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CHAPTER

ABSTRACT

of the internal, strong magnetic fields found within isolated neutron stars. These astro-

nomical entities stand as the most potent magnetic objects in the universe. Within the
context of neutron stars, their magnetic influence extends beyond their surface, encompassing
the magnetized plasma in their vicinity, referred to as the magnetosphere. This overarching mag-
netic configuration significantly impacts the observable characteristics of the highly magnetized
neutron stars, commonly known as magnetars. Conversely, the magnetic fields within their inte-
riors undergo prolonged evolution spanning from thousands to millions of years. This magnetic
evolution is intrinsically linked to the concurrent thermal evolution. The diverse range of observ-
able phenomena associated with neutron star underscores the complex and three-dimensional
nature of their magnetic topology, thereby requiring sophisticated numerical simulations. These
simulations are crucial not only for explaining observed burst mechanisms and the creation of
surface hotspots, but also for comprehending the intricate interplay between magnetic fields and
temperature under the extreme conditions inherent in these cosmic objects.

A central focus of this thesis involves a thorough exploration of state-of-the-art three-
dimensional coupled magneto-thermal evolution models. This marks a pioneering achievement as
we conduct, for the first time, the most realistic 3D simulation to date, spanning the first million
years of a neutron star’s life, using the newly developed code MATINS. This code adeptly ac-
counts for both Ohmic dissipation and Hall drift within the neutron star’s crust. Our simulations
incorporate highly accurate temperature-dependent microphysical calculations and adopt the
star’s structure derived from a realistic equation of state. Furthermore, the use of cubed-sphere
coordinates addresses the challenge posed by axial singularities in 3D simulations, providing
a deeper understanding of neutron star evolution. Additionally, our simulations consider the
corresponding relativistic factors in the evolution equations and utilize the state-of-the-art enve-
lope model from existing literature, along with an initial magnetic field topology derived from
proto-neutron star dynamo simulations. Within this framework, we quantitatively simulate the
thermal luminosity, timing properties, and magnetic field evolution, pushing the boundaries of
numerical modeling capabilities.

T his doctoral thesis undertakes a comprehensive investigation of the long-term evolution



CHAPTER 1. ABSTRACT

The structural framework of this thesis reflects the unfolding of a comprehensive astrophys-
ical narrative. It commences with Chapter 2, delving into the origin and formation of neutron
stars while introducing pivotal attributes such as the equation of state, mechanical structure,
magnetic fields, and observational properties. This thematic progression then transitions to
Chapter 3, where the concept of magneto-thermal evolution is elaborated upon, with a keen focus
on the microscopic coupling of magnetic and thermal evolution. Chapter 4, which builds upon
the research conducted by Dehman et al. (2023a), expands the scope to consider magnetized
envelope models with varying compositions, interrogating the role of magnetic field topology
in shaping magnetar luminosity. Subsequently, Chapter 5 facilitates a comparative analysis
between theoretical simulations and empirical observations. It places particular emphasis on
understanding the behavior of cold and young observed pulsars, thus contributing to the imposi-
tion of constraints on the nuclear equation of state and allowing the exclusion of approximately
75% of them. This chapter is based on the work by Dehman et al. (2023, in preparation) and
Marino et al. 2023. The subsequent thematic chapter, Chapter 6, which draws from the work by
Dehman et al. (2020), undertakes a comprehensive exploration of magnetic-driven activities and
the frequency of crustal failures in newly born magnetars. These investigations are conducted
within a 2D axisymmetric framework.

The narrative subsequently shifts to Chapter 7, where the innovative 3D numerical code
MATINS is introduced. This code is purposefully designed for MAgneto-Thermal Evolution in
Isolated Neutron Stars (Dehman et al., 2022). Within this chapter, we conduct an in-depth
exploration of the cubed-sphere technique and the formalism associated with magnetic fields
within this framework. Moving on to Chapter 8, we present the results of the first 3D coupled
magneto-thermal simulations, incorporating a highly realistic initial magnetic field topology
inspired by a global model of the magneto-rotational instability in a proto-neutron star. These
last two chapters, Chapter 7 and Chapter 8, are built upon the work by Dehman et al. (2022);
Dehman et al. (2023b). Lastly, Chapter 9 serves as the conclusion of this thesis, summarizing the
main findings and insights garnered throughout the course of this comprehensive study.



CHAPTER

NEUTRON STARS

he discovery of neutron stars stands as a monumental milestone in our understanding

of the cosmos. It was during the early 20" century that astronomers began to unravel

the secrets hidden within the depths of the universe. One such revelation occurred in
1932 when James Chadwick, a British physicist, made a groundbreaking discovery that would
revolutionize our knowledge of stellar remnants. Using experimental techniques, Chadwick
successfully identified the presence of an uncharged subatomic particle, which he aptly named
the neutron (Chadwick, 1932). This newfound particle, with its neutral charge, offered a missing
link in the understanding of atomic structure.

As the scientific community delved deeper into the mysteries of the universe, they soon
realized the potential existence of incredibly dense stellar remnants known as neutron stars. The
idea of these celestial objects originated from the work of Austrian astrophysicist Fritz Zwicky
and American physicist Walter Baade in the 1930s (Baade and Zwicky, 1934). Their calculations
revealed that the remnants of massive stars, following a supernova explosion, could collapse
under gravity’s immense force and become incredibly dense. It’s worth highlighting that well
before the discovery of neutrons, physicist Lev Landau had already envisaged the preliminary
concept of a giant nucleus star (Yakovlev et al., 2013). The 1930s witnessed the emergence
of further scholarly inquiries exploring the possibility of normal stars with a degenerate core
(Chandrasekhar, 1935). Particularly noteworthy is the work of Oppenheimer and Volkoff (1939),
who formulated the equation of state (EoS) for a relativistic neutron gas, laying the essential
groundwork for subsequent explorations in this field.

It was not until 1967, however, that the first concrete evidence of a neutron star emerged.
Jocelyn Bell Burnell, a British astrophysicist, and her advisor Antony Hewish were conducting

observations using a radio telescope when they stumbled upon an unusual signal. The signal,
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which repeated every 1.337 s, puzzled the researchers. After ruling out any terrestrial interference,
they considered the possibility of an extraterrestrial source. Burnell and Hewish had unwittingly
discovered the first pulsar, a rapidly rotating neutron star emitting beams of electromagnetic
radiation as it spins (Hewish et al., 1968). In 1968, Gold proposed that the pulsations were
generated by rapidly spinning neutron stars instead of pulsating white dwarfs (Gold, 1968). This
hypothesis was quickly validated by the detection of a pulsar in the Crab supernova remnant
(Howard et al., 1968).

Since Bell’s fortuitous discovery, nearly 3389 pulsars have been observed in our Galaxy
(Manchester et al., 2005)'. This remarkable finding set the stage for a new era of astrophysics.
Neutron stars, with their extreme densities and intense magnetic fields, became an object of
intense study. Scientists employed a wide array of observational tools, from radio telescopes
to X-ray and y-ray detectors, to unravel the intricacies of these exotic objects. The subsequent
discoveries of different phenomenological neutron star categories besides classical pulsars, further

solidified our understanding of their properties and provided insights into fundamental physics.

2.1 Origin and stellar evolution

Neutron stars defy our understanding of matter and gravity, emerging from the collapse of
massive stars. These remnants pack immense mass into a small volume, resulting in mind-
boggling densities. With intense magnetic fields, rapid rotation, and powerful radiation beams,
neutron stars offer insights into fundamental physics and have implications for astrophysics and
gravitational wave astronomy.

Neutron stars owe their existence to supernova explosions, which are spectacular events
marking the explosive end of a massive star’s life, typically those with initial masses ranging
from 8 to 20 times the mass of the Sun. These massive stars form through the gravitational
collapse of molecular clouds, where gravity pulls together gas and dust into a dense core. After
the formation phase, massive stars enter the main sequence, where they spend the majority
of their lives. During this phase, nuclear fusion occurs in the star’s core, converting hydrogen
into helium through the proton-proton chain or the Carbon-Nitrogen-Oxygen cycle. The energy
released from fusion generates an outward pressure that balances the inward gravitational force,
maintaining the star’s equilibrium. As the massive star consumes its nuclear fuel, it undergoes a
series of nuclear reactions to maintain its equilibrium. It burns helium into heavier elements
such as carbon, oxygen, and neon through various fusion processes. This evolution continues,
with successive shells of the star fusing heavier elements until reaching iron.

When the star’s core exhausts its nuclear fuel and reaches iron, a critical point is reached.
Iron cannot undergo fusion to release energy. As a result, the core loses its ability to generate an

outward pressure that counters gravity’s inward pull. The core collapses under its own weight

1The ATNF Pulsar Catalogue http://csiro.au/.
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in a fraction of a second. The core collapse triggers a cataclysmic event known as a supernova.
The collapsing core releases an enormous amount of gravitational potential energy, leading to a
powerful rebound and shock-wave that propagates outward. The shock-wave disrupts the star’s
outer layers, ejecting them into space in a brilliant explosion. This explosive event disperses
heavy elements and enriches the surrounding interstellar medium.

During the core collapse, the density and pressure reach extreme values. Protons and electrons
are squeezed together, merging to form neutrons. This process, known as neutronization, occurs
when the density surpasses nuclear saturation density, around 2.8 x 1014 gem™3. The highly
dynamical process consists of three main stages, as follows. (i) For about one second after the
core bounce, the system consists of a relatively cool central region surrounded by a hot mantle,
collapsing and radiating off neutrinos quickly, while still also accreting material. (ii) Over the
next ~ 20 s, a slowly developing state of the proto-neutron star can be identified; the system first
deleptonizes and heats up the interior parts of the forming star, later it cools down further through
abundant production of thermal neutrinos that abandon the neutron star core draining energy
from the interior. The proto-neutron star is born extremely hot and liquid (T = 1010 — 1011 K),
with a relatively large radius of ~ 100 km. (iii) After several minutes, it becomes transparent to
neutrinos and shrinks to its final radius (Burrows and Lattimer, 1986; Keil and Janka, 1995;
Pons et al., 1999), marking the birth of a neutron star. The temperature drops below the melting
point of a layer where matter begins to crystallize, forming the crust. The melting temperature
depends on the local value of the density, therefore the growth of the crust is gradual and it
lasts from hours to months after birth. The outermost layer of a neutron star, i.e., the envelope,
remains liquid and sometimes is called the ocean. The neutron star starts its long-term cooling,
dominated first by neutrinos and later (¢ > 10° yr) by photon emission from the surface.

The density of neutron stars is so staggering that a teaspoon of their material would weigh
millions of tons, far surpassing any substance found on Earth. This density is a result of the
fundamental physics that governs the behavior of matter under extreme conditions. The newly
formed neutron star typically has a mass ranging from about 1.3 to 2.2 times the mass of the
Sun. Its size is significantly small, with a typical radius of around 10 to 13 km. Neutron stars
are in a state known as neutron degeneracy, in which the neutron degeneracy pressure, related
to the Pauli principle, counteracts the gravity. This is the last option that dense matter has to
prevent a collapse to a black hole, and happens only in neutron stars. As a matter of fact, in
other astrophysical bodies like giant planets and white dwarf the electron degeneracy pressure is
enough to counteract the gravity. Neutron star’s gravitational pull is immensely strong, distorting

space-time and bending light around it.
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2.2 Equation of state

The EoS is crucial for understanding the properties and behavior of neutron stars. It represents
the relationship between pressure, density, and composition of matter within these incredibly
dense objects, where densities can reach several times that of atomic nuclei. Determining the
EoS is essential for understanding the internal structure, mass-radius relationship, and overall
behavior of neutron stars. It also influences various astrophysical phenomena such as stability,
cooling rates, rotational properties, and gravitational wave signals emitted during mergers with
other neutron stars or black holes.

The precise form of the EoS is still a subject of active research and theoretical modeling.
However, several theoretical approaches and computational techniques are employed to construct
the EoS of neutron stars. These include relativistic mean-field models, quantum chromodynamics
calculations, nuclear many-body theories, and astrophysical observations that provide constraints
on the properties of neutron stars. By comparing theoretical models with observational data,
such as mass and radius measurements of neutron stars, scientists strive to refine and validate
the EoS. For a comprehensive review of the EoS of neutron stars, we recommend referring to
Burgio and Vidana (2020).

The EoS depends on various factors, including the interactions between neutrons, protons,
electrons, and possibly other exotic particles. At lower densities, the EoS can be described by
the physics of dense nuclear matter. The interactions between nucleons (neutrons and protons)
are typically described by effective nuclear forces, such as the Skyrme or relativistic mean field
models. These models take into account the strong nuclear force that binds nucleons together
and the Pauli exclusion principle that limits the number of particles in a given quantum state.
The EoS also depends on the presence of electrons. In the outer layers of neutron stars, electrons
contribute significantly to the pressure through degeneracy pressure. At even higher densities,
electrons may combine with protons to form neutrons and neutrinos through the process of
B-decay, leading to a transition to a neutron-rich matter.

As the density increases, the nature of matter within neutron stars becomes more uncertain.
It is believed that at higher densities, exotic particles, such as hyperons (baryons containing
strange quarks), meson condensates, or quark matter, may appear. The behavior of these particles
and their interactions with nucleons are still areas of active investigation.

Neutron stars are composed of degenerate matter, characterized by temperatures below the
Fermi temperature throughout their entire existence. This specific temperature range emphasizes
the supremacy of quantum effects over thermal effects, as governed by Fermi statistics. Conse-
quently, the EoS for neutron stars can be approximated as that of zero temperature, effectively

disregarding thermal contributions for the majority of their lifespan.
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2.3 Tolman-Oppenheimer-Volkoff equations

A neutron star is born hot at a temperature of approximately 101° — 1011 K and contains a
significant number of leptons. However, within a few days of its birth, the temperature decreases
to a few 10° K. As a result, the Fermi energy (er) of all particles in the star is much greater than
the kinetic thermal energy in the majority of its volume, except for the thin outermost layers,
which are only a few meters thick. The dominant contribution to the pressure in the star is
therefore provided by degeneracy pressure, while the thermal and magnetic contributions to the
pressure are negligible in most parts of the star. Consequently, it is a reasonable approximation
to describe the state of matter as cold nuclear matter in f-equilibrium, resulting in an effectively
barotropic EoS (P = P(p)) that is used to calculate the underlying mechanical structure. The
radial profiles describing the energy-mass density and chemical composition can be calculated
once and then held constant as a background model during the simulations of magneto-thermal
evolution.

To a very good approximation, we can assume that the mechanical structure of neutron
stars is spherical. However, there may be significant deviations from spherical symmetry under
certain conditions, such as the presence of ultra-strong magnetic fields (with strengths exceeding
1017 G) or extremely rapid rotation (with periods shorter than a few milliseconds). However,
our study does not consider such extreme cases. Neutron stars are relativistic objects in which
the effects of general relativity play a crucial role. The general relativistic corrections have an
approximate magnitude of ~ 20% at the surface and decrease linearly with distance. The structure
of these stars is governed by the Tolman-Oppenheimer-Volkoff (TOV) equations (Oppenheimer
and Volkoff, 1939), which describe hydrostatic equilibrium under the assumption of a static

interior Schwarzschild metric.

2.1) ds? = —c2e g + 22 gr2 1 12402,

where A(r) = —%l n[1- 20—62; mr(zr )] accounts for the space-time curvature, where

(2.2) m(r) = 4n f ’ p(FF2dF,
0

is the enclosed gravitational mass within radius r, p is the mass-energy density, G is the
gravitational constant, and ¢ the speed of light. The other relativistic factor that appear in
eq. (2.1) is the lapse function e, where { represents the dimensionless gravitational potential.

This function accounts for redshift corrections and is determined by the equation

(2.3)

dir) gm(r)( 4nr3P )( B gm)‘l

dr 2 r2 C2m(r) ¢z r

with the boundary condition e2® = 1—-2GM/c?R at the stellar radius r =R and M = m(R) is
the total gravitational mass of the star. The flat space-time is recovered by the limit {(r) — 0,

A(r) — 0, i.e., enough far away from the compact object.
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The mechanical structure of a spherically symmetric star is described by the Tolman-

Oppenheimer-Volkoff equation

2.4) dP(r) _ _( . E)dC(r)

dr c2) dr’

where P(r) is the pressure profile. To close the system of equations, it is necessary to supplement
eq. (2.4) with the EoS, discussed above.

2.4 Structure

The overall structure of a neutron star is determined by selecting an EoS and solving the TOV
equations. These calculations reveal that the density undergoes significant variations across
several orders of magnitude from the center to the outermost region of the neutron star, resulting
in a highly stratified matter distribution. Beneath a thin stellar atmosphere or a condensed
surface, the interior of a neutron star can be divided into three main regions: the core, the crust,
and the ocean (envelope). Each region exhibits distinct physical properties (e.g., Haensel et al.
(2007)). A schematic representation of a neutron star’s structure is provided in Fig. 2.1. It is
important to note that the precise locations of the transitions between the envelope, crust, and
core depend on the specific model being used. Here, we emphasize the physical aspects that
characterize these transitions. It should also be noted that the regions between these interfaces
do not have uniform radial thickness throughout the star, as the majority of the star’s volume is

occupied by the core, where densities exceed those of atomic nuclei, as illustrated in Fig. 2.1.

2.4.1 Core

The core of a neutron star constitutes approximately 99% of the total mass and occupies about
70% to 90% of the star’s volume, depending on the total mass and the specific EoS. The outer core
of a neutron star refers to the internal region where the mass density ranges approximately from
0.5p0 to 2p¢, with pg =2.8 x 10 gem ™2 being the nuclear saturation density (representing the
typical density of a heavy atomic nucleus). Within this region, the matter forms a uniform liquid
consisting of neutrons along with a certain fraction of protons and leptons, namely electrons and
muons (npepu matter). This composition allows the system to maintain S-equilibrium.

Deep within the core, in neutron stars of significant mass (M g 1.5M), there exists an inner
core that occupies the central part and exhibits densities p < 2pg. The inner core is characterized
by an uncertain composition, which is expected to be more complex than just neutrons, protons,
electrons, and muons. Due to the challenges associated with the calculation of its composition and
properties, our understanding of the inner core is limited and highly dependent on the specific
details of the theoretical model used to describe collective fundamental interactions (Shapiro and
Teukolsky, 1983; Haensel et al., 2007). Various hypothetical options have been proposed within

different models, which include:
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Figure 2.1: Figure adopted from Burgio and Vidafia (2020). A schematic cross section of a neutron
star illustrating the various regions discussed in the text. The different regions shown are not
drawn on scale.

1. Hyperonization of matter: This involves the emergence of different hyperons, primarily A-

and X -hyperons, resulting in the formation of npeu matter.

2. Pion condensation: This entails the formation of a Bose condensate involving collective

interactions with the properties of 7-mesons.
3. Kaon condensation: This involves the formation of a similar condensate of K-mesons.
4. Deconfinement: This refers to a phase transition to quark matter.

The last three options are often referred to as exotic, and for further details, we direct the reader
to Chapter 7 of Haensel et al. (2007). While this book does not delve into the specifics of exotic

matter, it does explore the impact of hyperonic matter on the cooling of a neutron star.

2.4.2 Crust

As we move from the core to the exterior, both density and pressure decrease. When the density
drops below approximately 1.5 x 10'* gecm™2 (half saturation density), matter inhomogeneities
set in. Positive charges cluster together, forming individual clusters with a charge denoted as
Z. These clusters arrange themselves into a solid lattice, minimizing Coulomb repulsion. The

lattice, constituting only a small fraction of the star’s overall mass and radius, is embedded in a
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Figure 2.2: Figure adopted from Newton et al. (2013). At sufficiently high densities, the nuclei
within the neutron star crust have the potential to deform and connect in specific directions,
giving rise to the formation of elongated structures known as "gnocchi," "spaghetti,” and "lasagne”
of nuclear matter. Moreover, these structures can even extend into tube-like formations known
as "anti-spaghetti” and "anti-gnocchi," or create a Swiss cheese-like pattern. These unique
configurations, collectively referred to as nuclear pasta phases, can exist as a layer at the bottom
of the neutron star crust, often referred to as the mantle.

gas of free neutrons and a background of electrons such that the whole system is charge neutral.
We refer to this region as the inner crust of the star.

Towards the innermost part of the crust, the matter exhibits tube-like structures and voids
resembling Swiss cheese, where there are holes in the homogeneous matter. This analogy can be
likened to anti-spaghetti and anti-gnocchi formations, as these configurations aim to minimize
their energy (Baym et al., 1971; Lorenz et al., 1993). This intriguing phenomenon is referred to as
the inverted pasta phases. As the density decreases, the nuclei may adopt non-spherical shapes,
such as rod-like and plate-like structures, forming what is known as pasta phases (analogous to
the shapes of gnocchi, spaghetti, and lasagne) within the nuclear matter (Pethick and Ravenhall,
1995). These distinct phases, illustrated in Fig. 2.2, mark the transition towards the uniform
nuclear matter in the core. The region where nuclear pasta occurs is typically considered to form
a mantle with anisotropic kinetic properties (Pethick and Potekhin, 1998). The thermodynamic
stability of the pasta phase and the existence of the mantle depend on the specific model of
nuclear interactions.

At lower densities, neutrons are finally confined within the nuclear clusters, and the matter

consists of a lattice composed of neutron-rich nuclei that are permeated by a degenerate electron
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gas. This particular region is referred to as the outer crust (Baym et al., 1971). It extends from an
inner boundary, marked by the so-called neutron drip density of approximately 4 x 1011 gem™2, to
an outer boundary with a density of around 10° gem ™3 (depending on the temperature). Within
the outer crust, the nuclei are arranged into a crystalline lattice.

The crust of a neutron star experiences extreme conditions in terms of density, temperature,
and magnetic field, which cannot be replicated in laboratory settings. Despite being a relatively
thin layer, typically around ~ 1km in thickness, the crust plays a crucial role in various astro-
physical phenomena observed in neutron stars. These include pulsar glitches, quasi-periodic
oscillations in soft y-ray repeaters (SGRs), and thermal relaxation in soft X-ray transients (SXT),
which are transient X-ray source with rapid and intense X-ray outbursts (Haensel et al., 2007,
Chamel and Haensel, 2008; Piro, 2005; Strohmayer and Watts, 2006; Steiner and Watts, 2009;
Sotani et al., 2013; Newton et al., 2013; Piekarewicz et al., 2014). Understanding these phenom-
ena depends on considering deviations from the assumption of a homogeneous fluid throughout

the star and underscores the importance of properly treating the crust.

2.4.3 Envelope and atmosphere

The outermost layer of a neutron star, referred to as the envelope or ocean, typically extends to a
depth ranging from a few meters to around 100 m, depending on the temperature. The envelope
consists of a liquid phase with a relatively low density (p < 10° gem™3). It constitutes a negligible
fraction of the total mass of the neutron star, approximately on the order of 10~7 to 1078 M.

The envelope is characterized by steep gradients in temperature, density, and pressure,
making it the region with the most rapid thermal relaxation timescale. As we descend into the
envelope, the density gradually decreases until reaching values around p ~ 1gem™2, where a
gaseous atmosphere of a few centimeters may exist.

In terms of composition, the outer crust and the ocean of a neutron star are relatively simple.
They primarily consist of electrons and nuclei, which can be effectively treated as point-like
particles. The thermal composition of the envelope is believed to leave a discernible imprint on
the observed spectra and can be influenced by the star’s history and environment (for a detailed
study, refer to Chapter 4). For instance, neutron stars in binary systems have the potential to

accrete light elements from their companion stars.

