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Chapter �

Introduction

��� Conformal Field Theory in Physics and Mathematics

Conformal quantum �eld theory in two dimensions has stimulated many new developments
in both mathematics and physics and has catalyzed much fruitful interaction between these
two �elds� There are various good reasons to study these theories� and we will list a few
of them�

One motivation for physicists to investigate these theories comes from statistical me�
chanics� in the description of critical phenomena the renormalization 
group� has turned
out to be a very powerful tool� Applying it in the infra�red direction� the key idea is to
look at the system at a larger and larger scale� taking in a sense a poorer and poorer
magnifying glass� Technically this is achieved by integrating out degrees of freedom be�
longing to a larger and larger length scale� This way one obtains a �ow on the space of
all 	e�ective
 theories� At the critical point �uctuations occur at all length scales� hence
the trajectory of the critical point under the renormalization group contains a point which
the renormalization transformations leave �xed� Evidently� at the �xed point the e�ective
theory is covariant under rescaling� in fact� one can argue ���� that this is not only true
for rescalings� but also for general conformal mappings� at this point the theory can be
described by a conformal �eld theory� We will see that in the case of two dimensions� this
leads to particularly powerful tools� in this thesis we will restrict ourselves to this case�

A second important motivation from physics is string theory� any vacuum con�guration
of the string corresponds to a conformal �eld theory ����� In string theory� point particles
are replaced by one�dimensional objects� strings� Evolving in time� the string sweeps out a
two�dimensional surface� the world sheet� which is the analogue of the world line of a point
particle� The coordinates of space�time 	or some internal space
 can then be interpreted
as �elds de�ned on this world sheet� Any action now inherits � at least at the classical
level � not only symmetries from those of the target space� but symmetries also arise from
the fact that the action should be invariant under reparametrizations of the world sheet�
The latter include in particular conformal transformations� so that one ends up with a
conformal �eld theory� de�ned on the world sheet�

Quantum �eld theories in two dimensions show various particularly interesting features�
In four dimensions a quantum �eld theory can only describe particles with either bosonic or
fermionic statistics� exchanging two particles introduces a phase of �� to the wavefunction�
In two dimensions the situation is more involved� the phase depends in general on the path
along which the particles have been exchanged� Therefore� it is not the permutation group
which governs the statistics but rather the braid group� leading to anyons which generalize
the notion of bosons and fermions in higher dimensions� Braid group statistics ������� which
is in particular realized in two�dimensional conformal �eld theories has been proposed e�g�
as one clue to the understanding of phenomena like high TC superconductivity or the
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fractional quantum Hall e�ect�
A slightly more abstract motivation for the study of conformal �eld theories is that

they provide speci�c examples of quantum �eld theories which are by far more tractable
than conventional quantum �eld theories are� Quantum �eld theory has turned out to be a
key concept in many branches of physics� ranging from the standard model of elementary
particle physics to applications in condensed matter physics� e�g� in the description of
superconductivity�

Also for pure mathematics� quantum �eld theory in general� and conformal �eld the�
ory in particular� has turned out to provide a most inspiring source for intuition� It
has not only provided new insight in existing �elds 	a good example for this is mirror
symmetry ������ which� for the quantum �eld theory� simply corresponds to two di�erent
conventions for the assignment of u	�
 charges� but gives surprisingly deep insight into
the problem of 
counting� curves on certain varieties
� but has also provided new links be�
tween hitherto 	nearly
 unrelated areas of mathematics� involving e�g� C��algebras� their
representation theory� in�nite�dimensional Lie algebras� commutative algebra� the theory
of modular forms� number theory� di�erential and algebraic geometry� singularities and
catastrophe theory� link polynomials� just to name a few �elds�

One other spin�o� of conformal �eld theories are topological �eld theories which can
be obtained e�g� by twisting certain N � � superconformal theories� topological quantum
�eld theories have turned out to be a powerful tool to address various issues in algebraic
topology and geometry� We will construct explicit examples for N � � superconformal
theories in this thesis� In a di�erent way� conformal �eld theories are also closely related to
topological �eld theories in three dimensions� e�g� Chern��Simons theories which allow for
the construction of link invariants and invariants of three�manifolds� Also� there are close
connections to other types of quantum �eld theories which are of mathematical interest�
e�g� Toda �eld theories� and to integrable systems�

We have been careful to call quantum �eld theory only a source for intuition� unfor�
tunately the mathematical status of quantum �eld theory at present is far from being
satisfactory� In fact� many fundamental aspects remain to be clari�ed� e�g� a rigorous def�
inition of a path integral is still missing for many classes of quantum �eld theories� e�g� for
gauge theories� In general� all non�perturbative features deserve a better understanding�
We therefore feel that it is very important to have examples in which on can calculate many
quantities at a non�perturbative level� One part of this thesis will therefore be devoted to
a special construction of conformal �eld theories� the so�called coset construction� which
allows for an exact description of many interesting conformal �eld theories�

We want to emphasize that looking at examples is not a luxury� or simply a remedy for
physicists� lacking knowledge of higher mathematics� Experience has shown that this way
sometimes also surprising new insight can be obtained� a good example for this phenomenon
is again the discovery of mirror symmetry ������

The rest of this introduction is organized as follows� we will explain some of the aspects
of conformal �eld theory which are relevant for this thesis� Then we will present several
concrete examples of conformal �eld theories which will be basic ingredients and funda�
mental examples� free bosons compacti�ed on a circle� WZW theories� and coset conformal
�eld theories� We conclude the introduction by giving an outline of the rest of this thesis�
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��� Conformal �eld theory

����� The chiral symmetry algebra

A conformal �eld theory is by de�nition a 	two�dimensional
 �eld theory that is conformally
invariant in the sense that the space of all �elds carries a representation of the conformal
group respectively of the conformal algebra� This should be compared e�g� to the de�nition
of a Lorentz covariant theory in which the �elds carry representations of the Lorentz group
and in which� as a consequence� the excitations can be classi�ed by representations of the
relevant group respectively algebra�

At this point� one ought to de�ne what 
�elds� are� For a rigorous de�nition � which�
however� is beyond the scope of this introduction � one should therefore �rst choose an
axiomatic framework like e�g� the Wightman axioms ������ or the algebraic theory of su�
perselection sectors ����� However� each of these systems has to be slightly modi�ed to be
applied to two�dimensional conformal �eld theories� in the sense of the bootstrap approach
of Belavin� Polyakov and Zamolodchikov ����� so we refrain from presenting a more care�
ful analysis at this place and encourage the reader to think of 
�elds� as operator valued
distributions over 	Euclidean
 space�time� Assuming that space�time is compact� we are
led to consider theories which are de�ned on two�dimensional compact Riemann surfaces�
The operators themselves are linear mappings of some Hilbert space� the construction of
these spaces in concrete examples will be addressed in this thesis�

Although we deal with quantum �eld theories we will never use path integrals� In
fact� even if we disregard the problem of de�ning path integrals rigorously and decide to
work at a purely formal level� it is not clear at all whether for all of the models we are
going to discuss a path integral formulation does exist� The purely algebraic formulation of
quantum �eld theories we are going to use may not directly appeal to geometric intuition�
however� it has the crucial advantage that it allows for many exact calculations and that
it therefore enables us to explore quantum �eld theories with non�perturbative methods�

In particular� we do not describe these theories by a Lagrangian density� In fact� there is
no general argument known why any quantum �eld theory should be associated to an action
or even be a 
quantization� of a classical �eld theory� In the case of coset conformal �eld
theories there are several di�erent proposals for Lagrangians and we are� at present� far from
having reached a complete understanding� In practice� in the Lagrangian approach mostly
results have been reproduced which had already been derived in the algebraic approach 	see
e�g� ����� where some of the results of ����� are rederived
� this nicely demonstrates that
the algebraic approach is superior in its computational power to the geometric approaches
using Lagrangian densities� Many 
global� questions are especially di�cult to address in a
Lagrangian framework� One example for such global issues is modular invariance� which
e�g� leads� as we will see below� to the phenomenon of �eld identi�cation in coset conformal
�eld theories� it is therefore not surprising that this e�ect has not been noticed in the
description of these models as gauged sigma�models ���������

Let us now have a closer look at conformal �eld theories in two dimensions� since the
description of local quantum �eld theories which are also conformally invariant involves
several subtleties ���� ���� we will use here for simplicity a setting that is tailored to the
application of conformal �eld theory to string theory and statistical mechanics� Then
we can assume that space�time is Euclidean and compact� we restrict ourselves for the
time being to the case of a Riemann surface of genus �� From complex analysis it is
well known that the mappings of the 	compacti�ed
 complex plane that preserve angles
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are precisely the holomorphic mappings� Given the real coordinates x�� x� it is therefore
natural to introduce complex coordinates z� �z by z� �z � x�� ix�� All in�nitesimal conformal
transformations are then generated by mappings

z � z � �n where �n � �zn��� 	�����


The corresponding generators on functions

ln � �zn���z resp� �ln � ��zn����z 	�����


then span a Lie algebra with commutation relations

�ln� lm� � 	n�m
 lm�n � 	�����


and analogously for �l� In the sequel� our strategy will be to consider z and �z as two
independent complex variables� much in the spirit of 
Wirtinger calculus�� and to set �z
equal to the complex conjugate of z only at the end of our calculations�

It has been shown that the only anomaly the algebra 	�����
 can develop in a quantum
�eld theory can be described by a central elementC� which by de�nition commutes with any
other element of the algebra� This assertion� known as the L uscher��Mack theorem ������
only assumes that the Wightman axioms hold� that the system is invariant under dilatations
and that there exists a conserved symmetric energy�momentum tensor� The algebra which
re�ects the conformal symmetry in a two�dimensional quantum �eld theory is therefore the
Virasoro algebra Vir�

�Ln� Lm� � 	n�m
Ln�m �
C

��
	n� � n
�n�m�� � �C�Ln� � � � 	�����


The same facts can also be described using the energy�momentum tensor� conformal
invariance of the theory implies that it is traceless� It has a purely holomorphic zz�
component T 	z
 and a purely anti�holomorphic �z�z�component T 	�z
 � These components
can be thought of as generating functionals for the generators Ln�

T 	z
 �
X
n�Z

Lnz
�n��� 	�����


The eigenvalue of L� on a representation plays an important role� it is called the conformal
dimension� Its fractional part has the same value for all eigenvectors of L� in one irreducible
representation i� it will be denoted by !	i
�

It follows that the �elds should carry a representation of Vir � Vir for two complex
variables z and �z� Due to this direct sum structure� it is su�cient for many aspects to
restrict oneself to z and objects depending holomorphically on z� Again� there are more
rigorous arguments in one of the axiomatic frameworks ������ Each of these halves is
called a chiral conformal �eld theory� which is e�ectively a one�dimensional theory� more
precisely a one�dimensional theory on the circle� z � S�� the fact that the �elds depend
holomorphically on z implies that� to describe the theory on the complex plane� it is
su�cient to describe it on the unit circle�

However� we will see that even from a purely mathematical point of view conformal �eld
theory is not just representation theory of the Virasoro algebra� For instance� the value c
of the central element C appearing in 	�����
� the conformal or Virasoro anomaly� is the
same for any representation occurring in a given conformal �eld theory� Nonetheless� the

�



representation theory of the Virasoro algebra plays an important role and� fortunately� this
theory is well developed� As it turns out� certain values of the central charge c are especially
interesting� here only �nitely many inequivalent unitary irreducible representations exist�
in this case a theory is called rational�

From a physical point of view rationality is not a fundamental property of a conformal
�eld theory� However� it is of utmost practical importance� since it allows to perform
many explicit calculations� This way one can explore many structures which are highly
interesting from a mathematical point of view� e�g� rational fusion rings or rational Hopf
algebras ��������� a structure closely related to quantum groups�

For the Virasoro algebra rationality requires ���� that the value of the central charge
c is c � � � ��m	m � �
� where m is m � �� �� � � �� The series of rational conformal
�eld theories with these values of the central charge is called the Virasoro�minimal series�
However� for many interesting applications� e�g� in string theory� higher values of c are
required� In order to have still rational theories� one extends the Virasoro algebra to some
larger algebra� a so�called W�algebra� and looks for the irreducible representations of this
algebra� The latter is also called the chiral symmetry algebra or symmetry algebra W of
the conformal �eld theory� However� not any extension of the Virasoro algebra de�nes a
conformal �eld theory� rather� locality of the theory requires that also on the modules of
W the conformal weight is uniquely de�ned modZ� One important example in this thesis
are WZW theories� in which the symmetry algebra is the semi�direct sum of the Virasoro
algebra Vir and an a�ne Lie algebra� they will be discussed in some detail below� Let us
remark that minimal series also occur for chiral algebras larger than the Virasoro algebra�

Analogously to the conformal algebra� which is covered by the L uscher��Mack theorem�
in a quantum conformal �eld theory with symmetry algebra W there can arise central
elements in the chiral algebra� In any representation that occurs in a quantum �eld theory
these central elements have to be represented by numbers� the fundamental reason for this
is that central charges are never local� There is also a practical argument� we will see below
that frequently one needs expressions in terms of these charges which only make sense for
numbers�

Since in physics one imposes the condition that the energy is bounded from below� the
class of irreducible highest weight representations is singled out in our considerations� The
corresponding �elds which transform like the highest weight under the symmetry algebra
are usually called primary �elds� Primary �elds are thus in one�to�one correspondence with
the irreducible representations present in a conformal �eld theory�

����� Characters and modular invariance

An important tool for the description an irreducible representation of a chiral algebra is its
character� Characters are functions of one or several complex variables� which are de�ned
as traces of operators over the vector space which carries the irreducible representation�
The most important character� which can be de�ned for any chiral algebra� is the Virasoro
specialized character� It is a function of one complex variable � � which is convergent in the
upper complex half�plane� It is de�ned as

�R	� 
 �� trR e��i��L��
c
�� � � 	�����


A crucial observation is that the space of characters of the relevant representations of the
chiral algebra carries a representation of SL�	Z
� the double covering of the modular group�

�



On the modular parameter � the modular group acts as

� �� a� � b

c� � d
� a� b� c� d � Z � ad� bc � � � 	�����


The covering SL�	Z
 of the modular group is freely generated by two elements S�
T modulo the relations S� � 	ST 
�� S	 � �� for the modular group PSL�	Z
 this is
supplemented by the relation S� � �� S and T are represented on the modular parameter
� as

T � � �� � � � and S � � �� ��

�
� 	�����


the corresponding unitary matrices on the space of characters are correspondingly referred
to as S�matrix and T �matrix�

�R	� � �
 �
X
R�

TRR� �R�	� 
 and �R	��

�

 �

X
R�

SRR� �R�	� 
 � 	�����


From the de�nition 	�����
 we see that T is a diagonal unitary matrix while S turns out
to be a symmetric unitary matrix� We will see below that knowing the characters as
functions of � typically is not su�cient to determine S and T � one has rather to use the
full characters�

Recall that as a consequence of the 
Wirtinger� split into z and �z we decomposed a
conformal �eld theory into two chiral halves and consequently we obtain characters as
functions of � and �� for the two chiral halves� To recover the full conformal �eld theory�
one has to match both halves� for the coordinates this is done by the prescription that �z
should be the complex conjugate of z� Fields of the conformal �eld theory now carry a
representation of the direct sum of both chiral algebras W �W � For the conformal �eld
theory we have to specify how often the irreducible representation labelled by i of W is
combined with the irreducible representation j of W� these non�negative integer numbers
Zij can be combined into a matrix Z� The partition function of the conformal �eld theory
is then

Z	� 
 � Z	�� ��
j
���
�

��
X
ij

�i	� 
Zij�j	��
j���
�� 	������


where ultimately we have to set �� to the complex conjugate of � �
To qualify as a partition function of a physical theory� the matrix Z has to ful�ll

a number of consistency requirements� It has to be positive and� since in a physical
theory the representation with lowest eigenvalue of L�� the vacuum� has to be unique� the
corresponding matrix element Z�� has to be Z�� � �� We will always use the index 
��
to refer to the vacuum� So far we have considered the conformal �eld theory only on the
complex plane� i�e�� after compacti�cation� on Riemannian surfaces of genus �� Consistency
of the theory at higher genus can be shown to imply that the partition 	������
 is invariant
under the modular transformations 	�����
� This is equivalent to the requirement that both
the S�matrix and the T �matrix commute with Z�

�Z�S� � �Z� T � � �� 	������


There is� of course� always a trivial solution to these constraints� simply set Z to the
identity matrix� We will refer to this modular invariant as the trivial� diagonal or A�type
invariant� The fact that the space of characters should carry a unitary representation of
SL�	Z
 turns out to be quite a powerful restriction� The example of coset conformal �eld
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theories shows that its implementation is a highly non�trivial task� Also the problem of
constructing a modular invariant partition function for a given set of characters turns out to
be very di�cult� all modular invariant partition functions have been classi�ed only in very
few cases� e�g� for the WZW theories based on A

���
� � the Virasoro minimal models �����������

and� recently� also for A���
� ����� Part of this thesis is therefore devoted to the development

of new tools for their construction�

����	 Fusion rings

We will now introduce the last piece of structural information about conformal �eld theory
needed in this thesis� the fusion rules� Field theory provides us with an associative product
of the �elds� the operator product� upon forming radially ordered products� the �elds realize
a closed associative operator product algebra� A large amount of information about the
operator product algebra is already contained in the fusion rules of primary �elds "i � i�
which can be written as formal products� i 	 j �

P
kN k

ij k� N k
ij counts the number of

times that k appears in the operator product of i and j� It is important to realize that this
product of two representations of the chiral algebra is not the usual tensor product� This
is in fact quite easy to see� otherwise e�g� the central charges would add up� ctot � c� � c��
whereas the fusion product yields �elds in the same conformal �eld theory� having the same
central charge�

Depending on whether one considers this product over the ring of integer numbers Z or
over the �eld of rational numbers Q� one obtains the structure of a fusion ring respectively
of a fusion algebra� These are associative and commutative algebras 	respectively rings

with a conjugation and unit� for which a distinguished basis exists 	containing the vacuum

��
 in which the structure constants are non�negative integers� N k

ij � Z���
We will deal with fusion rings in more detail in Section ��� of this thesis� One can

show that the so�called fusion matrices Ni with entries 	Ni

k
j � N k

ij can be simultaneously
diagonalized by a unitary matrix S� For a conformal �eld theory it can be argued ���������
that S is just the symmetric matrix that implements the modular transformation � �� � �

�

on the characters that was introduced in the previous section� leading to the Verlinde
formula �����

N k
ij �

X
l

SilSjlS
�
kl

S�l
� 	������


One �nds that charge conjugation is an involutive automorphism i �� i� of the fusion
ring� It is non�trivial precisely in the case when it is not the modular group PSL�	Z
� but
rather its twofold cover SL�	Z
 that acts on the space of primary �elds� The S�matrix
elements involving conjugate �elds are complex conjugates� Si�j � S�ij�

Automorphisms of fusion rings play an important role� since a deeper analysis of the
consistency requirements on higher genus ����� ��� shows that any modular invariant par�
tition function that belongs to a fully consistent conformal �eld theory can be described
by an automorphism of the fusion rules on top of an extension of the chiral algebra� It
should be noted that more requirements than just modular invariance are necessary for
the existence and consistency of a conformal �eld theory� it is thus not surprising that
we will encounter modular invariant partition functions which cannot correspond to any
conformal �eld theory�

�



��	 Simple currents

As it turns out� the units of a fusion ring� i�e� those elements which possess an inverse� are
of considerable importance� They are called simple currents� We will sketch in this section
their most important properties� for reviews see ���������

It is easy to see that a simple current J can be equivalently characterized as a primary
�elds for which the fusion product with the conjugate �eld just yields the vacuum "� � ��
J 	J� � �� or for which the fusion rules are simple in the sense that on the right hand side
of J 	 i for any primary �eld i there occurs just one primary �eld with multiplicity one�

Due to the associativity of the fusion product� the product of two simple currents is
again a simple current� Simple currents thus form an abelian group under multiplication�
which is called the center of a conformal �eld theory� Since there are only �nitely many
simple currents present in a rational theory� we can de�ne the order of a simple current
to be the smallest positive integer N such that JN � �� Any simple current organizes the
primary �elds into orbits� the length of any orbit divides the order N of the simple current�

For any simple current J we can associate to any primary �eld i a rational number
modZ� the monodromy charge QJ	i
�

QJ	i
 �� !	J
 � !	i
�!	J 	 i
 mod Z� 	�����


Here !	i
 is de�ned as in Subsection 	�����
� It can be shown that the monodromy charge
is additive under the operator product� note that the monodromy charge describes relations
between T �matrix elements of �elds on the same simple current orbit�

Simple currents can also be shown to provide relations between S�matrix elements of
�elds on the same simple current orbit� In a unitary theory the following relation holds
true ���������

SJpiJqk � e��ipQJ�k�e��iqQJ�i�e��ipqQJ�J�Sik � 	�����


The relations between S�matrix as well as T �matrix elements can be combined and used
to construct modular invariants�

In fact� one can construct modular invariants for any simple current in a subgroup of the
center� the e�ective center� The e�ective center is the group of all simple currents whose
conformal dimension multiplied by the order of the current is an integer� this condition
has to be imposed to guarantee T �invariance�

Assume that the simple current J of order N is an element of the e�ective center� Then
the following matrix Z describes a modular invariant ���������� the only vanishing matrix
elements are between �elds on the same simple current orbit� the non�vanishing elements
are given by

Zi�Jni � Mult	i
 ����	QJ	i
 �
n

�
QJ	J

� 	�����


Here ����	x
 is equal to one if x is an integer and zero otherwise� Mult	i
 is the multiplicity
of the orbit� i�e� the order N of the simple current divided by the length Ni of the orbit of
i�

It can be shown that if the center is the cyclic group generated by the simple current
J � then this is the only simple current invariant� i�e modular invariant which has non�zero
matrix elements only for �elds which are on the same orbit of some simple current� If
the center is not cyclic� the situation is more involved and there is an additional freedom
in choosing Z� parametrized by the so�called discrete torsion� for more details we refer
to ������
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The form of the modular invariant 	�����
 becomes particularly simple if J has integer
conformal dimension� it reduces to

Z �
X

n�Q�i�
�

N

Ni

������
Ni��X
n
�

�Jni

������
�

� 	�����


where N denotes again the order of J and Ni the length of the orbit of i� Note that�
since Ni divides N � there is always a positive integer in front of the complete square� this
observation will be crucial in many applications� Also note that only �elds with vanishing
monodromy charge occur� We will refer to invariants of this type as integer spin simple
current invariants�

The modular invariant given in 	�����
 has the following interpretation� the chiral
algebra W is enlarged by adding the simple currents to it� Any irreducible representation
of the larger algebra W � decomposes into irreducible representations of W � what explains
the complete squares� Not any irreducible representation of W will be contained in an
irreducible representation of W �� this is encoded in the requirement that only irreducible
representations of W occur for which the monodromy charge vanishes�

The interpretation of the multiplicities is slightly more involved� on general grounds
����� ��� any inequivalent irreducible representation of W � has to appear precisely once� a
multiplicity in front of the complete square indicates that there are several inequivalent
representations of W � which reduce to the same representation of W� Therefore� the
corresponding expression should be interpreted as several distinct primary �elds in the
conformal �eld theory with the enlarged chiral algebra� Fields with higher multiplicities
are termed 
�xed points� of the simple current�

Whether such an invariant describes a fully consistent conformal �eld theory has not
been proven rigorously up to now� however� there are arguments from the comparison to
orbifolds ����� that the theory should be consistent� In that case� one would like to compute
the S�matrix 	and as a consequence also the fusion ring
 of the new theory� The S�matrix
of the original theory provides some constraints 	in particular it already determines the
S�matrix elements which involve at least one �eld of multiplicity �
� however determining
those elements involving two �xed points� what is usually called 
resolving the �xed points��
is a problem that is not fully solved up to now�

��
 Examples

In this section we present a few basic examples of conformal �eld theories� the free boson
compacti�ed on a circle and WZW theories� Both are not only interesting in themselves�
but they also serve as building blocks for the coset conformal �eld theories� which will be
introduced in the next section�

��
�� WZW Theories

A Wess��Zumino��Witten 	WZW
 theory is a conformal �eld theory whose chiral symmetry
algebra is the semidirect sum of the Virasoro algebra with an untwisted a�ne Lie algebra�
its energy�momentum tensor is quadratic in the currents� i�e�� in the generators of the a�ne
algebra�

�



A�ne Lie algebras can be constructed as follows� for any reductive complex Lie algebra
�g with generators Ja and commutation relations

�Ja� J b� � fabc J c 	�����


the corresponding untwisted a�ne Lie algebra g can be constructed by extending the loop
algebra with generators Ja

n � n � Z and commutation relations

�Ja
m� J

b
n� � fabc J c

m�n 	�����


by one central elementK and a derivation D � �L�� This gives the commutation relations

�Ja
m� J

b
n� � fabc J c

m�n �Km
ab�m�n�� � �Ja
m�K� � � � ��D�Ja

m� � mJa
m 	�����


where 
 denotes the Killing form of �g�
Any untwisted a�ne Lie algebra contains the corresponding reductive Lie algebra as a

subalgebra� the generators of the form Ja
� � the zero�modes� form the horizontal subalgebra�

Many quantities of interest of a WZW theory can be described entirely in terms of this
subalgebra and of the eigenvalue k of the central element K� k is related to the level k�

by k� � �
���g���g�

k where ��g is the highest root of �g� The level k� does not depend on the

normalization of the Killing form of �g� for unitary theories k� is a non�negative integer�
One possibility to realize the Virasoro algebra explicitly in terms of the a�ne Lie algebra

is the Sugawara construction which uses the quadratic Casimir operator�

Ln ��
�

�	k� � g�


X
m


ab � J
a
m�nJ

b
�m � � 	�����


where �� denotes a normal ordering prescription and g� the dual Coxeter number of �g which
is essentially the eigenvalue of the quadratic Casimir operator in the adjoint representation�
The factor 	k� � g�
�� in the de�nition of Ln makes sense in a quantum �eld theory only
if k� is a number rather than an operator� as was mentioned in Section ���� The Virasoro
central charge c can now be expressed in terms of k�� it is

c	g� k�
 �
k� dim �g

k� � g�
� 	�����


The primary �elds of a unitary WZW theory with diagonal modular invariant are in
one�to�one correspondence with the integrable highest weights� i�e�� with the dominant
integral weights # of �g that satisfy

	#� ��g
 � k � 	�����


Only �nitely many weights of �g ful�ll these conditions� WZW theories are therefore rational
conformal �eld theories� this feature will also carry over to the coset conformal �eld theories
to be discussed in the next section� To illustrate rationality we have depicted in Figure ���
the dominant a�ne Weyl chamber of the a�ne Lie algebra A

���
� at various levels k�� The

�gure shows the weight space of the simple Lie algebra A� which describes the horizontal
projection of the weights of the a�ne Lie algebra A

���
� � The six arrows represent the six

roots of A�� The dominant a�ne Weyl chamber at level k� � � is shaded in light grey�
integral weights are marked by dots� Due to condition 	�����
 the Weyl chamber contains
only �nitely many integrable highest weights which are in one�to�one correspondence to

��



the primary �elds of the WZW theory� In darker grey we have shaded the 
interior� of the
dominant Weyl chamber� this is nothing but the translate of the Weyl chamber at level
k� � � by the Weyl vector � �

Pn
i
� #�i�� with #�i� the fundamental weights of �g 	note that

in the case of A� the Weyl vector is equal to the highest root ��g
� For many purposes� e�g�
the considerations in Part II of this thesis� it will be convenient to use the weights shifted
by the Weyl vector�

k=5

k=4

k=3

k=2

k=1

Figure ���� Dominant a�ne Weyl chamber of A���
� at various levels k��

The conformal dimension of a primary �eld with highest weight # is

h� � h�g�	#
 �
	#�# � ��


�	k� � g�

� 	�����


This immediately gives the T �matrix� the S�matrix is given by the Kac��Peterson formula
����

S��� � N X
w�W

sign	w
 exp�� �
i

k� � g�
	w	# � �
�#� � �
�� 	�����


Here the summation is over the Weyl group W of the horizontal subalgebra �g� the normal�
ization N follows from the requirement that S should be unitary�

Let us give one example to which we will refer later on frequently� the situation is par�
ticularly simple for �g � Dd at level one� Then there are four primary �elds corresponding
to the singlet 	�
� vector 	v
� spinor 	s
� and conjugate spinor 	c
 representation of Dd� or�
in other words� to the conjugacy classes of the Dd weight lattice� their conformal dimension
is

h �

�������
� for � �

��� for v �

d�� for s� c �

	�����
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The modular matrix S of Dd at level k� � � reads

S		Dd
�
 �
�
�

�BBBB�
� � � �

� � �� ��

� �� i�d �i�d

� �� �i�d i�d

�CCCCA � 	������


The simple currents of all WZW theories have been classi�ed in �������� Except for the
case of E� at level k� � �� they are of the form k�#�i�� where k� is the level and #�i� a
cominimal weight� i�e� the Coxeter label ai is equal to one� 	Coxeter labels are de�ned as
the coe�cients of the highest root ��g in a basis of simple roots�

��g �
rank �gX
i
�

ai�
�i� �
 	������


The action of simple currents on the set of integrable highest weight representations corre�
sponds in these cases to the automorphisms of the a�ne Dynkin diagrams� the monodromy
charge is proportional to the conjugacy class of the representation�

To �x the notation� let us describe the simple currents of WZW theories 	for the
numbering of the simple roots we use the convention of ����
� ForAr the center is isomorphic
to the cyclic group Zr��� it is generated e�g� by J � k#���� For B and C type theories� there
is a single simple current besides the identity primary �eld� this current will be denoted
by J 	the corresponding highest weight is k#��� for Br� and k#�r� for Cr theories
� For
Dr type theories� there are three non�trivial simple currents� corresponding to the highest
weights k#���� k#�r�� and k#�r���� they are denoted by Jv� Js� and Jc� as their fusion rules
are isomorphic to the multiplication of the vector 	v
� spinor 	s
� and conjugate spinor
	c
 conjugacy classes� For E
 there is a simple current of order three� J � k#��� and
J� � k#���� and for E� a simple current of order �� J � k#�
�� E� has only a simple current
at level k� � �� while G� and F	 do not have simple currents at all�

��
�� The free boson

Our second example is a single free boson� If it is compacti�ed on a circle of rational radius
squared� the corresponding conformal �eld theory turns out to be rational� For simplicity
we will refer to these theories as WZW theories with horizontal subalgebra u	�
�

The primary �elds �Q of these theories are labelled by u	�
�charges Q � f�� �� � ��� �N �
�g� where the number N of primaries is related to the radius of the circle� The conformal
dimension of a u	�
�primary of charge Q is Q���N � The S�matrix elements of a u	�
 WZW
theory are

SPQ �
�pN exp	��
iPQ�N 
� 	������


For u	�
 WZW theories� the fusion rules read �P 	 �Q � �P�QmodN � and hence any
primary �eld is a simple current� The conformal central charge of a single free boson is
c � ��
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��� Coset conformal �eld theories

����� The Coset Construction

The subclass of WZW models has the big advantage that it presents examples of conformal
�eld theories which are particularly manageable� since the representation theory of the
chiral algebra is known� However� it is not too hard to see that for many purposes this
subclass is not comprehensive enough�

The expression 	�����
 for the conformal anomaly c shows that c is greater or equal to
the rank of �g� in particular c 	 �� However� there are interesting conformal �eld theories
for which c is smaller than one� the Virasoro minimal models� These models do not only
play a special role in the representation theory of the Virasoro algebra� but they also have
interesting applications in physics� especially in statistical mechanics� In fact� one �nds
the following central charges for the models listed below�

critical Ising model c � �
�

tricritical Ising model c � �
��

critical three states Potts model c � 	
�

tricritical three states Potts model c � 

�

A more abstract reason which makes it desirable to enlarge the class of models under
consideration is that WZW models have a rather special chiral algebra� For some applica�
tions� e�g� the construction of superstring vacua 	cf� Chapter � of this thesis
� one would
also like to realize superconformal algebras and their extensions� More complicated W�
algebras also play an important role in the programme of classifying all rational conformal
�eld theories� the programme is �rst to classify all W�algebras and then to work out their
representation theory�

From the practical side� one frequently studies concrete examples in order to get hints
on more general structures� the discovery of Galois symmetry of conformal �eld theories
described in Part II of this thesis is a good example� Now� it is di�cult to get control
on whether observations made within such a limited framework like WZW theories can be
generalized to other conformal �eld theories� Fortunately� as we will see� many observations
directly apply also to the larger class of coset conformal �eld theories�

The coset construction ���� ��� allows within the framework of a�ne Lie algebras to
obtain an explicit description of a large class of conformal �eld theories� The idea is to
associate to any pair �g� �h of reductive Lie algebras for which �h is a subalgebra of �g� a
conformal �eld theory called the coset theory and denoted by

C��g��h�k � 	�����


The embedding �h �� �g induces an embedding of the corresponding untwisted a�ne Lie
algebras h �� g� In practical calculations� one has at this point to determine the precise
form of the a�nization� e�g� if �g is simple� then the level ki of any simple summand �hi of �h
is related to the level k� of �g by ki � Iik

�� where Ii is the Dynkin index of the embedding
�hi �� �g�

By de�nition ����� the Virasoro generators of the coset theory are obtained by subtract�
ing the Virasoro generators of the WZW theory based on h from the ones of the WZW

��



theory based on g� Lg�h �� Lg � Lh� Since the Virasoro generators of the coset theory
commute with any generator Ja

n of h�

�Lg�h
m � Ja

n� � �Lg
m � Lh

m� J
a
n� � � � 	�����


we see that
�Lg�h

m � Lg�h
n � � �Lg

m� L
g
n�� �Lh

m� L
h
n�� 	�����


and that� as a consequence� the generators Lg�h
n span a Virasoro algebra with central charge

cg�h � cg � ch�

����� Branching rules

So far we have only dealt with algebras� in order to check whether the de�nition of the
coset Virasoro algebra leads to a well�de�ned conformal �eld theory� one also has to specify
the spectrum of primary �elds of the theory� As it turns out� to obtain the primary �elds
of the coset theory is a somewhat delicate issue� However� equation 	�����
 shows that
the coset Virasoro algebra acts in the same way on all vectors of the same module of h�
Therefore the branching spaces H�

� which arise in the decomposition of the g�module Hg
�

into h�modules Hh
��

Hg
� �

M
�

	
H�

� 
Hh
�



	�����


are natural candidates for the modules of the coset Virasoro algebra� 	Here # and � stand
for integrable highest weights of g and h� respectively� if g and h are simple� and similarly
in the general case�


The candidates for the characters are therefore the so�called branching functions b�� �
which are the coe�cient functions in the decomposition

X�	� 
 �
X
�

b��	� 
��	� 
 	�����


of the characters X� of g with respect to the characters �� of h�
Branching functions have a de�nite behaviour under modular transformations which

suggests that the coset theory associated to the embedding h �� g might be essentially
something like g� h�� where the notation 
$� indicates that the complex conjugates of the
modular transformation matrices of the WZW theory based on h should be used� Note
that if S and T generate a representation of the modular group� the same is true for S�

and T �� If there exists a conformal �eld theory whose characters transform according to
this complex conjugate representation� it is called the complement of the h theory ������

To check whether this guess can be correct� it is instructive to look at a simple example�
the critical Ising model with c � �

� which can be realized with h � A
���
� at level � diagonally

embedded into g � A
���
� � A

���
� � both algebras at level �� Any candidate for a primary

�eld can now be described by three labels� "lm
n � l�m and n are the Dynkin labels of

the highest weights� the fact that all representations are unitary restricts l and m to the
values l�m � �� � and n to n � �� �� �� Since c is less than one� the �eld contents of this
theory follows already from the representation theory of the Virasoro algebra� we expect
the following primary �elds and �nd them realized as

��



Field ! realized as

vacuum � "��
� "��

�

twist �eld ���� "��
� "��

�

energy operator ��� "��
� "��

�

Any �eld that does not appear in this table turns out to have vanishing branching
function� In our example� this can be explained by the group theoretical selection rules for
the couplings of two spins which can be expressed by the condition l �m� n � � mod ��
We do not only �nd that some of the 
�elds� we would naively expect to be present vanish�
but we also realize that all �elds we expect from the representation theory of the Virasoro
algebra seem to appear twice� This is clearly in con�ict with the requirement of a unique
vacuum� However� this requirement is absolutely crucial for the consistency for a conformal
�eld theory� on the level of the fusion ring� the vacuum gives the unital element which must
be unique� on the level of representation spaces� the vacuum corresponds to the identity
operator which also is unique� Closer inspection shows that also modular invariance is
spoiled and the restriction of the S�matrix to non�vanishing �elds is not unitary any more�
since certain rows respectively columns coincide�

As it turns out� this situation generalizes for arbitrary coset conformal �eld theories�
several branching functions vanish� and several of the non�vanishing branching functions
coincide� One can imagine three di�erent reasons why branching functions vanish�

� Group theoretical selection rules� as we have seen in the case of the Ising model�

� The occurrence of 
unexpected� null states in the Verma module� they certainly
occur in conformal embeddings� 	Conformal embeddings ��� ���� are by de�nition
those embeddings for which the coset central charge c vanishes� hence they describe
a trivial coset conformal �eld theory�


There are� however� a few exceptional cosets known where null vectors occur 
unex�
pectedly�� the so�called mavericks cosets ��������

� There is also a more technical combination argument ������ however� since there is
no example known where this applies� we refrain from explaining it at this place�

One might hope to cure the situation by simply forgetting about the 
�elds� with van�
ishing branching function� But this inevitably leads to inconsistencies since� in general�
S�matrix elements between vanishing and non�vanishing branching functions do not vanish�
so that one would spoil the unitarity of the S�matrix this way�

����	 Field identi�cation

For the generic case� when only group theoretical selection rules have to be implemented�
there is� fortunately� a conceptual framework to address the situation at least on the level
of characters and representations of the modular group� simple currents� Recall that the
monodromy of a simple current of a WZW theory is proportional to the conjugacy class
of the corresponding representation� Therefore� non�vanishing 
�elds� can be characterized
by the fact that their monodromy charge vanishes for a subgroup of the center of g � h��
We will call this subgroup the identi�cation group� its elements are called identi�cation

��



currents� They are speci�c tensor products� to be denoted as 	J�g� � J�h�
� of the simple

currents of the WZW theories that underly the coset theory� To determine the identi�cation
group explicitly is the �rst step in the process of setting up a coset conformal �eld theory
in practice�

An important property of identi�cation currents is that branching functions related by
them are identical� This can be easily seen�

bi	���� 


bJi	���� 

�

P
j Sijbj	� 
P
j SJijbj	� 


�

P
j Sijbj	� 
P

j Sije��iQ�j�bj	� 

� 	�����


which is equal to � since only allowed �elds� i�e� precisely the �elds for which the monodromy
charge Q	j
 vanishes� contribute to the sum�

This calculation shows that the conformal dimension is constant on each orbit and that
in particular all identi�cation currents have integer conformal weight since they are on the
orbit of the identity� It is now natural to use the modular invariant expression 	�����
 as a
candidate for a partition function� notice that due to the selection rule Q	i
 � � only non�
zero �elds occur in 	�����
� Since now within one complete square all branching functions
are identical� we are led to the following consequence�

The true primary �elds of a coset conformal �eld theory are de�ned as equiva�
lence classes� they are the orbits of the identi�cation group�

This is commonly referred to as �eld identi�cation ����� In other words� the coset
theory is in fact rather di�erent from g� h�� we have to associate physical �elds not with
individual branching functions� but rather with certain equivalence classes of them�

To conclude let us remark that for the maverick coset conformal �eld theories ������� the
situation is far from being understood� interestingly enough� there are in all cases modular
invariants which can be used to implement a consistent �eld identi�cation� However� these
are exceptional invariants rather than simple current invariants as in the case of ordinary
coset conformal �eld theories�

����
 Field Identi�cation Fixed Points

As long as all orbits of the identi�cation currents have equal size� the orbits are precisely
the physical primary �elds we are after� The situation is more involved if the orbits have
di�erent lengths ������ the number of representatives on a orbit is in any case a divisor of
the length N of the orbit of the identity �eld� Orbits with less than N representatives are
referred to as 
�xed points� of the identi�cation currents�

These �xed points cause a serious problem� recall that all branching functions in a
complete square in 	�����
 are identical� So� in order to have a unique vacuum� we want
to keep just one representative of every orbit� i�e� divide Z by N�� Now doing this naively
would entail non�integer coe�cients in the putative character of the shorter orbits� the
�xed points� clearly this is inadmissible for a character� which counts states and therefore
must have integer coe�cients�

Let us pause at this point to make some general remarks� the phenomenon of 
�eld
identi�cation� can be placed in a broader context� the coset construction can be seen as a
special example of a reduction procedure� As a common feature of reduction processes� we
observe that �rst class constraints 	i�e� constraints that generate gauge transformations

can be required by consistency conditions� E�g� in gauge theories� in a Hamiltonian for�
mulation� one such consistency requirement is the uniqueness of the time evolution� In
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the example at hand� coset conformal �eld theories� modular invariance is required for
consistency� The analogy to gauge theories can be pushed even further� in both cases the
constraints 
generate� the identi�cations� There is even an analogue to the �xed points�
reducible connections 	for some of the properties of reducible connections see e�g� �������
�
i�e� connections which have non�trivial stabilizer under the action of the gauge group�
Unfortunately only little is known about the e�ects of these connections in physical theo�
ries 	for a closer study of these connections in the case of an SU	�
 gauge theory on the
four�dimensional sphere S	 we refer the reader to ����
�

In the case of coset conformal �eld theories� the prefactors in 	�����
 suggest � as in
the case of D�invariants � that every �xed point f of length Nf � N should correspond to
N�Nf distinct physical primary �elds� Again there is the problem of �xed point resolution�
in this case not only the full S�matrix� but also the characters for the individual physical
�elds are unknown� Some information is already contained in S� the S�matrix obtained
by the action of the identi�cation currents from the original S�matrix� This leads to the
following ansatz ��������� for the S�matrix elements in a coset theory with �xed points�

%Seifj �
NeNf

N
Sef � &efij � 	�����


where i � �� �� � � � � N�Ne and j � �� �� � � � � N�Nf label the �elds into which the naive �elds
e and f are to be resolved if they are �xed points�

After having resolved the �xed points� %S and the corresponding extension of T must
form an unitary representation of SL�	Z
� this implies sum rules

N�NeX
i
�

&efij � � �
N�NfX
j
�

&efij 	�����


for the S�matrix elements of the �elds fi� Note that if either e or f is not a �xed point� the
sum rule tells us that & vanishes� So & is non�zero only for pairs of resolved �xed points�
in which case it has also to be symmetric under simultaneous exchange of 	e� i
 and 	f� j
�
since the total S�matrix %S must have this property�

It is a surprising empirical observation ����� that in most cases consistent & matrices
can be described in terms of a di�erent WZW theory� the so�called �xed point theory� We
will see in Chapter 	���
 that even in the case when the �xed point theory is not a WZW
theory the structure of & is surprisingly close to that of a WZW theory�

Resolving a �xed point also amounts to considering �elds having di�erent characters
�fi� i�e�� the naive branching function �f of the 
unresolved �xed point� must be modi�ed
to have integer coe�cients after dividing by N�� It turns out that this can be done by
adding an appropriate multiple of a character '�f of the �xed point theory� Again� modular
invariance implies a sum rule� namely

N�NfX
i
�

�fi � �f � 	�����


Only after having found a consistent solution for & and the character modi�cations '�f �
one can speak of a conformal �eld theory given by a coset� Unfortunately� no general results
concerning existence or uniqueness of a resolution procedure are known� Also� �xed point
resolution has been implemented in practice only in very few cases� for the minimal series
of the N � � superconformal algebra and for N � � superconformal coset theories� the
Kazama��Suzuki models �������� For the latter models� the �xed point resolution procedure
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has been worked out in ����� for the special case of hermitian symmetric cosets� the general
case ���� will be presented in Chapter � of this thesis�

We conclude this introduction to coset conformal �eld theories with two remarks� from
what we have explained it is clear that a 
Lie algebraic coset� 	�����
 as it stands is far
from de�ning a conformal �eld theory� We point out that the correspondence between
Lie algebraic cosets and coset conformal �eld theories is also not one�to�one� �rst� also for
cosets a modular invariant has to be chosen� each choice will describe a di�erent conformal
�eld theory� The problem of classifying all these modular invariants is a particularly hard
one� in principle any modular invariant of the tensor product g � h� that is compatible
with the �eld identi�cation is admissible� Unfortunately� the modular invariants for g

and h separately have not been classi�ed� and� even worse� the problem of classifying all
invariants of g � h� does not even factorize to that of classifying the invariants of g and h

separately�
Conversely� it also turns out that di�erent combinations of algebras g and subalgebras

h can describe one and the same conformal �eld theory� One example of this phenomenon
which will be explained in this thesis in some detail are level�rank dualities� cosets for which
level and rank 	or some simple functions thereof
 are interchanged turn out to describe
the same conformal �eld theory� The problem of counting all conformal �eld theories that
can be described by a Lie algebraic coset is therefore rather di�erent from the problem of
counting all cosets�

��� Outline of the thesis

We now give an outline of the rest of this thesis� A particularly interesting subclass
of conformal �eld theories are those which are not only invariant under the conformal
symmetry described by the Virasoro algebra� but even under a larger algebra� the N � �
superconformal algebra�

The study of N � � superconformal theories was initially motivated by string theory� a
tensor product of these theories with central charge c � � can be used as the inner sector in
a heterotic string compacti�cation� In this application� N � � superconformal symmetry
on the world sheet � together with charge quantization � implies that the spectrum of the
string is space�time supersymmetric �����

An independent motivation to study these models comes from their beautiful intrinsic
structure and their deep connection to other objects in mathematical physics� For example�
these theories can be 
twisted� to obtain two�dimensional topological quantum �eld theories�

In Part I of this thesis we will use the coset construction to construct concrete examples
for N � � superconformal theories� In Chapter � we classify all coset models of the Ka�
zama��Suzuki form that have N � � supersymmetry and can be used as the inner sector
in a string compacti�cation� The �eld identi�cation and �xed point resolution structure
of these models is worked out� and several general properties of N � � coset theories are
proven 	e�g� the formula 	������
 for the number of elements of the identi�cation group
�

