x53 ) | J Extension | CE C E;
As 8 7 J Extension | CE C Diy
Ay 4 7 J? Extension | HSE; RLD of A;s
A dm +2 | dm + 11 J* Aut x Ext | §(J?)
Agr 2 71 Jt Extension | HSE; RLD of A; s
Cs 4 7 J Extension | CE C By
Cy 3 7 J Extension | RLD of (34
Dypmia |4 8m + 41+ 3 Js Extension | S(J,)* S(Js)
D, 6 5 Jsy Sy Extension | CE C Dy,
Table 6.2: Modular invariants of WZW models obtained by combination of Galois and

simple current symmetries.
() This is a simple current of half-integer spin; see the main text for details.
(*) Invariant originating from a non-cyclic subgroup Z5 x Z, of the Galois group.

knowledge of the matrix 3. However, as already pointed out any element of the Galois
group must act on ¥ exactly as it does on S. Although this still leaves undetermined the
action within the set of primary fields into which the relevant fixed point is resolved, this
limited information nevertheless can provide useful additional information on the matrix
Y, whose determination in general is a problem that is far from being solved.

Fortunately, as long as we are only interested in modular invariants of the original
theory, we may in fact ignore fixed point resolution completely. By definition that issue is
determined solely by S (and T'), and the precise form of ¥ should not matter.

We have performed a computer search for invariants of the type described above, and
obtained the results shown in Table 6.2. Note that this table contains a few infinite series
of simple current invariants. Since they were inferred from a finite computer scan, the
statement that the series continues is a conjecture. Presumably these series can also be
derived by arguments similar to those in Section 6.3, but we have not pursued this.

We have in principle just looked for invariants originating from single orbits, but there
is one exception, namely the modular invariant of A, at level 21. This invariant is obtained
as a sum over a Z X Z, subgroup of the Galois group that is generated by the two scalings
indicated in Table 6.2. Separately each of these scalings yields an §,T invariant with a
few minus signs.

6.7 Conclusions

To conclude, let us make a rough comparison between the various methods for constructing
modular invariants that were mentioned in the introduction. We will compare them on the
basis of the following aspects.

¢ Generality
A common property of simple currents and Galois symmetry is that neither is a
priori restricted to WZW models, unlike all other methods. (In practice this is less
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important than it may seem, since essentially all RCFT’s we know are WZW models
or WZW-related coset theories.)

e Positivity
Most methods do not directly imply the existence of positive modular invariants, but
rather they yield generating elements of the commutant of S and 7' that have to
be linearly combined to get a positive invariant; the exceptions are simple currents,
conformal embeddings and level-rank duality.

e Existence of a CFT

It should be emphasized that a positive modular invariant partition function is only
a necessary condition for a consistent conformal field theory. Most methods do not
guarantee that a conformal field theory exists. Exceptions are conformal embeddings
(the new CFT is itself a WZW model) and probably simple current invariants, since
the construction of the new theory can be rephrased in orbifold language. Clearly
any construction that may yield negative invariants cannot guarantee existence of the
theory, and this includes Galois invariants. Indeed, we found examples of positive
Galois modular invariants that cannot correspond to any sensible CFT.

e Explicit construction
Simple current invariants can be constructed easily and straightforwardly. On the
other hand, the explicit construction of an invariant corresponding to a conformal
embedding is usually extremely tedious. Indeed, many of these invariants are not
known explicitly. The other methods fall somewhere between these two extremes.
The explicit construction of a Galois invariant is straightforward but requires long
excursions through the Weyl group, as explained in the appendix.

e Classification

All simple current invariants have been classified in [62,63] and [100], under a mild
regularity assumption for S, which, as we have seen in Section 6.4, is not always
satisfied. The simple currents of WZW models were classified in [43]. All conformal
embeddings have been classified in [9,125] All cases of level-rank duality are presum-
ably known, but all other methods mentioned in the introduction have only been
applied to a limited number of cases, without claims of completeness. Our results on
Galois invariants are based partly on computer searches (inevitably restricted to low
levels) and partly on rigorous derivations (Section 6.3). For the pure Galois invariants
we expect our results to be complete, but we have no proof.

To summarize, we find that the Galois construction does not yield all solutions, but also
that it is not contained in any of the previously known methods. It generates invariants
of all known types. Most of the partition functions we found were already known in the
literature, but we did find several new infinite series of pure automorphism invariants not
due to simple currents.

In the course of this investigation we realized that the restriction that the scaling be
prime with respect to M(k + ¢gV) can in fact be dropped, at least for WZW models. This
yields even more relations among elements of S, which take the form of sum rules, and
hence even more information about modular invariants. These transformations, which we
call ‘Quasi-Galois’ symmetries, will be discussed in the next chapter.
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Chapter 7

Quasi-Galois Symmetries of the Modular S-Matrix

The Galois symmetries of rational conformal field theory introduced in Chapter 5 are
generalized, for the case of WZW theories, to ‘quasi-Galois symmetries’. These symmetries
can be used to derive a large number of equalities and sum rules for entries of the modular
matrix S, including some that previously had been observed empirically. In addition,
quasi-Galois symmetries allow to construct modular invariants and to relate S-matrices
as well as modular invariants at different levels. They also lead us to a convenient closed
expression for the branching rules of the conformal embeddings g — §6(dim g).

7.1 Introduction

In the study of rational conformal field theories, modular transformations play an essential
role. They turn the set of the characters of all primary fields into a unitary module
of SL(2,Z), the twofold covering of the modular group of the torus. Via the Verlinde
formula, they are also closely related to the fusion rules.

In all cases where the modular matrix S is explicitly known, one observes that it contains
surprisingly few different numbers, and that among the distinct numbers there are linear
relations. While it has been known for a long time that simple currents lead to relations
between individual S-matrix elements [126,130,86], many other relations, in particular sum
rules, have remained so far somewhat mysterious. Recently it has become clear that Galois
symmetries [26,23] are an independent source for relations between individual elements of
S [47,51]. Both simple current and Galois symmetries exist for arbitrary rational conformal
field theories, independent of the structure of the chiral algebra.

In this chapter we will show that in the special case of WZW theories, Galois symmetries
can be generalized to what we will call quasi-Galois symmetries. A crucial ingredient of our
construction (which is not available for other conformal field theories than WZW theories)
is the Kac-Peterson formula for the S-matrix. These new symmetries turn out to be rather
powerful and allow to derive three new types of relations between the entries of S: first, a
sum rule which relates signed sums of S-matrix elements, see (7.3.4); second, the equality,
modulo signs, of certain specific S-matrix elements, see (7.4.1); third, a new systematic
reason for S-matrix elements to vanish, see the remarks after (7.2.9).

Just as in the case of Galois symmetries, the relations we find can be employed to
construct elements of the commutant of S, and therefore to generate modular invariants.
Moreover, they can be used to obtain relations between invariants at different values of
the level, i.e. between different WZW theories. Finally, we show that our results allow to
determine the branching rules of certain conformal embeddings.

The rest of this chapter is organized as follows. In Section 7.2 we recall the basic
facts about Galois symmetries of rational conformal field theories, and of WZW theories
in particular, and show how in the WZW case they can be generalized to quasi-Galois
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symmetries. Also, as a first application, we describe how these symmetries force certain
S-matrix elements to vanish. In Section 7.3 we construct integral-valued matrices that
commute with the S-matrix; as a by-product we obtain an interesting sum rule (7.3.4)
for the entries of S. In Section 7.4 we obtain another symmetry, (7.4.1), of S as well
as relations (see (7.4.8), (7.4.9)) between the S-matrices for WZW theories at different
heights hy, hy, where hy is a multiple of hy. Again, these results lead to a prescription
for constructing S-matrix invariants, now both at the smaller and at the larger height (see
(7.4.16) and (7.4.20), respectively). Finally, in Section 7.5 we consider a special case of the
latter invariants, which leads us to a closed formula for the branching rules of the conformal
embeddings g — 56(dim g) which can easily be evaluated explicitly.

7.2 Quasi-Galois scalings

When analyzing the mathematical structure of a WZW theory, we are dealing with inte-
grable highest weight representations of an untwisted affine Lie algebra g at a fixed integral
level kY. As the level is fixed, the g-weights are already fully determined by their horizontal
part, i.e. by the weight with respect to the horizontal subalgebra g of g. In the following it
will be convenient to shift all weights according to a = A, + p by the Weyl vector p. Note
that if the non-shifted weight A, is at level kY, the shifted weight a is at level &, where

h:=k" +g" (7.2.1)

with gV the dual Coxeter number of g; we will call A the height of the weight a. The set
of (shifted) integrable weights of the affine Lie algebra g at height A is

Poi={acL”|0<a <k 41fori=0,1,...,r}. (7.2.2)

Here L™ denotes the weight lattice, i.e. the Z-span of the fundamental weights. In other
words, the weights (7.2.2) are precisely the integral weights in the interior of the dominant
affine Weyl chamber at level k¥ + gV.

An important tool for studying the modular properties of WZW theories is the Kac-Pe-
terson formula (1.4.8) for the modular matrix S which reads in terms of shifted weights
and the height h as ‘

Sap =N E;Vsign(w) exp[— 2 (w(a),b)]. (7.2.3)
we
Here the summation is over the Weyl group W of the finite-dimensional horizontal subal-
gebra g of g. Some immediate consequences of this formula are the following. First, the
fact that according to (7.2.3) S, depends on a and b only via the inner products (w(a),b)
and the identity (w({a),b) = £(w(a),b) = (w(a),£b) imply that

Stap = Sam; (7.2.4)

and second, for any element w of the affine Weyl group w (i.e. the horizontal projection
of the Weyl group of the affine algebra g), one has

Sﬁ}(a)’b = sign (ﬁ)) Sa,b . (725)

This implies in particular that 5,5 = 0 whenever a or b lies on the boundary of an affine
Weyl chamber. Note that in (7.2.4) and (7.2.5) it is implicit that the quantity S, given by
(7.2.3) can be considered also for weights which are not integrable. This is possible because

122



we are iree to take the formula (7.2.3) (which for integrable weights yields the entries of the
actual S-matrix, i.e. of the matrix which realizes the modular transformation 7 — —1/7
on the characters) for arbitrary weights a, b as the definition of S,. Analogously, these
weights need not even be integral, and hence (7.2.4) is valid for arbitrary numbers ¢, not
just for integers.