2.5 Magnetic fields

Another striking feature of neutron stars is their magnetic fields, which are among the most
powerful observed in the universe. These magnetic fields can be billions of times stronger
than Earth’s magnetic field, generating powerful electromagnetic radiation and particle streams.
Consequently, they serve as an additional reservoir of energy. The origin of these intense magnetic

fields in neutron stars is predominantly attributed to the conservation of magnetic flux during
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progenitor and dynamo processes. The magnetic fields’ intensity is further amplified during the
core collapse dynamo, driven by differential rotation and convection (Aloy and Obergaulinger,
2021; Reboul-Salze et al., 2021; Raynaud et al., 2020).

The precise magnetic field configuration during a neutron star’s formation remains largely
unknown. Recent magneto-hydrodynamic (MHD) simulations exploring the magneto-rotational
instability (MRI) within core-collapse supernovae (Obergaulinger et al., 2014; Raynaud et al.,
2020; Aloy and Obergaulinger, 2021; Reboul-Salze et al., 2021) have unveiled a complex scenario
in which the magnetic energy of the proto-neutron star is distributed across various spatial
scales. These simulations indicate that the majority of the magnetic energy resides in small to
medium-sized magnetic structures, encompassing both toroidal and poloidal components. Notably,
these findings deviate significantly from the oversimplified dipole+twisted torus configurations
often deduced from MHD equilibrium studies (Ciolfi and Rezzolla, 2013).

Neutron stars also exhibit remarkable rotational speeds. As a consequence of angular mo-
mentum conservation during core collapse, the initial star’s rotation experiences a dramatic
surge, resulting in neutron stars that can whirl around hundreds of times each second. Since the
pioneering work of Gold (1968), pulsars have been widely regarded as rapidly rotating neutron
stars with powerful surface magnetic fields.

The primary manifestation of the magnetic field in neutron stars is the dissipation of rota-
tional energy driven by the electromagnetic torque. By observing the pulsar’s rotational period P
(typically spanning from P ~ 0.001 to 12 s) and its first time derivative in time P (typically ranging
from P ~ 10716 to 10712 ss71), it is possible to estimate the strength of the surface magnetic field
using the magnetic dipole model (Shapiro and Teukolsky, 1983). For instance, millisecond pulsars
may reveal surface fields within the range of 108 to 10° G, standard pulsars around 102 G, and
magnetars with even higher values, spanning from 10'* to 10 G.

The classical vacuum magnetic dipole model, commonly employed to determine the magnetic

field strength at the star’s surface, is described by the following relation:

(2.5)

_(81PP\*®
P~ \2n2RS)

where B, is the strength of the magnetic field at the pole, R is the radius of the neutron star, and
I is the moment of inertia of the star.

Neutron stars undergo a long-term evolution over the course of millions of years. In the solid
crust, electrons serve as the primary charge carriers, and the magnetic field undergoes evolution
through Ohmic dissipation and Hall drift, as explained in §3.1.1. The magnetic evolution within
the core is more uncertain due to its multi-fluid nature, where neutron and protons can be
in superfluid and superconductive phases, respectively. Furthermore, ambipolar diffusion can
influence the magnetic field’s evolution within the star’s core Passamonti et al. (2016, 2017). For
further discussion on the magnetic field evolution within the interior of a neutron star, we direct
the reader to §3.1.
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Figure 2.3: The P/P-Dot diagram displays the entire pulsar population categorized by their
rotation periods and slow-down rates. This plot reveals distinct sub-populations across all classes
and frequency bands. The lightly shaded region in the diagram corresponds to the ’death valley’,
where pulses are no longer detected for many of these objects. Image credit: Rami Mandow.

2.6 Observations

In recent decades, astronomical and technological advancements across all wavelengths have
substantially broadened our understanding of neutron stars. Observations in the radio, X-ray and
Y-ray bands have facilitated the identification of thousands of astrophysical sources as neutron
stars in diverse environments. These environments include both isolated neutron stars and
those accompanied by a variety of companions, some associated with supernova remnants and

wind nebulae, while others exist in globular clusters or open fields. Neutron stars have been
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detected in additional bands such as optical, infrared, ultraviolet, and y-ray. For a comprehensive
presentation of the different classes and frequency bands within the neutron star population,
refer to Fig. 2.3. These multi-band observations provide valuable insights into the properties
and behavior of neutron stars, allowing astronomers to indirectly infer information about their
composition, magnetic fields, temperature, and emission mechanisms. Let us now provide a

concise overview of the phenomenology of neutron stars across various energy bands.

2.6.1 Radio band

Neutron stars, commonly detected as regular radio pulses, exhibit fascinating characteristics
that have been extensively studied in the field of astrophysics. Known as pulsars, these neutron
stars emit radio waves, allowing astronomers to precisely measure their rotational period. By
monitoring the regularity of the radio pulses and folding hundreds or thousands of them, the
spin period of the neutron star can be determined with extraordinary accuracy, rivaling even
the most advanced atomic clocks on Earth. This level of precision, reaching up to ten digits, is
rarely achieved in astrophysics. In addition to determining the spin period, prolonged observa-
tions enable astronomers to accurately measure the star’s spin-down rate, known as the period
derivative. By precisely studying the timing and characteristics of these radio pulses, researchers
can investigate the long-term evolution of pulsar rotation periods.

Radio observations also provide valuable insights into the magnetic fields of pulsars. The
intense magnetic fields of these stars influence their rotation and emission properties. Moreover,
radio observations have uncovered intriguing phenomena associated with neutron stars. Pulsar
glitches, observed in the majority of pulsars, involve sudden periodic spin-ups believed to be linked
to the unpinning of superfluid neutron vortices in the star’s crust (Anderson and Itoh, 1975).
These glitches exhibit diverse behaviors in terms of spin-up amplitude and rotational properties
during and after the post-glitch recovery. Furthermore, certain pulsars display extended emission
regions known as pulsar wind nebulae. Radio observations contribute to mapping these nebulae
and studying the interaction between the pulsar wind and its surrounding environment. This
research sheds light on particle acceleration and the dynamics of pulsar winds.

Other notable irregularities include timing noise, which refers to significant higher deriva-
tives of spin periods. Additionally, there are phenomena such as mode changing, nulling, or
intermittency (Drake and Craft, 1968; Huguenin et al., 1970; Kramer et al., 2006; McLaughlin
et al., 2006; Wang et al., 2007; Lyne et al., 2010), all likely associated with sudden changes in
magnetospheric radio emission. Changes in average pulse shapes and amplitudes are particularly

linked to global magnetospheric reorganizations (Lyne et al., 2010).

2.6.2 X-ray band

Neutron stars can generate intense X-ray emission from their hot surface or from the surrounding

accretion disks if they are in binary systems. X-ray observations of neutron stars provide valuable
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information about their thermal emission, spectral characteristics, and variations over time. X-
ray observatories, such as Chandra, XMM-Newton, NuSTAR, and NICER, have provided detailed
images and spectra, revealing information about the star’s temperature, accretion processes, and
possible neutron star atmospheres.

X-ray binaries represents a very wide field of research, but in this work we will focus only
on isolated neutron star. More than 100 isolated neutron stars are seen in X-rays, and they are
phenomenologically quite heterogeneous, allowing for their classification into various categories.
These classifications shed light on the remarkable diversity found among these captivating
objects. Let’s delve into some of the different classes of neutron stars which are relevant for our

evolutionary models here developed.

¢ Rotation-powered pulsars (RPPs) constitute the predominant population among detected
neutron stars, with over 2000 identified sources. These objects are commonly observed in
the radio spectrum, and their emission is powered by the conversion of a fraction of their
rotational energy into non-thermal radiation. RPPs can be categorized into two main classes:
standard pulsars and millisecond pulsars. The latter exhibit extremely short rotational
periods, typically in the millisecond range, and are believed to have undergone a recycling
process within binary systems involving accretion phases. Only a limited proportion of RPPs
have been observed through X-ray detection. These X-ray-emitting sources display a power-
law component attributed to rotation; however, they also exhibit thermal emissions. Within
the subset of X-ray-emitting pulsars, there exist both youthful and aged (> M yr) ones. The
X-ray emissions from the nearby elderly pulsars might be attributed to the bombardment
of their polar caps by magnetospheric currents as they interact with returning particles.
For a comprehensive overview of X-ray RPP observations, refer to the work by Kaspi and
Kramer (2016).

* Magnetars are a special type of bright isolated neutron star with immensely powerful
magnetic fields, ranging from 101 —10'® G. These magnetic fields are significantly stronger
than those observed in typical neutron stars, and they exhibit relatively long periods lasting
several seconds (see Turolla et al. (2015); Esposito et al. (2021) for a recent review). These
intense magnetic fields give rise to various high-energy phenomena, including persistent

thermal and non-thermal high-energy emission, X-ray bursts, and y-ray flares.

¢ X-ray Dim Isolated Neutron Stars (XDINS) also known as "The Magnificent Seven" (see for
a review Turolla (2009)). These relatively old (10? — 10° yr) and nearby (< 1kpc) sources are
radio-quiet, exhibit faint X-ray emission, display purely thermal spectra and have distances
that are well-constrained, usually determined through parallax measurements. Due to
their proximity, the X-ray radiation is not much absorbed by the interstellar medium, so
that these sources emerge as the most promising candidates for studying in great detail

the thermal spectra of neutron stars.
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* Central Compact Objects (CCOs) are X-ray sources located at the centers of supernova
remnants. They are much dimmer than magnetars but significantly brighter than XDINS
(De Luca, 2017). Although a dozen have been observed, the timing properties, i.e., period
and period derivatives, have been measured for only three of them. The magnetic field
strength inferred from these measurements is of the order of 101° G. Such a low intensity of
the dipolar component of the magnetic field cannot explain the bright luminosity observed
in these objects. A way to explain the low field intensity is the hidden magnetic field scenario
(Ho, 2011; Vigano and Pons, 2012), which involves an episode of fall-back accretion after
the supernova explosion. That results in an external magnetic field (the surface field) lower

than the hidden or buried internal one, which might re-emerge once accretion stops.

Each class of neutron star presents unique challenges and opportunities for scientific explo-
ration. Moreover, the X-ray band plays a crucial role in studying neutron stars, particularly in
investigating their magneto-thermal evolution (see for a review Pons and Vigano (2019)). This
emission is influenced by the complex interplay between the star’s strong magnetic field and its
thermal properties. As the star undergoes cooling, its surface temperature decreases, resulting in
alterations to the observed X-ray emission.

By studying the X-ray emission from neutron stars and monitoring its evolution over time,
astronomers can gain insights into the thermal behavior, magnetic field decay, and overall aging

of these cosmic objects.

2.6.3 Gamma-ray band

Y-ray observations of neutron stars provide a window into the extreme and energetic phenomena
associated with these compact stellar remnants (for a review see Grenier and Harding (2015)).
Some neutron stars emit y-rays, which are the highest energy form of electromagnetic radiation
(Cheng and Ruderman, 1977; Smith et al., 2023). Neutron stars emit y-rays through various
mechanisms, including the acceleration of charged particles in their strong magnetic fields and
the interaction of high-energy particles with their surroundings. y-ray telescopes, such as NASA’s
Fermi Gamma-ray Space Telescope, have detected pulsating y-ray emissions from a subclass of
neutron stars known as y-ray pulsars, which reveal valuable information about their rotation
and magnetic field properties. Additionally, y-ray observations have unveiled other fascinating
phenomena associated with neutron stars, such as magnetars that can produce intense and
short-lived bursts of y-rays. The increasing statistics of high-energy pulsars helps to constrain
the emission models, providing information about the region of magnetospheric emission and
the involved electromagnetic processes, like synchro-curvature radiation and inverse Compton
(Cheng and Zhang, 1996; Coti Zelati et al., 2020; Iniguez-Pascual et al., 2022). Very recently, a
few pulsars have been observed in TeV (the upper range of y-ray) (Albert et al., 2021).
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2.6.4 Ultraviolet, optical and infrared bands

Neutron stars exhibit intrinsic faintness in the ultraviolet, optical, and infrared wavelengths.
However, recent technological advancements have enabled the identification of counterparts for a
subset of pulsars, amounting to a few tens of cases (see Mignani (2012) and references within).
Similar to other energy bands, the analysis of pulse profiles provides valuable information regard-
ing the location of the emission region. Although spectroscopy and polarization measurements
are limited to only a handful of cases, they can offer constraints on the energy distribution and
density of magnetospheric particles.

In the optical and ultraviolet bands, astronomers can infer the anisotropic thermal map of
the surface, which aids in constraining cooling models as these bands encompass the majority of
thermal emission from cold stars with ages on the order of millions of years. Optical observations,
benefiting from good angular resolution, facilitate measurements of proper motions and paral-
laxes, thereby providing reasonable estimates of distances. Furthermore, optical and infrared
observations prove useful in examining the presence of debris disks surrounding isolated neutron

stars.

2.6.5 Gravitational waves

The detection of gravitational waves from neutron stars has opened an entirely new avenue for
studying these objects. When neutron stars merge or undergo asymmetrical events, they generate
gravitational waves, which cause ripples in space-time. Advanced detectors like LIGO and Virgo
have successfully captured signals from these events, known as binary neutron star systems
(Abbott et al., 2017), providing valuable insights into their masses, spins, and EoS.

Moreover, there has been recently a surge of interest in “Continuous Gravitational Waves”,
which pertain to emissions from rapidly spinning pulsars with spin frequencies at the optimal
sensitivity range of LIGO/Virgo detectors (tens/hundreds of Hz). For a comprehensive review of
this exciting field, we recommend referring to the work by Piccinni (2022).

These detections enable us to explore matter at extreme densities and test theories of
gravity under the most challenging conditions. When combined with other electromagnetic
signals, such as gamma-rays and radio waves, these gravitational wave observations enhance our
understanding of the astrophysical processes associated with neutron stars and their role in the

evolution of the universe.
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MAGNETO-THERMAL EVOLUTION

fter a few minutes from birth, neutron stars settle into a stratified, hydrodynamically

static configuration, where neither convection nor differential rotation occurs. If they are

isolated, they will have no further relevant energy source, leading to the decay of kinetic
(rotation), magnetic, and thermal energy over the long term. In fact, the rich multi-wavelength
phenomenology observed during the active life of neutron stars, such as beamed non-thermal
emission, thermal X-ray emission, transient bursts, and flux enhancements, ultimately relies
solely on the rotationally-powered electromagnetic torque and the rearrangement of the proto-
neutron star’s huge magnetic energetic inheritance, which occurs through long-term dissipation
and sporadic abrupt reconfigurations.

To quantitatively assess the long-term evolution of a neutron star’s magnetic fields in the
crust, as well as its internal temperature, we can simplify the MHD equations into a system of
only two interconnected evolution equations: the Hall induction equation and the heat diffusion
equation. These equations are extensively described in the review by Pons and Vigano (2019).
Both equations are influenced by the star’s composition, which is determined by the chosen EoS
(Aguilera et al., 2008; Pons and Vigano, 2019; Anzuini et al., 2022; Vigano et al., 2021; Dehman
et al., 2022; Dehman et al., 2023a,b). Additionally, the magnetic field induces anisotropic heat
transport, being more efficient along rather than across the magnetic field lines. The dissipation
of electric currents, responsible for sustaining the magnetic field (Joule heating), further heats
the internal layers, slowing down the long-term cooling. Such dissipation rate depend in turn on
the temperature, via electric conductivity. These and other minor effects, reviewed below in more
detail make the magnetic and thermal evolution strongly coupled.

Such magneto-thermal evolution in isolated neutron stars has undergone extensive explo-
ration through 2D simulations (Pons and Geppert, 2007; Aguilera et al., 2008; Pons et al., 2009;

19



CHAPTER 3. MAGNETO-THERMAL EVOLUTION

Vigano et al., 2012; Vigano et al., 2021). These models have effectively revealed the general
properties of the isolated neutron star population (Vigano and Pons, 2012; Vigano et al., 2013;
Pons et al., 2013; Gullon et al., 2014, 2015). Furthermore, recent efforts have been dedicated
to investigating the magnetic evolution without the constraints of axial symmetry (Wood and
Hollerbach, 2015; Gourgouliatos et al., 2016; De Grandis et al., 2020, 2021; Igoshev et al., 2021b,a;
Dehman et al., 2022; Dehman et al., 2023b).

In this chapter, we lay the foundation of this thesis by presenting the formalism governing
the magnetic and thermal evolution. The detailed discussion on the magnetic field evolution
can be found in §3.1, where we explore the underlying physical processes occurring in different
regions of the star. Moving forward, in §3.2, we provide a comprehensive review of the theory
of neutron star cooling. We emphasize the key microphysical components that are essential for
solving the induction and heat diffusion equations. Lastly, in §3.4, we describe the coupling
between magnetic and thermal evolution, and provide a brief introduction to the main structure

of the numerical codes used in the upcoming chapters.

3.1 Magnetic field evolution in the interior of neutron stars

The interior of a neutron star contains a complex multi-fluid system with different coexisting
species exhibiting distinct average hydrodynamical velocities. In the crust, nuclei form a solid
lattice, possibly having a plastic behavior (Lander, 2016), while the fluid made by relativistic
electrons carries currents, sustaining the magnetic field. In the inner crust, there exists a third
component: neutrons, which can be in a superfluid phase and become partially decoupled from the
heavy nuclei, forming a neutral fluid. In the core, the situation becomes even more complicated
with the coexistence of neutrons and protons that can both be in superfluid and superconducting
phases, respectively. A fully consistent set of evolution equations that can be used to simulate the
evolution has not been developed yet. Consequently, to represent this system, different levels
of approximation are used, gradually incorporating the relevant physics. This section provides
an overview of the theory, aiming to represent the most significant processes governing the
magnetic field evolution in a relatively simplified mathematical form. In our analysis, we adopt
the background model introduced in §2.3 and account for the relativistic corrections.

Let’s start from the basis. The evolution of any electromagnetic field is governed by the

Maxwell equations, which incorporate relativistic corrections and are represented as follows:

1. Gauss’s Law for electric fields:

3.1 V-E =4np,,

2. Ampeére’s Law for magnetic fields:

10E 4
(3.2) =2 _ux (B -,
c Ot c
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3. Gauss’s Law for magnetic fields, which is the solenoidal constraint representing the absence

of magnetic monopoles:

(3.3) V-B=0,

4. Induction or Faraday’s Law:

(3.4) 1B v B).
c Ot

Here, V operators account for the metric factors (the e term seen in §2.3), ¢ represents the
speed of light, the { term was introduced in §2.3, E and B denote the electric and magnetic fields,
respectively. p, stands for the electric charge density, and ¢ represents the current density.

MHD investigates the dynamics of a conducting, magnetized medium. A fundamental as-
sumption in MHD is that the timescale of variation of the electromagnetic field is significantly
larger than the typical timescale of collisions within the plasma. As a consequence, in the Ampeére-
Maxwell equation (eq. (3.2)), the displacement current, represented by the left-hand side term,
becomes negligible in comparison to the right-hand side terms. This implies that the conducting
fluid can almost instantaneously respond to any changes in B to establish a current, so that

O0E/0t = 0 always. As a consequence, the current in MHD is:
(3.5) J=e - Vx(B).
4

Therefore, in MHD the Maxwell equation reduce to the solenoidal constraint and to the general
induction equation (3.4). In order to solve the latter, we must express the electric field E in terms
of other variables, such as constituent component velocities and the magnetic field itself (§3.1.1
and §3.1.2). This prescription can be achieved through a generalized Ohm’s law, incorporating
the electrical conductivity represented by a tensor, as derived by Yakovlev and Shalybkov (1990);
Shalybkov and Urpin (1995):

(3.6) J=0E .

The magneto-thermal evolution of neutron stars is primarily governed by three processes
(elaborated in §3.1.1 and §3.1.2): Ohmic dissipation, Hall drift (relevant mostly in the crust), and
ambipolar diffusion (relevant mostly in the core) (Goldreich and Reisenegger, 1992; Shalybkov
and Urpin, 1995; Cumming et al., 2004; Passamonti et al., 2016). These effects are thought to
play a dominant role, however, it is essential to note that other factors can also become significant
under specific conditions. For instance, there are theoretical arguments proposing additional
slow-motion dynamical terms, such as plastic flow (Beloborodov and Levin, 2014; Lander, 2016;
Lander and Gourgouliatos, 2019; Gourgouliatos and Lander, 2021), as well as magnetically
induced superfluid flows (Ofengeim and Gusakov, 2018) or vortex buoyancy (Muslimov and
Tsygan, 1985; Konenkov and Geppert, 2000; Elfritz et al., 2016; Dommes and Gusakov, 2017).
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Typically, all these effects can be effectively introduced as advective terms of the form E = —v x B,
with v representing an effective velocity. The latter may depend on B itself, or on the temperature
gradient. Additionally, thermoelectric effects, exemplified by the Biermann Battery phenomenon,
which describe how thermal flux gives rise to carrier movement and thus generates a current,
have also been proposed to become significant in regions with large temperature gradients
(Geppert and Wiebicke, 1991; Geppert and Wiebicke, 1995; Wiebicke and Geppert, 1991, 1992,
1996; Gourgouliatos et al., 2022).

Despite their potential significance, the majority of these additional terms are not included
in most existing literature, and detailed numerical simulations on these aspects are scarce.
However, it is possible that some of these effects may play a more crucial role than previously
thought and warrant careful revisiting. In this thesis, we will focus on highlighting the principal

characteristics of the most standard and better-understood physical processes.

3.1.1 Relativistic Hall-MHD

In the crust of a neutron star, the electric field E is determined by the electrical current density
JJ and the advection of the magnetic field by the charged component of the fluid, specifically the

electrons with velocity v.. The electric field is expressed as follows:

J
(3.7 E=2_".B,
g C

where the electric conductivity o (further elaborated in §3.3.3) actually represents the longi-
tudinal (parallel to the magnetic field) component of the general conductivity tensor &, given
by o = ezne‘re/mj, where n, denotes the electron number density, e is the electric charge, 7, is
the electron relaxation time, and m} is the effective mass of electrons in the relaxation time

approximation. The electron velocity in the crust is simply proportional to the electric current

J

b
en,

(3.8) Vo =—

where n, is the electron number density and e is the electric charge.
Then, the Hall induction equation, considering the temperature- and density-dependent
magnetic diffusivity 1, = ¢2/(4n0), the Hall-prefactor f;, = c/(4men,), and the current density

definition (eq. (3.5)) can be written as:

3.9) % =-Vx nbe(e(B)+fh[Vx(e(B)] x B

The first term on the right-hand side corresponds to the Ohmic (dissipative) effect, and the

b

magnetic diffusivity 1, depends on the temperature, which points to the importance of the
coupling of the magnetic and the thermal evolution. The magnetic energy converted into heat per

unit volume per unit time is given by:

J-J 4
(3.10) Qr="" =g - d=eC-—Vx(B)
c 4

g
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This term enters in the heat transfer equation (as shown in §3.2), contributing to the prolonged
heat retention of strongly magnetized neutron stars compared to weakly magnetized ones (Pons
and Vigano, 2019).

The second term of eq. (3.9), represents the non-linear Hall term. The latter arises due to
the Lorentz force acting on the electrons and exhibits no temperature dependence. However, its
magnitude varies significantly in the crust due to its inverse dependence on the electron density.
Furthermore, the Hall term tends to drive electric currents towards the boundary between the
crust and core. At this interface, the presence of high impurity content and pasta phases may lead
to rapid dissipation of the magnetic field, resulting in an enhancement of the Joule heating and a
substantial reduction in spin-down Pons et al. (2013). Additionally, as we will see in Chapter 7 and
Chapter 8, the Hall term acts to redistribute magnetic energy across all scales, counterbalancing
Ohmic dissipation at the smallest scales. Over a considerable period, around G(10%) yr, the crustal
magnetic topology approaches a slowly varying configuration, with the energy distributed over
a broad range of multipoles. This process induces a Hall cascade with a slope of approximately
~ 172 for the intermediate and small scales (Dehman et al., 2022).

