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Abstract

A χ2 function is defined and discussed which is useful in comparing Poisson distributed
data with a sum of models, each of which may have correlated and uncorrelated systematic
uncertainties on its rate and shapes. Furthermore, each model may be estimated in each bin
by a Poisson process, such as a Monte Carlo or a control sample of data, and these Poisson
fluctuations are incorporated in the χ2 function described here. A program for computing
this χ2 function is described.

1 Introduction

The results of a typical analysis on CDF consist of one or more histograms of data binned
in particular variables which are chosen to separate events produced by a particular signal
process from those produced by a set of background processes. Various signal hypotheses
may be tested, parameterized by masses, cross sections, branching ratios, and possibly other
parameters. The signals and backgrounds too may depend on a variety of parameters which
are not of primary interest but which are needed for the measurement – examples include
efficiencies, acceptances, integrated luminosity, and background production cross sections. The
parameters which describe the signal and background processes which are not being measured
or constrained by the analysis are called “nuisance parameters”. Their values are needed in
order to extract measurements of, or limits on, the parameters of interest, and uncertainty in
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their values usually results in reduced sensitivity to the parameters of interest. The systematic
errors on observables are parameterized in terms of these nuisance parameters.

The situation is that data must be compared to a model, and the predictions of the model
are uncertain because of the lack of precise knowledge of the nuisance parameters. If two
models are being compared, a null hypothesis and a test hypothesis, then the uncertainties in
the nuisance parameters can reduce the ability of the analysis to reject one of the hypotheses –
a search for a small signal in a counting experiment on top of a background with a systematic
error that’s of comparable size to the expected signal will not be a strong test of the signal
model. Similarly, if a histogram is used and the shape of the background model’s prediction is
known imprecisely, the sensitivity may also suffer. In particular, if a background histogram is
allowed to float in a fit in such a way as to match data in which a signal is actually present,
then the sensitivity for detecting and measuring such a signal is reduced.

This situation arises very commonly when computing χ2, even in the stages of an analysis
before the limits or measurements are computed. Further complications arise from the fact
that typically data are expected to consist of an incoherent sum of several different background
(and signal) processes, each with its own sensitivity to nuisance parameters. Furthermore,
background predictions as well as signal predictions often are estimated with Monte Carlos,
scaled with luminosity, and thus have independent Poisson statistical variations in each bin1.
Often processes are estimated using control samples in data, and these too are subject to Poisson
fluctuations. Some models are not subject to Poisson fluctuations. Examples of this kind of
model are a falling exponential for a lifetime distribution, or a Gaussian resolution function
with some parameterization of the tails. Even these functions usually have uncertainties in
their rates and shapes which may be correlated with those in the portions of the model which
are estimated with Poisson-limited processes.

A more mundane issue arises in the case of small Poisson statistics. A typical χ2 function
does not handle very well cases in which the number of observed or predicted events is zero
or small. Data are usually displayed in histograms with error bars of size

√
n where n is the

number of events observed in a bin, and these errors are often used in the computation of χ2

(this is often called Neyman’s χ2, or χ2
N [1]). For small n, these errors become less useful, and

for bins with zero counts, an error of zero can be misleading. Typically bins with no observed
counts in them are simply ignored in histogram fits using the χ2

N function. Using the square
root of the predicted value instead of the observed data is called Pearson’s χ2, or χ2

P [1]. Neither
of these χ2 functions gives unbiased fits to histograms – Neyman’s χ2

N when applied to fitting
a peak where few events are observed in the tails tends to underestimate the area of the peak,
while Pearson’s χ2

P produces fits which tend to overestimate the area of the peak.

1Some Monte Carlos produce weighted events, where the weights of the Monte Carlo events are not all the
same. Sometimes, the weights of Monte Carlo events are negative. This chisquared function does not (yet) take
into account the distribution of sums of arbitrarily weighted Monte Carlo events.
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A general χ2 function has a great variety of uses. Once the number of degrees of freedom
is known, one can estimate the goodness-of-fit of a model to a particular histogram using the
value of χ2. The goal of this note is to provide a χ2 function that includes as many different
kinds of uncertainties that models are known to have. Section 4 below describes the issues
relevant to computing the number of degrees of freedom. A χ2 function can also be used to
select one of two hypotheses, by taking a difference of chisquared values computed under the
two hypotheses [2]. The difference of χ2 values, say, between two measurements of the same
quantity, may also be distributed according to the χ2 distribution, for Gaussian-distributed
measurements. This, and many other important features of pulls and their distributions, are
described in [3].

