of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 537, 580-597 (2025)
Advance Access publication 2025 January 6

https://doi.org/10.1093/mnras/staf012

An analytic model of gravitational collapse induced by radiative cooling:
instability scale, density profile, and mass infall rate

James Gurian ,' Boyuan Liu *',>** Donghui Jeong ' ,*° Takashi Hosokawa ' ,® Shingo Hirano 78

and Naoki Yoshida “/%10-11

! Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5, Canada

2Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA, UK

3 Institut fiir Theoretische Astrophysik, Zentrum fiir Astronomie, Universitiit Heidelberg, Albert Ueberle Strafe 2, D-69120 Heidelberg, Germany
4Department of Astronomy and Astrophysics and Institute for Gravitation and the Cosmos, The Pennsylvania State University, University Park, PA 16802, USA
3School of Physics, Korea Institute for Advanced Study (KIAS), 85 Hoegiro, Dongdaemun-gu, Seoul 02455, Republic of Korea

Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502, Japan

" Department of Astronomy, School of Science, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan

8 Department of Applied Physics, Faculty of Engineering, Kanagawa University, Kanagawa 221-0802, Japan

9 Department of Physics, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan

0Research Center for the Early Universe, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan

Y Kavli Institute for the Physics and Mathematics of the Universe (WPI), The University of Tokyo, Kashiwa, Chiba 277-8583, Japan

Accepted 2024 December 24. Received 2024 November 28; in original form 2024 August 23

ABSTRACT

We present an analytic description of the spherically symmetric gravitational collapse of radiatively cooling gas clouds, which
illustrates the mechanism by which radiative cooling induces gravitational instability at a characteristic mass scale determined
by the microphysics of the gas. The approach is based on developing the density—temperature relationship of the gas into a full
dynamical model. We convert the density—temperature relationship into a barotropic equation of state, based on which we develop
a refined instability criterion and calculate the density and velocity profiles of the gas. From these quantities, we determine
the time-dependent mass infall rate on to the centre of the cloud. This approach distinguishes the rapid, quasi-equilibrium
contraction of a cooling gas core to high central densities from the legitimate instability this contraction establishes in the
envelope. We explicate the model in the context of a primordial mini-halo cooled by molecular hydrogen, and then provide two
further examples: a delayed collapse with hydrogen deuteride cooling and the collapse of an atomic-cooling halo. In all three

cases, we show that our results agree well with full hydrodynamical treatments.

Key words: hydrodynamics —stars: Population III —dark ages, reionization, first stars.

1 INTRODUCTION

Gravitational collapse leads to the formation of objects (e.g. stars,
degenerate stars, black holes, and planets) with densities tens of
orders of magnitude above the cosmic mean. The physics relevant
to the collapse include, at the bare minimum, gravitation, thermal
pressure, and radiative cooling. Historically, these dynamics could
be modelled only under very restrictive assumptions amenable to
analytic or — by modern standards — quite primitive numerical
techniques. Today, the relevant physical processes can be included in
great detail in sophisticated numerical simulations. Such studies have
yielded powerful insights into the physics of gravitational collapse
and star formation in a wide range of environments. However,
the very complexity of these simulations can obscure the physical
interpretation of the results. Moreover, there is increasing interest
both in dark matter models which modify the gas collapse and star
formation processes (e.g. due to exotic energy injection, Ripamonti,
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Mapelli & Ferrara 2007; Freese et al. 2016; Qin et al. 2024) and
in the possibility that dark matter could itself cool and collapse to
form dark compact objects (D’ Amico et al. 2018; Shandera, Jeong &
Grasshorn Gebhardt 2018; Chang et al. 2019; Gurian et al. 2022;
Hippert et al. 2022; Bramante et al. 2024a; Bramante, Diamond &
Kim 2024b). In the face of large model and parameter spaces,
state-of-the-art numerical treatments become rapidly intractable.
It is thus a desirable goal to synthesize and distill the lessons
learned from state-of-the art simulations into expository theories
which (thanks to enormous advances in computational power) no
longer need be restricted to such extremely idealized situations. A
particularly appealing theoretical target is the characteristic mass of
gravitationally unstable clouds in which these objects form. While the
mass function of the eventual collapsed objects depends on various
complex physical processes, the typical mass of the natal collapsing
clouds imposes an overall scale on the problem.

Analytic descriptions and heuristics describing the collapse of
gases governed by simple equations of state (i.e. isothermal or
polytropic) are well established in the literature (e.g. Larson 1969;
Penston 1969; Hunter 1977; Shu 1977). We mention in particular two
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similarity solutions: the first derived by Larson (1969) and Penston
(1969) (hereafter referred to as the Larson—Penston solution) and
the second by Shu (1977) (the Shu solution). The former describes
the highly dynamical collapse of a Bonnor-Ebert sphere, while the
latter describes the quasi-static collapse of a singular isothermal
sphere triggered by the propagation of a rarefaction wave after
core formation. Simulations typically reveal an intermediate picture,
where the gas is accelerated towards the Larson—Penston solution
over the course of the collapse (Foster & Chevalier 1993; McKee &
Tan 2002, 2003; Tan & McKee 2004; Omukai, Hosokawa & Yoshida
2010).

While similarity solutions are exact under the appropriate as-
sumptions, they are by definition scale-free. That is to say they
provide no information about the beginning, end, or mass scale
of the collapse. The canonical scale associated with the onset of
gravitational collapse is the Jeans scale, which describes a balance
between pressure gradients and gravity (Jeans 1928), given as

k T 3/2
My~ 144 22 2, ¢))
umpG

where kg is the Boltzmann constant, T is the average temperature, p
is the average density, u is the mean molecular weight, and G is the
gravitational constant. The intuition is that at small scales pressure
damps out perturbations while at large scales gravity overwhelms
pressure support. This argument was later refined by Ebert (1955)
and Bonnor (1956) as the Bonnor-Ebert mass, discussed in detail
below. Calculating the Jeans mass requires a fixed density and
temperature. To use the Jeans mass to pick out a scale for the
onset of gravitational collapse is justified when the spatial density
structure of the gas is independent of its pressure, for example, if the
density probability distribution is set by the statistics of turbulence
(i.e. Hopkins 2012a, 2013).

In fact, as the density in a gas cloud increases the Jeans mass will
decreases as long as T increases more slowly than p*. A consequence
is that over the course of the collapse, progressively smaller scales
can become unstable. This process of ‘hierarchical fragmentation’
is ultimately terminated when the gas becomes optically thick and
unable to cool efficiently. For stars, the opacity limit is of the order
of 1073 Mg, (Rees 1976). Still, the opacity-limited Jeans mass has
often been adopted in the dissipative dark matter literature as a
heuristic for the final mass of the hydrostatic objects produced by the
collapse, either directly (Chang et al. 2019; Bramante et al. 2024a,
b; Fernandez et al. 2024) as a lower bound (Gurian et al. 2022), or
with a constant multiplicative enhancement (Shandera et al. 2018).

An alternative argument picks out a preferred scale in the collapse
based on deviations from isothermality, which alter the effective
equation of state of the gas. It is widely appreciated that when
the temperature is an increasing function of density fragmentation
is suppressed, while when temperature is a decreasing function of
density fragmentation is enhanced (Larson 1985, 2005; Li, Klessen &
Mac Low 2003). These observations are theoretically best justified
in the case of filamentary geometries (Ostriker 1964; Inutsuka &
Miyama 1992; Omukai et al. 2005). On the other hand, fragmentation
in the sense of growth of initially small perturbations at some
preferred scale has been shown to be ineffective during global free-
fall collapse (Bodenheimer, Tohline & Black 1980; Tohline 1980a, b).

Neither Jeans-based argument explicitly considers the
(in)efficiency of radiative cooling. Without cooling, a Jeans
unstable cloud compressionally heats to a new equilibrium. On
the other hand, in the presence of efficient radiative cooling even
a Jeans stable cloud will contract on its cooling time-scale, which
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may be comparable to its free-fall time-scale (Bromm, Coppi &
Larson 1999; Gurian, Jeong & Liu 2024). Radiative cooling is
explicitly accounted for in the Rees—Ostriker criterion (Rees &
Ostriker 1977). The argument is that a gas which can cool within
its dynamical (free-fall) time-scale will undergo dynamical collapse
and fragmentation. This calculation requires single, characteristic
values for the temperature and density. In general, the gas will have
some density, temperature, and chemical composition gradients. The
cooling and free-fall time-scales can be quite sensitive, non-linear
functions of these quantities. It is not obvious that a naive average
of these quantities over some region will produce a physically
reasonable mass scale for the onset of the collapse. Bertschinger
(1989) and White & Frenk (1991) accounted for this fact by
calculating the ‘cooling radius’, defined as the radius at which the
local cooling time (in some assumed density profile) equals the
age of the system. In particular, Bertschinger (1989) discovered a
similarity solution based on this length scale for the evolution of the
cooling gas. However, the similarity exists only for power-law (i.e.
scale-free) density and pressure profiles. Cooling can modify the
effective equation of state of the gas in a scale-dependent manner,
which limits the applicability of the solution. Moreover, the scale at
which cooling becomes efficient does not necessarily correspond to
the onset of gravitational instability or fragmentation. An efficiently
cooling core of a gas cloud can remain quasi-hydrostatic in structure
if the sound crossing time is sufficiently short, while fragmentation
depends on small-scale density perturbations.

