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Abstract—The strength distributions of charge exchange spin-dipole excitations are calculated in the con-
tinuum quasiparticle random-phase approximation based on the Fayans density functional with modified
isovector part. An impact of the isovector parameter h−

2 of the DF3-f functional on the strength functions
of charge-exchange spin-dipole excitations (0−, 1−, 2−) are studied for 208Pb, 132Sn and 90Zr. The
sum rules are calculated using both ground state radii and direct integration of the total SD strength
distributions. A comparison with the experimental SD sum rule in 90Zr gives one a possibility to check
previously estimated h−

2 values which described well the recent combined estimate for ΔRnp in 208Pb
and corresponding equation of state parameters – symmetry energy J0 = J(ρ0) and a slope parameter
L0 = L(ρ0).

DOI: 10.1134/S1063778824700480

1. INTRODUCTION

The equation of state of isospin asymmetric nu-
clear matter determines the essential physical proper-
ties of nuclear systems from very neutron-rich nuclei
to neutron stars [1]. As the neutron–proton asym-
metry and symmetry energy of nuclei increases, the
neutron and proton density distributions differ more
substantially leading to formation of the neutron skins
or neutron halos in neutron-rich nuclei.

The neutron skin thickness, defined as the dif-
ference between the root mean square (rms) radii
of the proton and neutron distributions constrains
the nuclear matter and neutron matter equations of
state. The density dependence of the symmetry en-
ergy symmetry energy J0 = J(ρ0) and a slope pa-
rameter L0 = L(ρ0) in the vicinity of the nuclear
equilibrium density ρ0 correlates with the neutron-
skin thickness which is the difference of neutron and
proton rms radii ΔRnp =

√
〈r2〉n −

√
〈r2〉p. This is

a result of competition between surface-tension and
symmetry-energy effects. The uncertainty in these
quantities remains high at the present time mostly
due to the poorly constrained isovector components
of the NN-interaction. This influences the predictions
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of both nuclear properties and reliability of simulation
of core-collapse supernovae and neutron stars.

Many of observables determined by isovector part
of nuclear energy density functional are sensitive to
the stiffness of symmetry energy and neutron skin
thickness. An indirect information on ΔRnp can
be obtained from analysis of the energies of pygmy-
and giant dipole resonances, the energy differences
between the Gamow–Teller and isobar-analog (anti-
analog) resonances [2] and the dipole polarizability of
very neutron-rich nuclei [3]. Interestingly enough, the
neutron skin thickness is correlated with the product
of the electric dipole polarizability and the symmetry
energy at saturation density [4].

Several experimental techniques have been ef-
fectively applied for derivation of a neutron skin in
neutron-rich nuclei since numerous experiments on
excitation of isovector giant dipole resonances in
(α,α)-scattering. The DWIA analysis of proton elas-
tic scattering on 90Zr [5] at 800 MeV gave ΔRnp=
0.09 ± 0.07 fm. Analysis of antiprotonic x-rays
scattering on different targets up to 238U resulted
in a (model dependent) conclusion that neutron skin
thickness of 90Zr equals ΔRnp = 0.09 ± 0.02 fm [6].
An outstanding effort has been undertaken to find the
neutron skins of 208Pb and 48Ca from parity-violating
electron scattering on 208Pb (PREX-II [7]) and 48Ca
(CREX [8]).

In our previous study [9], we have extended the
Fayans energy density functional varying its previ-
ously unused isovector parameter h−2 with an addi-
tional condition for the upper limit on the energy of the
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GDR maximum in the 208Pb nucleus. At the same
time, the quality of the previous fit to nuclear densi-
ties, nuclear masses, single-particle levels and charge
radii was preserved. It was shown that the neutron-
skin thickness ΔRnp in 48Ca and in 208Pb from the
latest combined estimations [10] can be described in a
rather narrow interval of h−2 = 1.0−1.5 leading to the
estimate of EOS parameters J0 = 29.2 ± 2.6 MeV,
L0 = 53.3 ± 28.2 MeV.

In the present work we study an impact of the
isovector parameter h−2 of the DF3-f functional on
the strength functions of charge-exchange spin-
dipole (SD) excitations and corresponding non-
energy weighted sum-rules. For the reference 208Pb
nucleus, the charge exchange spin-dipole strength
functions were reconstructed from the differential
cross sections of 208Pb(p, n)208Bi reaction with the
polarized protons [11]. The 208Pb(n, p)208Tl reaction
cross section has not been fixed yet and the sum
rule value is not known. Thus, one has to look for
the charge exchange reactions experiments 90Zr(p,
n)90Nb and 90Zr(n, p)90Y at 296 MeV [12, 13] in
which the SD strength distributions were measured
and multipole decomposition analysis [14] lead to the
value of sum rule ΔS = S− − S+ = 147± 13 fm2.
A comparison with the experimental sum rule in
90Zr gives us yet additional option for estimating the
values of ΔRnp and corresponding EOS parameters
J(ρ0) and L(ρ0).