Recall from Chapter 5 that for WZW theories a Galois transformation labeled by £ €
Ly ' and induces the permutation A — wW(£(A + p)) — p of the highest weights carried by
the primary WZW fields, or equivalently, the permutation

o= &(l) i a— da = wg(fa) (7.2.6)
of shifted highest weights. Here w, is an element of the affine Weyl group at level A, i.e.
Wa(b) = wu(b) + ht,, (7.2.7)

where w, is some element of the finite Weyl group W and ¢, some weight which belongs
to the coroot lattice LY of g. They are defined by the condition that w,(fa) € Py, which
determines w, and t, uniquely. Substituting (7.2.6) into the formula for WZW conformal
dimensions one easily obtains a condition for T-invariance, namely 2 = 1 mod 2MA (or
mod Mh if all integers M(a,a) are even).

The key idea in the present chapter is to allow in the transformation (7.2.6) for ar-
bitrary integers ¢ rather than only elements of Z},,. As we will show, these generalized
transformations lead to interesting new information. Note that if £ ¢ Z3,;,, then in order
for the map (7.2.6) of the integrable weights to be still well-defined, we must slightly ex-
tend the prescription for the Weyl group element w,. Namely, w, is now determined by
the condition that either fa lies on the boundary of some affine Weyl chamber (in which
case W, can simply be taken to be the identity), or else that w,(fa) € Py. In the latter
case, W, is the unique element of W with this property, and we write

sign (W,) = sign (w,) =: &(a), (7.2.8)

while in the former case we put ¢,(a) = 0. While the map (7.2.6) is thus still well-defined for
{ & 7%, it can no longer be induced by a mapping (ars +— ((arn)* of the number field, and
hence in particular it does no longer correspond to a Galois transformation. Nevertheless
the similarity with Galois transformations is still so close that we call the map a — /a,
with £ not coprime with Mh, a quasi-Galois scaling and the associated map ¢ (7.2.6) a
quasi-Galois transformation.

For a quasi-Galois scaling there will in general exist some a € Pj, for which fa lies on
the boundary of an affine Weyl chamber, so that & is not even an endomorphism of the
set of integrable weights. However, in terms of WZW primary fields the latter situation
corresponds to mapping the primary field with highest weight a to zero, so that ¢ can still
be interpreted as a linear map on the fusion ring that is spanned by the primary fields.
Moreover, this can also be translated back to the language of weights by adding to the set
P, a single element B which stands for the union of all boundaries of affine Weyl chambers.
In this setting, the map (7.2.6) supplemented by &(B) = B is an endomorphism of the set
P, U {B}, though it is not any more a permutation.

! Actually the cyclotomic field Q(Carr) does not yet always contain the normalization A appearing in
(7.2.3); rather, sometimes a slightly larger cyclotomic field must be used [23]. However, the permutation
o can already be determined from the generalized quantum dimensions, which do not depend on A/
Accordingly, the correct Galois treatment of A/ just amounts to an overall sign factor which is irrelevant
for our purposes.
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Consider now an arbitrary scaling a — fa, £ € Z\ {0}, with associated (quasi-) Galois
transformation given by (7.2.6). As follows immediately by applying the identities (7.2.4)
and (7.2.5) to S;4p, we then have the identity

6((0,) S(:,a,b == El(b) Sa,(:,b . (729)

For genuine Galois scalings, this result was already obtained in [23]. In the quasi-Galois
case, the two sides of (7.2.9) are not necessarily non-vanishing, and this provides us with
an explanation for the vanishing of certain S-matrix elements. Namely, if for the quasi-
Galois scaling ¢ the weights b and ¢ := &a are contained in P, but &b is not (i.e. £b
lies on the boundary of an affine Weyl chamber), then (7.2.9) tells us that S., = 0.
(Another systematic reason for S-matrix elements to be zero is provided by simple current
symmetries: S, = 0 if @ is a fixed point of the simple current J and b has non-vanishing
monodromy charge [130] with respect to J.)

7.3 Quasi-Galois modular invariants

Consider for a given quasi-Galois scaling ¢ the matrix II with entries in {0,41} that
describes the mapping induced by the scaling on the primary fields, i.e.

Ha,b = H((fil)) = 6((0,) 55,5,0 . (731)
Equation (7.2.9) can then be written as
(HS)a:b = 6((0,) Séa,b = El(b) Sa,é'b - (S]:[t)a,b . (732)

Multiplying this equation from both the left and the right with ST, the hermitean conjugate
of S, using the unitarity of S and taking the hermitean conjugate of this equation, we see
that

(I*8)ap = (ST, - (7.3.3)

This relation describes in fact a rather remarkable sum rule for S-matrix elements: writing
the matrix multiplication in (7.3.3) explicitly, it reads

Z 6((0) 6‘11&050,5 = Z E((C) 66,&cSa,c . (734:)

cEPh cEPh

Generically the sums appearing in (7.3.4) contain more than one non-vanishing term; to
our knowledge it is the first time that a relation of this type between S-matrix elements
has been established in a general framework.

By introducing the pre-images of a quasi-Galois transformation,

Y Ha):={c€ P, |d(c)=a} (7.3.5)
for any a € Py, we may rewrite the sum rule (7.3.4) in the more suggestive manner

E () Sep = E €(¢) Sac- (7.3.6)

cex~(a) ceX~1(b)
If the map (7.2.6) is invertible, then (7.3.6) reduces to the relation

6((0"_10,) So'-—la’b = 6((0"_11)) Sa’é-—lb , (737)

124



1

which 1s equivalent to the 1dentity (7.2.9) applied to the map o7".
Combining the two relations (7.3.2) and (7.3.3), it follows that the matrix

ASEES | N | (7.3.8)
commutes with the modular matrix S,
(Z®), 8] =0. (7.3.9)

Typically the S-matrix invariant Z(®) obtained this way is not positive, nor does it commute
with 7. This pattern already arises for ordinary Galois scalings. However, just as in the
Galois case in Chapter 5, it is still possible to construct physical modular invariants,
because one can get rid of the minus signs and achieve T-invariance by suitably adding
up various invariants of the type above and possibly combining with other methods such
as simple currents. Note that in the invariant (7.3.8) typically some of the fields are
projected out, and hence when using quasi-Galois transformations it is in fact easier to
obtain T-invariance than in the Galois case.

To give an example for a matrix that commutes with the S-matrix and that is obtained
by the above prescription, let us consider the scaling £ = 3 for the A; WZW theory at
height A = 6. In terms of non-shifted highest weights, this scaling maps A =0 and A =4

with a positive sign €, on A = 2, the weight A = 2 with a negative sign on itself, and the
weights A = 1, 3 on the boundary B. Thus the matrix Z(*) defined by (7.3.8) reads

00 1 00
00 0 0 O
Z® =10 -2 0 1 (7.3.10)
00 0 0 O
00 1 00
While this matrix has negative entries and is hence unphysical, the combination
7 =(Z2®)? 4226 (7.3.11)

is a physical invariant, namely the D-type invariant of the height 6 A; theory. As the
number of primary fields is rapidly increasing with the rank and level, most applications
of our prescription which lead to physical invariants involve rather complex expressions;
therefore we will not display more complicated examples explicitly.

Actually the invariant (7.3.11) can also be obtained from genuine Galois transforma-
tions. An example for a physical modular invariant which cannot be explained that way,
but which is obtainable as a linear combination of quasi-Galois invariants is the exceptional
E7-type invariant of A; at level 16. However, the concrete expression is rather lengthy so
that we refrain from presenting it here. As we shall see later, also for the E;-type invariant
there exists a close relation to the matrix Z(®) displayed in (7.3.10) even though they are
invariants at different heights.

7.4 S-matrix invariants: increasing and lowering the height

In this section we consider the special case where the scaling factor £ € 7 is a divisor of
the height; to simplify notation, we will make this explicit by denoting the height of the
theory to which the scaling is applied by fh. As we will see, in this situation there exist
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intimate relations between the WZW theories at height £A and at height ~. As we are now
dealing with weights at two distinct heights, we find it convenient to denote the elements
of P, by lower case and the elements of Py, by upper case roman letters, respectively.
Similarly, we use the capital letter ‘S’ for the S-matrix of the height ¢h theory and the
symbol ‘s’ for the S-matrix of the height h theory.

Before describing the relationship between height 2 and height ¢h theories, let us first
prove another new symmetry property of the S-matrix: if the height is divisible by ¢, then
for any B € Py, the signed S-matrix elements

6((0) . Sla,C (7.4.1)

are identical for all C' € X7*(B). To check this statement, take any fixed B € Py, and any
C € ¥7!(B). Then considering weights of the form A = fa with a € P, and using the
fact that 6C = we(£C) + Lhtc with we € W and t¢ € LY, as well as ¢(C) = sign(w,),
we find ]

Stac =N Y sign(w) exp[— 22 (w(la), € w5 (B) + htt)]

weW
=N E sign(w) exp[—zTﬂ-i (wew(a),f ' B)] (7.4.2)
weW
= sign(w¢) - N Y sign(w exp[—z%-i(w(a),f_lB)].

weWw
The only dependence of the right hand side on the weight C' is thus via the sign €,(C) =
sign(wg ), and hence we have established the symmetry (7.4.1).
The primary WZW fields ¢, and ¢, which are associated to the weights in P, and in
Py, respectively, can be viewed as the generators of the fusion rings Rj and Ry, of the
height h and height /A WZW theories, respectively. Let us introduce the mappings

P: R — Rn
¢)A — P ¢)A Z PAb Pp » PA,b = EZ(A) 60"A,lb (743)
and
D: Rn— Ren
a '_> D Soa’ Z D a,B ¢’B 9 Da,B = 6la,B (74:4:)
BePy,

between these two fusion rings. Note that because of
f_ldA == f_l (wA(EA) + fh tA) == wA(A) + htA (745)

with wy € W and t4 € LV for any A € Py, the weight /716 A is integral and either an
element of P, or else on the boundary of an affine Weyl chamber at height h. Also, P,p =1
(here the first label b is to be considered as an element of Py, ) which shows that the map
P is always non-zero.

