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A B S T R A C T 

We present an analytic description of the spherically symmetric gravitational collapse of radiatively cooling gas clouds, which 

illustrates the mechanism by which radiative cooling induces gravitational instability at a characteristic mass scale determined 

by the microphysics of the gas. The approach is based on developing the density–temperature relationship of the gas into a full 
dynamical model. We convert the density–temperature relationship into a barotropic equation of state, based on which we develop 

a refined instability criterion and calculate the density and velocity profiles of the gas. From these quantities, we determine 
the time-dependent mass infall rate on to the centre of the cloud. This approach distinguishes the rapid, quasi-equilibrium 

contraction of a cooling gas core to high central densities from the legitimate instability this contraction establishes in the 
env elope. We e xplicate the model in the context of a primordial mini-halo cooled by molecular hydrogen, and then provide two 

further examples: a delayed collapse with hydrogen deuteride cooling and the collapse of an atomic-cooling halo. In all three 
cases, we show that our results agree well with full hydrodynamical treatments. 

Key words: hydrodynamics – stars: Population III – dark ages, reionization, first stars. 
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 I N T RO D U C T I O N  

ravitational collapse leads to the formation of objects (e.g. stars,
egenerate stars, black holes, and planets) with densities tens of
rders of magnitude abo v e the cosmic mean. The physics rele v ant
o the collapse include, at the bare minimum, gravitation, thermal
ressure, and radiative cooling. Historically, these dynamics could
e modelled only under very restrictive assumptions amenable to
nalytic or – by modern standards – quite primitive numerical
echniques. Today, the rele v ant physical processes can be included in
reat detail in sophisticated numerical simulations. Such studies have
ielded powerful insights into the physics of gravitational collapse
nd star formation in a wide range of environments. Ho we ver,
he very complexity of these simulations can obscure the physical
nterpretation of the results. Moreo v er, there is increasing interest
oth in dark matter models which modify the gas collapse and star
ormation processes (e.g. due to exotic energy injection, Ripamonti,
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apelli & Ferrara 2007 ; Freese et al. 2016 ; Qin et al. 2024 ) and
n the possibility that dark matter could itself cool and collapse to
orm dark compact objects (D’Amico et al. 2018 ; Shandera, Jeong &
rasshorn Gebhardt 2018 ; Chang et al. 2019 ; Gurian et al. 2022 ;
ippert et al. 2022 ; Bramante et al. 2024a ; Bramante, Diamond &
im 2024b ). In the face of large model and parameter spaces,

tate-of-the-art numerical treatments become rapidly intractable.
t is thus a desirable goal to synthesize and distill the lessons
earned from state-of-the art simulations into expository theories
hich (thanks to enormous advances in computational power) no

onger need be restricted to such extremely idealized situations. A
articularly appealing theoretical target is the characteristic mass of
ravitationally unstable clouds in which these objects form. While the
ass function of the eventual collapsed objects depends on various

omplex physical processes, the typical mass of the natal collapsing
louds imposes an o v erall scale on the problem. 

Analytic descriptions and heuristics describing the collapse of
ases go v erned by simple equations of state (i.e. isothermal or
olytropic) are well established in the literature (e.g. Larson 1969 ;
enston 1969 ; Hunter 1977 ; Shu 1977 ). We mention in particular two
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imilarity solutions: the first derived by Larson ( 1969 ) and Penston
 1969 ) (hereafter referred to as the Larson–Penston solution) and 
he second by Shu ( 1977 ) (the Shu solution). The former describes
he highly dynamical collapse of a Bonnor–Ebert sphere, while the 
atter describes the quasi-static collapse of a singular isothermal 
phere triggered by the propagation of a raref action w ave after
ore formation. Simulations typically reveal an intermediate picture, 
here the gas is accelerated towards the Larson–Penston solution 
 v er the course of the collapse (Foster & Che v alier 1993 ; McK ee &
 an 2002 , 2003 ; T an & McKee 2004 ; Omukai, Hosokawa & Yoshida
010 ). 
While similarity solutions are exact under the appropriate as- 

umptions, they are by definition scale-free. That is to say they 
rovide no information about the beginning, end, or mass scale 
f the collapse. The canonical scale associated with the onset of
ravitational collapse is the Jeans scale, which describes a balance 
etween pressure gradients and gravity (Jeans 1928 ), given as 

 J ≈ 1 . 44 

(
k B ̄T 

μm P G 

)3 / 2 

ρ̄−1 / 2 , (1) 

here k B is the Boltzmann constant, T̄ is the average temperature, ρ̄
s the average density, μ is the mean molecular weight, and G is the
ravitational constant. The intuition is that at small scales pressure 
amps out perturbations while at large scales gravity o v erwhelms 
ressure support. This argument was later refined by Ebert ( 1955 )
nd Bonnor ( 1956 ) as the Bonnor–Ebert mass, discussed in detail
elow. Calculating the Jeans mass requires a fixed density and 
emperature. To use the Jeans mass to pick out a scale for the
nset of gravitational collapse is justified when the spatial density 
tructure of the gas is independent of its pressure, for example, if the
ensity probability distribution is set by the statistics of turbulence 
i.e. Hopkins 2012a , 2013 ). 

In fact, as the density in a gas cloud increases the Jeans mass will
ecreases as long as T increases more slowly than ρ3 . A consequence
s that o v er the course of the collapse, progressively smaller scales
an become unstable. This process of ‘hierarchical fragmentation’ 
s ultimately terminated when the gas becomes optically thick and 
nable to cool efficiently. For stars, the opacity limit is of the order
f 10 −3 M � (Rees 1976 ). Still, the opacity-limited Jeans mass has
ften been adopted in the dissipative dark matter literature as a 
euristic for the final mass of the hydrostatic objects produced by the
ollapse, either directly (Chang et al. 2019 ; Bramante et al. 2024a ,
 ; Fernandez et al. 2024 ) as a lower bound (Gurian et al. 2022 ), or
ith a constant multiplicative enhancement (Shandera et al. 2018 ). 
An alternative argument picks out a preferred scale in the collapse 

ased on deviations from isothermality, which alter the effective 
quation of state of the gas. It is widely appreciated that when
he temperature is an increasing function of density fragmentation 
s suppressed, while when temperature is a decreasing function of 
ensity fragmentation is enhanced (Larson 1985 , 2005 ; Li, Klessen & 

ac Low 2003 ). These observations are theoretically best justified 
n the case of filamentary geometries (Ostriker 1964 ; Inutsuka & 

iyama 1992 ; Omukai et al. 2005 ). On the other hand, fragmentation
n the sense of growth of initially small perturbations at some 
referred scale has been shown to be inef fecti ve during global free-
all collapse (Bodenheimer, Tohline & Black 1980 ; Tohline 1980a , b ).

Neither Jeans-based argument explicitly considers the 
in)ef ficiency of radiati ve cooling. Without cooling, a Jeans 
nstable cloud compressionally heats to a new equilibrium. On 
he other hand, in the presence of ef ficient radiati ve cooling e ven
 Jeans stable cloud will contract on its cooling time-scale, which 
ay be comparable to its free-fall time-scale (Bromm, Coppi & 

arson 1999 ; Gurian, Jeong & Liu 2024 ). Radiative cooling is
xplicitly accounted for in the Rees–Ostriker criterion (Rees & 

striker 1977 ). The argument is that a gas which can cool within
ts dynamical (free-fall) time-scale will undergo dynamical collapse 
nd fragmentation. This calculation requires single, characteristic 
alues for the temperature and density. In general, the gas will have
ome density, temperature, and chemical composition gradients. The 
ooling and free-fall time-scales can be quite sensitive, non-linear 
unctions of these quantities. It is not obvious that a naive average
f these quantities o v er some re gion will produce a physically
easonable mass scale for the onset of the collapse. Bertschinger 
 1989 ) and White & Frenk ( 1991 ) accounted for this fact by
alculating the ‘cooling radius’, defined as the radius at which the
ocal cooling time (in some assumed density profile) equals the 
ge of the system. In particular, Bertschinger ( 1989 ) disco v ered a
imilarity solution based on this length scale for the evolution of the
ooling gas. Ho we v er, the similarity e xists only for power-la w (i.e.
cale-free) density and pressure profiles. Cooling can modify the 
f fecti ve equation of state of the gas in a scale-dependent manner,
hich limits the applicability of the solution. Moreo v er, the scale at
hich cooling becomes efficient does not necessarily correspond to 

he onset of gravitational instability or fragmentation. An efficiently 
ooling core of a gas cloud can remain quasi-hydrostatic in structure
f the sound crossing time is sufficiently short, while fragmentation 
epends on small-scale density perturbations. 
As detailed abo v e, this e xtensiv e prior work does not fully succeed

n defining the characteristic mass scale of gravitational instability 
n all contexts. The shortcomings of these heuristics are clearly 
llustrated in the context of the formation of first generation, Pop.
II stars. In pristine (metal-free) gas, the only significant coolants 
re molecular hydrogen (H 2 ), hydrogen deuteride ( HD ), and atomic
ydrogen (H) (Liu & Bromm 2018 ). In the canonical case of
ini-haloes cooled by molecular hydrogen, gravitational instability 

as long been associated with the Jeans scale at the minimum
emperature o v er the course of the collapse, i.e. the ‘loitering point’
Bromm et al. 1999 ), ∼ 10 3 M �. This minimum temperature occurs
t the critical density of molecular hydrogen, where collisional de- 
 xcitation be gins to compete with radiative de-excitation. Ho we ver,
adiative cooling typically becomes efficient (in the sense that the 
ooling time-scale becomes as short as the dynamical time-scale) 
t a lower density and larger mass scale 10 4 –10 5 M �. Moreo v er,
he early phase of the collapse is monolithic, with typically only
ne star-forming cloud per halo. That is, fragmentation into multiple 
eans-scale clumps does not actually occur and should not be invoked
s an explanation for this characteristic mass. 