As detailed above, this extensive prior work does not fully succeed
in defining the characteristic mass scale of gravitational instability
in all contexts. The shortcomings of these heuristics are clearly
illustrated in the context of the formation of first generation, Pop.
III stars. In pristine (metal-free) gas, the only significant coolants
are molecular hydrogen (H;), hydrogen deuteride (HD), and atomic
hydrogen (H) (Liu & Bromm 2018). In the canonical case of
mini-haloes cooled by molecular hydrogen, gravitational instability
has long been associated with the Jeans scale at the minimum
temperature over the course of the collapse, i.e. the ‘loitering point’
(Bromm et al. 1999), ~ 103 Mg, This minimum temperature occurs
at the critical density of molecular hydrogen, where collisional de-
excitation begins to compete with radiative de-excitation. However,
radiative cooling typically becomes efficient (in the sense that the
cooling time-scale becomes as short as the dynamical time-scale)
at a lower density and larger mass scale 10*~10° M. Moreover,
the early phase of the collapse is monolithic, with typically only
one star-forming cloud per halo. That is, fragmentation into multiple
Jeans-scale clumps does not actually occur and should not be invoked
as an explanation for this characteristic mass.

Here, we show that the characteristic scale of this gravitational
instability can be explained by the non-homologous nature of
the collapse, as a rapidly cooling (Rees—Ostriker unstable) but
perturbatively (Jeans/Bonnor-Ebert) stable core of gas contracts
and establishes an out-of-equilibrium density profile in its envelope.
The degree of instability in this envelope determines the subsequent
infall rate on to the protostar and its disc. To this end, we develop a
dynamical model of gravitational collapse which explicitly includes
thermal pressure, gravity, and radiative cooling. As our test-bed, we
consider the collapse of primordial gas into first generation (Pop.
III) stars, where the initial conditions for the collapse are dictated
by the cosmological environment, and can be described in terms of
a relatively small number of physical quantities. Still, a wide range
of outcomes are possible for the collapse, and the resulting Pop. III
initial mass function remains a topic of active research (for reviews
see Bromm & Larson 2004; Bromm 2013; Haemmerlé¢ et al. 2020;
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Klessen & Glover 2023). As discussed above, the radiative cooling
physics are thought to play a crucial role in setting the mass-scale
of the gravitational collapse. In addition to molecular hydrogen,
the formation of deuterated hydrogen (which has a permanent
dipole moment) leads to a lower minimum temperature and less
massive collapsing cloud (Ripamonti et al. 2007; Hirano et al.
2014; Nishijima, Hirano & Umeda 2024), while nearly isothermal
atomic cooling is associated with direct collapse and the formation
of supermassive stars (Omukai et al. 2005; Latif et al. 2013; Wise
et al. 2019; Kiyuna, Hosokawa & Chon 2023).

In all these cases, cooling remains efficient until the formation
of a protostar. For this reason, the density in the centre of the
cloud rapidly increases independent of the gravitational stability
of the cloud. As the density increases, the core becomes both
smaller and less massive. If cooling remains efficient indefinitely,
the endpoint of the contraction phase is an infinitely concentrated
and infinitesimally small core. It is this core-contraction which can
(but does not necessarily) establish true gravitational instability in
the surrounding envelope. We demonstrate here that the mass scale of
this gravitational instability in the envelope is controlled by features
in the temperature—density relationship.

Our model uses the density and temperature-dependent radiative
cooling rates to determine the quantity of gravitationally unstable gas
‘left behind’ by the core-contraction, and to estimate the rate at which
this gas will fall on to the protostar, or its accretion disc. The model
is based on defining an effective barotropic equation of state for the
gas from the thermal evolution in the core, which in this work we
supply using a one-zone model. We demonstrate the importance of a
modified Bonnor-Ebert (MBE) scale in regulating the contraction of
the core. We use this scale to calculate a radial density profile for the
gas, including both the pressure-supported core and the envelope
established by the core contraction. We assess the gravitational
(in)stability of the envelope by the ratio of the mass enclosed to
the MBE mass, «ypg. Finally, we determine the time-dependent
mass infall rate from the envelope on to the central hydrostatic
core, which we connect to kypg. The model preserves the physical
transparency and computational expediency of analytic approaches
while including the full temperature and density dependence of the
relevant cooling rates.

The calculation is perhaps most similar in spirit to the series of
papers Sipild, Harju & Juvela (2011, 2015) and Sipilé, Caselli &
Juvela (2017), which calculated a Bonnor-Ebert stability criterion
for pre-stellar gas clouds using numerically determined density and
temperature profiles for the clouds. Where those works determined
the ‘critical’ (marginally stable) central density of gas cores of fixed
mass, we undertake a dynamical model of the collapse based on
a sequence of marginally stable cores. The details of the imple-
mentations also differ: where those works determined the density
and temperature profiles using an iterative procedure involving 1D
radiative transfer, we employ an effective barotropic equation of
state generated by a one-zone calculation. Then, we determine the
density and temperature profile by numerically solving a sequence
of ordinary differential equations.

We also mention the recent work of Smith et al. (2024), which
illustrates the importance of radiative cooling in controlling the
onset of gravitational instability by demonstrating a critical gas-
phase metallicity for star formation in strong ultraviolet backgrounds.
That work uses a combination of 3D simulations and one-zone
modelling. In the one-zone model, the density and temperature
can be understood as average values. Gravitational collapse (and
thus star formation) is assessed to begin when the one-zone density
and temperature indicate instability via the isothermal Bonnor—Ebert
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criterion. Here, we develop an MBE condition, which can account
for temperature/pressure gradients as well as the contribution of dark
matter to the gravitational potential. Based on this Bonnor—Ebert
criterion, we build up a 1D model of the dynamics of the collapse
and show that the onset of instability can be understood through the
thermal evolution of the gas. We explain the qualitative agreement
between our model (in which the gas core is never unstable) and
mean density-based calculations such as that of Smith et al. (2024)
in Appendix D.

Our approach is tractable in large part due to the powerful tools
provided by the SciML ecosystem (Rackauckas & Nie 2017) for
solving and analyzing differential equations.

This paper is organized as follows. In Section 2, we develop
the model using the canonical example of a mini-halo cooled by
molecular hydrogen. Subsequently, we apply these methods to two
further examples in Section 3. In Section 3.1, we consider the
case where a delayed collapse leads to the formation of HD which
delays gravitational instability to higher density and smaller mass.
In Section 3.2, we consider the opposite case, where the gas heats
up to the point that atomic cooling is efficient. There, the nearly
isothermal equation of state leads to prompt gravitational collapse.
We close with a summary of the main results and brief discussion of
directions for future research.

2 METHOD

We begin by explicating the model using the example of a mini-halo
cooled by molecular hydrogen, before turning to further examples in
the next section. The steps of the calculation are as follows. We first
generate an effective barotropic equation of state for the gas using a
one-zone calculation (Section 2.1), and then apply this equation of
state to compute a radial density profile valid in the inner, pressure-
supported part of the cloud, which we first use to generalize the
Bonnor—Ebert stability condition and apply this condition to calculate
the full density profile of the gas (Section 2.2). We discuss the
gravitational stability of this density profile by calculating the ratio
of the mass enclosed to the Bonnor—Ebert mass and, in Section 2.3,
by calculating the time-dependent mass accretion from the envelope
on to the core.

2.1 The effective equation of state

Our model requires an effective equation of state as an input. Here,
we calculate this equation of state using the density—temperature
relationship determined from a one-zone model. This equation of
state could also in principle be determined by time-scale arguments
(e.g. Chang et al. 2019; Bramante et al. 2024b), or from the
density—temperature relationship in marginally resolved structures
in a hydrodynamical simulation. The underlying logic is that due
to the self-regulatory behaviour of the thermal evolution (discussed
below) even a simple ansatz for the density evolution can produce
a reasonably accurate density—temperature relationship and hence
effective equation of state, which we will here build into a more
accurate dynamical model. We begin by briefly explicating the one-
zone model, and refer the reader to, for example, Gurian et al. (2024)
for more detailed discussion. The temperature evolution of a uniform
density parcel of gas (say, in the core of a gas cloud) is given as

B C(T,ﬁ)}

kBI’l

dT_( 0 r'zT
dl_y n

@
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Table 1. The initial fractional abundances and their sources.

Species  Initial abundance Source

Xe 25 %1074 RECFAST (Seager, Sasselov & Scott 1999)
XH, 7% 1077 Hirata & Padmanabhan (2006)

XD 2.5%x 107 Cooke, Pettini & Steidel (2018)
Xp+ 6.3 x 1077 XD+ /XD = XH+/XH

XHD 1.8 x 10711 XHD/XD = )CHZ/)CH

with y is the adiabatic index, n is the total number density, T is the
temperature, C is the volumetric cooling rate and 7 is the number
densities of the various species. Evaluating this equation at a given
density requires the chemical composition 7 and the time derivative
of the density. The former can be supplied by solving a chemical
network (i.e. a system of ordinary differential equations describing
the interconversion of the various species). However, calculating
i requires the full dynamics of the gas, including gravitation and
pressure. These dynamics can (at considerable computational cost) be
supplied by hydrodynamical simulations. Instead, we apply a simple
ansatz the density in our gas parcel evolves on some characteristic
collapse time-scale:

. p
p=_—. (3)

Teol
Under this assumption, we can numerically integrate equation (2)
together with the chemical network and determine 7 as a function
of p alone. Note that equation (2) can be rewritten as (Gurian et al.