2 Available Tools

An interesting proposal for an improved χ2 function has been available for some time [1,4]. The
approach is to notice that χ2 is related to the likelihood function in the Gaussian limit (large
Poisson statistics),

χ2 ≈ −2 ln (L/L0) , (1)

and to use this to extrapolate the meaning of χ2 for situations where Gaussian statistics does
not hold. Here L is just the product of the Poisson probabilities of observing the events in
each bin given the summed predictions, and L0 is the Poisson probability of observing the
same events if the prediction in each bin exactly matches the observation in that bin. For the
simplest case of comparing a single data histogram against a single model with no systematic
or statistical uncertainties,

L =
I∏

i=1

tni
i e−ti

ni!
(2)

and

L0 =
I∏

i=1

nni
i e−ni

ni!
, (3)

where there are I bins, ni data events are observed in bin i, and ti events are predicted in bin
i, following the notation of [4]. Using Equation 1, we may write the associated χ2 function as

χ2 = 2
I∑

i=1

[(ti − ni)− ni ln(ti/ni)] (4)

for this simple case.
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Computing a difference of χ2 values for two hypotheses H1 and H2 is equivalent to taking
the logarithm of the likelihood ratio, a common test-statistic

∆χ2 = χ2
1 − χ2 = −2ln (L1/L2) . (5)

This relationship between ∆χ2 and the likelihood ratio holds even if the hypotheses have dif-
ferent numbers of degrees of freedom (L0 does not depend on the hypothesis).

In the case that the ti are subject to systematic uncertainties, the chisquared function is
modified to include their effects. In [4], the effects of relative systematic uncertainties were
considered to be multiplicative for “backgrounds” and a division is performed for “signals”. In
this work, no distinciton is made between a signal and a background, and relative systematic
uncertainties are treated multiplicatively. Using a notation close to that of [4],

t′i = ti

K∏
k=1

(1 + fkSk) , (6)

where t′i is a systematically varied prediction in bin i, and there are K nuisance parameters
Sk. The fk’s are the relative systematic unceratainties on the normalization of the model
histogram due to the nuisance parameters separately. In the program described below, the
nuisance parameters Sk have gaussian constraints applied to them, unless the user asks them
to be unconstrained. The scale of the systematic uncertainties are determined by the fk, so the
Gaussian constraints on the Sk are all centered on zero with unit width. The Sk are limited in
fits so that the t′i do not go negative in any bin.

In [4], the fk’s are separate for each bin i. This strategy allows the shape of the t′ histogram
to vary because a change in a nuiscance parameter affects each bin in a correlated but different
way. The weakness in this approach is that the effects are multiplicative and symmetric. A
shape error in a histogram with jet energies or a reconstructed mass, for instance, may change
with the jet energy scale by shifting the scale up or down on the abscissa. A bin which may
have zero or very few predicted events in it in the central value histogram (say, it is beyond a
kinematic edge), may acquire a sizeable contribution when the jet energy scale is shifted up,
for example. Treating the corresponding fik in this bin as a symmetric systematic uncertainty
means that shifting the jet energy scale downwards may drive this bin’s contents negative. The
multiplicative procedure fails when the central value bin contents are predicted to be zero.
Besides, it is awkward to compute shape errors as correlated multiplicative changes on bin
contents. Typcally, an analyzer will make separate histograms showing the shape of the model
histogram under variations of an unknown nuisance parameter, and it would be best to input
these for calculation of a chisquare.

Formulas for this χ2 are given in [4] for the case that one of the model predictions suffers from
Poisson statistical fluctuations in each bin separately, where a maximization of the likelihood
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function is done over the scaling factor between the Poisson process used to make the prediction
and the predicted value in each bin, and the true value in each bin (which is only imperfectly
known due to statistical fluctuations in the estimate). The calculation simplifies due to the
fact that this optimization of the Poisson means can be performed in each bin separately. For
the case of one Poisson process producing the prediction, the maximization of the likelihood
can be done analytically for the Poisson means, and a numerical technique is needed for the
maximization with respect to the nuisance parameters. If more than one contributing process
suffers from Poisson uncertainty, then one must solve a system of coupled quadratic equations
which has no analytic solution. Practical techniques exist, however [5], and the joint fitting of
a sum of models to the data is accomplished by the HBOOK routine HMCMLL, which exists in root
as the class TFractionFitter. Reference [4] adds in the possibility of including non-Poisson
contributions too.