The relation (7.4.5) implies that there is a close connection, which will prove to be useful
later on, between the conformal dimensions A mod 7 of all those fields which belong to the
same pre-image under the map ¢. Namely, from the definition A, = [(a,a) — (p,p)]/2h of
the conformal dimensions at height h (and the fact that any Weyl group element w € W
is an isometry), it follows that

L(Ap — AL) = (2RE) 7 [(a + hty,a + hty) — (a + ht.,a + ht.)]

(7.4.6)
=07 (a,ty — te) + L REY (s, 1) — (teyte)]
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for b,c € X7 (a); we will use this equation only modulo Z. 5ince %, t. € LY, we have
(a,tp) € Z, (tsyts) € 2Z, and analogously for ¢., and hence the right hand sight of (7.4.6)
is an integral multiple of £~!. If in addition the height is divisible by £, then according to
(7.4.5) this is also true for the Dynkin components of any a for which ¥7!(a) is non-empty,
and hence in this case the right hand side is in fact an integer, so that A, — A, € £7'Z
for h = {h' and b,c € ¥7!(a). In the notation appropriate to the height £k theory we thus
have, for all A € Py,

Ap—Acet'7  for B,Ccx'(4). (7.4.7)

The relevance of the maps P and D that we introduced in (7.4.3) and (7.4.4) comes
from the fact that they provide direct relations between the two modular matrices S and
s. Namely, denoting the rank of g by r, we find

SDt=(T"?Ps (7.4.8)
PtS=1"%sD. (7.4.9)
Equivalently, by taking the transpose, we can write these identities as

DS =("/?spt (7.4.10)
SP={("D's. (7.4.11)

To prove (7.4.8), we first separate the height-independent part of the normalization
factor A/ in the Kac-Peterson formula (7.2.3) from the rest,

N =Ngy =i | LY V| 2R = A 2N (7.4.12)
where d is the dimension of §. Then we compute

(SD*)ap = Saw = (Lh) 2N Y sign(w) exp[— 22 (w(A), £b)]

weWw

= (th) " NS sign(w) exp[—22 (w(A), b))

weWw

(7.4.13)

and, once again making use of 64 = wa(¢A) + lhty with wa € W and t4 € LY, and of
ee(A) = sign(w,),

(Ps)ap = €e(A)sp-154p = h_’"/2Nsign(wA) E sign(w) exp[—zTﬂ-i (w(wa(A)+ hta),b)]

weWw

= h PN E;Vsign(w) exp|— 28 (w(4),b)].
“ (7.4.14)

Comparing (7.4.13) and (7.4.14), we obtain (7.4.8).

The relation (7.4.9) can now be proven by multiplying (7.4.8) from the left with the
hermitean conjugate ST of S and from the right with s*. Using the unitarity of S and s
and taking the hermitean conjugate yields (7.4.9).

We can now apply the results just proven to the construction of S-matrix invariants,
both at height h and at height /h. Namely, assume first that the matrix Z belongs to the
commutant of the S-matrix of the height A theory, i.e. that

[Z,8] = 0. (7.4.15)
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Further, define

2:=P'ZD'+DZP. (7.4.16)
Explicitly, we have
Zap= >, e«lA)Zaw+ Y, e&(B)Zus- (7.4.17)
AeXx1(da) BeX~1(4b)

Using (7.4.15) as well as the relations (7.4.8) — (7.4.11) proven above, we can then derive

that
5s=PtZDts+DZPs=4"2PtZSP+ (/2D ZS Dt

(7.4.18)
={"?P'SZP+?DSZD*=sDZP+sP'ZD'=s%.
Similarly, let z be an S-matrix invariant of the height h theory,
[2,s] =0, (7.4.19)
and define )
Z:=D'zP'+PzD. (7.4.20)

Using the convention that z,; = 0 whenever a or b is not in P, the matrix elements of Z
read

ZA,B = E((A) zl_lé'A,l—lB —|— Gl(B) zl_lA,l_lo"B . (74:2].)
By employing (7.4.19) and again (7.4.8) — (7.4.11), we obtain

ZS=Dt2PtS+P2DS=/("2Dt2sD 14 "/2P s Pt

/2 Dt /2 t t t 5 (7.4.22)
—4"2Dts2 D+ 4 "/2Ps,Pt=SP2D+SDt2Pt=S7.

We have thus proven the following remarkable facts: Given an S-matrix invariant Z at
height £h, the formula (7.4.16) provides us with an S-matrix invariant Z at height A,

2,s] = 0; (7.4.23)

and conversely, given an S-matrix invariant z at height A, the formula (7.4.20) defines an
S-matrix invariant Z at height (h, 5
[Z,S]=0. (7.4.24)

Not surprisingly, the prescriptions (7.4.16) and (7.4.20) do not respect positivity, i.e. even
if Z (respectively z) is a positive invariant, this needs not hold for 2 (Z)

As an example, let us take for Z the exceptional invariants of A; which occur all
at heights a multiple of 6, namely for A = 12,18,30, and obtain from them by (7.4.16)
invariants of A; at height 6. For h = 12 and h = 30 the prescription (7.4.16) yields the
zero matrix. More interesting is the E;-type invariant at A = 18; in this case Z is precisely
the quasi-Galois invariant (7.3.10) obtained in the previous section.

Note that the maps (7.4.3) and (7.4.4) are related to the map II introduced in (7.3.1)
by Il = PD:

HA,B = El(A) 53,5,‘4 = Z El(A) 5[6,5,‘453,(6 = Z PA,ch,B . (7425)

cEPh cEPh

The prescription (7.4.20) actually provides a generalization of the quasi-Galois S-matrix
invariant (7.3.8). Namely, according to (7.4.25), when considering the diagonal invariant
z =1, (7.4.20) yields

Z=PD+D'P'=T+1II, (7.4.26)
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1.e. reproduces the invariant (7.3.8). A still more special case 1s obtained by performing the
scaling by the factor £ at height £g¥. Then the smaller level is in fact zero, so that there
is a single primary field with shifted weight ¢ = p, and hence a single nontrivial invariant
Zap = bap0bp. In this situation, (7.4.21) reads

Z~A,B = 5‘4,(/, Z 6((0) 53,0 —|— 53,(/, Z 6((0) 5‘4,0 . (7427)

Cex—1(4p) Cex~1(4p)

In applications (see in particular Section 7.5 below) it is often not the matrix (7.4.27) that
is directly relevant, but rather the combination

7 :=27%—2¢(tp) Z (7.4.28)

(compare the similar formula (7.3.11)). The entries of (7.4.28) read

ZAA,B = |§]_1(fp)| 5‘4,(/,53,(/, —|— Z El(O)El(D) 5‘4,0 6B,D ) (7429)
C,DeE-1(4p)
where )
Y Ulp) =X () \ {Lp}. (7.4.30)

Note that in the invariant Z only fields belonging to Y~ (€p) get mixed; by (7.4.7) this
implies that Z is not only S-invariant, but also invariant under T%. It is also easily checked
that 22 = 151 (4p)| 7, so that by taking powers of Z we cannot produce any new invariants.

We can also apply the constructions (7.4.20) and (7.4.16) consecutively to a height h
S-matrix invariant, or in the opposite order to a height ¢h invariant. The computation
then involves the identities PD = II, DD* = 1, P*P = ("1, as well as DP = 7 and
D'D = Q with

Tap := €(£a) o o(ta) (7.4.31)
and
Qap:=04B" > basm- (7.4.32)
bePy,
We find
Z=U" 24+ 12w + wltent (7.4.33)

and a similar formula for Z. The result (7.4.33) means that whenever z commutes with s,
then so does the matrix mzr+7’z7w’. Also note that in (7.4.31) the map & is the quasi-Galois
transformation with scale factor £ at height £h. This implies that 6(¢a) = £ (we(£a)+ hte,),
and hence the §-symbol in (7.4.31) imposes the constraint that the weight b is related to
a by a quasi-Galois transformation with the same scale factor £, but now at height h. In
other words, as already anticipated in the notation, the map # = DP implements the same
quasi-Galois scaling for the height h theory as the map Il = PD (7.4.25) implements for
the height {h theory.

7.5 Conformal embeddings

Conformal embeddings are embeddings g < h of untwisted affine Lie algebras for which the
irreducible highest weight modules possess finite branching rules. The explicit form of these
branching rules has been determined for various cases (see e.g. [93,94,141,21,80,5,140]),
but a general formula is not known, and there are still many conformal embeddings for
which all known methods are inapplicable.
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The list of conformal embeddings [125,9] contains several infinite series. Here we are
interested in a particular infinite series, namely the embedding g,v — 8§6(d),, i.e. of g
at level g¥ (with g an arbitrary untwisted affine Lie algebra) into $6(d), with d = dim g,
at level one. In terms of the horizontal algebras, the embedding is the one for which
the vector representation of so(d) branches to the adjoint representation of the smaller
algebra g. Such embeddings are of particular interest because they are connected with the
‘fermionization’ [8,74,41] of WZW models with level gV, which is due to the fact that s6(d)
can be written in terms of free fermions. This will play a role in the following.