2024)

dlogT
dlogn

tcol(n)
(y = Dre@, )|’

which demonstrates a self-regulatory behaviour of the gas, in that
over the course of the collapse the temperature will adjust so that
tcol(n) ~ (V - l)tC-

For the example molecular cooling mini-halo, we adopt the initial
abundances described in Table 1 and solve a standard chemical
network using KROME (Grassi et al. 2014) with the initial temperature
and density set appropriate to a 5 x 10° Mg, halo at z = 25, taking
teol = tgr, With the free-fall time-scale defined by

3
Y . )
32Gp

Throughout this work, we will take ., = f (in this example and in
Section 3.2) or ., = ftg (in Section 3.1), with f a constant, here
effectively a free parameter. We discuss this choice and the possibility
of time-varying f in Appendix A. The resulting density—temperature
relationship is shown in Fig. 1. Atlow densities and temperatures, the
cooling is not yet efficient and the gas evolves by adiabatic heating.
The first local maximum of the temperature is the intersection of the
thermal trajectory of the gas with the curve #.;(n) &~ (y — 1)tc. This
marks the beginning of the cooling-regulated core contraction, and is
closely related to the Rees—Ostriker condition. The difference is that
we allow 7o to vary by an overall, order unity factor from #, which
is an approximate treatment of any slowdown in the evolution due,
for example, to temporarily ineffective cooling or rotational support.
This runaway contraction on a time-scale comparable to # continues
until thermal pressure overcomes the gravitational force, when the
adiabatic index d1In p/d1n p > 4/3 (e.g. Omukai et al. 2005). In the
remainder of this work, we do not consider the initial, heating part
of the trajectory. We integrate the chemical-thermal network until
the central density reaches 10'* cm=3, a number chosen somewhat

=y -D|l- “
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10° s

102 & 1

1 1 1 1 1 1

1 1 1 1 1 ]
10* 107 1010 1018

Niot (cm™3)

Figure 1. The one-zone temperature—density relationship for a 5 x 10° Mg
halo at z = 25 collapsing on the free-fall time-scale. The black, dashed part
of the curve is the initial, adiabatic heating up to the point where fco ~ fc.
The cooling part of the curve is colour-coded for easy identification with
subsequent figures.

arbitrarily but far larger than the ‘loitering point’ which is our primary
interest.

2.2 Density profile and Bonnor-Ebert mass

Based on this density—temperature relationship, we wish to calculate
a radial density profile. The guiding intuition is that for any given
central density and temperature, the radius of the gas core is of the
order of the local Jeans length. Further, the collapse is highly non-
homologous in the sense that the density far from the core hardly
changes as the central density increases. Therefore, we can sketch a
density profile by conceptually inverting

r=x(p, T(p)), (6)

with Aj is the Jeans length. In this section, we develop this intuition
using an MBE scale.

2.2.1 The core profile

In the inner ‘core’ region, we determine the density profile by
numerically integrating the equation of hydrostatic equilibrium. This
is reasonable because even in the presence of efficient radiative
cooling, pressure can regulate the collapse on small scales. In other
words, sufficiently deep in the gas core, the sound crossing time
is short compared to the evolutionary time-scale. We will shortly
determine the threshold where the quasi-hydrostatic evolution breaks
down, which is the Bonnor—Ebert scale. Now, in spherical symmetry,
the equation of hydrostatic equilibrium is

_ G [Mpu(r) + M()]p _ dPdp
r? T dp dr’

@)

where Mpy is the dark matter mass, M is the gas mass, p is the gas
density, and the pressure is P and its derivative are supplied by the
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100+ J

1 - 1 1 1 .
1072 10° 102
radius (pc)

102

1
107

Figure 2. The hydrostatic density profiles out to the minimum of the Bonnor—
Ebert radius or the initial values of n, 7 in Fig. 1, for a range of central
densities. The central density for each curve is colour-coded to correspond
with Fig. 1.

effective barotropic equation of state
P(n) = nkgT (n). (3

Equation (7) can be integrated numerically along with the equation of
mass conservation

dMio

o= 472 [p(r) + pom(r)], ©)
.

where M, = Mpm + M, and we are neglecting the effect of the
gas evolution on the dark matter (though see Spolyar, Freese &
Gondolo 2008). In our molecular cooling mini-halo, we take a dark
matter density profile informed by the simulations of Hirano et al.
(2014), which generated a sample of ~ 100 clouds collapsing in
haloes of masses between 10° and 10° M, and at redshifts between
10 < z < 35. The dark matter density profiles found in that work can
be approximated by (Hirano private communication),

NET

3/2 172
(7) (1+2)

with p; = 5my cm™3, where my; is the mass of the hydrogen atom
and ry = 30 pc. The parameters ps and r; should in principle depend
on the halo mass and redshift, and at a given radius the density can
vary by a factor of ~ 10 over the simulation suite. We discuss the
sensitivity of our results to the dark matter density in Appendix C.
With ppm set, we can numerically integrate equations (7)—(9)
from any assumed central density p.. The result is the hydrostatic
radial density profile of the gas, pusg(poc,r). At large radii, the
hydrostatic density profile can represent an unstable equilibrium.
The transition from stable to unstable equilibrium is defined by the
Bonnor—Ebert scale. In Fig. 2, we plot the hydrostatic density profile
out to whichever is less of the MBE radius (defined below) or the

(10)

ppom(r) =

MNRAS 537, 580-597 (2025)

initial temperature maximum of the density—temperature relationship
(where f., ~ t¢, which also defines a cooling radius for the gas reh).

2.2.2 The Bonnor—Ebert mass

In the standard treatment of gravitational instability (in which
radiative losses are neglected) excessively centrally concentrated
density profiles are unstable to collapse and fragmentation while less
concentrated profiles can remain indefinitely hydrostatic. The picture
is different for gases which lose kinetic energy through radiation.
Such clouds can quasi-hydrostatically contract to higher central
densities regardless of the presence or absence of a perturbative
instability. In this case, both the cooling (or Kelvin—Helmholtz) and
free-fall time-scales are decreasing functions of density. This results
in a tendency for the dense, inner regions of a cloud to ‘run away’ to
still higher densities on the relevant local time-scale.

For such a collapsing central region in a (quasi-)static external
medium, a Bonnor-Ebert stability criterion applies. Consider a
central region of the cloud infinitesimally contracting to a new
hydrostatic configuration on its local Kelvin—Helmholtz time-scale.
If this contraction leads to an increase in surface pressure, sound
waves will push the gas back towards its original configuration. On
the other hand, if the surface pressure decreases then the gas will be
accelerated towards the centre of the cloud.

Exact contraction on the local Kelvin—-Helmholtz time-scale cor-
responds to marginal Bonnor-Ebert stability,

<S—P> =0, (11)
8V )y

which is the classical Bonnor—Ebert condition that applies to spher-
ical gas clouds of fixed mass (Ebert 1955; Bonnor 1956). However,
the Bonnor—Ebert mass (like the Jeans mass) is usually a decreasing
function of central density. This means that in the case of the
contracting gas core, we should no longer hold the mass fixed. Thus,
we consider instead the surface pressure response to an increase in
central density, at fixed radius:

Spe ap P=PHSE 0pe

=0, (12)

which defines the radius/density at which contraction proceeds in
pressure equilibrium. For the HSE case that we show in Fig. 2, o,
is one to one to the size of the core. As long as g—’; does not change

sign,? the first zero of this quantity occurs when

0 pHsE
0pc
Equation (13) defines the MBE radius throughout the rest of this
work. In Appendix B, we explicitly relate this condition to the
standard Bonnor—Ebert condition, equation (11). Note that equation
(13) in fact requires calculating the derivative of a numerical
solution to an ordinary differential equation with respect to its initial
condition. This is readily accomplished using the sensitivity analysis
tools provided as part of the SciML ecosystem (Rackauckas et al.

2020).

=0. (13)

'We point out that this r¢ differs conceptually from the cooling radius of, for
example, Bertschinger (1989), which is based on the age of the system rather

than its dynamical time-scale.

2In fact, as %—ﬁ — 0, the sound speed also goes to zero, promoting the

development of shocks and a breakdown of our treatment. In all the cases
considered here aa—/’: > 0.
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As long as the cooling time-scale is a decreasing function of
density, during the contraction the outer regions of the cloud can
never ‘catch up’ to the contracting core. That is, the evolution of
the inner part of the cloud is approximately independent of the outer
part. The MBE condition equation (13) sets the scale at which the
central region of the gas cloud decouples from its surroundings and
escapes to high densities via radiative cooling.

Associated with the MBE radius rygg is the Bonnor—Ebert mass.
Defining p. Mg = pc(rmpg) as the central density for which the
Bonnor—Ebert radius is rygg,

T"™MBE
Mg = 47T/ r*dr puse(PeMBE, 7), (14)
0

which is the largest possible stable, hydrostatic mass enclosed in the
Bonnor-Ebert radius rypg, consistent with the effective barotropic
equation of state of the gas.

2.2.3 The envelope and cloud mass

At a given central density p. and for r < rvpe(p.), we calculate the
density profile by solving the equation of hydrostatic equilibrium,
equation (7):

p(r) = puse(pc, 7). (15)

For r > rype(p.), we calculate the density as the hydrostatic
equilibrium density at that radius when rypg = r (that is, at some
previous time when p. = . MBE):

o(r) = pmBe(r) = Puse(0e,MBE; ). (16)

In other words, we assume that the density at »(> rygg) has not
evolved since the earlier time/lower central density where r was the
Bonnor-Ebert radius. The assumption is reasonable because when
Pe ~ pemee the density at » must be slowly evolving by equation
(13), while once the central density has increased such that p. >
peMpi the central evolutionary time-scale is very short compared to
the evolutionary time-scale at rvgg. Then, the full density profile is

0(pe, 1) = {pHSE(pcar)

r < rvee(pc)
oMmBE(") {17

r > ryBe(0c).