Here, we show that the characteristic scale of this gravitational 
nstability can be explained by the non-homologous nature of 
he collapse, as a rapidly cooling (Rees–Ostriker unstable) but 
erturbatively (Jeans/Bonnor–Ebert) stable core of gas contracts 
nd establishes an out-of-equilibrium density profile in its envelope. 
he degree of instability in this envelope determines the subsequent 

nfall rate on to the protostar and its disc. To this end, we develop a
ynamical model of gravitational collapse which explicitly includes 
hermal pressure, gravity, and radiative cooling. As our test-bed, we 
onsider the collapse of primordial gas into first generation (Pop. 
II) stars, where the initial conditions for the collapse are dictated
y the cosmological environment, and can be described in terms of
 relatively small number of physical quantities. Still, a wide range
f outcomes are possible for the collapse, and the resulting Pop. III
nitial mass function remains a topic of active research (for re vie ws
ee Bromm & Larson 2004 ; Bromm 2013 ; Haemmerl ́e et al. 2020 ;
MNRAS 537, 580–597 (2025) 
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lessen & Glo v er 2023 ). As discussed abo v e, the radiativ e cooling
hysics are thought to play a crucial role in setting the mass-scale
f the gravitational collapse. In addition to molecular hydrogen,
he formation of deuterated hydrogen (which has a permanent
ipole moment) leads to a lower minimum temperature and less
assive collapsing cloud (Ripamonti et al. 2007 ; Hirano et al.

014 ; Nishijima, Hirano & Umeda 2024 ), while nearly isothermal
tomic cooling is associated with direct collapse and the formation
f supermassive stars (Omukai et al. 2005 ; Latif et al. 2013 ; Wise
t al. 2019 ; Kiyuna, Hosokawa & Chon 2023 ). 

In all these cases, cooling remains efficient until the formation
f a protostar. For this reason, the density in the centre of the
loud rapidly increases independent of the gravitational stability
f the cloud. As the density increases, the core becomes both
maller and less massive. If cooling remains efficient indefinitely,
he endpoint of the contraction phase is an infinitely concentrated
nd infinitesimally small core. It is this core-contraction which can
but does not necessarily) establish true gravitational instability in
he surrounding envelope. We demonstrate here that the mass scale of
his gravitational instability in the envelope is controlled by features
n the temperature–density relationship. 

Our model uses the density and temperature-dependent radiative
ooling rates to determine the quantity of gravitationally unstable gas
left behind’ by the core-contraction, and to estimate the rate at which
his gas will fall on to the protostar, or its accretion disc. The model
s based on defining an ef fecti ve barotropic equation of state for the
as from the thermal evolution in the core, which in this work we
upply using a one-zone model. We demonstrate the importance of a
odified Bonnor–Ebert (MBE) scale in regulating the contraction of

he core. We use this scale to calculate a radial density profile for the
as, including both the pressure-supported core and the envelope
stablished by the core contraction. We assess the gravitational
in)stability of the envelope by the ratio of the mass enclosed to
he MBE mass, κMBE . Finally, we determine the time-dependent

ass infall rate from the envelope on to the central hydrostatic
ore, which we connect to κMBE . The model preserves the physical
ransparency and computational expediency of analytic approaches
hile including the full temperature and density dependence of the

ele v ant cooling rates. 
The calculation is perhaps most similar in spirit to the series of

apers Sipil ̈a, Harju & Juvela ( 2011 , 2015 ) and Sipil ̈a, Caselli &
uvela ( 2017 ), which calculated a Bonnor–Ebert stability criterion
or pre-stellar gas clouds using numerically determined density and
emperature profiles for the clouds. Where those works determined
he ‘critical’ (marginally stable) central density of gas cores of fixed

ass, we undertake a dynamical model of the collapse based on
 sequence of marginally stable cores. The details of the imple-
entations also differ: where those works determined the density

nd temperature profiles using an iterative procedure involving 1D
adiative transfer, we employ an effective barotropic equation of
tate generated by a one-zone calculation. Then, we determine the
ensity and temperature profile by numerically solving a sequence
f ordinary differential equations. 
We also mention the recent work of Smith et al. ( 2024 ), which

llustrates the importance of radiative cooling in controlling the
nset of gravitational instability by demonstrating a critical gas-
hase metallicity for star formation in strong ultraviolet backgrounds.
hat work uses a combination of 3D simulations and one-zone
odelling. In the one-zone model, the density and temperature

an be understood as average values. Gravitational collapse (and
hus star formation) is assessed to begin when the one-zone density
nd temperature indicate instability via the isothermal Bonnor–Ebert
NRAS 537, 580–597 (2025) 
riterion. Here, we develop an MBE condition, which can account
or temperature/pressure gradients as well as the contribution of dark
atter to the gravitational potential. Based on this Bonnor–Ebert

riterion, we build up a 1D model of the dynamics of the collapse
nd show that the onset of instability can be understood through the
hermal evolution of the gas. We explain the qualitative agreement
etween our model (in which the gas core is never unstable) and
ean density-based calculations such as that of Smith et al. ( 2024 )

n Appendix D . 
Our approach is tractable in large part due to the powerful tools

rovided by the SciML ecosystem (Rackauckas & Nie 2017 ) for
olving and analyzing differential equations. 

This paper is organized as follows. In Section 2 , we develop
he model using the canonical example of a mini-halo cooled by
olecular hydrogen. Subsequently, we apply these methods to two

urther examples in Section 3 . In Section 3.1 , we consider the
ase where a delayed collapse leads to the formation of HD which
elays gravitational instability to higher density and smaller mass.
n Section 3.2 , we consider the opposite case, where the gas heats
p to the point that atomic cooling is efficient. There, the nearly
sothermal equation of state leads to prompt gravitational collapse.

e close with a summary of the main results and brief discussion of
irections for future research. 

 M E T H O D  

e begin by explicating the model using the example of a mini-halo
ooled by molecular hydrogen, before turning to further examples in
he next section. The steps of the calculation are as follows. We first
enerate an ef fecti ve barotropic equation of state for the gas using a
ne-zone calculation (Section 2.1 ), and then apply this equation of
tate to compute a radial density profile valid in the inner, pressure-
upported part of the cloud, which we first use to generalize the
onnor–Ebert stability condition and apply this condition to calculate

he full density profile of the gas (Section 2.2 ). We discuss the
ravitational stability of this density profile by calculating the ratio
f the mass enclosed to the Bonnor–Ebert mass and, in Section 2.3 ,
y calculating the time-dependent mass accretion from the envelope
n to the core. 

.1 The effecti v e equation of state 

ur model requires an ef fecti ve equation of state as an input. Here,
e calculate this equation of state using the density–temperature

elationship determined from a one-zone model. This equation of
tate could also in principle be determined by time-scale arguments
e.g. Chang et al. 2019 ; Bramante et al. 2024b ), or from the
ensity–temperature relationship in marginally resolved structures
n a hydrodynamical simulation. The underlying logic is that due
o the self-regulatory behaviour of the thermal evolution (discussed
elo w) e ven a simple ansatz for the density evolution can produce
 reasonably accurate density–temperature relationship and hence
f fecti ve equation of state, which we will here build into a more
ccurate dynamical model. We begin by briefly explicating the one-
one model, and refer the reader to, for example, Gurian et al. ( 2024 )
or more detailed discussion. The temperature evolution of a uniform
ensity parcel of gas (say, in the core of a gas cloud) is given as 

d T 

d t 
= ( γ − 1) 

[
ṅ 

n 
T − C ( T , � n ) 

k B n 

]
, (2) 
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Table 1. The initial fractional abundances and their sources. 

Species Initial abundance Source 

x e 2 . 5 × 10 −4 RECFAST (Seager, Sasselov & Scott 1999 ) 
x H 2 7 × 10 −7 Hirata & Padmanabhan ( 2006 ) 
x D 2 . 5 × 10 −5 Cooke, Pettini & Steidel ( 2018 ) 
x D + 6 . 3 × 10 −9 x D + /x D ≡ x H + /x H 
x HD 1 . 8 × 10 −11 x HD /x D ≡ x H 2 /x H 
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Figure 1. The one-zone temperature–density relationship for a 5 × 10 5 M �
halo at z = 25 collapsing on the free-fall time-scale. The black, dashed part 
of the curve is the initial, adiabatic heating up to the point where t col ∼ t C . 
The cooling part of the curve is colour-coded for easy identification with 
subsequent figures. 
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ith γ is the adiabatic index, n is the total number density, T is the
emperature, C is the volumetric cooling rate and � n is the number 
ensities of the various species. Evaluating this equation at a given 
ensity requires the chemical composition � n and the time deri v ati ve
f the density. The former can be supplied by solving a chemical
etwork (i.e. a system of ordinary differential equations describing 
he interconversion of the various species). However, calculating 
˙ requires the full dynamics of the gas, including gravitation and 
ressure. These dynamics can (at considerable computational cost) be 
upplied by hydrodynamical simulations. Instead, we apply a simple 
nsatz the density in our gas parcel evolves on some characteristic 
ollapse time-scale: 

˙ = 

ρ

t col 
. (3) 

Under this assumption, we can numerically integrate equation ( 2 )
ogether with the chemical network and determine T as a function 
f ρ alone. Note that equation ( 2 ) can be rewritten as (Gurian et al.
024 ) 

d log T 

d log n 
= ( γ − 1) 

[
1 − t col ( n ) 

( γ − 1) t C ( � n , T ) 

]
, (4) 

hich demonstrates a self-regulatory behaviour of the gas, in that 
 v er the course of the collapse the temperature will adjust so that
 col ( n ) ≈ ( γ − 1) t C . 