The diagonal level one §6(d) partition function is

Zoo@a) (T, 7) = [X|? + | X + | K] + | Xe|? for d even (7.5.1)

and

Zooa)(1,7) = | X|? + | X P + || for d odd, (7.5.2)

where 0,v,s and c refer to the singlet, vector, spinor, and conjugate spinor representation
of so(d), respectively. Our objective is to write each of these characters in terms of the
characters x4 of g at level g¥.

The branching rule for the §6(d) spinor(s) is already known explicitly ([91], see also [75,
94,42]). Up to a multiplicity, they branch to a single irreducible representation, namely the
one whose (unshifted) highest weight is the Weyl vector p. We will denote this irreducible
representation by L,. The dimension of the analogous irreducible representation of the
horizontal algebra g is 2¥+, where N, = (d — r)/2 is the number of positive roots (and r
is the rank of g); hence the multiplicity with which L, is contained in the §6(d) spinors
is 27/271 if d is even, and 2""1/2 if d is odd. A closed formula for the branching rules
of the 56(d) singlet and vector is also known [94], but (see (7.5.20) below) it involves the
image W(p) of the Weyl vector under the affine Weyl group and hence is not convenient for
explicit calculations. (As a matter of fact, only in very few cases, such as for g = G, [21],
the branching has already been determined explicitly.) Accordingly, we will not employ this
formula, but rather prove an equivalent formula which allows for an immediate evaluation
on a computer. To start, we make the following general ansatz for the relation between
level one §6(d) and g,v characters:

on E mé&XA, Xv: E m‘f&XA, Xs:Xc:2r/2_1Xp (753)
AEng AEPgV

for d even, and

X, = E mf X4 X, = E mf XA s X, = 2(’"_1)/2)(/) (7.5.4)
AEng AEPgV

for d odd. Here and below we label the integrable g,v representations by their unshifted
highest weights (in particular we will use A = p in place of a = 2p); accordingly, the
summations in (7.5.3) and (7.5.4) are over the unshifted fundamental chamber P,v(g);
also, m, and m, are non-negative integral vectors in the space of all characters. The
equality of the decomposition of the two 56(d) spinor characters for even d implies that
these representations will appear as a fixed point of order 2 in the g,v modular invariant.
Hence the invariant will have the form

Zee=| Y, mAxuP+ 1Y) mix,P+2- 2772y, (7.5.5)
AEng AEPgV
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for d even, and

Zee=| D mAxaP+| D0 mAxyP+ 20702, (7.5.6)
AEng AEPgV

for d odd.

The identity and vector characters of s6(d) branch to distinct ggv characters, since
the difference of conformal dimensions of identity and vector is non-integral. Thus the
vectors m, and m, are orthogonal. We will focus first on the cases where also the spinor(s)
have different conformal weights modulo integers than identity and vector, which holds if
d # 0 mod 8, compare (1.4.9). Then by the same argument the spinor(s) branch to different
g,v characters than identity and vector characters, and hence we have m? = m? = 0. This
situation is covered by the following simple theorem. Consider any S-invariant (such as

(7.5.5), (7.5.6)) that is a sum of squares, i.e. of the form

M= "N, | Y mlx,l*. (7.5.7)
)

AEng

This can be written as EA’AIEPQV XaMy a1 X4, Wwhere M is the matrix with entries
A A
MA’AI = Z Np IIlp IIlp . (758)
P

Further, suppose that the vectors m, are orthogonal,

E mzf‘ mzﬁ = R,0,p . (7.5.9)

AEng

Let us also impose the physical requirement that there is a unique vacuum, i.e. that M
satisfiles Moo = 1; then among the vectors m, there must be precisely one, conventionally
labeled by p = 0, which contains the identity character, i.e. we must have Ny = 1 and
m; = 1. Next consider the matrix M?; it has entries (M?), ,» = 3, N;Rpmzf‘ mzfv; in
particular, (M?)go = Ro. Thus the matrix M? — RyM has entries (M? — RoM)ppn =
Ep(NjRp — N,Ry) mzf‘ mzfv. Finally, the square Z of the latter matrix has entries

Zan = ([M? — RoM)*)par = > (NpR, — Ro)’N,R,m2m}' . (7.5.10)

p

This is a manifestly non-negative matrix, it obeys Zgo = 0, and because it is a polynomial
in M it commutes with S. Thus 0 = Z,, = EA,Alepgv SoaZaaSonr > 0, with equality
only if Zy or = 0 for all A,A’ € P,v; i.e., any such matrix must vanish. By (7.5.10), the
vanishing of Z implies that for any p the sum rule

N, Y (m})?=N,R, = Ro (7.5.11)

AEng

holds. This is equivalent to the property M2 = RyM, so that M is idempotent up to a
normalization.

In the situation of our interest, these sum rules give useful information because we
know N, and m, for the spinor characters. For even d, the spinors have N = 2, and hence
(7.5.11) tells us that

R,=N,R, =2 (27 =21, (7.5.12)
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and for d odd we get
R, = N,R, = (200~1/%2 = gr—1 (7.5.13)

Since for d # 8 mod 16 the vector representation of level one §6(d) has different conformal
dimension modulo integers than the other representations, we have N, = 1. As we will see
below, the matrix M has all entries except the spinor entries equal to 0 or 1, and in that
case the sum rule (7.5.11) tells us that the identity and the vector of §6(d) each branch to
27! different irreducible representations of the conformal subalgebra g.

For the following argument it is convenient to summarize the spinor branching rules in
(7.5.3) and (7.5.4) as X, = 2I"/2y,, where [n] stands for the integer part of n, and where
X, = X, for odd d and X, = (X, + X.)/2 for even d. Then by performing the modular
transformation 7 — —1/7 and using the explicit form of the S-matrix of the §6(d) theory,
we have

olr/21=r/2 (x, — x,)(r) = js(_l) — 2[’"/2]Xp(_l) =202 N (Sy),axalr). (7.5.14)

T T AEng

This formula holds in fact for the full characters, not just for the Virasoro specialized
ones. Since the full characters form a basis of the relevant module of SL(2,7), and since
in the expansions of X, and X, into powers of ¢ = exp(2wir) the fractional powers of g
are different, it follows that (7.5.14) already determines the branching rules of the singlet
and vector characters uniquely. In particular the knowledge that x, must appear with
multiplicity one in the branching rule for X, implies that (Sg)p,ﬂ = 27"/2 and that for any
A€ Py, (Sg)p’A must be an integral multiple of this number.

All the properties of the conformal embedding invariants that were obtained above fol-
low by rather general arguments. We will now discuss how one can obtain these invariants
(i.e. the form of the vectors m, and m,) in a much more explicit manner by employing a
quasi-Galois scaling by a factor 2. Thus consider g at height A = 2g", and the quasi-Galois
scaling £ = 2. Applying the prescription (7.4.20), we obtain the special case £ = 2 of the
S-matrix invariant (7.4.29). In terms of unshifted weights, (7.4.29) reads

ZAA’A: = |§]_1(p)| 6A,p6A’,p + E e(,u,)e(,u') 6A:N 6A’,u’ . (7515)

' €51 (p)

As it turns out, the sign € is not constant on ¥7!(p), so that (unlike in the, otherwise
similar, situation of (7.3.10)) the invariant Z (7.5.15) is not positive. By the remark after
(7.4.30) it follows, however, that it does commute with T2

Furthermore, according to (7.2.9) we have

€(0) (Sg),a = €(0) (Sg)s0a = €(A) (Sg)osa (7.5.16)
for any A € P,v, and hence the observation after (7.5.14) implies that ¢(0) = 1 and
(Sg)pa = €(A)- 277/ (7.5.17)

for all A € P,v. Combining this information with (7.5.14) and the fact that the full
characters form a basis, we learn that

XO - Z XA ) XV - Z XA . (7.5.18)
aez—1(p) aez—1(p)
e(A)=1 e(A)=—1
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This is the announced closed formula for the branching rules of the embedding g —
so(dim g). Note that in terms of unshifted weights the explicit form of the quasi-Galois
transformation reads 2p = p+p = 6A + p = WA(2(A + p)) = 2wa(A + p) + 297 Ba with
wy € W and By € LY, which can be rewritten as

A =wy(p) = p— g wit(Bs) = alp) — p, (7.5.19)

where the last equality defines a unique element % of the affine Weyl group W at level g’
Thus our result (7.5.18) can be rewritten as

XO - Z XA, XV - Z XA (7.5.20)
AeP,vnR4 AeP,vnR_
with )
Ry :={w(p)—p|we W, sign(w) =+1}. (7.5.21)

The formula (7.5.20) has already been obtained in [94]. It is equivalent to (7.5.18), but for
explicit calculations has the disadvantage that it involves the sets R ; these sets are infinite
due to the fact that all elements of the affine Weyl group must be taken into account.

Let us describe some aspects of the formula (7.5.18) in more detail. First, for all simple g
except g = A, with r even, we observe the following. A certain number K of representations
with integer conformal weight is mapped via the quasi-Galois transformation to L, with
a positive sign; an equal number of representations with half-integer conformal weight
flows to L, with a negative sign; all other representations as well as L, itself flow to the
boundary. (This has been checked explicitly for rank less than 9; the continuation of this
specific result to higher rank is only a conjecture.) For A, with r even, there are two
differences with respect to the foregoing. First of all the numbers K and K’ of fields with
integral and half-integral conformal weight, respectively, that flow to L, are different, and
secondly L, does not flow to the boundary, but to itself. In this case d = r(r 4 2), which
is a multiple of 8, implying that the §6(d) spinor has integral or half-integral conformal
weight. The sign associated with the flow of L, to itself is plus or minus for these two cases
respectively.