In practice, we determine the density profile for r > ryvpe by
calculating the hydrostatic density profiles and Bonnor—Ebert radii
over a grid of central densities, then splining through the hydrostatic
density profiles at the Bonnor—Ebert radius of each. This is illustrated
in Fig. 3. In the inner region, the profile agrees closely with that
derived from the 1D hydrodynamic calculations of Omukai et al.
(2010). Although that work did not include dark matter, we show
in Appendix C that the effect of the dark matter on the density
profile is minor in this inner region. Further, in Appendix E, we
compare the model with 3D simulations. The slope is also consistent
with the Larson—Penston polytropic solution for a gas with adiabatic
index y ~ 1.1 (which here holds between 10* <7 < 107 cm™)
(Omukai & Nishi 1998a). Below this density, the Larson—Penston
solution predicts a shallower density profile, which is not seen here
due to the dark matter dominating the density at large radii (see
Appendix C).

Given these density profiles, for any central density and radius,
we can calculate the ratio of the mass enclosed to the Bonnor—Ebert
mass,

M(r)
Muge(r)’
for any r inside of the cooling radius (r < rc¢).

(18)

KMBE =
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Figure 3. As Fig. 2, but we have now overplotted in grey the full density
profile (equation 17) when the central density is 1013 cm—3, as well as the
late-time density profile from the 1D simulations of Omukai et al. (2010),
here truncated at 10'3 cm—3. The agreement is quite close.

When kpmpe < 1 for all r < r¢, the gas evolves on a global time-
scale. If the low-density gas (i.e. the gas beyond r¢) is adiabatically
falling on to the core, this global time-scale may still be comparable
to the free-fall time-scale. On the other hand, if the surrounding
medium is nearly hydrostatic the time-scale may be considerably
longer.

As soon as kypg reaches unity within r¢, the Bonnor—Ebert core
begins to contract on its cooling time-scale, with 7z ~ f. That is, a
refined Rees—Ostriker criterion is given by

kemee(re) = 1. (19)

As the central density increases and the Bonnor-Ebert radius
decreases the cooling and free-fall time-scales become shorter still: a
period of runaway Kelvin—Helmholtz contraction begins. Through-
out this phase, the density profile in the contracting core remains
stable and nearly hydrostatic (kypg < 1). The contraction begins to
decelerate once the gas can no longer radiate its gravitational energy
within a free-fall time such that the equation of state becomes stiff
with dlog P/dlog p > 4/3, for example, after becoming optically
thick (Low & Lynden-Bell 1976; Rees 1976). By this point, the
contraction of the core, which has proceeded nearly in equilibrium,
has established a new density profile in the envelope. As we will
establish quantitatively in the following Section (2.3), the amount
by which xypg exceeds unity at a given radius is related to the
subsequent infall rate from the envelope on to the core: a larger value
indicates more violent acceleration towards the core.’

The ratio «yg in the molecular hydrogen-cooled cloud is shown
in Fig. 4 for a range of central densities. We find that gravitational
instability in the envelope sets in when the central density is near the
molecular cooling critical density, ny ~ 10° cm~3, and peaks around

3In fact, kypg roughly tracks fg(n(r))/+/r Ja(r), where a(r) is the gravita-
tional acceleration less the pressure gradient, equation (21), so that xMBE
can be intuitively understood as the ratio of the uniform-density free-fall
time-scale to the local infall time-scale.
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Figure 4. The ratio kg of mass enclosed to Bonnor—Ebert mass for a
sequence of central densities, in the molecular cooling mini-halo. Gravita-
tional instability begins to occur with the central density near the critical
density of molecular hydrogen cooling (1, = 1000 cm™3), and kyvpg peaks
with 1000 Mg enclosed, corresponding to the Jeans mass at the loitering
phase.

1000 M, (i.e. around the loitering point/mass). We also point out that
Fig. 4 differs qualitatively from similar plots in the literature based
on the isothermal Jeans mass (see Appendix D).

These results clarify the lore that a decreasing temperature (with
density) ‘promotes fragmentation’ while an increasing temperature
‘suppresses fragmentation’ (e.g. Li et al. 2003). While we do
not study the multiplicity of cores, our results illustrate how the
characteristic mass of collapsing clouds depends on the density—
temperature relationship. As illustrated by the light blue/dark green
lines in Fig. 3, we see that once xypg exceeds unity, a positive
temperature gradient (i.e. strong cooling) leads to a shallow density
profile (for r 2 1 pc) so that kyvpg hardly increases in the envelope.4
If the cooling were to continue indefinitely, the final result would
be an infinitesimal core surrounded by a nearly hydrostatic enve-
lope. It is plausible that this nearly hydrostatic outer region (with
M(r) ~ 10* M) could be vulnerable to, for example, turbulent
fragmentation leading to the formation of multiple contracting cores.
In this picture, though, fragmentation is not invoked to explain the
characteristic mass of these cores. On the other hand, an isothermal
or heating density/temperature relationship (negative temperature
gradient) leads to a prompt increase in kypg, so that nearly all
of the core mass at the density where the isothermal/heating part
of the evolution begins is rapidly accelerated inwards, here within
M(r) < 10° Mg. These points are further illustrated in the examples
of the following sections.

We emphasize again that this picture is quantitatively similar to but
qualitatively distinct from the ‘dynamical collapse’ investigated by
e.g. Larson (1969), Penston (1969), and Foster & Chevalier (1993).

4The maximum of kypEg also increases in the range 10 <n < 103 cm™3

despite the positive temperature gradient because «ypg has not yet exceeded
unity. In this phase, an initial Bonnor—Ebert mass of gas is accumulating in
the core.
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Rather than setting up an isothermal gas cloud out of dynamical
equilibrium, we are tracking the evolution of the cloud between
quasi-equilibrium states determined by the gas chemistry and cooling
rates. Without cooling, the gas would rapidly heat and the contraction
stall out. In this sense, the contraction of the core is always regulated
by pressure and cooling. While an isothermal equation of state can
provide a reasonable approximation to this balance between cooling
and heating, our approach clarifies the picture by more accurately
including the underlying thermochemistry of the collapsing gas.

In particular, we point out that calculations involving self-
gravitating isothermal gases do not conserve the total energy of the
system: There is an implicit energy loss rate imposed by the equa-
tion of state. Unlike realistic radiative cooling rates, the isothermal
energy loss rate (which is just the opposite of the compressional
heating term) is a function only of p, which is why isothermal
runaway collapse is initiated from rest only when the configuration
is already dynamically unstable.

Finally, on a practical note, we point out that the MBE scale can be
assessed in two ways in simulations. First, rvpg can be determined as
the point where the density stays stationary in successive snapshots.
Alternatively, the thermal evolution determined from the simulation
can be used as the input in this model to determine the MBE radius
as a function of central density, and in turn kyvpg (see Appendix E).

2.3 Infall rate

We now explain the implications of xypg > 1 for the dynamics of
the gas, by using the density and velocity profiles before protostar
formation to estimate the infall rate after the contraction halts and a
hydrostatic core is formed. The conceptual point is that for kmpg > 1,
the density is larger than the hydrostatic value, and the gas is thus
accelerated towards the core. A widely adopted estimate of the infall
rate (e.g. Hosokawa & Omukai 2009; Li, Inayoshi & Qiu 2021) is

M ~ Mty ~ c2/G. (20)

In the Larson—Penston solution (which represents a highly dynamical
isothermal collapse), M ~ 47C53 /G (Hosokawa & Omukai 2009),
while in the initially static Shu solution, the prefactor is very nearly
unity (Shu 1977). Neither limit is typically attained in simulations
(e.g. Hunter 1977; Foster & Chevalier 1993; Omukai et al. 2010),
where (in contrast to the Larson—Penston solution) the initially
small infall velocity at large radii is relevant and (in contrast to
the Shu solution) the envelope is not hydrostatic at the end of the
core contraction phase. Moreover, these similarity solutions do not
account for the departures from isothermality, which introduce new
scales in the problem.

Towards a calculation of the infall rate, we estimate the radial
velocity profile of the gas once the core has become small and dense
(near the epoch of protostar formation) using the density profile
calculated above. We model the radial velocity profile from the
trajectory of a test particle moving towards the centre of the cloud,
assuming that significant gravitational acceleration is sourced at the
radius r only once the core contracts to much smaller radii.

In this test-particle model, we approximate the acceleration field as
constant in time but varying in space. The acceleration experienced
at each radius r is thus given as the gravitational acceleration from
the late-time mass enclosed less the pressure gradient:

dv G[Mpum(r) + M(r)] 1dP dp

dr r? @

o dp dr’

where Mpy(r) is the dark matter mass interior to r (which is assumed
not to evolve over the collapse) and M(r) is the late-time mass
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Figure 5. The radial velocity profile for the molecular cooling mini-halo
(solid, black), along with the sound speed (teal, dotted) and the velocity
profile found by Omukai et al. (2010) (blue, dashed). The disagreement at
large radii is due to the imposition of a zero-velocity boundary condition
around 2 pc in Omukai et al. (2010). However, a factor of (almost exactly) 2
discrepancy persists in the inner region.

enclosed (in this example, the mass enclosed when the central density
is 10" cm™3).