F or the e xample molecular cooling mini-halo, we adopt the initial
bundances described in Table 1 and solve a standard chemical 
etwork using KROME (Grassi et al. 2014 ) with the initial temperature
nd density set appropriate to a 5 × 10 5 M � halo at z = 25, taking
 col = t ff , with the free-fall time-scale defined by 

 ff = 

√ 

3 π

32 Gρ
. (5) 

hroughout this work, we will take t col = t ff (in this example and in
ection 3.2 ) or t col = f t ff (in Section 3.1 ), with f a constant, here
f fecti vely a free parameter. We discuss this choice and the possibility
f time-varying f in Appendix A . The resulting density–temperature 
elationship is shown in Fig. 1 . At low densities and temperatures, the
ooling is not yet efficient and the gas evolves by adiabatic heating.
he first local maximum of the temperature is the intersection of the

hermal trajectory of the gas with the curve t col ( n ) ≈ ( γ − 1) t C . This
arks the beginning of the cooling-regulated core contraction, and is 

losely related to the Rees–Ostriker condition. The difference is that 
e allow t col to vary by an o v erall, order unity factor from t ff , which

s an approximate treatment of any slo wdo wn in the e volution due,
or example, to temporarily inef fecti ve cooling or rotational support.
his runaway contraction on a time-scale comparable to t ff continues 
ntil thermal pressure o v ercomes the gravitational force, when the 
diabatic index d ln p/ d ln ρ > 4 / 3 (e.g. Omukai et al. 2005 ). In the
emainder of this work, we do not consider the initial, heating part
f the trajectory. We integrate the chemical–thermal network until 
he central density reaches 10 13 cm 

−3 , a number chosen somewhat 
rbitrarily but far larger than the ‘loitering point’ which is our primary
nterest. 

.2 Density profile and Bonnor–Ebert mass 

ased on this density–temperature relationship, we wish to calculate 
 radial density profile. The guiding intuition is that for any given
entral density and temperature, the radius of the gas core is of the
rder of the local Jeans length. Further, the collapse is highly non-
omologous in the sense that the density far from the core hardly
hanges as the central density increases. Therefore, we can sketch a
ensity profile by conceptually inverting 

 = λJ ( ρ, T ( ρ)) , (6) 

ith λJ is the Jeans length. In this section, we develop this intuition
sing an MBE scale. 

.2.1 The core profile 

n the inner ‘core’ region, we determine the density profile by
umerically integrating the equation of hydrostatic equilibrium. This 
s reasonable because even in the presence of efficient radiative 
ooling, pressure can regulate the collapse on small scales. In other
ords, sufficiently deep in the gas core, the sound crossing time

s short compared to the evolutionary time-scale. We will shortly 
etermine the threshold where the quasi-hydrostatic evolution breaks 
own, which is the Bonnor–Ebert scale. Now, in spherical symmetry, 
he equation of hydrostatic equilibrium is 

− G [ M DM 

( r) + M( r) ] ρ

r 2 
= 

d P 

d ρ

d ρ

d r 
, (7) 

here M DM 

is the dark matter mass, M is the gas mass, ρ is the gas
ensity, and the pressure is P and its deri v ati ve are supplied by the
MNRAS 537, 580–597 (2025) 



584 J. Gurian et al. 

M

Figure 2. The hydrostatic density profiles out to the minimum of the Bonnor–
Ebert radius or the initial values of n , T in Fig. 1 , for a range of central 
densities. The central density for each curve is colour-coded to correspond 
with Fig. 1 . 
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1 We point out that this r C differs conceptually from the cooling radius of, for 
example, Bertschinger ( 1989 ), which is based on the age of the system rather 
than its dynamical time-scale. 
2 In fact, as ∂ P 

∂ ρ
→ 0, the sound speed also goes to zero, promoting the 

development of shocks and a breakdown of our treatment. In all the cases 
considered here ∂ P > 0. 
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f fecti ve barotropic equation of state 

 ( n ) = nk B T ( n ) . (8) 

quation ( 7 ) can be integrated numerically along with the equation of
ass conservation 

d M tot 

d r 
= 4 πr 2 [ ρ( r) + ρDM 

( r) ] , (9) 

here M tot = M DM 

+ M , and we are neglecting the effect of the
as evolution on the dark matter (though see Spolyar, Freese &
ondolo 2008 ). In our molecular cooling mini-halo, we take a dark
atter density profile informed by the simulations of Hirano et al.

 2014 ), which generated a sample of ∼ 100 clouds collapsing in
aloes of masses between 10 5 and 10 6 M � and at redshifts between
0 � z � 35. The dark matter density profiles found in that work can
e approximated by (Hirano pri v ate communication), 

DM 

( r) = 

√ 

2 ρs (
r 
r s 

)3 / 2 (
1 + 

r 
r s 

)1 / 2 , (10) 

ith ρs = 5 m H cm 

−3 , where m H is the mass of the hydrogen atom
nd r s = 30 pc. The parameters ρs and r s should in principle depend
n the halo mass and redshift, and at a given radius the density can
ary by a factor of ∼ 10 o v er the simulation suite. We discuss the
ensitivity of our results to the dark matter density in Appendix C . 

With ρDM 

set, we can numerically integrate equations ( 7 )–( 9 )
rom any assumed central density ρc . The result is the hydrostatic
adial density profile of the gas, ρHSE ( ρc , r). At large radii, the
ydrostatic density profile can represent an unstable equilibrium.
he transition from stable to unstable equilibrium is defined by the
onnor–Ebert scale. In Fig. 2 , we plot the hydrostatic density profile
ut to whichever is less of the MBE radius (defined below) or the
NRAS 537, 580–597 (2025) 
nitial temperature maximum of the density–temperature relationship
where t col ∼ t C , which also defines a cooling radius for the gas r C 1 ).

.2.2 The Bonnor–Ebert mass 

n the standard treatment of gravitational instability (in which
adiative losses are neglected) excessively centrally concentrated
ensity profiles are unstable to collapse and fragmentation while less
oncentrated profiles can remain indefinitely hydrostatic. The picture
s different for gases which lose kinetic energy through radiation.
uch clouds can quasi-hydrostatically contract to higher central
ensities regardless of the presence or absence of a perturbative
nstability. In this case, both the cooling (or Kelvin–Helmholtz) and
ree-fall time-scales are decreasing functions of density. This results
n a tendency for the dense, inner regions of a cloud to ‘run away’ to
till higher densities on the rele v ant local time-scale. 

For such a collapsing central region in a (quasi-)static external
edium, a Bonnor–Ebert stability criterion applies. Consider a

entral region of the cloud infinitesimally contracting to a new
ydrostatic configuration on its local Kelvin–Helmholtz time-scale.
f this contraction leads to an increase in surface pressure, sound
aves will push the gas back towards its original configuration. On

he other hand, if the surface pressure decreases then the gas will be
ccelerated towards the centre of the cloud. 

Exact contraction on the local Kelvin–Helmholtz time-scale cor-
esponds to marginal Bonnor–Ebert stability, (

δP 

δV 

)
M 

= 0 , (11) 

hich is the classical Bonnor–Ebert condition that applies to spher-
cal gas clouds of fixed mass (Ebert 1955 ; Bonnor 1956 ). Ho we ver,
he Bonnor–Ebert mass (like the Jeans mass) is usually a decreasing
unction of central density. This means that in the case of the
ontracting gas core, we should no longer hold the mass fixed. Thus,
e consider instead the surface pressure response to an increase in

entral density, at fixed radius: 

δP 

δρc 
= 

∂ P 

∂ ρ

∣∣∣∣
ρ= ρHSE 

∂ ρHSE 

∂ ρc 
= 0 , (12) 

hich defines the radius/density at which contraction proceeds in
ressure equilibrium. For the HSE case that we show in Fig. 2 , ρc 

s one to one to the size of the core. As long as ∂ P 
∂ ρ

does not change

ign, 2 the first zero of this quantity occurs when 

∂ ρHSE 

∂ ρc 
= 0 . (13) 

quation ( 13 ) defines the MBE radius throughout the rest of this
ork. In Appendix B , we explicitly relate this condition to the

tandard Bonnor–Ebert condition, equation ( 11 ). Note that equation
 13 ) in fact requires calculating the deri v ati ve of a numerical
olution to an ordinary differential equation with respect to its initial
ondition. This is readily accomplished using the sensitivity analysis
ools provided as part of the SciML ecosystem (Rackauckas et al.
020 ). 
∂ ρ
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Figure 3. As Fig. 2 , but we have now overplotted in grey the full density 
profile (equation 17 ) when the central density is 10 13 cm 

−3 , as well as the 
late-time density profile from the 1D simulations of Omukai et al. ( 2010 ), 
here truncated at 10 13 cm 

−3 . The agreement is quite close. 
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3 In fact, κMBE roughly tracks t ff ( n ( r )) / 
√ 

r /a( r ) , where a( r ) is the gravita- 
tional acceleration less the pressure gradient, equation ( 21 ), so that κMBE 

can be intuitively understood as the ratio of the uniform-density free-fall 
time-scale to the local infall time-scale. 
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As long as the cooling time-scale is a decreasing function of
ensity, during the contraction the outer regions of the cloud can 
ever ‘catch up’ to the contracting core. That is, the evolution of
he inner part of the cloud is approximately independent of the outer
art. The MBE condition equation ( 13 ) sets the scale at which the
entral region of the gas cloud decouples from its surroundings and 
scapes to high densities via radiative cooling. 

Associated with the MBE radius r MBE is the Bonnor–Ebert mass. 
efining ρc, MBE ≡ ρc ( r MBE ) as the central density for which the 
onnor–Ebert radius is r MBE , 

 MBE = 4 π
∫ r MBE 

0 
r 2 d r ρHSE ( ρc, MBE , r) , (14) 

hich is the largest possible stable, hydrostatic mass enclosed in the 
onnor–Ebert radius r MBE , consistent with the ef fecti ve barotropic 
quation of state of the gas. 

.2.3 The envelope and cloud mass 

t a given central density ρc and for r ≤ r MBE ( ρc ), we calculate the
ensity profile by solving the equation of hydrostatic equilibrium, 
quation ( 7 ): 

( r) = ρHSE ( ρc , r) . (15) 

For r > r MBE ( ρc ), we calculate the density as the hydrostatic
quilibrium density at that radius when r MBE = r (that is, at some
revious time when ρc = ρc, MBE ): 

( r) = ρMBE ( r) ≡ ρHSE ( ρc, MBE , r) . (16) 

n other words, we assume that the density at r( > r MBE ) has not
volved since the earlier time/lower central density where r was the 
onnor–Ebert radius. The assumption is reasonable because when 
c ≈ ρc, MBE the density at r must be slowly evolving by equation 
 13 ), while once the central density has increased such that ρc 

c, MBE the central evolutionary time-scale is very short compared to 

he evolutionary time-scale at r MBE . Then, the full density profile is 

( ρc , r) = 

{
ρHSE ( ρc , r) r ≤ r MBE ( ρc ) 
ρMBE ( r) r > r MBE ( ρc ) . 

