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ABSTRACT 

Equations for the divergence of the vector and axial- 

vector currents follow from the assumptions of Lorentz 

invariance, locality, the chiral SU(3) X SU(3) algebra of cur- 

rent densities (time components), and the usual electro- 

magnetic and weak Hamiltonians. The divergence condi- 

tions lead to derivations of the low-energy meson theorems 

which do not involve “Schwinger” terms. 
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I 

During the past few years, there have been several spectacular successes 

in the area of low-energy pion theorems brought about by the application of cur- 

rent algebra’ and PCAC. 2 Some of these are the Adler-Weisberger sum rule 

for GA/Gv, 3 the relations of the m3 and KQ4 decays to the KQ2 decays, 4’5 the 

pion-nucleon S-wave scattering lengths, 6 the relations between K - 3n and 

K - 27r decays, 7 the S-wave hyperon non-leptonic decay amplitudes, 8 etc. In 

all these examples, the derivations proceed by considering the S-matrix elements 

in which at least one pion has been “reduced” out, whereupon the application of 

the PCAC hypothesis and the zero energy limit leads to the equal time commu- 

tators (ETC) among current densities, In general, the ETC between current 

densities can involve more complicated structure than simple 6 -functions, as 

pointed out by Schwinger, ’ The existence of these more complicated terms may 

nevertheless not play any role as to the validity of the low-energy theorems. 

This is because these theorems actually involve only the commutators of a charge 

with a current density, which is of a more restricted nature than the commuta- 

tor for two densities. 

In this note, we show that Lorentz invariance, locality and the SU(3) X SU(3) 

algebra of current densities (time components), coupled with PCAC and the usual 

electromagnetic and weak Hamiltonians, allow divergence equations for vector 

and axial-vector currents VP and Ap of the form 10 

(lb) aCLAa = aro - iebQ!aCIAo - GLFYCa! 
P P 

where the indices o, p, y refer to internal degrees of freedom (y is a charge 

index; for o, p, see Ref. lo), ap and Lv are the electromagnetic field and lepton 

current g respectively, bo and C a 
Pr 

are numerical constants, and 7rQ! the pion fields. 
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The low energy theorems involvin, 0’ soft pions follow simply from Eq. (lb). 

For example, consider the decay K- 7r e v , with the S-matrix elemenku$re IJ 1 K> 0 
in 

Reducing the pion and replacin, 0’ the interpolating pion field by 

p = l(P o! P) adAI*.+GLP%” (VP -A) 
1 Pr P pI 

leads immediately to the results of Callan and Treiman4 in the limit where the 

pion four -momentum vanishes 0 All low energy theorems follow in a similar 

manner D 

Equations (la) - (lb) were postulated by Veltman 11 as independent of current 

algebra. 
1z We show here that those equations follow essentially from the algebra 

of the jt . Thus ETC contain more information than do the “divergence conditions” 

(la) - (lb)9 in case of commutators which yield Schwinger terms. The fact that the 

low energy theorems may be derived from (la) -(lb) directly shows that the 

Schwinger terms in the ETC do not affect the low energy results. 
13 

Equations (la) - (lb) are derived in the following manner: 

Given a current j: (zt), we construct its charge &o(t) as 

(2) Qa(t) = Jd3 ??jt (zt) e 

Let H (??t) be the energy density. Then 

(3) a’jz(zt) = i [H(x’t), &o(t)] + c 3 . . . a’% Q’ <a 
n32 

rl . . . rnO$ 
m 

where ri are 1, 2, 3 (space) indices. This form follows from space-rotation 

invariance and the requirement that 

(4) a”Qa!(t) = i [H, &o(t)] 

where H is the total Hamiltonian. 14 The fact that the summation on the right-hand 
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side of Eq. (3) starts from n = 2 follows from the vector transformation property 

of j; (Zt) under Lorentz transformations 
c the generator of a Lorentz transforma- 

tion in the K direction is MoK = tPK - /d3G xK H (zt)) , The summation is 

usually over a finite number of terms. 15 

Suppose now that 

(5) 

such that 

Het) = Ho(zt) -I- H,(zt) 

(6) [Ho(t), Q”(t;l = 0 - 

where Ho( t ) = ld3’EHo (zt). Then, with Eq. (3), 

(7) a’j,o! (?h) = i [HL(Zt),Qo(t)] + c a’l.. . arr%Fl 
. . . m 

r o 
. . . o t-3 

n- 
n31 m 

Wenow show how to get the “divergence equations” essentially from the 

algebra of the jt . Let us start with the case where 

(8) H,,(%) = Heam (?t) = ejiom”(x‘t) a’ (zt) 

and let &o(t) be an axial charge. We neglect for the moment other contributions 

to HI. We want to calculate the commutator (Zt), Qg (t )] . To this 

end we note that 

(9) 

and 

(10) [Qi (4, j;‘“’ (?a)] = bCYA; (zt) + g; c a”... ap”Nk . . . r o.... (zt) 
n rl n- m m 
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This form is dictated by space rotation invariance and by 

(11) A: (=), Qeeme (t) 1 = b”At (Zt) 

From Eqs. (7) - (lo), we get 

dczAo (Zt) = 
P 

-ieboa?AF(x’t) 

(12) 
rl + -ieak(rit) Ca . . . ?fnNhvQ 

n 1 . . . 
r o o (3) 

n--‘-L 
m m 

m 

Since the expression in curly brackets cannot be a Lorentz-scalar field, 

it has to vanish. Thus 

(13) ap AQI (?3) = 
P 

- iebo apA; (zt) 

as the contribution of electromagnetism to the divergence of the A; current. 

Similarly, we can calculate the contribution from the weak Hamiltonian, adding 

to HI (x’t) of Eq. (8) a term $$$$ (lepton current) X (hadron current), with the 

hadron current given as in Ref. 16, and assuming that the hadron charges com- 

mute with the lepton current (analogous to Eq. (9) for electromagnetism) 0 
17 The 

term a 7rQ in the expression for @A: is due to the PCAC hypothesis. 
2 

Finally, we may further note that each of the two terms in the curly brackets 

in Eq. (12) must vanish, due to the fact that one is a total divergence, while the 

other is not, This in turn implies that the Schwinger terms in the commutator 

AZ (Zt), jcornO vanish after the 2 integration, as follows from Eq. (lo), 

and that acl j; (Zt) = i [HI (Zt), Qo (t)] , as follows from Eq. (7). 
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