Factoring out the magnetic diffusivity i, from eq. (3.9), we can alternatively express the Hall

induction equation in this form:

(3.11) % =-Vx (nb{vX(e(B)+wBTe(V><(e(B)) Xb}).

This form of the induction equation explicitly shows that the magnetization parameter wp7,,
with wp = eB/m}c (representing the gyro-frequency of electrons with charge —e and effective
electron mass m; moving in a magnetic field strength B), plays the role of the magnetic Reynolds
number, denoted as R, = }:’7‘—5. This parameter determines the degree of anisotropy in the heat
equation. Moreover, it acts as an indicator of the relative importance between the Hall and Ohmic
terms. When it greatly exceeds unity, the Hall drift dominates, and the purely parabolic diffusion
equation transitions to a hyperbolic one. Generally, as we move from the interior towards the
surface, wpt, increases due to the drop in density and conductivity. It is essential to exercise
caution when interpreting analytical estimates of the Ohmic or Hall timescales (often done in
literature in a simplistic way), as they can vary significantly due to local conditions, sometimes
differing by several orders of magnitude.

It is worth noting that the Hall-MHD description of the crust is based on the concept that ions
are confined within the crustal lattice, while only electrons remain mobile. However, molecular
dynamics simulations (Horowitz and Kadau, 2009) reveal that the matter behaves elastically
up to a certain maximum stress level. Beyond this threshold, the magnetic stresses, quantified
by the Maxwell term M = BiBj

T
condition for this is the von Mises criterion (applied e.g. in Lander et al. 2015). Crustal failures

, cannot be compensated by the elastic response. A more rigorous

studied in Chapter 6 are treated in the most simplified manner as star-quakes. This study

examine the frequency and energetic of internal magnetic rearrangements by evaluating the
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accumulated stress, which is proposed to be the cause of magnetar outbursts (Pons and Perna,
2011; Perna and Pons, 2011) and a possible scenario to explain fast-radio bursts (FRB) (Dehman
et al., 2020). This behaviour can be described as crustal failure, where the low material densities
allow for the propagation of sudden fractures or failures.

Rather than experiencing sudden failures, materials subjected to very slow shearing forces
may display an alternative behavior, entering a plastic regime characterized by a gradual plastic
flow instead of abrupt crustal failures. Despite the different dynamics, the energetic arguments
related to the release of energy due to the accumulation of magnetic stresses remain similar.
Recent simulations illustrate this plastic flow assumption under Stokes flow, where a viscous
term balances magnetic and elastic stresses (Lander and Gourgouliatos, 2019). The comparison
between Ohmic and Hall evolution shows significant plastic-like motions in the star’s external
layers. Similar arguments have been proposed to explain heat deposition by visco-plastic flow
and the propagation of thermo-plastic waves (Beloborodov and Levin, 2014). Depending on
which hypotheses we make, the interpretation of velocities in the advective term (v x B) of the
induction equation requires a proper physical and mathematical approach. However, Lander and
Gourgouliatos (2019) show how including a simplified treatment of the plastic behaviour in the
Hall induction equation produce only a slight reduction of the Hall dynamics, without changing
dramatically the global picture. Therefore, the Hall induction equation employed in this thesis

(and in most of the dedicated literature) can be considered a fair enough approximation.

3.1.2 Magnetic field evolution in neutron star cores

The evolution of the magnetic field in the core is more uncertain due to its multifluid nature and
the occurrence of proton superconductivity. This complexity arises because there may be regions
with protons in either the normal phase or the superconducting phase, the latter being of type-II
(Baym et al., 1969; Sedrakian and Clark, 2019) or type-I (leading to magnetic field expulsion
due to the Meissner effect). Recent calculations (Wood et al., 2020) predict phase coexistence in
mesoscopic regions (larger than the flux tubes but smaller than the macroscopic length-scales),
introducing several length and time-scales into the problem.

When superconductivity is neglected, the typical time-scales for Ohmic dissipation and Hall
advection exceed the cooling time-scales, resulting in minimal changes to the magnetic field
in the stellar core (Elfritz et al., 2016; Dehman et al., 2020; Vigano et al., 2021). However, the
inclusion of ambipolar diffusion could partially speed up the dynamics under certain conditions
(Castillo et al., 2020). This is due to its cubic dependence on the magnetic field, making it a
dominant process influencing the evolution of magnetars during the first 103 — 10° yr, although
this remains a topic of debate. A more consistent approach, incorporating hydrodynamic effects
in the superfluid/superconducting core, could substantially accelerate the evolution, as recently
discussed in terms of estimated time-scales by Gusakov et al. (2020) (see also references therein).

Moreover, an initial complex magnetic topology can also reduce the typical length- and time-
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scales, compared to the usually assumed purely dipolar fields, adding further intricacy to the
understanding of the magnetic field evolution in the core.
The short way to incorporate ambipolar diffusion is to generalize the form of the electric field

by introducing the ambipolar velocity v,:

J 1
(3.12) E-2+_— gxB-Y2«B,
O en,c c

In the simplest case, the system achieves B-equilibrium more rapidly than it evolves, and the

ambipolar velocity is directly proportional to the Lorentz force
(3.13) vy = fud xB,

where f, is a positive-defined drag coefficient. We also note that, alternatively, the ambipolar

term can be written as (Pons and Vigano, 2019):

(3.14) —v—“szf—“ B2J —(J-B)B :f“Ble.

c c c
The term takes on an explicit form resembling a resistive-like component, characterized by a
coefficient dependent on B2. It specifically affects currents perpendicular to the magnetic field
(¢J 1), aligning the magnetic field with the current and inducing a force-free configuration, defined
by J x B = 0. Importantly, the impact of this term strongly depends on the magnetic geometry,
not just its strength. It does not influence the current flowing along magnetic field lines.

In this thesis, we primarily focus on the magnetic field evolution within the crust of a neutron
star. In the core, we adopt two different approaches: either a simplified and convenient treatment
of B =0, or we consider a large-scale field in the core (Chapter 6) that decays over timescales
much longer than the crustal timescales, effectively rendering the core magnetic field as nearly
fixed. Although we anticipate significant dynamics in the core, their timescales are likely to be
longer than those in the crust, even when accounting for all the effects. Therefore, simulating
the evolution of crustal magnetic fields can provide a reasonable understanding of the overall

behavior.

3.2 The physics of neutron star cooling

The X-ray spectra detected from several isolated neutron stars display a notable thermal compo-
nent, thought to be emanating from their surface. In certain cases, independent estimates of a
star’s age are also available, enabling us to examine the correlation between temperatures and
age. This provides an indirect approach to test the physics of the neutron star’s interior through
a neutron star cooling model.

The study of neutron star cooling holds significant importance in developing realistic evolution
models. When these models are compared with observations of thermal emissions from neutron
stars at various ages Page et al. (2004); Yakovlev and Pethick (2004); Yakovlev et al. (2008); Page
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et al. (2009); Potekhin et al. (2015), they offer valuable insights into several aspects. These include
the chemical composition, magnetic field strength, and the topology of the regions responsible for
generating these radiations. Moreover, they can even shed light on the properties of matter at
higher densities deep within the star, and help constrain the nuclear EoS, as we will demonstrate
in Chapter 5.

After the proto-neutron star stage (as described in §2.1), the neutron star becomes transparent
to neutrinos, and heat is primarily carried away by neutrino emission from the entire stellar
body, as well as by thermal photon emission from the surface. The core of a neutron star becomes
isothermal after a few decades due to its high thermal conductivity. On the other hand, the crust
experiences slower thermal relaxation, typically taking around ¢ ~ 100 — 200 years. As a result,
the crust’s temperature during these very early stages is higher than that of the core, and the
thermal luminosity of the star does not accurately reflect the thermal evolution of the core.

Eventually, the relaxation period of the crust ends when the cooling wave propagating from the
core reaches the stellar surface (Gnedin et al., 2001). Consequently, the thermal luminosity drops
significantly by various orders of magnitude, depending on factors such as thermal conductivity,
heat capacity of the crust layers, and whether neutrons are in a superfluid state Lattimer et al.
(1994); Gnedin et al. (2001).

The internal temperature evolution is governed by the heat diffusion equation (Shibanov and
Yakovlev, 1996) as follows:

0(efT)
ot

where ¢, represents the heat capacity per unit volume of nucleons and leptons, @ s is the heating

(3.15) ¢y +V-(eXF)=e%(Q,-Q,).

power per unit volume and, in the case of Ohmic heating included in this thesis, it is given by
eq. (3.10). The source term is given by the neutrino emissivity per unit volume @, which accounts
for the energy losses through neutrino emission. Both terms are dependent on the temperature.
The internal, local temperature is denoted by T'.

The heat flux F, in the Fourier’s law approximation, is given by:
(3.16) F=—e*%-V(e' ),

where & represents the thermal conductivity tensor.

3.3 Microphysics

In this section, we revisit the main microphysical ingredients necessary for simulating the long-
term magneto-thermal evolution of neutron stars. Our focus here will mainly be on the crustal
properties, providing a concise overview. For more comprehensive reviews, readers may refer to
works such as Chamel and Haensel (2008) and Page and Reddy (2012).

For a comprehensive computation of the various microphysical ingredients necessary for the

heat diffusion equation and the induction equation, we highly recommend referring to the review

26



CHAPTER 3. MAGNETO-THERMAL EVOLUTION

by Potekhin et al. (2015) and exploring the publicly available codes developed by Alexander
Potekhin'. These public codes have been utilized to compute the microphysical ingredients in our
simulations, providing valuable insights and tools for studying the intricate physics governing

neutron star interiors.

3.3.1 Superfluidity and superconductivity

While we have a good understanding of superfluidity properties in Earth’s conditions through
experiments with cold atoms, the situation becomes much more complex when it comes to pairing
in nuclear matter. To study this, intricate theoretical calculations are necessary due to its limited
knowledge. The transition to the pairing phase varies depending on the nature of the nucleons
involved and the conditions to which they are subjected.

The transition to the superfluid/superconducting phase begins shortly after birth, with a
substantial portion of the core becoming superconducting within the first year. Conversely, the
epoch of the transition to a neutron superfluid phase in the core is highly uncertain, possibly
occurring tens to thousands of years later. The transition to superfluid matter happens at
a specific temperature called the critical temperature (7T'.). Below this critical temperature,
fermionic particles undergo the pairing phenomenon. This pairing phenomenon is closely related
to the energy required to break a Cooper pair. The strength of the nuclear interaction plays a
crucial role in determining the critical temperature (7T'.) at which this pairing phase transition
occurs.

In a neutron star, the Cooper pair is formed by two fermions with a spin of 1/2, such as
neutrons and protons, and they exist in a neutron star in either a 1S or 3Py state. In the inner
crust, there exists a neutron superfluid coupled in the 1S state. In the core, there are a neutron
superfluid coupled in the 3Py state and a proton superconductor described with 1S pairing. The
singlet state 1S is obtained through rotation-invariant and isotropic interactions, while the 3Py
state is anisotropic.

The presence of superfluidity and superconductivity in neutron stars has significant effects
on their cooling process. Pairing in nuclear matter plays a crucial role in neutron star cooling,
with minimal impact on the EoS, but a strong reduction in neutrino emissivities and specific heat
(Yakovlev et al., 1999; Yakovlev et al., 2001; Potekhin et al., 2015). The primary contribution to
both quantities comes from particles near the Fermi surface, and their behavior is influenced by
the presence of an energy gap in the nucleon dispersion relations. Additionally, superfluidity and
superconductivity activate a new neutrino emission channel through "Cooper pair breaking and
formation" processes. As the temperature approaches the critical value (T'.), this new channel
is triggered due to the continuous formation and breaking of Cooper pairs. The efficiency of the
Cooper pair breaking and formation process increases as the temperature decreases, reaching a

maximum at 7' ~ 0.27T ., after which it becomes exponentially suppressed (Page et al., 2004).

Inttp://www.ioffe.ru/astro/conduct/
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These three effects, namely the suppression of specific heats (§3.3.2), the creation of a new
neutrino channel, and the suppression of neutrino emissivity (§3.3.4), collectively influence the
cooling process. While the suppression of neutrino emissivity slows down cooling, the other two
effects accelerate it. Overall, unless extremely unusual choices are made for the three gap models
in the neutron star, cooling is typically accelerated. Since the primary objective of this work is
not to explore the vast parameter space encompassing superfluidity models, detailed discussions
concerning their impact on cooling models are deferred to dedicated studies (e.g., Page et al.
(2006), Aguilera et al. (2008), Page et al. (2009), and Potekhin et al. (2015)).

It is claimed that the observed decrease in temperature of the neutron star in Cassiopeia A
over a few decades (refer to Elshamouty et al. (2013) for data analysis) has been linked to the
onset of superfluidity, as discussed in previous works by Shternin et al. (2011) and Page et al.
(2011). For a recent complete and accurate study, we refer the reader to Posselt and Pavlov (2022),
where they observe a decrease in temperature, but it can be ascribe to calibration issues. To
analyze this phenomenon, we adopt the parametrization introduced by Ho et al. (2015). For the

singlet (isotropic pairing), the parametrization is given by:
3.17) kpT. ~0.5669A,

where kj, is the Boltzmann constant and A is the pairing gap. For the triplet (anisotropic pairing),

the parametrization is:
(3.18) kyT. =0.1887A.

According to most models, proton pairing ceases to exist at high densities, typically around
p > 10 gem™3. The situation becomes considerably more complicated when considering the
pairing of neutrons in the core, primarily due to the growing significance of relativistic effects. As
of now, no definitive approach to this problem has been established, leaving it open to ongoing
investigation.

While various calculations have been performed, there is general agreement that the nuclear
pairing energy, or energy gap, falls within the range of A = 0.1 to 1 MeV (see, for instance,
Gezerlis and Carlson (2010)). However, a significant degree of uncertainty remains regarding its
dependence on density.

Neutron star cooling calculations require the critical temperature as a function of baryon
density. To address this, Kaminker et al. (2002) introduced a phenomenological formula that has
now become widely used for the Fermi wavenumber (kr) dependence of the energy gap at zero

temperature. The formula is as follows:

(kp N — ko) (kp.N —k2)?

(3.19) Alkpn) = A :
NI 20 gy — ko2 + k1 (kN — ko)® + k3

This expression holds true for kg < &k < k9, with the energy gap A vanishing outside this range.

Here, kr n represents the Fermi wavenumber for each type of nucleon, where N can be either a

28



CHAPTER 3. MAGNETO-THERMAL EVOLUTION

T=10"K T = 5x10% K
1021 ;“ LI SO LA § T R LA SR RN | ST ETRAT T “"“; 102| ?" LSS AR 1 €L TETI ToF T Tor TETTTH E - EETETH
E | E
R = 3 “
10° == | 10 '
§ . E “ H ] § ’ R
Tx F BRI p Tx : ]
o 1019§ ’ E| o -
5 B :
B 0L = ]
< E e E =
k) F ©
g 10"7E E g =
[N £ 1 3 [=% Bl
il ' n - ;
10‘6 el el Ml b 1015 T P T A oy TR R e (LR AT IR L
10" 10" 102 10% 10" 10 10" 10" 10" 10"” 10™ 10"
Density [g cm™] Density [g cm™]
T=10°K T = 5x107 K
102(’;“ LS DL | LB R R ] LR AR | AR SRR LR Ty T SRR R AL T LR R R R AL ] LSRR AR | LR
. : . R
7 - - T -
1 E e v
10 b |
T [ T 473
X A X i
> 107 . o :
L [ oy V] = .
B L7l L | -] ET
= i 2 ;
2 i e ] K] :
e Lk |
10‘57”\ TR T LR FRULARR (TR e T T et 1015 ...\ RERIRTINE SRR 00 SRR BT NN LR
10" 10" 10'% = 90" 40" . 10" 10 10" 10 10'% 10" - 90"
Density [g cm™] Density [g cm™]

Figure 3.1: Figure adopted from Pons and Vigano (2019) shows the contributions to the specific
heat from neutrons (red dashes), protons (green dot-dashed), electrons (blue dots), and ions
(black solid line) as a function of density, spanning from the outer crust to the core. Each
panel corresponds to different temperatures, as indicated. The superfluid/superconductive gaps
employed in the figure are the same as those in Ho et al. (2012). The neutron star is described
with the SLy4 EoS (Douchin and Haensel, 2001) and has a mass of 1.4 M.

neutron or a proton. The parameters in the formula play specific roles: Ay regulates the amplitude
of A, while kg and kg determine the positions of the low- and high-density cut-offs, respectively.
Additionally, 21 and k3 specify the shape of A(kr n). This formula proves valuable as it allows
analytical parameterization for numerical calculations in various models, eliminating the need to

rely on tables.

3.3.2 Specific heat

To compute the heat diffusion equation, several microphysical ingredients play an essential role.
The first important quantity is the specific heat cy. The majority of the total heat capacity of a

neutron star is attributed to the core, which contains most of the mass and is composed entirely
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of degenerate matter. For degenerate fermions of a species i with number density n; and Fermi

wavenumber kr ; = (372n;)V3, the heat capacity per unit volume is given by:

2
2nik%T \V¥F,i +1

) CRE
mic X5

(3.20) Cyi=T

where xp ; = hkp ;/m;c describes the relativistic effects of the species. Here, i denotes the reduced
Planck constant, which is related to Planck’s constant as i = A/2x. The contribution of the

relativistic electrons is approximated as:

2/3
3.21) Coe~B5AxX 1019(3) Tyerg em K1,
no
and for the non-relativistic nucleons (N = n, p), it is given by:
m* 1/3
(3.22) cyN = 1.6x IOZO—N(n—N) ToR’ erg cm °K 1.
mpy*no

where ng =~ 0.16 fm 3 is the nuclear saturation density, T is the temperature in units of 10° K,
and R, is a factor that accounts for the exponential reduction due to the presence of superfluidity
(Levenfish and Yakovlev, 1994).

The regions with superfluid nucleons are distinguishable by significant drops in the specific
heat. The contribution from protons is consistently negligible. In the outer core, where neutrons
are not superfluid, their contribution becomes dominant. The crustal specific heat is determined by
the presence of dripped neutrons, the degenerate electron gas, and the nuclear lattice (van Riper,
1991). Generally speaking, the specific heat of the lattice makes the most substantial contribution,
except in parts of the inner crust where neutrons are not superfluid, or for temperatures T < 108 K,
when the electron contribution becomes dominant. Nonetheless, due to the relatively small volume
of the crust, its heat capacity is considerably smaller compared to the core contribution.

Fig. 3.1 illustrates the diverse contributions to the heat capacity per unit volume for the
components of neutron star matter as a function of density, considering various fixed tem-
peratures, namely, T = 10%,5 x 108,108,5 x 10’ K. These calculations incorporate the super-
fluid/superconductive gaps from Ho et al. (2012), particularly utilizing their "deep neutron
triplet” model. The computations are performed using the SLy4 EoS and considering a neutron
star mass of M = 1.4 M. In the outer crust, the dominant contribution stems from phonons,
which represent vibrating ions. In the inner crust and core, the neutron term dominates. While
in the core, the proton term becomes significant, but it never reaches a comparable magnitude to
that of neutrons. Consequently, when integrated over the entire star, the dominant component

remains the neutron heat capacity.

3.3.3 Electric and thermal conductivities

Heat transport is governed by thermal conductivity, whereas the transport of momentum by

charged particles is regulated by electrical conductivity. These conductivities are determined by
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the mean free path of the relevant carriers. Scattering processes involving charged particles (such
as electrons, protons, and ions) influence both electrical and thermal conductivity, while neutron
and phonon processes affect only thermal conductivity. On the other hand, radiative transport
involving photons is primarily significant near the surface and will not be discussed here. In
the context of neutron star physics, the thermal and electric conductivities are predominantly
governed by the electrons due to their high mobility and depend on factors such as electron density,
crustal temperature, strength and topology of the magnetic field, and impurity concentration
within the crust (Fantina et al., 2019; Carreau et al., 2021).

In situations where the typical energy transferred during a collision is much smaller than
kT, the electron relaxation time approximation is employed. In this approximation, the thermal

conductivity tensor can be expressed as:

27,2
m*kin,T
A b"e” th
3.23 Re = ——— 11,
( ) e 3€F e
and the electrical conductivity tensor as
2 2
nec‘e
(3.24) 6o = ——1¢,
€r

Here, féh and fgl represent the electron’s thermal and electrical relaxation times, respectively,
and ep = m,c?, /va +1 = m?c? denotes the Fermi energy.

We have introduced the concept of electron relaxation time tensors, with their components
being (X, vk)_l—in other words, the inverse of all the collision frequencies v;, associated with the
relevant processes involved in the transport of heat or electrical current. In the strongly quantized
regime, these tensor components are non-trivial and require precise numerical calculations,
taking into account the limited number of occupied Landau levels.

In the presence of a strong magnetic field with direction b = B/B, one can express the electron

contribution to the electrical currents and anisotropic flux of heat as (Urpin and Yakovlev, 1980):

(3.25) J:OA'E:0'||E||+UJ_EJ_+O'HI)XE,

(3.26) F=—¢"k |V(ET)+(wpTe)2(b- V(e T)b + wpT (b x V(e T))b|.

Expressing the tensor components in a basis aligned with the magnetic field orientation, one can
identify longitudinal, perpendicular, and Hall components. The symmetric part of the & tensor is
related to the components in the E-B plane, specifically E| = b(E -b) and E| =b x (E x b). The
antisymmetric part is perpendicular to both B and E, resulting in a complex structure when the
equation is inverted to express E as a function of « and B. The same principle applies to & and
V(e*T), where the heat flux is also explicitly decomposed into three parts: heat flowing in the
direction of the redshift temperature gradient V(e¢T'), heat flowing along the magnetic field lines
(the direction of b), and heat flowing perpendicular to both.
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If the quantizing effects are not relevant due to very large number of occupied Landau states,

then the following classic relations hold (Urpin and Yakovlev, 1980):

T|| = Te,

Te
T =—7,
T 1+ (wpT.)?

2

WBT,
3.27 =—
3.2 TH =  (wpTo)?

Here, wp is the gyro-frequency, and 7. is the non-magnetic relaxation time. The conductivities
across magnetic field lines are suppressed by a factor of 1+ (wgt.)?. This leads to anisotropic

heat transport. It’s worth noting that in this limit, the electric field can be expressed as:
(3.28) E=67"14d,

where 67! is the electrical resistivity tensor. Explicitly, it can be shown that

1
(3.29) E==-J+
o cnee

J xb.

The first term represents the Ohmic resistivity in the induction equation (3.11), with o = 0}, is
dominated by electrons, and must take into account all the (usually temperature-dependent)
collision processes of the charge carriers. The second term, which is independent of 7., gives rise
to the Hall effect.

Under weak magnetic field conditions, the electron conductivities are isotropic, and the
thermal and electric conductivity tensor, Kk and &, reduces to a scalar quantity multiplied by
the identity matrix. As the background exhibits spherical symmetry, temperature gradients are
primarily radial throughout most of the star.

It’s important to highlight that the thermal conductivity of the core is significantly higher, by
several orders of magnitude, compared to the crust. Consequently, the core remains isothermal,
rendering precise values of thermal conductivity in the core unimportant. Thermal gradients can
only develop and be maintained in the crust (typically in the first centuries or in the presence of
long-term heat sources) and the envelope, where most of the temperature gradient occurs.