(17) 

In practice, we determine the density profile for r > r MBE by
alculating the hydrostatic density profiles and Bonnor–Ebert radii 
 v er a grid of central densities, then splining through the hydrostatic
ensity profiles at the Bonnor–Ebert radius of each. This is illustrated 
n Fig. 3 . In the inner region, the profile agrees closely with that
erived from the 1D hydrodynamic calculations of Omukai et al. 
 2010 ). Although that work did not include dark matter, we show
n Appendix C that the effect of the dark matter on the density
rofile is minor in this inner region. Further, in Appendix E , we
ompare the model with 3D simulations. The slope is also consistent 
ith the Larson–Penston polytropic solution for a gas with adiabatic 

ndex γ ≈ 1 . 1 (which here holds between 10 4 � n � 10 7 cm 

−3 )
Omukai & Nishi 1998a ). Below this density, the Larson–Penston 
olution predicts a shallower density profile, which is not seen here 
ue to the dark matter dominating the density at large radii (see
ppendix C ). 
Given these density profiles, for any central density and radius, 

e can calculate the ratio of the mass enclosed to the Bonnor–Ebert
ass, 

MBE = 

M ( r ) 

M MBE ( r) 
, (18) 

or any r inside of the cooling radius ( r ≤ r C ). 
When κMBE < 1 for all r ≤ r C , the gas evolves on a global time-
cale. If the low-density gas (i.e. the gas beyond r C ) is adiabatically
alling on to the core, this global time-scale may still be comparable
o the free-fall time-scale. On the other hand, if the surrounding
edium is nearly hydrostatic the time-scale may be considerably 

onger. 
As soon as κMBE reaches unity within r C , the Bonnor–Ebert core

egins to contract on its cooling time-scale, with t C ∼ t ff . That is, a
efined Rees–Ostriker criterion is given by 

MBE ( r C ) = 1 . (19) 

As the central density increases and the Bonnor–Ebert radius 
ecreases the cooling and free-fall time-scales become shorter still: a 
eriod of runaway Kelvin–Helmholtz contraction begins. Through- 
ut this phase, the density profile in the contracting core remains
table and nearly hydrostatic ( κMBE ≤ 1). The contraction begins to 
ecelerate once the gas can no longer radiate its gravitational energy
ithin a free-fall time such that the equation of state becomes stiff
ith d log P / d log ρ > 4 / 3, for example, after becoming optically

hick (Low & Lynden-Bell 1976 ; Rees 1976 ). By this point, the
ontraction of the core, which has proceeded nearly in equilibrium, 
as established a new density profile in the envelope. As we will
stablish quantitatively in the following Section ( 2.3 ), the amount
y which κMBE exceeds unity at a given radius is related to the
ubsequent infall rate from the envelope on to the core: a larger value
ndicates more violent acceleration towards the core. 3 

The ratio κMBE in the molecular hydrogen-cooled cloud is shown 
n Fig. 4 for a range of central densities. We find that gravitational
nstability in the envelope sets in when the central density is near the
olecular cooling critical density, n H ∼ 10 3 cm 

−3 , and peaks around
MNRAS 537, 580–597 (2025) 



586 J. Gurian et al. 

M

Figure 4. The ratio κMBE of mass enclosed to Bonnor–Ebert mass for a 
sequence of central densities, in the molecular cooling mini-halo. Gravita- 
tional instability begins to occur with the central density near the critical 
density of molecular hydrogen cooling ( n c = 1000 cm 

−3 ), and κMBE peaks 
with 1000 M � enclosed, corresponding to the Jeans mass at the loitering 
phase. 
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000 M � (i.e. around the loitering point/mass). We also point out that
ig. 4 differs qualitatively from similar plots in the literature based
n the isothermal Jeans mass (see Appendix D ). 
These results clarify the lore that a decreasing temperature (with

ensity) ‘promotes fragmentation’ while an increasing temperature
suppresses fragmentation’ (e.g. Li et al. 2003 ). While we do
ot study the multiplicity of cores, our results illustrate how the
haracteristic mass of collapsing clouds depends on the density–
emperature relationship. As illustrated by the light blue/dark green
ines in Fig. 3 , we see that once κMBE exceeds unity, a positive
emperature gradient (i.e. strong cooling) leads to a shallow density
rofile (for r � 1 pc ) so that κMBE hardly increases in the envelope. 4 

f the cooling were to continue indefinitely, the final result would
e an infinitesimal core surrounded by a nearly hydrostatic enve-
ope. It is plausible that this nearly hydrostatic outer region (with
 ( r ) ∼ 10 4 M �) could be vulnerable to, for example, turbulent

ragmentation leading to the formation of multiple contracting cores.
n this picture, though, fragmentation is not invoked to explain the
haracteristic mass of these cores. On the other hand, an isothermal
r heating density/temperature relationship (ne gativ e temperature
radient) leads to a prompt increase in κMBE , so that nearly all
f the core mass at the density where the isothermal/heating part
f the evolution begins is rapidly accelerated inwards, here within
 ( r ) � 10 3 M �. These points are further illustrated in the examples

f the following sections. 
We emphasize again that this picture is quantitatively similar to but

ualitatively distinct from the ‘dynamical collapse’ investigated by
.g. Larson ( 1969 ), Penston ( 1969 ), and Foster & Che v alier ( 1993 ).
NRAS 537, 580–597 (2025) 

 The maximum of κMBE also increases in the range 10 � n � 10 3 cm 

−3 

espite the positive temperature gradient because κMBE has not yet exceeded 
nity. In this phase, an initial Bonnor–Ebert mass of gas is accumulating in 
he core. 

t

w  

n  
ather than setting up an isothermal gas cloud out of dynamical
quilibrium, we are tracking the evolution of the cloud between
uasi-equilibrium states determined by the gas chemistry and cooling
ates. Without cooling, the gas would rapidly heat and the contraction
tall out. In this sense, the contraction of the core is al w ays regulated
y pressure and cooling. While an isothermal equation of state can
rovide a reasonable approximation to this balance between cooling
nd heating, our approach clarifies the picture by more accurately
ncluding the underlying thermochemistry of the collapsing gas. 

In particular, we point out that calculations involving self-
ravitating isothermal gases do not conserve the total energy of the
ystem: There is an implicit energy loss rate imposed by the equa-
ion of state. Unlike realistic radiative cooling rates, the isothermal
nergy loss rate (which is just the opposite of the compressional
eating term) is a function only of ρ̇, which is why isothermal
unaway collapse is initiated from rest only when the configuration
s already dynamically unstable. 

Finally, on a practical note, we point out that the MBE scale can be
ssessed in two ways in simulations. First, r MBE can be determined as
he point where the density stays stationary in successive snapshots.
lternatively, the thermal evolution determined from the simulation

an be used as the input in this model to determine the MBE radius
s a function of central density, and in turn κMBE (see Appendix E ). 

.3 Infall rate 

e now explain the implications of κMBE > 1 for the dynamics of
he gas, by using the density and velocity profiles before protostar
ormation to estimate the infall rate after the contraction halts and a
ydrostatic core is formed. The conceptual point is that for κMBE > 1,
he density is larger than the hydrostatic value, and the gas is thus
ccelerated towards the core. A widely adopted estimate of the infall
ate (e.g. Hosokawa & Omukai 2009 ; Li, Inayoshi & Qiu 2021 ) is 

˙
 ≈ M J /t ff ≈ c 3 s /G. (20) 

n the Larson–Penston solution (which represents a highly dynamical
sothermal collapse), Ṁ ≈ 47 c 3 s /G (Hosokawa & Omukai 2009 ),
hile in the initially static Shu solution, the prefactor is very nearly
nity (Shu 1977 ). Neither limit is typically attained in simulations
e.g. Hunter 1977 ; Foster & Che v alier 1993 ; Omukai et al. 2010 ),
here (in contrast to the Larson–Penston solution) the initially

mall infall velocity at large radii is rele v ant and (in contrast to
he Shu solution) the envelope is not hydrostatic at the end of the
ore contraction phase. Moreo v er, these similarity solutions do not
ccount for the departures from isothermality, which introduce new
cales in the problem. 

Towards a calculation of the infall rate, we estimate the radial
elocity profile of the gas once the core has become small and dense
near the epoch of protostar formation) using the density profile
alculated abo v e. We model the radial v elocity profile from the
rajectory of a test particle moving towards the centre of the cloud,
ssuming that significant gravitational acceleration is sourced at the
adius r only once the core contracts to much smaller radii. 

In this test-particle model, we approximate the acceleration field as
onstant in time but varying in space. The acceleration experienced
t each radius r is thus given as the gravitational acceleration from
he late-time mass enclosed less the pressure gradient: 

d v 

d t 
= −G [ M DM 

( r) + M( r)] 

r 2 
− 1 

ρ

d P 

d ρ

d ρ

d r 
, (21) 

here M DM 

( r) is the dark matter mass interior to r (which is assumed
ot to evolve over the collapse) and M ( r ) is the late-time mass
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Figure 5. The radial velocity profile for the molecular cooling mini-halo 
(solid, black), along with the sound speed (teal, dotted) and the velocity 
profile found by Omukai et al. ( 2010 ) (blue, dashed). The disagreement at 
large radii is due to the imposition of a zero-velocity boundary condition 
around 2 pc in Omukai et al. ( 2010 ). Ho we ver, a factor of (almost exactly) 2 
discrepancy persists in the inner region. 
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Figure 6. The infall rate as a function of mass enclosed for the molecular 
cooling mini-halo (solid, multicoloured), along with the Shu quasi-static 
accretion rate (teal, dotted), the Larson–Penston accretion rate (red, dotted), 
and quadruple the semi-empirical fit of the protostellar accretion rate from 

Liu et al. ( 2021 ) (grey, dashed). The colour is related to the mass through 
M ( r ( n )) in the late-time density profile, with the mapping from colour to 
density as in Fig. 1 . Note the pronounced dropoff in the accretion rate past the 
loitering point. For the accretion rates appropriate to the similarity solutions, 
the position on the horizontal axis is calculated as the Jeans mass at each 
( n, T ). 
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nclosed (in this example, the mass enclosed when the central density 
s 10 13 cm 

−3 ). 
That is, using the identity d v / d t = v d v / d r = 

1 
2 d( v 2 ) / d r , we

ntegrate the equation as 

v 2 ( r) − v 2 ( r i ) 

= 2 
∫ r 

r i 

d r 

[
−G [ M DM 

( r) + M( r)] 

r 2 
− 1 

ρ

d P 

d ρ

d ρ

d r 

]
. 