TFractionFitter does not seem to have the ability to input external constraints, let alone
correlated external constraints. A common requirement of experimenters is to compute a χ2

for data as compared to a sum of models, where each model has its own shape and systematic
uncertainty on its normalization, which requires the input of constraints.

Incorporating model histogram shape uncertainty in the abovementioned tools is either
awkward or even incorrect for some kinds of shape uncertainty. One may be able to include
shape variation clumsily in the above by creating a shape difference histogram and fitting
its fraction, but this technique lacks generality because not all histogram shape uncertainties
can be parameterized in this manner. An example is the jet energy scale uncertainty on a
reconstructed invariant mass distribution. Ideally one would like to transform the x-axis, or
slide a distribution left and right along the axis. If the background or signal has a peak in
it, or even an edge, then forming difference histograms can create unphysical negative peaks
when the parameter range is scanned. If a central-value-estimate background shape histogram
has a peak in it, and a systematically varied background histogram has a peak also but which
is displaced, then an interpolated background histogram shouldn’t have two peaks of lesser
strength, but rather one peak situated midway between the two original estimates. The same
applies for many kinds of signal.

3 Proposed χ2 Function

The proposed χ2 function follows Equations 8 and 9 of [4], with some minor modifications.
The “signal” and “background” distinctions of [4] are not needed – the goal is to compare
the data with a sum of models, and a test using this χ2 can be to compare the χ2 values of
a fit including a signal and a fit omitting a signal, for example. There may even be several
signal contributions present simultaneously. The “signal” and “background” distinctions of [4]
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are in fact used to distinguish between estimations that have Poisson discreteness in each bin
and those that do not, and since we’d like to generalize this function to have arbitrarily many
contributions of both kinds, the labels “signal” and “background” aren’t important to the χ2

calculator.

In the same vein, systematic uncertainties on the contributions are proposed to be handled
in a symmetric manner for all contributions – they are taken to be relative multiplicative
uncertainties, and no division is done. These two prescriptions, multiplicative relative errors
and division-based errors are the same to first order in the uncertainty.

Another small change with respect to [4] is that the uncertainties in the scaling factors on
the Poisson contributions to the model are assumed to vary with the nuisance paramters Sk

(in [4] these normalizations were their own, independent nuisance parameters). This change
allows all uncertain predictions to have correlated uncertainties.

The proposed χ2 function is

χ2 = 2
I∑

i=1

[ L∑
l=1

tli

K∏
k=1

(
1 + f t

lkSk

)
+

J∑
j=1

ρji − ni


−ni ln

(∑L
l=1 tli

∏K
k=1

(
1 + f t

lkSk

)
+
∑J

j=1 ρji

ni

)

+
J∑

j=1

 ρji

Fj
∏K

k=1

(
1 + fF

jkSk

) − bji

− bji ln

 ρji

Fj
∏K

k=1

(
1 + fF

jkSk

)
bji

]

+
K∑

k=1

S2
k (7)

The meanings of the symbols used in Equation 7 is given below. There are I bins in the
histogram, and the index i runs over the bin number. The number of events observed in the
data in bin i is given by ni. There are J model prediction components which are subject to
Poisson statistics in each bin, and the index j runs over these. There are L model prediction
components which are not subject to Poisson statistics in each bin, and the index l runs over
these. There are K independent sources of systematic uncertainty, which are parameterized
by the nuisance parameters Sk, where the index k runs over the nuisance parameter index.
The model prediction tli is the lth non-Poisson model component’s prediction in bin i. For
model predictions with Poisson errors in each bin, bji is the number of counts in bin i from
the subsidiary Poisson measurement which determines the model contribution. These event
counts need to be scaled to compute the expected contribution from this model to bin i, and
the central value of this prediction is Fjbji for Poisson source j. The unknown true value ρji of
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the rate of Poisson component j in bin i is solved for by minimizing χ2 with respect to all of
these.

The nuisance parameters Sk are assumed to have Gaussian constraints centered on zero
with unit width, which is included as part of the χ2 function. The systematic uncertainties
on tli and Fj are parameterized by f t

lk for the non-Poisson components and by fF
jk for the

Poisson components. These f ’s are the fractional multiplicative uncertainties on the overall
normalization of each component.