In the crust, various dissipative processes contribute to thermal conductivity, including
mutual interactions between electrons, lattice phonons (collective motion of ions in the solid
phase), impurities (defects in the lattice), superfluid phonons (collective motion of superfluid
neutrons), and normal neutrons. The mean free path of free neutrons, limited by interactions
with the lattice, is expected to be much shorter than that of electrons. Quantizing effects due to
the presence of a strong magnetic field only become significant in the envelope or the outer crust
for very large magnetic fields (B = 10'° G) and are therefore neglected hereafter.

The electron conductivity accounts for all collision processes of the charge carriers, and it
is typically temperature-dependent. In the crust of a neutron star, the electrical conductivity

typically ranges from o ~ 1022 — 1025 s~1, which is several orders of magnitude larger than in
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the core, where the electrical conductivity is approximately o ~ 1026 — 102? 71 (Pons and Vigano,
2019). As a result, the longer Ohmic timescales in the core potentially influence the magnetic
field evolution only at much later stages (¢ = 108 yr), when isolated neutron stars become too cold
to be observed (Pons et al., 2009; Pons and Vigano, 2019).

3.3.4 Neutrino reactions

Another crucial ingredient in solving the heat diffusion equation is the neutrino emissivity.
Neutrino-emitting reactions take place in a wide range of matter compositions, which differ
significantly between the solid crust and the liquid core of a neutron star. The theoretically
calculated emissivities are complex functions of temperature and matter composition. In general,
neutrino emissivities exhibit a steep dependence on temperature, often expressed as high powers
of this factor, whereas their dependence on density remains comparatively weak. Therefore, the
higher the temperature, the larger is the energy drained by neutrinos.

Since the first minute after birth, the mean free path of neutrinos has been much longer than
the star’s radius (Burrows and Lattimer, 1986; Pons et al., 1999). As a result, when the star
is still hot, the abundant production of neutrinos carries energy away from it. During the first
t =~ 10% yr of a neutron star’s life, the typical cooling curves, represented by the redshifted photon
luminosity L, versus stellar age, are strongly influenced by the dominant neutrino emission
mechanisms Lattimer et al. (1991); Prakash et al. (1992); Yakovlev et al. (1999); Yakovlev et al.
(2001); Page et al. (2004); Potekhin et al. (2015). These mechanisms drain energy from both the
crust and the core of the neutron star. Table 3.1 provides a brief overview of the main neutrino
emission channels that are active in the stellar interior.

In the case of a sufficiently massive star, the proton concentrations in the core may surpass
the minimum threshold required (depending on the EoS) for activating nucleonic direct Urca
(DUrca) reactions, leading to enhanced cooling scenario (Lattimer et al., 1991; Prakash et al.,
1992; Haensel and Gnedin, 1994; Yakovlev et al., 2001), in which a temperature drop is predicted
after tens of years. This process involves the beta decay of neutrons and the electronic capture by
protons. However, DUrca reactions are not always allowed. Energy and momentum conservation,
combined with the condition of electric charge neutrality in matter, impose that DUrca is permit-
ted only if the Fermi momenta pF,, pF,, and pF, , satisfy the triangle condition (Lattimer et al.,
1991; Yakovlev et al., 1999). According to this condition, the value of each Fermi momentum
should be smaller than the sum of the other two. In neutron star matter, pF,, is larger than the

other two, and the triangle condition reads (Yakovlev et al., 2001):
(3.30) pF, <pF,+pF,,.

The given condition for Fermi momenta can also be expressed similarly in terms of baryonic
fractions Y; = n;/np. The baryonic fraction Y, must exceed the value of Y; = 0.11 for matter

composed of a classical neutrons, protons, and electrons gas. More accurate descriptions report
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] Process Q. [erg cm ™3 s71] Onset Ref ‘
’ Core ‘
Modified Urca (n-branch)
nn — pnev,, pne — nnv, 8 x 1021%%Un},/3TS (1)
Modified Urca (p-branch)
np— ppev,, ppe —> npv, 8 x 1021%§4Un},/3Tg Y, =0.01 1)
N-N bremstralung
nn — nnvv 7x 10199 n Y318 1
np — npvv 1x1020%"Pn3T8 (1)
pp — ppvv 7x10992PPn 13 TS (1)
e-p Bremsstrahlung
ep — epvv 2x 101702318 (2)
Direct Urca
n— pev,, pe — nv, 4x 1077 PUn 1318 Y¢=0.11 3)
n—pu vy, puT —nvy 4x10*"2PVn 31§ YE=0.14 ®3)
Crust ‘
Pair annihilation
eet —vv 9 x 1020F ir (e, mo+) 4)
Plasmon decay
vt 1x 1021,(T, y,) (5)
e-nucleus Bremsstrahlung
e(A,Z) — e(A,Z)vv 3x10"2LnZponeTS (6)
N — N Bremsstrahlung
nn — nnvv 7x 1019R"" f,n13T8 (1)

Core and crust ‘

Cooper Pair Breaking and Formation (CPBF)

BB —vv 1x 102 nY3F s pT] (7
Electron Synchrotron
el evy 9x 1048 45 g B2, T3 ®)

Table 3.1: Neutrino processes and their emissivities @, in the core and in the crust of a neutron
star, taken from Aguilera et al. (2008). The third column shows the onset for some processes to
operate (Y, denotes the critical proton fraction). Detailed functions and precise factors can be
found in the references (last column): (1) Yakovlev and Levenfish (1995); (2)Maxwell (1979); (3)
Lattimer et al. (1991); (4) Yakovlev and Kaminker (1994); (5) Yakovlev et al. (2001); (6) Haensel
et al. (1996); (7) Yakovlev et al. (1999); (8) Bezchastnov et al. (1997). The proton fraction threshold
for the MUrca and DUrca onset is described for the SLy4 EoS.
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values of Y,; = 0.14. Typically, DUrca mechanism operates in the innermost regions of the star
(Lattimer et al., 1991; Yakovlev et al., 1999; Yakovlev et al., 2001).

Neutron stars in which DUrca processes are inactive undergo standard cooling scenario,
where the total emissivity is dominated by slow processes < T8. The standard cooling is mainly
governed by the modified Urca, the different Bremsstrahlung processes, and Cooper pair neutrino
emissions, resulting in a slower thermal evolution compared to the enhanced regime. The modified
Ureca, is similar to DUrca but less efficient, involving a mediating particle. In neutron, proton,
and electron matter, the modified Urca process is often referred to as the neutron branch and
the proton branch Yakovlev and Levenfish (1995); Yakovlev et al. (1999); Yakovlev et al. (2001).
These reactions have analogs entailing muons instead of electrons (Yakovlev et al., 2001; Raduta
et al., 2018, 2019). The condition for the modified Urca reactions is less restrictive and is almost
always satisfied (Yakovlev et al., 2001):

(3.31) pF, <3pF,+pF, .

Other essential processes include the Bremsstrahlung channels, named for a vague analogy with
the electrodynamical process. These channels proceed via weak neutral currents and produce
neutrinos of any flavor.

Most of the effective neutrino processes involving superfluid components (such as modified
URCA and nucleon Bremsstrahlung) are exponentially suppressed by factors fitted using the
mathematical functions % as described in Yakovlev et al. (2001). The onset of superfluidity opens
new channels in neutrino production: the Cooper Pair Breaking and Formation processes (CPBF).
According to Leinson and Perez (2006), they are suppressed in the crust (in the neutron 1Sg
pairing), but they are active in the core (in the proton 1S and neutron 3P; channels). Crustal
superfluidity has a minor impact on long-term evolution, affecting only the early relaxation of
the crust, a stage lasting about 100 yrs, before thermal coupling between the crust and core
is achieved (Gnedin et al., 2001; Page et al., 2009). The bulk of energy loss is regulated by
the core’s physics, where most of the mass is concentrated. Consequently, the total neutrino
emissivity is highly sensitive to the superfluid gaps. Notably, the reduction of specific heat cy
due to superfluidity and the Cooper pair channel overcome the suppression of nucleonic neutrino
channels, resulting in a faster cooling curve.

A further complication arises from the presence of a strong magnetic field. In that case, the
relativistic electrons have a different dispersion relation and they can directly emit neutrino
pairs, analogously to the synchrotron emission of photons, with an emissivity proportional to
B. This process is known as the neutrino synchrotron channel. A few processes, such as pair
annihilation and photo-neutrino emissivity, are relevant only in the envelope.

Another complication arises due to the presence of a strong magnetic field. In such instances,
relativistic electrons exhibit a distinct dispersion relation, allowing them to emit neutrino pairs
directly. This emission is analogous to the synchrotron radiation of photons and is referred to

as the neutrino synchrotron channel, with an emissivity that is proportional to the magnetic
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field strength B. Some processes, including pair annihilation and photo-neutrino emissivity, are

pertinent solely to the envelope.

3.4 Coupled magneto-thermal simulations

The interconnections between the magnetic and thermal evolution equations manifest at the
microphysical level. On one hand, as temperatures decrease due to neutrino emission, thermal and
electric conductivities increase, rendering matter more resistant. On the other hand, the evolving
magnetic field impacts thermal conductivity both along and across its lines, thus influencing
the local temperature. This, in turn, causes significant variations in the surface temperature
distribution, which can be observed and constrained through measurements. Simultaneously, the
Hall term drives electric currents towards the crust-core boundary, where the presence of high
impurities and pasta phases facilitates a more efficient dissipation of the magnetic field (Pons
et al., 2013). Consequently, the magnetic energy is converted into Joule heating @ ;. While the
Hall term itself does not directly dissipate magnetic energy, it gives rise to small-scale magnetic
structures where Ohmic dissipation is enhanced. To a lesser extent, the magnetic field B also
influences cy and @, .

To investigate the long-term magneto-thermal evolution within the interior of a neutron
star, specialized numerical simulations using advanced codes are essential. These simulations
serve as powerful tools for understanding the complex interplay between magnetic fields and
thermal processes that govern the star’s behavior over extended periods. In this thesis, studies
were carried out using two magneto-thermal evolution codes: a 2D code available within our
collaboration (latest version by Vigano et al. (2021)) and a newly developed 3D code named
MATINS, introduced in Chapter 7 (Dehman et al. (2022), Ascenzi et al. in preparation).

3.4.1 Background model

Since the induction equation and the heat diffusion equation are coupled at a microphysical
level, they must be supplemented by an EoS. This EoS enables the construction of the neutron
star’s background model, permitting interpolation of the provided tables through various schemes
to compute at each point of the star the microphysics, e.g., 1y, cvy, k, and ,, essential for
our magneto-thermal simulations. Moreover, the superfluid and superconductive models for
neutrons and protons, respectively, are taken into account as they significantly impact the cooling
timescales through their influence on ¢y and @,. Various additional microphysical ingredients
play a crucial role in the interior of a neutron star. Notably, the EoS and superfluid models have
a significant effect on the cooling process, but they play a comparatively smaller role in the
evolution of the magnetic field, especially when compared to the initial topology chosen for the

system.

36



CHAPTER 3. MAGNETO-THERMAL EVOLUTION

1.0 — e m———— — R T 500
& B i r/R X 3
— \ 1 3
L : 1 7
3 - P X e TTTTs ~_ b 400
= h - " ]
> 0.87 ‘.‘. ”; Y, R : ]
N r \)0;" “ a4 \)a} % ]
g B I s & ! ]
- 0.6 & [ & i —300
b r S v & ] <
%) L o v & ]
c " ] -
S o e
c 0.4 r—-~__e‘___ Il h? ! 200
=] L ~ N A% i
0 Se=a Y
o r < \, I':
L \ ht
(] N A ’
202 T T - 100
o i r' RS Z ! [l
3] r [ oS e A !
[2 4 e EERE L v ,." ____________ J:___— E
00t===—=copF=-=-" Ll ol : | mrmrmympmem 0
10'° 10" 10" 10" 10"

Density [g cm™)]

Figure 3.2: Figure adopted from Pons and Vigano (2019). It displays the structure and composition
of a 1.4 My neutron star, with SLy4 EoS. The plot shows, as a function of density from the outer
crust to the core, the following quantities: mass fraction in the form of nuclei X, (blue dot-dashed
line), the fraction of electrons per baryon Y, (black dashes), the fraction of free neutrons per
baryon Y, (red dashes), the atomic number Z (dark green triple dot-dashed), the mass number A
(cyan long dashes), radius normalized to R (pink solid), and the corresponding enclosed mass
normalized to the star mass (green solid).

Utilizing the SLy4 EoS sourced from the online public database CompOSE? (CompStar Online
Supernovae Equations of State), we have constructed a neutron star model with a radius of
R4 =11.7km and a mass of 1.4 M, achieved by imposing a central pressure of 1.36 x 103° bar. For
this particular choice of EoS, our computational domain covers the range from R, = 10.9km to
R =11.6km, spanning from the crust-core interface to a density of approximately p ~ 101 gem=3,
which we designate as the crust-envelope interface.

In Fig. 3.2, we present a typical profile of a neutron star obtained using the SLy4 EoS (Douchin
and Haensel, 2001). The SLy4 EoS is among the realistic EoSs that support a maximum mass
consistent with observations, approximately M5 ~ 2—2.2 My (Demorest et al., 2010; Antoniadis
et al., 2013; Margalit and Metzger, 2017; Ruiz et al., 2018; Radice et al., 2018; Cromartie et al.,
2020). Fig. 3.2 illustrates the enclosed radius and mass, as well as the fractions of different
components, all as functions of density, spanning from the outer crust to the core of the neutron
star. At densities p >4 x 10! gem ™3, neutrons separate from the nuclei, marking the beginning
of the inner crust, and, under sufficiently low temperatures, they become superfluid. It’s worth
mentioning that this representation does not include the envelope and atmosphere of the neutron

star. For a more comprehensive discussion, additional details can be found in Haensel et al. (2007)

2https://compose.obspm.fr/
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and Potekhin et al. (2015).

Throughout most of this thesis, our primary focus remains on a single model: the SLy4 EoS
and a mass of 1.4 M. Nonetheless, it’s important to note that we have rigorously tested the two
codes with various EoSs and masses. For instance, in Chapter 5, we delve into different choices of
masses and EoSs to explain the faint luminosity of young neutron stars observed in our galaxy.
Below is a compilation of the various EoSs currently available in both codes: SLy2 (Danielewicz
and Lee, 2009), SLy4 (Douchin and Haensel, 2001), BSK21 (Potekhin, A. Y. et al., 2013), BSK
22-24-25-26 (Pearson et al., 2018), SkMp (Bennour et al., 1989), Ska and SKb (Kéhler, 1976),
CMF2, and CMF6 (Dexheimer and Schramm, 2008). For those interested in exploring these EoSs
in more detail, valuable information and data tables are available through the online CompOSE
database®.

3.4.2 Numerical methods

The 2D and the 3D code MATINS are implemented in Fortran90/95 and share a common code
base. They contain modules devoted to physics (thermal evolution, magnetic evolution and
microphysics), data structures and support (grid and constants), utility modules (output), and an
external module for utilizing third-party libraries. Both codes feature a fully modular structure,
making them easier to maintain, develop, and extend. The 2D code incorporates an integrated
CMake build system. This is not the case for the 3D code, but the latter uses OpenMP to optimize
the main loops. The techniques employed in these codes are based on a conservative formulation,
where Stokes’ and Gauss’ theorems are applied to each numerical cell, as elaborated in Chapter 7.

Fig. 2.4 provides a flowchart of the main program of the code, adapted from Vigano et al.
(2021), and representative of both the 2D and 3D versions. The initialization stage calculates the
star’s structure for a given EoS and central pressure, while input parameters such as initial tem-
perature, magnetic field strength and topology, impurity parameter, superfluid model, envelope
model, and numerical methods are provided. Various fixed quantities and mathematical functions,
such as the numerical grid, relativistic factors, geometrical elements, Legendre polynomials (in
the 2D code) and Spherical Harmonics (in the 3D code), are also computed. The code then enters
the main loop, which comprises three main parts: microphysical calculations, magnetic field
evolution, and thermal evolution. Additionally, rotational evolution is a by-product derived from
the evolution of the dipolar component at the surface (B;}(ifl) ). Therefore, it can also be performed as
a post-process, using a given spin-down formula, which may or may not include inclination angle
evolution. Magnetic stresses and the frequency of crustal failure events can also be estimated as
by-products.

The evolution of the magnetic field requires the use of an explicit, centered, or upwind scheme,

with careful consideration of the non-linear term. Various time advancement methods, such as

3https ://compose.obspm.fr/
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Figure 3.3: Figure adopted from Vigano et al. (2021). It represents the flowchart of the magneto-
thermal 2D evolution code. Thermal evolution blocks are highlighted in red, microphysics parts
in blue, and magnetic evolution steps in green. In parenthesis there are the optional by-products
of the calculations.
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Euler, Runge-Kutta, and Adams-Bashforth, are employed to advance the magnetic field in time.
A comprehensive description of the 3D magnetic evolution equation is provided in Chapter 7.

We confine the magnetic field evolution to the crust of a neutron star. Consequently, we apply
perfect conductor boundary conditions at the crust-core interface, resulting in the vanishing
of the radial magnetic field component (see §7.2.1). At the star’s surface, potential boundary
conditions (imposing no currents circulating outside the star) are commonly adopted in most
studies (see §7.2.2). However, our recent research (Urban et al., 2023) takes a different approach
by coupling the interior crustal evolution with the magnetosphere using physics-informed neural
networks (PINN), with a detailed description provided in Appendix C. Although this coupling
was initially performed in 2D, we are currently working on implementing it in 3D.

The heat diffusion equation can be solved using standard methods for parabolic equations with
stiff terms, given the highly nonlinear nature of neutrino emissivities with respect to temperature
(see §3.3.4). The Joule term x 0,(T)~! can also be considered stiff, although its dependence on
T is less pronounced. Such stiffness is effectively managed by implicit methods, which involve
linearizing the source term and inverting the tridiagonal block matrix .# . This matrix relates the
updated set of values T,’l”l to the previous set 77, where T' = Te¢ is the redshifted temperature,
and a labels each cell. The relationship is expressed as .#Z%® TZ” = va(Tg), where v, is the
vector that also contains the old temperatures, the sources, and their dependencies on the local
temperatures 77 . The matrix elements arise from the discretization of the problem on a spherical
coordinate grid in the 2D code and the cubed-sphere coordinate grid (§7.1 and Appendix A) in
the 3D code, using standard centered differences to evaluate the gradients in the heat flux F.
Temperature values are defined at the center of each cell, where the heating rate and neutrino
losses are also evaluated. To facilitate this task, our code utilizes the LAPACK public library
(Anderson et al., 1999). For a comprehensive understanding of solving the heat diffusion equation,
please refer to Aguilera et al. (2008) and Ascenzi et al. 2023 (in preparation).

After less than a century, the core becomes isothermal, with a constant T' after approximately
100 yrs. Therefore, in our code, we treat the core evolution as a 1D problem by considering the
core as a single radial layer. This approach significantly reduces computational time. We achieve
this by considering the correct weighted average of the specific heat and the neutrino emissivity
in the core, but evolve only one temperature, considering the thermal conductivity only at the
crust-core interface. On the other hand, to determine the temperature at the star’s surface, we
must take the star’s envelope into consideration, as described in §3.4.2.2.

It is worth noting that temperatures are not allowed to be smaller than 10% K because the
microphysics implemented are not suitable for such regimes. Therefore, 10° K is taken as a floor
value, which means that the cooling model can follow the star for a maximum of approximately
108 yrs.
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3.4.2.1 Adaptive timesteps

The cooling and magnetic timescales undergo significant variations throughout the star’s life,
with the thermal timescales considerably larger than its magnetic counterpart. During the
neutron star’s cooling process, two effects emerge: first, neutrino emissivities decrease by several
orders of magnitude; second, the matter becomes more thermally and electrically conductive.
Consequently, employing a fixed timestep spanning Myr-long duration would result in an unnec-
essarily substantial computational burden. It is therefore advisable to adopt distinct dynamic
definitions for the numerical timestep, with one for each equation.

For cooling simulations, one can use a timestep, denoted as d¢., that increases with time, as
temperature variations are more significant in the early stages. In our case, we typically employ
a phenomenologically increasing timestep, starting with d¢. = 1072 yr during the initial years
when the temperature drops rapidly. We then increase it to dt. ~ /100 yrs until it reaches a
relatively a large value which is kept uniform, approximately di. ~ 100 — 1000 yrs. While this
choice may not be finely tuned for optimization, it is a practical implementation that ensures
stability in the implicit scheme described above.

The timestep used in magnetic evolution, denoted as dt;, is more complex to determine
because the intensity and topology of the magnetic field define the Ohmic and Hall timescales, in
addition to being influenced by conductivity and electron density (§7.1.4). Any precise assessment
of the Courant-limited maximum value for dt; is challenging due to the non-linearity of the
problem. As a matter of fact, the characteristic velocities of the eMHD equations can only
be obtained in their linearized version, as discussed in Vigano et al. (2019), which involves
perturbations on top of a background field—unlike our realistic scenario.

It is worth noting that the cooling timesteps are more memory-intensive because they require
solving a system of equations with an N2 sparse matrix (N is the total number of points).
During each cooling timestep, the microphysics must be calculated at each point. In contrast, the
magnetic timesteps are much smaller, typically a fraction of a year, and more evenly spaced in
time (§7.1.4). Therefore, each cooling timestep encompasses many magnetic timesteps. Currently,
we use a timestep that is proportional to time itself for the thermal part. Roughly speaking, it
takes about 103 — 10* iterations for the thermal part and about 107 iterations for the magnetic

part to reach 1 Myr of evolution.

3.4.2.2 Thermal boundary condition: the blanketing envelope

In the low-density region, where the envelope extends approximately 100 m further (see §2.4.3),
the largest temperature gradient is observed. Due to its relatively low density, radiative equi-
librium is established much more quickly compared to the interior, and the envelope reaches a
stationary state on shorter timescales. The significantly different thermal relaxation timescales
between the envelope and the interior (crust and core) make it computationally infeasible to

attempt long-term (= Myr) cooling simulations on a numerical grid that includes all layers up
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to the star’s surface. As a result, the outer layer is effectively treated as a boundary condition
for the thermal evolution. Consequently, the typical approach is to separately compute station-
ary envelope models and then employ a phenomenological fit to predict the value of the local
surface temperature (Ts). This prediction depends on several factors, including the magnetic
field’s geometry and intensity, the chemical composition of the envelope (which is uncertain), the
crust/envelope boundary density, as well as the temperature at the base of the envelope (T').

A widely used classical Ty — Ts expression, derived from fitting a set of heavy-element
envelopes for various T, values and surface gravity g14, is the non-magnetized envelope described
by Gudmundsson et al. (1983):

b

T4 0.455
(3.32) Tps = 1.288 [—36]

814
where g14 is the surface gravity in units of 101 ems™1, Tpg is Tp in 108K, and T is T in 10° K.
More elaborate relations, incorporating different values for the crust/envelope boundary density,
magnetic field intensity and geometry, and chemical composition, are discussed in the literature.
These diverse envelope models are included in both codes. For a detailed examination of the
impact of these various envelopes on the cooling process, we refer the reader to Chapter 4.
The bolometric luminosity, as seen by an observer at infinity, is derived by assuming blackbody

emission from each patch of the neutron star’s surface at the temperature T:
/2
(3.33) L,=2n / ospR2 T2 sinfde.
0

Here, To, = ¢* T and Ro, = e °R are the redshifted surface temperature and the radius seen at
infinity, respectively. o5 = 5.67 x 1072 erg em™2 s~1 K™* is the Stefan-Boltzmann constant.
Instead of pure blackbody emission, alternative emission models have been proposed, such as
magnetic atmospheres (Van Adelsberg and Lai, 2006; Ho et al., 2007, 2008; Suleimanov et al.,
2009; Suleimanov et al., 2012) or condensed surface models (van Adelsberg et al., 2005; Pérez-
Azorin, J. F. et al., 2005; Medin and Lai, 2007; Potekhin, A. Y. et al., 2012). In our simulations,
surface radiation is typically approximated as blackbody radiation. Although this might be a
simplification, it has been demonstrated that it does not significantly impact our results (Potekhin
et al., 2015). In general, different emission models influence the spectrum’s characteristics in
various ways, thus playing a crucial role in interpreting observations as we deduce physical

properties through spectral fitting to specific emission models.
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esearchers have long hoped that comparing observations of direct thermal emission from

the surface of neutron stars to theoretical cooling models (i.e., the long-term evolution

of thermal luminosity and temperature) could yield valuable information about the star’s
interior, such as the nuclear EoS and chemical composition (Tsuruta et al., 1972; Yakovlev et al.,
2004; Page et al., 2006; Potekhin et al., 2015; Pons and Vigano, 2019).

