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ABSTRACT
Equations for the divergence of the vector and axial-
vector currents follow from the assumptions of Lorentz
invariance, locality, the chiral SU(3) X SU(3) algebra of cur-
rent densities (time components), and the usual electro-
magnetic and weak Hamiltonians. The divergence condi-
tions lead to derivations of the low-energy meson theorems

which do not involve "Schwinger' terms.
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During the past few years, there have been several spectacular successes
in the area of low-energy pion theorems brought about by the application of cur-
rent algebral and PCAC. 2 Some of these are the Adler-Weisberger sum rule

for GA/G ,3 the relations of the K{; and Kf, decays to the K¢ decays,4’ 2 the

4 2
pion-nucleon S-wave scattering lengths, 6 the relations between K — 37 and
K — 27 decays,7 the S—-wave hyperon non-leptonic decay amplitudes,8 etc. In
all these examples, the derivations proceed by considering the S-matrix elemehts
in which at least one pion has been ""reduced' out, whereupon the application of
the PCAC hypothesis and the zero energy limit leads to the equal time commu-~
tators (ETC) among current densities. In general, the ETC between current
densities can involve more complicated structure than simple ¢ -functions, as
pointed out by Schwinger. 9 The existence of these more complicated terms may
nevertheless not play any role as to the validity of the low-energy theorems.
This is because these theorems actually involve only the commutators of a charge
with a current density, which is of a more restricted nature than the commuta-
tor for two densities.

In this note, we show that Lorentz invariance, locality and the SU(3) X SU(3)
algebra of current densities (time components), coupled with PCAC and the usual
electromagnetic and weak Hamiltonians, allow divergence equations for vector
and axial-vector currents Vy and A“ of the form10
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where the indices «, B, ¥ refer to internal degrees of freedom (y is a charge

index; for «, B, see Ref. 10), a“ and LV are the electromagnetic field and lepton
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current, respectively, b and C% are numerical constants, and 7% the pion fields.
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The low energy theorems involving soft pions follow simply from Eq. (1b).
For example, consider the decay K—~ mep, with the S-matrix elemen(i): %we v|iKD).
u in
Reducing the pion and replacing the interpolating pion field by

a_lfua HY ~ ﬁ_ﬁ?
- —ala A% + oL CBy(V“ A“)S

leads immediately to the results of Callan and Treiman4 in the limit where the
pion four-momentum vanishes, All low energy theorems follow in a similar
manner.

Equations (1a) - (1b) were postulated by Veltma.n11 as independent of current
algebra. 12 We show here that those equations follow essentially from the algebra
of the jg‘ . Thus ETC contain more information than do the ""divergence conditions"
(1a) - (1b), in case of commutators which yield Schwinger terms. The fact that the
low energy theorems may be derived from (la) - (1b) directly shows that the
Schwinger terms in the ETC do not affect the low energy results. 13

Equations (la) - (1b) are derived in the following manner:

Given a current jfi (xt), we construct its charge Qa(t) as
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where r, are 1, 2, 3 (space) indices. This form follows from space-rotation

invariance and the requirement that

@) %% = i[H,Q%®)]

where H is the total Hamiltonian. 14 The fact that the summation on the right-hand
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side of Eq. (3) starts from n = 2 follows from the vector transformation property

of jﬁ (Xt) under Lorentz transformations <the generator of a Lorentz transforma-
S . s _ 3~ - L

tion in the K direction is M i = tPK - fd X X H (xt)) . The summation is

usually over a finite number of terms. 15

Suppose now that

(5) H(Xt) = Hj (Xt) + Hl(i’t)
such that
(6) 1), @% )] =0

where H _(t) = f d3S<’HO(3<’t). Then, with Eq. (3),
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We now show how to get the "divergence equations' essentially from the

algebra of the jg . Let us start with the case where

€.m, Lo,

(8) H,(Xt) = H &t = e, " (EY) a? (Ft)

and let Qa(t) be an axial charge. We neglect for the moment other contributions

to Hl' We want to calculate the commutator [He" m.

end we note that

(xXt), QX (t)] . To this
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This form is dictated by space rotation invariance and by
(11) (a2 @0, Q%™ (1] = b%ag

From Eqgs. (7) -(10), we get
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Since the expression in curly brackets cannot be a Lorentz-scalar field,

it has to vanish. Thus

(13) N Aﬁ (Xt) = -ieb® a" A‘;‘ (Xt)
as the contribution of electromagnetism to the divergence of the Aﬁ‘ current.
Similarly, we can calculate the contribution from the weak Hamiltonian, adding
to H1 (Xt) of Eq. (8) a term \/—%— (lepton current) X (hadron current), with the
hadron current given as in Ref. 16, and assuming that the hadron charges com~
mute with the lepton current (analogous to Eq. (9) for electromagnetism) .17 The
term a7 in the expression for BMA;f is due to the PCAC hypothesis. 2

Finally, we may further note that each of the two terms in the curly brackets
in Eq. (12) must vanish, due to the fact that one is a total divergence, while the
other is not. This in turn implies that the Schwinger terms in the commutator
[A% (®8), § o™ (yt)] vanish after the ¥ integration, as follows from Eq. (10),

and that d" ji (Xt) =i [Hl (Xt), QY (t)] , as follows from Eq. (7).
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where m is the bare mass of the W-meson. However, this introduces Gr2

terms in the divergence equations (1a) and (1b), and does not affect lowest

order results.