In matrix notation, we thus have Z = II + II*, with

00 € 0
0 0 —€ 0
I = , (7.5.22)
0 0 €(p) O
00 0 O

for the matrix (7.4.20) that underlies (7.4.28), and hence

E -E 0 0

. “E E 0 0

7 = : (7.5.23)
0 0 K+K 0

0 0 0 0

Here the third column/row corresponds to L,, the first one to all K fields with integral
conformal weight which flow to L, under the quasi-Galois transformation, the second to
the K’ fields with half-integral weight flowing to L,, and the fourth to all remaining fields.
The symbol € stands for a K, respectively K’, component vector with all entries equal to
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1, and E = e ® e denotes the matrix of appropriate size (1.e., K X K, K X K', K’ X K,
and K’ x K', respectively) each of whose entries is equal to 1; the 0’s indicate matrices of
zeroes of the proper size. Thus in particular for all cases except A, with even rank, (7.5.23)
can also be written as

E -E 0 0

. ~E E 0 0

7= (7.5.24)
0 0 2K 0
0 0 0 0

with all matrices E of size K x K. Also recall that if L, flows to the boundary, then
€(p) = 0 so that the entry II, , of the matrix (7.5.22) vanishes. Further, if d is a multiple
of 8, then not only the matrix (7.5.23), but also

E —E e(p)€ 0

. . - —E E —e(p)€ 0
4=z 7 - 7.5.25
I (e e KK 2() 0 (7:5:29)

0 0 0 0

commutes with both § and T2

These results can be related to the conformal embedding invariant in the following way.
Consider first the case of even d. The diagonal 56(d) invariant can be written in terms of
Jacobi theta functions and the Dedekind eta function, using

_ d d _ d d
X, = %77 d/2(93/2 + 94/2)7 X, = %77 d/2(93/2 - 94/2) (7 5 26)
X, = Yo e, xo= Lyt —iiell) -

where the arguments 7 and z are suppressed ((7.5.26) reflects the possible description of
the 56(d) theory by free fermions). We are only considering Virasoro specialized characters
here, i.e. these functions are in fact 6;(z = 0,7). Since 61(z = 0,7) = 0, in this setting
the partition function (7.5.1) reads Zoq) = 3 || [|93|d + |64]¢ + |92|d] . This is modular
invariant because S interchanges 6, and 63, while T interchanges 6, and 6,, and all overall
factors cancel.

This diagonal partition function is however not the one we obtain from quasi-Galois
transformations. Using the modular transformation properties of the §-functions one can
write down another partition function that is only invariant under S and 7%, namely (fixing
the normalization such as to make the square of the identity character appear exactly once)
2so(d) = |p|~9/? [|94|d + |92|d] , or, re-expressed in terms of the §6(d) characters (7.5.26),

Zso(d) = |Xo - Xv|2 + |Xs + Xc|2 . (7527)

Both the diagonal modular invariant (7.5.1) and the partition function (7.5.27) contain
more information than one strictly gets from specialized characters; one may check ex-
plicitly that both are S-invariant if the spinor characters are distributed symmetrically, as
indicated.

If we write the matrix M corresponding to (7.5.27) in terms of g-representations we get
Eoo _Eov 0 0
_Evo Evv 0 0
, (7.5.28)
0 0 20 0
0 0 0 0



where (E,p)an = mzf mzﬁ'. The result (7.5.18) implies that E,, = Eoy = Eyo = Eyy = E,
or in other words, that m, = m, = €. Thus (7.5.28) can be identified with (7.5.24).
There is also an independent consistency check of this identification. Namely, we find that
K = 2771, 50 that both m, and m, have 2"~! components, each equal to 1. Hence they do
satisfy the sum rule (7.5.12), so this rather nontrivial requirement for the matrix

EO0 0 0
P (7.5.29)
< 0 0 271 0

00 0 0

to commute with S is fulfilled. The matrix (7.5.29) is the modular invariant that corre-
sponds to the branching rules (7.5.18). Note that the quasi-Galois symmetries imply that
(7.5.24) commutes with S and T2, while the step from (7.5.24) to (7.5.29) does not follow
from any symmetry we know.

If d is a multiple of 8, then the above argument has to be slightly extended. Since in
this case both (7.5.23) and (7.5.25) are S-T?-invariants, we have in addition to (7.5.29)
another matrix Z! _, and hence any physical linear combination Z(u,v) :=u Z... +v Z. _,
as candidates for the conformal embedding invariant. Explicitly, the matrix Z!  reads

E 0 € 0
0 E 0 0
7! = 7.5.30
c.e. et 0 27._1 + 62([)) 0 ( )
0 0 0 0
for d = 0 mod 16 and
E 0 0 0
0 E € 0
Z! = 7.5.31
c.e. 0 é»t 27._1 + 62(p) 0 ( )
0 0 0 0

for d = 8 mod 16, respectively. Fortunately, it is easy to eliminate all but one of the
candidates, namely by imposing the ‘quantum dimension’ sum rule

% = (Sso(d))o’o = Z (Sg)O,A (7532)

AEng

(here the summation is over all fields that are combined with the identity field). Inserting
the ansatz Z(u,v), we find that for the case of A, with even r, this yields the unique
solution w = 0, v = 1, so that (7.5.30), respectively (7.5.31), is the correct solution (and
we also have €?(p) = 1). In contrast, for all other cases where d is a multiple of 8 (such
as g=Fs), the unique solution is given by v = 1, v = 0, i.e. only (7.5.29) survives the
constraint (7.5.32). Thus in all cases except A, with r even the situation is the same as in
the general case where d is not divisible by 8.

For odd d the use of theta functions is somewhat awkward, but it suffices to observe

that the matrix
1 -1 0
M=] -1 10 (7.5.33)
0 2

0



commutes with the S-matrix

1 1 V2
Sew@=73 | 1 1 =2 (7.5.34)
V2 —v2 0

Written in terms of g-characters, (7.5.33) becomes identical to (7.5.28), and the rest of the
argument is as before.

In the notation of (7.5.15), the conformal embedding invariant (7.5.29) reads

-1
(Zee)anr =27 00000+ D Saubanw+ D Sauban, (7.5.35)
mr'ex—1(p) mr'ex—1(p)
e(n)=e(n')=1 e(n)=e(n')=-1

while (7.5.30) and (7.5.31) with €(p) = +1 can be summarized as

(Zee)anr =27+ 1)6apbnp+ D Saubarw+ Y Saubarw.  (7.5.36)

mr'ex—1(p) mr'ex—1(p)
e(n)=e(n')=1 e(n)=e(n')=-1

(By inspection one easily verifies that these matrices commute with 7', that the correct
number dim(so(d)) — dim(g) = d(d — 3)/2 of spin one currents are combined with the
identity field, and that the ‘quantum dimension’ sum rule (7.5.32) is satisfied also for d
not a multiple of 8.) Note that in the summations in (7.5.35) and (7.5.36) (and also in
those for the branching rules (7.5.18) of X, and X,) the weight u = p does not contribute,
except for A, with even r, in which case it contributes to X, (if d = r(r 4+ 2) = 0 mod 16)
and to X, (if d = 8 mod 16), respectively.

Let us finally present some examples for the explicit form of the conformal embedding
invariants. The most interesting cases are those with exceptional g. The primary fields are
again labeled by their unshifted highest weights. We find

Z.e(Fs9)= (0,0,0,0)+(0,0,1,6)+(0,0,2,1)+ (0,1,0,0)
+(0,1,1,2) + (0,3,0,0) + (1,0,0,5)+ (1,1,0,4) |2
+1(0,0,0,7) + (0,0,2,0)+ (0,0,3,0) + (0,1,0,3)
+(0,1,0,6) + (0,2,0,2) + (1,0,0,0) + (1,0,1,4)|?
+2- |2(1717171)|2
(7.5.37)
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and

Z..(Es12) = 1(0,0,0,0,0,0) + (0,0,0,0,12,0)+ (0,0,1,0,0,0) + (0,0,1,0,9,0)
+(0,0,2,0,3,0)+ (0,1,0,0,5,2) + (0,1,0,2,1,0) + (0,2,0,0,1,0)
+(0,2,0,0,7,0) + (1,0,0,0,7,2) + (1,0,0,2,0,0) + (1,0,3,0,1,0)
+(1,1,1,0,3,1) + (1,1,1,1,1,0) + (1,2,0,0,5,1) + (1,2,0,1,0,0)
+(2,0,0,1,3,1) + (2,0,1,0,2,0) + (2,0,1,0,5,0) + (3,0,2,0,0,0)
+(3,0,2,0,3,0)+ (3,0,1,1,1,1)+ (3,1,0,0,2,1) + (3,1,0,1,3,0)
+(4,0,0,0,4,0)+ (5,0,0,2,1,1) + (5,0,0,1,0,2) + (5,0,1,0,2,0)
+(7,0,0,2,0,0) + (7,0,0,0,1,2) + (9,0,1,0,0,0) + (12,0,0,0,0,0) |2

+1(0,0,0,0,0,1) + (0,0,0,0,6,3) + (0,0,0,1,10,0) + (0,0,0,3,0,0)
+(0,0,4,0,0,0)+ (0,1,0,0,8,1) + (0,1,0,1,0,0) + (0,1,2,0,2,0)
+(0,2,0,0,4,2) + (0,2,0,2,0,0) + (0,3,0,0,0,0) + (0,3,0,0,6,0)
+(1,0,1,0,4,1) + (1,0,1,1,2,0) + (1,1,0,0,6,1) + (1,1,0,1,1,0)
+(2,0,2,0,2,1)+ (2,0,2,1,0,0) + (2,1,0,1,2,1) + (2,1,1,0,1,0)
+(2,1,1,0,4,0)+ (3,0,0,0,3,1) + (3,0,0,1,4,0) + (4,0,0,2,0,2)
+(4,0,1,0,1,1) + (4,0,1,1,2,0) + (4,1,0,0,3,0) + (6,0,0,0,0,3)
+(6,0,0,1,1,1) + (6,0,0,3,0,0) + (8,0,0,1,0,1) + (10, 1,0,0,0, 0) |2