An important structure present in N � � superconformal theories is the chiral ring
������ for appropriately chosen N � � coset conformal �eld theories the ring structure
of the chiral ring determines the number of massless generations in the corresponding
compacti�cation of the heterotic string� also the relation to topological �eld theories is
mainly through this ring� The structure of the chiral ring of N � � coset theories is
explored in Section ���� Hasse diagrams which are described in Appendix ��A are a useful
tool for these calculations�
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As it turns out� several cosets lead to the same conformal �eld theory� a systematic
reason for this phenomenon are level�rank dualities which are proven in Chapter �� They
make heavy use of level�rank dualities for WZW theories which are also described in Chap�
ter �� The results of these two chapters are applied in Chapter � to the construction of
string vacua� To this end several projections have to be implemented� we describe how
this can be done using simple currents and how this prescription leads to the de�nition
of the extended Poincar�e polynomial� The extended Poincar�e polynomial is then used to
compute the massless spectra of all string vacua that can be constructed by the use of
N � � coset models�

To show that the cosets described in Part I give rise to consistent conformal �eld
theories� �eld identi�cation �xed points have to be resolved using �xed point theories� In
some cases� the �xed point theory is not a WZW theory� however� we will see in Chapter �
that level�rank dualities allow to determine an S�matrix which implements the resolution
at the level of representations of the modular group� To identify a conformal �eld theory
that might correspond to this matrix 	and hence the character modi�cations
 it is natural
to try to determine which of the �elds should be the identity� and then use the Verlinde
formula 	������
 to compute the corresponding fusion ring� A priori one would expect
that using the wrong primary �eld as the identity 
�� in 	������
 would lead to non�integer
fusion rule coe�cients� Surprisingly� many choices seem to be equally good� In many cases
the fusion rule coe�cients turned out to be integer� though in no case were they positive�
However� it was always possible to �nd a set of signs �	i
 and a new matrix S�ij � �	i
�	j
Sij
that made all the coe�cients positive� There is a second surprise� the fusion rules obtained
from 	������
 for di�erent choices of the vacuum 
�� turned out to be identical up to some
permutation of the �elds�

Inspired by this observation one can investigate WZW models in a similar way� and �nds
that some of the primary �elds other than the identity could play the role of the identity
in the above sense� It is natural to look now for some underlying symmetry of the modular
matrix S� and it turns out that indeed such a symmetry exists� It can be described using
the Galois group of the algebraic number �elds which contain the generalized quantum
dimensions� This new symmetry of rational quantum �eld theories which is the subject of
Part II of this thesis turned out to be extremely powerful� We will see in Chapter � that
it can be used to construct automorphisms of fusion rings as well as modular invariant
partition functions�

In Chapter � these new tools will be applied systematically to the fusion ring of WZW
theories� We will see that both exceptional and simple current modular invariants can
be explained by Galois theory� Using Galois symmetry several in�nite series of previously
unknown exceptional automorphism invariants for WZW theories based on algebras of type
B and D are found�

In these investigations� it turned out that � at least in the case of WZW theories �
Galois symmetry can be further generalized� These symmetries which we call quasi�Galois
symmetries will be the subject of Chapter �� These quasi�Galois symmetries have various
applications� they lead to sum rules for the elements of the modular matrix S which can
be used for the construction of modular invariants� Moreover� they relate WZW theories
at di�erent levels and provide a powerful algorithm for the computation of the branching
rules of conformal embeddings�
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The chapters of this thesis are based on the following publications�

� Chapter ��
J� Fuchs and C� Schweigert� Non�hermitian symmetric N � � coset models� Poincar�e

polynomials� and string compacti�cation� Nucl� Phys� B ��� 	����
 ���

� Chapter ��
J� Fuchs and C� Schweigert� Level�rank duality of WZW theories and isomorphisms

of N � � coset models� Ann� Phys� ��� 	����
 ���

� Chapter ��
J� Fuchs and C� Schweigert� Non�hermitian symmetric N � � coset models� Poincar�e

polynomials� and string compacti�cation� Nucl� Phys� B ��� 	����
 ���
C� Schweigert� Poincar�e polynomials and level rank dualities in the N � � coset

construction� Theor� Math� Phys� �� 	����
 ���

� Chapter ��
J� Fuchs� B� Gato�Rivera� A�N� Schellekens� and C� Schweigert� Modular invariants

and fusion rule automorphisms from Galois theory� Phys� Lett� B ��� 	����
 ���

� Chapter ��
J� Fuchs� A�N� Schellekens� and C� Schweigert� Galois modular invariants of WZW

models� Nucl� Phys� B ��� 	����
 ���

� Chapter ��
J� Fuchs� A�N� Schellekens� and C� Schweigert� Quasi�Galois symmetries of the mod�

ular S�matrix� to appear in Commun� Math� Phys�
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Part I

N � � Superconformal Coset Models

In Part I of this thesis we investigate a particularly interesting subclass of conformal
�eld theories� N � � superconformal coset theories� In Chapter � the �eld identi�cation
problem� including �xed point resolution� is solved for these models and some general
results for generic N � � coset theories are proven� In Chapter � level�rank dualities
between several in�nite series of these models are shown� they make use of level�rank
dualities for B� C� and D type WZW theories� which are also described in some detail�
Finally� in Chapter � we use the coset theories introduced in Chapter � as subtheories
in N � � tensor products with c � �� which are taken as the inner sector of heterotic
superstring compacti�cations�



Chapter �

Non�Hermitian Symmetric N � � Coset Models

In this chapter� the �eld identi�cation problem� including �xed point resolution� is solved
for the non�hermitian symmetric N � � superconformal coset theories� Thereby these
models are �nally identi�ed as well�de�ned modular invariant conformal �eld theories�
Further� some general results for generic N � � coset theories are proven� a simple formula
for the number of identi�cation currents is found� and it is shown that the set of Ramond
ground states of any N � � coset model is invariant under charge conjugation�

��� N � � superconformal theories

While the conditions necessary for the consistency of a superstring theory seem to be too
weak to pinpoint a 
theory of everything�� string theory remains an interesting approach
to unify the fundamental interactions including gravity� Furthermore� the study of strings
has given new and deep insight in various topics in mathematics and physics so that there
are good reasons� beyond possible direct application to phenomenology� to have a closer
look at the structures arising in string theory�

A class of two�dimensional �eld theories for which this point of view is particularly
justi�ed are the N � � superconformal theories which are needed for the inner sector of
	heterotic
 string theories� The enlarged 	N � �
 world sheet supersymmetry for the right�
moving part of the theory is in this case dictated �������� by the requirement of space�time
supersymmetry� a property imposed for phenomenological reasons� such as to 
solve� the
gauge hierarchy problem� In the present chapter� we consider theories for which N � �
supersymmetry is present in the left�moving part as well� just like in the generic case� these
N � � theories are interesting in their own right� as they are singled out by the presence of
new structures such as the ring of chiral primary �elds and the connection with Calabi��Yau
manifolds ������ Furthermore� there exist deep relations between N � � superconformal
�eld theories and conformal �eld theories in general� including the interpretation of the
fusion ring of any rational conformal �eld theory as a deformation of the chiral ring of
some N � � theory ���������������

There exist several approaches to construct the inner sector of a heterotic string the�
ory� non�linear sigma models with a Calabi��Yau manifold as their target space ����� the
description in terms of Landau��Ginzburg potentials ���� ����� and exactly solvable mod�
els 	these approaches are closely interrelated� but the question to which extent they are
equivalent has not yet been resolved completely
� By exactly solvable we mean that all
correlation functions can 	at least in principle
 be calculated exactly� Among the solvable
superconformal �eld theories there are free �eld constructions employing the Coulomb gas
approach ����� and theories constructed by algebraic methods� In the algebraic approach
the coset construction ���� plays a prominent r(ole� for it allows to obtain many supercon�
formal theories within the framework of a�ne Kac��Moody algebras�
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In ���� Kazama and Suzuki considered coset models C of the form

C��g � so	�d
��h�k � 	�����


Here �g stands for a semi�simple Lie algebra� and �h is a reductive subalgebra of �g� the integer
d is de�ned as �d � dim�g � dim �h� while the integer k denotes the level of the a�nization
g � �g��� of �g� As shown in ����� the symmetry algebra of such coset models always contains
the N � � superconformal algebra�

It was also investigated ���� for which models the symmetry algebra is indeed enlarged
to an N � � superconformal algebra� Although the proof of the classi�cation turned out
to be not quite complete ������ a complete list of all N � � coset theories of the form
	�����
 was obtained� Indeed the following conditions are necessary and su�cient for a
coset theory of the form 	�����
 to have N � � superconformal symmetry�

�� The embedding �h �� �g has to be regular�

�� The number
n �� �

�
	rank �g � rank �h
 	�����


must be an integer�

�� Denoting the simply connected compact Lie groups having �g and �h as their Lie
algebras by G and H� respectively� the coset manifold

G

H �U	�
�n
	�����


has to be K ahlerian�

Up to now the following theories solving these constraints have been considered in the
literature�

� Tensor products of N � � minimal models ����� including models which employ
non�diagonal and non�product modular invariants ��������������������

� Tensor products of the so�called projective cosets ����� corresponding to coset theories
of the form

C�su	n� �
 � so	�n
��su	n
� u	�
�k � 	�����


For these models non�diagonal modular invariants have been investigated� too ����

� Tensor products of arbitrary hermitian symmetric coset theories 	
HSS�cosets�
 with
the diagonal modular invariant ������

Note that N � � minimal models can be considered as projective cosets with n � �� and
projective cosets are a subclass of the hermitian symmetric cosets�

From the classi�cation ���� ���� of N � � superconformal coset models in the Kaza�
ma��Suzuki framework it is well known that there exist even more models that possess
N � � superconformal symmetry� the hermitian symmetric coset theories constitute only
a subclass� In this chapter we shall consider the general case� The chapter is organized as
follows� First� we recall in Section ��� the classi�cation of N � � superconformal coset
models obtained in the Kazama��Suzuki framework� As a by�product we prove a simple
characterization of hermitian symmetric spaces which di�ers from the one given in the
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standard literature� Based on the general classi�cation� we then provide a complete list
of all non�hermitian symmetric cosets that can be used in tensor products with conformal
central charge c � ��

We proceed by specifying the conformal �eld theories de�ning the cosets of our interest�
This is necessary because a 
Lie�algebraic coset� C as it stands in 	�����
 is in itself far from
de�ning a consistent modular invariant conformal �eld theory� We emphasize that although
the theories described in this chapter have been introduced as formal cosets 	�����
 already
in ����� they have previously not been shown to describe consistent conformal �eld theories�
	By consistency of a conformal �eld theory we understand among other requirements that
the characters of the theory carry a 	projective
 unitary representation of the modular
group� Note that up to now it is even unknown whether a conformal �eld theory can
be associated with every coset� and if so� whether this theory is unique�
 To de�ne the
theories� we �rst determine the precise form of the a�nization of the subalgebras involved�
In particular we identify� in Subsection ����� the level of the u	�
�subalgebra that is present
in each of the models�

Moreover� as is well known ���� ����� in order to obtain a modular invariant partition
function� 
�elds� in the coset theory have to be 
identi�ed�� Problems arise when the
length of the identi�cation orbits is not constant� orbits of non�maximal length have to
be 
resolved� ����� ����� which in general is a rather delicate issue� In Subsection �����
of this chapter we determine these identi�cation rules� Furthermore we derive a formula�
valid for any N � � coset theory of the form 	�����
� for the order of the abelian group
that is generated by the identi�cation currents� this provides a convenient check for the
completeness of the identi�cation rules� The resolution of �xed points is dealt with in
Subsection ������

Finally� we derive in Section ��� a formula giving the full superconformal u	�
�charge
of any Ramond ground state in terms of the length of an associated element of the Weyl
group� 	This length is conveniently calculated by means of Hasse diagrams� the diagrams
corresponding to our models are described in Appendix ��A�
 This result is used to show
that the set of Ramond ground states of any N � � coset model is invariant under charge
conjugation�

��� Classi�cation

In ���� a supersymmetric extension of the coset construction ���� was used to obtain a
large class of superconformal coset models� By bosonizing the fermions of the super WZW
theories involved in the construction of these models� one arrives at a level one so	�d
�
WZW theory� As a consequence� the models can be written as

C��g � so	�d
���h�k � 	�����


In the sequel we will adopt the notation of ���� and denote indices referring to generators
of the algebra �g by capital letters A�B� � � � � indices referring to the subalgebra �h by a� b� � � � �
and indices referring to the set �gn�h� and hence also to so	�d
� by �a��b� � � � � Thus in particular
the currents generating g are denoted by (JA� and the so	�d
 algebra is generated by dim �g��h
fermions j�a� Denoting the structure constants of �g by fABC � the currents

%Ja � (Ja � i

k
fa�b�c j

�bj�c 	�����


��



then specify the embedding of h in �g � so	�d
� � From the embedding 	�����
 we can read
o� the levels of the simple subalgebras �hi of

�h � (�h� u	�
m �
M
i

�hi � u	�
m� 	�����


Namely�
k	�hi
 � Ii 	k � g�
� h�i � 	�����


where g� and h�i denote the dual Coxeter numbers of �g and �hi� respectively� and where Ii is
the Dynkin index of the embedding �hi �� �g� i�e� the relative length squared of the highest
roots ��g of �g and �i of �hi�

Ii ��
	��g� ��g


	�i� �i

� 	�����


	Here and below we refer to an untwisted a�ne Kac��Moody algebra with horizontal algebra
�f as f � �f��� and to the Heisenberg algebra (u	�
 by its horizontal subalgebra u	�
� Also� we
use the short hand notation fk if f � �f��� is at level k�


With 	�����
� the conformal central charge of the coset theory becomes

c �
�

�
	dim�g � dim �h
� 	��g� ��g
 g

� dim �g �Pi	�i� �i
h
�
i dim �hi

	��g� ��g
	k � g�

� 	�����


The symmetry algebra of the models 	�����
 always contains the N � � supersymme�
try algebra� To �nd a second supercurrent G�� one starts with the most general ansatz
expressing a spin ��� current of the coset theory 	�����
 in terms of the currents (JA and
the fermions j�a �����

G�	z
 �
�

k
	h�a�b �j

�a (J
�b � � i

�k
S�a�b�c �j

�aj
�bj�c �
 � 	�����


Here the colons denote normal ordering� and S is a totally antisymmetrical tensor� This
ansatz mimics the structure of the �rst supercurrent G� for which h�a�b and S�a�b�c are given
by the Killing form 
�a�b and by the structure constants f�a�b�c� respectively�

The calculation of the relevant operator products that involve G�	z
 shows that the fol�
lowing set of equations for h and S is necessary and su�cient for enlarged supersymmetry�

h�a�b � �h�b�a� h�a�bh�b�c � ���a�c� 	�����


h�a�bf�b�ce � f �a�b
eh�b�c� 	�����


f�a�b�c � h�a�ph�b�qf
�p�q
�c � cyclic permutations in �a��b and �c� 	������


S�a�b�c � h�a�ph�b�qh�c�rf
�p�q�r� 	������


The condition 	�����
 means that h is a complex structure on G�H� which is �h�invariant
by 	�����
� 	������
 is a consistency condition� while 	������
 can be used to eliminate S
from the problem�

This set of equations can also be understood in more geometrical terms� Namely� let �t
denote the orthogonal complement of �h with respect to the Killing form 
 of �g 	this is well
de�ned since� �g being semi�simple� 
 is non�degenerate
� Then the model C��g � so	�d
���h�k

� Unless stated otherwise� we use the summation convention� i�e� equal upper and lower indices should
be contracted�

��



is N � � supersymmetric if and only if there exists a direct sum decomposition of vector
spaces�

�t � �t� � �t�� 	������


which obeys the conditions that dim�t� � dim�t�� that �t� and �t� separately form closed
Lie algebras� and that the restriction of the Killing form to �t� and to �t� vanishes�


jt� � �� 	������


This geometric characterization is in fact rather easy to prove ����� Suppose �rst that
the theory C��g � so	�d
���h�k is N � � supersymmetric� De�ne �t� to be the eigenspaces
corresponding to the eigenvalues �i of the complex structure h� Then the relations �t �
�t� � �t� and dim�t� � dim�t� are immediate� Using 	�����
 to 	������
� it is also easy to
show that

�t�a�� t
�b
�� �

�

�
	if �a�b

�c � S�a�b
�c
 t

�c
�� 	������


where t�a� denotes the component of t�a in �t�� Thus the elements of �t� close under the Lie
bracket� Finally� for arbitrary r�� s� � �t� the antisymmetry 	�����
 of h implies 
	r�� s�
 �

i
	hr�� s�
 � �i
	r�� hs�
 � �
	r�� s�
 � �� so that 	������
 holds� Conversely�
given a decomposition like 	������
� de�ne h by requiring �t� to be the eigenspaces of h
corresponding to the eigenvalues �i� assuring that the second equation of 	�����
 is ful�lled�
Then 	�����
� 	������
 can be shown to follow from the fact that �t� are subalgebras� while
	������
 implies the �rst part of 	�����
� Namely� for arbitrary r� s � �t one has r � r� � r�
and s � s� � s� with r�� s� � �t�� and therefore 
	hr� s
 � 
	ir� � ir�� s� � s�
 �
i
	r�� s�
� i
	r�� s�
 � �
	r� � r�� is� � is�
 � �
	r� hs
�

Our task is now to classify embeddings satisfying 	�����
 to 	������
� or� equivalently�
	������
 and 	������
� As the following remarks show� we can assume that �g and �h are of
equal rank� In ���� a sequential method has been introduced which allows us to reduce
N � � coset theories with rank �h � rank �g to the equal rank case� 	It is worthwhile
mentioning that the validity of this sequential algorithm has been proven in ���� only as
far as the N � � superconformal algebras of the models are concerned� As for the �eld
contents� the general belief is that for a chain of embeddings �f �� �h �� �g the coset theory
C��g��f� carries the structure of the tensor product of the theories C��g��h� and C��h��f�� albeit
a non�product modular invariant must be used� This is easy to see if no �eld identi�cation
is necessary� and should also hold in the case when the identi�cation currents do not
have �xed points�
 To apply the sequential method� one needs an intermediate subalgebra
satisfying

�h � �h � u	�
rank
�g�rank �h � �g 	������


	direct sum of Lie algebras
� Such an intermediate algebra exists only ����� for the so�called
regular subalgebras� A regular subalgebra �h �� �g is by de�nition 	see e�g� ����
 a subalgebra
for which every generator associated to a root of the subalgebra �h is also associated to a
root of the overlying algebra �g� all other subalgebras are called special� In ����� it was
shown that the cosets derived from special subalgebras never have enlarged supersymmetry�
correspondingly we can restrict ourselves in the sequel to regular subalgebras� and hence
the sequential algorithm is applicable� Regular subalgebras have been classi�ed by Dynkin
����� their Dynkin diagram must be a subdiagram of the extended Dynkin diagram of the
overlying algebra 	the extended Dynkin diagram of a simple Lie algebra �g coincides with
the Dynkin diagram of its a�nization g � �g���
�

��



In short� we can restrict our attention to regular embeddings satisfying rank �g �rank h�
We now turn to the classi�cation of such embeddings generating N � � superconformal
coset theories� From the N � � conditions 	�����
 to 	������
� one easily deduces that

f cde h�a�b f
�a�b
e � � 	������


for all c� d� We will denote by !�� !�� and !�h the sets of roots of �t�� �t�� and
�h� respectively�

and de�ne
%v� ��

X
�����

��� 	������


Writing 	������
 in a Cartan��Weyl basis and comparing prefactors� we �nd

	%v�� �
 � � i� � � !�h� 	������


This relation implies that

�
X
�����

��iH
i� T a� � � for all T a � �h � 	������


where by H i we denote the generators of the Cartan subalgebra� i�e� that �h contains a
u	�
 ideal with generator

P
�����

��iH
i� Thus the embedding �h �� �g is such that the Dynkin

diagram of �h is obtained from the extended Dynkin diagram of �g by removing at least two
nodes� One can also show ���� that

	%v�� ��
 	 	 ��� ��
 � � 	������


for all �� � !��
We claim that the subalgebras yielding N � � superconformal cosets are precisely dia�

gram subalgebras� i�e� subalgebras whose Dynkin diagram is contained in the non�extended

Dynkin diagram of �g� Moreover� if the Dynkin diagram of �h is obtained from that of �g by
removing more than one node� then the sequential method alluded to above can be applied
to reduce the theory to a tensor product� hence we can assume that only a single node is
deleted� We will denote by i� the label of this distinguished node of the Dynkin diagram
of �g� thus� for example� ��i�� is the corresponding simple �g�root that is not a root of �h�
Note that the notation %v� introduced in 	������
 was chosen with foresight� for instance�
denoting the fundamental �g�weights by #�i�� the relation 	������
 can be rephrased as

%v� � #�i�� 	������


	the constant of proportionality� obtainable with the help of the strange formula� reads

	��g� ��g
 g
� dim�g �Pi	�i� �i
h

�
i dim �hi

��
P

j Gi�j
� 	������


where Gij � 	#�i��#�j�
 denotes the metric on the weight space of �g� i�e� the inverse of the
symmetrized Cartan matrix
�

To prove the above claim� we have to show that the highest root ��g of �g is not a root
of �h� If ��g were a root of �h� then according to 	������
 it would satisfy 	%v�� ��g
 � �� But
this is not allowed� as can be seen with the help of the decomposition of ��g in terms of the
simple �g�roots ��i��

��g �
rank �gX
i
�

ai �
�i�� 	������


��



Namely� the coe�cients ai on the right hand side of 	������
� known as the Coxeter labels of
�g� are positive integers� and hence the inequality 	������
 implies 	%v�� ��g
 �

P
i ai 	%v�� �

�i�
 	P
�����

ai	���i�� ���i�
 � �� Thus ��g is not a root of �h� so that �h is a diagram subalgebra of �g�
The converse is seen as follows� Given a diagram subalgebra �h of �g� assign the root �� of

�t to belong to !� and !�� respectively� i� it is a positive respectively a negative root of �g�
Since we assumed that �g and �h have equal rank� this prescription yields a decomposition of
�t of the form 	������
� It is now straightforward to check that the vector spaces generated
by the elements corresponding to !� satisfy the geometrical formulation of the N � �
conditions� Namely� nilpotency 	������
 is immediate from the well�known properties of
the Killing form in a Cartan��Weyl basis� the dimensions of �t� and �t� coincide because
positive and negative roots of �g n �h come in pairs� and the assertion that �t� close under the
Lie bracket can be veri�ed by using the fact that 	%v�� ��
 � � i� �� � !��

Clearly� the N � � conditions 	�����
 to 	������
 are particularly simple if the structure
constants f�a�b�c vanish� As we will see shortly� the corresponding coset manifold is then a
hermitian symmetric space� In this case we automatically have rank �h � rank �g� Moreover
using the Jacobi identity together with the relation

�f �a�cdf�b�cd � f �aCDf�bCD � g���a�b� 	������


it is easy to show that
f�c �de h�a�b f

�a�be � g� h�c �d� 	������


Similarly as with 	������
� another useful relation is obtained by writing 	������
 in a
Cartan��Weyl basis� comparing prefactors one �nds

	%v�� ��
 �
X
�����

	��� ��
 � g� i� �� � !�� 	������


With these results� we are in a position to classify all subalgebras yielding hermitian
symmetric spaces� Let us �rst sketch the way these spaces are usually described in the
mathematical literature 	see e�g� ����
� Given f�a�b�c � �� it is possible to de�ne an involutive
automorphism � of the Lie algebra �g such that the subalgebra left invariant by � is equal to
�h� namely �	T a
 �� T a� �	T �a
 �� �T �a� Lie algebras admitting such an automorphism are
called orthogonal involutive Lie algebras and have been classi�ed by Cartan� a complete list
can be found e�g� in ���� p� ����� Because of 	������
� among the orthogonal involutive Lie
algebras one only has to consider those whose �xed algebra contains a u	�
 ideal� Finally�
one veri�es by inspection that for all such Lie algebras the N � � conditions are ful�lled�

	The nomenclature used above arises from the following geometrical setting� The fact
that �g and �h form an orthogonal involutive Lie algebra can be shown to be equivalent to the
property that the homogeneous space G�H� with G and H the compact simply connected
Lie groups corresponding to �g and �h� is a Riemannian globally symmetric space� These
spaces are de�ned as follows� For a Riemannian manifold� a neighbourhood of any point
p of the manifold can be described by mapping a sphere in the tangent space at p on the
neighbourhood� via this map the re�ection about the origin of the tangent space 	the pre�
image of p
 induces a mapping � of this neighbourhood� If � is an isometry� the manifold is
called a locally symmetric space� if in addition � can be extended to a global isometry� the
manifold is called a globally symmetric space� It can be shown that all globally symmetric
spaces are homogeneous spaces� i�e� isomorphic to the quotient of a simply connected Lie
group by a closed subgroup� In this geometrical context the condition 	������
 means that
G�H carries in addition an almost complex structure J which is hermitian� i�e� the metric g

��



Table ���� Hermitian symmetric coset theories 	HSS
 and their Virasoro charges

C��g��h�k c name

C�Am�n���Am�� �An�� � u	�
�k �kmn�	k �m� n
 	A� m� n� k


C�Bn���Bn � u	�
�k �k	�n � �
�	k � �n� �
 	B� �n� �� k


C�Dn���Dn � u	�
�k �kn�	k � �n
 	B� �n� k


C�Cn�An�� � u	�
�k �kn	n � �
��	k � n� �
 	C� n� k


C�Dn�An�� � u	�
�k �kn	n � �
��	k � n� �
 	D� n� k


C�E
�D� � u	�
�k ��k�	k � ��
 	E�� k


C�E��E
 � u	�
�k ��k�	k � ��
 	E�� k


satis�es g	JX� JY 
 � g	X�Y 
 for all elements X� Y of the tangent space� It can be shown
that for homogeneous spaces this automatically implies that J is K ahlerian� i�e� covariantly
constant� In the general case where f�a�b�c is non�vanishing 	which is the situation in which
we are interested in the present chapter
� the homogeneous space G�H is no longer a
Riemannian globally symmetric space� but as was shown in ����� it is nonetheless still a
K ahlerian space i� the N � � conditions are ful�lled� We remark that for our purposes
these geometric characterizations are of little use� In fact� one of the main achievements
of the theory of homogeneous spaces was precisely to recast the problems in purely Lie
algebraic terms� which �nally provided a powerful handle on the geometric objects�


Alternatively� the classi�cation of hermitian symmetric spaces can be found by the fol�
lowing simple prescription ����� the hermitian symmetric spaces are obtained by deleting a
node of the Dynkin diagram of �g that corresponds to a so�called ���� cominimal fundamen�
tal weight� i�e� a fundamental �g�weight #�i� such that ai � � in the decomposition 	������

of the highest �g�root ��g� To prove this characterization� we proceed as follows� Multiplying
both sides of 	������
 with %v� as de�ned in 	������
� one obtains

	%v�� ��g
 �
rank �gX
i
�

X
�����

ai 	�����i�
� 	������


Now suppose that ��g is a root of �h� Then according to 	������
 one has
P

�����
	��� ��g
 � ��

Given the fact that the Coxeter labels ai are positive� we thus learn from 	������
 that
	%v�� ��i�
 � � for all simple roots� But then 	������
 and 	������
 imply that all simple
roots of �g are contained in �h� and hence �g � �h� showing that the coset would be trivial in
this case� Thus again we conclude that ��g cannot be a root of �h� From 	������
 we then
learn that the left hand side of 	������
 equals g�� The right hand side can take this value
only in the case when exactly one simple root of �g with Coxeter label equal to � is not
contained in �h� Now using the classi�cation of regular subalgebras ����� it is straightforward
to check that one obtains in this way exactly the same list as before�

In Table ��� we recall the list of all HSS models and their Virasoro charges 	the short�
hand notation displayed in column � is taken from ����
� We now return to the general
case� Let us stress that we are in a position to give a complete list of all N � � coset
models� However� even when grouping these theories 	of which there are in�nitely many


��



Table ���� Non�hermitian symmetric coset theories relevant for c � � tensor products

C��g��h�k c name

C�Bn�An�� � u	�
�k
�

�
n	n� �
 � �n�

k � �n� �
	BA�n� k


C�Bn�Bn�� �A� � u	�
�k ��n � �� � ��	n � �
�

k � �n� �
	BB�n� k


C�Cn�Cn�� � u	�
�k �n � �� �n�

k � n� �
	CC�n� k


C�C��A� �A� � u	�
�k �� � ��

k � �
	C�� k


C�C	�A� �A� � u	�
�k �� � ���

k � �
	C�� k


C�D	�A� �A� �A� � u	�
�k �� � ���

k � �
	D�� k


C�D��A� �A� �A� � u	�
�k �� � ���

k � �
	D��� k


C�D��A� �A� � u	�
�k �� � ���

k � �
	D��� k


C�F	�C� � u	�
�k �� � ���

k � �
	F�� k


C�G��A
�
� � u	�
�k �� � ��

k � �
	G��� k


C�G��A
	
� � u	�
�k �� � ��

k � �
	G��� k


into a �nite number of series� this list still remains rather long� and we will not present it
here in full detail� Rather� we list only those models that can be used as factor theories in
tensor products with conformal central charge c � � 	as well as some other models which
fall into in�nite series that contain models relevant for c � �
� The interest in these models
comes from superstring theory where they can be used for the inner sector of heterotic
string vacua ����� and from the possible relation with Calabi��Yau manifolds and with
Landau��Ginzburg theories�

The result of our classi�cation is presented in Table ���� where we supply the coset the�
ories together with their conformal central charge 	as calculated according to 	�����

 and
with a short�hand name that derives from the Lie algebras involved� From the classi�ca�
tion of regular subalgebras described above� the relevant embedding �h �� �g is determined
uniquely by the pair �g� �h of Lie algebras for all entries in Table ��� except for the two
models with �g � G�� In the latter cases we use the superscripts 
� � and 
� � to indicate
that the A��subalgebra corresponds to the short and long simple root of G�� respectively�

For convenience we have grouped some models in the table in three series� From the
above remarks it should be clear that there is no physical distinction between the models
within these series and the other models� The di�erent appearance is a mere artifact of

��



our string theory�oriented condition on the central charges� We also emphasize that the
list in Table ��� does not contain all N � � coset theories with central charge c � �� Their
number is much larger� but most of them cannot be combined with other known N � �
theories to obtain c � � tensor product theories� For instance� we have not included the
model C�D
�D	 �A� � u	�
�k� which has c � �� � 	�


k���
� For level k � � the conformal

central charge is c � ��
��

� �� but there does not exist any N � � model with c � �	
��

which
could be tensored with this theory to arrive at a c � � conformal �eld theory�

Note that the number of the models so obtained is relatively small� This can be traced
back to two simple facts� First� if �g is a Lie algebra of A type� all subalgebras lead to
coset theories of the HSS type� Second� for any �xed Lie algebra �g� the central charge
of the coset theory grows rather fast when one moves the node with label i� away from
the 
margin� of the Dynkin diagram of �g towards the inner part 	note that except for
Ar all cominimal fundamental weights� i�e� those leading to hermitian symmetric cosets�
correspond to marginal nodes
�

��	 Speci�cation of the coset theories

As already emphasized� the 
Lie�algebraic coset� as it stands in 	�����
 is in itself far from
de�ning a consistent modular invariant conformal �eld theory� In this section we will
provide a detailed speci�cation of the conformal �eld theory�

In fact� the �rst step to do so was already taken in the previous section when we
computed the levels 	�����
 of the semi�simple part of the subalgebra �h� i�e� of the simple
ideals in the decomposition 	�����
� which in the case of our interest reads

�h � (�h� u	�
 �
M
i

�hi � u	�
� 	�����


But the abelian ideal of �h must be speci�ed as well�

��	�� The u��� subalgebra

The conformal �eld theory corresponding to a u	�
 algebra has Virasoro charge c � �� As
all c � � conformal �eld theories have been classi�ed ���� ��� and their �eld contents is
known� it is su�cient to have a look at the conformal dimensions occurring in the conformal
�eld theory we are after� which� as we shall show now� in turn are �xed by the embedding�

The direction of the u	�
 in root space is given by %v�� From the embedding 	�����
 we
read o� the precise form of the u	�
�generator Q� it is proportional to

%Q	z
 �� 	%v��H	z

 �
X
�����

	%v�� ��
 �)��)����	z
 � 	�����


Here �)��)���� denotes the fermion number operator for the complex fermion that is asso�
ciated to the root ��� it takes integer values in the Neveu��Schwarz sector and half�integer
values in the Ramond sector� H stands for the Cartan subalgebra currents of g�

By replacing %v� in 	�����
 by an appropriate multiple v� of %v�� all eigenvalues of Q
can be taken to be integers� We will assume that we have chosen the smallest multiple
ful�lling this requirement 	otherwise we would be forced later on to introduce additional
identi�cation currents that have a non�trivial component only in the u	�
 part
� and write

%v� �
X
�����

�� � �� v�� 	�����


��



the number �� turns out to be an integer or half integer in all cases except for the model
of type G�� for which �� � ���� The operator product of Q with itself then reads

Q	z
Q	w
 � N
	z �w
�

� 	�����


with
N � 	v�� v�
 k �

X
�����

	v�� ��

� � 	v�� v�
	k � g�
� 	�����


Denote by � a canonically normalized free boson� satisfying i��	z
 i��	w
 � 	z � w
���
Expressing Q in terms of �� i�e� Q �

pN i��� we obtain the energy�momentum tensor

T �
�

�
� i�� i�� � �

�

�N � QQ � � 	�����


Thus the conformal dimension ! of a primary �eld is

! �
Q�

�N � 	�����


with Q the u	�
�charge of the �eld� i�e� the eigenvalue of Q�
Thus the u	�
 theory in question is the conformal �eld theory of a free boson compact�

i�ed on a circle whose radius is adjusted 	or� in other words� the chiral algebra is enlarged

precisely in such a manner that the charges are identi�ed modulo N � � In the sequel we
will denote this theory by u	�
N � The relevant values of the integer N 	as well as the
explicit values of the levels of the simple ideals �hi computed according to 	�����

 for the
cases of our interest are provided in Table ����

For hermitian symmetric cosets it was noticed ����� that N is always a divisor of
N�	g� h
� where

N�	g� h
 � Ic	�g
 � Ic	(�h
 � 	k � g�
� 	�����


Here Ic stands for the index of connection 	i�e� the number of conjugacy classes� which
is equal to the order of the center Z of the corresponding universal covering Lie group


of a Lie algebra� and Ic	
(�h
 � Q

i Ic	�hi
� where �hi are the simple algebras which appear in

the decomposition (�h � �i
�hi of

(�h into simple ideals� In fact� in most cases one even has
N � N�	g� h
� also� by introducing additional identi�cation currents with a non�trivial
component only in the u	�
 part one could use 	as has been done in �����
 N�	g� h
 in
place of N � For non�hermitian symmetric cosets� however� we encounter two cases� namely
	G��� k
 and the models 	BA�n� k
 with n odd� where the value of N is larger than N�	g� h
�

��	�� Selection rules and �eld identi�cation

Our next task is to identify the physical �elds of the theories of our interest� as described
in Section ���� In the case N � � cosets� the branching functions b��x��Q are the coe�cient
functions in the decomposition

X��x	� 
 �
X
�

b��x��Q	� 
���Q
	� 
 	�����


� Thus e�g� u���� is the theory for which the extended algebra is the level one A
���
� Kac��Moody algebra�

and u����
�� so�����

��



Table ���� The values of the levels ki and of N for non�hermitian symmetric coset theories

name C��gk � so	�d
��
L

i	�hi
ki � u	�
N �

	BA�n� k
 � n even C�	Bn
k � so	n� � n
� � 	An��
k�n�� � u	�
n�k��n����

	BA�n� k
 � n odd C�	Bn
k � so	n� � n
� � 	An��
k�n�� � u	�
	n�k��n����

	BB� �� k
 C�	B�
k � so	��
� � 	A�
�k�� � 	A�
k�� � u	�
��k����

	BB�n� k
 � n � 	 C�	Bn
k � so	�n � ��
� � 	Bn��
k�	 � 	A�
k��n�� � u	�
��k��n����

	CC�n� k
 C�	Cn
k � so	�n � �
� � 	Cn��
k�� � u	�
��k�n����

	C�� k
 C�	C�
k � so	��
� � 	A�
k�� � 	A�
�k�
 � u	�
	�k�	��

	C�� k
 C�	C	
k � so	��
� � 	A�
�k�� � 	A�
k�� � u	�

�k����

	D�� k
 C�	D	
k � so	��
� � 	A�
k�	 � 	A�
k�	 � 	A�
k�	 � u	�
��k�
��

	D��� k
 C�	D�
k � so	��
� � 	A�
k�� � 	A�
k�
 � 	A�
k�
 � u	�
���k����

	D��� k
 C�	D�
k � so	��
� � 	A�
k�	 � 	A�
k�
 � u	�
��k����

	F�� k
 C�	F	
k � so	��
� � 	C�
k�� � u	�
��k����

	G��� k
 C�	G�
k � so	��
� � 	A�
k�� � u	�

�k�	��

	G��� k
 C�	G�
k � so	��
� � 	A�
�k��� � u	�
��k�	��

of the product of the characters of g and so	�d
 with respect to the characters of h� Here
# and � stand for integrable highest weights of g and (h� respectively� and Q for an allowed
u	�
�charge� while x denotes an integrable highest weight of so	�d
 at level one� i�e� the
singlet 	�
� vector 	v
� spinor 	s
� or conjugate spinor 	c
 highest weight�

We have seen in Section ��� that the correct way to arrive at a modular invariant the�
ory is to interpret the primary �elds of the coset theory in terms of equivalence classes
of branching functions ���� ���� ���� this prescription is usually referred to as �eld iden�

ti�cation� Under the assumptions mentioned in Section ������ the equivalence relation is
uniquely determined by the conjugacy class selection rules� If all equivalence classes have
the same number of elements� one can simply de�ne a primary �eld as an equivalence
class of branching functions� Its character is then just any of the 	identical
 branching
functions of its representatives� and accordingly the primary �eld can be denoted as "��x

��Q�
where 	#� x� ��Q
 is a representative combination of the relevant highest weights # of g�

x of so	�d
� � of (�h� and Q of u	�
� If� on the other hand� several distinct sizes of equiva�
lence classes are present� �xed points have to resolved� this will be addressed in the next
subsection�

Our task is thus to �nd the relevant selection rules and deduce the identi�cations
implied by them� This is a straightforward exercise in group theory� but is still somewhat
involved owing to the non�trivial embedding of �h in so	�d
� A convenient way to state
these selection rules is to characterize the non�vanishing branching functions by the fact
that their monodromy charge with respect to the identi�cation group Gid of the coset theory
vanishes� The identi�cation group contains all identi�cation currents� we will denote its
order by jGidj� Its orbits on the branching functions are just the equivalence classes we
are looking for� To qualify as an identi�cation current� a simple current must have integer

��



conformal weight ����� 	this allows for a simple check of our results for the identi�cation
currents
� this condition must be met because any identi�cation current is a representative
of the equivalence class describing the identity primary �eld� and conformal weights are
constant modulo integers on each identi�cation orbit�

To begin the description of identi�cation currents for the theories of our interest� we
derive a formula for the order jGidj of the identi�cation group of any N � � coset theory
of the form 	�����
� This provides an important check for the completeness of the selection
rules that will be listed below� Our starting point is the formula �����

jGidj �
������L

�
�g

L��h

������ � 	������


Here L denotes the root lattice of a reductive algebra� and L� the corresponding coroot
lattice� The symbol 
 � � is used to indicate the dual lattice� in particular 	L�
� � LW �
where LW is the weight lattice� Writing the relation 	������
 in terms of the dual lattices
and denoting the volume of the unit cell by 
vol�� we see that

jGidj �
�����	L

�
�h

�

	L��g

�

����� �
�����L

W
�h

L�g

����� � vol	L�g


vol	LW
�h


� 	������


Since the direction of the u	�
 is orthogonal to (�h in weight space� it follows that

vol	LW
�h

 � vol	LW

��h

 � � � vol	LW

��h

 	������


and
vol	L�g
 � vol	L��h


 �Qi�� 	������


where Qi� is the u	�
�charge of the simple root ��i��� Thus

jGidj � Qi�

vol	L��h



vol	LW
��h


� Qi�

������
LW
��h

L��h

������ � Qi� Ic	
(�h
� 	������


Here Ic	
(�h
 �

Q
i Ic	�hi
 as in 	�����
� and we made use of the fact that Ic	�h
 � jLW

�h
�L�hj for

any simple Lie algebra �h�
While the result 	������
 is completely general� the precise form of the group theoretical

selection rules must be determined in a case by case study� To do so� a rather tedious
investigation of the way �h is embedded in �g � so	�d
 is necessary� In particular a careful
handling of the embedding of �h in so	�d
 	best to be described in an orthogonal basis which
corresponds to the free fermion realization of so	�d
�
� which is a special � embedding� is
required� We list in Table ��� our results for the identi�cation currents �J of all non�
hermitian symmetric N � � coset theories that can be used in c � � tensor products� We
use the notation J � 	J �g�� J �so��d�� � J �h��� J �h��� � � � � J �u����
� In the individual entries� we
write Jv for the vector simple current� and Js and Jc for the spinor and conjugate spinor
simple currents� respectively� of B and D type algebras� while for A type algebras� J stands
for the simple current that acts as �i �� �i��mod�r��� on the Dynkin labels of a Ar�weight
	this current is associated with a marginal node of the Dynkin diagram� it has maximal
order� and hence generates all simple currents of the theory
� �nally� for the u	�
 part a

��



Table ���� The identi�cation groups for non�hermitian symmetric coset theories

name jGidj generators of Gid �xed p�

	BA�n� k
 � n even n 	J� � � J� k � �n� �
 �

	BA�n� k
 � n odd �n 	J� Jv � J� �	k � �n� �

 �

	BB�n� k
 �

�
	J� � � J� �� �


	J� � � �� J��	k � �n � �



�
��

�
	CC�n� k
 � 	J� 	Jv
n � J��	k � n � �

 �

	C�� k
 �

�
	J� � � J� J� �


	J� Jv � J� ����	k � �



�
�

�
	C�� k
 � 	J� Jv � J� J��	k � �

 �

	D�� k
 �

�����
	Jc� � � J� J� �� �


	Js� � � J� �� J� �


	�� Jv � J� J� J��	k � �



�����
�

�

�

	D��� k
 ��

�
	Js� Jv � J� J� ���	k � �



	Jv� � � �� J� J� �



� �
�

	D��� k
 �

�
	Jv� Jv � �� J��	k � �



	Js� � � J� J� �



� �
�

	F�� k
 � 	�� � � J��	k � �

 �

	G��� k
 � 	�� Jv � J���	k � �

 �

	G��� k
 � 	�� Jv � J��	k � �

 �

�eld is simply denoted by its u	�
�charge Q� Notice that in Table ��� we only give a set of
generators of the group Gid rather than all of its elements�

The way in which we arrived at these results is best described by giving an example�
Thus let us have a look at the coset theory denoted by 	C�� k
� We denote the Dynkin
labels of weights of �g � C	 by #i� i � �� �� �� �� of weights of �h� � A� by �� and ��� of
weights of �h� � A� by �	� and the u	�
�charge by Q� By analysing the embedding� we �nd
that these numbers must be related by

�#� � �#� � �N � ��� � ��� � ��	 �Q � � mod �� 	������


where �N stands for the sum of six di�erent eigenvalues of the Cartan generators of so	��
�
which have integer values in the Neveu��Schwarz sector and half integer values in the
Ramond sector� We want to interpret this result as a relation for monodromy charges�
namely

Qm�C	� �Qm�so	��
� �Qm�A�� �Qm�A�� �Qm�u	�
� � � mod �� 	������


It is easily checked that N mod Z is the monodromy charge with respect to the vector
current Jv of so	�d
� and that Q�p is the monodromy charge with respect to the current

� This is not in con
ict with the previously mentioned result ��		� that N � � symmetry requires
regular embeddings� The part of the embedding that must be regular is 
h �� 
g rather than 
h �� so��d��

��



with u	�
�charge �N�p of the u	�
 theory� For the g and hi parts� the identi�cation
currents can also be �xed uniquely� simply because all simple currents� as well as the
associated monodromy charges� of the corresponding WZW theories are known� We then
arrive at the combination

�J � 	J� Jv � J� J��	k � �

 	������


of simple currents that has 	������
 as its monodromy charge� This current has order ��
This coincides with the result of formula 	������
 for the order of the identi�cation group�
and hence we have already found all identi�cation currents�

��	�	 Fixed points

If the equivalence classes described in the previous subsection have di�erent sizes Ni� the
identi�cation procedure becomes more complicated� Note that the maximal size of a class
is equal to the size N � jGidj of the equivalence class of the identity primary �eld� and
that any other allowed size is a divisor of N � The equivalence classes of size Nf � N
should correspond to N�Nf distinct physical �elds ����� ����� The required resolution
of classes of non�maximal size into primary �elds is problematic because not all necessary
pieces of information are directly supplied by the embedding� in other words� the resolution
potentially introduces some arbitrariness in the description of primary �elds� In particular
we do not know the characters of the individual primary �elds into which such a class f is
resolved� We do know� however� their sum� since modular invariance imposes the constraintX

i

Xfi � Xf � 	������


where Xf denotes the original branching function of the class f �
Now given the naive S�matrix element Sfg between two �xed points f and g� one can

make the ansatz 	�����


%Sfi gj �
NfNg

N
Sfg � &fgij 	������


for the full S�matrix between di�erent �elds fi� gi into which the �xed points are to be
resolved� The matrix & introduced here must be symmetric 	with respect to the double
index 	f� i

� but a priori is otherwise arbitrary� Modular invariance can be shown to imply
the sum rules 	�����
 X

i

&fgij � � �
X
j

&fgij � 	������


To �nd a solution for & we assume that with respect to the individual entries of the multi�
index 	f� i
 � 	#� x� ��Q� i
 it factorizes as

&��x���Q����x�����Q�

ij � &���

�g� &
x x�

�so��d��&
���

��h�
&QQ�

�u����Pij� 	������


where

Pij � �ij � Nf

N
� 	������


Since in all cases of our interest the �xed points f have order N�Nf � � and must therefore
be resolved into two �elds� the fact that 	������
 can be factored out is an immediate
consequence of the sum rules 	������
� Following ������ with the factorization assumption
	������
 we can identify in all cases a so�called �xed point conformal �eld theory� whose
characters can be added to the branching functions to get the full collection of primary