(22) 

We do not model in detail the drop-off of the infall velocity near the
ore. Instead, we truncate the velocity profile at 25 times the Bonnor–
bert radius at the highest central density in our calculation. We 

mpose a zero-velocity boundary condition and begin the integration 
hen the mass enclosed first exceeds the Bonnor–Ebert mass. 
he assumption that the gas is accelerated from near rest is most

easonable if there is an initial quasi-static period, for example, as
oolants accumulate. 5 Ho we v er, we hav e checked that the results in
he inner region are insensitive to this assumption (see Appendix C ).
herefore, we are justified in beginning the integration at the radius
 0 where the following condition is satisfied: 

 in = 

√ 

−R 0 /a( R 0 ) < 10 7 yr, (23) 

ith the acceleration a( R 0 ) given by the right-hand side of equation
 21 ). By this condition, we a v oid the situation that immediately after
xceeding the Bonnor–Ebert mass equation ( 21 ) can be very stiff. 

The velocity profile is shown in Fig. 5 . Our velocity profile initially
 It is possible to estimate a non-zero initial velocity at the Bonnor–Ebert radius 
y considering virial equilibrium and/or dissipation of turbulent velocity of 
he cloud at larger/halo scales (McKee & Tan 2003 ; Luo, Liu & Li 2024a , b ). 
ere, we adopt the simple zero-velocity condition in line with the canonical 
icture of monolithic collapse of primordial gas under inefficient cooling 
nd weak turbulence (Chon, Omukai & Schneider 2021 ). It is shown in 
ppendix E that this assumption has minor effects on the mass scale and 
ynamics of collapse. 
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a
M  
i.e. at large radii) greatly exceeds the results of Omukai et al. ( 2010 )
ecause those authors imposed a zero velocity boundary condition 
t a smaller radius. In the inner re gion, our v elocity e xceeds the 1D
ydro results by a factor of almost exactly 2, a discrepancy which
ersists even if we match the zero-velocity boundary condition to 
he hydro calculation. The disagreement can be explained by the fact
hat in our approximation that the gas at radius r is accelerated by
he ‘very’ late time mass enclosed, rather than ‘somewhat’ after the
onnor–Ebert radius becomes smaller than r . That is, in reality the

ight-hand side of equation ( 21 ) should evolve with time as the gas
t r is accelerated o v er a window of times/central densities after the
ore has receded from r but before the central time-scale becomes
oo short to meaningfully affect the scale r . 

Proceeding, we construct the infall rate as 

˙
 ( r) = 4 πr 2 ρv, (24) 

ith v as calculated abo v e and ρ is the late-time density profile. 
The result is shown in Fig. 6 , where we have adopted the late-time

nclosed mass as the independent variable via M = 4 π
∫ 

d r r 2 ρ.
his is an estimate based on the envelope structure of the cloud
cale infall rate as a function of the mass fallen on to the disc.
f the inefficiency of accretion of the protostar through the disc
s neglected, this quantity can be interpreted directly as the pro-
ostellar accretion rate as a function of protostellar mass, as in
for example) Hosokawa & Omukai ( 2009 ). The peak in κMBE 

Fig. 4 ) corresponds to a regime of rapidly increasing infall rate. At
mall masses our calculations roughly tracks the estimate equation 
 20 ), with an o v erall enhancement sourced during the early, highly
ravitationally unstable phase of the collapse of the envelope. This is
lso approximately consistent with the analytic calculation of Tan & 

cKee ( 2004 ), although in that work a free parameter of the order of
MNRAS 537, 580–597 (2025) 
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Figure 7. The temperature–density relationship for the delayed contraction, 
t col = 3 t ff . A lower minimum temperature and steeper temperature gradients 
are realized due to the production of HD . 

3

I  

e  

o  

i  

W  

c  

w  

t  

u  

w  

e  

(  

a  

p  

t  

c  

t  

a
 

F  

m
t  

p  

g  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/537/1/580/7943696 by guest on 09 M
arch 2025
nity (corresponding to the enhancement relative to the Shu solution)
ultiplies the accretion rate. Our estimate is a factor of few greater

han the semi-empirical estimate of the protostellar accretion rate
f Liu, Meynet & Bromm ( 2021 ) in the regime where that fit was
alibrated. The factor of few can be attributed to the inefficiency of
ccretion on to protostars through the accretion disc as compared with
he cloud level infall rate, together with the factor of 2 o v erestimate
f the velocity in our calculation. 
We find important qualitative differences relative to the Jeans

stimate equation ( 20 ), related to the arguments discussed in the
receding section. Crucially, we demonstrate that the infall rate
epends not only on the sound speed, but also on its gradient. A
ound speed which decreases with increasing density is associated
ith a more stable configuration (Fig. 4 and accompanying text) and
 correspondingly smaller infall rate. In contrast, the Jeans estimate
˙
 ∼ c 3 s /G depends on the temperature alone. 
Now, we have obtained the relation between the infall rate Ṁ ,

ollapsed/enclosed mass M , and the corresponding cloud spatial
 r) and density ( n ∝ M/r 3 ) scales, from which we can further
erive their time evolution with t( M) = 

∫ M 

0 [1 / Ṁ ( M 

′ )] d M 

′ . This
s a crucial step towards predicting the final outcome of the collapse.
ydrodynamic simulations and analytical models show that due to

he angular momentum of the infalling gas and outflows, only a
raction η ∼ 0 . 25 − 0 . 75 (Matzner & McKee 2000 ; Sakurai et al.
016 ; T anaka, T an & Zhang 2017 ; Staff, Tanaka & Tan 2019 ;
oyouchi et al. 2023 ) of the collapsed mass M is accreted by the
rotostars through a protostellar disc, whose size R is correlated
ith the collapsed mass M (Tan & McKee 2004 ; Liu et al. 2021 ). As

hown in a companion paper Liu et al. ( 2024 ), the scaling relations
˙
 ( M ), t( M ), and R( M ), can be used to calculate the final mass of Pop

II stars formed in the cloud with an analytical model that considers
he balance between gas infall and disc photoe v aporation by the
onizing photons from protostars, and the limit of stellar mass placed
y lifetime and instability. Assuming η = 0 . 5 and only one protostar
orms in the cloud for simplicity, applying our results to the model
n Liu et al. ( 2024 ) produces a final stellar mass of ˆ M � 
 260 M �,
onsistent with the results from hydrodynamic simulations of H 2 -
ooling clouds with similar gas infall rates Ṁ 
 0 . 016 M � yr −1 

t the density scale of n 
 10 6 cm 

−3 (Hirano et al. 2014 , 2015 ;
ugimura et al. 2023 ; Toyouchi et al. 2023 ). 6 

 E X A M P LES  

e now present two additional applications of the methods developed
n the preceding sections, which further elucidate the rele v ant
hysics. First, we demonstrate a case where the collapse is delayed,
llo wing the ef ficient formation of HD . The resulting cooling and
eating are then stronger due to the presence of HD , emphasizing
he arguments we hav e dev eloped. Secondly, we present a nearly
sothermal atomic-cooling example, which is in a sense the opposite
xtreme. 
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 The original model in Liu et al. ( 2024 ) assumes a power-law scaling Ṁ ∝ 

 

−0 . 37 following Liu et al. ( 2021 ), which is valid for polynomial gas with 
 ∝ n 1 . 09 (Omukai & Nishi 1998b ; Tan & McKee 2004 ). In our case, the 
ecline of Ṁ with M is more rapid for M � 100 M �, likely due to the 
ero-velocity boundary condition (at the moment when the mass enclosed 
rst exceeds the Bonnor–Ebert mass, see Appendix C ) and the deviation of 

he ef fecti ve equation of state from a simple power-law. As a result, the final 
tellar mass predicted from our Ṁ ( M) is lower than that from the power-law 

odel in Liu et al. ( 2024 ) by a factor of ∼ 2. This difference is within the 
catter seen in the predictions of hydrodynamic simulations. 

t
 

c  

c  

u  

t  

B  

r  

t  

c  

p

.1 Delayed core contraction with the HD molecule 

f the contraction of a pristine gas cloud’s core is delayed, for
xample, due to rotation (Hirano et al. 2014 ) or an initial shortage
f coolants (Gurian et al. 2024 ), the chemical thermal-evolution
s modified due to chemical fractionation of the HD molecule.

e now apply our model to explain how this modification of the
hemistry propagates into the dynamics of the collapse. To this end,
e adopt initial conditions exactly as in the previous section except

hat we take t col = 3 t ff . It is not completely straightforward to set
p a hydrodynamical simulation with realistic initial conditions
hich guarantee that t col = 3 t ff . Ho we v er, we hav e shown in Gurian

t al. ( 2024 ) that in the simplest case of Pop. III star formation
ne glecting, for e xample, Lyman–Werner backgrounds, turbulence,
nd the baryon dark matter streaming velocity) the delay factor can be
redicted based on the host halo mass and redshift. We demonstrate in
his section how such knowledge of the thermal evolution of the core
an be directly extended into predictions concerning the dynamics of
he collapse. Extending the calculation of the delay factor to include
dditional environmental factors is a target for future work. 