Shape uncertainties are parameterized by specifying alternative shape histograms for the tli
and bji, separately for each nuisance parameter. The central-value and systematically varied
histogram shapes can be interpolated using a technique common at LEP [6]. Histogram extrap-
olation is not allowed, and so the nuisance parameters are constrained to vary within the range
given by the shape uncertainty estimation if provided for a particular model for a particular
nuisance parameter. Separate shapes need to be supplied for positive changes of the nuisance
parameter and for negative changes so that the central value histogram may be interpolated
in both directions. For histograms with shape errors arising from several nuisance parameters,
the central value histogram is interpolated using the first varied shape, and the result of the
interpolation is the starting point for an interpolation to the second varied shape, and so on.
The order in which the interpolations is done in the software described below is the order in
which the nuisance parameters were specified in the template histograms.

Histograms estimated from non-Poisson models are interpolated, keeping the normalization
of the central-value histogram, adjusted by the systematic uncertainties, parameterized by the
nuisance parameters. This way the normalization uncertainty is not double-counted between
the interpolation and the normalization procedures, and allows for histograms without shape
uncertainty to have normalization uncertainties. The shape uncertainties are parameterized by
the same set of nuisance paramters and so are correlated with all other uncertainties. Histograms
for Poisson models are also interpolated, but the systematically varied histograms must have
the same number of entries as the unvaried, central-value histogram. The reason for this is
so that the individual bins in the interpolated histogram also obey Poisson statistics, which is
important for the minimization of χ2 over each bin’s rate for each Poisson component. The
underflow and overflow bins of a histogram are not considered as part of the normalization nor
are they interpolated.

While the uncertainties on histogram normalizations and shapes can be correlated with
each other, the nuisance parameters Sk are treated as uncorrelated. In general, any correlated
errors can be broken down into sums of uncorrelated components, and indeed estimates of
correlations in uncertainties are often determined by estimating the magnitudes and signs of
the 100% correlated components.
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The bin-by-bin Poisson rates ρji may be solved for by setting

∂χ2

∂ρji
= 0, ∀j, i (8)

and solving the J coupled quadratic equations which follow (they are similar to Equation 11
in [4]). These are given by

1− ni∑L
l=1

∏K
k=1

(
1 + f t

lkSk

)
+
∑J

m=1 ρmi

+
1

Fj
∏K

k=1

(
1 + fF

jkSk

) − bji

ρji
= 0, ∀j, i (9)

These systems may be solved separately for each bin i, independently of the others. This
system may be solved iteratively by setting the ρji = Fjbji on the initial step, and then solving
each quadratic equation using the previous step’s estimate of ρji’s, always choosing the positive
root, as it has been noted that only one physical solution exists. The iterative procedure usually
settles down to a precision of one part in 108 after ten iterations or so. A numerical procedure
using Newton’s method is used in HMCMLL [5] for solving the same problem.

The χ2 function is then minimized over all values of the Sk, as is recommended in [4] A
requirement which arises when considering allowable ranges of systematic variation is that no
bin of any prediction may go negative when the nuisance parameters are varied. Typically
one truncates the Gaussians (e.g., in priors if doing a Bayesian analysis) or one chooses an-
other function than a Gaussian. Limits are set on the MINUIT parameters Sk which keep the
predictions non-negative. The values of these limits are computed from the f t

lk and fF
jk values.

4 The Number of Degrees of Freedom

TFractionFitter defines the number of degrees of freedom to be the number of points used
in the fit minus the number of templates, which works (almost) because there are no external
constraints on the normalization of each template in the fit. Adding in a count of the nuisance
parameters is needed because they contribute to the χ2 from their Gaussian constraints. A
naive estimate of the number of degrees of freedom therefore is

nDOF = I − J + K (10)

using the notation defined for Equation 7.

The chisquare distribution for a given number of degrees of freedom nDOF is readily com-
puted using the CERNLIB routine prob, which is supplied in root as a part of TMath. Unfortu-
nately, the standard prob function assumes that the measurements included in the calculation
of χ2 are drawn from independent Gaussian parent distributions, where the variances of the
Gaussians include both statistical and systematic fluctuations. In counting experiments, it is
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often the case that nothing has a Gaussian distribution, particularly the numbers of events in
bins with few expected entries. Nonetheless, it is common to use the prob function along with
Neyman’s χ2 to estimate goodness-of-fit.