+2-]4(1,1,1,1,1,1) 2
(7.5.38)
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Zc.e.(E7,18) —

|(0,0,0,0,0,0,0)+ (0,0,0,0,0,10,4)+ (0,0,0,0,0,1,3)+ (1,0,0,0,0,12,2)
+(0,0,0,0,1,16,0) + (0,0,0,0,4,0,2)+ (4,0,0,0,0,7,1)+ (0,0,0,0,5,0,0)
+(0,0,0,1,0,0,1) + (0,0,0,1,0,0,3) + (0,1,0,0,0,10,2)+ (0,1,0,0,0,0,0)
+(0,0,0,1,1,0,1)+ (0,2,0,0,0,12,0) + (0,0,0,3,0,4,1)+ (0,3,0,0,0,4,0)
+(o0,0,0,6,0,0,0)+ (0,0,1,0,0,14,0) + (1,0,1,0,0,8,2)+ (0,0,1,0,1,1,1)
+(2,0,1,0,0,10,0) + (3,0,1,0,0,5,1) + (0,0,1,0,3,2,0)+ (0,3,1,0,0,2,0)
+(0,0,2,0,0,1,1) + (0,0,2,0,0,8,0)+ (0,0,2,0,3,0,0)+ (0,0,3,0,0,6,0)
+(0,1,0,0,2,0,2)+ (2,0,0,1,0,8,1)+ (0,1,0,0,3,0,0)+ (0,1,0,1,2,2,1)
+(2,1,0,1,0,5,0)+ (0,2,0,1,0,2,1) + (0,1,0,2,0,6,0)+ (0,1,0,4,0,2,0)
+(1,0,1,1,0,6,1)+ (0,1,1,0,1,2,0) + (2,1,1,1,0,3,0) + (0,1,1,2,0,4,0)
+(0,1,2,0,1,0,0)+ (2,0,0,2,0,3,1)+ (0,2,0,0,2,4,0)+ (0,2,0,2,2,0,0)
+(o0,3,0,2,0,0,0)+ (0,2,1,0,2,2,0)+ (2,1,0,3,0,1,0) + (0,4,0,0,3,0,0)
+(0,5,0,0,1,0,0)+ (3,0,0,0,1,6,2)+ (1,0,0,0,3,1,1) + (4,0,0,0,1,8,0)
+(1,2,0,0,1,3,1) + (1,0,0,2,1,4,0) + (1,0,1,0,2,1,1) + (2,0,1,0,1,6,0)
+(1,0,1,2,1,2,0) + (2,0,2,0,1,4,0) + (1,1,0,1,1,4,1) + (1,1,0,1,1,3,0)
+(1,3,0,1,1,1,0) + (1,1,1,1,1,1,0) + (1,2,0,2,1,2,0) + (2,0,0,4,1,0,0) |?
+1¢(o,0,0,0,0,18,0)+ (0,0,0,0,0,0,4) + (0,0,0,0,0,11,3) + (0,0,0,0,1,0,2)
+(1,0,0,0,0,0,0)+ (4,0,0,0,0,6,2)+ (0,0,0,0,4,1,1) + (5,0,0,0,0,8,0)
+(0,1,0,0,0,13,1) + (0,1,0,0,0,9,3) + (0,0,0,1,0,1,2)+ (0,0,0,1,0,15,0)
+(1,1,0,0,0,11,1) + (0,0,0,2,0,0,0) + (0,3,0,0,0,3,1)+ (0,0,0,3,0,5,0)
+(o0,6,0,0,0,0,0)+ (0,0,1,0,0,0,0) + (0,0,1,0,1,0,2) + (1,0,1,0,0,9,1)
+(0,0,1,0,2,0,0)+ (0,0,1,0,3,1,1) + (3,0,1,0,0,6,0) + (0,0,1,3,0,3,0)
+(0,0,2,0,0,7,1) + (0,0,2,0,0,2,0) + (3,0,2,0,0,4,0) + (0,0,3,0,0,0,0)
+(2,0,0,1,0,7,2) + (0,1,0,0,2,1,1) + (3,0,0,1,0,9,0) + (2,1,0,1,0,4,1)
+(0,1,0,1,2,3,0)+ (0,1,0,2,0,5,1)+ (0,2,0,1,0,3,0)+ (0,4,0,1,0,1,0)
+(0,1,1,0,1,1,1) + (1,0,1,1,0,7,0) + (0,1,1,1,2,1,0) + (0,2,1,1,0,1,0)
+(1,0,2,1,0,5,0)+ (0,2,0,0,2,3,1) + (2,0,0,2,0,4,0) + (2,2,0,2,0,2,0)
+(0,2,0,3,0,3,0)+ (2,0,1,2,0,2,0)+ (0,3,0,1,2,1,0) + (3,0,0,4,0,0,0)
+(1,0,0,5,0,1,0)+ (1,0,0,0,3,0,2)+ (3,0,0,0,1,7,1) + (1,0,0,0,4,0,0)
+(1,0,0,2,1,3,1)+ (1,2,0,0,1,4,0) + (2,0,1,0,1,5,1) + (1,0,1,0,2,2,0)
+(1,2,1,0,1,2,0)+ (1,0,2,0,2,0,0) + (1,1,0,1,1,2,1) + (1,1,0,1,1,5,0)
+(1,1,0,3,1,1,0) + (1,1,1,1,1,3,0) + (1,2,0,2,1,0,0) + (1,4,0,0,2,0,0) |?

+2-18(1,1,1,1,1,1,1) |2
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Zc.e.(E8’30) = |(o,0,0,0,0,0,0,0) + (0,0,0,0,0,0,0,3) + (0,0,0,0,0,0,0,10) + (0,0,0,0,0,0,7,0) + (0,0,0,0,0,1,0,1)
+(0,0,0,0,0,1,1,1) + (0,0,0,0,1,0,1,1) + (0,0,0,0,1,0,5,0) + (0,0,0,0,4,0,0,0) + (0,0,0,1,0,0,0,0)
+(o0,0,0,1,0,0,3,0) + (0,0,0,1,0,4,0,0) + (0,0,0,1,1,0,1,0) + (0,0,0,2,0,0,4,0) + (0,0,0,3,0,0,0,0)
+(o0,0,0,3,0,0,0,4) + (0,0,0,6,0,0,0,0) + (0,0,1,0,0,0,3,1) + (0,0,1,0,0,2,3,0) + (0,0,1,1,0,1,1,0)
+(0,0,2,0,0,3,0,1) + (0,0,2,0,1,0,3,0) + (0,0,2,0,3,0,0,0) + (0,0,2,1,0,1,0,0) + (0,0,3,0,0,0,0,6)
+(0,0,4,0,0,0,0,1) + (0,0,4,0,0,0,3,0) + (0,1,0,0,0,0,0,0) + (0,1,0,0,0,0,5,0) + (0,1,0,0,1,0, 3,0)
+(0,1,0,0,2,2,0,0) + (0,1,0,1,0,2,2,0) + (0,1,0,1,2,0,0,2) + (0,1,0,2,0,0,2,0) + (0,1,0,4,0,0,0,2)
+(0,1,1,0,0,2,1,0) + (0,1,1,2,0,0,0,4) + (0,1,2,0,0,1,2,1) + (0,1,2,0,1,0,1,0) + (0,1,2,0,1,2,0,0)
+(0,1,4,0,0,0,1,0) + (0,2,0,0,2,0,2,0)+ (0,2,0,1,0,2,0,0) + (0,2,0,1,0,2,0,2) + (0,2,0,2,2,0,0,0)
+(0,2,1,0,2,0,0,2) + (0,2,2,0,0,1,0,1) + (0,2,2,0,1,0,2,0) + (0,3,0,0,2,0,0,0) + (0,3,0,1,0,0,2,2)
+(0,3,0,2,0,2,0,0) + (0,3,1,0,0,2,0,2) + (0,3,2,0,1,0,0,0) + (0,4,0,0,3,0,0,0) + (0,4,0,1,0,0,0,2)
+(0,4,0,2,0,0,2,0) + (0,4,1,0,0,0,2,2) + (0,5,0,0,1,2,0,0) + (0,5,0,2,0,0,0,0) + (0,5,1,0,0,0,0,2)
+(o0,6,0,0,1,0,2,0) + (0,7,0,0,1,0,0,0) + (0,8,0,0,0,0,3,0) + (0,9,0,0,0,0,1,0) + (1,0,0,0,0,0,5,1)
+(1,0,0,0,0,4,1,0) + (1,0,0,1,0,1,3,0) + (1,0,1,0,0,0,0,8) + (1,0,1,0,1,2,1,0) + (1,0,1,0,2,1,0,1)
+(1,0,1,1,0,0,0,6) + (1,0,1,1,0,1,2,0) + (1,0,1,2,1,0,0,2) + (1,0,3,0,0,0,2,1) + (1,0,3,0,0,2,1,0)
+(1,1,0,0,0,3,1,0) + (1,1,0,1,1,0,0,4) + (1,1,1,0,1,1,1,0) + (1,1,1,0,1,1,1,1) + (1,1,1,1,1,1,0,1)
+(1,1,3,0,0,1,1,0) + (1,2,0,0,1,1,0,3) + (1,2,0,2,1,0,0,2) + (1,2,1,0,1,0,1,1) + (1,2,1,1,0,1,1,1)
+(1,8,0,0,0,1,1,3) + (1,3,0,1,1,1,0,1) + (1,3,1,1,0,0,1,1) + (1,4,0,0,0,0,1,3) + (1,4,0,1,0,1,1,1)
+(1,5,0,1,0,0,1,1) + (1,6,0,0,0,2,1,0) + (1,7,0,0,0,1,1,0) + (2,0,0,0,3,0,1,0) + (2,0,0,1,0,3,0,0)
+(2,0,0,2,0,1,0,3) + (2,0,0,4,1,0,0,0) + (2,0,2,0,0,2,0,1) + (2,0,2,0,1,0,0,4) + (2,0,2,0,2,0,1,0)
+(2,1,0,0,2,1,0,0) + (2,1,0,1,1,0,1,2) + (2,1,0,3,0,1,0,1) + (2,1,1,1,0,1,0,3) + (2,1,2,0,1,1,0,0)
+(2,2,0,1,0,1,0,2) + (2,2,0,2,1,0,1,0) + (2,2,1,0,1,0,1,2) + (2,3,0,2,0,1,0,0) + (2,3,1,0,0,1,0,2)
+(2,4,0,0,2,0,1,0) + (2,5,0,0,1,1,0,0) + (8,0,0,0,1,0,0,6) + (3,0,1,0,0,1,0,5) + (3,0,1,0,2,0,0,1)
+(8,0,1,2,0,0,1,2) + (8,1,0,1,0,0,1,4) + (8,1,1,1,1,0,0,1) + (3,2,0,0,1,0,0,3) + (3,2,0,2,0,0,1,2)
+(3,3,0,1,1,0,0,1) + (4,0,0,2,0,0,0,3) + (4,0,0,4,0,0,1,0) + (4,0,2,0,0,0,1,4) + (4,1,0,3,0,0,0,1)
+(4,1,1,1,0,0,0,3) + (5,0,0,0,0,0,1,6) + (5,0,1,0,0,0,0,5) |?