The temperature–density relationship for this case is shown in
ig. 7 . Compared to the H 2 cooling example shown in Fig. 1 , the
inimum temperature here is lower, ∼ 70 K. Using this density–

emperature relationship and equation ( 17 ), we compute the density
rofile shown in Fig. 8 . Note that owing to the steeper temperature
radients, the density profile exhibits stronger features than that of
he H 2 cooling example shown in Fig. 3 . 

We show the ratio κMBE in Fig. 9 . Compared to the H 2 cooling halo
ase (Fig. 4 ), κMBE first exceeds unity only somewhat later, when the
entral density is around 10 4 cm 

−3 . Ho we ver, κMBE stays close to one
ntil the central density increases past 10 6 cm 

−3 , which is because the
emperature changes only modestly between ∼ 10 3 and ∼ 10 5 cm 

−3 .
eyond this point, the rapidly increasing temperature causes κMBE to

apidly increase. In fact, the temperature increases sharply enough
hat M MBE briefly increases with density, so that the κMBE curves
ross each other in the inner region. The eventual result is a sharp
eak in κMBE near 200 M �. 
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Figure 8. As Fig. 3 , but for the delayed contraction with HD cooling. Here, 
lacking a reference hydro run we have simply overplotted the characteristic 
n ∝ r −2 . 2 slope. Note the more pronounced features in the density profile due 
to stronger deviations from isothermality. 

Figure 9. As Fig. 4 , but for the delayed contraction with HD cooling. 
Gravitational instability in the envelope is established when the temperature 
begins to rise. 
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Figure 10. The accretion rate as Fig. 6 , but for the delayed collapse with HD 

cooling. Due to the strong heating, once HD is destroyed, the mapping from 

( n, T ( n )) to the Jeans mass (which is used to define the mass coordinate in 
the c 3 s /G estimates) is no longer one to one. 
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The fact that κMBE remains very close to unity for the initial 
art of the collapse (due to the strong cooling) means that as the
entral density increases the envelope remains nearly hydrostatic. 
he resulting accretion rate is shown in Fig. 10 . In this case, the
 

3 
s /G estimate becomes ill-defined due to the non-monotonicity of 
oth Bonnor–Ebert mass and Jeans mass, mentioned abo v e. 
The results of this section are qualitatively consistent with the 

imulations of, for example, Hirano et al. ( 2014 ) and Nishijima et al.
 2024 ), as discussed in detail in Appendix E . Omukai et al. ( 2010 )
lso provide a benchmark for the effects of varying thermal evolution
n the infall rate. The same trends of positive temperature gradients
cooling) leading to decreased infall rates while heating leads to 
harply increasing infall rates are seen also in that work. Ho we ver,
 sharp dropoff in the infall rate is seen only at the zero-velocity
oundary condition, because in that case the initial conditions were 
lready gravitationally unstable. As expected, the infall rate is lower 
 Ṁ 
 0 . 0092 M � yr −1 at n 
 10 6 cm 

−3 ) compared with the standard
 2 -cooling case shown in Fig. 6 , resulting in a lower final stellar mass

ˆ 
 � 
 120 M � according to the analytical model in Liu et al. ( 2024 ).

.2 Atomic-cooling halo 

f the formation of molecular hydrogen is inhibited (for example by
ynamical heating due to frequent mergers, collisional dissociation, 
r a strong Lyman–Werner background; Omukai 2001 ; Latif et al.
013 ; Wise et al. 2019 ; Kiyuna et al. 2023 ), a mini-halo can
row and heat up until atomic line cooling becomes efficient. This
cenario can lead to the formation of supermassive ( � 10 4 M �)
rimordial stars, which may become the seeds of supermassive black 
oles (Bromm & Loeb 2003 ; Chon, Hosokawa & Yoshida 2018 ;
hon & Omukai 2020 ; Sakurai, Haiman & Inayoshi 2020 ; Regan
023 ; Reinoso et al. 2023 ; Toyouchi et al. 2023 ). Ho we ver, the
ntrinsically large dynamic range of the problem (which depends 
n initial conditions for the collapse which are cosmologically rare) 
omplicates forecasting the abundance of such objects. Here, we 
enerate a typical atomic-cooling density–temperature relationship 
Fig. 11 ) using the collapseUV test provided with KROME , where
he cloud is subject to a Lyman–Werner background J 21 = 10 5 , with
 21 = J LW 

/ (10 −21 erg s −1 cm 

−2 Hz −1 ). 
In this case, we assume an NFW profile for a 10 8 M � halo with

 concentration parameter c = 3 . 3 (based on the mass concentration
elationship of Diemer & Kravtsov 2015 ), with the normalization 
alculated by the COLOSSUS package (Diemer 2018 ). The gas density
rofile is shown in Fig. 12 . We find that (consistent with the nearly
sothermal evolution) the gas density scales as the inverse square of
MNRAS 537, 580–597 (2025) 
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M

Figure 11. As Fig. 1 , but for the atomic-cooling halo. Here, the trajectory is 
nearly isothermal at the atomic-cooling limit temperature. 

Figure 12. As Fig. 3 but for the atomic-cooling halo. From the nearly 
isothermal evolution, we expect n ∝ r −2 , which is observed until the dark 
matter dominates the density at large radii. 

t  

o  

l
 

e  

c  

i  

s  

t
t  

c  

o  

Figure 13. As Fig. 4 , but for the atomic-cooling halo. Here, an equal degree 
of gravitational instability is established out to the initial core mass (i.e. the 
mass at which κMBE first exceeds unity). 

Figure 14. As Fig. 6 , but for the atomic-cooling halo. In contrast to 
the ‘shoulder’ seen in previous sections (associated with the temperature 
minimum of the gas), we see an abrupt cutoff in the infall rate beyond the 
initial core mass. 
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he radius, until the dark matter becomes important in the calculation
f the Bonnor–Ebert radius, around 20 pc. A less concentrated or
ower mass dark matter halo would diminish this effect. 

We show κMBE in Fig. 13 . The nearly isothermal evolution rapidly
stablishes a dynamical collapse out to the mass scale where the
ore contraction began (Fig. 14 ). The characteristic (nearly constant)
nfall rate ∼ 1 M � yr −1 is comparable to that found in the 3D
imulations of Latif et al. ( 2013 ), which is a case with similar
hermal evolution. In the absence of strong features in the density–
emperature relationship, the cloud mass is set by the mass where
ooling first becomes efficient. This depends on the growth history
f the halo, both through the dark matter profile (which helps set
NRAS 537, 580–597 (2025) 
he mass enclosed at fixed density early in the collapse) and through
he dynamical heating of the gas (which will determine the density
t which the gas first reaches the atomic-cooling limit temperature

10 4 K). Given such high infall rates, stellar feedback is expected
o be suppressed as the protostar will expand significantly to enter
 bloating phase under rapid accretion (Omukai & Palla 2001 ,
003 ; Hosokawa et al. 2013 ; Haemmerl ́e et al. 2018 ; Herrington,
halen & Woods 2023 ; Nandal et al. 2023 ). Therefore, combining

ur infall history with the model in Liu et al. ( 2024 ), we predict that
 supermassive star of ˆ M � ∼ 6 × 10 4 M � will form in the end, which
s expected to collapse directly into a massive black hole seed. 
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 DISCUSSION  

e hav e dev eloped a model of gravitational collapse regulated 
y radiative cooling. We have illustrated how the microphysics of 
he gas control the density and velocity profiles established o v er
he course of the collapse as well as the infall rate. Further, we
ave presented a newly general and physically precise notion of 
ravitational instability in this context based on the MBE scale. 
e have demonstrated the agreement of our results with vastly more 

ophisticated numerical treatments. Our approach is computationally 
xpedient: generating the full, late time density profile using a 
rid of 60 central densities takes of the order of a few seconds
n consumer hardware, which is dominated by the compile time. 
ith the code pre-compiled and the density–temperature relationship 

re-computed, generating the density profile requires only ∼ 0 . 1 s.
n certain situations, this speedup compared to hydrodynamical 
imulations (in exchange for some loss of accuracy) may be useful. 

Ho we ver, our model does not capture the full degree of complex-
ty present in hydrodynamical simulations (let alone reality). For 
xample, Omukai et al. ( 2010 ) found in their 1D simulations that
trong heating in the core leads to the formation of shocks as the
ore fails to ‘stay ahead’ of the infalling material. We have further
ade no attempt to model phenomena including deviations from 

pherical symmetry (which can lead to the formation and subsequent 
ragmentation of an accretion disc), turbulence, magnetic fields, and 
adiative feedback – all of which are understood to play important 
oles in the star formation process (e.g. Larson 1973 ; McKee &
 an 2002 , 2003 ; T an & McKee 2004 ; Hennebelle & Chabrier 2008 ;
opkins 2012b ; Guszejnov & Hopkins 2015 ; Tsukamoto et al. 2015 ;

noue & Yoshida 2020 ; Kimura, Hosokawa & Sugimura 2021 ; Liu
t al. 2024 ; Thomasson et al. 2024 ; Luo et al. 2024b ). Some of these
hortcomings can be addressed by future work, for example, by the 
nclusion of additional pressure terms in an ef fecti ve sound speed. 

These caveats do not diminish the utility of our model both as a
ross-check for simulations in varying physical environments and as 
 conceptual framework. We have made precise the sense in which the 
ensity–temperature relationship in the core controls the dynamics 
f the entire collapse, and determines the mass of the eventual 
ollapsing cloud. We clearly distinguish the roles of Rees–Ostriker 
nd Bonnor–Ebert instability criteria in the collapse of thermally 
upported gas. The distinction is based on the ‘two-phase’, non- 
omologous nature of the collapse in which the gas first contracts to
rotostellar densities and then subsequently falls on to the nascent 
rotostar (or its disc). The Rees–Ostriker criterion controls the onset 
f runaway contraction in the sense of a gas core rapidly condensing
o high density. This phase of the collapse, although it can occur on
 dynamical time-scale, is a quasi-equilibrium process. 