That is, using the identity dv/dt = vdv/dr = %d(uz)/dr, we
integrate the equation as
vi(r) = v*(r)

/’ { G[Mpm(r)+ M(r)]  1dPdp (22)
=2 dr |— — .

r? p dp dr

We do not model in detail the drop-oft of the infall velocity near the
core. Instead, we truncate the velocity profile at 25 times the Bonnor—
Ebert radius at the highest central density in our calculation. We
impose a zero-velocity boundary condition and begin the integration
when the mass enclosed first exceeds the Bonnor-Ebert mass.
The assumption that the gas is accelerated from near rest is most
reasonable if there is an initial quasi-static period, for example, as
coolants accumulate.’ However, we have checked that the results in
the inner region are insensitive to this assumption (see Appendix C).
Therefore, we are justified in beginning the integration at the radius
R, where the following condition is satisfied:

tin = \/—Ro/a(Ry) < 107 yr, (23)

with the acceleration a(Ry) given by the right-hand side of equation

(21). By this condition, we avoid the situation that immediately after

exceeding the Bonnor—Ebert mass equation (21) can be very stiff.
The velocity profile is shown in Fig. 5. Our velocity profile initially

S1tis possible to estimate a non-zero initial velocity at the Bonnor—Ebert radius
by considering virial equilibrium and/or dissipation of turbulent velocity of
the cloud at larger/halo scales (McKee & Tan 2003; Luo, Liu & Li 2024a, b).
Here, we adopt the simple zero-velocity condition in line with the canonical
picture of monolithic collapse of primordial gas under inefficient cooling
and weak turbulence (Chon, Omukai & Schneider 2021). It is shown in
Appendix E that this assumption has minor effects on the mass scale and
dynamics of collapse.
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Figure 6. The infall rate as a function of mass enclosed for the molecular
cooling mini-halo (solid, multicoloured), along with the Shu quasi-static
accretion rate (teal, dotted), the Larson—Penston accretion rate (red, dotted),
and quadruple the semi-empirical fit of the protostellar accretion rate from
Liu et al. (2021) (grey, dashed). The colour is related to the mass through
M(r(n)) in the late-time density profile, with the mapping from colour to
density as in Fig. 1. Note the pronounced dropoff in the accretion rate past the
loitering point. For the accretion rates appropriate to the similarity solutions,
the position on the horizontal axis is calculated as the Jeans mass at each
(n, T).

(i.e. at large radii) greatly exceeds the results of Omukai et al. (2010)
because those authors imposed a zero velocity boundary condition
at a smaller radius. In the inner region, our velocity exceeds the 1D
hydro results by a factor of almost exactly 2, a discrepancy which
persists even if we match the zero-velocity boundary condition to
the hydro calculation. The disagreement can be explained by the fact
that in our approximation that the gas at radius r is accelerated by
the ‘very’ late time mass enclosed, rather than ‘somewhat’ after the
Bonnor—Ebert radius becomes smaller than r. That is, in reality the
right-hand side of equation (21) should evolve with time as the gas
at r is accelerated over a window of times/central densities after the
core has receded from r but before the central time-scale becomes
too short to meaningfully affect the scale r.
Proceeding, we construct the infall rate as

M) = 47tr2pv, 24)

with v as calculated above and p is the late-time density profile.
The result is shown in Fig. 6, where we have adopted the late-time
enclosed mass as the independent variable via M = 47t [ dr r?p.
This is an estimate based on the envelope structure of the cloud
scale infall rate as a function of the mass fallen on to the disc.
If the inefficiency of accretion of the protostar through the disc
is neglected, this quantity can be interpreted directly as the pro-
tostellar accretion rate as a function of protostellar mass, as in
(for example) Hosokawa & Omukai (2009). The peak in kmpr
(Fig. 4) corresponds to a regime of rapidly increasing infall rate. At
small masses our calculations roughly tracks the estimate equation
(20), with an overall enhancement sourced during the early, highly
gravitationally unstable phase of the collapse of the envelope. This is
also approximately consistent with the analytic calculation of Tan &
McKee (2004), although in that work a free parameter of the order of
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unity (corresponding to the enhancement relative to the Shu solution)
multiplies the accretion rate. Our estimate is a factor of few greater
than the semi-empirical estimate of the protostellar accretion rate
of Liu, Meynet & Bromm (2021) in the regime where that fit was
calibrated. The factor of few can be attributed to the inefficiency of
accretion on to protostars through the accretion disc as compared with
the cloud level infall rate, together with the factor of 2 overestimate
of the velocity in our calculation.

We find important qualitative differences relative to the Jeans
estimate equation (20), related to the arguments discussed in the
preceding section. Crucially, we demonstrate that the infall rate
depends not only on the sound speed, but also on its gradient. A
sound speed which decreases with increasing density is associated
with a more stable configuration (Fig. 4 and accompanying text) and
a correspondingly smaller infall rate. In contrast, the Jeans estimate
M ~ c?/G depends on the temperature alone.

Now, we have obtained the relation between the infall rate M,
collapsed/enclosed mass M, and the corresponding cloud spatial
(r) and density (n o« M/r?) scales, from which we can further
derive their time evolution with (M) = fOM[l/M(M’)]dM’. This
is a crucial step towards predicting the final outcome of the collapse.
Hydrodynamic simulations and analytical models show that due to
the angular momentum of the infalling gas and outflows, only a
fraction n ~ 0.25 — 0.75 (Matzner & McKee 2000; Sakurai et al.
2016; Tanaka, Tan & Zhang 2017; Staff, Tanaka & Tan 2019;
Toyouchi et al. 2023) of the collapsed mass M is accreted by the
protostars through a protostellar disc, whose size R is correlated
with the collapsed mass M (Tan & McKee 2004; Liu et al. 2021). As
shown in a companion paper Liu et al. (2024), the scaling relations
M(M),t(M),and R(M), can be used to calculate the final mass of Pop
III stars formed in the cloud with an analytical model that considers
the balance between gas infall and disc photoevaporation by the
ionizing photons from protostars, and the limit of stellar mass placed
by lifetime and instability. Assuming 7 = 0.5 and only one protostar
forms in the cloud for simplicity, applying our results to the model
in Liu et al. (2024) produces a final stellar mass of M, ~ 260 M,
consistent with the results from hydrodynamic simulations of H,-
cooling clouds with similar gas infall rates M ~ 0.016 Mg yr~!
at the density scale of n =~ 10° cm~® (Hirano et al. 2014, 2015;
Sugimura et al. 2023; Toyouchi et al. 2023).°

3 EXAMPLES

We now present two additional applications of the methods developed
in the preceding sections, which further elucidate the relevant
physics. First, we demonstrate a case where the collapse is delayed,
allowing the efficient formation of HD. The resulting cooling and
heating are then stronger due to the presence of HD, emphasizing
the arguments we have developed. Secondly, we present a nearly
isothermal atomic-cooling example, which is in a sense the opposite
extreme.

The original model in Liu et al. (2024) assumes a power-law scaling M
M~037 following Liu et al. (2021), which is valid for polynomial gas with
P o n''% (Omukai & Nishi 1998b; Tan & McKee 2004). In our case, the
decline of M with M is more rapid for M > 100 Mg, likely due to the
zero-velocity boundary condition (at the moment when the mass enclosed
first exceeds the Bonnor—Ebert mass, see Appendix C) and the deviation of
the effective equation of state from a simple power-law. As a result, the final
stellar mass predicted from our M (M) is lower than that from the power-law
model in Liu et al. (2024) by a factor of ~ 2. This difference is within the
scatter seen in the predictions of hydrodynamic simulations.
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Figure 7. The temperature—density relationship for the delayed contraction,
teol = 3tr. A lower minimum temperature and steeper temperature gradients
are realized due to the production of HD.

3.1 Delayed core contraction with the HD molecule

If the contraction of a pristine gas cloud’s core is delayed, for
example, due to rotation (Hirano et al. 2014) or an initial shortage
of coolants (Gurian et al. 2024), the chemical thermal-evolution
is modified due to chemical fractionation of the HD molecule.
We now apply our model to explain how this modification of the
chemistry propagates into the dynamics of the collapse. To this end,
we adopt initial conditions exactly as in the previous section except
that we take 7., = 3#. It is not completely straightforward to set
up a hydrodynamical simulation with realistic initial conditions
which guarantee that 7., = 3#;. However, we have shown in Gurian
et al. (2024) that in the simplest case of Pop. III star formation
(neglecting, for example, Lyman—Werner backgrounds, turbulence,
and the baryon dark matter streaming velocity) the delay factor can be
predicted based on the host halo mass and redshift. We demonstrate in
this section how such knowledge of the thermal evolution of the core
can be directly extended into predictions concerning the dynamics of
the collapse. Extending the calculation of the delay factor to include
additional environmental factors is a target for future work.

The temperature—density relationship for this case is shown in
Fig. 7. Compared to the H, cooling example shown in Fig. 1, the
minimum temperature here is lower, ~ 70 K. Using this density—
temperature relationship and equation (17), we compute the density
profile shown in Fig. 8. Note that owing to the steeper temperature
gradients, the density profile exhibits stronger features than that of
the H, cooling example shown in Fig. 3.

We show the ratio kg in Fig. 9. Compared to the H, cooling halo
case (Fig. 4), kypE first exceeds unity only somewhat later, when the
central density is around 10* cm™3. However, kvpg stays close to one
until the central density increases past 106 cm =3, which is because the
temperature changes only modestly between ~ 103 and ~ 10° cm™3.
Beyond this point, the rapidly increasing temperature causes kypg to
rapidly increase. In fact, the temperature increases sharply enough
that Mygg briefly increases with density, so that the kypg curves
cross each other in the inner region. The eventual result is a sharp
peak in kyvpg near 200 Mg.
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Figure 8. As Fig. 3, but for the delayed contraction with HD cooling. Here,
lacking a reference hydro run we have simply overplotted the characteristic
n o r~22 slope. Note the more pronounced features in the density profile due
to stronger deviations from isothermality.
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Figure 9. As Fig. 4, but for the delayed contraction with HD cooling.
Gravitational instability in the envelope is established when the temperature
begins to rise.