This chapter builds upon the research conducted by Dehman et al. (2023a). Our primary ob-
jective is to demonstrate that the envelope models, which are incorporated into multidimensional
simulations "solely" as boundary conditions (§3.4.2.2), play a crucial role in establishing a connec-
tion between the internal properties and the observable quantities (e.g., effective temperature
and luminosity), particularly for highly magnetized objects like magnetars. To achieve this, we
thoroughly compare various envelope models from the existing literature, aiming to assess their
impact on the evolution of theoretical cooling models under varying magnetic field intensities and
geometries. Through this comprehensive analysis, we seek to determine the optimal conditions
that enable us to employ observational X-ray data to effectively constrain cooling models and

derive essential parameters of the neutron star.

4.1 Envelope models

Among the many early studies of the thermal structure of neutron stars, we must mention
the seminal works of Tsuruta et al. (1972), Gudmundsson et al. (1983), Hernquist (1985) or
Schaaf (1990), who pointed out that regions with tangential magnetic field are much colder than
the regions where the field is nearly radial (see Yakovlev and Kaminker (1994) and references
therein for a review of the early works). The T — T's relation for the envelope model proposed by

Gudmundsson et al. (1983), assuming a non-magnetized envelope composed of iron and iron-like
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nuclei, is expressed in eq. (3.32). Later, Potekhin et al. (1997) constructed a more general fit valid
for different compositions. These envelope models incorporated enhanced calculations of the
EoS and opacities within the outer layers of neutron stars. In particular, the so-called accreted
envelopes contain layers of different chemical elements (H, He, C, O shells) created from accreted
matter from the supernova fallback material. For the partially accreted envelopes, the T — T's

relation proposed by Potekhin et al. (1997) is expressed as follow:

+T%

$6,a
b

4
aTsG,Fe

4.1 T =
.0 5,6 a+1

where a = [1.2+(5.3 x 10_6/9)0'38]T2g3. Tpg is T in unit of 10° K and
(4.2) 0=g%AM/M,.

Here, M, is the mass of a neutron star and AM is the accreted mass. The surface temperature

for a fully accreted envelope is expressed by the following equation:
(4.3) T o = 814(18.1Tp9)**2.

The surface temperature for a purely iron (non-accreted) envelope is expressed by the following
equation:
2.25 1.25
(4.4) Tlipe =814 [ (1Y) "+ (g) ] ,
with Y = Th9 — (T./10%) and T = (7Tp9 /212)"2.

The pioneering work of Page (1994) and Page and Sarmiento (1996) introduced realistic
surface temperature distributions for neutron stars with dipolar and dipolar + quadrupolar
magnetic fields. The latter study specifically provided T — T's relationships associated with these
magnetic field configurations. The thermal structure of neutron stars with magnetized envelopes
was initially studied by Potekhin and Yakovlev (2001) and subsequently refined by Potekhin et al.
(2003), while considering various compositions instead of an iron-only envelope. It includes the
effect of magnetic fields on the T, — T's relation, providing analytical fits valid for a magnetic
field strength up to 1018 G and arbitrary inclination angles of the field lines with respect to the
normal to the surface. Similar studies exploring other field topologies were done by Geppert
et al. (2004, 2006) and Pérez-Azorin et al. (2006). Subsequent calculations in Potekhin et al.
(2007) included the effect of the neutrino emissivity in the outer crust. Following that, Pons et al.
(2009) reexamined the problem of the magnetized envelope with two objectives: (i) improving the
microphysical inputs, specifically upgrading the thermal conductivity, as the contribution of ions
or phonons to the envelope’s thermal conductivity can alleviate the anisotropy of heat conduction
(Chugunov and Haensel, 2007); (ii) assessing the accuracy of the plane-parallel approximation
employed in Pons et al. (2009) envelope. When the latter approach is applied to a spherical star,

meridional heat fluxes in the envelope are not allowed and, therefore, this approximation may be
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inaccurate when these fluxes compete with the purely radial ones. The following form has been
found to fit the T, — T's relation proposed by Potekhin and Yakovlev (2001); Potekhin et al. (2003);
Pons et al. (2009)

(4.5) Ts(B,0,8,Ts) =~ T{(g,Tp) X (B,0,Th),
where

1
(4.6) X (B,9,Ty) = |%(B,Tp)cos*+ X (B, Tp)sin9

The functional forms of %) and %, as well as the values of TO and (, are determined by
constructing a set of stationary envelope models with varying values of g, T}, and B, while
maintaining a consistent magnetic field geometry (i.e., different values of 9 at different latitudes).
In this context, O represents the angle between the magnetic field and the normal to the surface.

Subsequently, the surface temperature of a partially accreted envelope, as described by
Potekhin et al. (2003), can be approximated using interpolation:

K

@n 7= [y T+ (1-1) o]

-1
(4.8) Y= [1+38 (0.1Y) ] [1+o 171Y7/2Tbg] .Y =—log;(10%).

Here, p is defined in eq. (4.2), and T's6 , and T's re follow the same form as defined in eq. (4.5).

The state-of-the-art models can be found in the thorough review by Potekhin et al. (2015). They
present new fits for non-accreted magnetised envelopes, including both the effects of neutrino
emission and the effects of non-radial heat transport. The T — T's relation proposed by Potekhin
et al. (2015), is described as follows:

(1+a1+a9)cos?d ar = asTie _ 10B1s
’ TY240.1B15 T, 4

4.9 T.=Tey+(T,-T ’
(4.9) s=Teat (Tp eq)1+alcosﬁ+azcos2ﬁ 3

012

Here, O corresponds to the magnetic colatitude angle, B12 = B,/10"“ G. The corrected surface

temperature at the pole, is reproduced by the expression
~1/4

4
(4.10) Ty =T |1+ (T /T ] ,

where T;max) is the limiting temperature, at which Tp(T'p) levels off due to the neutrino emission

from the crust and it is approximately given by

4.11) Tmes) = (5 25955 40, 093\/g14312) x 106K

At the magnetic pole, the effective surface temperature, neglecting neutrino emission from the

crust, is approximately given by the expression
1/4
(4.12) TS = |g1a(Th+(1+0.15VB12 | Tg) | x10°K,
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Figure 4.1: The T}, — T relations of different envelope models are presented. The non-accreted
models are depicted in the left panel, while the fully accreted ones are shown in the right panel.
The studied envelopes include: (i) non-magnetized models in black (Gudmundsson et al., 1983;
Potekhin et al., 1997), and (ii) magnetized models in color (Potekhin and Yakovlev, 2001; Potekhin
et al., 2003; Pons et al., 2009; Potekhin et al., 2015). In the case of the magnetized models, two
distinct values of a purely radial magnetic field strength are considered (suitable for polar T’ if
the topology is a simple dipole): B = 103 G (in blue) and 10 G (in red).

with

)0.3796

(4.13) To=(15.7T32 +1.36 T , T1=113B%TY, a=0.337/(1+0.02y/B12).

The equatorial surface temperature can roughly be evaluated as

(1230 Tp9)***B121/1+2B2 0.0066 B%2 -1
1+ 2 + 12 T%.
(B12+450 Tp9 +119B12 Tog)* T} +0.00258 B}

(4.14) Toq =

The latter envelope model proposed by Potekhin et al. (2015) is the one mostly used throughout
this thesis.

Since neutron stars are observed both as isolated sources or as part of binary systems, it is
common to consider two different compositions for the envelope: either iron, arguably expected in
the case of catalyzed matter in isolated systems, or light elements, mainly thought as products of
accretion from a companion star or in a newly born systems that witness fall-back accretion after
a supernova. In this study, we explore four models composed of iron (non-accreted matter) and
two models of fully accreted (light) envelopes. Such models can be found in Gudmundsson et al.
(1983); Potekhin et al. (1997); Potekhin and Yakovlev (2001); Potekhin et al. (2003); Aguilera et al.
(2008); Pons et al. (2009); Potekhin et al. (2015).

In essence, an envelope model represents a stationary solution for the heat transfer equation,
which is then fitted to establish an empirical relation between the surface temperature (T's) that
determines radiation flux and the interior temperature (7T) at the crust/envelope boundary, for a

given magnetic field, assumed to be the ones given at the boundary. The envelope model accounts
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for the sharp temperature gradient that occurs at low density. The location of T is typically
selected to correspond to a density of about p = 10'° g cm™3. At such low densities, neutrino
emission is usually negligible as long as T < 10° K, which occurs within a few decades after the
neutron star’s birth. Therefore, we can ignore corrections due to neutrino emissivity.

Additionally, we neglect Ohmic dissipation in the envelope since there are no significant
currents flowing through it. This is justified by the low conductivity of the material. This choice
is consistent with the selection of potential boundary conditions (see §7.2.2), although magneto-
spheric currents could flow through the envelope and create hotspots (refer to §C.2.2 and Akgiin
et al. (2017); Akguin et al. (2018) for more details). Similarly, we disregard any heating caused by
accretion or bombardment, which might be relevant in cases like millisecond pulsars or cold, old
pulsars, where tiny X-ray hotspots are observed, likely due to such processes. However, for our
purposes, which mainly focus on young/middle-aged isolated neutron stars, these neglects are
justified.

The T}, — T's relations of the envelope models under analysis (§3.4.2.2) are visually represented
in Fig. 4.1. In the left panel, we present the iron envelopes, while the light envelopes are displayed
on the right. The studied envelopes include: (i) two models without magnetic field dependence
(shown in black), such as Gudmundsson et al. (1983) in the left panel (represented by solid lines)
and Potekhin et al. (1997) in the right panel (represented by dots); (ii) other magnetised envelopes,
for which we show the T's for two values of a purely radial surface magnetic field strength (i.e.,
suitable for a pole in a dipolar topology): B = 1013 G (in blue) and B = 1015 G (in red). Potekhin
and Yakovlev (2001) is illustrated with dots (left panel), Potekhin et al. (2003) with dashed lines
(right panel), Pons et al. (2009) with dashed lines (left panel), and finally Potekhin et al. (2015)
with dashdotdotted lines (left panel).

The lowest effective temperature T's among all models is displayed by Gudmundsson et al.
(1983). Every new effect incorporated in later works (composition, magnetic field) results in
a higher predicted surface temperatures 7T's for a given T}. Let us briefly review the main
conclusions from a quick comparison of models.

In general, it is well known that assuming light-elements envelopes appreciably affect the
neutron star luminosity Potekhin et al. (1997). Compared to iron models, we have a higher T
for the same T,. Concerning magnetic fields, as long as the average intensity is B < 102 G, we
expect a surface temperature similar to the non-magnetised case (for the same given composition).
On the other hand, under magnetar conditions, the general trend is that higher magnetic fields
result in higher surface temperatures, all other factors being equal. Interestingly, in the left
panel of Fig. 4.1, it is evident that the more recent calculations, which include more accurate
physics (such as state-of-the-art microphysics ingredients, the effects of neutrino emission, and
non-radial heat transport), have revised the predicted value of T's to levels higher than those
found in any of the previous studies.

Thus, it is expected that the state-of-the-art envelope models predict different cooling curves
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Figure 4.2: Luminosity curves of the four studied iron envelopes Gudmundsson et al. (1983);
Potekhin and Yakovlev (2001); Pons et al. (2009); Potekhin et al. (2015) with an initial magnetic
field intensity at the polar surface of B =5 x 10 G (hereafter, the colorbar denotes its evolution).
The left panel corresponds to crust-confined topology, whereas the right one to core-dominant
field topology.

from the models used two decades ago. This motivates us to revisit the results for cooling
curves and consider different magnetic field topologies and strengths, as an important step in

understanding the observational data.

4.2 Neutron star cooling models

The cooling history of a magnetar is a delicate balance between neutrino and photon emissivity
on one side and Joule heating in the star’s crust on the other. If the currents are dissipated in
the outer crust, the heat deposited is more effectively transported to the surface and has an
impact on the star luminosity. On the contrary, heat dissipated in the inner crust or the core is
very inefficient in modifying the surface temperature, because it is essentially lost via neutrino
emission, as first discussed in Kaminker et al. (2006) to explain the high thermal luminosities of
magnetars.

To compare the different envelopes existing in the literature, we have used the 2D magneto-
thermal code (the latest version is described in Vigano et al. (2021)) to run a set of cooling models
using different initial configurations. The neutron star background model is a 1.4M ¢ neutron
star built with the SLy4' EoS Douchin and Haensel (2001), and we assume the superfluid models
of Ho et al. (2015), which is the reason for the abrupt change in the slope of the cooling curves at
ages ~ 300yrs in, e.g., the right panel of Fig. 4.2. The rapid cooling during the photon cooling

1https ://compose.obspm.fr/
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Figure 4.3: Luminosity curves of the latest magnetised iron envelope (Potekhin et al., 2015)
with different initial magnetic field intensities. Solid lines correspond to crustal field models and
dashed-curves to core field ones.

era is also caused by the low core heat capacity, which in turn depends on the assumed pairing
details. A comprehensive revision of the microphysics embedded in magneto-thermal models can
be found in Potekhin et al. (2015).

We considered two families of magnetic field topologies to study in detail the two extreme
configurations: (i) crust-confined field consisting of a poloidal dipole and a toroidal quadrupole
with steep radial gradients: the radial component of the magnetic field vanishes at the crust-core
interface, while the latitudinal (Bgy) and toroidal (B,) components are different from zero; (ii)
core-dominated twisted-torus magnetic fields as in Akgiin et al. (2017), i.e., a dipolar topology,
with the currents circulating almost only in the core, and Gyr-long decay timescales. We stress
that, for our purposes, we choose these two topologies mean to cover a wide range of values for
the crustal Ohmic dissipation. For each topology, we consider two different field strengths (1013 G
and 5 x 10'* G) for the initial value of the dipolar field at the polar surface. The maximum initial
toroidal field is fixed to 10'3 G in all cases. The magnetic field at the surface is always matched
continuously with a current-free magnetic field (i.e. the electric currents do not leak into the
magnetosphere V x B = 0, with vanishing field at infinity).

We have used the different envelope models presented in §4.1 coupled with the neutron
star cooling models, to study the dependence of the neutron star cooling curves on the assumed
envelope, in two given magnetic field topologies. Magnetar cooling curves obtained using different
iron envelopes and a field strength of B =5 x 10'* G are shown in Fig. 4.2. In the left panel, we

consider a crustal-confined topology, and in the right panel we have a core-dominant field. For
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a high field intensity, e.g., magnetar-like scenario, there are significant qualitative differences

between crustal-confined and core-dominant field. Let us summarize the main findings:

At early times, during the neutrino cooling era (say ¢ < 10% yr), both models are similar.
The interior temperature evolves independently of the envelope model (photon radiation is
negligible), and the different T, — T's relation translates directly in the surface temperature.
Interestingly, the most recent models show the highest luminosities. This is a direct

consequence of the results of Fig. 4.1 (left panel).

¢ Later, once we enter the photon cooling era, the situation is inverted. The envelope models
that provide a higher surface temperature actually radiate photons (which now govern the

evolution) more efficiently, and the star cools down faster.

¢ In this epoch, the difference between crustal-confined and core-threading magnetic field
becomes more evident. In the first case, heat dissipation occurs relatively close to the
surface, which keeps the stellar crust warmer and delays the drop of the luminosity. In
the second case, Joule heating is completely inefficient (currents are mostly in the core),
and the effect mentioned above, with a very fast drop of luminosity for high field models

becomes evident.

To illustrate more clearly these differences, in Fig. 4.3 we compare cooling curves adopting the
Potekhin et al. (2015) envelope but now varying both, the field topology and strength. We show
the results with the two different magnetic field intensities. For a relatively low magnetic field,
e.g., 1013 G, the crustal-confined and core-dominated simulations have a very similar behavior
and the magnetic field does not dissipate much (the curves keep the blue color throughout the

evolution). For the strong field case, 5 x 1014

G, the crustal-confined models show a significant
dissipation of the magnetic field, e.g., the magnetic field has dissipated from 5 x 101 G (red) to a
few 1013 G (turquoise) after 1 million year of evolution (colorbar of Fig. 4.3). As a consequence,
the significance of Joule heating is crucial in the crust-confined model, whereas it is nearly
insignificant for the core-dominated model being considered here. This is due to the significantly
lower intensity of crustal currents and the much longer Ohmic timescales of the core currents.
Additionally, the minimal energy dissipation in the core converts into neutrinos. The most
relevant difference is that core-threaded field simulations with magnetized envelopes show faster
cooling after 10* yr than low field models. Therefore, the observational appearance of a magnetar
at late times essentially depends on where currents are located and how much magnetic flux
penetrates the core.

We also note that, for a strong enough magnetic field in the core of a neutron star, e.g.,
B =10'® G, an additional cooling channel via neutrino synchrotron (Kaminker et al., 1997) is
activated. It provides further cooling of the neutron star. However, we found that this effect is

subdominant.
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Figure 4.4: Luminosity curves of four studied envelope models: Gudmundsson et al. (1983)
(Heavy-env, no B), Potekhin et al. (1997) (Light-env, no B), Potekhin et al. (2003) (Light-env, B),
and Potekhin et al. (2015) (Heavy-env, B). On the left-hand side, we show the results of models
with crustal-confined magnetic field, and on the right, those with core-dominant field topology.
The results are represented at two initial magnetic field intensities at the polar surface), e.g., at
B=5x104G (upper panels) and at B = 1013 G (bottom panels).
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We now extend our analysis to accreted (light element) envelopes. The results of the com-
parison between light and heavy elements are shown in Fig. 4.4. In the left panels, we display
the results for models with crustal-confined magnetic fields and in the right panels those for
core-dominant fields, for the two dipolar intensities B = 5x10'* G (upper panels) and at B = 1013 G
(bottom panels).

The same qualitative features discussed for iron envelopes are valid, but with luminosities
shifted to slightly higher values (up to an order of magnitude) for accreted envelopes during the
neutrino cooling epoch. Instead, it drops faster as soon as we enter in the photon cooling era. That
is due to the even higher T resulting from light elements in the envelope. A strong magnetic
field enhances this effect. In the top-right panel of Fig. 4.4, we clearly see how high luminosities
(> 1034 erg/s) are kept for about 10% yrs, but then quickly drop below 1032 erg/s (and therefore
objects become undetectable) after a few tens of kyr. Simulations using "old" non-magnetized

models Gudmundsson et al. (1983) do not allow to capture this behaviour.

4.3 Discussion

Understanding how young and middle-aged magnetars cool is of great importance for a correct
interpretation of the observational data. In this work, we have revisited the cooling curves
of neutron stars, focusing on the effect of the assumed envelope models (typically used as a
boundary condition), and considering two extreme field topologies, crustal and core field. We
noticed that the T, — T's relation is very sensitive to the magnetic field strength. Although for
relatively low magnetic fields, different magnetized iron envelopes predict similar effective
surface temperatures. For relatively strong magnetic fields in the magnetar range there are
substantial differences. For a given temperature at the base of the envelope (T ), the most recent
models (that incorporate better microphysics) predict surface temperatures (T's) about a factor 2-3
higher than their predecessors. Since the flux scales as T;L, this correction significantly enlarges
the photon luminosity, which in turn leads to a very fast transition from a high luminosity epoch
(during the neutrino cooling era) to a very low luminosity (soon after we enter the photon cooling
era). This trend is very pronounced in models where the magnetic field threads the star’s core
and most electric currents circulate there. Conversely, in crustal-confined models, the additional
energy released by Joule heating close to the star surface is very effective and governs the energy
balance equation, which counterbalances the effect. Thus, depending on where the bulk of the
electrical currents circulates, one can expect middle-aged magnetars which are relatively bright

032 erg/s) which persistent emission is essentially

or sources with very low luminosities (< 1
undetectable as X-ray sources. We stress again that a 10* yr, high field neutron star with a core
field (light and heavy element envelopes) can actually be much cooler than a similar neutron star
with a pulsar-like field, only because of the effect of magnetic field in the envelope (see Fig. 4.4

upper-right panel). This has potentially strong implications for population synthesis studies of
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the pulsar and magnetar populations because observational biases introduced by the lack of
detectability of some class of sources affect the predictions of birth rates and field distributions.
We plan to incorporate these effects in future works.

To briefly compare our results with observational data, one should only concentrate on objects
with "Real ages" and that are at the extremes of our cooling curves: A) 1E 2259+586 (middle-aged
magnetar) can only be explained with a crustal-field and magnetized light elements. B) All
XDINS cannot be explained with core-fields. They necessarily need that the crustal-field has a
strong component but the envelope can be light or heavy, magnetic or non-magnetic. C) CCOs
are in an age and luminosity range that do not allow distinguishing between envelope models or
magnetic topology. D) Middle-age faint pulsar such as PSR B0656+14 might be explained only
with the fast decay of the light element envelope curves, since for low magnetic field neutron stars,
light envelopes might produce cooler neutron stars than heavy elements for older ages (> 10% yr),
regardless of the field configuration (see Fig. 4.4 bottom panels). Ultimately, the existence of
strongly magnetized neutron stars with detectable thermal emission at later times would be a
strong argument in favor of a crustal magnetic field.

Our study highlights the importance of treating carefully all ingredients in the complex
theory of neutron star cooling. Boundary conditions neglecting the role of the envelope, or using
non-magnetized envelopes, can lead to discrepancies as large as one order of magnitude relative to
observational data. On the other hand, an accurate estimation of surface luminosity is important

to constrain any source property (e.g. surface B-field or age).
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CHAPTER

CONFRONTING OBSERVATIONS WITH THEORETICAL MODELS TO
CONSTRAIN THE EOS

Timing measurements of neutron stars reveal a diverse range of inferred magnetic field strengths,

spanning from 108 G in millisecond pulsars to 10'°

G in magnetars. An effective approach for
assessing the surface magnetic field involves observing thermal radiation in the soft X-ray band.
X-ray observatories such as XMM-Newton, Chandra, NuSTAR, NICER, Swift, and ROSAT
have successfully identified compact objects emitting thermal radiation. In this regard, neutron
stars observed in X-rays, appearing as isolated entities, manifest significant phenomenological
heterogeneity.

Furthermore, as extensively detailed in §2.6.2, neutron stars exhibit a diverse range of
characteristics and are categorized according to the primary energy source driving their emissions.
RPPs are powered by the conversion of a fraction of their rotational energy into non-thermal
radiation. Nevertheless, in some instances, they also display thermal emissions. Magnetars are
the most powerful magnets in the present universe (Turolla et al., 2015; Esposito et al., 2021).
Their bright X-ray luminosity, long periods, and the occurrence of observed bursts and outbursts

014 G) near

are attributed to the restless dynamics and dissipation of a strong magnetic field (~ 1
the star’s surface Thompson and Duncan (1995). Radio-quiet XDINS represent a category of
relatively aged, nearby cooling neutron stars, distinguished by their distinctly clear thermal
emissions. CCOs constitute a small collection of enigmatic, radio-quiet sources. In certain cases,
they combine a very weak external magnetic field with a relatively high luminosity, along with
indications of an anisotropic surface temperature distribution Gotthelf et al. (2013).