This runaway cooling in the core is the cause of gravitational in-
tability, rather than the consequence. Then ‘dynamical’ or Bonnor–
bert instability impacts the dynamics principally after the formation 
f the protostar, during the accretion phase. These facts are not widely 
ppreciated. F or e xample, it is common practice to be gin cloud-scale
imulations of primordial star formation with the density enhanced 
elative to the hydrostatic value by some constant factor to ‘initiate 
he collapse’ (e.g. Omukai et al. 2010 ; Chon et al. 2021 ). In fact,
n Omukai et al. ( 2010 ) by the time of the first snapshot the density
rofile has ‘corrected’ to the one calculated in this work (Fig. 3 ). 
Finally, we illustrated that the mass scale at which the core 

ontraction initiates dynamical instability in the envelope depends 
rucially on the features in the density–temperature relationship: 
trong cooling leads to stability and mild cooling or heating leads to

nstability. With these insights, we can make newly precise statements 

L  
bout the effects of the gas equation of state on the mass scale of the
ollapse. F or e xample, we hav e e xtended the conv entional wisdom
hat a nearly isothermal equation of state (as in our atomic-cooling
xample) ‘suppresses fragmentation’ (Li et al. 2003 ) by showing 
Fig. 13 ) that a nearly isothermal equation of state rapidly establishes
ravitational instability at the scale where the core contraction 
egins, which may lead to a monolithic collapse at this scale. On
he other hand, compared to the argument that cooling promotes 
ierarchical fragmentation down to the temperature minimum, we 
ave shown that strong cooling (as in our delayed collapse example)
eads to a nearly hydrostatic envelope, so that a large infall velocity
s established only past the temperature minimum. This is true 
ndependent of the possible multiplicity of the cores – fragmentation 
ay occur in the envelope, but is not necessary to explain the

haracteristic mass of collapsing clouds. 
By these arguments, we clarify the significance of the ‘loitering 

oint’ in Population III star formation: the increase in temperature 
nd corresponding steep density profile at densities abo v e the loiter-
ng point accelerates the envelope inwards, so that the characteristic 

ass of the collapsing cloud corresponds to the Bonnor–Ebert mass 
t this point. We show in Appendix C that the effect of the thermal
volution on the dynamics is exaggerated by the fact that dark matter
ominates the potential at densities below the loitering point, further 
uppressing gravitational instability at low densities. 

These ideas differ from pre-existing notions concerning gravita- 
ional collapse and fragmentation based on perturbative instabilities 
n the medium. Because density perturbations grow on the free- 
all time-scale, such instabilities are not likely to operate during 
ree-fall core contraction without external forces. Such instabilities 
ecome important, for example, when the collapse is delayed (i.e. by
nefficient angular momentum transport, resulting in the formation 
f a disc) or when large density perturbations are established on sub-
ynamical time-scales (i.e. by supersonic turbulence). Either or both 
ffect can easily be rele v ant in realistic situations. Here, we have
llustrated the sense in which even a monolithic collapse contains a
referred mass scale dictated by the radiative physics of the gas. 
Our model describes the density profile of gas after runaway 

elvin–Helmholtz contraction is initiated. For a fixed density–
emperature relationship, the late collapse results are fairly insen- 
itive to the initial conditions. In Sections 3.1 and 3.2 , we have
eveloped two representative examples where the cloud/halo scale 
hysics significantly alter the density–temperature relationship, and 
ence the dynamics of the collapse. In the primordial case considered
ere, the large-scale initial conditions are dictated by cosmology, and 
n particular by the distribution of dark matter. In a companion paper
Liu et al. 2024 ), we develop a model relating the cloud-scale infall
ate (as calculated here) with the final stellar mass based on the
nterplay between radiative feedback and fragmentation, while in 
urian et al. ( 2024 ), we predicted the chemical–thermal evolution of

he cloud based on the cosmological environment. These efforts can 
e connected towards a comprehensive analytic model of primordial 
tar formation. This model is able to predict the final mass of
tars formed from any input evolution track of primordial star- 
orming gas in the temperature–density phase diagram with minimal 
omputational cost and physically moti v ated free parameters (for 
isc fragmentation, stellar evolution and feedback) rather than 
henomenological parameters such as star formation efficiency. It 
o v ers all possible modes of Pop III star formation known to date,
s illustrated here using the evolution tracks predicted by the one-
one approach for the three examples of H 2 - (Section 2 ), HD-
Section 3.1 ), and atomic-cooling (Section 3.2 ) clouds (see also
iu et al. 2024 ). The univ ersality and fle xibility of this model offer
MNRAS 537, 580–597 (2025) 
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romising applications across a wide range of topics. For example,
t can be employed to investigate the gravitational, thermal, and
hemical impacts of DM physics on Pop III star formation. It can also
e incorporated into cosmological simulations and semi-analytical
odels that account for the large-scale environmental effects (e.g.

adiation background of H 2 -dissociating photons, dynamical heating
y halo mergers, streaming motion between DM and baryons) on (the
nset of) Pop III star formation but lack the resolution to fully follow
he small-scale cloud collapse and protostar formation/evolution
rocesses. As long as the initial collapse of the cloud at a density
cale of n ∼ 10 3 −10 5 cm 

−3 is captured in such large-scale models,
he final product of subsequent evolution can be easily derived from
ur analytical model. Exploring such applications is an intriguing
irection for future research. 
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PPEN D IX  A :  T H E  COLLAPSE  TIME-SCALE  

n this work, we take the collapse time-scale t col as a fixed,
onstant multiple of the freefall time-scale, t col = f t ff . Other authors
ave considered more sophisticated one-zone models. For example, 
mukai et al. ( 2005 ) adopted the following parameterization to take

nto account the (temporal) slo wdo wn of the collapse due to the
volution of equation of state: 

 col = 

1 √ 

1 − f 
t ff , (A1) 

here f varies according the ratio of pressure to gravity, 

 = 

⎧ ⎨ 

⎩ 

0 γ < 0 . 83 
0 . 6 + 2 . 5( γ − 1) − 6 . 0( γ − 1) 2 0 . 83 < γ < 1 
1 . 0 + 0 . 2( γ − 4 / 3) − 2 . 9( γ − 4 / 3) 2 γ > 1 

, 

(A2) 

iven γ = 

∂ log P 
∂ log ρ . To implement this in our one-zone model, we a v oid

nphysical oscillations in f by at each step calculating γ = ( γold +
new ) / 2, where γold is the value adopted at the previous timestep and
new is the value calculated at the current timestep. We show in Fig. A1
hat by somewhat reducing the temperature at n � 10 3 cm 

−3 due to
educed compressional heating, this alternative parameterization has 
 modest effect on the density profile and hence all the derived
uantities in this work. The effect of this parameterization on the
ther cases is similarly small. Ho we ver, as the examples in the main
ext illustrate, a global slo wdo wn in the collapse does significantly
lter the chemical–thermal evolution. In Gurian et al. ( 2024 ), we
tudied cases where the global slo wdo wn parameter can be predicted
ased on the cosmological environment. 

PPENDI X  B:  T H E  B O N N O R  EBERT  MASS  

he usual Bonnor–Ebert criterion 

δP 

δV 

= 0 (B1) 

an be written in terms of the change in central density as (
∂ P 

∂ ρc 

)
M 

(
∂ V 

∂ ρc 

)−1 

M 

= 0 , (B2) 

here the subscript M indicates the deri v ati ves are e v aluated at fixed
ass. The first zero occurs when (
∂ P 

∂ ρc 

)
M 

= 0 , (B3) 

ecause the point of equal mass enclosed (where ∂ V 
∂ ρc 

= 0) will
ccur at larger radius than the point of equal density. This resembles
quation ( 12 ). Using the chain rule, the Bonnor–Ebert criterion is (
∂ P 

∂ ρc 

)
M 

= 

∂ P 

∂ ρ

∣∣∣∣
ρ= ρHSE 

(
∂ ρHSE 

∂ ρc 
+ 

∂ ρHSE 

∂ r 

∂ r 

∂ ρc 

)
= 0 , (B4) 

here the second term enforces mass conservation via 

∂ r 

∂ ρc 
= − 1 

4 πr 2 ρ

∂ M 

∂ ρc 
. (B5) 

e have checked that this formulation equations ( B4 )–( B5 ) agrees
ith equation (3.3) of Bonnor ( 1956 ). Clearly, the condition em-
loyed in this work equation ( 13 ) corresponds to the first term of
MNRAS 537, 580–597 (2025) 
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PPENDIX  C :  RO LE  O F  DA R K  MATTER  

n the H 2 cooling mini-halo, the total density is dominated by dark
atter once the gas density drops below ∼ 10 3 cm 

−3 . Both because
e do not attempt to self-consistently model the evolution of the
ark matter and because the profile adopted equation ( 10 ) is highly
pproximate, we here bracket the effects of our ignorance of the
orrect profile on our results. In addition to the fiducial profile
quation ( 10 ), we consider both an NFW profile appropriate to a
alo of mass 5 × 10 5 M � with a concentration parameter c = 2 . 8
i.e. a significantly larger dark matter density than the fiducial case)
nd the case of no dark matter whatsoever. Adiabatic contraction
Blumenthal et al. 1986 ) of the dark matter in response to the gas
ollapse can greatly enhance the dark matter density compared to
ny of these estimates, which may, in turn, have dramatic effects on
he star formation process (Spolyar et al. 2008 ), a possibility we do
ot treat here. The gas density profiles in our three assumed dark
atter profiles are shown in Fig. C1 . As we have already argued, the

resence of (more) dark matter steepens the density profile. 
The accretion rate for all three cases is shown in Fig. C2 . In

he absence of dark matter, gravitational instability sets in at a
ower central density/larger mass scale, because the Bonnor–Ebert
gas) mass at a given central density is larger without dark matter
ontributing to the potential. A similar phenomenon is observed
n simulations of pristine gas clouds separated from dark matter
 v erdensities by supersonic streaming motions, but in that case
he density–temperature relationship is additionally modified by the
xtreme environment (Nakazato et al. 2022 ). 
NRAS 537, 580–597 (2025) 

igure C1. The dependence of the gas density profile in the molecular 
ooling halo on the assumed dark matter density. The black curve is when 
he profile is given by equation ( 10 ), used in the main text. The purple, dot–
ashed curve represents no dark matter, while the blue, dashed curve has an 
FW DM profile, for a 5 × 10 5 M � halo with a concentration parameter of 
 = 2 . 8. 
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PPENDI X  D :  T H E  I S OTH E R M A L  J E A N S  MASS  

n the literature a quantity similar to κBE defined here is often
alculated, but instead of the MBE mass defined here, the coefficient
s calculated as the isothermal Jeans mass of the mass-weighted
emperature and average density: 