The fact that kypg remains very close to unity for the initial
part of the collapse (due to the strong cooling) means that as the
central density increases the envelope remains nearly hydrostatic.
The resulting accretion rate is shown in Fig. 10. In this case, the
¢ /G estimate becomes ill-defined due to the non-monotonicity of
both Bonnor-Ebert mass and Jeans mass, mentioned above.

The results of this section are qualitatively consistent with the
simulations of, for example, Hirano et al. (2014) and Nishijima et al.
(2024), as discussed in detail in Appendix E. Omukai et al. (2010)
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Figure 10. The accretion rate as Fig. 6, but for the delayed collapse with HD
cooling. Due to the strong heating, once HD is destroyed, the mapping from
(n, T(n)) to the Jeans mass (which is used to define the mass coordinate in
the ¢3 /G estimates) is no longer one to one.

also provide a benchmark for the effects of varying thermal evolution
on the infall rate. The same trends of positive temperature gradients
(cooling) leading to decreased infall rates while heating leads to
sharply increasing infall rates are seen also in that work. However,
a sharp dropoff in the infall rate is seen only at the zero-velocity
boundary condition, because in that case the initial conditions were
already gravitationally unstable. As expected, the infall rate is lower
(M ~ 0.0092 Mg yr~! atn ~ 10° cm™3) compared with the standard
H,-cooling case shown in Fig. 6, resulting in a lower final stellar mass
M, ~ 120 M, according to the analytical model in Liu et al. (2024).

3.2 Atomic-cooling halo

If the formation of molecular hydrogen is inhibited (for example by
dynamical heating due to frequent mergers, collisional dissociation,
or a strong Lyman—Werner background; Omukai 2001; Latif et al.
2013; Wise et al. 2019; Kiyuna et al. 2023), a mini-halo can
grow and heat up until atomic line cooling becomes efficient. This
scenario can lead to the formation of supermassive (2 10* Mg)
primordial stars, which may become the seeds of supermassive black
holes (Bromm & Loeb 2003; Chon, Hosokawa & Yoshida 2018;
Chon & Omukai 2020; Sakurai, Haiman & Inayoshi 2020; Regan
2023; Reinoso et al. 2023; Toyouchi et al. 2023). However, the
intrinsically large dynamic range of the problem (which depends
on initial conditions for the collapse which are cosmologically rare)
complicates forecasting the abundance of such objects. Here, we
generate a typical atomic-cooling density—temperature relationship
(Fig. 11) using the collapseUV test provided with KROME, where
the cloud is subject to a Lyman—Werner background J,, = 10°, with
Jo = Jow/(1072 ergs~ em ™2 Hz ™).

In this case, we assume an NFW profile for a 10® My, halo with
a concentration parameter ¢ = 3.3 (based on the mass concentration
relationship of Diemer & Kravtsov 2015), with the normalization
calculated by the COLOSSUS package (Diemer 2018). The gas density
profile is shown in Fig. 12. We find that (consistent with the nearly
isothermal evolution) the gas density scales as the inverse square of
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Figure 11. As Fig. 1, but for the atomic-cooling halo. Here, the trajectory is
nearly isothermal at the atomic-cooling limit temperature.
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Figure 12. As Fig. 3 but for the atomic-cooling halo. From the nearly
isothermal evolution, we expect n o r~2, which is observed until the dark
matter dominates the density at large radii.

the radius, until the dark matter becomes important in the calculation
of the Bonnor—Ebert radius, around 20 pc. A less concentrated or
lower mass dark matter halo would diminish this effect.

We show kg in Fig. 13. The nearly isothermal evolution rapidly
establishes a dynamical collapse out to the mass scale where the
core contraction began (Fig. 14). The characteristic (nearly constant)
infall rate ~ 1 Mg yr~! is comparable to that found in the 3D
simulations of Latif et al. (2013), which is a case with similar
thermal evolution. In the absence of strong features in the density—
temperature relationship, the cloud mass is set by the mass where
cooling first becomes efficient. This depends on the growth history
of the halo, both through the dark matter profile (which helps set
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Figure 14. As Fig. 6, but for the atomic-cooling halo. In contrast to
the ‘shoulder’ seen in previous sections (associated with the temperature
minimum of the gas), we see an abrupt cutoff in the infall rate beyond the
initial core mass.

the mass enclosed at fixed density early in the collapse) and through
the dynamical heating of the gas (which will determine the density
at which the gas first reaches the atomic-cooling limit temperature
~ 10*K). Given such high infall rates, stellar feedback is expected
to be suppressed as the protostar will expand significantly to enter
a bloating phase under rapid accretion (Omukai & Palla 2001,
2003; Hosokawa et al. 2013; Haemmerlé et al. 2018; Herrington,
Whalen & Woods 2023; Nandal et al. 2023). Therefore, combining
our infall history with the model in Liu et al. (2024), we predict that
a supermassive star of M, ~ 6 x 10* M, will form in the end, which
is expected to collapse directly into a massive black hole seed.

G20Z UdJBIN 60 UO 1saNB AQ 969€¥6./085/1/.EG/RI01HE/SEIUW/WOD dNO"ILISPEDE//:SANY WO} POPEOJUMOQ



4 DISCUSSION

We have developed a model of gravitational collapse regulated
by radiative cooling. We have illustrated how the microphysics of
the gas control the density and velocity profiles established over
the course of the collapse as well as the infall rate. Further, we
have presented a newly general and physically precise notion of
gravitational instability in this context based on the MBE scale.
We have demonstrated the agreement of our results with vastly more
sophisticated numerical treatments. Our approach is computationally
expedient: generating the full, late time density profile using a
grid of 60 central densities takes of the order of a few seconds
on consumer hardware, which is dominated by the compile time.
With the code pre-compiled and the density—temperature relationship
pre-computed, generating the density profile requires only ~ 0.1 s.
In certain situations, this speedup compared to hydrodynamical
simulations (in exchange for some loss of accuracy) may be useful.

However, our model does not capture the full degree of complex-
ity present in hydrodynamical simulations (let alone reality). For
example, Omukai et al. (2010) found in their 1D simulations that
strong heating in the core leads to the formation of shocks as the
core fails to ‘stay ahead’ of the infalling material. We have further
made no attempt to model phenomena including deviations from
spherical symmetry (which can lead to the formation and subsequent
fragmentation of an accretion disc), turbulence, magnetic fields, and
radiative feedback — all of which are understood to play important
roles in the star formation process (e.g. Larson 1973; McKee &
Tan 2002, 2003; Tan & McKee 2004; Hennebelle & Chabrier 2008;
Hopkins 2012b; Guszejnov & Hopkins 2015; Tsukamoto et al. 2015;
Inoue & Yoshida 2020; Kimura, Hosokawa & Sugimura 2021; Liu
et al. 2024; Thomasson et al. 2024; Luo et al. 2024b). Some of these
shortcomings can be addressed by future work, for example, by the
inclusion of additional pressure terms in an effective sound speed.

These caveats do not diminish the utility of our model both as a
cross-check for simulations in varying physical environments and as
aconceptual framework. We have made precise the sense in which the
density—temperature relationship in the core controls the dynamics
of the entire collapse, and determines the mass of the eventual
collapsing cloud. We clearly distinguish the roles of Rees—Ostriker
and Bonnor-Ebert instability criteria in the collapse of thermally
supported gas. The distinction is based on the ‘two-phase’, non-
homologous nature of the collapse in which the gas first contracts to
protostellar densities and then subsequently falls on to the nascent
protostar (or its disc). The Rees—Ostriker criterion controls the onset
of runaway contraction in the sense of a gas core rapidly condensing
to high density. This phase of the collapse, although it can occur on
a dynamical time-scale, is a quasi-equilibrium process.

This runaway cooling in the core is the cause of gravitational in-
stability, rather than the consequence. Then ‘dynamical’ or Bonnor—
Ebert instability impacts the dynamics principally after the formation
of the protostar, during the accretion phase. These facts are not widely
appreciated. For example, it is common practice to begin cloud-scale
simulations of primordial star formation with the density enhanced
relative to the hydrostatic value by some constant factor to ‘initiate
the collapse’ (e.g. Omukai et al. 2010; Chon et al. 2021). In fact,
in Omukai et al. (2010) by the time of the first snapshot the density
profile has ‘corrected’ to the one calculated in this work (Fig. 3).

Finally, we illustrated that the mass scale at which the core
contraction initiates dynamical instability in the envelope depends
crucially on the features in the density—temperature relationship:
Strong cooling leads to stability and mild cooling or heating leads to
instability. With these insights, we can make newly precise statements
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about the effects of the gas equation of state on the mass scale of the
collapse. For example, we have extended the conventional wisdom
that a nearly isothermal equation of state (as in our atomic-cooling
example) ‘suppresses fragmentation’ (Li et al. 2003) by showing
(Fig. 13) that a nearly isothermal equation of state rapidly establishes
gravitational instability at the scale where the core contraction
begins, which may lead to a monolithic collapse at this scale. On
the other hand, compared to the argument that cooling promotes
hierarchical fragmentation down to the temperature minimum, we
have shown that strong cooling (as in our delayed collapse example)
leads to a nearly hydrostatic envelope, so that a large infall velocity
is established only past the temperature minimum. This is true
independent of the possible multiplicity of the cores — fragmentation
may occur in the envelope, but is not necessary to explain the
characteristic mass of collapsing clouds.