In the context of these diverse neutron star characteristics, a significant discovery by Keane
and Kramer (2008) demonstrated that the galactic rate of core-collapse supernovae is smaller

than the sum of the birth rates of the different neutron stars populations. This raises questions
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about attributing all neutron star formation to core-collapse supernovae, as they alone cannot
account for the entire neutron star population in our Galaxy. Keane and Kramer (2008) propose
various solutions to this issue, one of which suggests that different neutron star populations are
related through an evolutionary process. If this holds true, we only need to consider a single
birthrate for these populations, which helps resolve (or at least alleviate) the issue with core-
collapse supernovae rates. Indeed, magneto-thermal cooling models are capable of establishing
this evolutionary link. In this context, one of the main theoretical tasks is to explain the diverse
phenomenology of their X-ray emission, population, and evolutionary paths (Vigano et al., 2013).
Other pieces of evidence support the unified picture of neutron stars, such as RPPs exhibiting
magnetar behavior (Gogiis et al., 2016) and a continuous spectrum of behavior between RPPs
and the so-called rotating radio transient, characterized by varying degrees of intermittency
(Weltevrede et al., 2011).

5.1 Observational data

We are presently engaged in the task of comparing the outcomes generated by magneto-thermal
evolution codes with established observational data and precise timing parameters derived from
a carefully chosen subset of sources. For meaningful comparisons, it becomes imperative to
have access to isolated neutron stars that possess both well-defined ages and precise thermal
luminosities. While our Galaxy hosts thousands of isolated neutron stars, only a scant few dozen
of these objects meet both criteria.

In the present study, founded upon the work of Dehman et al. (2023, in preparation), we
conducted an archival search for known isolated neutron stars that were observed using XMM—
Newton and/or Chandra. We selected those exhibiting a statistically significant quasi-thermal
component in their X-ray spectrum, thereby expanding the original sample established by Vigano
et al. (2013). A comprehensive documentation of about 70 sources is presented in Table D.1 and
Table D.2. Our classification framework categorizes the sample into four distinct classes, which

include:

¢ 27 magnetars, for which we exclusively utilize data from their prolonged quiescence phases
characterized by predominantly thermal emission. This selection encompasses all the
sources employed by Coti Zelati et al. (2018) (for a comprehensive overview of their ob-
servational properties, we direct readers to their work). Furthermore, we expand this
collection by including PSR J1846-0248, which exhibited magnetar-like activity during its
2020 outburst (Blumer et al., 2021), along with 3XMM J185246.6+003317 (Rea et al., 2014),
PSR J1622-4950 (Levin et al., 2010), and more recent additions to the magnetar catalog,
such as Swift J1818.0-1607 (e.g. Ibrahim et al., 2022), SGR J1830-0645 (Coti Zelati et al.,
2021), and Swift J1555.2-5402 (Enoto et al., 2021).
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¢ 13 CCOs. The emissions from these objects are commonly characterized by one or more
dominant thermal components (e.g., Doroshenko et al. (2018)). We have selected the con-
firmed CCOs with sufficiently detailed spectral information and a known age associated
with the supernova remnant (SNR). The sample of sources identified with such a criterion
includes the sample used in Vigano et al. (2013), with the addition of 9 sources lacking

available timing parameters, namely, P and P.

¢ 20 RPPs. The X-ray emission from these objects can be dominated by thermal emission
or be mostly entirely non-thermal, especially for very young and energetic neutron stars.
The selected sources represent a subset of the larger list of known RPPs (for an observa-
tional overview of X-ray pulsars, see Becker 2009), filtered with the requirement that the
blackbody-like component in the X-ray spectrum was dominant or at least statistically
significant. With respect to the previous catalogue by Vigano et al. (2013), we are adding:
1RXS J1412+7922 (Zane et al., 2011), PSR J0205+6449 (Slane et al., 2004), PSR J1357-6429
(Chang et al., 2012), PSR J1741-2054 (Marelli et al., 2014), PSR B1822-08 (Hermsen et al.,
2017), PSR J1957+5033 (Zyuzin et al., 2021), PSR J0554+3107 (Tanashkin et al., 2022).

e 7 XDINS, commonly referred to as "The Magnificent Seven" (for a comprehensive review, see
Turolla (2009)). These nearby and X-ray faint sources exhibit purely thermal spectra and
possess accurately determined distances, often obtained through parallax measurements.

Consequently, they serve as ideal subjects for our study.

5.1.1 Timing properties and age estimates

If both the spin period P and the period derivative P of the source are known, the characteristic
age T, = P/2P can serve as an approximate measure of the true age. These two ages align only
if the initial period was shorter than its current value and if the surface dipolar magnetic field
B, which contributes to the magnetic torque (as indicated in eq.(2.5)), has remained constant

throughout the neutron star’s lifetime, as demonstrated in eq. (5.1).

pz o [(KB?,)(t')—(KBf,)now dt'
2PP (KB%)now ’

(5.1) Treal = Tc —

However, this scenario is less common. Typically, for middle-aged and older objects, the charac-
teristic age 7. tends to exceed the real age due to the decay of the magnetic field over time. It is
worth noting that for the majority of CCOs, both the spin period P and the period derivative P
remain unknown. Consequently, measured magnetic field values and age estimates are lacking
for these objects.

On the other hand, when the object is situated within a SNR, a kinematic age can also
be deduced by analyzing the expansion of the nebula (for a comprehensive review, see Allen

and Horvath (2004)). For a few other nearby sources, such as certain XDINSs and a handful
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of magnetars, the proper motion, with an association to a birthplace, can offer an alternative
estimation of the actual age (Tetzlaff et al., 2011; Tendulkar et al., 2013).

Regarding the timing properties and kinematic age, we have gathered the most up-to-date and
reliable information available in the literature, sourcing from the ATNF catalogue' (Manchester
et al., 2005) and the McGill online magnetar catalogue®. In Table D.1, we present the sources in
our study, along with their established timing properties, characteristic age, and alternative age
estimate, when available. Furthermore, we provide the calculated value of the surface dipolar
magnetic field at the pole B, based on the standard dipole-braking formula (eq. (2.5)).

Notably, for RPPs, timing properties exhibit stability over several decades, enabling precise
measurements of P and P. However, in the case of magnetars, the presence of timing noise
is considerably more pronounced. In some instances, different values of P have been reported
(Tong and Xu, 2013), differing even by orders of magnitude (as seen in Table 2 of the online
McGill catalogue). Consequently, it is prudent to exercise caution when considering these values,

particularly for objects with the highest P values.

5.1.2 Luminosity and temperature inferred from spectral analysis

Luminosities and temperatures can be derived through spectral analysis, but achieving precise
determinations is often challenging. Luminosity calculations are inevitably affected by uncertain-
ties in distance measurements. On the other hand, inferred effective temperatures depend on the
choice of an emission model (such as black-body versus atmosphere models, composition, presence
of a condensed surface, etc.), which, especially in scenarios involving strong magnetic fields, can
introduce significant theoretical uncertainties. Often, multiple models can fit the data equally
well, lacking a clear, physically motivated preference for one over the others. This situation can
lead to inferred effective temperatures differing by up to a factor of two. Moreover, photoelectric
absorption from the interstellar medium introduces an additional source of error in temperature
determinations. This is due to the correlation between the hydrogen column density ng and
the obtained temperature value from spectral fits. Different choices of absorption models and
metal abundances can also yield divergent temperature outcomes. In the common scenario of
inhomogeneous surface temperature distributions, an approximation with two or three regions
at different temperatures is typically employed. Lastly, when dealing with data containing a
limited number of photons and/or pronounced absorption features, the temperature becomes
poorly constrained by the fit, adding a large statistical error to the systematic one. Due to all
these factors, the temperatures derived from spectral fits present challenges in direct comparison
with the physical surface temperatures obtained from cooling models.

Considering the aforementioned factors, the luminosity emerges as a preferable metric for

comparing data to theoretical models. Since it is an integrated quantity, it effectively mitigates the

1The ATNF Pulsar Catalogue http://csiro.au/.
2The McGill online magnetar catalogue http://www.physics.mcgill.ca/ pulsar/magnetar/main.html.
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impacts of anisotropy and spectral model selection. The principal source of uncertainty associated
with luminosity often stems from imprecise knowledge of the source distance. In the most
challenging instances, distance measurements are known with errors on the order of a few units,
leading to potential luminosity uncertainties spanning up to one order of magnitude. Additionally,
interstellar absorption predominantly affects the energy range in which the majority of middle-
aged neutron stars emit (E < 1keV). This characteristic makes it easier to detect hotter sources
(such as magnetars) or those in closer proximity (like XDINSs). Analogous to the temperature
scenario, opting for distinct absorption models and chemical abundances can introduce further
systematic errors in luminosity determination. However, in the most unfavorable circumstances,
the relative error remains around 30%, rendering it a secondary error source in comparison to
the distance uncertainty. For a more comprehensive understanding of the data reduction and

analysis procedures undertaken in this study, please refer to Appendix D.

5.2 Unifying the diversity of isolated neutron stars

5.2.1 Pulsar spin-down properties

Timing measurements of pulsars show a positive time derivative of their spin period, P (i.e., a

negative time derivative of the angular velocity, Q). The loss of rotational energy is
. A P
(5.2) E=1IQ0=-395x 10461451—j ergs !,

where I = fV p(r)rde is the moment of inertia of the star and I45 =1 /(1045g cm?).
The energy balance equation between radiation and rotational energy losses (eq. (5.2)), reads
BZRSQ*

5.3 INQ =
(5.3) 603

X

Differences in the radiation mechanism are included in the factor f,: magnetic dipole radiation
losses scale as sin?% for vacuum or 1.5(1 + sin?%) for force-free magnetosphere, with & is the
angle with the rotation axis. In general, the previous balance can be written in terms of the spin

period P = Q/2m and its derivative (same as eq. (2.5)):

(5.4) PP =KB2,
with
2n% R 40 R§ 2
5.5 K=f,——%=244x10" —sG~
( ) fx 3 IC3 X fx 145 S ’

where Rg = R,/10% cm. In literature, the fiducial values I45 = I, Rg =1 and f; = 1 (vacuum
orthogonal rotator) are commonly used.
Throughout this work, we will obtain the long-term evolution of B,(¢) from simulations for

a given neutron star model (fixed R4,I and f,). Integrating in time eq.(5.4), we will obtain
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the corresponding evolution of timing properties. We will always consider K constant, ignoring
the possible time variation of two quantities in eq. (5.5): the angle, f, = fx(¢), and the effective
moment of inertia, I = I(¢). The latter could vary during the early stages, with the growth of
the superfluid region in the core, rotationally decoupled from the exterior (Glampedakis et al.,
2011; Ho et al., 2012). We will also neglect other possible mechanisms to the spin-down, like
strong particle winds (Tong et al., 2013). We also neglect the spin-down by gravitational radiation,
because it can be efficient only during the first minutes or hours of a neutron star life, when
rotation is sufficiently fast and the mass quadrupole moment large enough (see e.g., Haskell et al.
(2006) and references therein).

Model dependencies enter in the spin-down factor K, eq.(5.5), as fog/I 45, where Rg and
145 depend on EoS and star mass. To quantify such variations, Lattimer and Prakash (2001)
considered the moments of inertia resulting from many EoS. Bejger and Haensel (2002) revised

it, finding a correlation between I, M and R 4, expressed by the following fit:

(5.6) I=a(x)MR2,
x/(0.1+2x) x<0.1
(5.7) a(x) =
2(1+5x)/9 x>0.1

where x is the dimensionless compactness parameter:

(5.8) x= M km .
My R,

The value a(x) = 0.4 corresponds to a constant density sphere, but realistic stars are expected to
have a lower value, since the mass is concentrated towards the center. Most EoSs predict radii
in the range 8 — 15km, and masses 1 —2 M. Considering the possible range of x ~ 0.1 — 0.2, the
corresponding values are a(x) ~0.1-0.2 (see Fig. 1 in Bejger and Haensel (2002)).

For higher order multipoles, the magnetic field decreases faster with distance, therefore
they have significantly lower torques compared with the dipole: their contribution can be safely

neglected.

5.2.2 P-Pdot diagram and evolutionary tracks

To understand the observational data and precise timing parameters derived from a carefully
chosen subset of sources, we conducted a series of 2D magneto-thermal simulations. These
simulations involve exploring various initial configurations using a neutron star background
model with a mass of 1.4,My constructed with the SLy4 EoS, and assuming the superfluid
models as described in Ho et al. (2015). For the envelope model, we utilized both the heavy
model described in (Potekhin et al., 2015) and the light model described in (Potekhin et al., 2003).

We performed these simulations with five different initial magnetic field values for the surface
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Figure 5.1: Evolutionary tracks in the P — P diagram are plotted using the SLy4 EoS with a mass
of M=1.4 M, and a heavy magnetized envelope model (Potekhin et al., 2015).

dipolar field at the pole: 1 x 102G, 1 x 1013 G, 1x 104 G, 1 x 10'° G, and 3 x 105 G. Additionally,
we considered a quadrupolar toroidal field of one order of magnitude higher intensity.

In Fig. 5.1, we present the evolutionary tracks obtained from magneto-thermal simulations
in the P-Pdot diagram, showcasing various initial values of magnetic field strength. These tracks
are then compared to the observed timing properties of X-ray pulsars. We represent Magnetars
with circles, RPPs with stars, XDINSs with squares, and the CCOs with triangles. It’s worth
mentioning that magnetars with grey contours correspond to radio-powered sources, and as
discussed in §5.1, we only have timing data available for three out of the 13 observed CCOs. The
black solid lines on the graph represent the evolutionary paths a star would follow if there were
no magnetic field decay. We have marked different ages (¢ = 10yr, 100 yr, 10 kyr, 100 kyr, and
1 Myr) above these tracks. The colorbar in Fig. 5.1 indicates the intensity of the dipolar poloidal
field, B,,. It’s important to note that the poloidal dipolar magnetic field, B, remains relatively
constant during an initial epoch, typically up to around 100 kyr, depending on the initial magnetic
field strength. This stability is reflected in the unchanged color of the curves during the initial
phase. Stronger initial magnetic fields decay more quickly than weaker ones. Any change in the
color of the curve over time corresponds to a change in the intensity of the dipolar field at the

star’s surface.
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Comparing these tracks with observational data, one can observe common evolutionary links
among groups of isolated neutron stars. This is evident for neutron stars with magnetar-like
emission, represented with circles, and XDINSs, represented with squares. However, for the
upper evolutionary track corresponding to the high magnetic field of 10'® G, we notice that
some magnetars are located at the beginning of this track, but there are no sources found at
its end. This observation can be explained by two arguments: (i) The complex magnetospheric
configuration differs from the available theoretical models. Considering the bundle of currents in
the magnetosphere could potentially yield a higher torque with lower magnetic field intensity,
which may offer a more accurate explanation for the evolution of neutron stars. (ii) Furthermore,
it’s worth noting that this group of neutron stars does not appear to have older descendants,
which contrasts with other magnetars. This observation may be attributed to the magnetic
field topology; in the case of very high magnetic fields and the concentration of currents in the
star’s core, where Joule dissipation is weak, the X-ray luminosity is expected to decline quite
early, typically around 100 kyr. Consequently, older magnetars may exhibit faint emissions (see
Chapter 4). Additionally, population synthesis studies (Gullon et al., 2014, 2015) suggest that
very few objects are expected in this specific region of interest. Therefore, it’s possible that due to
observational limitations, we are not detecting any of these sources. Therefore, it’s possible that
due to observational limitations, we are not detecting any of these sources.

Finally, it’s worth noting that when considering all known pulsars detected across various
energy bands (see ATNF catalogue), a seemingly sharp limit of around ~ 12 s emerges in the
distribution of spin periods. Our sample, as shown in Table D.1, highlights that the spin periods
of most magnetars cluster around ~ 10s. The prevailing explanation for this phenomenon is
the gradual decay of the magnetic field as the neutron star ages (Colpi et al., 2000). As a result,
the spindown rate becomes too slow to lead to longer rotation periods while the star remains
bright enough to be observable as an X-ray pulsar. According to this scenario, low-field magnetars
and XDINSs can be considered as older magnetars whose external dipolar magnetic fields have
decayed to typical values around 10'3 G (Turolla et al., 2011; Rea et al., 2010). Our simulations

have confirmed this behavior.

5.2.2.1 Thermal X-ray luminosity

In Fig. 5.2, we present the cooling curves along with the X-ray luminosity extracted from
observational data (Table D.2). Objects shown in black represent those for which we have the
real age determined through kinematic measurements, while objects in grey represent those for
which we have the characteristic age derived from timing properties.

Our theoretical simulations encompass the majority of the studied sources. What’s particu-
larly intriguing is that objects with higher inferred magnetic fields are systematically falling
on the cooling curve with initial magnetic field strengths on the order of 104 — 10 G. This

presents compelling evidence in favor of the scenario where magnetic field decay drives their
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Figure 5.2: Comparison of observational data with theoretical cooling curves. These curves
represent the results obtained using the SLy4 EoS for a neutron star mass of M=1.4 M, and a
light envelope model (Potekhin et al., 2015).

bright luminosity. Magnetic fields exceeding B = 10'* G possess sufficient strength to signifi-
cantly heat the crust and fuel the observed X-ray radiation. Notably, the cooling timescale for
strongly magnetized objects is approximately one order of magnitude longer compared to weakly
magnetized neutron stars.

The cooling curves using iron envelopes (Potekhin et al., 2015) with B, = 10'® G barely reach
the very high X-ray luminosity of the observed magnetars. This observation raises the possibility
that these relatively young sources might have light element envelopes, or it’s conceivable that
these objects are born with even higher magnetic fields, reaching several 10'® G. Therefore, we
utilize simulations conducted with the light envelope model (Potekhin et al., 2003), and the
results are presented in Fig. 5.3. It’s worth highlighting that the luminosity predicted by the
light envelope model can be significantly brighter, up to an order of magnitude, in terms of X-ray
luminosity. This detailed discussion can be found in Chapter 4. However, when dealing with these
highly magnetized objects, caution is paramount. Firstly, it’s essential to note that the luminosity
curves presented in this figure specifically reflect internal heat. For a more comprehensive
analysis, one must consider heating from the magnetosphere, where magnetospheric currents

create hotspots on the stellar surface, each approximately 1 km in radius. These hotspots appear
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to play a crucial role in explaining the extreme brightness of highly magnetized magnetars, as
neither the higher cooling curves with B, = 3 x 1015 G nor the light envelope model can account
for it. Furthermore, Joule dissipation in the envelope layer should be taken into account. This
dissipation leads to additional magnetic field decay and, as a result, heats the neutron star’s

surface.

10°

(LE1841-045 o Magnetars
4U0142+614

e S CXQUJ010043.1-721 @ o XDINSs

Swjft]1555:2-5. GR1900+14
102 SGR1806-20° SGRU526-66 a CCOs

TE1048 173(3370 OlRX‘)}l/U'{?ﬂE} 0-4009 % RPPS
T 1E2259+5867 XTE}3810-197 10t
.P%len/“) 0258 ——— @

&CX0UJ171405.7-3810 —=S6R|1830-0645
52900 ®

B0102-72.3 - SMC)
L HESSJ1731-347

=
o

.smmmmmi —
PSR|1810-1258
(CXOUj164

1E1547 ‘340'60
SNR CasA® o 7 4
6330.2+1.0 SGRTE ®
347,305
PSR)1622-4950
PSRJ0205+6449 o a #PSRJ0538+2817
» Homunculu’)\ P 1700-4429
SNR Vela Jr, o if1834.9-0840pcN1740+1000 o SRIOTRE
*55R)1357-6429

SR)0554+3107 il J1605.3+3249

=
o
>

10°

Swift]1822.3-1606
z«,lz{ J0720.4-3125

-
o
0

a’{XJ}lhﬂ 0+0654

FSRB2334+61 Xere1055:52
RXN1886.5-3754
RSRBO656+14 ¥PSRI0633\ 1746 X)0806.4-4123
XJ1308.6+2127

S)14 RX)0420.0-5022
leX)Jl4lz+ 22 i J

H
<

SGRJ0418+5729,
@3XMMJ1852+0033 °

NR2-08

Quiescent X-ray luminosity (1033 erg s71)

PSRJ1957+5033
o R

Surface dipolar B-field at pole (10** Gauss)

-
15}
&

-2
1071 10° 103 10% 10

10t 10?2
Real/Characteristic Age (kyr)

Figure 5.3: The same as shown in Fig. 5.2, but in this case, considering a light envelope model
(Potekhin et al., 2003).

For neutron stars with magnetic fields B, < 10 G, the presence of the magnetic field is not
expected to have a significant impact on luminosity. Standard cooling curves for B, < 104G
can adequately account for all these weakly magnetized sources by adjusting the star’s mass
and/or EoS. Considering the uncertainties in inferred ages and luminosities, the cooling curves
for weakly magnetized neutron stars align with all observational data, with a few noteworthy
exceptions. To begin with, CCOs exhibit very low P values (below the shown range), indicating
the presence of a weak external magnetic field. Given our knowledge that they are young, being
surrounded by SNRs, their minimal spin-down rate implies that their periods have experienced
little change since their birth. The weak inferred magnetic field inferred from timing properties
appears to contrast with the relatively high luminosities they exhibit, which are significantly
higher than those of standard RPPs. Light-element envelope models (see Fig. 5.3) can reconcile

their age and large luminosity. This situation aligns with the hidden magnetic field scenario (Ho
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et al., 2012; Vigano and Pons, 2012).

On the other hand, three sources with known real ages stand out as significantly colder by
about an order of magnitude compared to other objects of similar young ages. These sources
include two RPPs, namely PSR J0205+6449 (P =70ms, B, =7 x 1012 G, and age=841yr (Kothes,
2013)) and PSR B2334+61 (P =490ms, B, =2 x 103 G, and age=7700yr (Yar-Uyaniker et al.,
2004)), along with a CCO, CXOU J085201.4—-461753 (2500-5000 yr (Allen et al., 2015)). Regarding
the pulsar PSR B0656+14, initially classified among the extremely cold sources, our simulations
in Fig. 5.3 demonstrate that at older ages (> 10* yr), PSR B0656+14 can be explained by using
light envelopes (as discussed in Chapter 4). A detailed study of these faint objects is addressed in
§5.3.

5.3 Cold and young neutron stars: constraints on the EoS

The secular cooling of neutron stars is influenced by the EoS, mass, magnetic field, and com-
position of the envelope, which can vary from star to star. Neutron star cooling results from a
combination of neutrino emission from the dense core and thermal photons emitted from the
outer layers. By measuring the surface temperatures of numerous objects across a wide age range,
neutron star cooling models (and consequently, the EoS) can be effectively constrained Page et al.
(2004).

Historically, cooling curves have been categorized into two theoretical groups: the standard or
minimal cooling curves and the enhanced cooling curves (refer to §3.3.4). So far, all measured
surface temperatures of neutron stars have consistently, albeit marginally, aligned with the
standard cooling scenario (Page et al., 2004; Potekhin et al., 2015). Although indications of
enhanced cooling have been presented, the lack of well-constrained spectral energy distributions,
exact ages, or precise distances has impeded firm EoS constraints in that regard.

In this study, building upon the work submitted by Marino et al. 2023 to the Nature Astronomy
journal, we undertake a comprehensive examination of the three exceptionally cold, young,
and nearby neutron stars identified as outliers in Fig. 5.2, namely, CXOU J085201.4—461753,
PSR J0205+6449 and PSR B2334+61. To reconcile theoretical models with observed data, the
existence of enhanced cooling processes is necessary, enabling us to impose constraints on the

neutron star EoS.