¯
 = 

1 
M 

∫ M 

0 d M 

′ T ( M 

′ ) , (D1) 
black) case, as well as for no dark matter (purple, dot–dashed) and an NFW 

rofile (blue, dashed). The Shu and Larson–Penston values are also shown. 
ith no dark matter, gravitational instability extends past 10 4 M �, albeit at a 

ower accretion rate. 

igure D1. The ratio of the mass enclosed in the molecular cooling halo to 
he isothermal Jeans mass, computed from the mass-weighted temperature 
nd mean density. 
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¯ = 

3 M 

4 πR 3 
, (D2) 

o that 

 J ≈ 1 . 44 

(
k B ̄T 

μm P G 

)3 / 2 

ρ̄−1 / 2 . (D3) 

e here calculate κJ using equation ( D3 ) in our H 2 cooling halo,
hown in Fig. D1 . The result becomes qualitatively more similar to
.g. fig. 13 of Hirano et al. ( 2014 ) and fig. 2 of Smith et al. ( 2024 ) in
his case. Note that for an isothermal Bonnor–Ebert sphere, equation 
 D2 ) will become small outside of the core. This should not, ho we ver,
e interpreted as indicating a maximum mass scale for gravitational 
nstability. 

We point out that ρ̄ can also be equated with the one-zone density
n Smith et al. ( 2024 ). Such a calculation gives a qualitatively correct
esult without explicating the mechanism by which radiative cooling 
ources gravitational instability. Compared with Smith et al. ( 2024 ), 
his work does not attempt to model the initial, slow contraction 
uring which the environmental factors establish the chemistry for 
he runaway collapse. Here, we have demonstrated that (absent non- 
hermal support) detailed modelling of the evolution of the average 
ensity is unnecessary once cooling becomes efficient. As soon as 
ooling kicks in, t col ∼ t C and the density and mass scale at which
ravitational collapse begins are already determined. 

PPEN D IX  E:  C O M PA R I S O N  WITH  

IMULATION S  

n the main text, we demonstrated reasonable agreement between 
he model and the spherically symmetric simulation of Omukai et al. 
 2010 ), which adopts the same level of idealization as the model. That
omparison showed that the mechanism of gravitational instability 
dentified in this work is plausibly responsible for initiating dynam- 
cal gravitational collapse in Pop. III star-forming regions. Now, 
e compare our model with the 3D hydrodynamical simulations 
f Hirano et al. ( 2014 ), Sugimura et al. ( 2023 ), and Nishijima et al.
 2024 ). In the rest of this work, we have adopted density–temperature
elationships computed using one-zone models. In fact, the input for 
he model is a density–temperature relationship, no matter its source. 
n principle, one could supply the density–temperature relationship 
rom marginally resolved scales in simulations, or by extrapolating 
imulation results to higher densities using one-zone models. Here, 
e use the density–temperature relationship from high-resolution 

imulation results to predict the dynamics in our model and check 
he extent to which the results agree with the full hydrodynamical 
esult. For reference, we also show the appropriate comparison with 
he examples considered in the main body of this work. In the H 2 and
D cooling, we have adopted the dark matter profile equation ( 10 ),
hile for the atomic-cooling cases, we adopt the same NFW profile 

s in Section 3.2 . As shown in Appendix C , the qualitative results
epend on the presence of dark matter only in the outer region. The
urpose of the comparison is two-fold. On one hand, we are testing
he importance of 3D effects neglected in the current model. These 
nclude small-scale (aspherical) density perturbations, turbulence, 
nd rotation. On the other, we are assessing the accuracy of the one-
one models in determining the thermal evolution, and the effects 
f any inaccuracies on the dynamics of the collapse. Note, ho we ver,
hat the one-zone models were not specifically tuned to match the 
imulation cases in terms of initial density, temperature, or (in the 
D case) cosmic microwave background temperature. 
In Fig. E1 , we show the thermal evolution, and associated 
ensity profiles and infall rates both in our model (solid) and in
ydrodynamics simulations (dashed) for several cases, grouped by 
he operative cooling mechanism. The thick lines correspond to the 
xamples of Sections 2.1 , 3.1 , and 3.2 , while thin lines correspond to
imulations. For H 2 cooling, we consider three cases: two from the 
loud-scale simulations of Sugimura et al. ( 2023 ) and one from the
osmological zoom-in simulations of Hirano et al. ( 2014 ). The two
ases from Sugimura et al. ( 2023 ) are snapshots when the central
ensity is ∼ 10 11 cm 

−3 of the high infall rate and low infall rate
louds studied in that work. From Hirano et al. ( 2014 ), we consider
he average of all clouds with intermediate infall rates (case P2 in
hat work) when the central density is ∼ 10 7 cm 

−3 . All these clouds
av e relativ ely similar thermal evolutions (Fig. E1 , top left panel),
nd the simulated and analytic density profiles from all cases with
 2 cooling agree such that the different cases are difficult to visually
istinguish (left middle panel). Note especially the close agreement 
etween the one-zone model and the low infall case of Sugimura
t al. ( 2023 ), due to their similar thermal evolution. With respect
o the infall rates (bottom left panel), the zero-velocity boundary 
ondition in our model is inconsistent with the cosmological infall in
irano et al. ( 2014 ). Moreo v er, when the thermal evolution is taken

rom Sugimura et al. ( 2023 ) this boundary condition is artificially
ushed to high densities/small masses because the thermal evolution 
s not available at low densities. Still, the model correctly determines

10 4 M � as the scale at which gravitational instability sets in and
he large increase in infall rates between 10 3 and 10 4 M �. The worst
greement is in the strongly rotationally supported, low-infall rate 
loud from Sugimura et al. ( 2023 ). This is reasonable, since rotation
s not explicitly considered in our model (but only partially via the
ollapse time-scale factor f ). The observation that rotational support 
as a large effect on the infall velocity but a small effect on the density
rofile has interesting implications for future work. 
For HD cooling (middle column of Fig. E1 ), we consider the

verage of all clouds with HD cooling from Hirano et al. ( 2014 ),
hen the central density is ∼ 10 7 cm 

−3 . The disagreement in thermal
volution between the simulations and one-zone model propagates 
o the density profiles and infall rates. Still, the o v erall agreement
nd especially the distinction from the H 2 case is reasonable. As in
he H 2 case, the underestimate of the temperature at low densities 
n the one-zone model as compared to these simulations affects the
oint where κMBE first exceeds unity (Rees–Ostriker criterion), which 
ill only marginally alter the infall rate in the dense, inner region.
nfortunately, the data of Hirano et al. ( 2014 ) do not reveal the

nner envelope structure at late times due to the low central density.
irano et al. ( 2014 ) also followed the azimuthally symmetrized

ccretion after protostar formation. While it is not straightforward 
o directly compare that calculation with our model, we point out
hat the protostellar accretion rates in that work roughly agree with
he predicted infall rate at low masses in our model ∼ 10 −2 M � yr −1 

nd that many of the low-mass stars (whose accretion history is
ess affected by feedback) exhibit the characteristic ‘shoulder’ in the 
ccretion rate predicted here by the cooling/isothermal evolution in 
he low-density gas and heating in the high-density gas (fig. 10 in
hat work). 

Finally, turning to the atomic-cooling case (right column), we take 
 snapshot from the case of Nishijima et al. ( 2024 ) where the Lyman–
erner background J 21 = 30, leading to nearly isothermal atomic 

ooling. In this snapshot, the central density is ∼ 10 6 cm 

−3 . Here,
he one-zone and simulation thermal evolution agree very closely 
xcept for the initial conditions, and the density profiles are likewise
xtremely similar. The infall rates again agree to within a factor of
ew. 
MNRAS 537, 580–597 (2025) 
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M

Figure E1. The density–temperature relationships (top row), density profiles (middle row), and infall rates (bottom row) for cases with H 2 cooling (left column), 
HD cooling (middle column), and H cooling (right column). Thick lines correspond to one-zone density–temperature relationships, while thin lines indicate 
simulation density–temperature relationships. In the bottom two rows, solid lines indicate predictions of the model, while dashed lines indicate hydro simulation 
results. Because we do not model the dropoff in velocity near the core, we have truncated the simulation infall rates at M( r = 25 r MBE ), with r MBE determined 
using our model. 
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In summary, we find that our model predicts the dynamics of
he collapse typically to within a factor of a few using only the
hermal evolution, o v er some four orders of magnitude in cloud mass.
NRAS 537, 580–597 (2025) 

m  
he model succeeds at a level comparable to the scatter between
ndividual simulations runs. Moreo v er, ev en a crude estimate of the
hermal evolution based only on knowledge of the operative cooling

echanism only moderately degrades the accuracy, especially in the
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ense inner region which is most rele v ant for star formation. The
ensity profiles especially are determined quite accurately in our 
odel, supporting the notion that the MBE mass defined in this
ork is indeed a critical scale in the problem. In particular, κMBE 

s calculated based on the density profile alone and describes the 
atio between the actual density profile and the hydrostatic density 
rofile. Thus, the mechanism by which radiative cooling establishes 
ravitational instability at a characteristic scale, which is a central 
bjective of this work, is robustly demonstrated. The quantitative 
ccuracy of the predictions can be improved both by extending the 
2025 The Author(s). 
ublished by Oxford University Press on behalf of Royal Astronomical Society. This is an Open
 https://cr eativecommons.or g/licenses/by/4.0/), which permits unrestricted reuse, distribution, and rep
odel to include effects such as rotational and turbulent support and
y improving the sophistication with which the chemical-thermal 
volution is estimated. These are goals for future work. 
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