Because the likelihood construction of χ2 behaves like Neyman’s and Pearson’s χ2 for large
event counts, it is just as appropriate to use prob for the χ2 defined here. But there are some
issues to keep in mind which arise due to the extensions introduced here and in [4].

A question comes up in which bins contribute to the number of degrees of freedom. If a
histogram has more bins than is required – that is, the predictions and observations in some
bins of a histogram are identically zero, then those bins ought not to contribute to the number
of degrees of freedom.

For bins with a small number of expected events, observing zero events contributes a small
amount to the χ2 proposed here. Observing one event contributes a large amount to χ2, of
order the reciprocal of the prediction (the presence of nuisance parameters or Poisson predictions
modifies this). This is in contrast to Neyman’s χ2 in which the uncertainty on one event observed
is unity, and the contribution of this bin to Neyman’s χ2 is of order unity. Using a χ2 based
on the likelihood function will always have this feature. One consequence of this feature is that
events on the tails of histograms will be given very large weights in fits to these histograms,
which requires constructing fully realistic models of histogram tails. Often fits done for technical
reasons (calibrations, resolution estimates) use functions which do not have complete models of
the tails, and using a more “forgiving” χ2 function can sweep issues of mismodeled tails under
the rug, which is sometimes desired.

In analogy to a condensed-matter phenomenon, degrees of freedom “freeze out” when the
number of events in a bin gets so small that discreteness plays an important role, with a limiting
case of the distribution of the numbers of events being a delta-function at zero. In fact, the
interpretation of any χ2 function of Poisson data using the χ2 distribution is only approximate
because the possible outcomes of the experiment are discrete and countable, and some values of
χ2 are impossible to obtain because there is no number of events in any bin which gives exactly
that value. The warning is that to use this χ2 or any other as the input to prob requires caution
and thought. A standard procedure if it is desired to have a χ2 function which approximately
follows the chi-squared distribution is to rebin the data so that no bin is empty or has few
events in it.

Another issue with the number of degrees of freedom is that separate nuisance parame-
ters may have the same effect on the normalization of a histogram, and thus the chisquared
minimization procedure will adjust both of the nuisance parameters in the same way. In a
simple situation where a data histogram is fit to a single non-Poisson model with two nuisance
parameters with the same f t

lk values, then the values of the two corresponding Sk’s will always
be equal to each other at the χ2 minimum, and will thus not be independent contributions to
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the total χ2.

If the uncertainty on a model histogram’s normalization resulting from a nuisance parameter
is very large, and there aren’t other constraints on the same nuisance parameter, then the
Gaussian constraint on the nuisance parameter contributes very little to the chisquared function
and shouldn’t be counted as a full degree of freedom.

The fact that each bin of each Poisson template introduces one free parameter plus one
constraint cancels in the chisquared calculation except in cases where the statistics are low and
degrees of freedom are frozen out.

5 Available Software

The χ2 function proposed here is calculated by a routine which runs in root, taking histograms
as input. All of the histogram declarations in the software use the base class TH1 so that
any of the derived histogram classes can be used on input. The code is available at http:
//www.hep.uiuc.edu/home/trj/cdfstats/csm.html, along with some examples of how to
use it.

One uses this package by creating a member of the class csm, by supplying a histogram of
data (assumed to be Poisson distributed in each bin with an unknown mean – that is, histograms
with one entry per event), and model templates with systematic error information. Then two
methods, csm::chisquare and csm::ndof can compute the chisquare and number of degrees
of freedom. One can also access the best fit values of the nuisance parameters, as well as a
histogram which contains the model which fits the data best after minimizing over the nuisance
parameters Sk and each bin’s ρ values. Below are descriptions of the methods of class csm.

void csm::set_htofit(TH1 *h)

This method identifies a histogram of Poisson-distributed
data. The histogram is cloned when the method is called,
and the clone is deleted when the csm destructor is called
or when set_htofit is called again.
The overflow and underflow bins are ignored in the chisquare
calculation.

void csm::add_template(TH1 *template_hist,
Double_t sf,
Int_t nnp,
char* npname[],
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Double_t *nps_low,
Double_t *nps_high,
TH1 *lowshape[],
Double_t *lowsigma,
TH1 *highshape[],
Double_t *highsigma,
Int_t pflag)

Adds a model component to the sum of models to be compared with the data,
and parameterizations of the errors on this model component.
All of the template histograms, shape histograms, and errors are copied into
dynamically allocated storage within the csm class, and thus the originals
do not need to persist after the add_template method is called.