5.3.1 Simulations

As hyperons are known to contribute to fast cooling (Anzuini et al., 2021), we were particularly
interested in including hyperons into the star’s core. To account for the presence of hyperons, we
employed the 2D magneto-thermal code (Anzuini et al., 2021; Anzuini et al., 2022), that is an
extension of the original 2D code developed by Pons and Geppert (2007); Aguilera et al. (2008);
Vigano et al. (2012); Vigano et al. (2021), suitably modified to calculate the magneto-thermal

65



CHAPTER 5. CONFRONTING OBSERVATIONS WITH THEORETICAL MODELS TO
CONSTRAIN THE EOS

evolution in stars containing both nuclear and hyperon matter. The code smoothly combines the
GM7T’A EoS (Gusakov et al., 2014) with the SLy4 EoS (Douchin and Haensel, 2001) in the crust,
while considering the influence of hyperon matter on the star’s microphysics. The simulations
performed using this EoS are referred to as GM1A. One crucial modification in the microphysics,
as introduced in Anzuini et al. (2021); Anzuini et al. (2022) in comparison to Vigano et al. (2021),
involves the superfluid gap model, enabling accurate descriptions of stars containing hyperons.
Moreover, the most significant effect of this study arises from the inclusion of the hyperon
DUrca channel and the Cooper pair of hyperons channel. These two neutrino cooling channels,
especially the hyperon DUrca one, lead to enhanced cooling in young neutron stars. For a more
comprehensive understanding of these modifications and their implications, we direct the reader
to Anzuini et al. (2021); Anzuini et al. (2022).

We conducted a comprehensive set of 81 simulations, exploring three distinct EoSs that
encompass various cooling channels (see §3.3.4). The EoSs used were SLy4 Douchin and Haensel
(2001), which does not activate enhanced cooling processes, BSK24 (Pearson et al., 2018), and
GM1A (Gusakov et al., 2014; Anzuini et al., 2021; Anzuini et al., 2022), which, for certain masses,
involve enhanced cooling processes such as nucleons DUrca and hyperons DUrca. The latter
channel is activated only for the GM1A EoS. Moreover, we considered three different masses
(1.4, 1.6, and 1.8 M) and nine initial magnetic field values for the surface dipolar field, ranging
from 1 x 1012 G to 7 x 1013 G at the pole. To avoid Joule heating and focus on the cold neutron
stars scenario, we did not include a toroidal field. That is due to the fact that the dissipation
of the magnetic field in the highly resistive crust could hide the effect of the enhanced cooling
mechanisms for stars with magnetic fields above 1013 G (Aguilera et al., 2008). Furthermore, we
solely employed an iron envelope model, as alternative compositions containing light elements
would predict a thermal luminosity approximately one order of magnitude brighter than that
projected by the iron-envelope model at these ages (see Chapter 4). For the simulations performed
using the SLy4 and BSK24 EoSs, we utilize the code from Vigano et al. (2021), whereas for the
GMI1A EoS, we utilize the code from Anzuini et al. (2021); Anzuini et al. (2022).

5.3.2 Statistical analysis

To constrain the nature of each source, we start comparing their observed parameters, Ly, P
and P, against the tracks of the 81 simulations in the same 3D parameter space, each containing
128 points corresponding to various times from the formation of the neutron star up to ~100 kyr
age (0,1.3,1.5,1.8,...,81200,97400 yr). Ideally, the most probable parameters (EoS, mass, and
B),) of a given source are those of the simulated neutron star sharing the same observed features.
However, due to the finiteness of the simulations, and the uncertainty on the luminosity (we
ignore the uncertainties on P and P since the relative uncertainty on Ly, is significantly higher),
there is no simulation passing exactly through the positions of the sources in the feature space.

Additionally, multiple simulations may be found in the vicinity of the sources (see Fig. 5.4).
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Consequently, we opt for a machine learning model that given the observational and simulation
data, can identify the most probable simulations, and as a consequence, the posterior distribution
of the parameters, namely, the EoS, mass and B,. We tried with two approaches, deep-learning

and classification, explained in detail in the next paragraphs.
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Figure 5.4: The tracks of our simulations in the P—P—Ly, space in a time span of 100 kyr (cyan
lines) from two different view angles (left and right panels). The positions of PSR J0205+6449and
PSR B2334+61are denoted with red discs.

5.3.2.1 The deep learning approach

The simulation parameters are either categorical (EoS) or continuous (mass and B)). If the
categorical and continuous parameters could be constrained by mutually exclusive sets of features
(e.g., if the EoS could be constrained only by L+, while mass and B, only by P and P), then their
estimation could rely on independent classification and regression models on the independent
sets of inputs and output. However, this is not the case in the simulations: we need to employ
a machine learning approach that performs both classification and regression simultaneously.
Using TENSORFLOW (Abadi et al., 2015), we developed a multilayer perceptron (MLP) neural
network that predicts the parameters, with a loss function being the sum of the loss for the EoS,
and the loss for the values of mass and B,. The architecture is summarised as an input layer of
size 3 (for the three features), fully-connected hidden layers (with rectified linear unit activation
functions), and two output layers connected to the last hidden layer: (i) the classification output
layer of size 3 and softmax activation function (for the classification probabilities for BSK24,
SLy4, GM1A), and the (ii) regression output layer of size 2 and linear activation function (for

the mass and Bj). We tried different numbers and sizes of hidden layers, loss functions (e.g.,
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mean squared error of the regression output, and cross entropy for the classification output).
We found that the models were converging slowly (up to 10000 epochs) with poor results: the
best accuracy in predicting the EoS class was ~65% which is not significant with respect to a
dummy classifier (33% accuracy if randomly assigning one of the three EoSs) and the approach
in §5.3.2.2 (90% accuracy). We attribute this failure to the small number of simulations, which
being computationally expensive are hampering any efforts to train a successful neural network

for our task.

5.3.2.2 The classification approach

Interestingly, classification can be seen as ‘discretised’ regression: instead of estimating the mass
of a neutron star, we can classify it into distinct mass classes, 1.4,1.6 and 1.8 M. However,
training three classifiers for EoS, mass and B, is not optimal since this ignores the interplay
between the parameters in the evolution of neutron stars imprinted in the feature space. In our
case, each simulation corresponds to a combination of EoS, mass and B, classes, and therefore
there is only one class: the simulation class which can be modelled as the ID of the simulation.
This is a simple classification task which can be easily carried out with standard, well-understood
machine learning classifiers that are easily trained on small data sets. Using a probabilistic
classification algorithm to predict the simulation class, we can predict the classification probability
of each simulation for each observed source. Then, the posterior of each parameter to have a
specific value is simply the sum of all the classification probabilities of the simulations sharing
the same value. For example, the posterior of the EoS of a source being BSK24 is the sum of the
classification probabilities of all the simulations (classes) for which EoS is BSK24, predicted on

the features of the source:

(5.9) P(BSK24) = i P(BSK24 = EoSy)ny,
k=1

where P(BSK24 = E0S}) is either 1 or 0, denoting whether the BSK24 EoS was used in the
k-th simulation, 7 is the prior on the class which in our case is the classification probability
of the k-th simulation when predicting the class of the observation, and n is the total number
of simulations. The same approach is used for the continuous parameters as well (mass and
B,), with the output being still the marginal probabilities at the distinct values used in the
simulations.

We stress that one should be careful in the interpretation of the various classification metrics
(e.g., accuracy). The number of simulation classes depends on the choices for the range and
resolution in the initial conditions, which are generally restricted due to technical and modelling
difficulties (e.g., computational cost, available EoS models, etc.). Ideally, a large number of
simulations could be run, leading to a paradox: due to the continuous nature of the mass and
B, the classification probability would approach 0 even if the ‘correct’ model is present in

the training. Consequently, the absolute scale of the accuracy of the trained classifier is not
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an estimate of the performance of the methodology. Conversely, the relative accuracy between
different algorithms (or hyperparameters) measures their relative ability to learn the feature

space given the simulation choices and the observational uncertainties.

5.3.2.3 Selection of classifier and hyperparameters

To select the classification algorithm, we design a cross-validation test bed. We consider 8 differ-
ent classifiers offered by the SCIKIT-LEARN package (Pedregosa et al., 2011): k-nearest neighbour,
random forest, decision tree, logistic, support vector (SVC), nu-SVC, MLP, and Gaussian pro-
cess classifier, and multiple hyperparameter choices for each (3-10 different values for a key
hyperparameter such as % for the £-nearest neighbour, or the kernel for the Gaussian process
classifier).

We set aside 1/ of the data as a test data set that will be used to estimate the accuracy of
the classifier with the best hyperparameters. The remaining data set is separated in 5 folds
of equal fractions (1/g of the original data). A 5-fold cross-validation approach is adopted to
measure the accuracy of the different classifiers and hyperparameter choices. However, the test
samples fall very close to the training samples since they follow distinct curves in the feature
space. Consequently, most classifiers will exhibit very high performance which does not reflect
the accuracy when applied in real data which are subject to measurement uncertainties. For
this reason, we ‘disturb’ the cross-validation samples by adding Gaussian noise in the decimal
logarithm of the luminosity of the simulations (we ignore the uncertainties on P and P since they
are negligible), to simulate the presence of uncertainty. We train, cross-validate, and test the
classifiers at six different scales for the uncertainty: 0 (no disturbance), 0.05, 0.10, 0.15, 0.2, 0.25,
and 0.30 dex, a range that includes the uncertainty on Ly} in our sources (close to 0.2 dex).

For each classifier and Ly}, uncertainty level, we use the cross-validation technique to optimise
for the hyperparameters. Then, using the test data set we measure the accuracy score, i.e., the
fraction of test data points that the algorithm was able to match to their original track.

Trying all classification algorithms initially, we found that the 2-nearest neighbours and
random forest classifiers presented the highest accuracy scores. Additionally, they are compu-
tationally efficient during both training and prediction. For this reason, we focus on these two
classification methods from now on.

In the top left panel of Fig. 5.5, with solid lines, we show the accuracy of the k-nearest
neighbour and the random forest classifier, as a function of the L;;, uncertainty level. Both
algorithms perform equally well. For the prediction of the properties of the observed source, we
select the random forest classifier because it performs better at high uncertainties (0.2 dex).
Additionally, the random forest classifier has two attractive properties: it’s not sensitive to the
scale of the features, and it is intrinsically a probabilistic algorithm.

Finally, since we are interested in the ability to predict the physical properties of the pulsars,

we measure the accuracy with respect to the ability to predict them independently. For example,
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Figure 5.5: The accuracy score (top left panel; Accuracy) of the best-performing 3D (solid lines)
and 4D (dotted lines) classifiers, k-nearest neighbours (KNN; blue) and random forest (RF;
orange), as a function of the uncertainty scale in the L. In the rest of the panels we show the
marginalised accuracy for the EoS, Mass and B, (see titles), i.e., the accuracy in matching the
test data points to a model sharing the same value for each parameter.

if a test data point corresponds to a model with M= 1.4 M, does the predicted model have the
same mass (no matter what the EoS or B,)? In the top right, bottom left and bottom right panels
of Fig. 5.5 we show the marginalised accuracy for the EoS, mass and B, respectively (with
solid lines). We find that the magnetic field is easier to be learned (>95% accuracy), while the
EoS and mass are sometimes mismatched (43 — 95% accuracy), especially at high uncertainty
levels. The fact that the accuracy score is not 100% even with no added noise in the luminosity,
reflects the degeneracy between the models: as it can be seen in Fig. 5.4, the tracks of the different
simulations often occupy the same regions of the feature space. Here, we remind that the accuracy
score should be used only for comparisons of algorithms, and not as a measure of performance of

the methodology.

5.3.2.4 Predictions accounting for the uncertainty on the luminosity

We use the random forest classifier that has been optimised for the level of Ly}, uncertainty in our
observations, retrained using all the available simulation data (without separation to training,

validation, and test data sets; (Tsamardinos, 2022)). However, the uncertainty of the luminosity
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is not used directly during prediction. To take into account the observational uncertainty of a
given source’s luminosity, we use a Monte Carlo approach: we sample the error distribution of the
luminosity 100,000 times, predict the properties of the sources, and sum the results. To sample
the error distribution of the luminosity, we use Monte Carlo uncertainty propagation: we model
the error distributions of the flux and the distance, draw samples from them, and calculate the
luminosity samples. This is to avoid standard uncertainty propagation?® for three reasons (Singh
and Chaturvedi, 2021): (i) we have high relative uncertainties in the quantities involved; (ii) the
flux and distance confidence intervals are not symmetric (especially in the case of the distance of
PSR B2334+61); (iii) the classifier operates in log-space where even symmetric error bars are

transformed into asymmetric ones.
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Figure 5.6: Histograms of samples from the distributions of the flux (Fy; left), distance (middle)
and luminosity (L,; right) in logarithmic space, for both sources (PSRB2334+61 with blue, and
PSRJ0205+6449 with orange). The shapes of the error distributions illustrate the asymmetry in
the independent variables (flux and distance) and the Monte Carlo-propagated luminosity.

First, we represent the flux and distance uncertainties using the binormal distribution which
is flexible enough to represent asymmetric distributions. A binormal distribution’s probability
density function (PDF) is the result of stitching together the opposite halves of two distinct normal
distributions with the same mean value (which acts as the mode of the new distribution) but
different standard deviations (Wallis, 2014). Consequently, we represent each flux and distance
measurement with a binormal distribution by adopting the measured value as the mode, and
fitting for the two standard deviations such that the reported confidence intervals are matching
those of the binormal distribution. In Fig. 5.6, we show the PDF's of the constructed binormal
distributions (in the form of histograms of their samples) for the flux and distance (left and
middle panel, respectively) of the two sources for which we apply the classification, as well as the

derived luminosity error distribution.

3We note that applying the standard uncertainty propagation formula (by averaging the low and high error bars)
resulted to ~20% differences in the resulting classification probabilities with respect to the Monte Carlo uncertainty
propagation using asymmetric error distributions as outlined below.
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PSRB2334+61 i PSRJ0205+6449
I. FIVE BEST MODELS AND THEIR CLASSIFICATION PROBABILITIES
GM1A, 1.6 Mo, 2x1013G 0.4534 BSK24, 1.6 Mo, 7x1012G | 0.3995
BSK24, 1.8 Mo, 1x1013G | 0.1070 GMI1A, 1.6 Mo, 7x1012G | 0.1064
GM1A, 1.8 Mo, 2x1013G 0.0990 BSK24, 1.6 Mo, 1x1013G | 0.0881
BSK24, 1.6 Mo, 2x1013G | 0.0571 GMI1A, 1.4 Mg, 7x1012G 0.0688
GMIA, 1.6 Mo, 3x1013G | 0.0558 GMI1A, 1.6 Mo, 1x1013G | 0.0546
II. EQUATION OF STATE
BSK24 0.2855 BSK24 0.6426
GM1A 0.6986 || GM1A 0.3519
SLy4 0.0159 SLy4 0.0055
IIT. MASs (Mp)
! 0.0093 14 0.1259
1.6 0.6307 1.6 0.7577
1.8 0.3600 1.8 0.1165
IV. B, (G)
1x1012 0.0002 1x1012 0.0118
3x1012 0.0171 3x1012 0.0363
5x1012 0.0390 5x1012 0.0710
7x1012 0.0400 7x1012 0.6111
1x1013 0.1923 1x1013 0.2069
2x1013 0.6213 2x1013 0.0484
3x1013 0.0900 3x1013 0.0102
5x1013 0.0000 5x1013 0.0041
7x1013 0.0000 7x1013 0.0001

Table 5.1: For the two sources, PSR B2334+61and PSR J0205+6449, the five most probable
models sorted according to their classification probability (panel I), as well as the marginalised
probabilities of the considered EoSs, and values for the mass and magnetic field (panels II-IV).
The highest marginal probabilities are denoted with bold typeface.

We predict the probability of the 81 simulations, 100,000 times for each sample from the
Ly, distribution of each source. By summing up the 100,000 results, we find the classification
probability for each model. In the top panel of Table 5.1, we show the models the highest
classification probabilities. In addition, in the table, we report the marginalised probability for

the EoS, mass and B, of each source, which are also shown in Fig. 5.7.

5.3.2.5 Accounting for the age information

Since the simulations track the evolution of the properties of the pulsars in time, if the real age
of the source is known, it provides an additional constraint. We add the time as another input
variable, making the feature space four-dimensional, and then repeat the above analysis: (i)
optimise the two classification algorithms for different luminosity uncertainty scales (see dotted
lines in Fig. 5.5); (ii) select the random forest classifier optimised for the 0.2 dex uncertainty scale
(it outperforms the k-nearest neighbour classifier at uncertainty scales >0.1 dex); (iii) predict the
parameters of the two sources using the age estimates in Table D.1.

Having a 4D feature space, it is impossible to visually inspect its coverage by the simulation
tracks. Instead, we ensured that the observed sources fall within the range of the simulation
evolutionary tracks by confirming that their positions are inside a simplex in Delaunay hyper-

tetrahedralisation on the simulation data. The predictions of the 4D classifier are shown in
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Figure 5.7: The marginalised probabilities for the EoS, mass and B, of the two sources,
PSR B2334+61and PSR J0205+6449, using the 3D (cyan filled bars) and 4D classifiers (red
rectangles).

Table 5.2 and Fig. 5.7 (with red rectangles).

These results are for the most part consistent with the 3D classifier. For both sources, the 3D
and 4D classifiers indicate the same most probable value for the B,,. For PSR J0205+6449, the
most probable values for the EoS and mass are the same, while for PSR J0205+6449they differ,
but not significantly (BSK24 and GM1A EoS, and 1.6 and 1.8 My masses have high marginal
posteriors >25%).

We notice that the posteriors in the 4D case are less “peaky”. This is in contrast to our
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PSRB2334+61 i PSRJ0205+6449
I. FIVE BEST MODELS AND THEIR CLASSIFICATION PROBABILITIES
GM1A, 1.6 Mo, 2x1013G 0.1980 BSK24, 1.6 Mo, 7x1012G | 0.1203
BSK24, 1.8 Mo, 1x1013G | 0.1641 BSK24, 1.8 Mo, 2x1013G | 0.0857
BSK24, 1.8 Mo, 2x1013G | 0.1087 BSK24, 1.6 Mo, 5x1012G | 0.0755
BSK24, 1.8 Mo, 3x1013G | 0.0651 BSK24, 1.6 Mo, 1x1013G | 0.0723
BSK24, 1.8 Mo, 7x1012G | 0.0629 BSK24, 1.6 Mo, 3x1012G | 0.0696
II. EQUATION OF STATE
BSK24 0.5323 || BSK24 0.5409
GM1A 0.4265 GM1A 0.4054
SLy4 0.0413 SLy4 0.0537
IIT. MASs (Mp)
14 0.0101 14 0.1226
1.6 0.3512 1.6 0.5682
1.8 0.6387 1.8 0.3092
IV. B, (G)

1x1012 0.0000 1x1012 0.0157
3x1012 0.0082 3x1012 0.2136
5x1012 0.0544 5x1012 0.1813
7x1012 0.0725 7x1012 0.2806
1x1013 0.2674 1x1013 0.2015
2x1013 0.4195 2x1013 0.1072
3x1013 0.1476 3x1013 0.0001
5x1013 0.0304 5x1013 0.0000
7x1013 0.0000 7x1013 0.0001

Table 5.2: Same as Table 5.1 but using the 4D classifier which accounts for the age information.

expectation that adding another feature (age) would create larger contrast between the marginal
probabilities (effectively lowering the entropy of information). Given the small number of EoSs in
our simulations, at this stage, we do not consider our method well suited to constrain the EoS
itself. Nevertheless, for both sources, our statistical analysis do shows that the SLy4 EoS and
the 1.4 My mass scenario are found to be highly improbable with or without considering the age

information.

5.3.3 Discussion

In Fig. 5.8, we present the thermal luminosity of a subset of objects discussed in §5.1, specifically
focusing on all the RPPs and CCOs with precise age and distance estimates. This approach
avoids reliance on the characteristic age of the pulsar, which is inferred from timing analysis
and is known to have large uncertainties. These sources are notably young, with ages ranging
between 800 — 8000 yrs, yet their extreme coldness suggests the presence of rapid/enhanced
cooling mechanisms. We compare the observational measurements with the magneto-thermal
evolutionary tracks of the simulations described in §5.3.1. Upon initial examination, it becomes
evident that some explored scenarios do not match the faint thermal luminosities of these
extremely cold sources. Specifically, when assuming a SLy4 EoS (as indicated by the orange
curves), the significant drop in surface temperature observed in the three outliers cannot be
achieved for any combination of mass and magnetic fields. However, in the exotic scenario
involving hyperons in the core (GM1A, indicated by the blue/green curves), the cooling might
proceed rapidly enough to be consistent with the observational data. Additionally, for the BSK24
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Figure 5.8: Comparison between observational data and theoretical cooling curves. RPPs are
represented with squares, while CCOs are denoted with circles. The three sources we study in
this work are coloured in black. The 81 theoretical cooling curves used in our analysis are shown
for three different EoSs: SLy4 (in orange), BSK24 (in violet), and GM1A (in blue). We considered
three distinct masses: 1.4 Mo (dots), 1.6 Mo (dashed lines), and 1.8 M, (solid lines). Additionally,
we investigated nine initial magnetic field values for the surface dipolar field at the pole ranging
from 1—70 x 102 G. Only for comparison, we also show three grey curves corresponding to
stronger magnetic field intensities of 10'* G, 3 x 1014 G, and 10'® G, not used in our statistical
analysis for the BSk24 EoS and considering 1.6 M.
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Figure 5.9: Chart pies breaking down the results of our 4D classification method for
PSR B2334+61 (left) and PSR J0205+6449 (right) and to test how well our simulations match
our data. Each chart is divided in three sectors for each of the EoS used, marked with different
colours (e.g. purple for BSK24, orange for SLy4, green for GM1A). In each sector, three subsec-
tions are individuated for the different masses used. Finally, the subsections are broken down
further in cloves representing different values of the magnetic field used in the simulations.
Superimposed to these cloves, grey histograms are drawn. Their radial length expresses the
marginal probability for the simulation-clove to be the real cooling curve followed by the source.

EoS, when the neutron star is massive, e.g., M = 1.6 My, nucleon DUrca is activated, and the
tracks exhibit enhanced cooling compatible with the data.

To pursue a more quantitative approach, we employed machine learning methods (see §5.3.2)
to find curves that best describe each source. To achieve this, we utilized a 3D space encompassing
the thermal luminosity Ly, spin period P, and period derivative P as parameters for both the
observational data and simulations. Furthermore, we extended these simulations into a 4D space,
incorporating the age of the sources. However, due to the unknown values of P and P for the
CCO CXOU J085201.4-461753, the analysis was restricted to the two RPPs (PSR J0205+6449
and PSR B2334+61). Extending to a 4D space allowed us to verify whether curves explaining the
observed Ly, would also predict P and/or P compatible with the timing parameters of the sources
at the same age.

In Fig. 5.9, we present a pie chart summarizing the results of our 4D machine learning simu-
lations (the 3D results are very similar §5.3.2). Based on these methods, we can quantitatively
rule out the EoS without a physical mechanism to activate enhanced cooling at a young age,
specifically the SLy4 EoS.

For PSR B2334+61, all cooling curves indicate that the source likely has a relatively high
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mass (~ 1.8M, when the age is considered) and a dipolar magnetic field at birth of around
~3-5x1013 G, which is compatible with its current value. Although there seems to be a slight
preference for the hyperon EoS (GM1A) for this pulsar, it’s important to note that conducting
more simulations with other enhanced cooling EoSs may yield similar probabilities. Thus, at this
stage, we cannot precisely constrain the exact EoS using this technique.