+1(0,0,0,0,0,0,1,2) + (0,0,0,0,0,0,6,1) + (0,0,0,0,0,1,0,2) + (0,0,0,0,0,2,0,0) + (0,0,0,0,0,5,0,0)
+(o0,0,0,0,1,0,0,0) + (0,0,0,0,1,0,2,0) + (0,0,0,0,2,0,0,0) + (0,0,0,1,0,0,2,1) + (0,0,0,1,0,1,4,0)
+(o0,0,0,2,0,1,0,0) + (0,0,1,0,0,0,0,0) + (0,0,1,0,0,0,4,0) + (0,0,1,0,1,0,2,0) + (0,0,1,0,1,3,0,0)
+(0,0,1,0,3,0,0,1) + (0,0,1,1,0,1,3,0) + (0,0,1,2,0,0,1,0) + (0,0,1,3,0,0,0,3) + (0,0,2,0,0,0,0,7)
+(0,0,2,0,0,2,0,0) + (0,0,3,0,0,0,3,1) + (0,0,3,0,0,3,0,0) + (0,0,3,0,1,0,0,0) + (0,0,5,0,0,0,0,0)
+(o0,1,0,0,0,0,0,9) + (0,1,0,0,0,0,4,1) + (0,1,0,0,0,3,2,0) + (0,1,0,1,0,1,2,0) + (0,1,0,2,0,0,0,5)
+(0,1,1,0,1,1,2,0) + (0,1,1,0,1,2,0,1) + (0,1,1,1,0,1,1,0) + (0,1,1,1,2,0,0,1) + (0,1,3,0,0,0,1,1)
+(o0,1,3,0,0,1,2,0) + (0,2,0,0,0,3,0,0) + (0,2,0,0,2,0,0,3) + (0,2,0,3,0,0,0,3) + (0,2,1,0,1,0,2,1)
+(0,2,1,0,1,1,0,0) + (0,2,1,1,0,2,0,1) + (0,2,3,0,0,1,0,0) + (0,3,0,0,0,2,0,3) + (0,3,0,1,2,0,0,1)
+(o0,3,1,0,1,0,0,1) + (0,3,1,1,0,0,2,1) + (0,4,0,0,0,0,2,3) + (0,4,0,1,0,2,0,1) + (0,4,1,1,0,0,0,1)
+(o,5,0,0,0,0,0,3) + (0,5,0,1,0,0,2,1) + (0,6,0,0,0,3,0,0) + (0,6,0,1,0,0,0,1) + (0,7,0,0,0,1, 2,0)
+ (o0, 8,0,0,0,1,0,0) + (0,10,0,0,0,0,0,0) + (1,0,0,0,0,0,0,0) + (1,0,0,0,0,0,6,0) + (1,0,0,0,1,0,4,0)
+(1,0,0,0,3,1,0,0) + (1,0,0,1,0,8,1,0) + (1,0,0,2,0,0,3,0) + (1,0,0,2,1,0,0,3) + (1,0,0,5,0,0,0,1)
+(1,0,1,0,0,2,2,0) + (1,0,2,0,0,2,1,1) + (1,0,2,0,1,0,2,0) + (1,0,2,0,2,1,0,0) + (1,0,2,1,0,0,0,5)
+(1,0,4,0,0,0,2,0) + (1,1,0,0,2,1,1,0) + (1,1,0,1,0,2,1,0) + (1,1,0,1,1,1,0,2) + (1,1,0,3,1,0,0,1)
+(1,1,1,1,1,0,0,3) + (1,1,2,0,0,1,1,1) + (1,1,2,0,1,1,1,0) + (1,2,0,0,2,0,1,0) + (1,2,0,1,0,1,1,2)
+(1,2,0,2,1,1,0,0) + (1,2,1,0,1,1,0,2) + (1,2,2,0,1,0,1,0) + (1,3,0,1,0,0,1,2) + (1,3,0,2,0,1,1,0)
+(1,8,1,0,0,1,1,2) + (1,4,0,0,2,1,0,0) + (1,4,0,2,0,0,1,0) + (1,4,1,0,0,0,1,2) + (1,5,0,0,1,1,1,0)
+(1,s,0,0,1,0,1,0) + (1,8,0,0,0,0,2,0) + (2,0,0,0,0,4,0,0) + (2,0,0,1,0,0,0,7) + (2,0,1,0,1,0,0,5)
+(2,0,1,0,1,2,0,0) + (2,0,1,0,2,0,1,1) + (2,0,1,2,0,1,0,2) + (2,0,3,0,0,2,0,0) + (2,1,0,1,0,1,0,4)
+(2,1,1,0,1,1,0,1) + (2,1,1,1,1,0,1,1) + (2,2,0,0,1,0,1,3) + (2,2,0,2,0,1,0,2) + (2,2,1,1,0,1,0,1)
+(2,3,0,0,0,1,0,3) + (2,3,0,1,1,0,1,1) + (2,4,0,1,0,1,0,1) + (2,6,0,0,0,2,0,0) + (3,0,0,0,3,0,0,0)
+(3,0,0,2,0,0,1,3) + (3,0,0,4,0,1,0,0) + (8,0,2,0,0,1,0,4) + (3,0,2,0,2,0,0,0) + (3,1,0,1,1,0,0,2)
+(8,1,0,8,0,0,1,1) + (3,1,1,1,0,0,1,3) + (8,2,0,2,1,0,0,0) + (3,2,1,0,1,0,0,2) + (3,4,0,0,2,0,0,0)
+(4,0,0,0,0,1,0,6) + (4,0,1,0,0,0,1,5) + (4,0,1,2,0,0,0,2) + (4,1,0,1,0,0,0,4) + (4,2,0,2,0,0,0,2)
+(5,0,0,4,0,0,0,0) + (5,0,2,0,0,0,0,4) + (6,0,0,0,0,0,0,6) |?
+2-08(1,1,1,1,1,1,1,1) |
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Summary

Quantum field theory has proven to be a fundamental concept in modern physics and
has given surprising new insight into many mathematical structures. Its applications in
physics range from the standard model of elementary particle physics to the description
of excitations in solid state physics. In mathematics, ideas motivated by quantum field
theory have lead to new conjectures and novel proofs in many areas, e.g. the theory of
modular forms and number theory, algebraic geometry or the theory of low-dimensional
manifolds.

In two dimensions the structure of quantum field theories is particularly rich: while
for theories in four or more dimensions statistics is governed by the permutation group,
which restricts particles to have either bosonic or fermionic statistics, it is described in two
dimensions by the braid group which allows for particles with more general statistics, e.g.
anyons.

Another special feature of two dimensions is that in this case the conformal algebra
is infinite-dimensional. As a consequence there are particularly powerful algebraic tools
for the study of those two-dimensional quantum field theories which are covariant under
the conformal algebra. These conformal field theories are also of considerable interest in
several physical applications: they arise naturally in the description of critical behaviour of
two-dimensional systems in statistical mechanics and of ‘vacuum configurations’ in string
theory.

One aspect of two-dimensional quantum field theories which makes a large subset of
them accessible to explicit calculations is that in two dimensions the number of superselec-
tion sectors can be finite, in which case the theory is called rational. For certain rational
theories descriptions are known in which one can perform exact, and hence in particular
fully non-perturbative, calculations. One such description is the so-called coset construc-
tion. It allows to describe conformal field theories in the mathematical framework of affine
Lie algebras.

In this thesis various aspects of rational field theories are studied. In Part I we construct
explicitly examples for a particularly interesting subclass of conformal field theories: N = 2
superconformal field theories. These theories are, in addition to their invariance under the
conformal algebra, also invariant under an extended (N = 2) supersymmetry algebra.
In these models the operator product of certain fields gives rise to a nilpotent finite-
dimensional ring, the chiral ring. This ring structure allows to make contact to other
theories like topological field theories. Another important aspect of these models is that
they can be used as the inner sector of a space-time supersymmetric vacuum configuration
in heterotic string compactifications.

In Chapter 2 we construct explicitly many examples for these models using the coset
construction; we classify all coset conformal field theories which have N = 2 supersym-
metry and derive several general properties of these models, e.g. that the set of Ramond
ground state in these theories is invariant under charge conjugation. To obtain a fully
consistent coset conformal field theory, several non-trivial constructions are required, in
particular field identification fixed points, if they occur, have to be resolved. In Chapter
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2 we obtain a complete proof that the models under consideration in this thesis are fully
consistent conformal field theories.