By these arguments, we clarify the significance of the ‘loitering
point’ in Population III star formation: the increase in temperature
and corresponding steep density profile at densities above the loiter-
ing point accelerates the envelope inwards, so that the characteristic
mass of the collapsing cloud corresponds to the Bonnor—Ebert mass
at this point. We show in Appendix C that the effect of the thermal
evolution on the dynamics is exaggerated by the fact that dark matter
dominates the potential at densities below the loitering point, further
suppressing gravitational instability at low densities.

These ideas differ from pre-existing notions concerning gravita-
tional collapse and fragmentation based on perturbative instabilities
in the medium. Because density perturbations grow on the free-
fall time-scale, such instabilities are not likely to operate during
free-fall core contraction without external forces. Such instabilities
become important, for example, when the collapse is delayed (i.e. by
inefficient angular momentum transport, resulting in the formation
of a disc) or when large density perturbations are established on sub-
dynamical time-scales (i.e. by supersonic turbulence). Either or both
effect can easily be relevant in realistic situations. Here, we have
illustrated the sense in which even a monolithic collapse contains a
preferred mass scale dictated by the radiative physics of the gas.

Our model describes the density profile of gas after runaway
Kelvin—Helmbholtz contraction is initiated. For a fixed density—
temperature relationship, the late collapse results are fairly insen-
sitive to the initial conditions. In Sections 3.1 and 3.2, we have
developed two representative examples where the cloud/halo scale
physics significantly alter the density—temperature relationship, and
hence the dynamics of the collapse. In the primordial case considered
here, the large-scale initial conditions are dictated by cosmology, and
in particular by the distribution of dark matter. In a companion paper
(Liu et al. 2024), we develop a model relating the cloud-scale infall
rate (as calculated here) with the final stellar mass based on the
interplay between radiative feedback and fragmentation, while in
Gurian et al. (2024), we predicted the chemical-thermal evolution of
the cloud based on the cosmological environment. These efforts can
be connected towards a comprehensive analytic model of primordial
star formation. This model is able to predict the final mass of
stars formed from any input evolution track of primordial star-
forming gas in the temperature—density phase diagram with minimal
computational cost and physically motivated free parameters (for
disc fragmentation, stellar evolution and feedback) rather than
phenomenological parameters such as star formation efficiency. It
covers all possible modes of Pop III star formation known to date,
as illustrated here using the evolution tracks predicted by the one-
zone approach for the three examples of H,- (Section 2), HD-
(Section 3.1), and atomic-cooling (Section 3.2) clouds (see also
Liu et al. 2024). The universality and flexibility of this model offer
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promising applications across a wide range of topics. For example,
it can be employed to investigate the gravitational, thermal, and
chemical impacts of DM physics on Pop III star formation. It can also
be incorporated into cosmological simulations and semi-analytical
models that account for the large-scale environmental effects (e.g.
radiation background of H,-dissociating photons, dynamical heating
by halo mergers, streaming motion between DM and baryons) on (the
onset of) Pop III star formation but lack the resolution to fully follow
the small-scale cloud collapse and protostar formation/evolution
processes. As long as the initial collapse of the cloud at a density
scale of n ~ 10°—10° cm~3 is captured in such large-scale models,
the final product of subsequent evolution can be easily derived from
our analytical model. Exploring such applications is an intriguing
direction for future research.
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APPENDIX A: THE COLLAPSE TIME-SCALE

In this work, we take the collapse time-scale 7., as a fixed,
constant multiple of the freefall time-scale, #.,; = ft;. Other authors
have considered more sophisticated one-zone models. For example,
Omukai et al. (2005) adopted the following parameterization to take
into account the (temporal) slowdown of the collapse due to the
evolution of equation of state:

1

ool = —F—=1i, Al
col m ff ( )
where f varies according the ratio of pressure to gravity,

0 y < 0.83
F=<06+25y —1)—6.0(y — 1) 083 <y <1,

1.0+02(y —4/3) =29y —4/3)* y > 1

(A2)

giveny = %i‘fg 2 . To implement this in our one-zone model, we avoid

unphysical oscillations in f by at each step calculating y = (yo1a +
Ynew)/2, Where Yo is the value adopted at the previous timestep and
Ynew 18 the value calculated at the current timestep. We show in Fig. A1
that by somewhat reducing the temperature at n 2> 103 cm™ due to
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Figure Al. The density profile in the molecular-cooling cloud in our
fiducial model (black), our model with the temperature—density relationship
calculated as in Omukai et al. (2005) (red, dot—dashed), and in the 1D hydro
calculation of Omukai et al. (2010) (blue, dashed).

reduced compressional heating, this alternative parameterization has
a modest effect on the density profile and hence all the derived
quantities in this work. The effect of this parameterization on the
other cases is similarly small. However, as the examples in the main
text illustrate, a global slowdown in the collapse does significantly
alter the chemical-thermal evolution. In Gurian et al. (2024), we
studied cases where the global slowdown parameter can be predicted
based on the cosmological environment.

APPENDIX B: THE BONNOR EBERT MASS

The usual Bonnor—Ebert criterion
SP

=0

sV

can be written in terms of the change in central density as

oP v\~
:O’ B2
(apC)M(apC)M (2

where the subscript M indicates the derivatives are evaluated at fixed
mass. The first zero occurs when

(ap) =0, (B3)
0p0c /) iy

because the point of equal mass enclosed (where gTC =0) will
occur at larger radius than the point of equal density. This resembles

equation (12). Using the chain rule, the Bonnor—Ebert criterion is

oP oP 0 0 0
( ) _op (M+ﬂ ’)zo, (B4)
0p M 0p P=PHSE 0pc or

00
where the second term enforces mass conservation via

or _ 1 oM B5)
dp.  A4mrip dp.

(B1)

We have checked that this formulation equations (B4)—(B5) agrees
with equation (3.3) of Bonnor (1956). Clearly, the condition em-
ployed in this work equation (13) corresponds to the first term of
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equation (B4), which corresponds to evaluating the derivative at
fixed radius.

APPENDIX C: ROLE OF DARK MATTER

In the H; cooling mini-halo, the total density is dominated by dark
matter once the gas density drops below ~ 10° cm™3. Both because
we do not attempt to self-consistently model the evolution of the
dark matter and because the profile adopted equation (10) is highly
approximate, we here bracket the effects of our ignorance of the
correct profile on our results. In addition to the fiducial profile
equation (10), we consider both an NFW profile appropriate to a
halo of mass 5 x 10° Mg, with a concentration parameter ¢ = 2.8
(i.e. a significantly larger dark matter density than the fiducial case)
and the case of no dark matter whatsoever. Adiabatic contraction
(Blumenthal et al. 1986) of the dark matter in response to the gas
collapse can greatly enhance the dark matter density compared to
any of these estimates, which may, in turn, have dramatic effects on
the star formation process (Spolyar et al. 2008), a possibility we do
not treat here. The gas density profiles in our three assumed dark
matter profiles are shown in Fig. C1. As we have already argued, the
presence of (more) dark matter steepens the density profile.

The accretion rate for all three cases is shown in Fig. C2. In
the absence of dark matter, gravitational instability sets in at a
lower central density/larger mass scale, because the Bonnor—Ebert
(gas) mass at a given central density is larger without dark matter
contributing to the potential. A similar phenomenon is observed
in simulations of pristine gas clouds separated from dark matter
overdensities by supersonic streaming motions, but in that case
the density—temperature relationship is additionally modified by the
extreme environment (Nakazato et al. 2022).

T T T T T T

1013 L

— Fiducial |
——=No DM
----- NFW

-1011 L

1 D.‘) L

1 L 1
1072 100 102

radius (pc)

1
104

Figure C1. The dependence of the gas density profile in the molecular
cooling halo on the assumed dark matter density. The black curve is when
the profile is given by equation (10), used in the main text. The purple, dot—
dashed curve represents no dark matter, while the blue, dashed curve has an
NFW DM profile, for a 5 x 103 Mg halo with a concentration parameter of
c=1238.
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APPENDIX D: THE ISOTHERMAL JEANS MASS

In the literature a quantity similar to kg defined here is often
calculated, but instead of the MBE mass defined here, the coefficient
is calculated as the isothermal Jeans mass of the mass-weighted
temperature and average density:

T =1L ["am Tm), (D1)

iUUE o LRy oty ey ¥ LEXEVE v rvery ¥ ""“‘E

r —— Fiducial
[| ==-=No DM
107 ==mmn NFW

e B
- 47 /G

5 P EI I R TTY I A P PRI
10 10’ 10 10 10" 10°
Mass accreted (Mg)

Figure C2. The accretion rate in the molecular cooling halo in the fiducial
(black) case, as well as for no dark matter (purple, dot—dashed) and an NFW
profile (blue, dashed). The Shu and Larson—Penston values are also shown.
With no dark matter, gravitational instability extends past 10* M, albeit at a
lower accretion rate.
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Figure D1. The ratio of the mass enclosed in the molecular cooling halo to
the isothermal Jeans mass, computed from the mass-weighted temperature
and mean density.
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p= 4;% (D2)
so that

kT \*
M; ~ 1.44 <wsz) o\ (D3)

We here calculate «, using equation (D3) in our H, cooling halo,
shown in Fig. D1. The result becomes qualitatively more similar to
e.g. fig. 13 of Hirano et al. (2014) and fig. 2 of Smith et al. (2024) in
this case. Note that for an isothermal Bonnor—Ebert sphere, equation
(D2) will become small outside of the core. This should not, however,
be interpreted as indicating a maximum mass scale for gravitational
instability.