2. THEORY BACKGROUND

The ground state properties are described selfcon-
sistently within the new version of the Fayans energy
density functional DF3-f, proposed in [15] to describe
isobar-analog resonance (IAR). Then in addition to
the screening of the exchange Coulomb term due to
the Coulomb–nucleus interaction [15], the h−2 pa-
rameter of isovector part of the functional is activated
in the range obtained in [9] from the constraints im-
posed by nuclear matter EOS:

E(ρ, δ)/A = E(ρp, ρn)/ρ, (1)

E(ρ, δ)/A

= ε0F

{
3

10

(
ρ

ρ0

)2/3 [
(1− δ)5/3 + (1 + δ)5/3

]

+
1

3
a+

1− h+1 (ρ/ρ0)
σ

1 + h+2 (ρ/ρ0)
σ

(
ρ

ρ0

)

+
1

3
a−

1− h−1 (ρ/ρ0)

1 + h−2 (ρ/ρ0)

(
ρ

ρ0

)
δ2

}

. (2)

Here εpF, ρp, εnF, ρn are the Fermi energy and
proton (neutron) density, ρ = ρp + ρn, δ = ((ρp −
ρn))/ρ—the asymmetry parameter, ρ0 =

2k0F
3
/3π2 = 0.164(7)fm−3—equilibrium density of

symmetrical nuclear matter, �k0F is the Fermi mo-
mentum of nucleons of one type of particle, a+,−

and h+1 , h−2 are dimensionless parameters determined
from comparison with experimental data on ground
states; for the DF3-a functional, the value σ = 1
is used, C0 = (dn/εF)

−1 = 4ε0F/3ρ0—the inverse
density of states of nucleons of the same type on
the Fermi surface at the equilibrium point of sym-
metric matter. The EOS for pure neutron matter
corresponds to the value of the isospin asymmetry
parameter δ = 1. Starting from the DF3-f functional,
for each h−2 value we calculate the corresponding
neutron and proton rms radii, ΔRnp values and
corresponding EOS parameters J(ρ0) and L(ρ0).

For the strength functions of spin–isospin SD
excitations, we use the continuum quasiparticle
random-phase approximation (CQRPA). As in [16],
the resulting DF3-f + CQRPA model uses the effec-
tive approximation. The characteristics of the ground
states are described completely self-consistently with
the Fayans functional DF3-f [15]. One can neglect
the spin components in the EDF. This causes a rela-
tively small error in the binding energies (≈100 keV)
[17]. Therefore, the spin–isospin effective interac-
tion in the particle-hole channel (ph) is introduced
independently. It has a form of the Landau–Migdal
contact NN interaction in the particle-hole chan-
nel F0 supplemented by a π-meson and ρ-meson
exchanges modified by the nuclear medium [16] :
Fph = F0 + Fπ + Fρ. Here we specify only the
central spin–isospin term, which (in momentum rep-
resentation) reads F0 = C0g

′(σ1,σ2)(τ1, τ2), where
the normalization constant is C0 = (dn/εF)

−1 =
300 MeV fm−3, and g′ is the “Landau–Migdal
constant”. Detailed description of the finite-range
tensor terms due to the one-pion and one-rho-meson
exchanges can be found in our paper [16].

The strength functions of charge-exchange spin-
multipole excitations is found, as the response of the
nucleus to an external field

V̂0 =
(2L+ 1)!!

qL
jL(qr)T

M
JLS(n,σ)τ

±, (3)

where τ± = tx ± ity are the isospin changing opera-
tors in beta-plus and beta-minus channels, σ is the
spin operator and TM

JLS = [σ ⊗YL)]
J
M is the spin-

angular tensor, q—stands for momentum transfer.
For each h−2 parameter of the DF3-f functional from
the trial set h−2 = 0.5−3.0 used in [9] we calculate the
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Fig. 1. Strength functions of 0− (in blue), 1− (red) and 2− (green) excitations in 208Pb(p, n)208Bi and the total strength
function (full line). Calculation with the DF3-f functional for the h−

2 = 1.5.
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Fig. 2. Strength functions of 0− (in blue), 1− (red) and 2− (green) excitations in 90Zr(p, n)90Nb and total strength function
(ful line). Calculation with the DF3-f functional for the h−

2 = 1.5.

corresponding SD strength functions for Jπ = 0−,
1−, 2− excitations.