As it turns out, distinct cosets can describe the same conformal field theory. In Chapter
3 we show that certain series of cosets for which rank and level (or simple functions thereof)
are interchanged describe in fact one and the same conformal field theory. In the proof we
use level-rank dualities for WZW theories which are also described in this chapter.

In Chapter 4 we use the models introduced in Chapter 2 to construct string vacua.
To use a conformal field theory in a compactification of the heterotic string one has to
implement several projections on it. It is explained how this can be done with the help of
simple currents. This prescription leads to the definition of the so-called extended Poin-
caré polynomial. We use this polynomial to compute the massless spectra of the string
compactifications based on the N =2 coset models constructed in Chapter 2.

In the investigations leading to the results presented in Part I of this thesis field identi-
fication fixed points had to be resolved. In a closer study of the theories which describe the
resolution procedure we found that the matrix S, which implements in these theories the
modular transformation 7 — —1/7 on the space of characters, possesses several surprising
symmetries. Closer examination revealed that such symmetries are in fact present in any
rational conformal field theory.

This new type of symmetry is the subject of Part II of this thesis. It is induced by
the Galois group of the algebraic number field which contains the entries of S. Galois
symmetry turns out to be extremely powerful: in Chapter 5 we show that it provides novel
methods for the study of fusion rings. The Galois symmetries induce automorphisms of
the underlying fusion rings; they can also be used to construct modular invariant partition
functions.

The tools developed in Chapter 5 are applied in Chapter 6 to the fusion rings of WZW
theories. It is shown that Galois symmetries can explain in a uniform way modular invari-
ants that had previously been constructed by various other methods, e.g. simple currents,
level-rank dualities or conformal embeddings. Moreover, in a systematic search, we discov-
ered several infinite series of previously unknown exceptional invariants for WZW theories
based on algebras of type B and D at level 2.

As it turns out, not all known modular invariants of WZW models can be explained
by Galois symmetries. However, in the special case of WZW models one can generalize
the method by allowing for more general mappings on weight space than Galois scalings.
These quasi-Galois symmetries are the subject of Chapter 7 of the present thesis. They
have various applications: they lead to sum rules for the elements of the modular matrix
S which can be used for the construction of modular invariants. Moreover, they relate
WZW theories at different levels and provide a powerful algorithm for the computation of
the branching rules of conformal embeddings.

141



Samenvatting (summary in Dutch)

Quantumveldentheorie speelt een belangrijke en fundamentele rol in de moderne natuur-
kunde en heeft geleid tot verrassende nieuwe inzichten in diverse mathematische structuren.
De toepassingen ervan in de natuurkunde lopen uiteen van het standaardmodel van de
elementaire deeltjes tot de beschrijving van excitaties in vaste-stof fysica. In de wiskunde
hebben ideeén uit quantumveldentheorie in velerlei gebieden geleid tot nieuwe vermoedens
en bewijzen; voorbeelden daarvan zijn de theorie van modulaire vormen en getaltheorie,
algebraische meetkunde en de theorie van laag-dimensionale variéteiten.

De structuur van quantumveldentheorieén is in het bijzonder in twee dimensies erg
interessant: daar waar in vier of meer dimensies de statistiek van deeltjes wordt bepaald
door de permutatiegroep, waardoor er slechts fermionen en bosonen mogelijk zijn, is het in
twee dimensies de vlechtgroep die deze rol speelt en zorgt voor de mogelijkheid van deeltjes
met andere statistiek, bv. anyonen.

Een andere bijzondere eigenschap in twee dimensies is dat de conforme algebra oneindig
dimensionaal is. Als gevolg hiervan kan er gebruik gemaakt worden van krachtige alge-
braische methoden om conform invariante quantumveldentheorieén in twee dimensies te
bestuderen.

Omdat in twee dimensies het aantal superselectiesectoren eindig kan zijn (de zoge-
naamde ‘rationele’ theorieén) staan veel tweedimensionale theorieén open voor expliciete
berekeningen. Voor sommige van die theorieén zijn er formuleringen waarin het mogelijk is
om exacte, en dus in het bijzonder niet-perturbatieve, berekeningen te doen. Eén van die
formuleringen is de zogeheten ‘coset’ constructie. De beschrijving van conforme veldenthe-
orieén op deze manier valt in het wiskundige kader van affiene Lie algebra’s.

In dit proefschrift worden verschillende aspecten van rationele veldentheorieén bestu-
deerd. In het eerste gedeelte construeren we expliciete voorbeelden uit een bijzonder inter-
essante subverzameling van conforme veldentheorieén, namelijk de N = 2 superconforme
veldentheorieén. Deze zijn niet alleen invariant onder de conforme algebra, maar ook
onder een uitgebreide (N = 2) supersymmetrie algebra. In deze modellen leiden de oper-
atorproducten van bepaalde velden tot een nilpotente, eindigdimensionale ring, de chirale
ring. Deze ringstructuur maakt het mogelijk contact te leggen met andere theorieén, zoals
topologische veldentheorieén. Een ander belangrijk aspect van deze modellen is dat ze
gebruikt kunnen worden voor de beschrijving van de interne sector van ruimte-tijd super-
symmetrische vacuumtoestanden in compactificaties van heterotische strings.

In hoofdstuk 2 werken we expliciet een groot aantal voorbeelden van deze modellen
uit door gebruik te maken van de coset constructie. De classificatie van alle coset con-
forme veldentheorieén met N = 2 supersymmetrie wordt uitgevoerd en diverse algemene
eigenschappen van deze modellen, bv. dat de verzameling van Ramond grondtoestanden in
deze theorieén invariant is onder ladingsconjugatie, worden afgeleid. Om te komen tot een
volledig consistente coset conforme veldentheorie is het nodig om een aantal niet-triviale
problemen op te lossen; in het bijzonder is het noodzakelijk dat de vaste punten die ontstaan
bij de identificatie van velden opgelost worden. In hoofdstuk 2 wordt het volledige bewijs
gegeven dat de modellen die in dit proefschrift worden behandeld inderdaad consistent
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Het is bekend dat verschillende cosets verschillende beschrijvingen kunnen geven van
één en dezelfde conforme veldentheorie. In hoofdstuk 3 wordt duidelijk gemaakt dat dit
verschijnsel optreedt voor bepaalde reeksen cosets die aan elkaar gerelateerd zijn door
verwisseling van de rang en de ‘level’ (of eenvoudige functies daarvan). In het bewijs
daarvan wordt gebruik gemaakt van level-rang dualiteiten voor WZW theorieén, die ook
in dit hoofdstuk worden beschreven.

In hoofdstuk 4 worden vervolgens de modellen uit hoofdstuk 2 gebruikt voor de con-
structie van stringvacua. Om in de compactificatie van de heterotische string gebruik te
kunnen maken van conforme veldentheorieén is het noodzakelijk om een aantal projecties
uit te voeren. Uitgelegd wordt hoe dit mogelijk is met behulp van ‘simple currents’. Deze
beschrijving leidt tot de definitie van het zogeheten uitgebreide Poincaré polynoom. Dit
polynoom wordt daarna gebruikt om het spectrum van massaloze toestanden van de op
N = 2 coset modellen gebaseerde stringcompactificaties uit hoofdstuk 2 uit te rekenen.

In het onderzoek uit het eerste gedeelte van dit proefschrift was het nodig om vaste
punten op te lossen. Bij nadere bestudering van de theorieén die dit proces beschrijven
hebben we gevonden dat de matrix S, die in deze theorieén de modulaire transformatie
7 — —1/7 op de ruimte van karakters beschrijft, verschillende verrassende symmetrieén
heeft. Verder onderzoek laat zien dat deze symmetrieén ook aanwezig zijn in alle andere
rationele conforme veldentheorieén.

Deze nieuwe symmetrie is het onderwerp van het tweede gedeelte van dit proefschrift.
Ze wordt geinduceerd door de Galois groep van het algebraische getallenlichaam die die
componenten van S bevat. Galois symmetrie blijkt bijzonder krachtig te zijn: in hoofdstuk
5 laten we zien dat ze leidt tot nieuwe methoden voor de bestudering van fusieringen. De
Galois symmetrieén induceren automorfismen van de onderliggende fusieringen; ze kunnen
ook gebruikt worden voor de constructie van modulair invariante partitiefuncties.

De gereedschappen die in 5 zijn ontwikkeld worden vervolgens in hoofdstuk 6 toegepast
op de fusieringen van WZW theorieén. We laten zien dat met behulp van Galois sym-
metrieén het optreden van bepaalde modulaire invarianten die eerder met andere metho-
den, zoals simple currents, level-rang dualiteiten en conforme inbeddingen zijn gevonden,
kunnen worden begrepen. Daarnaast hebben we in een systematische studie verschillende
oneindige reeksen van tot nog toe onbekende exceptionele invarianten van WZW theorieén,
gebaseerd op algebras van het type B en D op level 2, geconstrueerd.

Het blijkt dat niet alle modulaire invarianten van WZW modellen kunnen worden gevon-
den met behulp van Galois symmetrieén. In het bijzondere geval van WZW modellen is het
echter mogelijk om deze methode te generaliseren naar meer algemene afbeeldingen op de
gewichtsruimte dan de Galois schalingen. Deze quasi-Galois symmetrieén zijn het onder-
werp van hoofdstuk 7. Ze hebben verschillende toepassingen: ze leiden tot somregels voor
de elementen van de modulaire matrix .S, die gebruikt kunnen worden voor de constructie
van modulaire invarianten. Bovendien relateren ze WZW theorieén op verschillende levels
en leiden ze tot een krachtig algoritme voor de berekening van splitsingsregels van conforme
inbeddingen.
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