template_hist may be a Poisson or non-Poisson histogram. If this
histogram comes from a Poisson subsidiary process (like MC
or a subsidiary measurement), be sure that its normalization
corresponds to the entries made in it. (That is, let sf
do all of the scaling).

sf scale factor to multiply template by to compare w/ data
(e.g., (data_lum/MC_lum) for a MC Poisson histogram

nnp number of nuisance parameters -- each is constrained to
zero by a Gaussian of unit width. Each nuisance parameter
corresponds to one entry in the nps_low, nps_high,
lowshape, highshape, lowsigma, highsigma arrays below.

npname nuisance parameter names. Correlations between systematic
errors across templates are handled by labeling the
separate nuisance nuisance parameters by name.

nps_low These are the f’s, fractional uncertainties on the
nps_high normalization (sf) due to each nuisance parameter.

Fractional uncertainties may be asymmetric -- when a
nuisance parameter is negative, it may have a different
effect on sf than when it is positive. Typically
nps_low and nps_high will have opposite signs, as
opposite variations of a nuisance parameter will have
opposite effects on sf -- these signs need to be
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input as opposite in this case. But sometimes you get
the same sign of variation, in which case nps_low and
nps_high may have the same sign. The relative sign
is important across templates too. If one template’s
normalization goes up while another goes down when
a nuisance parameter is fluctuated (anticorrelation),
this is reflected in the relative signs of these f’s.

lowshape Histogram corresponding to a variation of a nuisance
parameter in the negative direction. Used to parameterize
shape uncertainty. The normalization of this histogram
is unimportant. Set this pointer to zero if you do
not have a shape variation for this template for this
nuisance parameter. If the template histogram is
Poisson, then lowshape and highshape should have the
same number of entries as the template histogram in order
to make the interpolated histogram follow Poisson
statistics too.

lowsigma How many sigma of variation the lowshape corresponds to.
(example: you may make a histogram of a variable that
corresponds to changing the jet energy scale by two sigma.
set this number to 2. The sign of this 2 doesn’t matter).
Note: histogram extrapolation is not allowed -- the nuisance
parameter this shape uncertainty corresponds to is constrained
to lie between -|lowsigma| and +|highsigma|.

highshape Same as lowshape, but for positive variations of the
corresponding nuisance parameter. Set it to zero if you
don’t have this uncertainty evaluated.

highsigma See the description of lowsigma.

pflag Set to 1 if the template histogram is Poisson distributed
and set to 0 otherwise.

Double_t csm::chisquared()

The chisquared calculation described here.
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Int_t csm::ndof()

Very naive calculation of the number of degrees of freedom

TH1F* csm::getbestmodel()

Returns a pointer to a histogram which is the best comparison with the data
(minimizes chisquared). This histogram is deleted when the class destructor
is called, so clone it if you need to keep it. Be sure to call the
chisquared method to do the minimization calculation before accessing the
best model. The internal bestmodel histogram is a TH1F histogram with the
same number of bins and lower edge and upper edge as the histogram passed
in with set_htofit. This histogram isn’t used in the calculation of
chisquared but is supplied as a diagnostic.

Calls to add_template may refer to nuisance parameters multiple times
and so an internal list is made in csm of all the parameters,
identified by name. These methods access that list.

Int_t csm::getnparams()

Returns the number of independent nuisance parameters given in the
add_template calls.

Double_t csm::getparam(Int_t iparam)

Access to value of a nuisance parameters after the minimization. Be sure
to call the chisquare method before calling this method.

Double_t csm::getperror(Int_t iparam)

MINUIT’s uncertainty. Don’t believe it. Because of discrete behavior of
interpolated Poisson histograms, a nuisance parameter can vary by a tiny
amount and an event can flip from one bin in a model histogram to another,
changing the chisquared by a discrete amount. The chisquared function
therefore has discontinuities in it and MINUIT may get a strange derivative
if it chooses too small a finite difference.

char* csm::getpname(Int_t iparam)
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The corresponding parameter’s name.

csm::~csm()

Be sure to delete your instance of csm before setting up another chisquared
calculation. There is not facility to edit an existing list of template
histograms -- in order to change a chisquared calculation, the csm instance
should be deleted and the setup repeated. One exception to this -- you can
call set_htofit again to find the chisquared of a new data histogram without
rebuilding the list of model templates. This is designed for convenience
when running pseudoexperiments.
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