The sum rule for the SD excitations reads

ΔS =
∑

J

(S−
J − S+

J )

=
∑

J

2J + 1

4π
(N〈r2〉n − Z〈r2〉p). (4)

As it is seen, the SD sum rule is defined by the
neutron and proton mean-square radii. If the SD
strength functions were measured, the sum rule, in
principle, could be treated as a model-independent
(though large experimental uncertainties related to
multipole decomposition has to be kept in mind).
Naturally, the theoretical sum rule can be obtained by
self-consistently calculating the ground state neutron
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Fig. 3. Strength functions of 0− (in blue), 1− (red) and 2− (green) excitations in 90Zr(n, p)90Y and total strength function (ful
line). Calculation with the DF3-f functional for the h−

2 = 1.5.

and proton radii, or by direct integration of the SD
strength function calculated in the DF3-f + CQRPA.

3. CALCULATION DETAILS

In the CQRPA calculations of the strength func-
tions of charge-exchange spin–isospin excitations
and the sum rulesS+ and S− in τ±-channels, besides
escape width Γ ↑ associated with the emission of a
nucleon into the continuum, we may add the spread-
ing width Γ ↓. In such a way, the fragmentation of
excitations associated with complex configurations is
taken into account semi-microscopically. In the con-
tinuum QRPA framework, the width linearly depends
on the excitation energy in the daughter nucleus [17].
In the present calculations, the constant spreading
width Γ↓ = 1 MeV is used for the convenience of
presentation.

The following values of interaction constants were
used in the calculations: g′ = 1.1, the quenching fac-
tors for the SD excitations are QSD = (1− 2ζs)

2 and
for meson–nucleon couplings fπ = −1.45(1− 2ζπs )

2

and fρ = 2.64(1 − 2ζρs )2 in the normalization C0 =
300 MeV fm3. The possibility of different quenching
for the GTR and SD excitations is still under discus-
sion in the literature. For simplicity, in our calcu-
lations all the quenching factors for SD excitations
as well as for meson couplings are taken the same
as the quenching factor of the GT excitations QGT =
(gA/GA)

2 = (1− 2ζs)
2 where, GA = 1.27 being the

axial-vector coupling constant of weak interaction,
gA is its medium modified value and ζs = ζπs = ζρs =

0.08. Within our approach the value of QGT was
defined from the description of the magnetic moments
[18]. It should be noted that the strength constants
were determined earlier from calculations of charge-
exchange excitations [19]. They do not depend on the
mass number A and are kept unchanged in all the
calculations.

4. RESULTS

The SD strength distributions are calculated in
the CQRPA based on the modified DF3-f functional
with activated isovector parameter h−2 . The low-
lying pygmy SD resonances and the giant SD reso-
nances are associated with the parity changing cross-
shell transitions with j = l± 1/2 → j′ = l+1± 1/2.
The calculation in 208Pb, performed without taking
into account the quasiparticle–phonon interaction
gives for h−2 = 1.5 the maximum energy of total SD
strength distribution which is about 1.0 MeV higher
than the experimental one (Fig. 1). In Table 1,
the sum rule for SD excitations is found a) from
the formula (2) using the self-consistently calculated
radii and b) by integration of total CQRPA strength
functions in beta-minus and beta-plus channels for
132Sn and 208Pb at h−2 = 1.5 and 3.0. For 208Pb, the
S− component of the sum rule (2) in our calculation
is up to 1097.4 fm2 for the energy Ex < 50 MeV.
Notice that within the same model [15] and for h−2 =
1.5 an exhaustion of the GT sum rule 3(N – Z) in
208Pb is 13% for the energy range including pygmy
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Table 1. Spin-dipole sum-rule values, proton and neutron rms radii, and thickness of the neutron skin of 132Sn and 208Pb

132Sn, h−
2 = 1.5 132Sn, h−

2 = 3.0 208Pb, h−
2 = 1.5 208Pb, h−

2 = 3.0

S− − S+ (g.s.) 639.7 608.0 1097.4 1069.5

S− − S+ (calc.) 617.7 604.2 1069.6 1044.5
√
〈r〉2p (g.s.) 4.645 4.656 5.441 5.445

√
〈r〉2n (g.s.) 4.879 4.855 5.606 5.581

ΔRch (g.s.) 0.234 0.199 0.165 0.136

Table 2. Spin-dipole sum-rule values, proton and neutron rms radii, and thickness of the neutron skin of 90Zr

h−
2 0 0.5 1.0 2.0 3.0

√
〈r〉2n (g.s.) 4.273 4.267 4.262 4.254 4.250

√
〈r〉2p (g.s.) 4.173 4.176 4.179 4.183 4.186

ΔRnp (g.s.) 0.100 0.091 0.083 0.071 0.064√
〈r〉2ch (g.s.) 4.238 4.241 4.243 4.248 4.251

