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Introduction:

Utilizing the theoretical underpinnings, such as
Schrédinger's equation, Supersymmetric
Quantum Mechanics (SQM), and the Phase
Function Method (PFM) both charged and
uncharged systems are investigated, with a focus
on a diverse array of local and nonlocal potentials,
including the intricate landscape of screened
Coulomb potentials. The conversion of non-local
nuclear interactions into simplified local forms
addresses challenges inherent in solving the
Schrodinger's equation for complex potentials.

The impact of short-range interactions between
nuclei, primarily due to multi-pion exchange
processes and nucleon recoil necessitates
consideration of non-local nuclear interactions,
represented by two variables 'r' and ‘r'’.
Mathematical ~ manipulation  enables  the
conversion of multivariable non-local potentials
to simplified local forms. While exact solutions
exist for specific potentials, such as Coulomb,
Square well, etc., others like Hulthén and
Yamaguchi are solvable only for the S (I=0) state.
Various mathematical approaches, including
supersymmetry factorization and Phase function
methods, are employed to address this limitation,
focusing on charged and uncharged systems. The
o—o system is extensively studied with different
potentials to explain scattering phase shifts. The
Hulthén potential is identified as an effective
model for deuteron and a-nhucleon interactions.

The relationship between regular and irregular
solutions of non-local and local potentials has
been explored, emphasizing the energy
dependence of the Yamaguchi potential and the
need to assess if an energy-dependent potential
out-performs an energy-independent one.

The Jost Function plays a central role in
developing a relativistic S-matrix theory, crucial
for understanding particle interactions during

scattering processes. the Jost function is
instrumental in analyzing bound and resonant
states, as well as low-energy scattering data. Its
holomorphic nature in the upper complex k-plane
(Im K>0) is key, as the zeros of the Jost function
in this plane are directly linked to bound state
energies. The On-Shell Jost Function is easily
calculated from its integral representation,
correlating phase values with scattering phase
shifts with a pi phase difference. For accurate
modeling of few-nucleon systems (e.g., o-
nucleon, p-p, n-3He), a customized centrifugal
barrier term is incorporated, aligning with nuclear
interaction requirements. Literature has explored
diverse approaches to approximate higher partial
waves.

The supersymmetry transformation operators (T},
T, T3, Ta), integral to particle physics are
exploited to create phase-equivalent potentials.
The SUSY operators transition between fermionic
and bosonic states, unveiling super partners in
quantum field theory. They modify the initial
Hamiltonian uniquely: T; eliminates the ground
state, T» adds an extra bound state, and T3 and T4
alter the Jost Function and potential singularity.
Applying these operators to a Manning-Rosen
potential yields phase-equivalent potentials, and
comparisons with experimental data validate the
approach.

We make use of deformed Hulthén potential,
delving into the derivation of regular and Jost
solutions. The incorporation of energy-dependent
correction terms enhances the accuracy of
predictions, particularly for deuteron and triton
nuclei, contributing to a nuanced understanding of
nuclear forces.

Results and Discussions:

Figures 1 to 4 depicts scattering phase shifts and
cross sections data of some of the system studied
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Fig.1: 3Dy energy dependent and independent
phase shifts as a function of Era, with ref. [1, 2].

In Fig.1 we see phase shifts due to energy
dependent potential out performs energy

independent one.
240

— §,(Pure Nuclear) 8,(Coulomb-Nuclear-SUSY)

§ (Coulomb-Nuclear) ~ ©  §, (Laha et. al))
5} (Pure Nuclear) A § (Afzal ct. al)
180 - =wwee §, (Coulomb-Nuclear) ~ * &, (Laha ct. al.)

&, (Pure Nuclear-SUSY) # &, (Afzal et. al))

_
8
E 120 L N\ TR g T S—
g
Jg A * x *
]
< 60
o
2
-1
=
o
0 T Lo
%o 4
-60 T T T T
0 5 10 15 20 25

E  (MeV)

th(
Fig. 2: @ — a scattering phase shifts for S and D
waves with standard data.

The a — a phase shifts for S and D waves have
better match with standard data for Coulomb-
Nuclear-SUSY interactions, as shown in Fig. 2.
Fig. 3 shows that differential scattering cross
section, for a-p system match well with
Brockman et. al. data. Phase-shifts generated
from the phase equivalent potentials, using four
SUSY transformations match well with
experimental data.
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Fig. 3: Differential scattering cross section for a-
p system at two different lab energies with
standard data [3].
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Fig4: Phase shifts for 1/2(+); 1/2(—) and 5/2(+)
o-n states for Phase equivalent potentials with
reference data [4].

References:

1. R.A.Arndt, L. D. Roper, R. A Bryan, R.
B. Clark, B. J. Verwest and P. Signel, Phys
Rev D 28, 97 (1983).

2. F. Gross and A Stadler, Phys Rev C 78,
014005 (2008).

3. K. W. Brockman Phys. Rev. 108, 1000

(1957).

G. R. Satchler, L. W. Owen, A. J. Elwin,

G. L. Morgan and R. L. Walter, Nucl.

Phys. A 112, 1 (1968).

Available online at www.sympnp.org/proceedings