��



�elds� these characters are nothing but the summands Xfi	� 
 in the decomposition 	������

above�

This procedure of �xed point resolution is certainly quite important� because it is only
after having accomplished this task that we really deal with a well�de�ned conformal �eld
theory 	it is even unknown whether the prescription works for an arbitrary coset theory� and
whether the conformal �eld theory it provides is unique
� However� it is not di�cult to see
that some important quantities we will be interested in� namely the number of generations
and anti�generations in a four�dimensional string compacti�cation� can be obtained in our
case without a detailed knowledge of the resolution procedure 	see also the comments in
Chapter �
�

In the third column of Table ��� we marked whether identi�cation �xed points occur
in the theories in question� The following notation is used� 
�� indicates that �xed points
never occur in the corresponding theory� 
�� means that �xed points can occur� but not
at any of the levels that are relevant for c � � tensor products 	this typically happens
when we are only interested in low levels where the associated outer automorphisms of g

act freely on the integrable representations of g
� �nally 
��� is used to indicate that �xed
points occur and have to be resolved� Note that an identi�cation current can possess a
�xed point only if it has vanishing u	�
�charge�

��	�
 Modular invariants

It should be noted that the discussion of �eld identi�cation in the previous subsections
refers only to one chiral half of the conformal �eld theory� For the full theory� one has to
use all �elds as identi�cation currents� i�e� as representatives of the identity primary �eld�
that have non�vanishing branching functions and are identi�cation currents with respect to
both the holomorphic and the anti�holomorphic part� For example� for the N � � minimal
models this prescription implies the presence of left�right asymmetric identi�cation currents
if the Deven� E
� or E� type invariants of the associated A� WZW theory are chosen�

For the N � � theories of our present interest� we will con�ne ourselves to analyse
only the situation where the diagonal modular invariants of g� h and so	�d
� are used�
As a consequence� the identi�cation currents are just the left�right symmetric version of
the chiral currents listed in Table ���� The extension to any known non�diagonal modular
invariant is immediate� recall however that the classi�cation of modular invariants of simple
Lie algebras 	other than A� and A� and their tensor products
 is far from being complete�

��
 Chiral ring and Poincar
e polynomials

In this section we present some results concerning the chiral ring of our theories� The
chiral ring is spanned by the collection of chiral primary �elds of the theory� these �elds
are by de�nition those primary �elds which satisfy qsuco � h��� They generate the chiral

ring ����� of the theory� this is a �nite�dimensional nilpotent ring R whose product is
the naive operator product limz	w �	z
��	w
� The reader should note that this product
is di�erent from the one de�ned by the fusion ring� the conjugation is not the evaluation
with respect to the vacuum any more� rather the conjugate of the vacuum is the chiral
primary �eld with highest u	�
 charge�

The information contained in the chiral ring is crucial for many applications� e�g� the
relation to topological �eld theories is mainly through this ring� It can also be used e�g� to
determine quantities relevant to string compacti�cation� in Chapter � we will compute the

��



quantities which are the most relevant ones for the phenomenological aspects� namely the
number of 	anti�
generations for a compacti�cation of the heterotic string to four space�
time dimensions�

For the models under consideration� it is in fact easier to work with the ground states
of the Ramond sector� which owing to spectral �ow ����� provide equivalent information on
the theory� Namely� the chiral primary �elds 	with superconformal charge 	 qsuco
 are via
spectral �ow in one to one correspondence with Ramond ground states 	with superconfor�
mal charge qsuco � c��
� In all N � � coset models of the form 	�����
 we can identify the
simple current in the Ramond sector which generates the �ow� it is the unique Ramond
ground state with highest superconformal charge� which has been termed spinor current

in ������ It is easily seen that one representative of the spinor current is the �eld

S � "��s
��Qs

� 	�����


with
Qs � 	v�� ��g � ��h
� 	�����


Here ��g �
P

i#�i� and ��h are the Weyl vectors� i�e� half the sum of positive roots� of �g and

of (�h� respectively�
The information on the multiplicities of chiral states with a given superconformal charge

is encoded in the Poincar�e polynomial ������ which can be de�ned as a trace over the chiral
ring R�

P 	t� �t 
 �� TrR tJ��t
�J�� 	�����


Here J� denotes the generator of the superconformal u	�
� and the barred quantities refer
to the second chiral half of the theory� In the sequel we will only consider the left�right
symmetric diagonal modular invariant� correspondingly we can restrict ourselves to one
chiral half and replace t�t for the sake of simplicity by t�

��
�� Ramond ground states

To determine the ground states of the Ramond sector one can use a simple formula for the
g� and h�weights of these states which can be derived ����� by means of an index argument�
The advantage of this formula is twofold� First� in coset models it is usually di�cult to
calculate the integer part of the conformal weight h of a primary �eld� for Ramond ground
states 	which all have h � c���
� however� the index argument makes it possible to identify
the state without having to evaluate a formula for h� Second� the formula automatically
takes care of possibly arising null states� again� this is a rather delicate issue in the general
case� �

Denote by W �g the Weyl group of �g� by jW �gj its order� and by W �h and jW �hj the
analogous quantities for (�h� For any integrable g�weight #� the recipe of ����� provides
j �W�gj�j �W�hj Ramond ground states� The h�weight %� of each of these Ramond ground states
is related to its g�weight by

%� � w	# � ��g
� ��h
� 	�����


Here the weight %� � 	��Q
 incorporates both the weight � of the semi�simple part (h of h
and the u	�
�charge Q� Also� the map w in 	�����
 is the representative of any class of the

� In the literature sometimes a normalization is chosen where �
�qsuco is the superconformal charge�

� Compare the remark about E� singlets in Section ��� below�
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coset W �g�W �h
possessing the property that � is a dominant integral highest weight of h�

each class of W �g�W �h contains a unique representative w satisfying this requirement ����� If

sign	w
 � �� then the highest weight of so	�d
 that is associated to %� is the spinor 	s
� while
for sign	w
 � ��� it is the conjugate spinor 	c
� Note that ��g� ��h

� #�i��� the constant of

proportionality being
P

j	#�j��#�i��
�	#�i���#�i��
 as can be deduced from 	��h� ��g���h
 � ��

For an N � � coset theory C��g �Dd��h� u	�
�K without �xed points� the number of
chiral primary �elds is correspondingly �����

� �
N	g


jZ	�g
j
jW �gj
jW �hj

� 	�����


whereN is the number of primary �elds of the WZW theory based on g at levelK� and Z	�g

is the center of the universal covering group whose Lie algebra is �g 	which is isomorphic to
the group of simple currents of the WZW theory
� The factor ��jZ	�g
j takes care of the
necessary �eld identi�cations among representatives� In contrast� if an N � � coset theory
has �xed points� the number of Ramond ground states is larger than 	�����
� Namely� each
primary �eld of g still gives rise to jW �gjW �hj representatives of chiral primaries� but in
addition for �xed points it is still true that 	after resolution of �xed points
 every Ramond
ground state has a representative whose �g� and �h�weights ful�ll 	�����
 and that every
equivalence class containing one representative with %� � w	# � ��g
 � ��h yields precisely
one Ramond ground state�

To implement the formula 	�����
 on a computer� it is convenient not to start with the
weights of g� but rather to scan all dominant weights of h that are allowed by the selection
rules� For each such weight %� one determines the unique dominant integral g�weight which
lies on the same W �g�orbit as %� � ��h

	if this g�weight is not integrable at the relevant

level of the a�ne algebra �g���� then the corresponding state has to be rejected
� To do so�
one only has to know the action of the fundamental re�ections wi � W �g 	see e�g� ����
�
This method has the advantage that one needs not know the whole W �g�orbit of a highest
�g�weight which� especially for large rank algebras� would require a lot of memory�

��
�� Poincar
e polynomials

Having found the Ramond ground states� we can proceed to compute the Poincar�e poly�
nomial of an N � � coset theory� To do so� we also need the superconformal charge of the
Ramond ground states� This charge is given by ����

qsuco �
X
�����

%#
�� � ��Q

k � g�
� 	�����


Here �� �
q
	%v�� %v�
�	v�� v�
 �

q
	k � g�
	%v�� %v�
�N is the number de�ned by 	�����
� Q is

the u	�
�charge of the Ramond ground state� and %#
�� � f�� ���

�g are the components of its
so	�d
�weight in the orthogonal basis� Unfortunately the index argument ����� leading to
	�����
 does not provide the full weight %#� but only yields the information whether it is a
weight of the spinor or of the conjugate spinor module of so	�d
� or in other words� only

the value of
P

�����
%#
��
modulo �� To translate 	�����
 into a more convenient formula� we

proceed as follows� 
 Denote by !
�g
�� !

�g
�� and !�g the sets of positive roots� of negative

� An analogous result has been obtained in ����� for simply laced hermitian symmetric cosets at level
one� and in �		���� for all hermitian symmetric cosets in their free �eld realization�
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roots� and of all roots� respectively� of the Lie algebra �g� and by !h
�� !

h the corresponding

quantities for (�h� For an arbitrary element w of the Weyl group W �g de�ne

!
�w�
� �� f� � !�g j w��	�
 � !

�g
�g� 	�����


For any w � W �g� !
�g is the disjoint union of !�w�

� and !�w�
� � We can express the image of

the Weyl vector ��g under w as

w	��g
 �
�
� �

X
���

�w�
�

� � X
���

�w�
�

� � � 	�����


as is easily veri�ed by applying w�� to both sides of the equation�
Given a subalgebra �h of �g� we call w � W �g

�h�positive ������ i�

!
�h
� � !

�w�
� � 	�����


We claim that in order to compute
P

�����
%#
��
� we only need to identify the �h�positive

representative w of the coset W �g�W �h that appears in 	�����
� and that the components
%#
��
of the so	�d
�weight %# are given by

%#
��
� %#

��

�w� ��

���
�
� if �� � !

�w�
� �

��
� if �� � !�w�

� �
	������


This can be seen as follows� Let � be an arbitrary element of !
�h
�� For any highest �h�weight

%� we have 	%�� ��h
� �
 � �� as a consequence�

� � 	%�� ��h� �
 � 	w	# � ��g
� �
 � 	# � ��g� w
��	�

� 	������


This shows that w��	�
 � !
�g
�� or in other words� that !

�h
� � !

�w�
� � Now the general form

of the Cartan currents of (h reads

H i
h � H i

g �
X
�����

��i �)��)���� � 	������


As a consequence� under the embedding h �� g� so	�d
� the state with weight 	w	#
� %#
��

�w�

branches to

%� � w	#
 � �
�

X
����

�w�
�

�� � �
�

X
����

�w�
�

��

� w	#
 � w	��g
� �
�

X
���

�w�
� 
�

�h
�

� � �
�

X
���

�w�
�

�

�h
�

� �
	������


This reduces to w	# � ��g
 � ��h� i�e� yields the correct result 	�����
� i� w is �h�positive�

Note that the weight 	w	#
� %#
��

�w�
 is always present in the weight system of the g� so	�d
 �
module with highest weight 	#� s
 or 	#� c
� because the Weyl group orbit of any weight of
a highest weight module with dominant integral highest weight is contained in the weight
system of the module�

��



Inserting our result 	������
 into the formula 	�����
 for the superconformal charge qsuco�
we obtain

qsuco �
�
�
�j!�w�

� �!�j � j!�w�
� �!�j�� ��Q

k � g�
� 	������


To simplify this formula further� we recall that the length l	w
 of a Weyl group element
w� which is de�ned as the minimal number of fundamental re�ections needed to obtain w�
obeys ���� sect� ����

l	w
 � j!�w�
� �!�j� 	������


Using the identity
j!�w�

� �!�j� j!�w�
� �!�j � d� 	������


we �nally obtain

qsuco �
�
�
d � l	w
� ��Q

k � g�
� 	������


The length of the relevant elements of W �g�W �h can be obtained conveniently via the so�
called Hasse diagram of the embedding �h �� �g 	for some details� see the Appendix
� and
hence the formula 	������
 is easily implemented in a computer program� For the spinor
current 	�����
� one has w � id so that 	������
 reduces to

qsuco	S
 �
�
�d�

	%v�� ��g � ��h


k � g�
�

c

�
� 	������


where the last equality follows with 	�����
 and the strange formula�
We are now in a position to compute the Poincar�e polynomials of the theories listed in

Section ���� For notational simplicity� we will present the Poincar�e polynomials in the form
P 	t

� with � the smallest positive integer for which all values of �qsuco of chiral primary
�elds are integers� We �nd that for the three series 	BB�m� �� �
� 	CC� �� �m � �
� and
	CC� �m� �� �
 with m � Z��� the Poincar�e polynomials are given by a common formula�
namely � � m� � and

P 	tm��
 �
mX
j
�

	j � �
 	tj � t�m���j
 � 	�m� �

�m��X
j
m��

tj� 	������


The Poincar�e polynomials of the remaining models are listed in Table ����
To conclude this subsection� we remark that the resolution of �xed points does not

alter the number of Ramond ground states� In other words� independently of its length
each identi�cation orbit that contains a representative satisfying 	�����
 provides exactly
one Ramond ground state ������

��



Table ���� Poincar�e polynomials for non�hermitian symmetric coset theories

name � P 	t



	BA� �� �
 � � � � t� � � t� � � t	 � t


	BA� �� �
 �� � � t
 � t� � t� � � t�� � t�� � � t�� � t�� � � 	 t�	 � t�� � t�
 

�t�� � � t�� � t�� � � t�� � t�� � t�� � t�	 � t��

	BA� �� �
 � � � 	 t� � t� 
 � � t	 � � t� � � t
 � � t� � �� t� � �� t�

��� t�� � � t�� � � t�� � � t�� � � t�	 � t�� � t�
 � t��

	BA� �� �
 � 	C�� �
 � 	G��� �
 � � � � t� �� t� � � t� � t	

	BA� �� �
 � � � � t� � �� t	 � �� t� � �� t
 � � t� � t��

	BA� �� �
 � � � � t� �� t� � �� t� � �� t	 � � t� � t


	BB� �� �
 � � � � t� �� t� � �� t� � �� t	 � � t� � t


	BB� �� �
 � � � � t� � t� � �� t� � �� t	 � �� t� � �� t
 � � t� � � t� � t�

	CC� �� �
 � 	CC� �� �
 � 	G��� �
 � � � � t� � � 	 t� � t	 
 � � t� � t�

	CC� �� �
 � 	CC� �� �
 � � � � t� � � t	 � � t� � � 	 t
 � t� 
 � � t� � � t� � � t�� � t��

	CC� �� �
 � 	CC� �� �
 � � � � t� � � t	 � � t
 � � t� � � t� � � 	 t� � t�� 

�� t�� � � t�� � � t�� � � t�� � � t�� � t��

	CC� �� �
 � � � � � t� �� t� � � t� � t	

	CC� �� �
 � 	CC� �� �
 � � � � t� �� t� � �� t� � �� 	 t	 � t� 
 � �� t
 � �� t� � � t� � t�

	CC� �� �
 � � � � t� �� t� � �� t� � �� t	 � � t� � t


	C�� �
 � � � � t� �� t� � �� t� � �� t	 � � t� � t


	D�� �
 � � � t� � � t	 � � t� � � 	 t
 � t� 
 � � t� � � t� � t�� � t��

	D��� �
 � � � t� � t� � �� t� � �� 	 t	 � t� 
 � �� t
 � � t� � t� � t�

	D��� �
 � � � t� � � t	 � � t
 � � t� � � 	 t� � t� � t�� � t�� 

�� t�� � � t�� � � t�� � t�� � t��

	F�� �
 � � � t� � 	 t� � t� 
 � � 	 t	 � t� � t
 � t� 

�� 	 t� � t� 
 � t�� � t��

	G��� �
 � � � � 	 t� � t� 
 � t�

	G��� �
 �� � � t�� � t�� � t�� � t�	 � t�� � � t�
 � t�� � t�� � t�� � � t��

�t�� � t�� � t�� � � t�	 � t�� � t�
 � t�� � t�� � t�� � t	�

	G��� �
 � � � t� � t� � � t� � �� 	 t	 � t� 
 � � t
 � � t� � t� � t�

��



��
�	 Charge conjugation

From 	������
 and the results in Table ��� one can read o� that the superconformal charges
of chiral primary �elds lie between zero and c��� as it must be� One also notes that
according to the results the Poincar�e polynomials obey

P 	t
 � tc�� P 	t��
� 	������


In terms of the Ramond sector this means that the collection of Ramond ground states is
symmetric with respect to the charge conjugation qsuco �� �qsuco�

In fact� using the formul* 	�����
 and 	������
 it is possible to show that this is a generic
feature of all N � � coset theories of the form 	�����
� To show this� consider along with an

arbitrary Ramond ground state "��x
��
� "��x

��Q also the �eld represented by "���x�

���
� with #��

x� and %�� de�ned as follows� As before� x stands for either the spinor or conjugate spinor�
and we de�ne x� to be equal to x if d is even� and to belong to the opposite conjugacy class
if d is odd� Moreover�

#� �� �w�g
max	#
� 	������


%�� �� �w
�h
max	%�
 	������


	recall that wmax� denoting the longest element of a Weyl group W � acts as the negative
of the conjugation in the representation ring of a Lie algebra
� In the de�nition 	������
�

w
�h
max is to be considered as an element of the Weyl group W �g� As a consequence� w

�h
max

acts on the (�h�weights like the usual conjugation of weights and maps Q to �Q� Namely� by
virtue of 	������
 each fundamental Weyl re�ection of W �h� and thus any element of W �g�
acts on v� as the identity�

Using the identities ��g � �w�g
max	��g
 and ��h � �w

�h
max	��h
� we see that the highest

weight %�� � ��h of �h can be written as

%�� � ��h � �w
�h
max	

%� � ��h
 � �w
�h
maxw	# � ��g


� w�	#� � ��g
 �
	������


where
w� �� w

�h
maxww�g

max � 	������


and where w is the Weyl group element introduced in 	�����
� To calculate the sign of w��
which determines the so	�d
 conjugacy class� we observe 	by inspection
 that for all simple
Lie algebras �g the relation

sign 	w�g
max
 � 	��
n� 	������


is satis�ed� where n� � j!�g
�j is the number of positive �g�roots� Therefore

sign 	w�
 � sign 	w
�h
max
 sign 	w�g

max
 sign 	w
 � 	��
�dim �g�dim �h��� sign 	w
� 	������


and 	�����
 now clearly implies that the state "���x�

���
is again a Ramond ground state� Also

note that as a by�product we proved that along with w also w� is �h�positive�
So far we have seen that the set of Ramond ground states is symmetric in the u	�
�

charge� The symmetry in the superconformal charge then follows from 	������
 together
with the identity

l	w
 � l	w�
 � d� 	������


��



This relation arises as follows� Let �� be an arbitrary root in !�� Then either w��	��
 � !
g
�

or 	w�
��	��
 � !
�g
�� because the map w �� w� swaps exactly from negative to positive

roots of �gn�h� Thus !� is the disjoint union of !��!
�w�
� and !��!

�w��
� � which by 	������


and 	������
 proves the assertion�
Let us also note that the unique Ramond ground state with minimal superconformal

charge qsuco � �c�� 	which via spectral �ow corresponds to the identity primary �eld
 is
obtained by applying the above prescription to the spinor current 	�����
� and hence is

given by "��x�

���Qs
� For this �eld the relevant �h�positive Weyl group element is w � w

�h
maxw

�g
max

so that 	������
 implies

l	w
�h
maxw

�g
max
 � d � 	������


while by setting # � � � � in 	�����
� one obtains ��h � �
�
	��g � w

�h
maxw

�g
max	��g

 �

�
�
	��g �

w
�h
max	��g

� Since the �h�positive representative w�g��h

max of W �g�W �h with largest length d is
unique ����� 	������
 shows that this representative is given by

w�g��h
max � w

�h
maxw

�g
max � 	������


��� Conclusions

In this chapter we have presented a detailed analysis of non�hermitian symmetric N � �
superconformal coset theories� in addition� we have proven some general statements on the
structure of any N � � coset theory� Concerning the non�hermitian symmetric coset
theories themselves� we have shown that they indeed allow for an interpretation as a
consistent conformal �eld theory� this lends further support to the expectation that any

coset theory� naively 
de�ned� as C��g��h�k� possesses such an interpretation� In particular�
it was shown that the �xed points that arise in the process of �eld identi�cation can be
resolved by the methods of ������

To conclude� let us come back to the hypothesis that� given a chain of subalgebras
�h� �� �h� �� �g� the coset theory C��g��h��k should correspond to the tensor product of the
two cosets C��g��h��k and C��h���h��k�� with a suitably chosen non�product modular invariant�
We emphasize that in the presence of �xed points this hypothesis is far from being proven�
With the methods employed in the present chapter it should be straightforward to examine
the structure of both C��g��h��k and the tensor product of C��g��h��k and C��h���h��k� in detail�
and thereby test the hypothesis for any given chain of embeddings� To prove the equivalence
in full generality� however� still a deeper understanding of the structure of coset conformal
�eld theories seems to be necessary�

��A Appendix� Hasse diagrams

The Hasse diagram ���� for an embedding �h �� �g of a reductive Lie algebra in a simple
Lie algebra is the graph of the coset W �g�W �h� interpreted as a subgraph of the graph of

W �g� with the edges as prescribed by the Bruhat ordering of W �g� 	Hasse diagrams also
arise in the description of the topological structure of generalized �ag manifolds and of the
structure of the Bernstein��Gelfand��Gelfand�resolution of Verma modules�
 The nodes of
the Hasse diagram correspond to those representatives of elements of W �g�W �h that send

a dominant �g�weight # to a dominant (�h�weight �� i�e� to �h�positive elements of W �g� and

��



the integer i attached to an edge indicates that the two nodes connected by the edge
correspond to Weyl group elements w and w� related by w� � w�i�w� with w�i� the ith
fundamental re�ection� For an embedding �h �� �g for which the Dynkin diagram of �h is
obtained by deleting the node with label i� from the Dynkin diagram of �g� the Hasse
diagram is isomorphic to the W �g�orbit of #�i��� i�e� to the 
restricted weight diagram� that
one obtains when acting successively on the weight #�i�� with the fundamental re�ections�

The Hasse diagrams for the embeddings relevant to hermitian symmetric cosets have
been described in ����� Below we present the Hasse diagrams for some of the non�hermitian
symmetric cases which appear in Table ��� 	the diagrams for the remaining cases� i�e� the
BA and BB series and the two D� theories look more complicated� and we refrain from
drawing them here
� �

Hasse diagram of W 	Cn
�W 	Cn��
�

t t t t p p p p p p t t t t p p p p p p t t t� �� �� n�� n��n
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	 The Hasse diagram of W �F���W �C�� can also be found in ���� p� ����
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Hasse diagram of W 	D	
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Hasse diagram of W 	G�
�W 	A�
� 
�
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�W 	A	
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Chapter �

Level�Rank Duality of WZW Theories and of N � �

Coset Models

As it turns out� the same conformal �eld theory can be described by di�erent Lie algebraic
cosets� In this chapter we show that certain in�nite series of N � � superconformal coset
models introduced in Chapter � coincide� to this end we construct mappings between these
series� They make use of level�rank dualities for B� C� and D type WZW theories� which
are described in some detail� TheWZW level�rank dualities do not constitute isomorphisms
of the theories� for example� for B and D type WZW theories� only simple current orbits
rather than individual primary �elds are mapped onto each other� Nevertheless they lead
to level�rank dualities of N � � coset models that preserve the conformal �eld theory
properties in such a manner that the coset models related by duality are expected to be� in
fact� isomorphic as conformal �eld theories� in particular� the representation of the modular
group on the characters and the ground states of the Ramond sector are shown to coincide�
The construction also gives some further insight into the nature of the resolution of �eld
identi�cation �xed points of coset theories�

	�� Level�rank dualities

Level�rank dualities relate objects that are present in two di�erent structures that are
connected to each other by exchanging the level 	or possibly some simple function thereof

and the rank of an a�ne Lie algebra 	or some closely related algebraic structure
� They
emerge in various areas of physics and mathematics� in WZW conformal �eld theories
��������������������� and the theories obtained from them via the coset construction ����
in three�dimensional Chern��Simons theories ����� ����� in the representation theory of
quantum groups with deformation parameter a root of unity �������� and of Hecke algebras
whose parameter is a root of unity ����� and in the description of edge variables in fusion�
RSOS models ������

Usually� level�rank duality merely implies certain non�trivial relations among quantities
of di�erent theories� such as correlation functions or fusion rules of WZW models� In this
chapter� we describe several level�rank dualities which go much beyond such relations in
that they provide an isomorphism between the respective theories� We show that there
exist several such equivalences among in�nite series of N � � superconformal coset theories�
More speci�cally� we describe the identi�cations

	B� �n� �� �k � �
 �� 	B� �k � �� �n � �
 �

	B� �n� �k � �
 �� 	B� �k � �� �n
jD �

	BB�n� �� �
 �� 	CC� �� �n� �
 �

	CC�n� k
 �� 	CC� k � �� n� �
 �

	�����


��



Here the notations are taken from ���� and Tables ��� and ��� � compare also Tables ��� and
��� below� Let us note that isomorphisms between in�nite series of coset conformal �eld
theories have been observed previously� For instance� the c � � minimal conformal models
can be described ���� as C�	A�
m���	A�
� � 	A�
m���� but also ��� as C�	Cm��
� � 	Cm��
��
	C�
��� in this case the �eld contents is tightly constrained by the representation theory of
the chiral algebra� so that it is relatively easy to construct an isomorphism as a mapping
between primary �elds� Our result 	�����
 demonstrates for the �rst time the presence of
such isomorphisms for N � � superconformal theories of arbitrarily high central charge�

The identi�cations 	�����
 are constructed as one�to�one maps between the primary
�elds of the respective theories� Both at the level of the representation of the modular group
and� hence� for the fractional part of the conformal dimensions and for the fusion rules�
and 	by identifying Ramond ground states
 at the level of the ring of chiral primary �elds
we verify that these maps possess the properties needed for an isomorphism of conformal
�eld theories� Clearly one would like to extend the proof from the fusion rules to the full
operator product algebra� Because of the technical di�culties arising in the conformal
bootstrap 	compare� e�g�� ����
� this would be a quite formidable task� However� it is
reasonable to expect that any two N � � superconformal �eld theories that possess the
same value of the conformal central charge� the same fusion rules� and the same conformal
dimensions modulo integers are in fact isomorphic� � We are therefore convinced that
the two coset theories in question furnish merely two di�erent descriptions of one and the
same conformal �eld theory� In this context note that in general the conformal dimensions
of primary �elds change with the 
moduli� of some class of conformal �eld theories� For
compatibility with the fusion rules� the number of primary �elds must then depend on the
moduli as well 	in fact� when deforming a rational conformal �eld theory by a massless
modulus one generically obtains an irrational theory� compare the situation at c � �
� The
arguments in favor of the interpretation of the relations 	�����
 as isomorphisms seem to
us already conclusive for any �xed choice of a pair of theories from the list 	�����
� they
become even more convincing when one realizes that our identi�cations always come in
in�nite series�

Similar remarks apply to the structure of the chiral ring� We can substantiate our ex�
pectation that there is not only a one�to�one map between the chiral primary �elds of the
theories� but that the sets of chiral primaries also possess isomorphic ring structures� by
various arguments� First note that the identi�cation of the sets of Ramond ground states
of two N � � theories implies that they possess the same Poincar�e polynomial� From the
experience with coset constructions� the observation that there exist coset theories with
coinciding Poincar�e polynomials is not very spectacular� However� we will see in Chapter
� that not only the ordinary Poincar�e polynomials� but also the extended Poincar�e polyno�
mials 	introduced in �����
 of the relevant theories appearing in 	�����
 coincide ����� ����
� note that the extended Poincar�e polynomial describes explicitly part of the structure of
the chiral ring� whereas the ordinary Poincar�e polynomial essentially counts multiplicities�
Second� the mapping between Ramond ground states� and thus also between chiral primary
�elds� leaves the superconformal charge q invariant� When proving this� it is important
that 	in contrast to the case of generic primary �elds of a coset theory
 for Ramond ground

� In the non�supersymmetric case� examples are known ����� where conformal �eld theories for which
these data coincide are nevertheless distinct theories� These theories have conformal central charge a
multiple of � and contain only a single primary �eld�

� Surprisingly� it seems that in fact for all N � � coset theories for which the ordinary Poincar�e
polynomials are identical� the same holds for the extended Poincar�e polynomials as well�

��



states not only can we easily compute the conformal weight exactly 	and not just modulo
integers
� but also the superconformal charge q 	cf� formula 	������

� In addition� the ring
product of the chiral ring is highly constrained by the fusion rules� Namely� since the ring
product is de�ned as the operator product at coinciding points� the fusion rules 	together
with naturality �����
 determine which of the structure constants of the chiral ring are
non�zero� Finally� the charge conjugation on the fusion ring is implemented by the fusion
coe�cients N �

ij � and thus our map respects charge conjugation� too� In particular� the
charge conjugation behavior of the Ramond ground states is respected� Since conjugation
on the chiral ring is induced by the ordinary charge conjugation on the Ramond ground
states via spectral �ow 	which means that there is a highly non�trivial interplay between
the chiral ring and the representation of the modular group on the characters
� it follows
that the map is compatible with the conjugation of the chiral ring�

As it turns out� the identi�cations 	�����
 are also interesting in the context of the
�eld identi�cation problem that arises in coset conformal �eld theories� Namely� �eld
identi�cation �xed points are mapped on non��xed points� so that the duality provides
additional insight into the procedure of �xed point resolution� 	The resolution procedure
for �eld identi�cation �xed points shows up in two di�erent ways� for models of BB type�
or of B type with rank and level odd� �xed points are mapped on longer orbits� while for
B type theories at odd level and even rank the resolution is accomplished by mapping on
pairs of so�called spinor�conjugate orbits�


The plan of this chapter is as follows� The various level�rank dualities 	�����
 of coset
theories are consecutively dealt with in Sections ��� to ��� 	the isomorphism statements are
made in the equations 	�����
� 	�����
� 	�����
� and 	�����
� respectively
� These sections
make heavy use of underlying level�rank dualities for the WZW theories ��������� the coset
models are composed of� For the bene�t of the reader we describe the relevant aspects of
these dualities in some detail in Sections ��� to ���� in a formulation that is adapted to the
needs in N � � theories� making in particular frequent use of simple current terminology�

To conclude this introduction to the subject� let us mention that level�rank dualities for
N � � coset theories have �rst been conjectured� for hermitian symmetric cosets� in �����
this conjecture just relied on the symmetry of the conformal central charges of the relevant
coset theories� Calculations of the spectra of N � � coset theories were �rst performed
in �������� for hermitian symmetric cosets� and in ���� for non�hermitian symmetric cosets�
The results of ����� provided some evidence that the dualities indeed exist� in particular�
it was realized that for B type theories at odd level and even rank the D type modular
invariant must be used rather than the diagonal one� In the present chapter� we combine
the level�rank dualities of WZW theories with the properties of simple current symmetries
to construct a map between the primary �elds of the N � � coset theories in question
that makes the level�rank duality explicit and is expected to be an isomorphism of the
two conformal �eld theories� It is worthwhile to stress that the underlying level�rank
dualities of WZW theories are de�nitely not isomorphisms of conformal �eld theories�
In particular� these WZW dualities are typically not mappings between primary �elds�
but rather between simple current orbits of 	part of
 the primary �elds� As we will see�
this �ts perfectly to the application to coset theories� because owing to the necessary
�eld identi�cations the physical �elds of a coset theory can be characterized in terms
of combinations of simple current orbits only� In some cases this technical complication
makes the formulation of the mapping somewhat awkward 	and adds to the length of
this chapter
� but� nonetheless� the mappings are based on simple current symmetries� and
hence on natural objects of the underlying WZW theories� We shall show in the sequel that

��



these mappings have the properties required for isomorphisms of conformal �eld theories�
In ���� it was conjectured that a relation between B type theories at even rank and

even level should exist� too� In this case non�diagonal modular invariants must be chosen�
but up to now it is not yet clear which of them could do the job� � Finally� based on a
free �eld realization of the symmetry algebra� a level�rank duality for the A type hermitian
symmetric cosets has been shown to be present at the level of symmetry algebras ����� It
would be interesting to explore these dualities by the techniques developed in the present
chapter�

	�� B type WZW theories at odd level

In this section we will describe a map � between the WZW theories 	Bn
�k�� and 	Bk
�n��
that has simple behavior with respect to the modular matrices T 	i�e�� with respect to
conformal dimensions modulo integers
 and S� Thus the two theories that are connected
by � are related by exchanging twice the rank plus one 	recall that Bn

�� so	�n� �

 with
the level of a B type a�ne Lie algebra� a relation of this type is called level�rank duality�
As mentioned in Section ���� such dualities emerge in various di�erent contexts� here we
will concentrate on those aspects that are needed for the identi�cations of N � � coset
theories in Sections ��� to ��� below� The level�rank duality in question was �rst realized
in ������ in the notation of ������ our map � corresponds to the map 
tilde� for B weights
that are tensors� and to the map 
hat� for spinor weights� respectively� To be more precise�
� will be a one�to�one map between orbits with respect to the relevant simple currents J
of the two theories� Thus� to start� we note that the number of primaries of the 	Bn
�k��
WZW theory� i�e�� the number of integrable representations of the a�nization of Bn at
level �k � �� is

NB
n��k�� �

kX
l
�

�
�k � �l � �

�


�
l � n� �

l



� 	�k � �n
	n� k � �
+�n+k+ � 	�����


of these�

FB
n��k�� �

�
n� k � �

k

�
	�����


are �xed points� so that the number of orbits is �
�
n� k
k



� This is invariant under n� k�

so that indeed a one�to�one map between the respective sets of orbits is conceivable�
For any integrable highest weight # �

Pn
i
�#

i#�i� of 	Bn
�k��� denote by

c� � #n mod � 	�����


the conjugacy class of #� For brevity� we will often refer to # as a 
tensor� and as 
spinor�
weight if c� � � and c� � �� respectively� Consider now the components of # in the
orthonormal basis of the weight space� they read

�i	#
 �
n��X
j
i

#j � �
� #

n� 	�����


� Also� none of these N � � models is relevant to string compacti�cation� For us this is another reason
to refrain from investigating these dualities here�

��



Adding to these numbers the components of the Weyl vector as well as a term �
�
	� � c�


such as to make the result integer�valued� one de�nes

%�i	#
 �� �i	# � �
 � �
�
	� � c�
 �

n��X
j
i

#j � n� �� i� �
�
	#n � c�
� 	�����


Under the action of the simple current J that carries the highest weight 	�k � �
#����
the numbers �i� i � �� �� ��� � n� are invariant� while �� becomes replaced by �k � � � ���
As a consequence� we may characterize any orbit of J by a set of n positive integers %�i�
i � �� �� ��� � n subject to %�i � %�j for i � j as well as %�� � k � n� or in other words� by a
subset M� of cardinality jM�j � n of the set

M �� f�� �� � � � � k � ng � 	�����


Each such subset describes precisely one tensor and one spinor orbit 	in particular� there
are as many spinor orbits as tensor orbits if the level of Bn is odd
� and conversely� any
integrable highest weight of 	Bn
�k�� corresponds to precisely one of these subsets�

We are now in a position to present the map � � First consider spinor weights # of
	Bn
�k��� Given the associated subset M� �M � de�ne the complementary set

f%����i g �M���� �� M nM�� 	�����


where the numbers %�
���
i are to be ordered according to %�

���
i � %�

���
j for i � j� Since this

subset of M again satis�es %�
���
� � k � n� and is of cardinality k� it describes precisely one

orbit f� 	#
� J 	 � 	#
g of integrable highest spinor weights of 	Bk
�n��� Also note that M�

describes a spinor �xed point i� k � n � M� 	in contrast� there do not exist tensor �xed
points at odd level
� thus spinor �xed points are mapped to spinor orbits of size two� and
vice versa�

Let us now check how the modular matrix T transforms under the map � � By combining
the formul* 	�����
 and 	�����
� and inserting the strange formula for the length of the Weyl
vectors� one �nds

!� �!���� � �
P

j�M	
j� � 	�� �
 �

P
j�M�
	�

j� � 	����� ����
����	k � n
�

� �
Pk�n

j
� j� � �
��

	�n� � n � �k� � k
����	k � n
�

� �
� 	k � n � �kn� �

�
 �

	�����


where � and ���� denote the Weyl vectors of Bn and Bk respectively� 	Recall that we choose

the representatives # and #��� such that %�� � k � n and %��
��� � k � n� as the conformal

dimensions of the elements of a spinor orbit di�er by an integer� this means that for the
other member of a length�two orbit� the formula holds true modulo Z
�

For tensors we will have to consider a de�nition of � that is di�erent from that for
spinors ������ Namely� while again the complement of M� in M plays a role� we now de�ne
M���� by

f%����i g �M���� �� fk � n� �� l j l �M nM�g� 	�����


By de�nition� this maps tensor orbits to tensor orbits� and again the image covers all such
orbits of 	Bk
�n�� precisely once� For the sum of conformal dimensions we now obtain

!� �!���� � �
P

j�M	
	j � �

�

� � 	�� �
 �

P
j�MnM	

	k � n� �
� � j
�

� 	����� ����
� ���	k � n
�

� �
	 k	k � �n � �
� �

�

P
j�MnM	

j �

	������


��



which is a half integer� 	Again this result is true for # such that �� � k�n� and analogously
for � 	#
� the conformal dimensions of the elements of a tensor orbit di�er by �

�
plus an

integer� so that for the other members of the orbits� the formula still holds modulo Z��
�
One can visualize the map � in terms of Young tableaux Y 	#
� de�ned as having

�i	#
 � �
�
c� boxes in the ith row� The prescription 	�����
 corresponds to forming the

complement with respect to the rectangular Young tableau Y 	k#�n�
� followed by re�ection
at an axis perpendicular to the main diagonal� Similarly� the map 	�����
 corresponds just
to re�ection at the main diagonal� For example� consider the following mapping between
tensor orbits of the 	self�dual
 	B�
� WZW theory 	for better readability� we display� with
dotted lines� also the missing boxes that are needed to extend a tableau Y 	#
 to Y 	k#�n�

�

��

	������


According to the previous prescriptions� the corresponding orbits are f	�� �� �
� 	�� �� �
g
for the left hand side� and f	�� �� �
� 	�� �� �
g for the right hand side 	here we write the
weights in the basis of fundamental highest weights
� and indeed these orbits are mapped
onto each other by 	�����
� Considering� instead� the left hand side as a Young tableau for
a spinor orbit� namely for the �xed point 	�� �� �
� it is mapped via 	�����
 to the spinor
orbit f	�� �� �
� 	�� �� �
g� i�e�

��

	������


As further examples� consider the mappings

��

	������


and

��

	������


between orbits of 	B�
� 	left
 and 	B	
� 	right
� The �rst of these corresponds to the
tensor orbits f	�� �� �
� 	�� �� �
g � f	�� �� �� �
� 	�� �� �� �
g� and the second to the spinor
orbits f	�� �� �
� 	�� �� �
g � f	�� �� �� �
g�

Above� we have already obtained all information that we need about the modular
matrix T � Next we want to determine the behavior of the S�matrix under the map � �

��



We �rst recall that the Weyl group W of Bn acts in the orthonormal basis by all possible
permutations and sign changes of the components� This implies that

X
w�W

sign 	w
 exp �

i

k � n
	w	# � �
�#� � �
� � 	�i
n deti�jMij	#�#�
� 	������


where

Mij	#�#�
 �� sin �

 �i	# � �
 �j	#� � �


k � n
� � 	������


Inserting this identity into the Kac��Peterson formula 	�����
 for the S�matrix� one arrives
at

S���� � 	��
n�n������n����	k � n
�n�� deti�jMij	#�#�
� 	������


Now of course this result for the S�matrix refers to particular highest weights # and #��
However� what we really would like to compare are not the S�matrix elements for individual
weights� but S�matrix elements for orbits with respect to simple currents� Now within an
orbit� the sign of S depends on the choice of the representative 	except if only tensor weights
are involved
� Thus if we want to interpret 	������
 as an equation for orbits� we have to
keep in mind that when evaluating the equation we have to employ speci�c representatives
	namely� those with the smaller value of ��
� For the application to coset theories it will
be crucial that the sign in 	������
 is correlated with the alternative whether the relation
	������
 between conformal weights holds exactly or only modulo �

�Z�
An analogous computation as for 	������
 yields

S���������� � 	��
k�k������k����	k � n
�k�� deti�j %Mij	#�#�
 	������


with

%Mij	#�#�
 �� sin �

 �

���
i 	#��� � ����
 ����j 	#���� � ����


k � n
� � 	������


To relate the numbers 	������
 and 	������
� we �rst note that Mij	#�#�
 can be viewed
as a n� n sub�matrix of the 	k � n
� 	k � n
 matrix

Aij ��

���������������

A
�tt�
ij �� sin�	
 	i� �

�

	j � �

�

�	k � n
� for c� � c�� � � �

A
�ts�
ij �� sin�	
 	i� �

�
j
�	k � n
� for c� � �� c�� � � �

A
�st�
ij �� sin�	
 i	j � �

�

�	k � n
� for c� � �� c�� � � �

A
�ss�
ij �� sin�	
 ij
�	k � n
� for c� � c�� � � �

	������


i� j � �� �� ��� � k � n� Similarly� %Mij	#�#�
 is a k � k sub�matrix of

%A ij ��

���������������������

sin�	
 	k � n � �
� � i
	k � n� �

� � j

�	k � n
�

� 	��
i�j�k�n�� A�tt�
ij for c� � c�� � � �

sin�	
 	k � n � �
� � i
j
�	k � n
� � 	��
j�� A

�ts�
ij for c� � �� c�� � � �

sin�	
 i	k � n� �
�
� j

�	k � n
� � 	��
i�� A�st�

ij for c� � �� c�� � � �

A
�ss�
ij for c� � c�� � � �

	������

More precisely� the two submatrices are such that together they cover each value of

i and j precisely once� As a consequence� one can use 	a simple case of
 the so�called

��



Jacobi�theorem ���� to relate S���� to S����������� The theorem states that for any invertible
matrix A whose rows and columns are labelled by a set H� one has for I� J � H with
I � J � H� I � J � �� that

det �	A��
t�IJ � 	��
�I��J 	detA
�� 	detA
IJ 	������


with I � H n I� J � H n J � and

,I �
X
j�I

j� ,J �
X
j�J

j� 	������


Writing S���� � � detAIJ � S���������� � � detAIJ and det �	A��
t�IJ � � detAIJ � applica�
tion of this theorem yields

S���� � 	��
�I��J� 	���
��S���������� 	������


with I � M�� J � M�� � and A as de�ned in 	������
� 	Actually� the de�nition of � implies
the assumption that detAIJ �� � for all choices of I and J � This turns out to be true for
all cases we are interested in� Moreover� in some cases in fact � does not depend on the
choice of I and J at all�


An explicit expression for the number � can be read o� 	������
� while when determining
the parameters �� �� �� one has to distinguish between tensors and spinors� If both # and
#� are tensors� then by straightforward calculation one �nds

� � 	��
k�k�����	��
k�k�n�����I��J �k����	k � n
�k���

� � 	��
�k�n��k�n�����		k � n
��
�k�n���� � � 	��	k � n

n �
	������


When inserted into 	������
� this yields� upon use of the identity ,I � ,I �
Pk�n

j
� j �
	k � n
	k � n� �
�� ������

S���� � S����������� 	������


Note that this implies that � connects tensor orbits with identical quantum dimension�
	Since simple currents have quantum dimension � and quantum dimensions behave multi�
plicatively under the fusion product� the quantum dimension is constant on simple current
orbits�


If # is a tensor and #� is a spinor� one obtains 	

� � 	��
k��I�k����	k � n
�k���

� � 	��
�k�n��k�n����� ����k�n���	k � n
�k�n���� � � �n�f��
�� 	k � n
�n �

	������


where

f	#�
 ��

�
� for #� a �xed point�

� for #� an orbit of length two�
	������


Thus in this case �����

S���� � 	��
�I�n�n����� �f��
������ S����������� 	������


� Notice that if � is a tensor� then the order of the rows of �Aij is actually to be read backwards such as to

satisfy the requirement that the numbers obey ��
���
i � �����j for i � j� this contributes a factor ����k�k�����

to �� If �� is a tensor� the same factor arises from an analogous re�ordering of columns� In particular� for
both � and �� tensors� these factors cancel out�

��



	Again� the sign depends on the choice of representative of the tensor orbit� It is as given
in 	������
 if the representative with smaller value of �� and %�� is taken�
 In particular� for
spinors the quantum dimensions of the orbits of # and � 	#
 di�er by a factor

p
� for orbits

of length �� and by a factor ��
p
� for �xed points�

Analogously� for # a spinor and #� a tensor� one obtains 	������
 with ,J replaced by
,I and f	#�
 replaced by f	#
� Finally� if both # and #� are spinors� we again have to
distinguish between several cases� Observing that # is a �xed point i� k � n � M�� and
that A�ss�

j�k�n � A
�ss�
k�n�j � sin	
j
 � �� we conclude that

S���� � S���������� � � 	������


if # is a �xed point and #� belongs to a length�two spinor orbit or vice versa� In contrast�
if both # and #� are �xed points� S���� vanishes but S���������� does not� and the other way
round for both # and #� belonging to length�two spinor orbits�

	�	 B type theories at even level versus D type at odd level

In this section we present a map � relating 	Bk
�n and 	Dn
�k�� that behaves similarly
as the one described in the previous section� However� for 	Bk
�n we now have to restrict
ourselves to tensor weights� for these� we de�ne �i and %�i as in 	�����
 and 	�����
� In
contrast to odd level� now the map is no longer one�to�one on the simple current orbits�
Rather� some of the orbits of 	Bk
�n 	namely� those tensors which are �xed points� in
contrast to odd level� �xed points now must be tensors
 correspond to two distinct orbits
of 	Dn
�k���

For 	Dn
�k��� the components of a weight # in the orthonormal basis are

�i	#
 �
Pn��

j
i #
j � �

�
	#n�� � #n
 for i � �� �� ��� � n� � �

�n�� � �
�
	#n�� � #n
 � �n � �

�
	�#n�� � #n
 �

	�����


At odd level� all orbits 	with respect to the full set of simple currents� which is generated
by Js for odd n� and by Js and Jv for even n
 consist of four �elds� Each such orbit of
integrable highest weights contains precisely one representative that satis�es #� 	 #� and
#n�� � #n � �Z� implying that �i	#
 � Z and k 	 �� 	 �� 	 � � � 	 �n� From now on we
restrict our attention to this particular representative� Thus the numbers

%�i	#
 �� �i	# � �
 � �i	#
 � n� i 	�����


satisfy � � %�i	#
 � k � n� � for i � �� �� ��� � n� �� and j%�nj � k� As it turns out� a special
role is played by those orbits for which �n � �� we will refer to such orbits as spinor�

symmetric� Analogously� orbits that are transformed into each other upon changing the
sign of �n 	�� �
 are called 
spinor�conjugate� to each other�

We de�ne now a map � between the orbits of 	Dn
�k�� and the tensor orbits of 	Bk
�n
as follows� To an orbit of 	Dn
�k�� with representative # we associate the subset M� of
M � f�� �� � � � � k � ng by

M� �� f j%�i	#
j� � j i � �� �� ��� � ng � 	�����


Then the 	tensor
 weight � 	#
 of 	Bk
�n is de�ned by the requirement that the setM���� 	the
connection between # and M� for 	Bk
�n is de�ned in the same way as for 	Bk
�n�� in
Section ���
 is given by

f%����i g �M���� �� fk � n� �� l j l �M nM�g � 	�����


��



Note that we have chosen our conventions for 	Dn
�k�� 	in particular the constant term

��� in 	�����

 in such a manner that the prescription 	�����
 is formally the same as 	�����

in Section ���� Furthermore� � 	#
 is a �xed point i� k� n � M����� i�e�� i� � ��M�� i�e�� i�
# is not spinor�symmetric� Note also that this map is not one�to�one on the orbits� Rather�
non�spinor�symmetric 	Dn
�k��weights which transform into each other upon interchanging
�n�� and �n are mapped on the same weight of 	Bk
�n� 	As we will see later on� this is
precisely the behavior we need in coset theories in order to implement the �xed point
resolution�


We now consider the behavior of the modular matrices T and S under the map � � For
the sum of conformal dimensions one �nds
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P

j�M	
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 �

P
j�M�
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�

P
j�MnM	

j �
	�����


which is always a half integer� The Weyl group of 	Dn
�k�� corresponds in the orthonormal
basis to permutations and to even numbers of sign changes of the components� so that the
Kac��Peterson formula for the S�matrix leads to

S���� � 	��
n�n������n����	k � n� �
�

�n�� �deti�jM�

ij	#�#
�
 � in deti�jM�

ij	#�#
�
� � 	�����


where

M�
ij	#�#

�
 �� cos �
�
 �i	# � �
 �j	#� � �


�k � �n � �
��

M�
ij	#�#

�
 �� sin �
�
 �i	# � �
 �j	#

� � �


�k � �n� �
� �

	�����


Note that det	M�
ij	#�#

�

 � � whenever # or #� are spinor�symmetric� For later conve�
nience we denote by S
��

���� the numbers obtained from 	�����
 when replacing M�
ij	#�#

�

by zero� i�e��

S
��

���� � 	��
n�n������n����	k � n� �
�

�n�� deti�M	�j�M	�

cos �

 	i� �
	j � �


k � n� �
�

� � 	�����


The S�matrix of 	Bk
�n can be calculated analogously as described in the previous
section for 	Bk
�n��� The result is

S���������� � 	��
k�k������k����	k � n� �
�

�k��

� deti�MnM	�j�MnM	�
sin �


 	k � n� �
� � i
	k � n� �

� � j


k � n� �
�

� �
	�����


Combining 	�����
 with 	�����
� we can use the Jacobi�theorem together with the identity
sin�
 	k�n� �

��i
	k�n� �
��j
�	k�n� �

�
� � 	��
i�j�k�n�� cos�
 	i��
	j��
�	k�n� �
�
�

to obtain again a relation like 	������
� namely

S
��

���� � 	��
�I��J� 	���
��S����������� 	������


The parameters are this time calculated as �����

� � 	��
k�k�����	��
k�n�k�����I��J �k����	k � n� �
�

�k���

� � 	��
n�n������n����	k � n� �
�

�n���

� � �	��
�k�n��k�n�����		k � n� �
�

��
�k�n����

� � ��s����s��
�� 	��	k � n� �

�


k �

	������


��



where

s	#
 ��

�
� if # is spinor�symmetric�

� else�
	������


This leads to
S
��

���� � �s����s��
��S����������� 	������


	When interpreting this equation as a relation between simple current orbits� one must
take the speci�c representative of the orbit of the D type WZW theory described above�
Otherwise 	������
 becomes modi�ed by a phase� However� as only tensors of the B type
WZW theory are involved� the phase does not depend on the representative of the orbits
of the B theory�
 Recalling that det	M�

ij	#�#
�

 � �� i�e�� S���� � S
��

���� � if # or #� are
spinor�symmetric� this means in more detail that

S���������� �

�������������

S���� for # and #� spinor�symmetric�

S������ for # spinor�symmetric� #� non�spinor�symmetric�

or vice versa�

S
��

������ for # and #� non�spinor�symmetric�

	������


	�
 C type WZW theories

When considering C type WZW theories� we are in a more convenient position than previ�
ously� Namely� one can construct a map � between individual �elds and not just between
simple current orbits� �

We consider again the components of # in an orthogonal basis of the weight space�
However� for convenience we multiply the components of the orthonormal basis by a factorp
�� because we then have to deal with integral coe�cients only� The components of

a weight # in this non�normalized basis read �i	#
 �
Pn

j
i #
j� Again we add to these

numbers the components of the Weyl vector� i�e�� we de�ne

%�i	#
 �� �i	# � �
 �
nX
j
i

#j � n� � � i� 	�����


This time the integrability condition 	�����
 implies� for 	Cn
k� that

k � n 	 %�� � � � � � %�i � %�i�� � � � � � %�n 	 � � 	�����


Thus we can describe every weight # uniquely by a set of n positive integers %�i� i �
�� �� ��� � n� subject to %�i � %�j for i � j as well as %�� � k � n� that is� by a subset M� of
cardinality n of the set M � f�� �� � � � � k � ng� Given such a subset M�� we de�ne � 	#


through the complementary set f%����i g � M���� �� M nM�� where again the numbers %����i

are to be ordered according to %�
���
i � %�

���
j for i � j� Since this subset of M again satis�es

%����� � k�n� and is of cardinality k� it describes precisely one integrable highest weight � 	#

of 	Ck
n� 	In terms of Young tableaux� the map corresponds to forming the complement
with respect to the rectangular Young tableau Y 	k#�n�
� followed by re�ection at an axis
perpendicular to the main diagonal�


� In the notation of ������ our map � is the composition of the maps ��� of Section � and �tilde� of
Section � of ������

��



As in the previous sections� it is straightforward to calculate the quantity !� �!�����
Taking care of the extra factor �

� in the scalar product that is caused by our normalization
of the �i� one obtains

!� �!���� � ��
�

P
j�M	

j� � 	�� �
 � �
�

P
j�M�
	�

j� � 	����� ����
� ���	k � n� �
�

� ��
�

Pk�n
j
� j� � �

��
	�n� � �n� � n� �k� � �k� � k
� ���	k � n� �
�

� �
	
kn �

	�����

where � and ���� denote the Weyl vectors of Cn and Ck� respectively�

Proceeding to the modular matrix S� we note that the Weyl group of Cn acts in the
orthogonal basis by permutations and arbitrary sign changes� implying that

X
w�W

sign 	w
 exp �

i

k � n
	w	# � �
�#� � �
� � 	�i
n deti�jMij	#�#

�
 	�����


with

Mij	#�#�
 �� sin �

 �i	# � �
 �j	#� � �


k � n� �
� � 	�����


Thus the Kac��Peterson formula for the S�matrix yields

S���� � 	��
n�n������n��	k � n� �
�n�� deti�jMij	#�#�
 	�����


and similarly�

S���������� � 	��
k�k������k��	k � n� �
�k�� deti�j %Mij	#�#�
� 	�����


NowMij	#�#�
 can be viewed as a n�n sub�matrix� and %Mij	#�#�
 as a k�k submatrix�
of the 	k�n
� 	k�n
 matrix Aij �� sin�	
 ij�	k�n��
�� i� j � f�� ���� � k�ng� such that
the two submatrices together cover each value of i and j precisely once� As a consequence�
the Jacobi�theorem is again applicable� leading to the relation 	������
 between S���� and
S����������� The numbers �� �� �� � in that relation are this time found to be

� � 	��
n�n����� �n��	k � n � �
�n��� � � 	��
k�k������k��	k � n� �
�k���

� � 	��
�k�n��k�n�����		k � n� �
��
�k�n���� � � 	��	k � n� �

n �
	�����


When inserting this into 	������
� we make use of the identities ,I � n	n � �
�� � r	#

and ,I � k	k � �
�� � r	#�
� where

r	#
 ��
nX
i
�

�i	#
 � 	�����


which is modulo � the conjugacy class of the Cn�weight # 	also� r equals the number of
boxes in the Young tableau Y 	#
 that is associated to #
� One then obtains

S���� � 	��
r����r��
���kn S����������� 	������


��



Table ���� Some N � � superconformal coset theories and their Virasoro charges

name C��gK � �Dd���
L

i�
�hi�Ki

� �u����N � c

�B� �n� �� K� C��Bn���K � �D�n���� � �Bn�K�� � �u��	�K��n����
	K��n� ��

K � �n� �

�B� �n�K� C��Dn���K � �D�n�� � �Dn�K�� � �u��	�K��n��

Kn

K � �n

�BB� 	� K� C��B��K � �D��� � �A���K�� � �A��K�� � �u����K���� ���
�


K � �

�BB� n�K� 
 n�	 C��Bn�K � �D	n���� �

�Bn���K�	 � �A��K��n�� � �u����K��n���� ��n� ���
���n����

K��n��

�CC� n�K� C��Cn�K � �D�n���� � �Cn���K�� � �u����K�n���� 
n� 	�

n�

K � n � �

	�� Coset theories

In this section we collect some information on N � � coset theories� for those theories
which correspond to non�hermitian symmetric coset� part of the information was already
displayed in the previous chapter� We will repeat it here to �x the notation and to give
some information on hermitian symmetric coset cosets we will use below as well�

The theories of interest in this chapter are listed in Table 	���
� together with their
central charges� The identi�cation currents of these theories 	including the simple current
that implements the D type modular invariant in the case of 	B� �n��� �k

 are displayed
in Table 	���
 together with their order N �

Among the theories of our interest� only the cosets of CC type and 	B� �n� �k � �
 do
not possess any �xed points� If �xed points are present� one has to give a prescription for
�nding the physical �elds� i�e� 
�xed point resolution�� Every �xed point of length Nf has
to be resolved in N�Nf distinct physical �elds�

We will label the primary �elds " of a N � � coset theory C��g �Dd��h� u	�
�K by the
weights carried by the primaries of the WZW theories it is composed of� i�e��

" (� 	#� x � ��Q
 	�����


with # and � integrable highest weights of the g and h algebras� x a conjugacy class of Dd�
and Q � f�� �� � ��� �N � �g a u	�
�charge� However� as a consequence of the necessary �eld
identi�cation� this labelling is not one�to�one� Rather� all combinations of labels that are
connected via the action of the identi�cation currents describe one and the same primary
�eld� moreover� �xed point resolution introduces an additional label i according to

"�x (� 	#� x � ��Q
i 	�����


The conformal dimension of the �eld " is modulo integers

!	"
 � !�g�	#
 � !�Dd�
	x
�!�h�	�
�!�u��	Q
� 	�����


��



Table ���� Identi�cation currents for N � � coset theories

name N Independent identi�cation currents

	B� �n� �� �k � �
 �

�
J��� �� 	J� � � J� �


J��� �� 	J� Jv � ����	k � n� �



	B� �n� �� �k
jD �

�����
J��� �� 	J� � � J� �


J��� �� 	J� Jv � ����	�k � �n� �



J��� �� 	J� � � �� �



	B� �n�K
 �

�
J��� �� 	Jv� � � Jv� �


J��� �� 	Js� 	Jv
n � Js� 	K � �n



	BB�n�K
 �

�
J��� �� 	J� � � J� �� �


J��� �� 	J� � � �� J��	K � �n � �



	CC�n�K
 � J��� �� 	J� 	Jv
n � J��	K � n� �



where !�g�	#
 and !�h�	�
 are de�ned as in 	�����
� !�Dd�	x
 is given in 	�����
� and

!�u��
	Q
 � Q���N � The superconformal charge q is modulo � given by

q	"
 �
X
�

x� � ��Q

K � g�
� 	�����


Here x� are the components of x in the orthonormal basis of the Dd weight space� For
the theories of our interest� one has �� � n for 	B� �n�K
 and 	CC�n�K
� �� � n � �

�
for

	B� �n� ��K
� and �� � �	n � �
 for 	BB�n�K
�
In order to identify the chiral rings of N � � coset theories� we will again look at the

Ramond ground states� Any Ramond ground state has at least one representative

"R � 	#� x� %�
 	�����


for which # and %� are related through a Weyl group element w � W �g according to �����

%� � ��h � w	# � ��g
 � 	�����


Here %� incorporates both the weight � of the semi�simple part h of %h and the u	�
�charge
Q� and

x �

��� s for sign 	w
 � � �

c for sign 	w
 � �� �
	�����


Furthermore� the Weyl group element w has to be chosen in such a manner that � is a
highest weight of �h 	this �xes uniquely one representative of each element of the coset
W �g�W �h
� The superconformal charge q 	including the integer part
 of a Ramond ground
state is given by the formula 	������


q	"R
 �
d

�
� l	w
� ��Q

K � g�
	�����


that relates q to the u	�
�charge Q and to the length l	w
 of the Weyl group element w
that appears in 	�����
 	�� is the number introduced in 	�����

�

��



	�� N � � coset models of type B� odd values of rank and level

	���� The map T

We are now going to describe a one�to�one map T between the primary �elds of the N � �
superconformal coset theories 	B� �n� �� �k � �
 and 	B� �k � �� �n � �
� We will show
that this map leaves the modular matrices S and T invariant and� moreover� provides a
one�to�one map between chiral primary �elds� Correspondingly we consider the two coset
theories as isomorphic conformal �eld theories and write

	B� �n� �� �k � �

T�� 	B� �k � �� �n � �
 � 	�����


This is in contrast to the level�rank duality of the underlying WZW theories which is far
from providing an isomorphism of conformal �eld theories�

To start� let us mention two simple necessary requirements for such an identi�ca�
tion to exist� First� from Table ��� we read o� that the Virasoro central charge of
	B� �n� �� �k � �
 is c�n����k�� �

���k�����n���
��k�n���

� which is invariant under exchanging n and

k� It was precisely this observation ���� that led to the idea of level�rank duality of these
theories� Second� we see that the two theories possess the same number of 	Virasoro
and u	�

 primary �elds� Namely� for the coset theory 	B� �n� �� �k � �
 the number of
primaries can be expressed as

�BB�n����k�� � ND
�n����N

�
��k�n��� �

�
�
 �N

B
n����k��N

B
n��k�� � FB

n����k�� F
B
n��k���

� � � �
	 F

B
n����k�� F

B
n��k���

	�����


in terms of the numbers NB
m�K of primary �elds and FB

m�K of �xed points of the B type
WZW theories� Here the �rst two factors come from D�n�� at level one and from the
u	�
 theory� respectively� The numbers in the bracket refer to the theories Bn�� at level
�k � � and Bn at level �k � �� the term in square brackets corresponds to the orbits of
length four� with the factor �

�

taking care of the selection rule and the identi�cation of

order four 	one quarter of the possible combinations of quantum numbers of the individual
theories gets projected out� and each identi�cation orbit has four members
� and the second
term corresponds to the �xed points� the factor of � being due to the resolution procedure
	for the �xed points� the factor of �

�
 is replaced by �
	 because none of the �xed points is

projected out by the selection rule encoded in J���
� Inserting ND
d�� � � and N�

N � N as
well as the formul* 	�����
 and 	�����
 for NB

m�K and FB
m�K� 	�����
 becomes

�BB�n����k�� � � ��n � �k � � � �kn

k � n� �
�
�

k � n� �
k

��
k � n� �

n

�
� 	�����


Obviously� for 	B� �k � �� �n � �
 one obtains the same number of primaries�
After these preliminaries� we now present the map T alluded to above� Suppose we are

given a speci�c representative 	#� x � ��Q
 of a �eld " as described in 	�����
� then we map
the simple current orbits of # and � on their images under the map � that was introduced
in Section ���� Thus

T 	"
 (� 	� 	�
� xT � � 	#
� QT 
 � 	�����


with � as de�ned in 	�����
 and 	�����
� and with xT and QT to be speci�ed below� Now
the objects on the right hand side of 	�����
 are just representatives of primary �elds� and

��



not yet the primary �elds themselves� In particular� the quantities xT and QT are to be
considered as orbits� and only after �xing representatives of the orbits of � 	�
 and � 	#
 are
they �xed as well� so that xT becomes an element of f�� v� s� cg and QT an integer between
� and N � To describe the physical �elds� we have to implement the identi�cation currents�
According to Table ���� in the present case there are two independent identi�cation currents
J��� and J���� As J��� � 	J� � � J� �
 acts trivially on the Dd and u	�
 parts� it is convenient
to �rst restrict the attention to J����orbits and to implement J��� later on� Provided that
no �xed points are present� 
 for �xed choice of xT and QT we have to deal with a total of
four representatives of two J����orbits�

Now observe that� owing to the selection rule implemented by J���� the conjugacy
classes of # and � coincide� so that we only need to consider combinations of tensors with
tensors� or of spinors with spinors� In the case of tensors of both 	Bn��
�k�� and 	Bn
�k���
�xed points do not occur� Further� modulo Z� the conformal dimensions of the two J����
orbits di�er by �

�
� precisely as the conformal dimensions of the corresponding �elds of

	B� �n� �� �k � �
� To start with the de�nition of T � we now simply choose the J����orbit
that has conformal weight equal to !� �!� modulo Z� Due to the identi�cation current
J���� this choice actually does not constitute any loss of generality 	but it simpli�es some
formul* further on
� Namely� each of the J����orbits O lies on the same orbit with respect
to J��� as another J����orbit whose values of xT and QT di�er from those of O in such a
manner that the values of !� �!� di�er by �

�
mod Z�

For spinors� both J����orbits in question have identical conformal weight� The freedom
to choose one of the orbits turns out to be closely connected with the issue of �xed point
resolution� Namely� the property of � to map WZW �xed points on WZW�orbits of length
two and vice versa� translates into the following property of T � any 
unresolved �xed
point� is mapped on two distinct �elds� and vice versa� such that the non��xed points of
one theory precisely describe the resolved �xed points of the other theory� In case that
just one of the orbits in either the 
numerator� or the 
denominator� of the coset theory is
a �xed point� we have exactly the reversed situation in the dual theory�

Having �xed the B parts of the theory� we extend the de�nition of T to the u	�
 and
Dd parts by the following de�nitions� the Dd part remains unchanged� i�e� xT �x� while
the u	�
�charge is transformed according to

QT � �Q�

�������������

QL for c� � � and x � f�� vg �
Q	�n� �
L for c� � � and x � fs� cg �
Q	�k � �
L for c� � � and x � f�� vg �
	�n� �k �Q
L for c� � � and x � fs� cg �

	�����


Here� for convenience� we use the abbreviation

L � �	k � n� �
 � 	�����


and all u	�
�charges are understood modulo N � �L� 	Thus L is one quarter of the u	�
�
charge of the primary �eld that extends the chiral algebra of the u	�
 theory� and hence
the appearance of this number in 	�����
 is quite natural�


The de�nition of T is not yet complete� of course� as we still have to make precise its
meaning when acting on� or mapping to� resolved �xed points� Nevertheless already at this

� Note that in order to have a �xed point of the coset theory� we must have a �xed point in all WZW
theories that make up the coset�

��



stage we can verify that T as de�ned above satis�es the following properties�

�� The result is independent of the particular choice of the representative of the original
�eld "� �

�� The conformal weights ! of �elds related by T are equal modulo Z� which implies that
the modular T �matrices of the two theories coincide� This is in fact already the maximal
information about conformal dimensions that we could hope to prove in the general case�
because for primary �elds of a coset theory 	other than Ramond ground states of an N � �
theory
� it is very hard to compute the integer part of the conformal weight�

�� The superconformal u	�
�charges coincide modulo � 	again� except for Ramond ground
states it is hard to show that the charges coincide exactly
�

Actually� the two last�mentioned properties 	together with a prescribed choice of the orbits
of � 	#
 and � 	�
� such as the one discussed above
 already specify uniquely xT and QT for
�elds that are not �xed points� Thus our choice xT �x and QT as in 	�����
 is the only
possibility that allows for T to possess the required properties�

�� The elements of the modular S�matrices corresponding to non��xed points coincide
after properly taking into account the �eld identi�cation� As we will show in the next
subsection� the same is true for �xed points� it follows that both theories possess the same
fusion rules and� together with the �rst observation� that their characters realize isomor�
phic representations of SL	��Z
� If the B weights of one �eld are tensors and those of
the other �eld are spinors� 	�����
 implies that the corresponding S�matrix element of the
full theory is simply the product of the respective WZW S�matrix elements if the spinors
are �xed points� and twice this product if the spinors are not �xed points� For the dual
theory� the corresponding factor of two is provided by our map T through the factor

p
�

that appears 	both for the 
numerator� and the 
denominator� of the coset theory
 in the
transformation 	������
 of S�matrix elements of the B type WZW theories under � �

�� T maps the unique Ramond ground state "max
R with highest superconformal charge

q � c


of one theory to the corresponding Ramond ground state of the dual theory� 	This

check is particularly important� as this �eld is the simple current that generates spectral
�ow�
 Namely� for this �eld there is a standard representative 	compare Section �����

"max
R (� 	�� s � ��g � ��h
� and T maps this particular representative to the analogous repre�

sentative of the highest Ramond ground state of the dual theory�

	���� Fixed points

In order to prove that these statements pertain to the full coset theories� � we now come to
the more detailed description of the action of T on �xed points� as promised� 	The �xed
point resolution will be interesting also from a di�erent point of view� see the remarks after
	������
 below�
 As it turns out� this is a somewhat subtle issue� We will �rst deal with
the case when an unresolved �xed point is mapped on a pair of non��xed points� In fact�
we have so far only speci�ed on what pair of �elds a �xed point gets mapped� and noticed
that the number of the �elds is the right one� But each unresolved �xed point gives rise to

	 Also� applying the analogous prescription TT to the transformed �eld T ��� brings us back to the �eld
� of the original theory� thus justifying the name duality�


 Recall that only after �xed point resolution� we are allowed to interpret the object C��g��h�K as a
genuine conformal �eld theory�

��



two distinct physical �elds� and so we have to describe which of the resolved �xed points is
mapped to which �eld� To settle this question� it is not su�cient to look at the fractional
part of the conformal dimensions ! and superconformal charges q� because for the two
resolved �xed points the conformal dimensions and superconformal charges must coincide
modulo Z and �Z� respectively� Thus we have to resort to the modular matrix S�

In order to simplify notation� we �rst look at those parts of the theory which behave non�
trivially under the identi�cation current that has �xed points� which is J��� � 	J� � � J� �
�
In other words� we restrict our attention to the theory 	Bn��
�k���	Bn
�k����� where we use
the symbol 
$� to indicate that the complex conjugates of the modular S� and T �matrices
are to be considered 	compare the remarks after 	�����

� As has been shown in ������ the
matrices &��� appearing in 	�����
 and in the factorization 	������
 are given� up to certain
phases� by the S�matrices of the WZW theories 	Cn
k and 	Cn��
k��� We denote these
phases� to be determined below� by �n and �n��� respectively�

In terms of the components %�i� the relation between �xed points and the corresponding
�elds of the �xed point theory is given by

%��C�i � %��B�
i�� 	�����


for i � �� �� ��� � n� In other words� for the S�matrices the resolution of �xed points amounts
to simply deleting the row and the column with i � k � n � � of the matrix A as de�ned
in 	������
� But it was precisely this row that made the S�matrix elements vanish if �xed
points were involved� Now once more we can use the Jacobi�theorem for the 	k�n
�	k�n

matrix Mij � sin�	
ij
�	k � n� �
� to relate the S�matrix of the �xed point resolution to
the S�matrix of the images of the �xed points� We �nd that

%S���
%S��� � ��n���n 	��
�		��������S���������S��������� � 	�����


Here %S denotes the S�matrix of the �xed point resolution� while

,��� �
X
i�M	

i�
X

i�M	�

i � 	�����


and ,��� is the sum of the analogous numbers for the theory in the 
denominator�� Fur�
ther� � � ������� � f����g depends on the particular action of T on resolved �xed points�

Namely� the left hand side of 	�����
 is to be multiplied with the matrix P � �
�

�
� � ��� �



�

On the right hand side of 	�����
 this is re�ected by the fact that the subscripts actu�
ally do not refer to an orbit� but to a speci�c representative� the sign of the right hand
side changes when one changes from one representative to the other representative of the
orbit� The two representatives� which will be denoted by � 	#� �
� and � 	#� �
	� can be
described as follows� For any orbit f��� J��g of a B type WZW theory denote by #	

the representative with smaller values of %��� and by #� the other one� then � 	#� �
� ��
	� 	#
	� � 	�
	
 �� 	� 	#
�� � 	�
�
� while � 	#� �
	 �� 	� 	#
	� � 	�
�
 �� 	� 	#
�� � 	�
	
� with
the two equivalent states mapped onto one another by the action of the identi�cation cur�
rent J���� Now the value of � depends on whether the �rst of the resolved �xed points is
mapped to � 	#� �
� and the second to � 	#� �
	� or the other way round� As we will see� a
consistent prescription for this choice can be given for which � precisely cancels the further
possible signs in 	�����
�

To compute the phases �n and �n��� we �rst note that� given a representation 	ST 
� �
S�� S	 � �� of SL	��Z
� the only rescalings of S and T which again lead to a representation
of SL	��Z
 are

T �� e�im�
 T � S �� e��im�� S� 	������


��



We can determine the integer m in the �rst of these rescalings from the global shift in the
conformal dimensions that is present in the �xed point theories as compared to the C type
WZW theories� In the case of our interest we have for 	Bn��
�k�� the shift !�B��!�C� �
	�k � �n � �
���� and analogously for 	Bn
�k��� Subtracting the two shifts� one �nds
m � ��� With 	������
� this implies that for the resolution one should take minus the
product of the S�matrices of the C type theories rather than simply their product� In
other words� �n���n � ��� and hence 	�����
 reduces to

%S���
%S��� � �	��
�		������S���������S��������� � 	������


To complete the construction of T � we �rst investigate the restrictions that are obtained
from requiring that the S�matrix is left invariant� Let us choose an arbitrary �xed point
"f (� 	#� �
 to start with� and denote the resolved �xed points by "f�� as in 	������
� We
can now map "f� either to � 	#� �
� or to � 	#� �
	 	and� correspondingly� "f� to � 	#� �
	
and to � 	#� �
�� respectively
� After �xing this choice� the requirement that the S�matrix
should be invariant already �xes T 	"f �
 for any �xed point "f � uniquely� Namely� assume
that the �rst possibility� "f� �� � 	#� �
�� is chosen� then we have to map "f ��

�� � 	#�� ��
��
"f �

�
�� � 	#�� ��
	 if the number ,ff � � ,��� �,��� computed according to 	�����
 is even�

while if ,ff � is odd� the map must be "f ��
�� � 	#�� ��
	� "f �

�
�� � 	#�� ��
�� With this

prescription� one obtains �ff � � 	��
�ff � � and hence 	������
 reduces to the desired equality

%S���
%S��� Pij � �S���������S����������T �i�T �j�

� 	������


where on the left hand side i� j � f���g� while on the right hand side T 	i
�T 	j
 � f���g�
This not only works for any �xed choice of f �� but also for all S�matrix elements Sf �f ���
because ,f �f �� � ,ff � � ,ff ��� The latter identity also implies that the choice of reference
�xed point "f is immaterial�

As long as we only take care of the S�matrix� the alternative to choose "f� �� � 	#� �
�
or "f� �� � 	#� �
	 means that there are two di�erent allowed mappings on the �xed points�
But according to 	������
 the characters of "f� and "f� are di�erent� "f� has more states
with minimal conformal weight� Therefore by looking at the characters one can remove
the ambiguity in the de�nition of T � However� since this reasoning can be applied to any
�xed point� it has also to be checked whether the constraints obtained from di�erent �xed
points are compatible� In practice� this is quite di�cult to check� as it requires a detailed
analysis of the characters� But there is a rather general argument that the consistency
conditions coming from the characters are compatible with those originating from the
S�matrix� Namely� de�ning for any �xed point f the function

X��f� �� ���f�� � ���f��� 	������


it is easy to verify that the functions X transform under the modular group exactly like
the character modi�cations '�f � 	�f� � �f�
��v� In itself� this does not yet imply that
X��f� and '�f are necessarily equal� but the fact that the result holds for an in�nite series is
a rather strong hint that they indeed coincide� 	Note that it directly follows from 	������

that only X as de�ned in 	������
� and not �X can be a sensible character� thus there is
in particular no sign ambiguity in de�ning X �


In principle� we should perform the same kind of reasoning as above also for resolved
�xed points that occur as the images of non��xed points� However� due to the duality
property of the map T the arguments needed for this analysis closely parallel the arguments
given above� so that we refrain from repeating them here�
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At this point it is worth recalling that there does not exist a general proof that the
�xed points of a coset theory can be resolved in a unique way ������ In the present case�
the manner in which the resolution procedure described in ����� �ts the duality map T is�
however� so non�trivial that it is hard to imagine that there could exist another prescription
for the resolution that would be compatible with duality as well� Note that the extended
Poincar�e polynomials of the theories considered here should obey level�rank duality for
any possible resolution� because according to quite general arguments ����� 	compare also
Chapter �
 the extended Poincar�e polynomial of an N � � coset theory does not depend
on the details of the resolution procedure�

	���	 Ramond ground states

Finally we turn our attention to the chiral ring of the theories� According to the formula
	�����
� the number of representatives of Ramond ground states with a �xed 	Bn��
�k��
weight is given by the relative size

jW �gj
jW �hj

�
�n�� 	n� �
+

�n n+
� � 	n � �
 	������


of the Weyl groups� After implementing the resolution of �xed points� one �nds that
the dimension of the ring is indeed invariant under the exchange of n and k� this is a
direct consequence of the much stronger result ����� that the 	ordinary� and also even the
extended
 Poincar�e polynomials of the theories coincide�

Our goal is now to show that the map T de�ned above maps every Ramond ground
state to a Ramond ground state of the dual theory with identical superconformal charge�
To do so� we �rst note that the relation 	�����
 between # and � can be reformulated in
terms of the sets M� and M�� and of the charge Q� as follows� Take a highest g�weight
# described by the set M�� and consider it as ordered with respect to the magnitude of
the elements� The action of any Weyl group element w is then to permute the elements
of M� and to multiply them with a sign� the �	n � �
 special elements of the classes of
W �g�W �h that appear in 	�����
 are characterized by the property that they choose among

the n � � elements of M� a particular element %�i which gets placed before all the other
elements and change its sign or not� leaving all other signs unchanged� We will denote such
a Weyl group element that maps the ith basis vector ei of the orthonormal basis on �e�
and respects the ordering of all other basis vectors by w

���
i � By inserting the explicit form

of the roots � in the orthonormal basis into 	������
� it is straightforward to calculate the

length of the elements w���
i � We �nd

l	w���
i 
 � i� � and l	w���

i 
 � �	n � �
� i � 	������


where n � � is the rank of the algebra� This result re�ects the linear structure of the
associated Hasse diagram of the embedding Bn �� Bn�� �����

For the Ramond ground state de�ned by acting with w
���
i on #� the u	�
�charge Q is

given by ��%�i for spinors and �	�%�i � �
 for tensors� Opposite sign choices correspond to
choosing charge�conjugate Ramond ground states� As a consequence� the map T automat�
ically respects the charge conjugation properties of the Ramond ground states and� hence�
is compatible with the conjugation isomorphisms of the chiral rings of the theories� As
mentioned in Section ���� this compatibility must in fact hold on rather general grounds�

��



Next we remark that not all representatives of a Ramond ground state are of the form
	�����
 	recall that 	�����
 is a formula for representatives� and not for physical �elds
� To
be able to employ the relation 	�����
� we therefore pick a speci�c representative of any
combination of simple current orbits of weights # and � that describes a Ramond ground
state� After applying the map T in the form 	�����
� 	�����
 to this speci�c representative of
a Ramond ground state "R� we obtain a speci�c representative of the primary �eld T 	"R

of the dual theory� What we have to show is that T 	"R
 is again a Ramond ground state�
and we will do this by employing the formula 	�����
� Of course� generically the particular
representative of T 	"R
 with which we are dealing in the �rst place cannot be expected
to be of the form 	�����
� As we will see� it is indeed sometimes not of this form� but as
was shown in ����� there is always at least one representative of the Ramond ground state
ful�lling 	�����
�

Suppose� to start with� that # and � are both spinor weights and that the Ramond
ground state is given by the Weyl group element w

���
i acting on #� Recalling that the

index i of w���
i refers to the fact that M� nM� � f%�ig� and observing that via the map �

on the WZW theories� i�e�� upon forming the complement relative to f�� �� ��� � k � n � �g�
this is transformed to the relation M���� nM���� � f%�ig� we learn that there exists a Weyl
group element wT of the dual theory that relates � 	�
 and � 	#
 in the correct manner and

is given by one of the two elements w
���
i
T
� with iT determined by the requirement %�

���
i
T

� %�i�
To decide which of these two elements is the correct one� we observe that owing to the
latter relation QT must be equal either to Q or to �Q� from 	�����
 	together with the
explicit form of the identi�cation currents
 it follows that in fact QT � �Q� In summary�
using the sets M���� and M����� and the sign of QT relative to the sign of Q� we �x a
unique Weyl group element wT of W 	Bk��
� in fact� a more detailed analysis shows that

i� � k � n�Q��� i� �� i�e� wT � w
���
k�n�Q���i��� To verify that this Weyl group element

indeed provides us with a Ramond ground state� the only thing that we still have to do is
to check that it yields the proper Dd part� � While in the foregoing discussion we �xed the
representative with respect to J��� by xT �x� the present choice of representative for the
charge QT implies that xT must be given by

xT � 	Jv

n�k�Q��x � 	������


Now the formul* 	������
 for the length of Weyl group elements tell us that

l	w
� l	wT 
 � n � k �Q�� 	������


and� hence� recalling that the sign of w is equal to 	��
l�w��

sign 	w
 sign 	wT 
 � 	��
l�w��l�wT � � 	��
k�n�Q��� 	������


In view of 	�����
� this shows that 	������
 is indeed ful�lled� Furthermore� plugging 	������

into the formula 	������
 for the superconformal charge of Ramond ground states� it follows
that "R and T 	"R
 have the same superconformal charge 	exactly� and not just modulo
�
�

The reasoning above applies also to the case w � w
���
i � as the two cases are clearly

dual to each other� If both # and � are tensor weights� the situation is slightly more

� In some cases we also must show that the correct J����orbit out of two possibilities is chosen� This
happens when an �unresolved �xed point� is resolved into two �elds whose conformal weights di�er by
an integer� The discussion of �xed points in the previous subsection shows that indeed the right orbit is
chosen�

��



complicated� This is because %�i gets mapped under � to %�
���
i
T

� L
�
� �� %�i� If the Ramond

ground state is de�ned by w � w
���
i � this shows that Q � �%�i � � should be mapped on

QT � L�Q� implying that wT involves no minus sign� While in the foregoing discussion
we always chose the representative of the �eld by requiring that !� � !� should be an
integer� we now have to �x the representative by requiring that QT � �Q�L� which� owing
to the second identi�cation current J���� is always possible� This choice of representative
leads to

xT � 	Jv

n��Q�����x � 	������


Again� a Weyl group element wT for the dual theory is completely �xed and can be shown

to be given by wT � w
���
�Q������n�i�� � It follows that l	w
� l	wT 
 � n� Q��

�
� �� so that

sign 	w
 sign 	wT 
 � 	��
n����Q��� � 	������


implying that the correct mapping 	������
 of the Dd�weights is reproduced and� also� that
the superconformal charge is left invariant� It is also clear that we have chosen the right
J����orbit� because ! is conserved modulo Z under T and because the relevant di�erent
J����orbits di�er in their conformal weight by �

�
modulo Z�

For w � w
���
i � the discussion must be slightly changed� This time Q � �	�%�i � �
 is

mapped on QT � �L � Q� i�e�� we have to choose a di�erent representative� leading to
xT � 	Jv
n��k��Q����� x� Explicit calculation shows that wT � w

���
i�n��Q������ leading to

l	w
 � l	wT 
 � n � �k � Q��
�

� which gives the right transformation of the Dd part and
implies identity of superconformal charges�

Thus we have proven that T always maps Ramond ground states to Ramond ground
states with identical superconformal charge�

	�� Type B coset models with level and rank not congruent
modulo �

In the same spirit as before� we can deal with the other level�rank dualities mentioned in
the introduction� As the discussion often closely parallels the one of the previous section�
we will usually be rather brief and shall only mention some new features� In the present
section we use the map � for B type algebras at even level to relate the coset theory
	B� �k � �� �n
 with the D type modular invariant to 	B� �n� �k � �
 with the diagonal
modular invariant� i�e��

	B� �k � �� �n
jD
T�� 	B� �n� �k � �
 � 	�����


According to Subsection ���� taking the D�invariant amounts to incorporating the integer
spin simple current J��� �� 	J� � � �� �
 into the chiral algebra� This introduces further �xed
points which can have order � or � and which have to be resolved� but it also has the
crucial advantage that it leaves us with tensors of the B algebras only� so that the map �
constructed in Section ��� is applicable�

The choice of the J����orbits is now immaterial� This is because the presence of J���
implies that � 	#� �
	 �� � 	#� �
�� so that any pair of tensor orbits of the B type WZW
theories� combined with a Dd�weight and a u	�
�charge� corresponds to a single physical
�eld� However� we still have to take into account the additional identi�cation current
J��� 	 J��� � 	�� Jv � ����L
� where L �� �k � �n � ��

��



Again the general form of the map T is given by 	�����
 	recall that on the right hand
side of 	�����
 only a representative of T 	"
 is given
� Starting from a �xed representative
of a �eld or a �xed point " of the B type coset theory at even level and odd rank� we obtain
all representatives of T 	"
 by using the map � and the identi�cation currents of the coset
theory at even rank and odd level� Moreover� with the help of the identi�cation currents
we can also �x uniquely a representative of T 	"
 for which � 	#
 and � 	�
 are tensors and
which has the same conformal weight as the chosen representative of "� Note that �xed
points are mapped on a spinor�conjugate pair of orbits� which re�ects the resolution of
�xed points� In particular �xed points of order two and of order four are mapped on two
and four �elds� respectively�

One can now show again that there is a unique mapping T that preserves both the
superconformal charge q modulo � and the conformal dimension ! modulo integers� it is
given by

QT �

� �Q�QL for x � f�� vg �
�Q� 	�k � �
QL for x � fs� cg � 	�����


and

xT �

�
	Jv


Q��x for x � f�� vg �
	Jv


�k��Q�����x for x � fs� cg � 	�����


To check this� one has to make use of the fact that the representatives of the orbits of the
D type WZW theories that were chosen above always have vanishing monodromy charge
relative to 	Js� � � Js� �
�

Of course� again T must be complemented by a prescription on the �xed points� This
time the �xed point theory is not a WZW theory� rather� it is closely related to certain
conformal �eld theories� denoted by the symbol B� that were described in ������ In fact�
the existence of the map T suggests that the S�matrix and characters of the B theories
are related to a D type WZW theory� and it should be interesting to explore the level�
rank duality further to gain deeper insight in the structure of these peculiar conformal
�eld theories� Finally� it is again possible to prove that the modular S�matrices are iden�
tical and that Ramond ground states are mapped on Ramond ground states with equal
superconformal charge�

	�� BB versus CC theories

In this section we present the isomorphism

	BB�n� �� �

T�� 	CC� �� �n� �
 � 	�����


To relate the non�hermitian symmetric cosets 	BB�n � �� �
 and 	CC� �� �n � �
 we �rst
notice the isomorphism C�

�� B� of simple Lie algebras� This allows us to make use once
again of the map � of Section ��� to relate the 	Bn
� theory appearing in 	BB�n � �� �

with the 	B�
�n�� �� 	C�
�n�� part of 	CC� �� �n��
� The 	Bn��
� part� on the other hand�
is comparatively easy to deal with� because it has only three integrable highest weights�
and because the identi�cation current J��� strongly restricts their combination with weights
of the other parts� Namely� 	Bn
��weights that are tensors must be combined with either
the tensor weight # � � or the tensor weight # � #��� of 	Bn��
�� while spinors are
to be combined with the spinor weight #�n��� of 	Bn��
�� furthermore� J��� introduces an
additional identi�cation� implying that in the case of tensors we can characterize the B part
completely by a 	Bn
��weight and by the di�erence !� �!� of the conformal dimensions�

��



Also� by using the identi�cation current J��� of the CC models� we can choose without loss
of generality for a �xed representative of " the representative of the C��orbit in such a
way that it has conformal dimension !��!� modulo integers� For spinor �xed points we
have again an ambiguity which is connected to the issue of �xed point resolution�

This time� the mapping � has to be complemented not only by a mapping on the Dd

and u	�
 parts� but also on the 	A�
�n�� part of the theory� Thus

" (� 	#� x � �� ��Q
 �

T 	"
 (� 	� 	�
� xT � �T � QT 
 �
	�����


where � and �T are A��weights 	recall that C�
�� A�
� It is easy to see that equality of the

superconformal charges modulo � is equivalent to the relation xT � 	Jv
Qx� In fact one
can show again that there is a unique mapping that preserves the fractional part of !� as
well as q modulo �� Namely� choosing the weights of the B parts in the manner described
above� for tensors in the B parts one needs

QT �

� �Q�QL for x � f�� vg �
�Q� 	Q� �
L for x � fs� cg 	�����


with L � �n � �� while for spinor weights in the B parts we must set

QT �

� �Q� L for x � f�� vg �
�Q for x � fs� cg � 	�����


The corresponding prescription for the weight � of 	A�
�m�� is� independent of the value
of x�

�T �

�
J�� for c� � c� � � �

� for c� � c� � � �
	�����


Fixed points have to be dealt with more carefully again� Using general simple current
arguments� it is easy to see that the S�matrix element between a �xed point and any other
spinor has to vanish� At �rst sight� this might seem inconsistent� because the S�matrix
element between two non��xed point spinors of 	Bn
� does not vanish in general� whereas
both are mapped on �xed points with respect to J��� of the C��theory� and the S�matrix
of the image vanishes� However� spinors of 	Bn
� are always combined with the spinor
weight #�n��� of 	Bm��
�� now S�
n����
n���

vanishes and� hence� the same is true for the

corresponding S�matrix element of the coset theory�
We can use the Jacobi�theorem to relate the S�matrix arising in the resolution of the

�xed points to the S�matrix of the CC theory� The resolution is this time accomplished by
mapping the �xed point on an orbit of length two� Calculation shows that the product of
the S�matrix elements of A�� Dd� and u	�
 di�ers from the corresponding S�matrix�element
of the CC coset theory by a factor of �	��
P�Q� where P and Q are the u	�
�charges of
the BB theory and where the sign � depends on the speci�c action of T on �xed points
analogously as discussed after 	�����
� In a similar manner as we dealt with the factor
	��
� in Section ���� it can be shown that the action of T can be chosen in such a way
that �	��
P�Q is the correct sign for obtaining equality of the full S�matrices� A parallel
argument also shows that this de�nition of T reproduces the correct identi�cation between
the characters of the resolved �xed points and those of the corresponding �elds of the
CC theory� Let us also mention that the factors stemming from the S�matrix of 	Bm��
�
precisely compensate the di�erent size of the identi�cation group in the case of non��xed
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points� for �xed points they assure� together with the factors of
p
� appearing in 	������
�

the equality of the S�matrices�
It is by now not too di�cult to verify that the mapping T ful�lls the same properties

as in the cases treated in the previous sections� Besides preserving q and ! as well as
the modular S�matrix� we see that T maps again the Ramond ground states with highest
superconformal charge onto each other� proving again the isomorphisms of the spectral
�ows� It is also possible to check that Ramond ground states are mapped on Ramond
ground states with the same superconformal charge quite in the same way we did before�
Owing to the presence of the additional A��subalgebra� the arguments are� however� slightly
more complicated� and we refrain from presenting the technical details here�

	�� Duality in the CC series

Here we construct a map T between the N � � superconformal coset models 	CC�n� k

and 	CC� k � �� n� �
� which as in the previously discussed cases leaves S and T invariant
and identi�es the rings of chiral primary �elds�

	CC�n� k

T�� 	CC� k � �� n� �
 � 	�����


The de�nition of the map T will be such that

T 		#� x � ��Q

 � 	� 	�
� xT � � 	#
� QT 
 � 	�����


This is formally very similar to the analogous de�nition 	�����
 in Section ���� but its
contents is quite di�erent� Namely� this time the underlying map � of the C type WZW
theories was de�ned on representatives of simple current orbits rather than on the orbits
themselves 	see Section ���
� Correspondingly� 	�����
 is a map between representatives as
well� and hence we will have to check that the relevant quantities of the coset theories do
not depend on the choices of representatives� Therefore we will be a bit more explicit than
in the two previous sections�

We begin again by checking the conformal central charge and the number of primaries�
According to Table ���� the Virasoro charge of 	CC�n� k
 is equal to �� � �n	k � �
�	k �
n � �
� and hence is invariant under exchanging n � k � �� The number of primaries of

the 	Cn
k WZW theory is NC
n�k �

�
n� k
k



� Furthermore� the coset theory does not have

any �xed points� and hence the number of primary �elds of 	CC�n� k
 is

�CCn�k �
�

�
NC
n�k N

D
�n����N

C
n���k�� N

�
��k�n��� � �	k � n� �


�
k � n
n

� �
k � n
n� �

�
� 	�����


where the �rst factor �
	
takes care of the selection rule and the identi�cation of order two�

Obviously� the number of primaries of the 	CC� k � �� n � �
 theory is given by 	�����
�
too�

Next we present the map T � In 	�����
� � is to be taken as the map de�ned after 	�����
�
and xT and QT are de�ned by

xT �

�
	Jv
k�n�Q��x for x � fs� cg �
	Jv
k���Qx for x � fv� �g � 	�����


��



and

QT �

� �Q for x � fs� cg �
�Q� k � n� � for x � fv� �g � 	�����


Note that already in terms of representatives� the map T squares to the identity� TT � T �
id� Also� combining the expression 	�����
 for the conformal dimension of " with the result
	�����
 for the conformal dimensions of the C type WZW theories� one can again show
that T is the only map that preserves q modulo � and the fractional part of the conformal
weight !� as well as the S�matrix� To check the last�mentioned property� it is important
to make use of the selection rules encoded in the identi�cation current J����

As already emphasized� the map T must provide a mapping between �elds rather than
only a mapping between formal combinations of weights of the underlying Lie algebras�
The following remarks show that the mapping is indeed well de�ned on physical �elds�

�� The map 	�����
 is consistent with the selection rules� i�e�� it maps allowed �elds to
allowed �elds� Note that the dependence of QT on x is necessary to ful�ll the selection rule
encoded in J���� 	explicitly� the selection rule reads r	#
� r	�
�n� �Q � � mod �� where
r	#
 is the number de�ned in 	�����
� which modulo � is equal to the conjugacy class of #�
and where � is � in the Neveu��Schwarz sector and � in the Ramond sector
�

�� Identi�cation currents are mapped onto identi�cation currents� ��

	�� � � �� �

T�� 		n� �
#�k���� 	Jv


k�� � n#�k���	k � n � �

 �

	k#�n�� 	Jv

n � 	k � �
#�n�����	k � n� �



T�� 	�� � � �� �
 �
	�����


Computation shows that the products of S�matrices of the respective WZW theories co�
incide 	one has to make use once again of the selection rules� which imply cancellation of
the factors 	��
r��� that are present in equation 	������

� This implies that in fact the
two representatives of one physical �eld " are mapped on the representatives of the corre�
sponding physical �eld T 	"
 of the dual theory� or� in other words� that we can interpret
T also as a mapping of physical �elds�

�� The two representatives of the Ramond ground state with highest u	�
�charge are ex�
changed�

	�� s � �� n

T�� 		n� �
#�k���� 	Jv


k��s � n#�k���n
 �

	k#�n�� 	Jv

ns � 	k � �
#�n�����k � �


T�� 	�� s � �� k � �
 �
	�����


In other words� in terms of �elds we have proven compatibility of the map T with spectral
�ow�

To show that T maps Ramond ground states on Ramond ground states� again we �rst
check the dimension of the chiral ring� We have to use the formula 	�����
 with N � NC

n�k�
jZj � jZ	Cn
j � �� and

jW �gj
jW �hj

�
�n n+

�n��	n� �
+
� �n � 	�����


Thus �CCn�k � nNC
n�k � 	n � k
+�		n � �
+ k+
� which is invariant under n � k � �� Of

course� this also follows from the observation that the 	ordinary and extended
 Poincar�e

�� This does not furnish a group isomorphism between the groups that describe the fusion rules of the
identi�cation currents� Since these groups are isomorphic to Z�� such an isomorphism would necessarily
be trivial�

��



polynomials of the theories 	CC�n� k
 and 	CC� k � �� n� �
 are identical� as we will see
in Chapter ��

To analyse the Ramond ground states in more detail� �rst recall that in the orthogonal
basis the action of the Weyl group is given by permuting the components and multiplying
themwith a sign� and has thus the same structure as in the case of B type Lie algebras� This
allows us to use the same notation for Weyl group elements as in Section ���� Furthermore�
the roots of B type and C type algebras di�er only by normalization factors� and these are
irrelevant for the determination of the length of Weyl group elements� As a consequence�
the formul* 	������
 are valid for C type Lie algebras� too 	and the Hasse diagram of
the embedding Cn�� �� Cn is again linear� compare Appendix ��A
� Correspondingly� the
reasoning below will be very similar to that of Section ���� The relation 	�����
 between
the weights # and %� implies that in terms of the numbers %�i introduced in 	�����
� the
Cn���weight � of a Ramond ground state "R is related to the Cn�weight # by

%�i	�
 � %�i��	w	#

 � 	�����


and also
jQj � %��	w	#

 	������


for some Weyl group element w� When we characterize # and � by the sets M� and M��
this translates into

M� � M� n f%��g� 	������


where %�� � �Q is an arbitrary element of M� 	recall that %�� � �
� Again the freedom in
the choice of the sign of Q re�ects the invariance of the set of Ramond ground states under
charge conjugation� An analogous description applies to the image T 	"R
 of the Ramond
ground state� Now T �xes uniquely the transformation of all weights� and

M���� � M nM� � 	M nM�
 � f%��g � M���� � f%��g� 	������


so that � 	#
 and QT are related to � 	�
 by the formula 	�����
 with a suitably chosen Weyl
group element wT �

To verify that T 	"R
 is again a Ramond ground state� it is now su�cient to check
that T gives the correct weight in the Dd part of the theory� The Weyl group elements
w and wT are uniquely �xed by the weights # and %�� respectively by their images under

� � for w � w
���
i the Weyl group element wT is given by w

���
k�n�Q�i�� � which implies that

l	w
� l	wT 
 � n� k � � �Q� From this equation we can derive not only the equality of
superconformal charges� but also the behavior on the Dd part� we have

sign 	w
 sign 	wT 
 � 	��
l�w��l�wT � � 	��
k�n���Q� 	������


which reproduces the prescription given in 	�����
� This shows that T maps Ramond
ground states on Ramond ground states� as claimed� and thus completes our arguments
that the map T ful�lls the requirements for the isomorphism 	�����
 of conformal �eld
theories� analogously as for the other isomorphisms of 	�����
�

��



Chapter �

Applications to String Theory


�� Introduction

In this chapter we apply the results of Chapter � to string compacti�cation� we use the non�
hermitian symmetric coset N � � coset theories introduced in Chapter � as subtheories
in N � � tensor products with c � �� which are taken as the inner sector of heterotic
superstring compacti�cations�

To this end several projections have to be implemented on the tensor product� in Section
��� we describe these projections in the language of simple currents� The information on
the chiral ring which is necessary to perform these projections can be conveniently encoded
in the so�called extended Poincar�e polynomial ����� which is described in Section ����

The extended Poincar�e polynomial can be deduced from the ordinary Poincar�e poly�
nomial and the action of the so�called spinor current� it can be used to compute the
massless spectra of these compacti�cations� i�e� the number of massless generations and
anti�generations� In Section ��� we present the complete list of all tensor products of coset
theories that involve at least one non�hermitian symmetric coset theory and have central
charge c � �� providing thus consistent vacua for heterotic string compacti�cation to four
space�time dimensions ����� When combined with the list of tensor products involving only
minimal models ���� and with the corresponding list for hermitian symmetric spaces �����
this completes the list of all tensor products of N � � coset theories that can be obtained
from cosets of the type 	�����
� Note that the set of all string vacua is much bigger than
the set of all tensor products of coset theories� as in general by choosing di�erent modular
invariants of the g� and h�WZW theories one gets di�erent string vacua� However� to ob�
tain this set is� at present� beyond reach� as a complete classi�cation of modular invariants
is still lacking for WZW theories based on simple Lie algebras other than A� and A��

Finally� in Section ��� we conclude with a brief summary and an outlook on possible
further work�


�� Heterotic string compacti�cation and simple currents

To build out of a tensor product C� of N � � superconformal �eld theories with c � �
a heterotic string theory� one has to perform several projections� We will sketch in this
section how this can be described in terms of simple currents and explain the resulting
prescription encoded in the 
extended Poincar�e polynomial�� In a second step we shall
comment on the case c � � � �n � This case is of much practical interest as we have to
resort to it in some cases to remove ambiguities in the resolution of �xed points� Note
that in this section we do not make any assumption on how the N � � theories have been
constructed� The results we will derive in this section are therefore valid for any N � �
theory�

��



After splitting o� the contribution of the bosonic space�time coordinates and applying
the bosonic string map ����� we can describe the heterotic string in a conformal �eld theory
language as the tensor product

	D�
� � 	E�
� � C� � 	�����


The �rst two factors will provide for the right movers the gauge multiplet� for the left movers
they describe the contribution of the fermions� As the only purpose of the E� factor is to
provide a phase in the S�matrix such that the fermions are correctly reproduced� we will
drop it in our discussion from now on�

Any superconformal �eld theory has a simple current TF � the generator of world sheet
supersymmetry � which of order two and conformal dimension h � ���� We say that pri�
mary �elds which have monodromy charge � with respect to TF are in the Neveu��Schwarz
sector� �elds with monodromy charge ��� in the Ramond sector� By the 
superpartner� of
a primary �eld i we will denote the primary �eld TF 	 i� Note that i and TF 	 i are distinct
primary �elds and that in particular TF itself is a primary �eld�

To obtain supersymmetry on the world sheet also for the tensor product of supersym�
metric theories� we have to align the boundary conditions in the various theories such that
the �elds are either all in the Ramond or all in the Neveu��Schwarz sector� This alignment
is precisely achieved by enlarging the chiral algebra by all bilinears TF

�i�TF
�j� which have

conformal dimension �� In the D� part we set TF
��� �� Jv� which is� just like any other

primary �eld of 	D�
�� a simple current as well�
Space�time supersymmetry requires the projection on even � values of the u	�
 charges

����� To implement this projection we use the fact that any N � � superconformal theory
has a second simple current� the Ramond ground state R� with highest u	�
 charge� It has
conformal dimension h � c

�	
� its monodromy charge is half of the superconformal charge�

The desired projection it is thus equivalent to including the integer spin simple current
Stot �� 	Js� R�
 in the chiral algebra� Here Js is the spinor simple current of 	D�
�� Stot

has been termed spinor current in ������ We will see below that its presence in the chiral
algebra assures the existence of a space�time gravitino in the corresponding heterotic string
spectrum�

In conformal �eld theory language a heterotic string theory thus amounts to a conformal
�eld theory 	�����
 with the modular invariant generated by the integer spin simple current
Stot and all bilinear combinations TF

�i�TF
�j��

We are now in a position to recover the massless spectrum of the heterotic string� To
obtain the proper interpretation we recall that in one chiral sector of the theory� e�g� for
left movers� we have to apply the bosonic string map� the D� � E� part is mapped on a
so	�
� theory by interchanging vector and scalar and changing the sign of the spinor and
conjugate spinor representation in the partition function� This map preserves the modular
transformation properties and allows for a description of the fermionic coordinates of the
string�

In a purely bosonic description� massless �elds are characterized by the property h �
�h � �� Let us �rst explain how in this formulation the generic part of the string spectrum
arises which provides the supergauge� and supergravity�multiplets� Two �elds that occur
in any N � � theory in the inner sector are the vacuum and the two Ramond ground states
with highest and lowest u	�
�charge� The massless right moving �elds that are tensored
with the vacuum of the inner sector have conformal weight h � � and� due to the charge

� Here we formulate the condition after applying the bosonic string map� what explains the di�erence
to what the reader might expect� namely projection on odd values �����

��



selection rule� q � ����� These conditions are ful�lled for the currents of E� � D� and
the transverse bosons� In the modular invariant described above these �elds are paired
with the following left movers� 	Jv� �
 what yields for the transverse bosons the graviton
	as well as an antisymmetric tensor and the dilaton as the trace
 and for the currents the
gauge multiplets� Applying Stot in the left moving sector yields the superpartners of the
gauge bosons and the graviton�

In the right moving sector� we also �nd in the complete square of the identity the
�elds Stot and Stot

y� as well as the � of D� tensored with the u	�
�current of the N � �
algebra� According to the branching of the adjoint representation of E
 to the adjoint
representation� the spinor� conjugate spinor and scalar of D�� these �elds extend the gauge
symmetry from E��D� to E��E
� In particular cases� if more �elds are present� one can
even further extend both the gauge symmetry for right movers and the supersymmetry for
the left movers�

To explain how massless 	anti�
generations transforming in the �� respectively �� rep�
resentations of E
 arise� we remark that massless states that are vectors of D� have h � �

�

and q � �� in C�� i�e� they are 	anti�
chiral �elds� Acting twice with Stot
y on the vector

tensored with a chiral primary �eld with q � � yields a spinor tensored with a Ramond
ground state and in a second step � tensored with an anti�chiral state with q � ��� these
states combine in a �� of E
� Starting with an anti�chiral �eld and applying Stot instead
we obtain states transforming in a �� of E
� These states can be paired with spinors or
conjugate spinors in the left moving sector� together they give rise to the generations and
anti�generations and their CPT conjugates�

To extract information on the spectra we introduce the following notation� denote by
hp�q the number of �elds which are in both the left and the right moving part of C� chiral
primaries and have superconformal charge p respectively q� p� q are integers smaller than
d �� c��� These numbers can be seen as analogues to the Hodge numbers of a Calabi�Yau
threefold� In fact� we �nd the usual symmetries� hp�q � hq�p� as we started from a left
right symmetric invariant� and hp�q � hd�q�d�p� due to the conjugation symmetry on the
chiral ring� Note that if the vacuum is not paired with any chiral primary �eld other than
the unique chiral primary �eld with q � c

�
� we have h��� � h��� � �� in the corresponding

heterotic string compacti�cation neither gauge symmetry nor space�time supersymmetry
is extended� As this is the most interesting case we will restrict ourselves to it from now
on� The 
Euler number� is given by � ��

P
	��
p�qhp�q�

The discussion above shows that the number N�� of massless generations transforming
in the �� representation of E
 is equal � to h���� or equivalently to the number of �elds in
the theory� which are in both sectors spinors of D� tensored with a Ramond ground state
with superconformal charge ��

�� The massless anti�generations N�� transforming in the ��
of E
 can be correspondingly characterized by the �elds which are spinors and Ramond
ground states with charge ��

� in one sector and conjugate spinors and Ramond ground
states with charge ��

� in the other sector�


�	 The extended Poincar
e polynomial

To compute the massless spectrum of a heterotic string compacti�cation we have to keep
track of the relevant simple current orbits� Let us �rst look at the orbits of Stot� as we are

� Our notation is di�erent from the one used for Calabi�Yau manifolds� there the superconformal charge
in both sectors is de�ned with a relative minus sign� so the number of generations corresponds to the Hodge
number h���� � h��� of the manifold�

��



only interested in the massless spectrum we start with an arbitrary Ramond ground state
	Js� R���� � � �
 � Suppose now that� on the orbit� we encounter 		Jv
��v� 	TF

�i�
�iR�
i
� where �i

is � or �� This state � which is massive unless all �i vanish � is paired in the simple current
invariant with the original state in the other sector of the theory� But the chiral algebra
contains also all bilinears of the form 	Jv� TF

�i�
� we thus �nd within the same complete
square of the partition function the corresponding massless state� for which all �i vanish�
too� If the D� part is a spinor this yields a generation� conjugate spinors correspond to
anti�generations�

The information on the orbit of Stot is very conveniently encoded in the extended Poin�
car�e polynomial ������ To start with� we de�ne it on each factor of the tensor product
separately� As any simple current has �nite order� the orbit has some periodicity which we
�rst factor out for convenience� for any Ramond ground state R we de�ne NR to be the
smallest power of the spinor current such that 	SNR
R is equal to R or TFR� We de�ne
�	R
 to be �� in the �rst and �� in the second case� The extended Poincar�e polynomial
is now de�ned as �

P	t� x
 �
X
R

tq

� � �	R
xNR
�
X

m�F�

xm � X
n�F�

xn�� 	�����


The sum is over all Ramond ground states R� q is the superconformal charge of the chiral
primary �eld connected via spectral �ow� The sets F� are de�ned by the prescription�
m � F� i� 	Stot
mR is a Ramond ground state and n � F� i� 	Stot
nR is TF applied to a
Ramond ground state� in particular all m�n are even� The extended Poincar�e polynomial
is not a polynomial in the new variable x� but rather a series with periodic coe�cients� We
remark that we recover the ordinary Poincar�e polynomial as P	t� �
�

In fact� typically one deals with a tensor product of N � � coset theories rather than
with a single theory� The ordinary Poincar�e polynomial Ptot	t
 of a tensor product is just
the product of the ordinary Poincar�e polynomials Pi	t
 of the factor theories� The extended
Poincar�e polynomial for a tensor product can be obtained by the following multiplication�
given the extended Poincar�e polynomials Pi	t� xi
 of the factors� �rst perform the ordinary
product of polynomials and then delete all terms in which the powers of the xi do not
coincide� This procedure implements the simple observation that� in order to have a
Ramond ground state of the tensor product� we need Ramond ground states in each factor
of the theory�

To compute the spectrum of the corresponding string compacti�cation we have �rst
to check whether the gauge symmetry is extended or not� If it is not extended� then the
polynomial in x multiplying t� is equal to � � x�� The numbers N�� and N�� can then be
read o� ����� from the extended Poincar�e polynomial of a c � � theory� Namely� if P is
written as

P	t� x
 �
X
i

�X
m
�

a�qi�m tqix�m� 	�����


then we �nd

N�� �N�� �
Ms����X
m
�

ja���m j 	�����


and

N�� �N�� �
Ms����X
m
�

	��
ma���m � 	�����


��



Here Ms denotes the smallest positive integer such that the 	�Ms��
st power of the spinor
current is either equal to the spinor current itself or to its superpartner� The formulae
	�����
 and 	�����
 implement the observation in the previous section that� since the action
of any of the bilinears 	Jv� TF

�i�
 and of 	Stot
� changes the conjugacy class in theD� theory
we �nd generations if am � � and m � � mod � or am � � and m � � mod �� the other
cases correspond to anti�generations� Note that in formula 	�����
 it is assumed that a
�xed twisted sector m contributes either only generations or anti�generations so that the
contributions to a���m do not cancel� A proof of this assumption can be found in ������

For later application� it is necessary to slightly generalize this formalism such that it can
be applied to tensor products of cosets with conformal charge c � �� �n� Here in general�
we have no string interpretation at hand and we have to replace the D� factor by some
other Dr factor� However� we have to require that the current 	Js� R�
� with conformal
weight r�� � c��� has integer spin� This �xes r to r � ��n � � mod �� 	We recover the
previous situation for r � �� n � ��
 It is important to note that� as the S matrices of Dr

and Dr�	 coincide� the choice of r does not a�ect the fusion rules� 	Note however� that the
T matrices coincide only for Dr and Dr��	�


We now implement analogous projections� i�e� take the simple current invariant induced
by all bilinears in the TF

�i� and 	Js� R�
� and obtain the extended Poincar�e polynomial by
exactly the same prescription as in the c � � case� Again massless states that are spinors
or conjugate spinors in Dd are Ramond ground states of C��
n� The charge selection rule
implies that states paired with spinors have superconformal charge q � ��

� mod � and for
conjugate spinors ��

�
mod �� The chiral primary �elds connected via spectral �ow have

thus charge q � n mod � for spinors respectively n � � mod � for conjugate spinors� This
shows that we can recover the Euler number from the polynomials multiplying all odd
powers of t in the extended Poincar�e polynomial and summing up all contributions� We
remark that in general we can only read o�

P
q h

p�q	��
p�q from the extended Poincar�e
polynomial� this is su�cient to determine all Hodge numbers separately only for n � �� if
the symmetry is not extended�


�
 String spectra of N � � coset models

Knowing the exact form of the Ramond ground states in N � � coset theories 	cf� Section
���
� we can calculate the massless spectrum of the string theory that employs a tensor
product of N � � coset model as its inner part� or more precisely� the numbers N�� of

generations� and N�� of 
anti�generations� which carry the two inequivalent ���dimensional
representations of the E
 part of the space�time gauge group of the string theory� One
possibility to �nd these numbers is� of course� the extended Poincar�e polynomial introduced
in the previous section�

Another method is the 
method of beta vectors� that was introduced ���� in the context
of N � � minimal models� in principle this method has the additional bene�t to provide in
addition the number N� of E
 singlets� In practise� however� this is not the most convenient
approach� as the dimensionality and structure of the lattice spanned by the beta vectors
depends strongly on the algebras involved� so that one would be forced into a lengthy case
by case analysis� 	However� for the calculation of the number of massless states carrying
the singlet representation of the space�time gauge group E
� the method of beta vectors is
still the only known algorithm� Unfortunately the knowledge of the Ramond ground states
is not su�cient to get the singlets� While for Ramond ground states the correct treatment
of null states is already implemented through 	�����
� for general N � � coset theories the

��



presence of null states makes the determination of the singlets a hard problem� In fact�
the singlet numbers have so far not been determined for 	tensor products of
 N � � coset
models other than the minimal ones� For the latter theories� the representation theory of
the N � � algebra gives a good handle on null states�


To determine the exact form of the extended Poincar�e polynomial in the case of N � �
coset models is a somewhat tricky issue� as in fact we only know some speci�c representa�
tives of the �elds which are Ramond ground states 	the formula 	�����
 does not provide
all members of an equivalence class
� while for the calculation of P	t� x
 in principle all
representatives are required� Fortunately� one can show that the following procedure yields
the full result� Take a single representative for each Ramond ground state� and act on it
with all even powers of all representatives of S that have �g�weight # � �� This is su�cient
because of the fact� proven in the appendix of ������ that for any representative R of a
Ramond ground state there exists at least one representative R� that belongs to the set
obtained via 	�����
 and that has the same �g�weight as R�

It follows from the considerations in the previous section that� if in P	t� x
 the highest
	and� due to charge conjugation invariance proven in Section ������ also the lowest
 power
in t gets multiplied with more than two distinct powers of x� then additional gravitinos
that lead to extended space�time supersymmetry 	respectively� additional gauge bosons�
yielding an extension of the space�time gauge group E
 to E� or E�
 are present� In the
tables below we have marked all models where this happens by an asterisk on the net
generation number� Note that in the tables we display the number of E
 multiplets even
if the gauge group gets extended� 	All models of this type that appear in our list describe
in fact string propagation on the manifold K� � T �� and hence have N�� � N�� � ��� The
number N�
 of the associated E� multiplets is in these cases N�
 � N�� � � � ��� as one
generation�antigeneration pair becomes part of the gauge boson multiplet�


As an illustration� we present one example of an extended Poincar�e polynomial� namely
for the theory 	G��� �
� This has the 	somewhat atypical
 property that to some powers of
t other than the highest and the lowest ones there are associated more than two di�erent
powers of x� The 
polynomial� reads

P	t��� x
 � f 	� � x�
 � t�� 	� � x��
 � t�� 	� � x� � x�� � x�

 � t�� 	� � x�



� t�	 	� � x
 � x�� � x��
 � t�� 	� � x��
 � t�
 	� � x	 � x�� � �x��


� t�� 	�� x��
 � t�� 	� � x� � x�� � x��
 � t�� 	�� x��


� t�� 	�� x
 � x�� � �x�� � x�	 � x��
 � t�� 	�� x�


� t�� 	� � x�
 � x�� � x�	
 � t�� 	� � x�	


� t�	 	� � �x�	 � x�� � x��
 � t�� 	�� x	
 � t�
 	� � x
 � x�	 � x��


� t�� 	�� x��
 � t�� 	� � x�� � x�� � x��


� t�� 	� � x�

 � t	� 	� � x�	
g 	�� x�

�� �
	�����


In the presence of �xed points the above prescription for obtaining the extended Poin�
car�e polynomial is not yet quite complete� since from the quantum numbers of a �xed
point alone it cannot be decided whether a �eld into which the �xed point is resolved
and which appears in the orbit of another Ramond ground state is a Ramond ground
state 	or the superpartner of a Ramond ground state
 or not� In principle one could
resolve this ambiguity by using the full S�matrix of the theory to calculate the fusion
rules which� in turn� determine the orbits of the spinor current� But again� there is a way
to avoid this involved calculation� which has the additional bene�t of showing that the

��



results for the extended Poincar�e polynomial do not depend as strongly on the details of
the resolution as one might imagine� To this end we note that an important check of the
spectra obtained via the extended Poincar�e polynomial is provided by the results of �����
where an independent way to calculate the net generation number �N by means of the
ordinary Poincar�e polynomial P 	t
 was found� Namely�

�N � N�� �N�� �
�

Ms

Ms����X
r�s
�

P 	e��i d�r�s��Ms
 � 	�����


where d	r� s
 stands for the largest common divisor of the integers r and s�
Now since 	�����
 determines the net generation number �N from the ordinary Poincar�e

polynomial alone� �N cannot depend on the resolution procedure ������ To determine the
correct extended Poincar�e polynomial� we thus simply have to start with the most general
ansatz compatible with the prescriptions given above and calculate� for all possible values
of the unknown parameters that arise from the orbits containing resolved �xed points�
the net generation number for string vacua that involve the model under investigation as
one factor theory� If the net generation number generated this way does not �t the value
prescribed by 	�����
� we can exclude the corresponding set of values for the unknown
parameters� To resolve all ambiguities uniquely� it is sometimes necessary to take into
account the result of the previous section that we can apply all formulas not only to tensor
products with c � �� but to tensor products with c � � � �n for any positive integer n as
well�

As an example� let us have a look at the theory 	BB� �� �
 which has c � �� The
analysis of the Ramond ground states shows that the coe�cient of t in the extended Poin�
car�e polynomial is the polynomial

�� � a�x
� � a�x

	 	�����


	multiplied with the irrelevant factor 	� � x

��
� Here a� and a� are parameters arising
from the �xed point ambiguities just described� they must be integers between � and ��
Now 	�����
 shows that �N � �� so that 	�����
 yields a� � a� � ��� which in the given
range has the unique solution a� � a� � �� Once the exact form of the extended Poin�
car�e polynomial is known� we can read o� the number of generations and antigenerations
separately� namely N�� � N�� � ���

We present the results of our calculations in Tables ��� to ���� In Table ��� we list
all tensor products that can be written as the tensor product of a c � � and of a c � �
theory and in which at least one factor is neither a hermitian symmetric coset nor the
model 	CC� �� �
 that will be dealt with separately� The un�numbered lines contain the
relevant non�hermitian symmetric theories� while the numbered lines provide the spectra
for those c � � theories that are obtained by tensoring the c � � part with the following
c � � models� respectively�

� � � � � �

� � � or 	A� �� �� �
 �

� � � �

	CC� �� �


	�����


	the theories � � � and 	A� �� �� �
 possess the same extended Poincar�e polynomial and
therefore yield the same spectrum
� Here and below� the symbol 
�� is used to indicate
the tensor product� and a single integer k stands for the N � � minimal model at level k�

��



Next we display� in Table ���� all tensor products that contain the model 	CC� �� �

which has c � �� but do not contain any other non�hermitian symmetric coset theory� We
can tensor this model twice and use the �ve c � � models listed in 	�����
� as the model
	CC� �� �
 itself occurs in that list� this includes tensoring three copies of the model� We can
also tensor it with �� di�erent combinations of minimal models and �� other combinations
of hermitian symmetric cosets with c � �� � Altogether� this yields ������������ � ���
models with c � � that involve non�hermitian symmetric cosets and contain a c � � part�

Finally� in Table ��� we list all tensor products having c � � in which at least one factor
is not a hermitian symmetric coset and which do not contain a tensor product with c � ��
We �nd �� models of this type� The number of theories that we count as di�erent gets
reduced by various identi�cations among the total of ��� theories� We have taken care of
these identi�cations� thereby reducing the number of entries in the Tables ��� to ��� to
����

As it turns out� the extended Poincar�e polynomials for several theories that are de�ned
as distinct naive coset theories coincide� From the experience with coset constructions�
the observation that there exist a priori distinct coset theories with coinciding extended
Poincar�e polynomials is not very spectacular� What is surprising� however� is that in fact
for all non�hermitian N � � coset theories for which the ordinary Poincar�e polynomials are
identical 	compare table ��� above
� the same is true for the extended Poincar�e polynomials�

The cases where this happens can be easily read o� the tables as follows� If the extended
Poincar�e polynomials of some theories are identical� these theories are listed together in
an un�numbered line� the numbered line	s
 following this line then contain the theories
with which each of them can be tensored to obtain a c � � theory� For instance� the line
preceding the lines numbered from �� to �� in Table ��� shows that the theories 	CC� �� �
�
	CC� �� �
 and 	G��� �
 have identical extended Poincar�e polynomials�

One systematic reason why the extended Poincar�e polynomials of distinct Lie algebraic
cosets coincide are the level�rank dualities proven in Chapter �� We have also taken into
account the known ����� fact that the extended Poincar�e polynomials of the hermitian
symmetric cosets 	A� �� �� �
� 	A� �� �� �
� 	 	C� �� �
� and 	D� �� �
 coincide with those of the
tensor products � � � � � � � � � � � � � � � � and � � � of minimal models� respectively�


�� Conclusions

In this chapter we have presented a detailed analysis of compacti�cations of the heterotic
string that contain non�hermitian symmetric N � � superconformal coset theories in their
inner sector� The spectra of string compacti�cations that we obtained are certainly not
spectacular� but rather similar to those obtained for previously analyzed classes of com�
pacti�cations� This con�rms the by now common lore that extending the set of string
compacti�cations does not have a very large impact on the set of known spectra� The
results also con�rm the experience that when employing more complicated conformal �eld

� The list in �	��� containing �� hermitian symmetric cosets with c � �� is incomplete in several respects�
First� rather than �D	 �	 �� � ��� one must use the combinations �D	 �	 �� and �D	 �	 �� � ��� Further� it
was not realized that the coset theory �A	 �	 �	 �� �appearing in three of the �� theories� coincides with the
minimal model at level �� Finally� the theories �B	 		 �� and �B	 �	 	� which in �	�� were supposed to be
identical� are in fact ���	� distinct conformal �eld theories� Implementing these corrections� the number of
the models gets reduced by one� leading to the correct number of �� models�

� However� in Table ��	 we have nevertheless kept the entries  �� and  �� containing �A	 �	 �	 ���
because after identi�cation with � � �� � �� � they would correspond to entries in a di�erent table� namely
Table ����

��



theories� the numbers of generations and anti�generations tend to be smaller than in the
case of simpler 	say� N � � minimal
 theories�

There still remain several directions for further work on the subject� First� one may
consider modular invariant combinations of characters of the g� and h�WZW theories other
than the diagonal one� in particular non�diagonal invariants of tensor product theories that
are not obtained from products of the invariants of the a�ne Lie algebras associated to the
individual factor theories� One may also investigate whether the coset theories� or at least
their tensor products with c � �n� might have a description in terms of Landau��Ginzburg
potentials or Calabi��Yau manifolds� or of orbifolds thereof 	while it is generally assumed
that such a connection should exist� the arguments supporting this expectation are far
from being rigorous
� To identify these di�erent descriptions it would be very useful to
have a more detailed knowledge of the discrete symmetries of the models� One of these
discrete symmetries is obvious� namely the symmetry of the operator products induced
by conservation of the superconformal u	�
�charge� but generically there may be further
symmetries� and it is not clear how one could �nd all of them� Of course� once discrete
symmetries are known� one can divide out some of them so as to obtain orbifolds of our
models�

We also mention that a complete computation of massless string spectra� i�e� including
the �elds that are singlets under E
� would clearly be welcome� To this end one would have
to compute the character decompositions by means of the Kac��Weyl character formula 	in
order to identify null states and to obtain the integer part of the conformal weight of a
�eld
� and implement the beta vector method known from tensor products of minimal
models� It is evident that this is a laborious procedure� and any alternative method would
be of great interest�

Another interesting aspect of the string spectra obtained in the chapter is that the
extended Poincar�e polynomials P	t� x
� and hence the generation numbers N�� and N�� of
the associated string compacti�cations� of two theories are identical whenever the ordinary
Poincar�e polynomials P 	t
 � P	t� �
 are� This indicates that the structure of the extended
Poincar�e polynomial is to a large extent already dictated by the information contained in
the ordinary Poincar�e polynomial� in particular 	compare �����
� in the presence of �xed
points the numbers of massless generations and anti�generations do not depend at all on
the details of the resolution procedure� A general proof of this observation is however still
lacking�

��



Table ���� c � � tensor product theories that contain a c � � part combined with a non�
hermitian symmetric factor 	di�erent from 	CC� �� �

� and the associated generation and
anti�generation numbers

- Model N�� N�� �N

	BA� �� �


� � � � � � � � � �� �� � �

� � � � � � � �� � ��

� � � � � � � �� � ��

� � � � 	CC� �� �
 �� � ��

	BA� �� �
 or 	C�� �
 or 	G��� �


� � � � � � � �� �� � �

� � � � � �� � ��

� � � � � �� � ��

� � 	CC� �� �
 �� � ��

	BB� �� �
 or 	CC� �� �
 or 	CC� �� �


� � � � � � � � � �� � ��

�� � � � � � � �� � ��

�� � � � � � � �� �� � �

�� � � � 	CC� �� �
 �� �� � �

	BB� �� �
 or 	CC� �� �
 or 	CC� �� �


�� � � � � � � �� �� � �

�� � � � � �� �� �

�� � � � � �� � ��

�� � 	CC� �� �
 �� �� �

	CC� �� �
 or 	CC� �� �
 or 	G��� �


�� � � � � � � � � �� �� � �

�� � � � � � � �� �� � �

�� � � � � � � �� �� � �

�� � � � 	CC� �� �
 �� �� � �

	CC� �� �


�� � � � � � � �� �� � �

�� � � � � �� � ��

�� � � � � �� � ��

�� � 	CC� �� �
 �� � ��

	G��� �


�� � � � � � � � � �� � ��

�� � � � � � � �� � ��

�� � � � � � � �� �� � �

�� � � � 	CC� �� �
 �� �� � �

��



Table ���� c � � tensor products� and the net generation number �N for the c � � models
obtained by tensoring in addition with 	CC� �� �


- Model 	c � � part
 N�� N�� �N

� � � � � � � � � � � � �� �� � �

� � � � � � � � � � �� �� ��

� � � � � � � � � � �� �� � �

� � � � � � � �� �� �� ��

� � � � � � � � �� � ��

� � � � � � � � �� � ��

� � � � � � � � �� � ��

� � � � � �� �� �� �

� � � � � �� �� �� ��

�� � � � � �� �� �� ��

�� � � � � �� �� �� �

�� � � �� � �� �� �� ��

�� � � � � �� �� �� ��

�� � � � � �� �� � ��

�� � � � � � �� � ��

�� � � � � � �� �� ��

�� � � � � � �� � ��

�� 	A� �� �� �
 � �� �� �� ��

�� 	A� �� �� �
 � � �� � ��

�� 	A� �� �� �
 � � � � �� �� � �

�� 	A� �� �� �
 � � �� �� �

�� 	A� �� �� �
 � � �� �� ��

�� 	A� �� �� �
 � � �� � ��

�� 	A� �� �� ��
 � � �� �� ��

�� 	A� �� �� �
 � � �� �� � �

�� 	A� �� �� �
 � � �� � ��

�� 	A� �� �� �
 � � �� �� � �

�� 	A� �� �� �
 �� � ��

�� 	A� �� �� �
 �� � ��

�� 	A� �� �� �
 �� � ��

�� 	B� �� �
 �� �� � �

�� 	C� �� �
 � � �� � ��

�� 	C� �� �
 �� �� �

�� 	C� �� �
 �� �� � �

�� 	C� �� �
 � � �� �� ��

�� 	D� �� �
 �� �� � �

�� 	CC� �� �
 � � � � � � �� �� � �

�� 	CC� �� �
 � � � � �� � ��

�� 	CC� �� �
 � � � � �� � ��

�� 	CC� �� �
 � 	CC� �� �
 �� � ��

��



Table ���� c � � tensor products that contain a non�hermitian symmetric coset and cannot
be decomposed in the tensor product of a c � � and a c � � theory

- Model N�� N�� �N

	BA� �� �


� � � � � � �� �� �� �

� � � � �� �� �� �

� � � � �� �� �� ��

� � � � � �� �� ��

� � 	A� �� �� �
 �� �� ��

� � 	A� �� �� �
 �� � ��

� � 	B� �� �
 �� �� ��

� � 	C� �� �
 �� � ��

� � 	BA� �� �
 �� �� �

�� 	BA� �� �
 � �� �� � �

�� 	BA� �� �
 �� � ��

�� 	BA� �� �
 � � �� �� �

�� 	BA� �� �
 �� �� �

	BB� �� �
 or 	CC� �� �
 or 	CC� �� �


�� � � � �� �� �� ��

�� � � � � �� � ��

�� � 	A� �� �� �
 �� �� ��

�� � 	A� �� �� �
 �� � ��

�� 	BB� �� �
 �� � ��

�� 	BB� �� �
 �� �� �

	BB� �� �
 or 	CC� �� �
 or 	CC� �� �


�� � � �� �� ��

	BB� �� �
 or 	CC� �� �
 or 	CC� ��� �


�� � � � � �� �� �

�� � � �� �� ��

	BB� �� �
 or 	CC� �� ��
 or 	CC� ��� �


�� � � �� �� �

	BB� ��� �
 or 	CC� �� ��
 or 	CC� ��� �


�� � � �� �� �

	CC� �� �
 or 	CC� �� �
 or 	G��� �


�� � � � � � �� �� �� �

�� � � � �� �� �� �

�� � � � � �� �� ��

�� � 	A� �� �� ��
 �� �� ��

�� � 	B� �� �
 �� � ��

	CC� �� �
 or 	CC� �� �


�� � 	A� �� �� �
 �� �� ��

��



Table ���� continued�

- Model N�� N�� �N

	CC� �� �
 or 	CC� �� �


�� � �� �� �� �

�� 	CC� �� �
 or 	CC� �� �
 �� �� �

�� 	CC� �� �
 �� � ��

�� 	C�� �
 �� � �

�� 	D�� �
 � 	A� �� �� �
 �� �� ��

�� 	D��� �
 �� � ��

�� 	D��� �
 � �� �� �� �

�� 	F�� �
 � � �� �� ��

	G��� �


�� � � � �� �� �� �

�� � � � � �� �� ��

�� � 	A� �� �� �
 �� �� �

�� � 	A� �� �� �
 �� � ��

�� 	G��� �
 � � � � �

�� 	G��� �
 � � �

��



Part II

�Quasi�� Galois Symmetries in Conformal Field

Theory

In Part II of this thesis we will develop new algebraic tools for the study of fusion
rings� After shortly reviewing the structure of fusion rings and their applications in physics
and mathematics� we will show that Galois theory of cyclotomic number �elds provides a
powerful tool to construct automorphisms of a fusion ring and modular invariant partition
functions� In Chapter � these tools are applied to WZW theories� several new series of
exceptional modular invariants are found� In the case of WZW theories Galois symmetries
admit for a generalization which we call quasi�Galois symmetries� They are the subject of
Chapter ��



Chapter �

Galois Symmetry in Rational Conformal Field

Theory

��� Fusion Rings

Among the wealth of structures quantum �eld theory in two dimensions has revealed up to
now� fusion rings can be considered as objects of central importance for the description of
low�dimensional physics� We have already seen that they describe the coupling of primary
�elds of W�algebras in conformal �eld theory� closely connected to that� they also describe
the composition of superselection sectors in the C��algebraic approach to quantum �eld
theory� Moreover� they describe how tensor products of �nite�dimensional representations
of reductive Lie algebras� of �nite groups� or of associative 	bi�
algebras decompose into
irreducible representations� The set of unitary representations of quantum groups with
deformation parameter a root of unity is turned by the truncated tensor product into
a fusion ring as well� Finally� after slightly relaxing the properties of the conjugation
involution� one can also describe the multiplication of 	classes of
 polynomials in any
quotient of a polynomial ring� e�g� the ring of chiral primary �elds in N � � superconformal
�eld theories� and� closely connected to that� operator products in topological �eld theory�

The axioms describing a fusion ring can be abstracted from the structure present in the
family of all �nite�dimensional representations of a compact Lie group� Let us therefore
have a look at this family� There are two operations� an addition� since the direct sum
of �nite�dimensional representations is again a �nite�dimensional representation� and a
multiplication� the tensor product� Any tensor product can be fully reduced into a direct
sum over irreducible representations�

L� 
 L�� �
M
���
N���

��� L��� � 	�����


These operations are associative� commutative and distributive� The one�dimensional mod�
ule which carries the trivial representation acts as the identity under multiplication� There
is a distinguished basis� the irreducible representations� which contains the identity and in
which the structure constants N���

��� are non�negative integers�
In the formal treatment one also allows for negative multiplicities of irreducible repre�

sentations and thus obtains a unital ring over the integer numbers Z� One can also extend
the structure a little bit by admitting rational coe�cients and obtain the closely related
structure of a fusion algebra over the �eld of rational numbers Q� Introducing negative
multiplicities is necessary to make contact to structures like rings and algebras for which
results from classical algebra are available� However� one has to pay a price for that� we
will see that it is quite di�cult to take the positivity into account� which nonetheless is
essential for most physical issues�

Finally� taking the conjugate representation yields an involutive automorphism of the
fusion ring� The trivial module is self�conjugate� it plays a special role in the sense that the

��



tensor product of two irreducible representations L� and L�� contains the identity if and
only if L�� is conjugate to L�� in which case the identity appears just once� The conjugation
can therefore be described by the evaluation of the tensor product with respect to the unit
element�

In this special example the distinguished basis contains in�nitely many elements� how�
ever� any product of elements of the distinguished basis can be decomposed into only
�nitely many irreducible representations� such fusion rings are called quasi�rational�

Axiomatically� a fusion ring can be described as an associative and commutative ring
over the integers Z with unit element for which a distinguished basis exists which contains
the unit element and in which all structure constants are non�negative integers� The
evaluation of the product with respect to to the identity is required to describe an involutive
automorphism� the conjugation� We write the element conjugate to i as i�� Let us remark
that this system of axioms is not minimal� for a detailed discussion we refer the reader to
the review ����� We call a fusion ring rational if it is �nite�dimensional�

For any rational fusion ring with generators �i� i � I 	I some �nite index set
� and
fusion product �i 	 �j �

P
k�I N k

ij �k with N k
ij � Z��� the structure constants N k

ij can be
grouped into matrices

	Ni

k
j �� N k

ij � 	�����


the fusion matrices� They form a representation of the fusion ring� the regular represen�
tation� The axioms of the fusion ring imply that the fusion matrices Ni commute among
each other and that the fusion matrix of i� is the transpose of the fusion matrix of i�
Ni� � 	Ni


t� Hence fusion matrices are in particular normal and can be simultaneously
diagonalized by a unitary matrix S�

Motivated by conformal �eld theory we single out a particularly interesting subclass of
fusion rings� modular fusion rings� A fusion ring is called modular if and only if the matrix
S which diagonalizes the fusion rules can be chosen to be symmetric and there is a diagonal
unitary matrix T with entries Tij � Ti �ij �� e��i��i�c��	��ij� such that T and S generate a
�nite�dimensional representation of SL�	Z
� the twofold covering of the modular group� In
particular� S� � C � 	ST 
� � C � C� � ��� Here C denotes the charge conjugation matrix�
which is a permutation of order � and which can be written as Cij � �i�j��

The diagonalization of the fusion rules then takes the form

N k
ij �

X

�I

Si
Sj
S
�
k


S�


� 	�����


This is the Verlinde formula� in the case of rational conformal �eld theory it was argued in
��������� that S is precisely the matrix which describes the transformation of the characters
under the modular transformation � �� � �

�
� This is a far reaching insight which transcends

the mere framework of fusion rings�
The condition of modularity relates the eigenvectors of the fusion matrices to the pri�

mary �elds and from 	�����
 we can read o� the eigenvalues�

Sij
S�j

� 	�����


which are labelled by primary �elds j� These eigenvalues are called the 	generalized

quantum dimensions� Since all entries of the fusion matrices are non�negative integers� there
exists a unique eigenvector� the Perron�Frobenius eigenvector� for which all eigenvalues are
positive real numbers� These eigenvalues� the so�called main quantum dimensions� are
labelled by the vacuum j � �� they will play an important role�

��



Since the quantum dimensions are eigenvalues of the fusion matrices 	which form
the regular representation of the fusion ring
� it is clear that they form themselves one�
dimensional irreducible representations of the fusion ring�

Si

S�


Sj

S�


�
X
k�I

N k
ij

Sk

S�


� 	�����


Fusion rings have the important property that the irreducible representations given by the
generalized quantum dimensions already exhaust all inequivalent irreducible representa�
tions�

From their de�nition as roots of the characteristic polynomial

det	����Ni
 �

it follows that quantum dimensions are algebraic numbers� 	The transcendental number 
�
e�g�� could not be a quantum dimension�
 In addition� since characteristic polynomials are
normalized� in the sense that they have integral coe�cients and that their leading coe�cient
is �� quantum dimensions are even algebraically integer numbers in some algebraic number
�eld L over the rational numbers Q� We will use these facts to employ number theoretical
tools in the study of fusion rings�

��� Modular invariance

One central problem in the application of fusion rings to rational conformal �eld theories
is that of �nding all modular invariant partition functions� Unfortunately� despite a lot of
e�orts in the last decade� this problem remains to a large extent unsolved� It is part of the
programme of classifying all rational conformal �eld theories� which in turn is part of the
even more ambitious programme of classifying all string theories�

The aim is to �nd a matrix Z that commutes with the generators S and T of the
modular group� and that furthermore is integer�valued� non�negative and has Z�� � ��
where � represents the identity primary �eld� The partition function of the theory has
then the form

P
ij X iZijX �

j � where X i are the characters of the left chiral algebra and X j

those of the right one 	the left and right algebras need not necessarily coincide
�
At present the classi�cation is complete only for very few rational conformal �eld the�

ories� All modular invariant partition functions are known e�g� for the simplest RCFT�s�
whose left and right chiral algebra consist only of the Virasoro algebra ���� ��� ���� The
next simplest case is that of WZW models� whose chiral algebra has in addition to the
Virasoro algebra further currents of spin �� In general such a theory can be 
heterotic�
	i�e� it may have di�erent left and right Kac�Moody algebras
 and both the left and right
chiral algebra may have more than one a�ne factor� but even in the simplest case � equal
left and right simple a�ne algebras � the classi�cation is complete at arbitrary level only
for the cases A� ���� ��� and A� ����� Several other partial classi�cation results have been
presented� see for example �����������

Although there is no complete classi�cation� many methods are known for �nding
at least a substantial number of solutions� for example simple currents ����� 	see also
��������������
� conformal embeddings ����� level�rank duality ��������������������������
supersymmetric index arguments ������ selfdual lattice methods ������ orbifold construc�
tions using discrete subgroups of Lie groups ���� and the elliptic genus ������

In this chapter we show that Galois theory of cyclotomic number �elds provides a
new powerful tool to construct systematically integer�valued matrices commuting with the

��



modular matrix S� as well as automorphisms of the fusion rules� Both prescriptions allow
the construction of modular invariants and o�er new insight in the structure of known
exceptional invariants�

��	 The Galois group and the modular matrix S

In this section we will show that Galois theory of cyclotomic number �elds can be used
to construct fusion rule automorphisms and modular invariants of rational fusion rings�
Galois theory was proposed as a tool to study fusion rings in ����� in ���� it was observed
that it can be applied to the elements of the modular matrix S to provide selection rules
for positive modular invariants�

The starting point is the last observation in Section ���� the fact that the generalized
quantum dimensions Sil�S�l are algebraically integer numbers in some algebraic number
�eld L over the rational numbers Q� The extension L�Q is normal ����� and hence 	using
also the fact that the �eld Q has characteristic zero
 a Galois extension� its Galois group

Ga�	L�Q
 is abelian� Invoking the theorem of Kronecker and Weber� it follows ���� that L
is contained in some cyclotomic �eld Q	�n
� where �n is a primitive nth root of unity�

Let us describe a few elementary facts about Galois theory of cyclotomic �elds� Denote
by Z�n the multiplicative group of all elements of Zn � Z�nZ that are coprime with n� Note
that precisely these elements have an inverse with respect to multiplication� 	For example�
the group 	Z���� �
 �� 	f�����g� � mod ��
 is isomorphic to the additive group 	Z	��
�

The number �	n
 of elements of Z�n is given by Euler�s � function� which can be computed
as follows� If n �

Q
i p

ni
i is a decomposition of n into distinct primes pi� then one has

�	n
 � �	
Y
i

pnii 
 �
Y
i

�	pnii 
 �
Y
i

pni��i 	pi � �
 � 	�����


The Galois automorphisms 	relative to Q
 of the cyclotomic �eld Q	�n
 in which
Ga�	L�Q
 is contained are in one�to�one correspondence with the elements � � Z�n� The
automorphism associated to each such � simply acts as

��
� � �n �� 	�n


 � 	�����


This implies in particular that � � �� corresponds to complex conjugation� Thus if the
fusion ring is self�conjugate in the sense that i� � i for all i � I� so that the S�matrix is
real� then the automorphism ����� acts trivially� In this case the relevant �eld L is already
contained in the maximal real sub�eld Q	�n � ���n 
 of the cyclotomic �eld Q	�n
� which is
the �eld that is �xed under complex conjugation�

Applying an element �L � Ga�	L�Q
 on equation 	�����
 and using the fact that the
fusion coe�cientsN k

ij are integers and hence invariant under �L� we learn that the numbers
�L	Sij�S�j
 � i � I� again realize a one�dimensional representation of the fusion ring� As the
generalized quantum dimensions exhaust all inequivalent one�dimensional representations
of the fusion ring ���� ���� there must exist some permutation of the labels j which we
denote by .�� such that

�L	
Sij
S�j


 �
Si �
�j�
S� �
�j�

� 	�����


The �eld M de�ned as the extension of Q that is generated by all S�matrix elements
extends L� The extension M�Q is again normal and has abelian Galois group ����� so that
Ga�	M�L
 is a normal subgroup of Ga�	M�Q
� Elementary Galois theory then shows that

�� Ga�	M�L

�� Ga�	M�Q


r� Ga�	L�Q
� � � 	�����


��



with � the canonical inclusion and r the restriction map� is an exact sequence� and hence

Ga�	L�Q
 �� Ga�	M�Q
 �Ga�	M�L
 � 	�����


In particular any �M � Ga�	M�Q
� when restricted to L� maps L onto itself and equals
some element �L � Ga�	L�Q
� Conversely� any �L � Ga�	L�Q
 can be obtained this way�
Therefore by a slight abuse of notation we will frequently use the abbreviation � for both
�M and its restriction �L�

Working in the �eld M � it follows from 	�����
 that for any �L � Ga�	L�Q
 there exist
signs �
	i
 � f��g such that the relation

�M	Sij
 � �
	i
 � S �
�i� j 	�����


is ful�lled for all i� j � I ����� We note that the Galois group element � and the permutation
.� of the labels that is induced by � need not necessarily have the same order� However� it
is easily seen 	see the remarks around 	������
 below
 that an extra factor of � is the only
di�erence that can appear�

These observations can be extended in two directions� �rst� we show that Galois theory
can be used to construct automorphisms of the fusion rules� Second� we derive from Galois
theory a prescription for the systematic construction of integral�valued matrices in the
commutant of the modular matrix S� and hence of candidate modular invariants� We
describe how this method is implemented for WZW theories� As it turns out� our general
prescription is able to explain many of the modular invariants that are usually referred to
as 
exceptional��

��
 Fusion rule automorphisms

We �rst show that� if the permutation .� induced by the Galois group element � leaves the
identity �xed�

.�	�
 � � � 	�����


then .� is an automorphism of the fusion rules� To prove this� we �rst calculate

S�i

S��
� �L	

S�i

S��

 �

�M	S�i


�M 	S��

�

�
	i
S� �
�i�

�
	�
S��
� 	�����


Since S�j�S��� the main 	i�e�� zeroth
 quantum dimensions� are positive� we learn that the
sign �
	i
 is the same for all i � I�

�
	i
 � �
	�
 �� �
 � const � 	�����


Applying � on the Verlinde formula 	�����
� we then �nd

N k
ij � �	N k

ij 
 �
X
l�I

�

� S �
�i� lS �
�j� lS

�
�
�k� l

�
 S�l
� N �
�k�

�
�i� �
�j� � 	�����


Next we note that in terms of the cyclotomic �eld Q	�n
 � M � L� the elements ��
� �
Ga�	L�Q
 are simply the restrictions of elements %��
� � Ga�	Q	�n
�Q
� the latter act as

�n �� 	�n

� and Ga�	Q	�n
�Q
 �� Z�n is the set of all such maps with � coprime to n� In
particular� � � �� corresponds to complex conjugation� the associated permutation of the

��



generators of the fusion ring is the charge conjugation C� As the Galois group is abelian�
it follows that .� is compatible with charge conjugation�

.�	i�
 � 	 .�	i

� � 	�����


Together with 	�����
� the results 	�����
 and 	�����
 show that� as claimed� .� is an auto�
morphism of the fusion rules�

The presence of such automorphisms of the fusion rules can be understood as follows�
The 
main� quantum dimensions

Si�
S��

	�����


all lie in a real �eld L��� that is contained in the �eld L generated by all 	generalized
 quan�
tum dimensions Sij�S�j� The elements of the group Ga�	L�L���
 leave the main quantum
dimensions invariant� and hence the associated permutations .� are fusion rule automor�
phisms� These automorphisms are thus a manifestation of the fact that the main quantum
dimensions do not exhaust the �eld spanned by all generalized quantum dimensions�

The general result is nicely illustrated by the example of complex conjugation� Suppose
that the fusion ring is non�selfconjugate� i�e� there is at least one i � I such that i� �� i�
Then the modular matrix S is complex� and as already mentioned the charge conjugation
C which acts as i �� i� is induced by �C � ����� � Ga�	L�Q
� i�e� i� � .�C	i
� As the main
quantum dimensions are real 	which is equivalent to 	�
� � �
� G contains at least �C as a
nontrivial element� and charge conjugation is the corresponding non�trivial automorphism�

As a second illustration� consider the extremal case G � Ga�	L�Q
� This means that
all main quantum dimensions are rationals 	and� since they are algebraic integers� in fact
even ordinary integers
� This situation is realized e�g� for c � � conformal �eld theories�
both for compacti�cation of the free boson on a circle and for compacti�cation on those
Z� orbifolds for which the number of �elds is m� � � for some m � Z� as well as for the
	so	N�

� and 	su	�

� WZW theories� Consider e�g� the theory of a free boson on the
circle� with N � �Z primary �elds� The fusion rules read p 	 q � p � q mod N � and the
modular matrix S has entries Spq � e���i pq�N � The permutations induced by the Galois
group are parametrized by l� with l and N coprime� and act like p �� lp mod N � This is
invertible just because l and N are coprime� and clearly an automorphism� Thus G is the
full Galois group� G �� Z�N � Analogous considerations hold for the orbifolds and for the
WZW theories just mentioned�

Note that a permutation automorphism of generic order N does not directly lead to
a modular invariant since the corresponding permutation matrix /
 generically does not
commute with S� but rather obeys S��/
S � /��


 � For N � � 	such as e�g� charge conju�
gation
� /
 does commute with S� and hence provides a candidate modular invariant� For
being indeed a modular invariant� /
 also has to commute with the modular matrix T � it
is not di�cult to establish 	see the remarks around 	������
 below
 that any automorphism
of the fusion rules that ful�lls 	�����
 and commutes with the T �matrix has order two�

Sometimes there also exist automorphisms of the fusion rules that cannot be obtained
from elements of the Galois group� This happens for instance if the S�matrix elements
of all �elds that are permuted are rational numbers� in this situation� any element of the
Galois group necessarily leaves these �elds �xed� and hence cannot induce the fusion rule
automorphism�

��



��� The construction of S�matrix invariants

As an easy consequence of the relation 	�����
 between S �
�i� j and Sij� it follows that for
any matrix Z which satis�es

�Z�S� � � � Z ij � Z � i� j � i � 	�����


the relation Z �
�i� �
�j� � �
	i
�
	j
Z ij holds ����� This leads to a selection rule for those
matrices Z which obey Z ij 	 � in addition to 	�����
� and which hence provide a can�
didate modular invariant Z	�� �� 
 �

P
i�j �

�
i 	�� 
Z ij�j	� 
 for the associated conformal �eld

theory 	this restriction is a generalization of the 
parity rule� of ���� and the 
arithmetical
symmetry� of �����
�

Here we will go beyond the level of mere selection rules and show that Galois theory
can be used to construct modular invariants� Let us apply ��� to the relation 	�����
 and
permute the second label of S on the right hand side� then we have

Sij � ����	Sij
 � ���	�
	i
S �
�i� j
 � �
	i
�
��	j
S �
�i� �
���j� � 	�����


where in the last equality one uses the fact that �
	i
 � �� is rational and hence �xed
under �� Using 	�����
 l times� we obtain

Sij � �l	i
��l	j
S �
l�i� �
�l�j� � 	�����


where the signs �l	i
 � �
l	i
 � f��g are determined by �� � �
 through

�l	i
 �
l��Y
m
�

��	 .�
m	i

 � 	�����


We will employ the simple result 	�����
� respectively 	�����
� to show that to any element
of the Galois group one can associate a matrix Z which obeys 	�����
�

Before proceeding� we should point out that a relation of the form 	�����
 need not
necessarily stem from Galois theory� In the proof we actually use only this relation� but
not the information whether it is derived from Galois theory or not� � In particular� we
need not assume that the signs �l are prescribed by some Galois group element �� but only
use that they are determined by the permutation .�� However� Galois theory constitutes
the only systematic tool that is known so far to derive such relations� even though it does
not provide an exhaustive list� 	A situation where the symmetry property 	�����
 of the
modular matrix S is satis�ed in the absence of Galois symmetries is provided by mutually
local simple currents ����� of order two�
 �

Thus assume that .� is a permutation� of order .N � of the index set I of a fusion ring
and satis�es a relation of the type 	�����
� and de�ne the integer N to be the order of the
associated map Sij �� �
	i
S �
�i� j� We can then show that for any set ffl j l � �� �� ��� � Ng �
Z of integers that satisfy

fl � f�l � fN�l � 	�����


the matrix Z with integral entries

Zjk ��
N��X
l
�

fl �l	k
 �j� �
l�k� 	�����


� This remark applies in fact equally to the considerations about fusion rule automorphisms above�
� Considering simple currents of general order would amount to allow the 
�s in �����	� to be arbitrary

phases instead of signs� Unfortunately there are no nontrivial cases with N � � and ������� being real�
valued�

��



commutes with the modular matrix S� Namely� by direct calculation we have

	SZ
ik �
X
j�I

N��X
l
�

Sij � fl �l	k
 �j� �
l�k� �
N��X
l
�

fl�l	k
Si �
l�k� 	�����


as well as

	ZS
ik �
X
j�I

N��X
l
�

fl�l	j
 �i� �
l�j� � Sjk �
N��X
l
�

fl�l	 .��l	i

S �
�l�i�k

�
N��X
l
�

fl�l	 .��l	i

 � �l	 .��l	i

��l	k
Si �
�l�k� �
N��X
l
�

fl��l	k
Si �
�l�k� �

	�����


where in the transition to the second line we employed 	�����
� Now one merely has to
replace the sum on l in 	�����
 by one on �l and use 	�����
 to conclude that indeed
S and Z commute� The terms in the sum of 	�����
 correspond to the elements of the
cyclic group that is generated by the element � appearing in 	�����
� considering more
generally an arbitrary abelian group G whose generators satisfy 	�����
� one proves that
the prescription 	�����
 generalizes to

Zjk �
X

�G

f
 �
	k
 �j� �
�k� � 	�����


with f
 restricted by
f
 � f
�� 	������


for all � � G�
Returning to the interpretation in terms of the Galois group� we note that according to

	�����
 the upper limit N of the summation in equation 	�����
 is precisely the order of the
Galois group element � 	in particular� Galois theory provides a relation of the type 	�����

with �l � N � l
� and recall that this order need not necessarily coincide with the order
of the permutation .� of the labels that � induces� However� the following consideration
shows that the distinction between N and .N is actually not very relevant to applications�
First� at most a relative factor of � can be present� namely� since .� is of order .N � one has
in particular .�

�N	�
 � �� which by 	�����
 implies that the sign �

 �N is universal� and hence

�� �N	Sij
 � �
�N 	�


 �N Sij
 � 	�

 �N 


� Sij � Sij � 	������


so that �� �N � id on M � thus either N � .N or else N � � .N � Furthermore� for N � � .N
the terms in the formula for Z are easily seen to cancel out pairwise� so that the proposed
invariant is identically zero� and hence the case N �� .N is rather uninteresting�

This result can also be obtained in a slightly di�erent formulation� for any Galois
transformation � we de�ne the orthogonal matrix

	/

ij �� �
	i
 �j� �
i � �
��	j
 �i� �
��j � 	������


where in the second equality we used the relation

�
	 .�
��	i

 � �
��	i
 	������


which is obtained from the identity ����Sij � Sij when acting twice on the �rst label of
S�

��



These orthogonal matrices can easily be shown to satisfy the identities

	/


�� � /
�� � 	/



T � 	������


and they implement the Galois transformations 	�����
 in the following way�

�S � /
 � S � S �/��

 � 	������


Now we can write 	�����
 in matrix notation as 	omitting the subscript � of /



S � /S/ � 	������


or /��S � S/� Obviously the same identity holds with / replaced by its inverse� and by
adding these two relations we see that the matrix /�/�� � /�/T commutes with S� If
/ is equal to its own inverse one can take half this matrix� i�e� / itself�

The full Galois commutant is obtained by considering all sums and products of these
matrices� Because the matrices / form a representation of the Galois group Ga�	L�Q
�
it is easy to see that the product of any two matrices of the form / � /�� is a linear
combination of such matrices with integral coe�cients� Hence the most general integer�
valued S�invariant that can be obtained in this way is

Z �
X

�
�
����G

f
	/
 �/��

 
 � 	������


where the sum is over all elements of the Galois group G modulo inversion� and f
 � Z�
Note that this derivation of S�invariants goes through for any matrix / that satis�es

	������
� even if it did not originate from Galois symmetry� If such a new matrix /
commutes with all matrices /G that represent Galois symmetries� one may extend the
Galois group G to a larger group %G � G by including all matrices / � /G� The most
general S�invariant related to %G is then obtained by extending the sum in 	�����
 to %G�

As was observed in ����� Galois symmetry implies a relation that any modular invariant
Z� irrespective of whether it is itself a Galois invariant� should satisfy� Indeed� using
�Z � Z and �S�� � 	�S
��� one derives Z � �Z � �	SZS��
 � /
Z/��


 � i�e� Z
commutes with /� If Z is an automorphism of order �� then we have in addition the relation
S � ZSZ� and hence Z is a 
Galois�like� automorphism that can be used to extend the
Galois group as described above� If Z is an automorphism of higher order or corresponds
to an extension of the chiral algebra� then it has di�erent commutation properties with S�
and it cannot be used to extend the Galois group� but one can still enlarge the commutant
by multiplying all matrices 	�����
 with the new invariant Z and its higher powers� In this
case the full commutant is considerably harder to describe� however�

We can make another statement about .� by assuming that it commutes with the T �
matrix� T �
�i� � Ti� Applying this property together with the relation 	�����
 to the identity

T��
i SikT

��
k �

X
j�I

SijTjSjk 	������


which follows from 	ST 
� � S� � C� we obtain

�
	i
�
��	k
T��
i S �
�i� �
���k�T

��
k � �
��	i
�
��	k


X
j�I

S �
���i� �
�j�T �
�j�S �
�j� �
���k�

� �
��	i
�
��	k
T
��
�
���i�S �
���i� �
���k�T

��
�
���k� �

	������


��



Thus
S �
���i� j � �
	i
�
��	i
S �
�i� j 	������


for all i� j � I� As S is unitary� its rows are linearly independent� and hence 	������
 implies
that .�	i
 � .���	i
 for all i� i�e� that .�� � id� Hence any � that ful�lls 	�����
 and commutes
with the T �matrix has order two� 	Again� this result is just based on the property 	�����

of .�� and therefore is valid independently of whether .� comes from a Galois group element
� or not�
 As we will see in the next chapter� at least for WZW theories a kind of converse
statement is also true� namely that any Galois group element of order two respects the
T �matrix up to possibly minus signs�

Due to the presence of the signs �
� the invariants 	�����
 are generically not positive�
However� at least for order N � � one sometimes gets invariants that are completely
positive and moreover have a non�degenerate vacuum� The only required property of � is
that �
	i
 is universal for all length�two orbits� while the sign for �xed points is arbitrary�
Fixed points with �
	i
 � �� simply get projected out� in fact� the latter are the only �elds
that can be directly projected out�

The kind of invariant that is de�ned by 	�����
 depends on the vacuum orbit� If the
identity is a �xed point� the signs �	i
 are all equal to the same overall sign �� as shown in
Section ���� Then� for N � �� the choice f� � � and f� � � in 	�����
 immediately gives us
a positive matrix Z that commutes with S and generates a fusion rule automorphism� If
the vacuum is not �xed� the choice f� � �� f� � �	�
 leads to an invariant with an extended
chiral algebra in which at least the identity block is positive� It follows from unitarity of
S that in such an invariant not all coe�cients fl�l	i
 can be positive 	otherwise Z ij 	 �ij�
and hence Z�� �

P
i�j�IS�iZ ijS�j 	 Pi�IS�iS�i � �� with equality only if Z ij � �ij� this is

clearly a contradiction
� The only way to get a positive invariant is then that the negative
signs occur precisely for the �xed point orbits� which are then projected out� If N � � this
is indeed possible� Note that T �invariance still remains to be checked in both cases�

For N � � it is much harder to get a physical invariant� First of all there must
exist orbits that violate T �invariance� although such orbits might be projected out by the
summation in 	�����
� It is in fact easy to see that no positive integer invariant can be
obtained from 	�����
 if N is odd� for any choice of fl� If N is odd� all coe�cients except
f� come in pairs fl� f�l� It follows that Zjj � f�mod� for all j � I� and since Z�� � �
this means that none of the �elds is projected out� Then the unitarity argument given
above shows that a non�trivial positive invariant cannot exist� If N � � and even� hence
not a prime� one has to distinguish various kinds of �xed point orbits� Positive modular
invariants may then well exist� but we will not consider this more complicated case at this
place�

Let us stress that even if the matrix 	�����
 contains negative entries� or does not com�
mute with T � it can still be relevant for the construction of physical invariants� because the
prescription may be combined with other procedures in such a manner that the negative
contributions cancel out� For example one may use simple currents to extend the chiral
algebra before employing the Galois transformation� or it may happen that a certain lin�
ear combination with other known elements of the integer commutant of S is a physical
invariant�

��� Discussion

There are several striking similarities between Galois symmetries and simple current sym�
metries� First of all both are related to general properties of fusion rings� and not to

��



particular 	e�g� WZW
 models� Both imply equalities among certain matrix elements of S
up to signs or phases� Both symmetries organize the �elds of the theory into orbits� whose
length is a divisor of the order N of the symmetry� In both cases one can give very simple
generic formulas for S�invariants� and in both cases the phenomenon of 
�xed points�� i�e�
of orbits whose length is less than N � occurs� In both cases such �xed points can appear
with multiplicities larger than � in certain modular invariants in which the chiral algebra is
extended� Note that this kind of structure is empirically observed in nearly all exceptional
	not simple current generated
 invariants found thus far� However� we believe this is the
�rst time that at least in some cases the apparent 
orbits� and 
�xed points� of exceptional
invariants are actually related to an underlying discrete symmetry� This might in fact be
of some help in the still open problem of resolving �xed points of exceptional invariants�

There is also an important di�erence between Galois and simple current symmetries�
In the latter case one can give a general construction of invariants that are positive and are
also T �invariant� For Galois invariants it may well be possible to �nd a general criterion for
T �invariance 	as we will see for WZW models
� but positivity appears to be a much more
di�cult requirement� There is� however� one set of S�invariants that is always positive�
namely those due to a Z� Galois symmetry that �xes the vacuum� In WZW models such
invariants 	that also commute with T 
 are abundant� this includes all charge conjugation
invariants and also at least some of the simple current automorphism invariants that were
�rst constructed in ���� Remarkably� very few exceptional ones are known�

Let us also note that formula 	�����
 can be generalized to automorphisms .� which
change the vacuum� i�e� obey .�	�
 �� � 	and hence are not automorphisms of the fusion
ring as a unital ring
� In this situation� 	�����
 gets replaced by

N k
ij � �	N k

ij 
 � �	
X
l�I

SilSjlS
�
kl

S�l



�
X
l�I

�
	i
�
	j
�
	k
S �
�i� lS �
�j� lS
�
�
�k� l

�
	�
S �
��� l
� �
	�
�
	i
�
	j
�
	k
 �
���N �
�k�

�
�i� �
�j� �

	�����


where lN k
ij � Pm�I SimSjmS

�
km�Slm� Note that the numbers lN k

ij are well�de�ned only if
Slm �� � for all m � I� in which case according to 	�����
 they are actually integers� in the
present situation this condition is met because S �
��� i � �
	�
�
	i
S� �
�i� �� � for all i � I�
This result can be interpreted as follows� Allowing also for negative structure constants�
we can introduce a second fusion product 	
� with structure constants �
���N k

ij � on the

same ring ZjIj� De�ning %�i �� �
	�
�
	i
� �
�i�� it follows that %�i 	
 %�j �
P

k�I N k
ij

%�k� i�e�
both fusion structures are isomorphic� Some special cases of this phenomenon have already
been noticed in ����� While our argument uses symmetries of number �elds� in ���� the
representation theory of the modular group is employed� thus our observation suggests a
relation between number �elds and modular forms�

In this chapter we have presented a procedure for constructing modular invariant par�
tition functions directly from symmetries of the matrix S� without any explicit knowledge
of its matrix elements� This method is valid for all rational conformal �eld theories� and
not a priori restricted to WZW models and coset theories� unlike conformal embeddings or
level�rank duality� Previously only two such methods were known� namely charge conjuga�
tion 	actually an example of Galois symmetry
 and simple currents� and usually the term

exceptional invariant� was used to refer to anything else� By providing a third general
procedure� the results of this chapter de�ne a new degree of 
exceptionality� for modular
invariant partition functions� Invariants satisfying this new de�nition of exceptionality do

��



exist� this may be taken as an indication that still more interesting structure remains to
be discovered� We will see in Chapter � that there is in fact a non�trivial generalization
of Galois symmetry� at least in the case WZW theories� which we will call Quasi�Galois
symmetries�

���



Chapter 	

Galois Modular Invariants of WZW Models

The set of modular invariants that can be obtained from Galois transformations is investi�
gated systematically for WZW models� It is shown that a large subset of Galois modular
invariants coincides with simple current invariants� For algebras of type B and D in�nite
series of previously unknown exceptional automorphism invariants are found�

��� Introduction

In the previous chapter ����� we introduced a novel method for the construction of modular
invariants based on a Galois symmetry of the matrix S of a rational conformal �eld theory�
The main purpose of this chapter is to study in more detail the application of this new
method to WZW models�

We have seen that Galois symmetry organizes the �elds of a CFT into orbits� and along
these orbits the matrix elements of S are algebraically conjugate numbers� Based on this
knowledge we can write down a number of integer�valued matrices P that commute with
S� but do not necessarily commute with T and are not necessarily positive� These matrices
span what we call the 
Galois�commutant� of S� This commutant can be constructed in a
straightforward manner from the Galois orbits� which in turn can be obtained by scaling
vectors in weight space by certain integers� and mapping them back into the fundamen�
tal a�ne Weyl chamber 	for a more precise formulation we refer to Section ��� and the
appendix
� This is a simple algorithm that can be carried out easily with the help of a
computer� The time required for this computation increases linearly with the number of
primary �elds� and for each primary the number of calculational steps is bounded from
above by the order of the Weyl group� This should be compared with the computation of
the modular matrix S� which grows quadratically with the number of primaries� and which
requires a sum over the full Weyl group 	although several shortcuts exist� for example
simple currents and of course Galois symmetry
�

Our second task is then to �nd the positive T �invariants within the Galois commutant�
In some cases this can be done analytically� This class� which contains only simple current
invariants� is discussed in Section ���� In general however one has to solve a set of equations
for a number of integer coe�cients� The number of unknowns can grow rather rapidly
with increasing level of the underlying a�ne Kac�Moody algebra � Galois symmetry is
a huge and very powerful symmetry � which is another limitation on the scope of our
investigations�

In practice we have considered algebras with rank � � and up to ���� primary �elds� but
this range was extended when there was reason to expect something interesting� Although
a lot of exploratory work has already been done on the classi�cation of modular invariants�
only fairly recently new invariants were found ����� for E
 and E� at rather low levels
	namely � and �
� showing that there are still chances for �nding something new� Indeed�

���



we did �nd new invariants� namely an in�nite series of exceptional automorphism invariants
for algebras of type B at level �� starting at rank �� as well as for algebras of type D at
level �� In addition we �nd for the same algebras some clearly unphysical extensions by
spin�� currents� This is explained in Section ���� Other exceptional invariants that can be
explained in terms of Galois symmetry are presented in Section ����

We have also considered the possibility of combining Galois orbits with simple current
orbits� In Section ��� we discuss two ways of doing that� one of which is to apply Galois
symmetry to simple current extensions of the chiral algebra�

To conclude this introduction we �x some notations� If Z�i � Zi� � � for all i �� ��
the matrix Z de�nes a permutation of the �elds in the theory that leaves the fusion rules
invariant� We will refer to this as an automorphism invariant� Under multiplication such
matrices form a group which is a subgroup of the group of fusion rule automorphisms�
These are all permutations of the �elds that leave the fusion rules invariant� but which do
not necessarily commute with S or T � Finally there is a third group of automorphisms we
will encounter� namely that of Galois automorphisms� They act as a permutation combined
with sign �ips� and may act non�trivially on the identity� It is important not to confuse
these three kinds of automorphisms�

If a matrix Z does not have the form of an automorphism invariant� and if the partition
function is a sum of squares of linear combinations of characters� we will refer to it as a
	chiral algebra
 extension� If it is not a sum of squares it can be viewed as an automorphism
invariant of an extended algebra �������� 	at least if an associated CFT exists
�

A matrix Z corresponding to a chiral algebra extension may contain squared terms
appearing with a multiplicity higher than �� Such terms will be referred to as 
�xed
points�� a terminology which up to now was appropriate only for extensions by simple
currents� Galois automorphisms provide us with a second rationale for using this name�
Usually such �xed points correspond to more than one �eld in the extended CFT� and
they have to be 
resolved�� The procedure for doing this is available only in some cases�
and then only for S� T � the fusion rules and in a few cases also the characters ������

��� Galois Symmetry for WZW Models

Here we describe in detail how Galois scalings are implemented when the conformal �eld
theory in question is a WZW theory based on an untwisted a�ne Lie algebra g at integral
level k� Then the Galois group is a subgroup of Z�M�k�g��� where g� is the dual Coxeter
number of the horizontal subalgebra �g of g 	i�e� the subalgebra generated by the zero modes
of g
 and M is the denominator of the metric on the weight space of �g�

We label the primary �elds by the shifted highest weight a with respect to the horizontal
subalgebra �g� which di�ers from the ordinary highest weight by addition of the Weyl vector
� of �g� Thus a is an integrable highest weight of g at level k � g�� i�e� the components ai

of a in the Dynkin basis satisfy

ai � Z�� for i � �� �� ��� � rank	�g
 � 	�����


where a� � k � g� �Prank��g�
i
� �ia

i with �i the dual Coxeter labels of g� However� because
of the shift not all such integrable weights belong to primary �elds� but only the strictly
dominant integral weights� i�e� the primary �elds of the WZW theory correspond precisely
to those weights a which obey

ai � Z�� for i � �� �� ��� � rank	�g
 � 	�����


���



A Galois transformation labelled by � � Z�M�k�g�� acts as the permutation ����

.��
�	a
 � (w	�a
 � 	�����


If we label the �elds by the weights # � a� � which are at level k� this is rewritten as

.��
�	#
 � (w	� � 	# � �

� � � 	�����


That it is the shifted weight a rather than a � � that is scaled is immediately clear from
the formula 	�����
 for the modular matrix S� In fact� it is possible to derive the formula
	�����
 directly by scaling the row and column labels of S by � and ���� respectively� using
	�����
� Galois symmetry is thus not required to derive this formula� nor is it required to
show that 	�����
 commutes with S� Galois symmetry has however a general validity and
is not restricted to WZW models�

Substituting 	�����
 into the formula 	�����
 for WZW conformal weights one easily
obtains a condition for T �invariance� namely 	�� � �
 � � mod �M	k � g�
 	or mod
M	k�g�
 if all integers M a �a are even
� Since � has an inverse mod M	k�g�
� it follows
that � � ��� mod M	k � g�
� i�e� the order of the transformation must be �� what is also
true for arbitrary conformal �eld theories� as we have seen in Chapter ��

Let us explain the prescription 	�����
 in more detail� First one performs a dilatation
of the shifted weight a � 	a�� a�� � � �
 by the factor � � Z�M�k�g��� Now the weight �a
does not necessarily satisfy 	�����
� i�e� does not necessarily correspond to a primary �eld�
If it does not� then the dilatation has to be supplemented by the horizontal projection
(w � (w�
�a� of a suitable a�ne Weyl transformation� More precisely� to any arbitrary integral
weight b one can associate an a�ne Weyl transformation (w such that either (w	b
 satis�es
	�����
� and in this case (w is in fact unique� or else such that (w	b
 obeys 	 (w	b

i � � for
some i � f�� �� ��� � rank	�g
g 	in the latter case (w	b
 lies on the boundary of the horizontal
projection of the fundamental Weyl chamber of g at level k�g�
� To construct the relevant
Weyl group element (w for a given weight b as a product of fundamental Weyl re�ections
w�l� 	i�e� re�ections with respect to the lth simple root of g
� one may use the following
algorithm� Denote by j� � f�� �� ��� � rank	�g
g the smallest integer such that bj� � �� and
consider instead of b the Weyl�transformed weight (w�	b
 with (w� �� (w�j��� next denote by
j� the smallest integer such that 	 (w�	b

j� � �� and consider instead of (w�	b
 the weight
(w� (w�	b
 with (w� �� (w�j��� and so on� until one ends up with a weight (wn � � � (w� (w�	b
 obeying
	�����
� and then (w � (wn � � � (w� (w� is the unique Weyl group element which does the job�
	The presentation of an element (w � (W as a product of fundamental re�ections is however
not unique� the present algorithm provides one speci�c presentation of this type� which is
not necessarily reduced in the sense that the number of fundamental re�ections is minimal�


It is worth noting that there is no guarantee that starting from an integral weight b one
gets this way a weight satisfying 	�����
� but in the case where b is of the form b � �a with
a integrable and � coprime with r	k � g�
� the algorithm does work� Here r denotes the
maximal absolute value of the o��diagonal matrix elements of the Cartan matrix of �g� i�e�
r � � if �g is simply laced� r � � for the algebras of type B and C and for F	� and r � � for
�g � G�� 	The property that � is coprime with r	k�g�
 in particular holds whenever 	�����

corresponds to an element of the Galois group� and hence for Galois transformations the
algorithm works simultaneously for all primary �elds of the theory�
 Namely� assume that
for some choice of a there is no choice of (w � (W such that (w	�a
 obeys 	�����
� This means
that any (w	�a
 lies on the boundary of some a�ne Weyl chamber� and hence the same
is already true for the weight �a� Then there must exist some non�trivial (v � (W which

���



leaves �a �xed� (v	�a
 � �a� Decomposing (v into its �nite Weyl group part v � W and its
translation part 	k � g�
t 	with t an element of the coroot lattice of �g
� this means that
we have � v	a
 � 	k � g�
t � �a� or in other words�

� 	a � v	a

 � 	k � g�
 t � 	�����


Now assume that � is coprime with r	k � g�
� This implies that there exists integers m� n
such that m� � nr	k � g�
 � �� Multiplying 	�����
 with m then yields

a � v	a
 � 	k � g�
�mt� nr 	a� v	a

� � 	�����


Since for any integral weight a the weight r	a� v	a

 is an element of the coroot lattice�
the same is also true for the expression in square brackets� and hence 	�����
 states that
the weight a stays �xed under some a�ne Weyl transformation� But a satis�es 	�����
 and
hence the fact that (W acts freely on such weights implies that this Weyl transformation
must be the identity� This implies that (v must be the identity as well� Thus for � coprime
with r	k � g�
 the assumption that (w	�a
 is not integrable leads to a contradiction�

In the general case where b is not of the form �a with a subject to 	�����
 and � coprime
with r	k� g�
� the algorithm described above still works unless at one of the intermediate
steps one of the Dynkin labels becomes zero� which means that the weight lies on the
boundary of the fundamental a�ne Weyl chamber� In the latter case any Weyl image of
this weight lies on the boundary of some a�ne Weyl chamber as well� and hence we can
never end up with a weight that satis�es 	�����
� i�e� in the interior of the fundamental a�ne
Weyl chamber� It may also be remarked that one can speed up the algorithm considerably
using not the weight b itself as a starting point� but rather the weight %b � b�	k�g�
t that
is obtained from b by such a Weyl translation 	k � g�
t for which the length of %b becomes
minimal�

Finally� there is a general formula for the sign �

��
� namely

�

��
	a
 �  
 sign	w�
�a�
 � 	�����


i�e� the sign is just given by that of the Weyl transformation (w� up to an overall sign  

that only depends on ��
� ����� but not on the individual highest weight a� 	Actually the
cyclotomic �eld Q	�M�k�g��
 whose Galois group is Z�M�k�g�� does not yet always contain the
overall normalization N that appears in the formula 	�����
 for S� but rather sometimes
a slightly larger cyclotomic �eld must be used ���� However� the permutation .� of the
primary �elds that is induced by a Galois scaling can already be read o� the generalized
quantum dimensions� which do not depend on the normalization of S� The correct Galois
treatment of the normalization of S just amounts to the overall sign factor  
� which is
irrelevant for our purposes�


��	 In�nite Series of Invariants

In this section we will discuss an in�nite class of WZW modular invariants that can be
obtained both by a Galois scaling as well as by means of simple currents� Both Galois
transformations and simple currents organize the �elds of a CFT into orbits� In general�
the respective orbits are not identical� In the special case of WZW models these orbits are
in fact never identical� except for a few theories with too few primary �elds to make the
di�erence noticeable� However� since the orbits are used in quite di�erent ways to derive
modular invariants� it can nevertheless happen that these invariants are the same�

���



The Galois scalings we consider are motivated by the following argument� As already
mentioned� Galois automorphisms of the fusion rules arise if the �eld L��� is strictly smaller
than the �eld L� In the case of WZW theories L is contained in the cyclotomic �eld
Q	�M�k�g��
� while the quantum Weyl formula �����

Sa��
S���

�
Y
���

sin�
 a � ���	k � g�
�

sin�
 � � ���	k � g�
�
	�����


shows that L��� is already contained in Q	���k�g��
� Now as any element of Ga�	L�Q
 can
be described by at least one element of Ga�	Q	�M�k�g��
�Q
� we do not loose anything
by working with the latter Galois group� Any Galois automorphism of the fusion rules
can now be described by at least one element of Ga�	Q	�M�k�g��
�L���
� Unfortunately�
L��� is not explicitly known in practice� therefore we would like to replace L��� by the
�eld Q	���k�g��
 in which it is contained� However� M is not always even� and hence we
consider instead of Q	���k�g��
 the smaller �eld Q	�k�g�
 and the corresponding Galois
group Ga�	Q	�M�k�g����Q	�k�g�

� The elements of this group are precisely covered by
scalings by a factor m	k�g�
��� This way we recover at least part of the automorphisms�
but due to the di�erence between Q	���k�g��
 and Q	�k�g�
� generically some of these
scalings do not describe automorphisms� but rather correspond to an extension of the
chiral algebra�

Consider now the Kac�Peterson 	�����
 formula for the modular matrix S which reads
in terms of the shifted weights

Sab � NX
w

�	w
 exp���
i
w	a
 � b
k � g�

� � 	�����


Here N is a normalization factor which follows by the unitarity of S and is irrelevant for
our purposes� and the summation is over the Weyl group of the horizontal subalgebra of
the relevant a�ne Lie algebra� a and b are integrable weights� shifted by adding the Weyl
vector �� In the following we will denote such shifted weights by roman characters a� b� � � � �
while for the Lie algebra weights a� �� b� �� � � � we will use greek characters�

The scaling by a factor � � m	k � g�
 � � is an allowed Galois scaling if the following
condition is ful�lled 	note that m is de�ned modulo M
�

	a
 m	k � g�
 � � is prime relative to M	k � g�
 � 	�����


We will return to this condition later� 	Let us mention that even if condition 	a
 is not met�
the scaling by � can still be used to de�ne an S�invariant� We will describe the implications
of such 
quasi�Galois� scalings in the next chapter�


Under such a scaling one has

Sab �� �Sab � N P
w �	w
 exp���
i w�a��b

k�g�
	m	k � g�
 � �
�

� e���ima�bSab �
	�����


where the last equality holds if mw	a
 � b � ma � b mod � for all Weyl group elements w�
To analyze when this condition is ful�lled� �rst note that any Weyl transformation can
be written as a product of re�ections with respect to the planes orthogonal to the simple
roots� For a Weyl re�ection ri with respect to a simple root �i 	i � f�� �� � � � � rankg
 one
has in general

ri	a
 � b � a � b� 	 �
�i��i


 �i � a �i � b
� a � b� �

� �i � �i aibi �
	�����


���



where ai and bi are Dynkin labels� Thus ri	a
 � b equals a � b modulo integers if and only
if all simple roots have norm � 	which is for all algebras our normalization of the longest
root
� i�e� i� the algebra is simply laced� However� the derivation depends on this relation
with an extra factor m� This yields one more non�trivial solution� namely m � � for Bn�
n odd� Note that for Bn with n even� one has M � � so that the only allowed scaling�
m � �� yields a trivial solution� This is also true for all other non�simply laced algebras�

As is easily checked� the quantity a � b mod � is closely related to the product of the
simple current charges� we �nd�

An � a � b � �	n� �
Q	a
Q	b

Bn � �a � b � �nQ	a
Q	b

Dn 	n odd
 � a � b � �nQ	a
Q	b

Dn 	n even
 � a � b � �Qs	a
Qs	b
 � �Qc	a
Qc	a
 � 	n � �
Qv	a
Qv	b

E
 � a � b � �Q	a
Q	b

E� � a � b � �Q	a
Q	b
 �

	�����


Here Q	a
 is the monodromy charge with respect to the simple current J of a WZW
representation with highest weight a 	which is at level k�g�
� This should not be confused
with the simple current charge of the �eld labelled by a� which we denote by Q	a
� The
relation between these two quantities is

Q	a
 � Q	a� �
 � Q	a
�Q	�
 � 	�����


since the �eld labelled by a has highest weight a � � 	which is at level k
� The charge Q
	as well as Q
 depends only on the conjugacy class of the weight� The WZW theory with
algebra Dn� n even� has a center Z��Z� and simple currents Js� Jv and Jc � Jv 	 Js� It has
thus two independent charges� for which one may take Qv and Qs�

If � is on the root lattice� then Q	�
 � � and the shift in 	�����
 is irrelevant� i�e�
Q � Q mod �� In general� either � is a vector on the root lattice� or it is a weight with
the property that �� is on the root lattice� In the cases of interest here� � is on the root
lattice for An� n even� Dn with n � � mod � or � mod �� and for E
� In all other cases
Q � Q� �

�
mod � 	if the algebra is Dn� n � � mod �� the charges a�ected by this shift are

Qs and Qc
�
Note that the left hand sides of the relations 	�����
 are always of the form lNQ	a
Q	b


or a sum of such terms� where N is the order of the simple current and l is an integer�
The relation for Bn has an essential factor of � in the left hand side� Since the relations
are de�ned modulo integers we cannot simply divide this factor out� The most convenient
way to deal with it is to rewrite m in this case as m � � %m 	we have already seen above
that m has to be even for Bn
� After substituting 	�����
 into 	�����
 we get generically

�Sab � e���ilmNQ�a�Q�b�Sab � 	�����


This formula holds for Bn if one replaces m by %m� and for Dn� n even� if one replaces the
exponent by the appropriate sum� as in 	�����
� We will postpone the discussion of the
latter case until later� and consider for the moment only theories with a center ZN �

Now we wish to make use of the simple current relation

SJna�b � e��inQ�b�Sab � 	�����


This is simplest if we can replace Q by Q� and this is the case we consider �rst� This
replacement is allowed if � is on the root lattice� but this is not a necessary condition

���



because of the extra factor lmN � Suppose Q � Q � �
�
� Then we see from the foregoing

that N is even and l odd� Replacing Q by Q in the exponent of 	�����
 yields the extra
terms

�
�
lmNQ	a
 � �

�
lmNQ	b
 �

�

�
lmN � 	������


which should be an integer� Now NQ	a
 	or NQ	b

 is an integer� which as a function
of a 	or b
 takes all values modulo N � Hence each of the three terms must separately be
an integer� The �rst two terms are integers if and only if m is even� Then the last one
is an integer as well� since N is even� Thus the condition that Q can be replaced by Q is
equivalent to

	b
 m� is an element of the root lattice� 	������


We remind the reader that for Bn this is valid with m replaced by %m � �
�
m� Hence

condition 	b
 is in fact not satis�ed for Bn for any non�trivial value of m� In all remaining
algebras M 	the denominator of the inverse symmetrized Cartan matrix
 is equal to N �

If conditions 	a
 and 	b
 hold we can derive

�Sab � SJ�mlNQ
a�a�b � Sa�J�mlNQ
b�b � 	������


On the other hand according to 	�����
 Galois invariance implies

�Sab � �
	a
S �
a�b � �
	b
Sa� �
b � 	������


Furthermore if m� is an element of the root lattice� it is easy to see that the scale
transformation �xes the identity �eld� the identity is labelled by �� and transforms into
�� � � �m	k � g�
�� The second term is a Weyl translation if m� is on the root lattice�
In these cases �� is mapped to � by the transformations described in the appendix� which
implies that the identity primary �eld is �xed� Then it follows that � � �� and hence we
�nd

SJ�mlNQ
a�a�b � S �
a�b � 	������


or
Sa�b � S�a�b � 	������


where �a � JmlNQ�a� .�a� Then unitarity of S implies �a��a �
P

b S�a�bS
�
ba �

P
b SabS

�
ba � ��

so that a � �a� and hence .�a � J�mlNQ�a�a�
As described in Chapter �� any Galois transform that �xes the identity generates an

automorphism of the fusion rules� and in this case we see that it connects �elds on the
same simple current orbit� It is a positive S�invariant� but so far it was not required to
respect T �invariance� Thus the last condition we will now impose is

	c
 T �invariance � 	������


In general for simple currents of order N one has

h	Jna
 � h	a
 � h	Jn
� nQ	a
 mod � 	������


and

h	Jn
 �
rn	N � n


�N
mod � � 	������


���



where r is the monodromy parameter� which is equal to k for An at level k� to �nk mod �
for Dn� n odd� to �k for E
� and to �k for E�� Condition 	c
 amounts to the requirement
that the di�erence h	J�mlNQ�a�a
� h	a
 of conformal weights be an integer� We have

h	J�mlNQ�a�a
 � h	a
 � h	J�mlNQ�a�
 �mlNQ	a
Q	a

� h	a
� r

�
mlNQ	a
� 	 r

�
	ml
� �ml
NQ	a
Q	a
 �

	������


For algebras of type A or E� the second term on the right hand side is always an integer� or
can be chosen integer� if N is odd� r is de�ned modulo N and hence can always be chosen
even 	provided one makes the same choice also in the third term
� whereas if N is even by
inspection one sees that m must be even as well in order for m� to be an element of the
root lattice� and hence mr�� � Z� Then the only threat to T �invariance is the last term�
	 r
�
ml��
mlNQ	a
Q	a
� This is an integer for any a if and only if 	 r

�
ml��
ml � � mod N �

Now we will determine the solutions to the three conditions 	a
� 	b
 and 	c
 formulated
above� Any solution to these conditions will be a positive modular invariant of auto�
morphism type� that can be obtained both from Galois symmetry as well as from simple
currents�

Consider �rst E
� Condition 	b
 is trivial� so that m has to satisfy 	a
 m	k���
� � ��
� mod �� i�e� km � � �� � mod �� and 	c
 	km � �
m � � mod �� We may assume that
m �� � to avoid the trivial Galois scaling� Then both conditions are satis�ed if and only
if km � � mod �� There is always a solution for m� namely m � k mod �� unless k is a
multiple of ��

Next consider E�� Now m has to be even in order that m� is a root� and this only
allows the trivial solution m � ��

For An the problem is a bit more complicated� As T �invariance must hold for any
monodromy charge Q	a
� it is clearly su�cient to consider Q	a
 � �

N
� Several cases have

to be distinguished� We start with odd N � n � �� Then condition 	b
 is automatically
satis�ed� For even level k � �j the other two conditions read

	a
 GCD	�jm� �� N
 � � �
	c
 	jm� �
m � � mod N �

	������


The solution of the second equation depends crucially on the common factors of j and N �
It is easy to see that if j and N have a common factor p� then m is divisible by p as many
times as N � In particular� if N � p
 and j contains a factor p� then the only solution is the
trivial one� To remove common factors� write j � j�qa� m � m�qb and N � N �qb� where qa
is the greatest common divisor of j and N � and qb consists of all the prime factors of qa to
the power with which they appear in N � Now the second equation becomes

	j�qam
�qb � �
m� � � mod N � � 	������


Now we know that N � has no factors in common with j�� qa or qb� and hence we can �nd
a m� for which the �rst factor vanishes modN �� This solution m� is non�trivial provided
N � �� �� if N � � � the solution is m� � � 	or �
� i�e� m � � mod N �

The solution m� has no factors in common with N �� Hence we may write �jm � � �
jm�	jm��
 � jm mod N � � j�qam

�qb mod N �� so that we see that �jm�� and N � have
no common factors� Furthermore �jm� � and qb have no common factors� since m has a
factor qb� Hence �jm � � has no common factors with N � N �qb� and therefore the �rst
equation is also satis�ed�

In addition to the solution described here� 	������
 may have additional solutions with
m� and N � having a common factor� It is again easy to see that if m� contains any such

���



prime factor� it must contain it with the same power with which it occurs in N �� Let us
denote the total common factor as pb� which is in general a product of several prime factors�
Then the second equation reads

	j �qam
��pbqb � �
m�� � � mod N �� � 	������


where m� � m��pb and N � � N ��pb� We now look for solutions where m�� and N �� have
no further common factors� Such a solution does indeed exist� since the coe�cient of m��

has no factors in common with N ��� To show that the �rst condition is also satis�ed one
proceeds exactly as in the foregoing paragraph�

When N is odd and k is also odd� we choose the even monodromy parameter r � k�N �
and de�ne j � k�N

�
� The rest of the discussion is then exactly as before�

If N is even condition 	b
 implies that m must be even as well� and condition 	c

becomes 	km�� � �
m � � mod N � or� writing m � �t� N � �p� 	kt � �
t � � mod p�
Condition 	a
 reads GCD	km � �� N
 � �� which is equivalent to GCD	�kt � �� p
 � ��
Now we have succeeded in bringing the conditions in exactly the same form as 	������
�
and we can read o� the solutions almost directly� The only slight di�erence is that above
N was odd� whereas here p can be odd or even� However� the value of N did not play any
r(ole anywhere in the discussion following 	������
 	it was used to derive 	������
� though
�
and hence everything does indeed go through�

If the algebra is Dn� n odd� then we have to distinguish two cases� If n � � mod �� then
condition 	b
 is trivially satis�ed� and condition 	a
 reads

	a
 GCD	m	k � �n � �
 � �� �
 � � � 	������


from which we conclude that mk 	and hence mr � �mk
 must be even� so that just as for
An and En the second term on the right hand side of 	������
 plays no r(ole� Condition 	c

thus reduces to

	c
 � 	
r

�
	mn
� �mn
 � � mod � � 	������


with k satisfying �nk � r mod �� or what is the same� nk � �r mod �� To substitute
this we multiply the �rst argument of 	a
 with n� which does not a�ect this condition�
Afterwards we use that n � � mod �� and then the conditions simplify to

	a
 GCD	�mr � �� �
 � � �
	c
 � 	 r� m

� �m
 � � mod � �
	������


If r is even� r � �j� condition 	c
 then reduces to jm� �m � � mod �� This clearly has a
non�trivial solution if j is odd 	then m is odd
� but only trivial solutions if j is even� If r
is odd the only solution to both equations is m � ��

If n � � mod � this argument goes through in much the same way� but now solutions
for odd m are eliminated by condition 	b
�

��	�� Automorphisms from fractional spin simple currents

Nearly all these results can be summarized as follows� De�ne %N � N if N is odd� %N � N��
if N is even� Decompose %N into prime factors� %N � pn�� � � �pnll � Then the set of solutions
m consists of all integers of the form m � m��N

�N
pk�� � � � pkll � where ki � ni if the monodromy

parameter r is divisible by pi� and ki � � or ki � ni otherwise� The solutions are thus

���



labelled by all combinations of distinct prime factors of N that are not factors of r� The
parameter m�� for each solution in this set is the unique solution of the equation

�

�
rlm��	pk�� � � � pkll 
 � � mod N �� � 	������


where N �� �
�N

p
k�
� ���p

kl
l

� and r chosen even if N is odd� These automorphism invariants have

both a Galois interpretation and a simple current interpretation� they can be generated by
the Galois scaling m	k� g�
 � � or alternatively by the fractional spin simple current Jm�

These are precisely all the pure automorphisms generated by single simple currents
K � Jm of fractional spin which have a 0square root1� i�e� for which there exists a simple
current K � such that 	K �
� � K� Such a square root exists always if K has odd order�
but if K has even order it must be an even power m of the basic simple current J � The
condition on the common factors of r and N has a simple interpretation in terms of simple
currents� If it is not satis�ed� then there are integral spin currents on the orbit of J � If one
constructs the simple current invariant associated with J these currents extend the chiral
algebra� so that one does not get a pure automorphism invariant�

The condition that K must have a square root is a familiar one� in ����� the same
condition appeared as a requirement that an invariant can be obtained by a simple left�
right symmetric orbifold�like construction with 0twist operator1 L�Lc� If K does not have
a square root and r is even� then there are additional invariants� which were described
in ����� and derived in ������ Recently in ����� it was observed that these invariants could
be described as orbifolds with discrete torsion� It is quite interesting that precisely these
discrete torsion invariants are missing from the list of Galois invariants�

There is one exception� namely the automorphism invariants of D	l�� at level �j� which
are Galois invariants even though they violate the foregoing empirical rule� In this case
%N � �� which is a factor of r� Indeed� they are generated by the current Js 	or Jc
 which
does not have a square root� Technically the reason for the existence of this extra solution
is that this is the only simply laced algebra with � lying on the root lattice but N even�

��	�� Automorphisms from integer spin simple currents

Finally� we have to return to the case Dn� n even� Since M � � in this case� the only
potentially interesting solution is m � �� Hence Q is equivalent to Q if and only if � is on
the root lattice� which is true if and only if n � � mod �� It is straightforward to derive
the analogue of 	������
�

�Sab � S
J
�mQs
a�
s J

�mQc
a�
c J


n���mQv 
a�
v a � b

� 	������


	Since the three currents and charges are dependent this is a somewhat redundant nota�
tion�
 The solution m � � satis�es condition 	a
 if and only if the level is even� This
implies immediately that all three currents Js� Jv and Jc have integer spin� and we can
write the transformation of S in the following symmetric way�

�Sab � S
J
�Qs
a�
s J

�Qc
a�
c J

�Qv
a�
v a � b

� 	������


Since Qs �Qc �Qv � � mod � for any weight a� at least one of the charges� say Qv� must
vanish� Then Qs � Qc mod �� and the �eld a is transformed to J�Qs�a�

s J�Qs�a�
c a � J�Qs�a�

v a�
Since Jv has integral spin and Qv	a
 � �� this �eld has the same conformal weight as a�

���



and hence T �invariance is respected� Due to the symmetry in s� c and v the same is true
for any other �eld as well� Thus we do �nd an in�nite series of modular invariant partition
functions� These are automorphism invariants� again with both a Galois and a simple
current interpretation� although this time they are due to simple currents of integer spin�
Invariants of this type have been described before in ������

��	�	 Chiral Algebra Extensions

Now we will examine what happens if we relax condition 	b
� i�e� we will consider the case
that the replacement of Q by Q leads to a di�erent answer� This obviously requires that �
is not on the root lattice� and that the extra terms 	������
 are non�integral for some values
of Q� The latter is true if m is odd� or if the algebra is Bn� n odd� and m � � 	 %m � �
�
Now we can write 	omitting for the moment the case Dn� n even


�Sab � e���ilmN �Q�a�� �
� ��Q�b�� �

� �Sab
� e��ilmN �Q�a�� �

�
�S

J�lmN �Q
a�� �
� �a � b

	������


instead of 	�����
� As before� a similar formula holds also for Bn� n odd� with m replaced
by %m � �

�
m�

Since mlNQ	a
 is always integral and N is even� the exponential prefactor is in fact a
sign� and the result may be written as

�Sab �  	a
S
J�lmN �Q
a�� �

� �a � b
� 	������


Comparing this with 	������
 we �nd now that Sa�b � �	a
S�a�b � where � is the product

of the overall signs  and �� and �a � J�lmN �Q�a�� �
�
� .�a� Unitarity of S now gives �a��a �P

b S�a�bS
�
ba �

P
b �	a
SabS

�
ba � �	a
� which implies that � � �� i�e�  � �� and that � is the

trivial map�
Also in this case the Galois transformation generates an automorphism that lies within

simple current orbits� and hence if it generates a positive modular invariant� it must be a
simple current invariant� The identity is not �xed in this case� it must thus be mapped to
a simple current� The candidate modular invariant has the form P � ��  	�
/� where /
is the matrix representing the transformation 	������
�

Galois automorphisms of this type always have orbits with positive and negative signs�
A positive invariant can only be obtained if the negative sign orbits are in fact �xed points
of the Galois automorphism 	these should not be confused with �xed points of the simple
current+
� One sees immediately from 	������
 that the sign  	a
 is opposite for �elds of
charge Q	a
 � � and Q	a
 � �

N
� Since the former includes the identity we �x that sign to

be positive� Hence the orbits of charge �
N

must be �xed points� This leads to the condition

� lmN �
�

N
�

�

�
� � � mod N � 	������


or� writing N � �N �� lm	N � � �
 � � mod �N �� From this we conclude that N � must be
odd and lm must be a multiple of N � � N���

We are now in the familiar situation of an extension by a simple current of order �� and
clearly T �invariance will then require this current to have integral spin� The solutions can
now easily be listed�

A	l��� level �j 	l� j � Z
 �
B�l��� level �j 	l� j � Z
 �
E�� level �j 	j � Z
 �

	������


���



Now consider Dn for even n� Then � is not an element of the root lattice� but a vector
weight if n � � mod �� Hence Qs	�
 � Qc	�
 �

�
� and Qv	�
 � �� The transformation of S

is now
�Sab � e��i�Qs�a��Qc�a��S

J
��Qs
a��

�
� �

s J
��Qc
a��

�
� �

c a � b
� 	������


where we set m � �� the only acceptable value� It is not hard to see that the resulting
S�invariant cannot be a positive one� since there do exist wrong�sign Galois orbits that are
not �xed points�

There are several simple current extensions that cannot be obtained from Galois sym�
metry� at least not in the way described here� Since we considered here only a single Galois
scaling� only Galois automorphisms of order � can give us a positive modular invariant ����
	this is also true for the automorphism invariants discussed earlier in this section� as one
may verify explicitly
� Hence there is a priori no chance to obtain extensions by more
than one simple current� However� some simple currents of order � are missing as well�
namely those generated by the current J�l of A	l��� the current J of Bl� l even� and the
currents Jv of Dl and Js� Jc of D�l� with levels chosen so that these currents have integer
spin� Note that the existence of a modular invariant of order two implies the existence of
a 0Galois�like1 automorphism� This may suggest the existence of some generalization of
Galois symmetry that would also explain those invariants�

��
 New In�nite Series

In this section we will describe several in�nite series of exceptional invariants that we
obtained from Galois symmetry� They occur for algebras of type B and D at level � and
certain values of the rank� Let us start the discussion with type B� which is slightly simpler�

The new invariants occur for the algebras B�� B��� B�
� B��� B��� B�� etc�� always at
level �� The pattern of the relevant ranks n becomes clear when we consider the number
�n� �� corresponding to the identity Bn � so	�n � �
� namely� �n � � must have at least
two distinct prime factors� For example� for so	��
 at level � we �nd the following three
non�diagonal modular invariants�

P� � jX� �X�j� �� 	 jX	j� � jX�j� � jX
j� � jX�j� � jX�j� � jX�j� � jX��j� 
 � 	�����


P� � jX�j�� jX�j� � jX�j� � jX�j� � jX�j�� jX
j� � jX�j� � 	X	X c
� �X�X c

��� c�c�
 � 	�����


P� � jX� �X�j� � jX	 �X�j� � jX� �X��j� � � 	 jX�j� � jX
j� � jX�j� 
 � 	�����


Here the labels i � �� � � � � �� of Xi denote the following representations�

� � 	�� �� �� �� �� �� �
 � � 	�� �� �� �� �� �� �

� � 	�� �� �� �� �� �� �
 � � 	�� �� �� �� �� �� �

� � 	�� �� �� �� �� �� �
 � � 	�� �� �� �� �� �� �

� � 	�� �� �� �� �� �� �
 � � 	�� �� �� �� �� �� �

� � 	�� �� �� �� �� �� �
 �� � 	�� �� �� �� �� �� �

� � 	�� �� �� �� �� �� �


	�����


The �rst of these invariants is not new� it corresponds to the conformal embedding so	��
 �
su	��
� The �elds i � � � � � �� are �xed points� each of which is resolved into two distinct
complex conjugate �elds in the extended algebra� In su	��
 the two �elds originating from
the so	��
 �eld i are the antisymmetric tensor representations �� � i� and ��� � i�� The

���



invariant P� is in fact an integer spin simple current invariant� The other two B� invariants
are manifestly not simple current invariants�

The second B� invariant is new� as far as we know� and can be explained in the following
way� The algebra A�	 at level � has three distinct automorphism invariants which are
generated by the simple currents J � J� and J�� They read

�	X
i
�

XiX �
�i �

�	X
i
�

XiX �
���i �

�	X
i
�

XiX �
�	i � 	�����


respectively� where the labels are de�ned modulo ��� The �rst one is equal to the charge
conjugation invariant� and the last one is the 0product1 of the �rst two� The existence of
an A�	�� automorphism implies relations among the matrix elements of the modular matrix
S of that algebra� Owing to the existence of the conformal embedding B��� � A�	��� these
matrix elements are related to those of B���� The precise relation is

S���A�	��� � �S���B���� �
S��	�i�A�	��� � S�����i�A�	��� � S��i�B���� �
S	�i�	�j�A�	��� � S���i����j�A�	���

� S�	�i����j�A�	��� � S����i�	�j�A�	��� �
�
�
Sij�B���� � i,ij �

	�����


Here , denotes the �xed point resolution matrix� The �rst automorphism� charge conju�
gation� just sends i to �i and hence acts trivially on the B��� �elds� The other two su	��

automorphisms interchange the B��� �elds 	�� �
 and 	�� ��
� leaving �� � and � �xed 	in
addition one gets relations from the imaginary part on the matrix elements of ,
� This
implies relations like S��	 � S��� and S	�� � S���� for the B��� matrix elements� All these
relations hold also if the label � is replaced by �� but we do not get any relations for matrix
elements involving the �elds that are projected out� i�e� the �elds � and �� In the general
case� the absence of relations involving �elds that get projected out implies that the auto�
morphisms of an algebra g do not lead to automorphisms for a conformal subalgebra h � g�
The present case is an exception� since all the �elds on which the automorphism acts 	and
in fact all the �elds with labels �� � � � � ��
 are �xed points of the B��� simple current that
extends the algebra� Then the matrix elements S��i and S��i vanish for i � �� � � � � �� and
we need no further relations among them�

This explains the presence of the second invariant listed above� The third one is a linear
combination of the foregoing ones and the diagonal invariant� P� � P��P���� This is a
remarkable invariant� it looks like a normal extension by a spin � current� but it does not
follow from any conformal embedding� The only conformal embedding of B� at level � is
in su	��
� and the corresponding invariant is P�� not P�� This implies in particular that
there cannot exist any conformal �eld theory corresponding to the modular invariant P�+
In fact� it is not even possible to write down a fusion algebra for this invariant� because
there does not exist a �xed point resolution matrix� In ����� another example of this kind
was described� although that theory was unphysical for a somewhat di�erent reason�

The existence of P� can also be seen as a consequence of the closure of the set of
Galois automorphisms� Each Galois modular invariant� automorphism invariants as well
as chiral algebra extensions� originates from a Galois symmetry of S� which acts on the
�elds as a permutation accompanied by sign �ips� For the 0chiral extension1 P� this Galois
automorphism is represented by the matrix P�� ��� This set of Galois automorphisms will
always close as a group� Indeed� the automorphism underlying P� is simply the product
of that of P� and P��

���



By the same arguments there will be pure automorphism invariants for Bn�� whenever
�n � � contains at least two di�erent prime factors� The spin�� extension always involves
an identity block plus n �xed points that yield each two su	�n � �
 level � �elds 	this
is true since all non�trivial representations of su	�n � �
 are complex
� If there is only
one prime factor the only automorphism is charge conjugation� which acts trivially� When
there are K di�erent prime factors there are �K distinct pure Galois automorphisms for
su	�n � �
 at level �� including the identity and the charge conjugation invariant� When
0projected down1 to Bn�� these are related in pairs by charge conjugation� and we expect
therefore �K�� distinct Bn�� modular invariants of automorphism type� In addition there
is of course the invariant corresponding to the conformal embedding in su	�n � �
 itself�
In combination with the �K���� non�trivial automorphisms this extension gives rise to as
many other invariants that look like conformal embeddings� but actually do not correspond
to a consistent conformal �eld theory�

How does this come out in terms of Galois symmetry2 First of all the spin�� extension
of the conformal embedding is in fact a simple current extension� and we have seen in the
previous section that it follows from Galois symmetry only forBn with n odd� If n is odd the
Galois periodicity is �	�n��
 for Bn�� and �	n��
	�n��
 for A�n��� Hence the cyclotomic
�eld of the former is contained in that of the latter� so that all Galois transformations of
A�n�� have a well�de�ned action on the modular matrix S of Bn��� In this case we may thus
expect �K distinct Galois modular invariants� including the identity and the unphysical
invariants described above� If n is even the Galois periodicities are respectively �	�n � �

and �	n � �
	�n � �
� so that also in this case all Galois transformations are well�de�ned
on Bn� But due to the fact that the simple current invariant is not a Galois invariant� we
get only half the number of invariants now� namely �K���

For n odd the su	�n��
 simple current automorphisms are mapped to two Bn modular
invariants� one physical automorphism and one chiral extension� which 	except for the
one originating from the diagonal invariant� i�e� the conformal embedding invariant
 is
unphysical� For n even each su	�n��
 automorphism is mapped to just one Bn invariant�
The diagonal invariant is mapped to the diagonal one of Bn� but it turns out that the non�
trivial automorphisms are mapped to either a pure automorphism or an unphysical chiral
extension� in such a way that the closure of the set of Galois automorphisms is respected�

Now consider algebras of type D� Again the crucial ingredient is the conformal embed�
ding so	�n
� � su	�n
�� In terms of Dn �elds the su	�n
 characters are built as follows�
The identity character is the combination X� �Xv and the antisymmetric tensor �n� has a
character equal to Xs�Xc� All other su	�n
 representations are complex� and each pair of
complex conjugate representations arises from a resolved �xed point of the vector current
of Dn� Even though Dn has complex representations itself for n odd� these get projected
out� and all the non�real contributions to the su	n
 modular matrix S arise from �xed
point resolution�

The center of the su	�n
 WZW theory is Z�n� but the 
e�ective center� is Zn� This means
that only the simple current J� of the su	�n
 theory yields non�trivial modular invariants�
and that the order �n current J may be ignored� It is easy to see that the �eld �n� has zero
charge with respect to J�� so that it is mapped onto itself by any automorphism generated
by powers of J�� This implies that� just as before� all su	�n
 simple current automorphisms
act non�trivially only on resolved �xed points� and hence can be 
projected down� to Dn�
If n is prime� then the only automorphism is equivalent to charge conjugation� and hence
it projects down to the trivial invariant� Hence just as before we will get non�trivial Dn

automorphisms whenever n contains at least two distinct prime factors� where the prime is
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now allowed to be two� The counting of invariants is the same as for B�n����� above� Again
they come in pairs� an automorphism and an unphysical extension by a spin�� current�

All these invariants exist� but not all of them follow from Galois theory� Just as for
Bn� the automorphism invariants do� but the conformal embedding invariant does not
always follow� In fact� it never comes out as a result of the scalings discussed in the
previous section� However� if n � � mod � the simple current extension by the current Jv
is an exceptional Galois invariant only at level � 	see the Table ���
� In that case all the
expected invariants are Galois invariants� For all other values of n only half of the expected
invariants are Galois invariants� and from each pair only one member appears� either the
automorphism or the unphysical extension�

There is still one interesting observation to be made here� If there are just two distinct
prime factors� and n � � mod �� then the extra invariant is an unphysical extension�
Remarkably� however� that extension is a simple current invariant� It is equal to the
extension by Jv� but it has additional terms of the form jXa � Xbj�� where a and b are
�elds that appear diagonally� as �xed points of order �� in the normal simple current
invariant� The �elds a and b are however on the same orbit with respect to the current
Js� which makes this a simple current invariant by de�nition� Nevertheless� it is not part
of the classi�cation presented in ����� because that classi�cation was obtained under a
speci�c regularity condition on the matrix S that is not satis�ed here 	indeed� D�n at
level � was explicitly mentioned as an exception in the appendix of ����� the reason for it
being an exception is that all orbits except for the identity �eld are �xed points of one or
all currents
� It also follows that this simple current invariant cannot be obtained using
orbifolds with discrete torsion� unlike the simple current invariants within the classi�cation
of ������ Hence the fact that it is unphysical is not in contradiction with the expectation
that simple current invariants should normally be physical�

In the previous case the automorphism would be obtained by subtracting the normal
spin�� extension� and adding the identity matrix� Clearly the resulting automorphism is not
really exceptional� but is simply the automorphism generated by the spinor simple current
Js 	or Jc� which at level � gives the same result
� The same happens if the rank is � mod ��
except that in that case the automorphism comes out directly as a Galois invariant� It is
listed in Table ���� To get really new automorphisms that are not simple current invariants
for n � � mod � or n � � mod � one has to consider cases where n contains three or more
distinct prime factors� Finally� if the rank is divisible by � the spinor currents have integer
spin� and do not interfere with the exceptional automorphisms discussed in this section�

��� Pure Galois Invariants

Here we list all the remaining Galois invariants of simple WZW models� i�e� not including
those described in the previous sections� All these invariants are positive and result directly
from a single Galois automorphism of order �� Although the full Galois commutant was
investigated� in all but one case there is only a single non�trivial orbit contributing 	in
terms of the formula 	�����
 this means that f� is used to get P�� � �� and apart from f�
only one other coe�cient f
 is non�zero�
 The exception is the E��type invariant of A� at
level ��� which can also be interpreted as a combined simple current�Galois invariant� and
which is therefore included in Table ���� The results are listed in Table ���� The notation
is as follows�

� CE� Conformal embedding�
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� S	J
� Simple current invariant� The argument of S is the simple current responsible
for the invariant�

� RLD� Rank�Level Dual� The S�matrices of su	N
k� so	N
k and Cn�k are related to
those of respectively su	k
N � so	k
N and Ck�n by level�rank duality� One might expect
that Galois transformations of one matrix are mapped to similar transformations of
the other� The relation is not quite that straightforward however� and we will not
examine the details here� The results clearly respect this duality�

� EA� Exceptional Automorphism� These are modular invariants of pure automorphism
type that are not due to simple currents� The only invariants of this type known so
far were found in ������ and appear also in Table ����

� HSE� Higher Spin Extension� an extension of the chiral algebra by currents of spin
larger than � that are not simple currents� Some of these invariants can be predicted
using level�rank duality� all other known ones are related to meromorphic c � ��
theories ������

Note that there are some simple current invariants in this list� This is not in con�ict
with the results of Section ���� as we did not claim that the list given there was complete�
The scales of the Galois transformations for which these simple current invariants are
obtained are interesting� For A	m�� and D	m�� these scales are equal respectively to
	�m � �
	k � g�
 � � and �	k � g�
 � �� If the contribution �� were replaced by ���
they would be of the kind discussed in Section ���� In fact we can write these scales as
	��
�	�m��
	k�g�
��� mod �m	k�g�
 and 	��
�	k�g�
��� mod �	k�g�
� respectively�
which shows that these Galois automorphisms are nothing but the product of a scaling of
the type discussed in Section ��� and charge conjugation� It can be checked that without
the charge conjugation one does not get a positive invariant� certain �elds are transformed
to their charge conjugate with a sign �ip� After multiplying with the charge conjugation
automorphism these �elds become �xed points� The scale factor for C	m� �m � �� is of
the form 	k � g�
 � �� but for Cn the arguments of Section ��� break down right from
the start� so that no conclusions can be drawn for this case� For the other simple current
invariants the scale factor does not have the right form� and hence the arguments of Section
��� simply do not apply�

��� Combination of Galois and Simple Current Symmetries

In Section ��� we have discussed a large set of invariants for which the Galois and simple
current methods overlap� If they do not overlap� it may be fruitful to combine them� To do
so we �rst have to understand how the orbit structures of both symmetries are interfering
with each other� This can be seen by computing �SJa�b� On the one hand� this is equal to

�SJa�b � �
	Ja
S �
Ja�b � 	�����


On the other hand� it is equal to

��e��iQ�b� Sab� � e��ilQ�b��
	a
S �
a�b

� �
	a
SJl �
a�b �
	�����
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Algebra level Galois scaling Type Interpretation
A� � �� Extension CE � A�

A	m�� � �m� � �m � � Extension S	J�m
� RLD of A��	m

A	 � �� Extension CE � A�

A� � �� Extension RLD of A����

C	m � �m� � Extension S	J
� RLD of C��	m � A��	m

D�m�� � �m� � Automorphism S	Js

D	m�� � ��m� �� Extension S	Jv

D� � �� Extension HSE� RLD of so	�
�	 � A����

G� � � Extension CE � E


G� � � Automorphism EA
G� � �� Extension CE � D�

F	 � � Extension CE � D��

F	 � �� Automorphism EA
E
 � � Extension HSE
E� � �� Extension HSE

Table ���� Pure Galois modular invariants for WZW models�

Here l is the power to which � raises the generator of the cyclotomic �eld� In the �rst step
we used that the simple current phase factor is contained in the �eld M � which follows
from e��iQ�b� � SJa�b�Sab �M � Using unitarity of S we then �nd that

�
	Ja
 � �
	a
 �
.�J � J l .� �

	�����


Here J denotes the permutation of the �elds that is generated by the simple current J �
Since l is prime with respect to the order of the cyclotomic �eld� it is � at least in the
case of WZW models � also prime with respect to the order N of the simple current� If
N � � this means that l must be odd so that J l � J � and hence we conclude that .� and
J commute� For all other values of N they do not commute unless l � � mod N � but at
least it is true that .� maps simple current orbits to simple current orbits� and furthermore
it respects the orbit length�

If N � � the simple currents yield the relation

SJa�Jb � e��i�Q�a��Q�b�� r
� �Sab 	�����


among matrix elements of S� where r is the monodromy parameter� If r is even 	which is
the case for simple currents of integer or half�integer spin
 this relation takes the form

Sab � �	a
�	b
SJa�Jb � 	�����


since the phase factors are in fact signs� This is precisely the form of a Galois symmetry�
as expressed in 	�����
� We can represent this symmetry in matrix notation as

/JS/J � S � 	�����


where /J � 	/J
�� is an orthogonal matrix that commutes with the analogous matrices
representing the Galois group� Hence we can extend the Galois group by this transforma�
tion as explained in Chapter �� Furthermore if r � � mod � the simple current invariant
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produced by J is a fusion rule automorphism that can also be used to extend the Galois
group�

We have not examined these extended Galois�like symmetries systematically� but we
will illustrate that new invariants can be found by giving one example� Consider A� at
level ��� One of the Galois invariants 	invariant under S as well as T 
 is

P� � jX� � X
j� � jX	 � X��j� � jX� �X�j� � �jX�j� � �jX�j� � 	�����


where the indices are the highest weights 	in the Dynkin basis
� The only problem with this
invariant is that it is not positive� However� at level �� we also have the D�type invariant

P� � jX�j��	X�X �
� �X�X �

� �c�c�
 � jX�j�� jX	j�� jX�j�� jX
j�� jX�j� � jX��j� � 	�����


which is a simple current automorphism� If we now take the linear combination

P� � P� � �� � 	�����


we get a positive modular invariant which is in fact the well�known E
�type invariant�
There is a second way of combining simple currents and Galois symmetries� One can

extend the chiral algebra of the WZW model by integer spin simple currents� This projects
out some of the �elds� so that the negative sign Galois orbits of some Galois invariants are
removed� It is essential that the Galois automorphisms respect the simple current orbits�
and that the matrix elements of S are constant on these orbits for the �elds that are not
projected out� The simple current extension has its own S�matrix which can be derived
partly from that of the original theory� This matrix has the form 	�����


%Sai�bj �
NaNb

N
Sab � ,abPij � 	������


All general considerations regarding Galois transformations can be applied directly to this
new S�matrix� Clearly the matrix elements Sab which correspond to the primary �elds
of the original theory that are not projected out belong to a number �eld M � which is
contained in the number �eld M of the original theory� While Pij � �ij � �

N
and NaNb�N

are both rational and hence transform trivially under Ga�	M ��Q
� the presence of the
matrix ,ab in 	������
 may require this number �eld to be extended to a �eld %M � �M � 	a
simple example is provided by the A��	 WZW theory� which has a real matrix S� whereas
the S�matrix of the extended algebra A��� is complex
� Now because of the projections %M �

does not necessarily contain the original number �eld M � however� at the possible price of
redundancies we can consider an even larger number �eld %M that contains both %M � and M �
When working with %M � we do not loose any of the Galois transformations that act non�
trivially on the surviving matrix elements Sab� Note that any element of Ga�	 %M�M
 acts
trivially on Sab and hence induces a permutation which leaves non��xed points invariant
and acts completely within the set of primary �elds into which a �xed point gets resolved�
Further� for any element of Ga�	 %M�Q
 the associated permutation must act on the labels
a� b in the same way in both terms on the right hand side of 	������
� In particular� for
any matrix element involving only non��xed points the action of a Galois transformation
on S already determines its action on %S� since the two matrix elements are equal up to
a rational factor� The same is true for all matrix elements between �xed points and full
orbits� since in that case , is absent� too� This is often already enough information to
determine the Galois orbits of the extended theory completely� The transformations of
the �xed point � �xed point elements of %S are more subtle� and in principle would require
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Algebra level Galois scaling Simple current Type Interpretation

A� �� � J �y� Extension CE � B�

A� �� �� J Extension CE � G�

A� � �� J Extension CE � E


A� �� ��� �� ��� J Extension CE � E�

A� � � J Extension CE � D��

A� � � J� Extension HSE� RLD of A���

A� �m� � �m� �� J	 Aut � Ext S	J�

A�� � �� J�	 Extension HSE� RLD of A����

C� � � J Extension CE � B��

C	 � � J Extension RLD of C��	

D	m�� �l �m� �l � � Js Extension S	Jv
 	 S	Js

D	 � � Js� Jv Extension CE � D�	

Table ���� Modular invariants of WZW models obtained by combination of Galois and
simple current symmetries�
	y
 This is a simple current of half�integer spin� see the main text for details�
	�
 Invariant originating from a non�cyclic subgroup Z� � Z� of the Galois group�

knowledge of the matrix ,� However� as already pointed out any element of the Galois
group must act on , exactly as it does on S� Although this still leaves undetermined the
action within the set of primary �elds into which the relevant �xed point is resolved� this
limited information nevertheless can provide useful additional information on the matrix
,� whose determination in general is a problem that is far from being solved�

Fortunately� as long as we are only interested in modular invariants of the original
theory� we may in fact ignore �xed point resolution completely� By de�nition that issue is
determined solely by S 	and T 
� and the precise form of , should not matter�

We have performed a computer search for invariants of the type described above� and
obtained the results shown in Table ���� Note that this table contains a few in�nite series
of simple current invariants� Since they were inferred from a �nite computer scan� the
statement that the series continues is a conjecture� Presumably these series can also be
derived by arguments similar to those in Section ���� but we have not pursued this�

We have in principle just looked for invariants originating from single orbits� but there
is one exception� namely the modular invariant of A� at level ��� This invariant is obtained
as a sum over a Z��Z� subgroup of the Galois group that is generated by the two scalings
indicated in Table ���� Separately each of these scalings yields an S� T invariant with a
few minus signs�

��� Conclusions

To conclude� let us make a rough comparison between the various methods for constructing
modular invariants that were mentioned in the introduction� We will compare them on the
basis of the following aspects�

� Generality
A common property of simple currents and Galois symmetry is that neither is a

priori restricted to WZW models� unlike all other methods� 	In practice this is less
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important than it may seem� since essentially all RCFT�s we know are WZW models
or WZW�related coset theories�


� Positivity
Most methods do not directly imply the existence of positive modular invariants� but
rather they yield generating elements of the commutant of S and T that have to
be linearly combined to get a positive invariant� the exceptions are simple currents�
conformal embeddings and level�rank duality�

� Existence of a CFT
It should be emphasized that a positive modular invariant partition function is only
a necessary condition for a consistent conformal �eld theory� Most methods do not
guarantee that a conformal �eld theory exists� Exceptions are conformal embeddings
	the new CFT is itself a WZW model
 and probably simple current invariants� since
the construction of the new theory can be rephrased in orbifold language� Clearly
any construction that may yield negative invariants cannot guarantee existence of the
theory� and this includes Galois invariants� Indeed� we found examples of positive
Galois modular invariants that cannot correspond to any sensible CFT�

� Explicit construction
Simple current invariants can be constructed easily and straightforwardly� On the
other hand� the explicit construction of an invariant corresponding to a conformal
embedding is usually extremely tedious� Indeed� many of these invariants are not
known explicitly� The other methods fall somewhere between these two extremes�
The explicit construction of a Galois invariant is straightforward but requires long
excursions through the Weyl group� as explained in the appendix�

� Classi�cation
All simple current invariants have been classi�ed in ���� ��� and ������ under a mild
regularity assumption for S� which� as we have seen in Section ���� is not always
satis�ed� The simple currents of WZW models were classi�ed in ����� All conformal
embeddings have been classi�ed in ������� All cases of level�rank duality are presum�
ably known� but all other methods mentioned in the introduction have only been
applied to a limited number of cases� without claims of completeness� Our results on
Galois invariants are based partly on computer searches 	inevitably restricted to low
levels
 and partly on rigorous derivations 	Section ���
� For the pure Galois invariants
we expect our results to be complete� but we have no proof�

To summarize� we �nd that the Galois construction does not yield all solutions� but also
that it is not contained in any of the previously known methods� It generates invariants
of all known types� Most of the partition functions we found were already known in the
literature� but we did �nd several new in�nite series of pure automorphism invariants not
due to simple currents�

In the course of this investigation we realized that the restriction that the scaling be
prime with respect to M	k � g�
 can in fact be dropped� at least for WZW models� This
yields even more relations among elements of S� which take the form of sum rules� and
hence even more information about modular invariants� These transformations� which we
call 
Quasi�Galois� symmetries� will be discussed in the next chapter�
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Chapter 


Quasi�Galois Symmetries of the Modular S�Matrix

The Galois symmetries of rational conformal �eld theory introduced in Chapter � are
generalized� for the case of WZW theories� to 
quasi�Galois symmetries�� These symmetries
can be used to derive a large number of equalities and sum rules for entries of the modular
matrix S� including some that previously had been observed empirically� In addition�
quasi�Galois symmetries allow to construct modular invariants and to relate S�matrices
as well as modular invariants at di�erent levels� They also lead us to a convenient closed
expression for the branching rules of the conformal embeddings g �� cso	dim �g
�

��� Introduction

In the study of rational conformal �eld theories� modular transformations play an essential
role� They turn the set of the characters of all primary �elds into a unitary module
of SL	��Z
� the twofold covering of the modular group of the torus� Via the Verlinde
formula� they are also closely related to the fusion rules�

In all cases where the modular matrix S is explicitly known� one observes that it contains
surprisingly few di�erent numbers� and that among the distinct numbers there are linear
relations� While it has been known for a long time that simple currents lead to relations
between individual S�matrix elements ������������� many other relations� in particular sum
rules� have remained so far somewhat mysterious� Recently it has become clear that Galois
symmetries ������� are an independent source for relations between individual elements of
S �������� Both simple current and Galois symmetries exist for arbitrary rational conformal
�eld theories� independent of the structure of the chiral algebra�

In this chapter we will show that in the special case of WZW theories� Galois symmetries
can be generalized to what we will call quasi�Galois symmetries� A crucial ingredient of our
construction 	which is not available for other conformal �eld theories than WZW theories

is the Kac��Peterson formula for the S�matrix� These new symmetries turn out to be rather
powerful and allow to derive three new types of relations between the entries of S� �rst� a
sum rule which relates signed sums of S�matrix elements� see 	�����
� second� the equality�
modulo signs� of certain speci�c S�matrix elements� see 	�����
� third� a new systematic
reason for S�matrix elements to vanish� see the remarks after 	�����
�

Just as in the case of Galois symmetries� the relations we �nd can be employed to
construct elements of the commutant of S� and therefore to generate modular invariants�
Moreover� they can be used to obtain relations between invariants at di�erent values of
the level� i�e� between di�erent WZW theories� Finally� we show that our results allow to
determine the branching rules of certain conformal embeddings�

The rest of this chapter is organized as follows� In Section ��� we recall the basic
facts about Galois symmetries of rational conformal �eld theories� and of WZW theories
in particular� and show how in the WZW case they can be generalized to quasi�Galois
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symmetries� Also� as a �rst application� we describe how these symmetries force certain
S�matrix elements to vanish� In Section ��� we construct integral�valued matrices that
commute with the S�matrix� as a by�product we obtain an interesting sum rule 	�����

for the entries of S� In Section ��� we obtain another symmetry� 	�����
� of S as well
as relations 	see 	�����
� 	�����

 between the S�matrices for WZW theories at di�erent
heights h�� h�� where h� is a multiple of h�� Again� these results lead to a prescription
for constructing S�matrix invariants� now both at the smaller and at the larger height 	see
	������
 and 	������
� respectively
� Finally� in Section ��� we consider a special case of the
latter invariants� which leads us to a closed formula for the branching rules of the conformal
embeddings g �� cso	dim �g
 which can easily be evaluated explicitly�

��� Quasi�Galois scalings

When analyzing the mathematical structure of a WZW theory� we are dealing with inte�
grable highest weight representations of an untwisted a�ne Lie algebra g at a �xed integral
level k�� As the level is �xed� the g�weights are already fully determined by their horizontal
part� i�e� by the weight with respect to the horizontal subalgebra �g of g� In the following it
will be convenient to shift all weights according to a (� �a � � by the Weyl vector �� Note
that if the non�shifted weight �a is at level k�� the shifted weight a is at level h� where

h �� k� � g� 	�����


with g� the dual Coxeter number of �g� we will call h the height of the weight a� The set
of 	shifted
 integrable weights of the a�ne Lie algebra g at height h is

Ph �� fa � Lw j � � ai � k� � � for i � �� �� ��� � rg � 	�����


Here Lw denotes the weight lattice� i�e� the Z�span of the fundamental weights� In other
words� the weights 	�����
 are precisely the integral weights in the interior of the dominant
a�ne Weyl chamber at level k� � g��

An important tool for studying the modular properties of WZW theories is the Kac��Pe�
terson formula 	�����
 for the modular matrix S which reads in terms of shifted weights
and the height h as

Sa�b � N X
w�W

sign	w
 exp����i
h

	w	a
� b
� � 	�����


Here the summation is over the Weyl group W of the �nite�dimensional horizontal subal�
gebra �g of g� Some immediate consequences of this formula are the following� First� the
fact that according to 	�����
 Sa�b depends on a and b only via the inner products 	w	a
� b

and the identity 	w	�a
� b
 � � 	w	a
� b
 � 	w	a
� �b
 imply that

S
a�b � Sa�
b � 	�����


and second� for any element (w of the a�ne Weyl group (W 	i�e� the horizontal projection
of the Weyl group of the a�ne algebra g
� one has

S �w�a��b � sign 	 (w
Sa�b � 	�����


This implies in particular that Sa�b � � whenever a or b lies on the boundary of an a�ne
Weyl chamber� Note that in 	�����
 and 	�����
 it is implicit that the quantity Sa�b given by
	�����
 can be considered also for weights which are not integrable� This is possible because
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we are free to take the formula 	�����
 	which for integrable weights yields the entries of the
actual S�matrix� i�e� of the matrix which realizes the modular transformation � �� ����
on the characters
 for arbitrary weights a� b as the de�nition of Sa�b� Analogously� these
weights need not even be integral� and hence 	�����
 is valid for arbitrary numbers �� not
just for integers�

Recall from Chapter � that for WZW theories a Galois transformation labeled by � �
Z�Mh

� and induces the permutation # �� (w	�	#� �

� � of the highest weights carried by
the primary WZW �elds� or equivalently� the permutation

.� � .��
� � a �� .�a �� (wa	�a
 	�����


of shifted highest weights� Here (wa is an element of the a�ne Weyl group at level h� i�e�

(wa	b
 � wa	b
 � h ta � 	�����


where wa is some element of the �nite Weyl group W and ta some weight which belongs
to the coroot lattice L� of �g� They are de�ned by the condition that (wa	�a
 � Ph� which
determines wa and ta uniquely� Substituting 	�����
 into the formula for WZW conformal
dimensions one easily obtains a condition for T �invariance� namely �� � � mod �Mh 	or
mod Mh if all integers M	a� a
 are even
�

The key idea in the present chapter is to allow in the transformation 	�����
 for ar�
bitrary integers � rather than only elements of Z�Mh� As we will show� these generalized
transformations lead to interesting new information� Note that if � �� Z�Mh� then in order
for the map 	�����
 of the integrable weights to be still well�de�ned� we must slightly ex�
tend the prescription for the Weyl group element (wa� Namely� (wa is now determined by
the condition that either �a lies on the boundary of some a�ne Weyl chamber 	in which
case (wa can simply be taken to be the identity
� or else that (wa	�a
 � Ph� In the latter
case� (wa is the unique element of (W with this property� and we write

sign 	 (wa
 � sign 	wa
 �� �
	a
 � 	�����


while in the former case we put �
	a
 � �� While the map 	�����
 is thus still well�de�ned for
� �� Z�Mh� it can no longer be induced by a mapping �Mh �� 	�Mh

 of the number �eld� and
hence in particular it does no longer correspond to a Galois transformation� Nevertheless
the similarity with Galois transformations is still so close that we call the map a �� �a�
with � not coprime with Mh� a quasi�Galois scaling and the associated map .� 	�����
 a
quasi�Galois transformation�

For a quasi�Galois scaling there will in general exist some a � Ph for which �a lies on
the boundary of an a�ne Weyl chamber� so that .� is not even an endomorphism of the
set of integrable weights� However� in terms of WZW primary �elds the latter situation
corresponds to mapping the primary �eld with highest weight a to zero� so that .� can still
be interpreted as a linear map on the fusion ring that is spanned by the primary �elds�
Moreover� this can also be translated back to the language of weights by adding to the set
Ph a single element B which stands for the union of all boundaries of a�ne Weyl chambers�
In this setting� the map 	�����
 supplemented by .�	B
 � B is an endomorphism of the set
Ph � fBg� though it is not any more a permutation�

� Actually the cyclotomic �eld Q��Mh� does not yet always contain the normalization N appearing in
�����	�� rather� sometimes a slightly larger cyclotomic �eld must be used ��	�� However� the permutation
!
 can already be determined from the generalized quantum dimensions� which do not depend on N �
Accordingly� the correct Galois treatment of N just amounts to an overall sign factor which is irrelevant
for our purposes�

���



Consider now an arbitrary scaling a �� �a � � � Z n f�g � with associated 	quasi�
Galois
transformation given by 	�����
� As follows immediately by applying the identities 	�����

and 	�����
 to S �
a�b� we then have the identity

�
	a
S �
a�b � �
	b
Sa� �
b � 	�����


For genuine Galois scalings� this result was already obtained in ����� In the quasi�Galois
case� the two sides of 	�����
 are not necessarily non�vanishing� and this provides us with
an explanation for the vanishing of certain S�matrix elements� Namely� if for the quasi�
Galois scaling � the weights b and c �� .�a are contained in Ph� but .�b is not 	i�e� �b
lies on the boundary of an a�ne Weyl chamber
� then 	�����
 tells us that Sc�b � ��
	Another systematic reason for S�matrix elements to be zero is provided by simple current
symmetries� Sa�b � � if a is a �xed point of the simple current J and b has non�vanishing
monodromy charge ����� with respect to J �


��	 Quasi�Galois modular invariants

Consider for a given quasi�Galois scaling � the matrix / with entries in f����g that
describes the mapping induced by the scaling on the primary �elds� i�e�

/a�b � /�
�
a�b �� �
	a
 �b� �
a � 	�����


Equation 	�����
 can then be written as

	/S
a�b � �
	a
S �
a�b � �
	b
Sa� �
b � 	S/t
a�b � 	�����


Multiplying this equation from both the left and the right with S�� the hermitean conjugate
of S� using the unitarity of S and taking the hermitean conjugate of this equation� we see
that

	/tS
a�b � 	S/
a�b � 	�����


This relation describes in fact a rather remarkable sum rule for S�matrix elements� writing
the matrix multiplication in 	�����
 explicitly� it readsX

c�Ph

�
	c
 �a� �
cSc�b �
X
c�Ph

�
	c
 �b� �
cSa�c � 	�����


Generically the sums appearing in 	�����
 contain more than one non�vanishing term� to
our knowledge it is the �rst time that a relation of this type between S�matrix elements
has been established in a general framework�

By introducing the pre�images of a quasi�Galois transformation�

,��	a
 �� fc � Ph j .�	c
 � ag 	�����


for any a � Ph� we may rewrite the sum rule 	�����
 in the more suggestive mannerX
c�����a�

�
	c
Sc�b �
X

c�����b�

�
	c
Sa�c � 	�����


If the map 	�����
 is invertible� then 	�����
 reduces to the relation

�
	 .�
��a
S �
��a�b � �
	 .�

��b
Sa� �
��b � 	�����


���



which is equivalent to the identity 	�����
 applied to the map .����
Combining the two relations 	�����
 and 	�����
� it follows that the matrix

Z�
� �� /� /t 	�����


commutes with the modular matrix S�

�Z�
�� S� � � � 	�����


Typically the S�matrix invariant Z�
� obtained this way is not positive� nor does it commute
with T � This pattern already arises for ordinary Galois scalings� However� just as in the
Galois case in Chapter �� it is still possible to construct physical modular invariants�
because one can get rid of the minus signs and achieve T �invariance by suitably adding
up various invariants of the type above and possibly combining with other methods such
as simple currents� Note that in the invariant 	�����
 typically some of the �elds are
projected out� and hence when using quasi�Galois transformations it is in fact easier to
obtain T �invariance than in the Galois case�

To give an example for a matrix that commutes with the S�matrix and that is obtained
by the above prescription� let us consider the scaling � � � for the A� WZW theory at
height h � �� In terms of non�shifted highest weights� this scaling maps # � � and # � �
with a positive sign �
 on # � �� the weight # � � with a negative sign on itself� and the
weights # � �� � on the boundary B� Thus the matrix Z��� de�ned by 	�����
 reads

Z��� �

�BBBBBBB�

� � � � �

� � � � �

� � �� � �

� � � � �

� � � � �

�CCCCCCCA
� ���	����

While this matrix has negative entries and is hence unphysical� the combination

(Z � 	Z���
� � �Z��� 	������


is a physical invariant� namely the D�type invariant of the height � A� theory� As the
number of primary �elds is rapidly increasing with the rank and level� most applications
of our prescription which lead to physical invariants involve rather complex expressions�
therefore we will not display more complicated examples explicitly�

Actually the invariant 	������
 can also be obtained from genuine Galois transforma�
tions� An example for a physical modular invariant which cannot be explained that way�
but which is obtainable as a linear combination of quasi�Galois invariants is the exceptional
E��type invariant of A� at level ��� However� the concrete expression is rather lengthy so
that we refrain from presenting it here� As we shall see later� also for the E��type invariant
there exists a close relation to the matrix Z��� displayed in 	������
 even though they are
invariants at di�erent heights�

��
 S�matrix invariants� increasing and lowering the height

In this section we consider the special case where the scaling factor � � Z�� is a divisor of
the height� to simplify notation� we will make this explicit by denoting the height of the
theory to which the scaling is applied by �h� As we will see� in this situation there exist

���



intimate relations between the WZW theories at height �h and at height h� As we are now
dealing with weights at two distinct heights� we �nd it convenient to denote the elements
of Ph by lower case and the elements of P
h by upper case roman letters� respectively�
Similarly� we use the capital letter 
 S � for the S�matrix of the height �h theory and the
symbol 
 s � for the S�matrix of the height h theory�

Before describing the relationship between height h and height �h theories� let us �rst
prove another new symmetry property of the S�matrix� if the height is divisible by �� then
for any B � P
h the signed S�matrix elements

�
	C
 � S
a�C 	�����


are identical for all C � ,��	B
� To check this statement� take any �xed B � P
h and any
C � ,��	B
� Then considering weights of the form A � �a with a � Ph� and using the
fact that .�C � wC	�C
 � �h tC with wC � W and tC � L�� as well as �
	C
 � sign	wC
�
we �nd

S
a�C � N X
w�W

sign	w
 exp����i�h 	w	�a
� ���w��
C 	B
 � ht�C
�

� N X
w�W

sign	w
 exp����i
h

	wCw	a
� �
��B
�

� sign	wC
 � N
X
w�W

sign	w
 exp����ih 	w	a
� ���B
� �

	�����


The only dependence of the right hand side on the weight C is thus via the sign �
	C
 �
sign	wC
� and hence we have established the symmetry 	�����
�

The primary WZW �elds �a and �A which are associated to the weights in Ph and in
P
h� respectively� can be viewed as the generators of the fusion rings Rh and R
h of the
height h and height �h WZW theories� respectively� Let us introduce the mappings

P � R
h �Rh

�A �� P 	�A
 �
X
b�Ph

PA�b �b � PA�b �� �
	A
 � �
A�
b
	�����


and
D � Rh � R
h

�a �� D	�a
 �
X

B�P�h

Da�B �B � Da�B �� �
a�B
	�����


between these two fusion rings� Note that because of

��� .�A � ��� 	wA	�A
 � �h tA
 � wA	A
 � h tA 	�����


with wA � W and tA � L� for any A � P
h� the weight ��� .�A is integral and either an
element of Ph or else on the boundary of an a�ne Weyl chamber at height h� Also� Pb�b � �
	here the �rst label b is to be considered as an element of P
h
 which shows that the map
P is always non�zero�

The relation 	�����
 implies that there is a close connection� which will prove to be useful
later on� between the conformal dimensions ! mod Z of all those �elds which belong to the
same pre�image under the map .�� Namely� from the de�nition !a � �	a� a
� 	�� �
���h of
the conformal dimensions at height h 	and the fact that any Weyl group element w � W
is an isometry
� it follows that

� 	!b �!c
 � 	�h�
�� �	a� htb� a� htb
� 	a� htc� a� htc
�

� ��� 	a� tb � tc
 �
�
� h�

���	tb� tb
� 	tc� tc
�
	�����


���



for b� c � ,��	a
� we will use this equation only modulo Z� Since tb� tc � L�� we have
	a� tb
 � Z� 	tb� tb
 � �Z� and analogously for tc� and hence the right hand sight of 	�����

is an integral multiple of ���� If in addition the height is divisible by �� then according to
	�����
 this is also true for the Dynkin components of any a for which ,��	a
 is non�empty�
and hence in this case the right hand side is in fact an integer� so that !b � !c � ���Z
for h � �h� and b� c � ,��	a
� In the notation appropriate to the height �h theory we thus
have� for all A � P
h�

!B �!C � ��� Z for B�C � ,��	A
 � 	�����


The relevance of the maps P and D that we introduced in 	�����
 and 	�����
 comes
from the fact that they provide direct relations between the two modular matrices S and
s� Namely� denoting the rank of �g by r� we �nd

SDt � ��r�� P s 	�����


P t S � � r�� sD � 	�����


Equivalently� by taking the transpose� we can write these identities as

D S � ��r�� sP t 	������


SP � � r��Dt s � 	������


To prove 	�����
� we �rst separate the height�independent part of the normalization
factor N in the Kac��Peterson formula 	�����
 from the rest�

N � N�h� � i�d�r��� jLw�L�j���� h�r�� �� h�r��N � 	������


where d is the dimension of �g� Then we compute

	SDt
A�b � SA�
b � 	�h
�r��N X
w�W

sign	w
 exp����i�h 	w	A
� �b
�

� 	�h
�r��N X
w�W

sign	w
 exp����i
h

	w	A
� b
�
	������


and� once again making use of .�A � wA	�A
 � �h tA with wA � W and tA � L�� and of
�
	A
 � sign	wA
�

	P s
A�b � �
	A
 s
�� �
A�b � h�r��N sign	wA

X
w�W

sign	w
 exp����i
h

	w	wA	A
 � htA
� b
�

� h�r��N X
w�W

sign	w
 exp����ih 	w	A
� b
� �

	������

Comparing 	������
 and 	������
� we obtain 	�����
�

The relation 	�����
 can now be proven by multiplying 	�����
 from the left with the
hermitean conjugate S� of S and from the right with s�� Using the unitarity of S and s
and taking the hermitean conjugate yields 	�����
�

We can now apply the results just proven to the construction of S�matrix invariants�
both at height h and at height �h� Namely� assume �rst that the matrix Z belongs to the
commutant of the S�matrix of the height �h theory� i�e� that

�Z�S� � � � 	������


���



Further� de�ne
%z �� P t Z Dt �DZ P � 	������


Explicitly� we have

%za�b �
X

A�����
a�

�
	A
ZA�
b �
X

B�����
b�

�
	B
Z
a�B � 	������


Using 	������
 as well as the relations 	�����
 � 	������
 proven above� we can then derive
that

%z s � P t Z Dt s �D Z P s � ��r�� P t Z SP � �r��DZ SDt

� ��r�� P t SZ P � �r��D SZ Dt � sDZ P � sP t Z Dt � s %z �
	������


Similarly� let z be an S�matrix invariant of the height h theory�

�z� s� � � � 	������


and de�ne
%Z �� Dt z P t � P zD � 	������


Using the convention that za�b � � whenever a or b is not in Ph� the matrix elements of %Z
read

%ZA�B � �
	A
 z
�� �
A�
��B � �
	B
 z
��A�
�� �
B � 	������


By employing 	������
 and again 	�����
 � 	������
� we obtain

%Z S � Dt z P t S � P zD S � � r��Dt z sD � ��r�� P z sP t

� � r��Dt s z D � ��r�� P s z P t � SP zD � SDt z P t � S %Z �
	������


We have thus proven the following remarkable facts� Given an S�matrix invariant Z at
height �h� the formula 	������
 provides us with an S�matrix invariant %z at height h�

�%z� s� � � � 	������


and conversely� given an S�matrix invariant z at height h� the formula 	������
 de�nes an
S�matrix invariant %Z at height �h�

� %Z�S� � � � 	������


Not surprisingly� the prescriptions 	������
 and 	������
 do not respect positivity� i�e� even
if Z 	respectively z
 is a positive invariant� this needs not hold for %z 	 %Z
�

As an example� let us take for Z the exceptional invariants of A� which occur all
at heights a multiple of �� namely for h � ��� ��� ��� and obtain from them by 	������

invariants of A� at height �� For h � �� and h � �� the prescription 	������
 yields the
zero matrix� More interesting is the E��type invariant at h � ��� in this case %z is precisely
the quasi�Galois invariant 	������
 obtained in the previous section�

Note that the maps 	�����
 and 	�����
 are related to the map / introduced in 	�����

by / � PD�

/A�B � �
	A
 �B� �
A �
X
c�Ph

�
	A
 �
c� �
A�B�
c �
X
c�Ph

PA�cDc�B � 	������


The prescription 	������
 actually provides a generalization of the quasi�Galois S�matrix
invariant 	�����
� Namely� according to 	������
� when considering the diagonal invariant
z � ��� 	������
 yields

%Z � P D �Dt P t � /�/t � 	������


���



i�e� reproduces the invariant 	�����
� A still more special case is obtained by performing the
scaling by the factor � at height �g�� Then the smaller level is in fact zero� so that there
is a single primary �eld with shifted weight a � �� and hence a single nontrivial invariant
za�b � �a���b��� In this situation� 	������
 reads

%ZA�B � �A�
�
X

C�����
��

�
	C
 �B�C � �B�
�
X

C�����
��

�
	C
 �A�C � 	������


In applications 	see in particular Section ��� below
 it is often not the matrix 	������
 that
is directly relevant� but rather the combination

(Z �� %Z� � ��
	��
 %Z 	������


	compare the similar formula 	������

� The entries of 	������
 read

(ZA�B � j%,��	��
j �A�
��B�
� �
X

C�D������
��

�
	C
�
	D
 �A�C �B�D � 	������


where
%,��	��
 �� ,��	��
 n f��g � 	������


Note that in the invariant (Z only �elds belonging to ,��	��
 get mixed� by 	�����
 this
implies that (Z is not only S�invariant� but also invariant under T 
� It is also easily checked
that (Z� � j%,��	��
j (Z� so that by taking powers of (Z we cannot produce any new invariants�

We can also apply the constructions 	������
 and 	������
 consecutively to a height h
S�matrix invariant� or in the opposite order to a height �h invariant� The computation
then involves the identities PD � /� DDt � ��� P tP � � r��� as well as DP � 
 and
DtD � Q with


a�b �� �
	�a
 �
b� �
�
a� 	������


and
QA�B �� �A�B �

X
b�Ph

�A�
b � 	������


We �nd
%%z � �� r z � 
z
 � 
tz
t 	������


and a similar formula for %%Z � The result 	������
 means that whenever z commutes with s�
then so does the matrix 
z
�
tz
t� Also note that in 	������
 the map .� is the quasi�Galois
transformation with scale factor � at height �h� This implies that .�	�a
 � � 	w
a	�a
�ht
a
�
and hence the ��symbol in 	������
 imposes the constraint that the weight b is related to
a by a quasi�Galois transformation with the same scale factor �� but now at height h� In
other words� as already anticipated in the notation� the map 
 � DP implements the same
quasi�Galois scaling for the height h theory as the map / � PD 	������
 implements for
the height �h theory�

��� Conformal embeddings

Conformal embeddings are embeddings g �� h of untwisted a�ne Lie algebras for which the
irreducible highest weight modules possess �nite branching rules� The explicit form of these
branching rules has been determined for various cases 	see e�g� ���� ��� ���� ��� ��� �� ����
�
but a general formula is not known� and there are still many conformal embeddings for
which all known methods are inapplicable�

���



The list of conformal embeddings ����� �� contains several in�nite series� Here we are
interested in a particular in�nite series� namely the embedding gg� �� cso	d
�� i�e� of g

at level g� 	with g an arbitrary untwisted a�ne Lie algebra
 into cso	d
� with d � dim �g�
at level one� In terms of the horizontal algebras� the embedding is the one for which
the vector representation of so	d
 branches to the adjoint representation of the smaller
algebra �g� Such embeddings are of particular interest because they are connected with the

fermionization� ��������� of WZW models with level g�� which is due to the fact that cso	d

can be written in terms of free fermions� This will play a r(ole in the following�

The diagonal level one cso	d
 partition function is

Zso�d�	�� ��
 � jXoj� � jXvj� � jXsj� � jXcj� for d even 	�����


and
Zso�d�	�� �� 
 � jXoj� � jXvj� � jXsj� for d odd� 	�����


where o� v� s and c refer to the singlet� vector� spinor� and conjugate spinor representation
of so	d
� respectively� Our objective is to write each of these characters in terms of the
characters �� of g at level g��

The branching rule for the cso	d
 spinor	s
 is already known explicitly 	����� see also ����
������
� Up to a multiplicity� they branch to a single irreducible representation� namely the
one whose 	unshifted
 highest weight is the Weyl vector �� We will denote this irreducible
representation by L�� The dimension of the analogous irreducible representation of the
horizontal algebra �g is �N� � where N� � 	d � r
�� is the number of positive roots 	and r
is the rank of �g
� hence the multiplicity with which L� is contained in the cso	d
 spinors
is �r���� if d is even� and ��r����� if d is odd� A closed formula for the branching rules
of the cso	d
 singlet and vector is also known ����� but 	see 	������
 below
 it involves the
image (W 	�
 of the Weyl vector under the a�ne Weyl group and hence is not convenient for
explicit calculations� 	As a matter of fact� only in very few cases� such as for �g � G� �����
the branching has already been determined explicitly�
 Accordingly� we will not employ this
formula� but rather prove an equivalent formula which allows for an immediate evaluation
on a computer� To start� we make the following general ansatz for the relation between
level one cso	d
 and gg� characters�

Xo �
X

��Pg�

m�
o �� � Xv �

X
��Pg�

m�
v �� � Xs � Xc � �r������ 	�����


for d even� and

Xo �
X

��Pg�

m�
o �� � Xv �

X
��Pg�

m�
v �� � Xs � ��r������� 	�����


for d odd� Here and below we label the integrable gg� representations by their unshifted

highest weights 	in particular we will use # � � in place of a � ��
� accordingly� the
summations in 	�����
 and 	�����
 are over the unshifted fundamental chamber Pg�	g
�
also� mo and mv are non�negative integral vectors in the space of all characters� The
equality of the decomposition of the two cso	d
 spinor characters for even d implies that
these representations will appear as a �xed point of order � in the gg� modular invariant�
Hence the invariant will have the form

Zc�e� � j X
��Pg�

m�
o ��j� � j

X
��Pg�

m�
v ��j� � � � j�r������j� 	�����


���



for d even� and

Zc�e� � j X
��Pg�

m�
o ��j� � j

X
��Pg�

m�
v ��j� � j��r�������j� 	�����


for d odd�
The identity and vector characters of cso	d
 branch to distinct gg� characters� since

the di�erence of conformal dimensions of identity and vector is non�integral� Thus the
vectors mo and mv are orthogonal� We will focus �rst on the cases where also the spinor	s

have di�erent conformal weights modulo integers than identity and vector� which holds if
d �� � mod �� compare 	�����
� Then by the same argument the spinor	s
 branch to di�erent
gg� characters than identity and vector characters� and hence we have m �

o � m �
v � �� This

situation is covered by the following simple theorem� Consider any S�invariant 	such as
	�����
� 	�����

 that is a sum of squares� i�e� of the form

M �
X
p

Np j
X

��Pg�

m�
p ��j� � 	�����


This can be written as
P

�����Pg�
��M�����

�
��� where M is the matrix with entries

M���� �
X
p

Npm
�
p m

��
p � 	�����


Further� suppose that the vectors mp are orthogonal�X
��Pg�

m�
p m�

p� � Rp�pp� � 	�����


Let us also impose the physical requirement that there is a unique vacuum� i�e� that M
satis�es M�� � �� then among the vectors mp there must be precisely one� conventionally
labeled by p � �� which contains the identity character� i�e� we must have N� � � and
m �

� � �� Next consider the matrix M�� it has entries 	M�
���� �
P

pN
�
pRpm�

p m��
p � in

particular� 	M�
�� � R�� Thus the matrix M� � R�M has entries 	M� � R�M
���� �P
p	N

�
pRp �NpR�
m�

p m��
p � Finally� the square Z of the latter matrix has entries

Z���� � 	�M� �R�M ��
���� �
X
p

	NpRp �R�

�NpRpm�

p m��
p � 	������


This is a manifestly non�negative matrix� it obeys Z�� � �� and because it is a polynomial
in M it commutes with S� Thus � � Z�� �

P
�����Pg�

S��Z����S��� 	 �� with equality

only if Z���� � � for all #�#� � Pg� � i�e�� any such matrix must vanish� By 	������
� the
vanishing of Z implies that for any p the sum rule

Np

X
��Pg�

	m�
p 


� � NpRp � R� 	������


holds� This is equivalent to the property M� � R�M � so that M is idempotent up to a
normalization�

In the situation of our interest� these sum rules give useful information because we
know Np and mp for the spinor characters� For even d� the spinors have N � �� and hence
	������
 tells us that

Ro � NvRv � � � 	�r����
� � �r�� � 	������


���



and for d odd we get
Ro � NvRv � 	��r�����
� � �r�� � 	������


Since for d �� � mod �� the vector representation of level one cso	d
 has di�erent conformal
dimension modulo integers than the other representations� we have Nv � �� As we will see
below� the matrix M has all entries except the spinor entries equal to � or �� and in that
case the sum rule 	������
 tells us that the identity and the vector of cso	d
 each branch to
�r�� di�erent irreducible representations of the conformal subalgebra g�

For the following argument it is convenient to summarize the spinor branching rules in
	�����
 and 	�����
 as %Xs � ��r������ where �n� stands for the integer part of n� and where
%Xs � Xs for odd d and %Xs � 	Xs � Xc
�� for even d� Then by performing the modular
transformation � �� ���� and using the explicit form of the S�matrix of the cso	d
 theory�
we have

��r����r�� 	Xo �Xv
	� 
 � %Xs	��

�

 � ��r�����	��

�

 � ��r���

X
��Pg�

	Sg
�����	� 
 � 	������


This formula holds in fact for the full characters� not just for the Virasoro specialized
ones� Since the full characters form a basis of the relevant module of SL	��Z
� and since
in the expansions of Xo and Xv into powers of q � exp	�
i� 
 the fractional powers of q
are di�erent� it follows that 	������
 already determines the branching rules of the singlet
and vector characters uniquely� In particular the knowledge that �� must appear with
multiplicity one in the branching rule for Xo implies that 	Sg
��� � ��r��� and that for any
# � Pg� � 	Sg
��� must be an integral multiple of this number�

All the properties of the conformal embedding invariants that were obtained above fol�
low by rather general arguments� We will now discuss how one can obtain these invariants
	i�e� the form of the vectors mo and mv
 in a much more explicit manner by employing a
quasi�Galois scaling by a factor �� Thus consider g at height h � �g�� and the quasi�Galois
scaling � � �� Applying the prescription 	������
� we obtain the special case � � � of the
S�matrix invariant 	������
� In terms of unshifted weights� 	������
 reads

(Z���� � j%,��	�
j ��������� �
X

������������

�	�
�	��
 ���� ������ � 	������


As it turns out� the sign � is not constant on ,��	�
� so that 	unlike in the� otherwise
similar� situation of 	������

 the invariant (Z 	������
 is not positive� By the remark after
	������
 it follows� however� that it does commute with T ��

Furthermore� according to 	�����
 we have

�	�
 	Sg
��� � �	�
 	Sg
 �
��� � �	#
 	Sg
�� �
� 	������


for any # � Pg�� and hence the observation after 	������
 implies that �	�
 � � and

	Sg
��� � �	#
 � ��r�� 	������


for all # � Pg� � Combining this information with 	������
 and the fact that the full
characters form a basis� we learn that

Xo �
X

	�
��
��
�
	���

�� � Xv �
X

	�
��
��
�
	����

�� � 	������


���



This is the announced closed formula for the branching rules of the embedding g ��cso	dim g
� Note that in terms of unshifted weights the explicit form of the quasi�Galois
transformation reads �� � � � � � .�# � � � (w�	�	# � �

 � �w�	# � �
 � �g� �� with
w� � W and �� � L�� which can be rewritten as

# � w��
� 	�
� �� g�w��

� 	��
 � (u	�
� � � 	������


where the last equality de�nes a unique element (u of the a�ne Weyl group (W at level g��
Thus our result 	������
 can be rewritten as

Xo �
X

��Pg�
R�

�� � Xv �
X

��Pg�
R�

�� 	������


with
R� �� f (w	�
� � j (w � (W� sign	w
 � ��g � 	������


The formula 	������
 has already been obtained in ����� It is equivalent to 	������
� but for
explicit calculations has the disadvantage that it involves the sets R�� these sets are in�nite
due to the fact that all elements of the a�ne Weyl group must be taken into account�

Let us describe some aspects of the formula 	������
 in more detail� First� for all simple �g
except �g � Ar with r even� we observe the following� A certain numberK of representations
with integer conformal weight is mapped via the quasi�Galois transformation to L� with
a positive sign� an equal number of representations with half�integer conformal weight
�ows to L� with a negative sign� all other representations as well as L� itself �ow to the
boundary� 	This has been checked explicitly for rank less than �� the continuation of this
speci�c result to higher rank is only a conjecture�
 For Ar with r even� there are two
di�erences with respect to the foregoing� First of all the numbers K and K � of �elds with
integral and half�integral conformal weight� respectively� that �ow to L� are di�erent� and
secondly L� does not �ow to the boundary� but to itself� In this case d � r	r � �
� which
is a multiple of �� implying that the cso	d
 spinor has integral or half�integral conformal
weight� The sign associated with the �ow of L� to itself is plus or minus for these two cases
respectively�

In matrix notation� we thus have %Z � /�/t� with

/ �

�BBBBB�
� � !e �

� � �!e �

� � �	�
 �

� � � �

�CCCCCA � 	������


for the matrix 	������
 that underlies 	������
� and hence

(Z �

�BBBBB�
E �E � �

�E E � �

� � K �K � �

� � � �

�CCCCCA � 	������


Here the third column�row corresponds to L�� the �rst one to all K �elds with integral
conformal weight which �ow to L� under the quasi�Galois transformation� the second to
the K � �elds with half�integral weight �owing to L�� and the fourth to all remaining �elds�
The symbol !e stands for a K� respectively K �� component vector with all entries equal to

���



�� and E � !e
!e t denotes the matrix of appropriate size 	i�e�� K �K� K �K �� K � �K�
and K � �K �� respectively
 each of whose entries is equal to �� the ��s indicate matrices of
zeroes of the proper size� Thus in particular for all cases except Ar with even rank� 	������

can also be written as

(Z �

�BBBBB�
E �E � �

�E E � �

� � �K �

� � � �

�CCCCCA 	������


with all matrices E of size K � K� Also recall that if L� �ows to the boundary� then
�	�
 � � so that the entry /��� of the matrix 	������
 vanishes� Further� if d is a multiple
of �� then not only the matrix 	������
� but also

(Z � �� (Z � �	�
 %Z �

�BBBBB�
E �E �	�
!e �

�E E ��	�
!e �

�	�
!e t ��	�
!e t K�K �����	�
 �

� � � �

�CCCCCA 	������


commutes with both S and T ��
These results can be related to the conformal embedding invariant in the following way�

Consider �rst the case of even d� The diagonal cso	d
 invariant can be written in terms of
Jacobi theta functions and the Dedekind eta function� using

Xo �
�
�  

�d��	�
d��
� � �

d��
	 
 � Xv � �

�  
�d��	�

d��
� � �

d��
	 


Xs �
�
�  

�d��	�d��� � id���d��� 
 � Xc �
�
�  

�d��	�d��� � id���d��� 
 �
	������


where the arguments � and z are suppressed 		������
 re�ects the possible description of
the cso	d
 theory by free fermions
� We are only considering Virasoro specialized characters
here� i�e� these functions are in fact �i	z � �� � 
� Since ��	z � �� � 
 � �� in this setting

the partition function 	�����
 reads Zso�d� �
�
�
j j�d

h
j��jd � j�	jd � j��jd

i
� This is modular

invariant because S interchanges �	 and ��� while T interchanges �	 and ��� and all overall
factors cancel�

This diagonal partition function is however not the one we obtain from quasi�Galois
transformations� Using the modular transformation properties of the ��functions one can
write down another partition function that is only invariant under S and T �� namely 	�xing
the normalization such as to make the square of the identity character appear exactly once

(Zso�d� � j j�d��

h
j�	jd � j��jd

i
� or� re�expressed in terms of the cso	d
 characters 	������
�
(Zso�d� � jXo �Xvj� � jXs � Xcj� � 	������


Both the diagonal modular invariant 	�����
 and the partition function 	������
 contain
more information than one strictly gets from specialized characters� one may check ex�
plicitly that both are S�invariant if the spinor characters are distributed symmetrically� as
indicated�

If we write the matrix M corresponding to 	������
 in terms of g�representations we get�BBBBB�
Eoo �Eov � �

�Evo Evv � �

� � �r �

� � � �

�CCCCCA � 	������


���



where 	Epp�
���� � m�
p m��

p� � The result 	������
 implies that Eoo � Eov � Evo � Evv � E�
or in other words� that !mo � !mv � !e� Thus 	������
 can be identi�ed with 	������
�
There is also an independent consistency check of this identi�cation� Namely� we �nd that
K � �r��� so that both mo and mv have �r�� components� each equal to �� Hence they do
satisfy the sum rule 	������
� so this rather nontrivial requirement for the matrix

Zc�e� ��

�BBBBB�
E � � �

� E � �

� � �r�� �

� � � �

�CCCCCA 	������


to commute with S is ful�lled� The matrix 	������
 is the modular invariant that corre�
sponds to the branching rules 	������
� Note that the quasi�Galois symmetries imply that
	������
 commutes with S and T �� while the step from 	������
 to 	������
 does not follow
from any symmetry we know�

If d is a multiple of �� then the above argument has to be slightly extended� Since in
this case both 	������
 and 	������
 are S�T ��invariants� we have in addition to 	������

another matrix Z �

c�e�� and hence any physical linear combination Z	u� v
 �� uZc�e�� v Z �
c�e��

as candidates for the conformal embedding invariant� Explicitly� the matrix Z �
c�e� reads

Z �
c�e� ��

�BBBBB�
E � !e �

� E � �

!e t � �r��� ��	�
 �

� � � �

�CCCCCA 	������


for d � � mod �� and

Z �
c�e� ��

�BBBBB�
E � � �

� E !e �

� !e t �r��� ��	�
 �

� � � �

�CCCCCA 	������


for d � � mod ��� respectively� Fortunately� it is easy to eliminate all but one of the
candidates� namely by imposing the 
quantum dimension� sum rule

�
�
� 	Sso�d�
��� �

X
��Pg�

	Sg
��� 	������


	here the summation is over all �elds that are combined with the identity �eld
� Inserting
the ansatz Z	u� v
� we �nd that for the case of Ar with even r� this yields the unique
solution u � �� v � �� so that 	������
� respectively 	������
� is the correct solution 	and
we also have ��	�
 � �
� In contrast� for all other cases where d is a multiple of � 	such
as �g�E�
� the unique solution is given by u � �� v � �� i�e� only 	������
 survives the
constraint 	������
� Thus in all cases except Ar with r even the situation is the same as in
the general case where d is not divisible by ��

For odd d the use of theta functions is somewhat awkward� but it su�ces to observe
that the matrix

M �

�B� � �� �

�� � �

� � �

�CA 	������


���



commutes with the S�matrix

Sso�d� �
�
�

�BB�
� �

p
�

� � �p�p
� �p� �

�CCA 	������


Written in terms of g�characters� 	������
 becomes identical to 	������
� and the rest of the
argument is as before�

In the notation of 	������
� the conformal embedding invariant 	������
 reads

	Zc�e�
���� � �r�� ��������� �
X

	�	��
��
��

�
	���
	����

���������� �
X

	�	��
��
��

�
	���
	�����

���������� � 	������


while 	������
 and 	������
 with �	�
 � �� can be summarized as

	Z �
c�e�
���� � 	�r�� � �
 ��������� �

X
	�	��
��
��
�
	���
	����

���������� �
X

	�	��
��
��
�
	���
	�����

���������� � 	������


	By inspection one easily veri�es that these matrices commute with T � that the correct
number dim	so	d

 � dim	�g
 � d	d � �
�� of spin one currents are combined with the
identity �eld� and that the 
quantum dimension� sum rule 	������
 is satis�ed also for d
not a multiple of ��
 Note that in the summations in 	������
 and 	������
 	and also in
those for the branching rules 	������
 of Xo and Xv
 the weight � � � does not contribute�
except for Ar with even r� in which case it contributes to Xo 	if d � r	r � �
 � � mod ��

and to Xv 	if d � � mod ��
� respectively�

Let us �nally present some examples for the explicit form of the conformal embedding
invariants� The most interesting cases are those with exceptional �g� The primary �elds are
again labeled by their unshifted highest weights� We �nd

Zc�e�	F	��
 � j ��� �� �� ��� ��� �� �� 
�� ��� �� �� ��� ��� �� �� ��

���� �� �� ��� ��� 	� �� ��� ��� �� �� ��� ��� �� �� �� j�

� j ��� �� �� ��� ��� �� �� ��� ��� �� 	� ��� ��� �� �� 	�

���� �� �� 
�� ��� �� �� ��� ��� �� �� ��� ��� �� �� �� j�

�� � j � ��� �� �� �� j�

�����	��

���



and

Zc�e�	E
���
 � j ��� �� �� �� �� �� � ��� �� �� �� ��� ��� ��� �� �� �� �� �� � ��� �� �� �� �� ��

� ��� �� �� �� 	� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��

� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� 	� �� �� ��

� ��� �� �� �� 	� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��

� ��� �� �� �� 	� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��� �	� �� �� �� �� ��

� �	� �� �� �� 	� ��� �	� �� �� �� �� ��� �	� �� �� �� �� ��� �	� �� �� �� 	� ��

� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��

� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ���� �� �� �� �� �� j�

� j ��� �� �� �� �� �� � ��� �� �� �� 
� 	� � ��� �� �� �� ��� �� � ��� �� �� 	� �� ��

� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��

� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� 	� �� �� �� ��� ��� 	� �� �� 
� ��

� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� 
� ��� ��� �� �� �� �� ��

� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� �� ��

� ��� �� �� �� �� ��� �	� �� �� �� 	� ��� �	� �� �� �� �� ��� ��� �� �� �� �� ��

� ��� �� �� �� �� ��� ��� �� �� �� �� ��� ��� �� �� �� 	� ��� �
� �� �� �� �� 	�

� �
� �� �� �� �� ��� �
� �� �� 	� �� ��� ��� �� �� �� �� ��� ���� �� �� �� �� �� j�

�� � j � ��� �� �� �� �� �� j�

�����	��

���



Zc�e�	E����
 � j ��� �� �� �� �� �� ��� ��� �� �� �� �� ��� ��� ��� �� �� �� �� �� 	�� ��� �� �� �� �� ��� ��

� ��� �� �� �� �� �
� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��

� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� 	�� ��� �� �� �� �� ��� ��� ��� �� �� �� �� �� ��

� ��� �� �� �� �� �� ��� ��� �� �� �� �� ��� ��� ��� �� �� 	� �� �� ��� ��� 	� �� �� �� �� ��

� ��� �� �� 
� �� �� ��� ��� �� �� �� �� ��� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��

� ��� �� �� �� �� ��� ��� �	� �� �� �� �� �� ��� ��� �� �� �� 	� �� ��� ��� 	� �� �� �� �� ��

� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��� ��� �� �� �� 	� �� ��� ��� �� 	� �� �� 
� ��

� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��� ��� �� �� �� 	� �� ��� ��� �� �� �� �� �� ��

� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� 
� ��� ��� �� �� �� �� �� ��

� ��� �� �� �� �� 
� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� 	� ��� ��� �� �� �� �� �� ��

� ��� �� �� �� �� �� ��� ��� �� �� �� �� 	� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��

� ��� 	� �� �� �� �� ��� ��� �� �� �� �� �� ��� ��� �� �� 	� �� �� ��� ��� �� �� �� 	� �� ��

� ��� �� �� �� �� �� ��� �	� �� �� �� �� 
� ��� ��� �� �� �� 	� �� ��� ��� �� �� �� �� �� ��

� ��� �� �� �� �� 	� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� 
� ��

� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� 	� ��

� ��� 	� �� �� �� �� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� �� j�

� j ��� �� �� �� �� ��� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� ��� 	�� ��� �� �� �� �� �� ��

� ��� �� �� �� �� �� ��� ��� �� �� �� �� 
� ��� ��� �� �� �� �� �� ��� ��� �� �� �� �� �� ��

� ��� �� �� �� �� �	� ��� ��� �� �� �� �� �� 	�� ��� �� �� �� �� �� ��� ��� �� �� �� �� ��� ��
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Summary

Quantum �eld theory has proven to be a fundamental concept in modern physics and
has given surprising new insight into many mathematical structures� Its applications in
physics range from the standard model of elementary particle physics to the description
of excitations in solid state physics� In mathematics� ideas motivated by quantum �eld
theory have lead to new conjectures and novel proofs in many areas� e�g� the theory of
modular forms and number theory� algebraic geometry or the theory of low�dimensional
manifolds�

In two dimensions the structure of quantum �eld theories is particularly rich� while
for theories in four or more dimensions statistics is governed by the permutation group�
which restricts particles to have either bosonic or fermionic statistics� it is described in two
dimensions by the braid group which allows for particles with more general statistics� e�g�
anyons�

Another special feature of two dimensions is that in this case the conformal algebra
is in�nite�dimensional� As a consequence there are particularly powerful algebraic tools
for the study of those two�dimensional quantum �eld theories which are covariant under
the conformal algebra� These conformal �eld theories are also of considerable interest in
several physical applications� they arise naturally in the description of critical behaviour of
two�dimensional systems in statistical mechanics and of 
vacuum con�gurations� in string
theory�

One aspect of two�dimensional quantum �eld theories which makes a large subset of
them accessible to explicit calculations is that in two dimensions the number of superselec�
tion sectors can be �nite� in which case the theory is called rational� For certain rational
theories descriptions are known in which one can perform exact� and hence in particular
fully non�perturbative� calculations� One such description is the so�called coset construc�
tion� It allows to describe conformal �eld theories in the mathematical framework of a�ne
Lie algebras�

In this thesis various aspects of rational �eld theories are studied� In Part I we construct
explicitly examples for a particularly interesting subclass of conformal �eld theories� N � �
superconformal �eld theories� These theories are� in addition to their invariance under the
conformal algebra� also invariant under an extended 	N � �
 supersymmetry algebra�
In these models the operator product of certain �elds gives rise to a nilpotent �nite�
dimensional ring� the chiral ring� This ring structure allows to make contact to other
theories like topological �eld theories� Another important aspect of these models is that
they can be used as the inner sector of a space�time supersymmetric vacuum con�guration
in heterotic string compacti�cations�

In Chapter � we construct explicitly many examples for these models using the coset
construction� we classify all coset conformal �eld theories which have N � � supersym�
metry and derive several general properties of these models� e�g� that the set of Ramond
ground state in these theories is invariant under charge conjugation� To obtain a fully
consistent coset conformal �eld theory� several non�trivial constructions are required� in
particular �eld identi�cation �xed points� if they occur� have to be resolved� In Chapter
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� we obtain a complete proof that the models under consideration in this thesis are fully
consistent conformal �eld theories�

As it turns out� distinct cosets can describe the same conformal �eld theory� In Chapter
� we show that certain series of cosets for which rank and level 	or simple functions thereof

are interchanged describe in fact one and the same conformal �eld theory� In the proof we
use level�rank dualities for WZW theories which are also described in this chapter�

In Chapter � we use the models introduced in Chapter � to construct string vacua�
To use a conformal �eld theory in a compacti�cation of the heterotic string one has to
implement several projections on it� It is explained how this can be done with the help of
simple currents� This prescription leads to the de�nition of the so�called extended Poin�
car�e polynomial� We use this polynomial to compute the massless spectra of the string
compacti�cations based on the N � � coset models constructed in Chapter ��

In the investigations leading to the results presented in Part I of this thesis �eld identi�
�cation �xed points had to be resolved� In a closer study of the theories which describe the
resolution procedure we found that the matrix S� which implements in these theories the
modular transformation � �� ���� on the space of characters� possesses several surprising
symmetries� Closer examination revealed that such symmetries are in fact present in any
rational conformal �eld theory�

This new type of symmetry is the subject of Part II of this thesis� It is induced by
the Galois group of the algebraic number �eld which contains the entries of S� Galois
symmetry turns out to be extremely powerful� in Chapter � we show that it provides novel
methods for the study of fusion rings� The Galois symmetries induce automorphisms of
the underlying fusion rings� they can also be used to construct modular invariant partition
functions�

The tools developed in Chapter � are applied in Chapter � to the fusion rings of WZW
theories� It is shown that Galois symmetries can explain in a uniform way modular invari�
ants that had previously been constructed by various other methods� e�g� simple currents�
level�rank dualities or conformal embeddings� Moreover� in a systematic search� we discov�
ered several in�nite series of previously unknown exceptional invariants for WZW theories
based on algebras of type B and D at level ��

As it turns out� not all known modular invariants of WZW models can be explained
by Galois symmetries� However� in the special case of WZW models one can generalize
the method by allowing for more general mappings on weight space than Galois scalings�
These quasi�Galois symmetries are the subject of Chapter � of the present thesis� They
have various applications� they lead to sum rules for the elements of the modular matrix
S which can be used for the construction of modular invariants� Moreover� they relate
WZW theories at di�erent levels and provide a powerful algorithm for the computation of
the branching rules of conformal embeddings�
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Samenvatting �summary in Dutch�

Quantumveldentheorie speelt een belangrijke en fundamentele rol in de moderne natuur�
kunde en heeft geleid tot verrassende nieuwe inzichten in diverse mathematische structuren�
De toepassingen ervan in de natuurkunde lopen uiteen van het standaardmodel van de
elementaire deeltjes tot de beschrijving van excitaties in vaste�stof fysica� In de wiskunde
hebben idee en uit quantumveldentheorie in velerlei gebieden geleid tot nieuwe vermoedens
en bewijzen� voorbeelden daarvan zijn de theorie van modulaire vormen en getaltheorie�
algebraische meetkunde en de theorie van laag�dimensionale vari eteiten�

De structuur van quantumveldentheorie en is in het bijzonder in twee dimensies erg
interessant� daar waar in vier of meer dimensies de statistiek van deeltjes wordt bepaald
door de permutatiegroep� waardoor er slechts fermionen en bosonen mogelijk zijn� is het in
twee dimensies de vlechtgroep die deze rol speelt en zorgt voor de mogelijkheid van deeltjes
met andere statistiek� bv� anyonen�

Een andere bijzondere eigenschap in twee dimensies is dat de conforme algebra oneindig
dimensionaal is� Als gevolg hiervan kan er gebruik gemaakt worden van krachtige alge�
braische methoden om conform invariante quantumveldentheorie en in twee dimensies te
bestuderen�

Omdat in twee dimensies het aantal superselectiesectoren eindig kan zijn 	de zoge�
naamde 
rationele� theorie en
 staan veel tweedimensionale theorie en open voor expliciete
berekeningen� Voor sommige van die theorie en zijn er formuleringen waarin het mogelijk is
om exacte� en dus in het bijzonder niet�perturbatieve� berekeningen te doen� E�en van die
formuleringen is de zogeheten 
coset� constructie� De beschrijving van conforme veldenthe�
orie en op deze manier valt in het wiskundige kader van a�ene Lie algebra�s�

In dit proefschrift worden verschillende aspecten van rationele veldentheorie en bestu�
deerd� In het eerste gedeelte construeren we expliciete voorbeelden uit een bijzonder inter�
essante subverzameling van conforme veldentheorie en� namelijk de N � � superconforme
veldentheorie en� Deze zijn niet alleen invariant onder de conforme algebra� maar ook
onder een uitgebreide 	N � �
 supersymmetrie algebra� In deze modellen leiden de oper�
atorproducten van bepaalde velden tot een nilpotente� eindigdimensionale ring� de chirale
ring� Deze ringstructuur maakt het mogelijk contact te leggen met andere theorie en� zoals
topologische veldentheorie en� Een ander belangrijk aspect van deze modellen is dat ze
gebruikt kunnen worden voor de beschrijving van de interne sector van ruimte�tijd super�
symmetrische vacuumtoestanden in compacti�caties van heterotische strings�

In hoofdstuk � werken we expliciet een groot aantal voorbeelden van deze modellen
uit door gebruik te maken van de coset constructie� De classi�catie van alle coset con�
forme veldentheorie en met N � � supersymmetrie wordt uitgevoerd en diverse algemene
eigenschappen van deze modellen� bv� dat de verzameling van Ramond grondtoestanden in
deze theorie en invariant is onder ladingsconjugatie� worden afgeleid� Om te komen tot een
volledig consistente coset conforme veldentheorie is het nodig om een aantal niet�triviale
problemen op te lossen� in het bijzonder is het noodzakelijk dat de vaste punten die ontstaan
bij de identi�catie van velden opgelost worden� In hoofdstuk � wordt het volledige bewijs
gegeven dat de modellen die in dit proefschrift worden behandeld inderdaad consistent

���



zijn�
Het is bekend dat verschillende cosets verschillende beschrijvingen kunnen geven van

�e�en en dezelfde conforme veldentheorie� In hoofdstuk � wordt duidelijk gemaakt dat dit
verschijnsel optreedt voor bepaalde reeksen cosets die aan elkaar gerelateerd zijn door
verwisseling van de rang en de 
level� 	of eenvoudige functies daarvan
� In het bewijs
daarvan wordt gebruik gemaakt van level�rang dualiteiten voor WZW theorie en� die ook
in dit hoofdstuk worden beschreven�

In hoofdstuk � worden vervolgens de modellen uit hoofdstuk � gebruikt voor de con�
structie van stringvacua� Om in de compacti�catie van de heterotische string gebruik te
kunnen maken van conforme veldentheorie en is het noodzakelijk om een aantal projecties
uit te voeren� Uitgelegd wordt hoe dit mogelijk is met behulp van 
simple currents�� Deze
beschrijving leidt tot de de�nitie van het zogeheten uitgebreide Poincar�e polynoom� Dit
polynoom wordt daarna gebruikt om het spectrum van massaloze toestanden van de op
N � � coset modellen gebaseerde stringcompacti�caties uit hoofdstuk � uit te rekenen�

In het onderzoek uit het eerste gedeelte van dit proefschrift was het nodig om vaste
punten op te lossen� Bij nadere bestudering van de theorie en die dit proces beschrijven
hebben we gevonden dat de matrix S� die in deze theorie en de modulaire transformatie
� �� ���� op de ruimte van karakters beschrijft� verschillende verrassende symmetrie en
heeft� Verder onderzoek laat zien dat deze symmetrie en ook aanwezig zijn in alle andere
rationele conforme veldentheorie en�

Deze nieuwe symmetrie is het onderwerp van het tweede gedeelte van dit proefschrift�
Ze wordt ge 3nduceerd door de Galois groep van het algebraische getallenlichaam die die
componenten van S bevat� Galois symmetrie blijkt bijzonder krachtig te zijn� in hoofdstuk
� laten we zien dat ze leidt tot nieuwe methoden voor de bestudering van fusieringen� De
Galois symmetrie en induceren automor�smen van de onderliggende fusieringen� ze kunnen
ook gebruikt worden voor de constructie van modulair invariante partitiefuncties�

De gereedschappen die in � zijn ontwikkeld worden vervolgens in hoofdstuk � toegepast
op de fusieringen van WZW theorie en� We laten zien dat met behulp van Galois sym�
metrie en het optreden van bepaalde modulaire invarianten die eerder met andere metho�
den� zoals simple currents� level�rang dualiteiten en conforme inbeddingen zijn gevonden�
kunnen worden begrepen� Daarnaast hebben we in een systematische studie verschillende
oneindige reeksen van tot nog toe onbekende exceptionele invarianten van WZW theorie en�
gebaseerd op algebras van het type B en D op level �� geconstrueerd�

Het blijkt dat niet alle modulaire invarianten vanWZWmodellen kunnen worden gevon�
den met behulp van Galois symmetrie en� In het bijzondere geval van WZW modellen is het
echter mogelijk om deze methode te generaliseren naar meer algemene afbeeldingen op de
gewichtsruimte dan de Galois schalingen� Deze quasi�Galois symmetrie en zijn het onder�
werp van hoofdstuk �� Ze hebben verschillende toepassingen� ze leiden tot somregels voor
de elementen van de modulaire matrix S� die gebruikt kunnen worden voor de constructie
van modulaire invarianten� Bovendien relateren ze WZW theorie en op verschillende levels
en leiden ze tot een krachtig algoritme voor de berekening van splitsingsregels van conforme
inbeddingen�
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