S− − S+ (g.s.) 154.96 152.41 150.17 146.77 144.83

S− − S+ (calc.) 152.46 150.02 148.14 144.88 142.98

resonances, and 62% up to the energy Ex = 30 MeV
(experimental value S−(Ex < 25 MeV) = (64 ± 5)%
[20, 21]).

The calculated strength functions of Jπ = 0−, 1−

and 2− excitations in 90Zr(p, n)90Nb reaction, as
well as the total spin-dipole strength function are
shown in Fig. 2. The position of the peak in total
experimental SD strength distribution at the excita-
tion energy Ex = 20 MeV is described. The DF3-
f + CQRPA calculation predicts a splitting of the SD
strength in this region due to 0− and 1− excitations.
The pygmy-resonance components of the total SD
strength distribution at 2 and 12 MeV are mostly due
to 2− excitations. The calculated strength functions
of Jπ = 0−, 1− and 2− excitations in 90Zr(n, p)90Y
channel and the total strength function are shown
at Fig. 3. The theoretical total experimental SD
strength distribution has a pygmy-resonance peak
at the excitation energies of Ex = 5 MeV and the
main resonance peak at 13–14 MeV both having
a complicated composition with dominance of 1−

and 2− excitations. The experimental distribution
is rather structureless. Description of the widths in
total SD strength function needs some assumptions
on the energy dependence of the widths of individual
excitations (see e.g. [17, 22]).

As can be seen, the sum rule values corresponding
to the same h−2 are very close to each other. Fig-

ure 4 shows the dependence of the sum rule for SD
excitations (calculated by direct integration of total
CQRPA strength functions) on the the h−2 parameter
and ΔRnp value. The experimental value of ΔS =

147 ± 13 fm2 [14] is described by h−2 = 1.5 which
correspond to ΔRnp = 0.08± 0.03 fm close to the
results of the experiments on proton elastic scattering
[5] and antiprotons annihilation [6].

5. CONCLUSIONS

The spin-dipole excitations strength distributions,
neutron skins and parameters of nuclear equation of
state are studied for 208Pb, 132Sn and 90Zr within
the Fayans density functional with modified isovector
part. We investigate an impact of the isovector pa-
rameter h−2 of the DF3-f functional on the strength
functions of charge-exchange spin-dipole excitations
(0−, 1−, 2−). The position of the main peak in total
experimental SD strength distribution in 90Zr at the
excitation energy Ex = 20 MeV is reasonably well
described, though the calculation predicts its splitting
due to the shift of the 0− and 1− excitations maxima.

A good correspondence is observed between the
experimental and theoretical non-energy weighted
sum-rules calculated for different h−2 values both by
using the g.s. neutron and proton radii and by direct
integration of the strength functions. The interval of
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Fig. 4. The total sum rule for SD excitations calculated by integration of total CQRPA strength functions in beta-minus and
beta-plus channels. Their dependence is shown on the the h−

2 parameter (upper part) and ΔRnp (bottom). The experimental
value of ΔS = 147± 13 fm2 [14] is also shown.

h−2 = 1.0−1.5 (Table 2) describing the experimental
SD sum rule ΔS = 147± 13 fm2 [14] and the “ex-
perimental” 90Zr neutron skin ΔRnp(90Zr)= 0.08 ±
0.03 fm [5] and ΔRnp = 0.09 ± 0.02 fm [6] is close
to the results obtained in [24] and to the interval
found in our paper [9]. The latter was shown to
provide a good description of the ΔRnp(208Pb) =
0.18 ± 0.004 fm and corresponding EOS parameters
J0 = 29.2 ± 2.6 MeV, L0 = 53.3 ± 28.2 MeV derived
in [10] from a combined analysis of the values of the
“neutron skin” ΔRnp of 208Pb and 48Ca nuclei from
the PREX-II, CREX experiments, the results of ab
initio calculations of EOS and the properties of the
ground states of nuclei, from astrophysical observa-
tions and data on the detection of gravitational waves
from the merger of binary neutron stars.

New experimental data on the charge-exchange
sum rule in a number of neutron-rich isotopes based
on a reliable multipole decomposition technique
would be desirable, as they can give an additional
information on density dependence of symmetry
energy.
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