We point out that o can also be equated with the one-zone density
in Smith et al. (2024). Such a calculation gives a qualitatively correct
result without explicating the mechanism by which radiative cooling
sources gravitational instability. Compared with Smith et al. (2024),
this work does not attempt to model the initial, slow contraction
during which the environmental factors establish the chemistry for
the runaway collapse. Here, we have demonstrated that (absent non-
thermal support) detailed modelling of the evolution of the average
density is unnecessary once cooling becomes efficient. As soon as
cooling kicks in, 7., ~ f¢ and the density and mass scale at which
gravitational collapse begins are already determined.

APPENDIX E: COMPARISON WITH
SIMULATIONS

In the main text, we demonstrated reasonable agreement between
the model and the spherically symmetric simulation of Omukai et al.
(2010), which adopts the same level of idealization as the model. That
comparison showed that the mechanism of gravitational instability
identified in this work is plausibly responsible for initiating dynam-
ical gravitational collapse in Pop. III star-forming regions. Now,
we compare our model with the 3D hydrodynamical simulations
of Hirano et al. (2014), Sugimura et al. (2023), and Nishijima et al.
(2024). In the rest of this work, we have adopted density—temperature
relationships computed using one-zone models. In fact, the input for
the model is a density—temperature relationship, no matter its source.
In principle, one could supply the density—temperature relationship
from marginally resolved scales in simulations, or by extrapolating
simulation results to higher densities using one-zone models. Here,
we use the density—temperature relationship from high-resolution
simulation results to predict the dynamics in our model and check
the extent to which the results agree with the full hydrodynamical
result. For reference, we also show the appropriate comparison with
the examples considered in the main body of this work. In the H, and
HD cooling, we have adopted the dark matter profile equation (10),
while for the atomic-cooling cases, we adopt the same NFW profile
as in Section 3.2. As shown in Appendix C, the qualitative results
depend on the presence of dark matter only in the outer region. The
purpose of the comparison is two-fold. On one hand, we are testing
the importance of 3D effects neglected in the current model. These
include small-scale (aspherical) density perturbations, turbulence,
and rotation. On the other, we are assessing the accuracy of the one-
zone models in determining the thermal evolution, and the effects
of any inaccuracies on the dynamics of the collapse. Note, however,
that the one-zone models were not specifically tuned to match the
simulation cases in terms of initial density, temperature, or (in the
HD case) cosmic microwave background temperature.

In Fig. E1, we show the thermal evolution, and associated
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density profiles and infall rates both in our model (solid) and in
hydrodynamics simulations (dashed) for several cases, grouped by
the operative cooling mechanism. The thick lines correspond to the
examples of Sections 2.1, 3.1, and 3.2, while thin lines correspond to
simulations. For H, cooling, we consider three cases: two from the
cloud-scale simulations of Sugimura et al. (2023) and one from the
cosmological zoom-in simulations of Hirano et al. (2014). The two
cases from Sugimura et al. (2023) are snapshots when the central
density is ~ 10" cm™ of the high infall rate and low infall rate
clouds studied in that work. From Hirano et al. (2014), we consider
the average of all clouds with intermediate infall rates (case P2 in
that work) when the central density is ~ 10" cm™3. All these clouds
have relatively similar thermal evolutions (Fig. E1, top left panel),
and the simulated and analytic density profiles from all cases with
H, cooling agree such that the different cases are difficult to visually
distinguish (left middle panel). Note especially the close agreement
between the one-zone model and the low infall case of Sugimura
et al. (2023), due to their similar thermal evolution. With respect
to the infall rates (bottom left panel), the zero-velocity boundary
condition in our model is inconsistent with the cosmological infall in
Hirano et al. (2014). Moreover, when the thermal evolution is taken
from Sugimura et al. (2023) this boundary condition is artificially
pushed to high densities/small masses because the thermal evolution
is not available at low densities. Still, the model correctly determines
~ 10* My, as the scale at which gravitational instability sets in and
the large increase in infall rates between 10° and 10* M. The worst
agreement is in the strongly rotationally supported, low-infall rate
cloud from Sugimura et al. (2023). This is reasonable, since rotation
is not explicitly considered in our model (but only partially via the
collapse time-scale factor f). The observation that rotational support
has a large effect on the infall velocity but a small effect on the density
profile has interesting implications for future work.

For HD cooling (middle column of Fig. E1), we consider the
average of all clouds with HD cooling from Hirano et al. (2014),
when the central density is ~ 107 cm™>. The disagreement in thermal
evolution between the simulations and one-zone model propagates
to the density profiles and infall rates. Still, the overall agreement
and especially the distinction from the H, case is reasonable. As in
the H, case, the underestimate of the temperature at low densities
in the one-zone model as compared to these simulations affects the
point where kg first exceeds unity (Rees—Ostriker criterion), which
will only marginally alter the infall rate in the dense, inner region.
Unfortunately, the data of Hirano et al. (2014) do not reveal the
inner envelope structure at late times due to the low central density.
Hirano et al. (2014) also followed the azimuthally symmetrized
accretion after protostar formation. While it is not straightforward
to directly compare that calculation with our model, we point out
that the protostellar accretion rates in that work roughly agree with
the predicted infall rate at low masses in our model ~ 1072 Mg yr~!
and that many of the low-mass stars (whose accretion history is
less affected by feedback) exhibit the characteristic ‘shoulder’ in the
accretion rate predicted here by the cooling/isothermal evolution in
the low-density gas and heating in the high-density gas (fig. 10 in
that work).

Finally, turning to the atomic-cooling case (right column), we take
a snapshot from the case of Nishijima et al. (2024) where the Lyman—
Werner background J,; = 30, leading to nearly isothermal atomic
cooling. In this snapshot, the central density is ~ 10°cm™>. Here,
the one-zone and simulation thermal evolution agree very closely
except for the initial conditions, and the density profiles are likewise
extremely similar. The infall rates again agree to within a factor of
few.

MNRAS 537, 580-597 (2025)

GZ0Z UJBIN 60 U0 158NB AQ 969€76./085/1//EG/RI01LE/SEIUW/LWOD dNO"DILUSPEDE//:SARY WO} POPEOJUMOC]



596

J. Gurian et al.

i Hj cooling HD cooling H cooling
]0 [ T T T L T T T P N T T T d
[ w— ()110-ZO1IC [ e () n10-ZONIC ] E ]
—— Hirano 2014 (P2) 1 [ Hirano 2014 (11D) ] ]
—— Sugimura 2023 (High M) 1 3 1 1
[ —— Sugimura 2023 (Low M) i 1 1
1 B 1 ¢ ‘;
i 1 [ ()110-z0nE 1
—— Nishijima 2024 (H)
10‘2 1 L 1 1 1 1 1 I 1
1071 10° 101 101 107! 103 107 1M I 108 107 101
n (cm %) n (cm3) n (cm?)
101’3 T T T T T T T i T T T T T T T ] [ T T T T T T T i
1011 = |- 4 2 a
— 10° g P 1 r 1
|
E o 1 F 1 F 1
10° - - \ 4 L i
wen \odlel (One-zone n-T)
103 | —— Model (Hydro n-T) N T r 7
=== Hydro
]Ol I_r' 1 I_'3 1 I_1 1 I_u 1 {_3 1 I_1 1 I1 I_:‘ 1 I_‘3 1 I_1 1 I1
107 10 10 10 107 10 10 10 1072 10 10 10
radius (pc) radius (pc) radius (pc)
100 i T T T T _E g— T T T T T _g E_ T T T
=102 F E 3 3 3
] 3 F 3 F
~ L ]
- 1 I
& 10 3 3 3 3 I
® : ] |
= [ ] I
m -
= 107 ] F iF :
LE E 3 1
s I 1 !
1074 E 3 3 3 I
3 E 3 3 1
3 ] :
105 | 1 | 1 L I | 1 1 | ‘- I 1 | | 1 1'\
' 10 104 106 10 104 106 10 104 106

Mass Enclosed (Mg)

Mass Enclosed (M) Mass Enclosed (Mg)

Figure E1. The density—temperature relationships (top row), density profiles (middle row), and infall rates (bottom row) for cases with H, cooling (left column),
HD cooling (middle column), and H cooling (right column). Thick lines correspond to one-zone density—temperature relationships, while thin lines indicate
simulation density—temperature relationships. In the bottom two rows, solid lines indicate predictions of the model, while dashed lines indicate hydro simulation
results. Because we do not model the dropoff in velocity near the core, we have truncated the simulation infall rates at M(r = 25rygg), with rvpg determined
using our model.

In summary, we find that our model predicts the dynamics of
the collapse typically to within a factor of a few using only the
thermal evolution, over some four orders of magnitude in cloud mass.
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The model succeeds at a level comparable to the scatter between
individual simulations runs. Moreover, even a crude estimate of the
thermal evolution based only on knowledge of the operative cooling
mechanism only moderately degrades the accuracy, especially in the
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dense inner region which is most relevant for star formation. The
density profiles especially are determined quite accurately in our
model, supporting the notion that the MBE mass defined in this
work is indeed a critical scale in the problem. In particular, kypg
is calculated based on the density profile alone and describes the
ratio between the actual density profile and the hydrostatic density
profile. Thus, the mechanism by which radiative cooling establishes
gravitational instability at a characteristic scale, which is a central
objective of this work, is robustly demonstrated. The quantitative
accuracy of the predictions can be improved both by extending the
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model to include effects such as rotational and turbulent support and

by improving the sophistication with which the chemical-thermal
evolution is estimated. These are goals for future work.
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