Regarding PSR J0205+6449, the results from applying these methods indicate that both
enhanced cooling EoSs, BSK24 and GM1A, with masses around ~ 1.6 My, are compatible with
its observed parameters. The simulations also suggest an initial magnetic field within ~ 3 —
10 x 102 G, which agrees with the estimated value for this pulsar. For both PSR B2334+61 and
PSR J0205+6449, simulations with the SLy4 EoS, considering only standard cooling for the
three studied masses, do not provide an acceptable match with the data (with probabilities below
16%, or below 5.4% when age is taken into account; see §5.3.2) for any mass or magnetic field.
Furthermore, this conclusion holds true for CXOU J085201.4-461753 when considering only the
source’s thermal luminosity and age.

To provide a comprehensive view, in Fig. 5.10, we present the same simulations as in Fig. 5.8,
but this time depicting the evolution of period and period derivative.

Given the uniqueness of the EoS, these results provide compelling evidence that neutron
stars cannot be governed by an EoS that is incompatible with the low luminosities observed in
PSR J0205+6449, PSR B2334+61, and CXOU J085201.4—461753. This marks the first direct
measurement of enhanced cooling. Our findings indicate that only EoSs (and compositions)
permitting fast cooling processes in the first few thousand years can be successfully reconciled
with the thermal emission from all sources in our sample.

While these results do not delve into a detailed and comprehensive analysis of various
possibilities for fast cooling (e.g., hyperons, quarks, pure nucleonic matter with very large
symmetry energy), nor does it conduct a systematic comparison with all available observational
data, the issue itself triggers thoughtful consideration. We now further support the initial
suggestion by Aguilera et al. (2008) that DUrca cooling could be concealed by strong magnetic
fields, potentially leading to misidentifications in the context of fast cooling. Consequently, we
have solid evidence for fast neutrino cooling processes taking place in the interiors of many
neutron stars, a consideration that any realistic EoS should incorporate. This study contributes
significantly to constraining nuclear EoS, as a suitable EoS should elucidate both exceptionally
bright objects like magnetars and extremely faint objects at young ages. Taking into account a
simplified meta-modeling approach Margueron et al. (2018), the excluded range is estimated to

encompass approximately 75% of the proposed nuclear EoSs.
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CHAPTER

CRUSTAL FAILURES IN YOUNG MAGNETARS

agnetars, the most magnetic objects within the neutron star population, show magnetically-

driven enhancements of their thermal and non-thermal emission, commonly referred

to as outbursts (Beloborodov and Li, 2016; Coti Zelati et al., 2018). Their irregular
and spectacular activity also includes short bursts and flares, which are believed to involve the
magnetosphere and may possibly be triggered by interior dynamics.

Potentially related to magnetars are fast radio bursts (FRBs) (Margalit and Metzger, 2018),
very bright (~ 50 mdJy - 100 Jy) millisecond-long bursts in the radio band, known for over a
decade. The extragalactic nature of FRBs has been established through the derivation of their
distances from radio dispersion measures (DMs). This was further confirmed by identifying their
host galaxies, which affirmed their extragalactic origin (for recent reviews, see Petroff et al.
(2019); Cordes and Chatterjee (2019)). Their short durations, coherent radio emission, and the
discovery of several repeating FRBs (Spitler et al., 2014; Fonseca et al., 2020), strengthened their
connection with neutron stars, and in particular with strongly magnetized ones (Wadiasingh
et al., 2020; Cheng et al., 2020).

Among the tens of theoretical models (see Platts et al. (2019) for a list), Lyutikov et al. (2016)
propose that FRBs are giant pulses coming from young neutron stars spinning at very fast
rotation frequencies. On the other hand, many works assume that the star’s magnetic energy
is the ultimate engine behind the emission. For instance, Lyubarsky (2014) propose maser
synchrotron emission arising from far regions, where the magnetar wind interacts with the
nebula inflated by the wind within the surrounding medium, and generates a forward and a
reverse shock, both able to provide intense, coherent emission frequencies of tens to hundreds of
MHz. A variant is the baryonic shell model, originally proposed by Beloborodov (2017) and further
developed by Metzger et al. (2019) and Margalit et al. (2020), in which an ultra-relativistic flare
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collides with matter ejected from an earlier flare. Kumar and Bosnjak (2020) propose a model
where a relatively small Alfvén disturbance at the surface, with amplitude 6B ~ 101 G, is able to
trigger the FRB emission via an efficient conversion to coherent curvature radiation from plasma
bunches, accelerated by local electric fields.

The recent detection of a FRB-like radio bursts simultaneously with a bright hard X-ray
burst from the Galatic magnetar SGR 1935+2154 (The CHIME/FRB Collaboration et al., 2020;
Bochenek et al., 2020; Mereghetti et al., 2020) showed for the first time that magnetar bursts can
indeed be associated with FRB-like radio emission. It has been speculated that the underlying
mechanism is the same as for the extragalactic events, for which we see only the very bright
events from a much larger volume (Margalit et al., 2020).

Several works, e.g., Yuan et al. (2020); Lu et al. (2020), have proposed a magnetic disturbance
from the surface driving the FRB. Regardless of the location and the exact mechanism, in the
majority of magnetically-powered FRB models, the ultimate trigger to the event is expected to
come from the interior of the neutron star. Internal magnetic fields evolve in the long term due to
the Ohmic dissipation and Hall drift in the crust (Vigano et al., 2013; Pons and Vigano, 2019;
Dehman et al., 2022; Dehman et al., 2023b). In the core, recent significant progress has been made
in modeling and understanding the ambipolar diffusion and the evolving MHD equilibrium in
superfluid (e.g. Graber et al. (2015); Bransgrove et al. (2017); Gusakov (2019)) and non-superfluid
cores (e.g., Castillo et al. (2017); Ofengeim and Gusakov (2018); Dommes et al. (2020); Castillo
et al. (2020)), which for extreme values of the magnetic field may proceed on relatively short
timescales, thus changing the magnetic field on the crust-core boundary (Beloborodov and Li,
2016).

In this chapter, we evaluate how often the crust of a magnetar will fail during the first
centuries of its life, using an updated version of our magneto-thermal code (Vigano et al., 2012).
This study improves and extends to the early stage previous results obtained for middle-aged
magnetars (Perna and Pons, 2011; Pons and Perna, 2011), by including the Hall effect and up-to-
date microphysics, but not the mechanisms in the core mentioned above. Since the early-stage
dynamics are extremely sensitive to the initial conditions and the field topology, we perform
the analysis under different assumptions on the initial magnetic field strength and geometry.
We discuss our results in light of the current knowledge of FRB rates, recurrent times, and

predictions in the FRB-magnetar models.

6.1 Magnetic stresses from magneto-thermal models

As explained in §2.1, during the initial decades of a neutron star’s life, the star rapidly cools from
its initial temperature of 101° — 1011 K to a few times 108 K. As the temperature drops below
the density-dependent melting value, the crust grows as a solid lattice of heavy ions. The crust

freezing starts from the inner region a few minutes after birth but takes several years to extend
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to the outer crust (e.g., Fig. 8 of Aguilera et al. (2008)). The crust is thought to provide an elastic

response to stresses (Chugunov and Horowitz, 2010) up to a maximum value:

1.27 \ Z2e2
B

r-71" ’

6.1) o™ = (0.0195 -
a

) the ion sphere radius,

where T = Z2¢?/aT is the Coulomb coupling parameter, a = [3/(47n;)]
n; the ion number density, Z the charge number, e the elementary charge, and 7' the temperature.
A recent calculation (Kozhberov and Yakovlev, 2020) confirms the validity of the approximation
(eq.(6.1)).

As the magnetic field evolves, the magnetic tensor M;;(x,t) = B;(x,t)Bj(x,t)/(47) changes.
Moreover, the stress quantified as a difference between M;; and an equilibrium M l.e]‘.l, piles up in
the crust. When it reaches the maximum stress locally allowed, (M;; — M iej‘?) ~ g™ (%) the crust
fails. After the event, a new equilibrium state is established, the affected region freezes again
and the crust starts to respond elastically, storing further stress until the cycle is repeated.

An evaluation of the frequency of such events, which can potentially trigger magnetar activity,
can be done by properly following the magneto-thermal evolution and the accumulated local
stresses. Such simulations have been performed by Perna and Pons (2011) and Pons and Perna
(2011), considering the age range of the observed sources, ~ 400 — 10° yr. They used the magneto-
thermal code by Pons et al. (2009), not considering Hall effects.

Asin Pons and Perna (2011) and Perna and Pons (2011), we assume that after a crustal failure

event, the surrounding regions of the crust, being close to the maximum stress, M;; = ec™%%,

are
affected by the instability and resettle to equilibrium. In our simulations, we set the effective
parameter to € = 0.9. Note that increasing it to values closer to 1 will lead to more frequent events
but smaller involved regions, and vice versa.

Our simulations present a few relevant simplifications: (i) We do not include self-consistent
magneto-elastic evolution of the crust (Cumming et al., 2004; Li et al., 2016; Thompson et al.,
2017; Bransgrove et al., 2017; Lander and Gourgouliatos, 2019)!, and the local magnetic field
reconfiguration likely produced after a crustal failure; (ii) In the core we only consider the Ohmic
term, which acts on timescales much longer than in the crust: in practice, the magnetic field does
not evolve in the kyr here considered and a current sheet develops at the core surface; (iii) At
the neutron star surface we impose a potential magnetic field solution (as in almost all studies,
reviewed by Pons and Vigano (2019)).

One of the primary challenges in considering early ages lies in the extreme sensitivity of
the results to the initial magnetic field configuration, both for physical and numerical reasons.
Before freezing, the fluid of the magnetized proto-neutron star settles into an MHD equilibrium

or stationary state. Various approaches have been proposed in previous works to determine initial

1The study conducted by Lander and Gourgouliatos (2019) considered plasticity; however, their treatment of it
was mathematically inconsistent.
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Figure 6.1: Evolution of magnetic field and temperature for model CrDip (top panels), the high
field multipolar model CrMultiH (central panels), and the low field core-threaded model CoDipL
(bottom panels), showing the meridional projection of the magnetic field lines (white lines) and
the toroidal field (colors) on the left, and the internal temperature distribution (on the right), at
the beginning (left panels) and after 1kyr (right panels). The crust has been enlarged by a factor
8 for visualization purposes (thus only apparently bending the lines in the crust-core interface in
the bottom panel). Movies of the crustal failure simulations for the different models in table 6.1
are illustrated in https://www.ice.csic.es/erc-magnesia/crustal-fractures-simulations/.
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Model Topology B, EY,, EJJ/ES.. NW o N0 N0 First

event

[101*G] [10**erg] [yr]

CC
CrDip PD+TQ 1 320 ~50% 107 192 245 1.3
CrDipL PD+TQ 0.1 3.2 ~50% 0 0 0 -
CrDipH PD+TQ 3 2900 ~50% 2380 3315 3724 04
CrDipE PD+TQ 10 32000 ~50% 23360 30842 34890 0.1
CrMultil* PM+TM 0.1 9.3 ~50% 28 41 49 3.0
CrMultiH* PM+TM 1 2900 ~50% 15538 21397 25513 0.1
CrMultiT* PM+TM 0.1 480 ~99% 525 1335 1908 0.7
CrDipD PD+TD 1 340 ~50% 88 176 254 1.6
CrDipP PD+TQ 1 160 ~1% 45 58 67 2.6
CT

CoDipL PD+TD 1 4.7 ~50% 10 10 10  13.7
CoDipH* PD+TD 3 88 ~50% 160 168 174 16
CoMulti  PM+TD 1 750 ~50% 1948 2265 2370 0.8
CoMultiP ~ PM+TD 1 260 ~1% 528 577 597 4.0
CoMultiPH* PM+TD 3 2400 ~1% 9497 9997 10460 0.8
CoMultiPE* PM+TD 6 9400 ~1% 21090 23840 29065 0.4

Table 6.1: Initial models considered and events simulated: topology (where CT is a core-threaded
configuration, CC is a crust-confined, P and T are the poloidal and toroidal field, D and Q mean

purely dipolar and quadrupolar, and M a mixed multipolar configuration); surface value of the

dipolar poloidal component B,; magnetic energy E;7,, stored in the crust, the fraction E{} /ET/ .

stored in the toroidal field; N* is the number of events shown during the first x =100, 400 and
1000 yrs; the first event is the age at which the crust fails for the first time. Models marked with
* show small local numerical instabilities, that can provide artificial events, quantifiable by up to
a maximum of 30% of the shown values N, thus not affecting the order of magnitude.

configurations, with most of them relying on very large-scale and smooth magnetic fields, often
exhibiting a purely dipolar poloidal component. However, it is important to note that nature
typically presents more turbulent, off-axis, and non-symmetric magnetic field configurations,
similar to those seen in planetary and stellar magnetic fields. For a recent simulation involving
3D coupled magneto-thermal evolution in neutron stars and an initial topology inspired by
core-collapse supernovae, please refer to §8.2. Nevertheless, in this chapter, based on the work of
Dehman et al. (2020), we utilize the 2D magneto-thermal code (§3.4) that imposes axisymmetry
to restrict the magnetic field topology.
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Figure 6.2: Waiting time distributions during the first 1 kyr of the neutron star’s life. In the first
panel, we investigate the effects of the magnetic strength on crustal failures. In the second one,
the study is focused on the field topology and on the impact of lowering the toroidal energy.

6.2 Simulations

6.2.1 Initial configurations

Aiming to reduce numerical instabilities which could provoke artificial crustal failures, we have
used the latest version of the finite-volume axially-symmetric magneto-thermal code (Vigano
et al., 2021), improved in stability and efficiency compared to Vigano et al. (2012). It includes
numerical methods which are suitable to the finite-volume integral version of the Hall induction
equation, and are optimized in terms of stability, accuracy and efficiency. We also employ the most
updated microphysical inputs (for a review of cooling and transport see Potekhin et al. (2015)).
We make sure that results are close to the numerical convergence (we have variations of the
event rate up to a maximum of 30% for different resolutions, much less than the intra-model
variability), using a spatial resolution of 100 x 200 points in the angular and radial directions, and
a fixed timestep of ~ 10™* — 1073 yr for the magnetic advance, and of 102 yr for the temperature
evolution.

To assess the sensitivity of results upon uncertain initial conditions, we have considered very
different topologies. Although not necessarily realistic, the variety considered allows us to explore
the range of crustal failure events. They are summarized in Table 6.1, together with the evolution
of the events’ frequency during the first 1 kyr of the neutron star’s life.

On one hand, we take into account crust-confined models with different weights in the initial
multipoles. While it is unlikely that the field is completely expelled from the core, such a kind
of topology can be useful to provide an upper limit on the frequency of outburst/burst activity
triggered by the dynamics since the field lines are not tied to the highly conductive core and the

currents supporting the magnetic field flow entirely in the crust, where spatial- and time-scales
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are reduced compared to the core. Within these models, we vary the relative fraction of magnetic

energy stored in different multipoles of both the poloidal and toroidal components, as follows:

In the fiducial model CrDip we consider the equipartition of magnetic energy between
a dipolar poloidal magnetic field with polar surface value By;, = 104G and a toroidal
quadrupolar field having the same magnetic energy as the poloidal one (and a maximum
value B)** =1.27 x 10'° G).

In the low, high, and extreme field models CrDipL, CrDipH and CrDipE, we assume the
same topology but with the magnetic field intensity rescaled by a factor 0.1, 3 and 10
respectively.

In the low and high field models CrMultil and CrMultiH, we consider a topology with a
similar contribution of the first four multipoles in both the poloidal and toroidal components,
with an equipartition of magnetic energy between them. In CrMultiT, the quadrupolar

toroidal field accounts for 99% of the total magnetic energy.
In model CrDipD a dipolar (instead of a quadrupolar) toroidal field is considered.

In model CrDipP we adopted a poloidal-dominated configuration, with the quadrupolar

toroidal field accounting for less than 1% of the total magnetic energy.

Additionally, we consider different core-threaded configurations:

Model CoDipL (low field) and CoDipH (high field), consisting of the often used large-scale
twisted dipole plus torus configurations, as in Akgiin et al. (2017). Again, we set an equal

fraction of poloidal and toroidal magnetic energy in the crust.

In model CoMulti, we consider a topology with similar contributions from the dipole and
the quadrupole in the poloidal field, and a dipolar toroidal field, with an equipartition
of magnetic energy between them. On the other hand, for CoMultiP, CoMultiPH, and
CoMultiPE, the toroidal magnetic energy accounts for less than 1% of the total magnetic

energy, where H and E refer to high and extreme field models, respectively.

Note how models CrDip, CrMultiH, CrDipD, CrDipP, CoDipL, CoMulti, and CoMultiP have

the same dipolar polar magnetic field By;), = 10 G, which rules the spin-down and, indirectly,

the rotationally powered emission. However the magnetic energy stored in the crust, E¢_ ., can

mag?

vary by a few orders of magnitude, depending on the relative weight of the multipolar and toroidal

components and on whether currents circulate only in the crust or not.

In Fig. 6.1 we show the initial and evolved (at 1kyr) magneto-thermal models CrDip (top

panels), CrMultiH (central panels), and CoDipL (bottom panels). The crustal-confined models show

relevant magnetic activity (left hemispheres of each panel), with a local non-trivial rearrangement

of the toroidal field distribution (colors) and a deformation of the poloidal field lines (white lines).
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The temperature distribution (right hemisphere) also evolves to be inhomogeneous, due to the
transport anisotropy induced by the local intensity and direction of the magnetic field. On the
other hand, the core-threaded model barely shows any evolution, due to the fact that the currents
are mostly concentrated in the core, where the conductivity is very high and no Hall effect is
present: the magnetic field lines are rooted and almost frozen in the core. The core-threaded
cases give much slower dynamics than the crust-confined ones, due to the large characteristic
spatial scales, and the fact that most of the supporting currents circulate in the highly conductive,
non-solid core. A realistic configuration could be core-threaded, but consists of small scales, both
in the core and the crust, so that the corresponding results should be effectively covered by our
exploration of parameters. Note that, in all cases, the value of the dipolar component at the

surface, B, decreases at most by a few percent.

6.2.2 Event rate

Focusing on the predicted event rate, the gross number for model CrDip is ~ 250 events during
the first 1kyr of the neutron star’s life, mostly concentrated in the first century. Furthermore,
we emphasize that by changing the overall magnetic strength with respect to model CrDip, the
frequency decreases for the low-field dipolar model (CrDipL), and increases for the high-field
(CrDipE) and the extreme field (CrDipH) model, by ~ 1 and ~ 2 orders of magnitude, scaling the

number of events as N1000

~E g 10%4. The same scaling is noticed for the core-threaded models.
There are no significant differences between a different topology for the toroidal field (quadrupolar
in CrDip and dipolar in CrDipD), while important differences are noted if the magnetic energy
is changed, maintaining the same B): poloidal-dominated CrDipP, or considering multipolar
configurations (CrMultiL, CrMultiH, and CrMultiT).

For all models, the older the magnetar, the fewer the expected number of events. As shown in
Table 6.1, ~ 40 — 85% of the events during the first 1000 yrs are concentrated in the first century,
with a gradual decrease. This percentage decreases to ~ 10 —40% in the next 300 yrs, whereas in
the last 600 yrs, the percentage oscillates between ~ 5 —20%. This is consistent with the findings
for middle-age magnetars by Perna and Pons (2011); Pons and Perna (2011): magnetars become
less and less active, but they can still show activity even at late stages.

The waiting time distributions are illustrated in Fig. 6.2. In the first panel, we compare models
CrDip, CrDipL, CrDipH, and CrDipE. We find that increasing the strength of the magnetic field
results in a shorter waiting time. This is also the case if we consider a multipolar topology (models
CrMultiH and CoMulti), whereas lowering the fraction of the toroidal energy (model CrDipD)
has a tiny impact on the distribution. However, the waiting time is shifted from ~[10: 10*] to
~[0.1:300] days, by increasing the field strength and considering the multipolar topology.

In Fig. 6.3, we present the crustal failure distributions as a function of the neutron star radius
for a set of models, i.e., model CrDip, CrDipE, and CoMulti. Even though such distributions are

partially model-dependent, most of the events happen in the outer crust, i.e., R ~[11.3:11.55]
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Figure 6.3: The location distribution of crustal failures as a function of the neutron star radius
during the first 1 kyr of the neutron star’s life.

km, because the maximum stress is smaller in the outermost, lighter layers. A non-negligible

fraction of the events takes place in the outermost 50 m of the neutron star, i.e., ~ 25%.

6.3 Discussion

Ideally, modeling the link between magnetospheric magnetar activity and crustal failure requires:
(i) following the internal magnetic dynamics and how the magnetic stresses grow with time, (ii)
understanding and quantifying the mechanisms leading to the propagation of the disturbance
into the magnetosphere, (iii) describing how the magnetospheric instability/reconnection powers
the emission.

This study focuses on the first issue, assessing the crustal failure frequency of newly born
magnetars, under different initial topologies, through 2D magneto-thermal simulations, including
the Hall term. Moreover, the presence of small-scale structures, very likely if the birth amplifica-
tion involves turbulent processes, can increase the expected event rate, through initial enhanced
Hall dynamics. More factors can further extend the range of events found, among which we
must mention the magnetic field boundary conditions (here considered as potential, possibly
inadequate for the dense environment around a newborn magnetar), the fixed effective parameter

€, controlling how large is the region undergoing failure at the same time.
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The main finding is that the event frequency scales linearly with the magnetic energy stored
in the crust, with some intrinsic dispersion given by the topology, E7;,, (see Fig. 6.4), which
strongly depends on the assumed and highly uncertain field topology.

Given the simplifications in our approach, additional words of caution are needed in the
interpretation of the results:

(i) We do not include the recent advances in the modeling of the fluid motion in neutron star
core (with or without superfluidity), limiting to either confine the field to the crust or to consider
only the very slow Ohmic dissipation. In particular, the ambipolar diffusion could drive (slightly)
faster changes and higher rates (Beloborodov and Li, 2016).

(i1) Magneto-elastic simulations, and the inclusion of the local field rearrangement and dissipa-
tion, could reduce the rates, especially the most extreme ones (thus potentially weakening the
linear trend in the upper range). Moreover, the critically stressed crust may behave plastically
(Kobyakov and Pethick, 2014), leading to Hall drift and thermoplastic waves (Beloborodov and
Levin, 2014; Li et al., 2016) and partially hampering the Hall dynamics (Lander and Gourgou-
liatos, 2019).

(iii) One potential future application of the study on crustal failure using the 3D code described
in Chapter 7 is to enhance our understanding of how three-dimensional dynamics can signifi-
cantly influence the results. By employing this approach, we can gain valuable insights into the
quantitative impact of 3D effects on the outcomes.

We expect that overcoming such caveats above will systematically change the quantitative
results, but not the important conclusion that the dipolar field strength is a barely relevant
parameter when considering a young magnetar’s activity. As a matter of fact, for a given B, our
calculations show a very broad range of crustal event rates. Even a relatively modest B, = 104 G
could potentially provide almost no events (large-scale field penetrating in the core) or N ~ 1 event
per day of the neutron star life, if most of the magnetic energy is hidden in the form of crustal
multipolar and toroidal fields. The expected crustal failure rate is, thus, strongly dependent on
the initial topology of the magnetic field. These results shed light on a potential issue of most

FRB-magnetars models, which are usually focused on the value of B}, only.

6.3.1 Comparison with Fast Radio Bursts and Galactic magnetars

Our calculations have implications both for FRBs (if indeed associated with magnetars), as well

as for Galactic magnetars. In both scenarios, the observed event rate can be summarized as
(6.2) Nops = Nfailure X Nsources X Xvis »

where Ngources is the number of potential sources (young magnetars within a certain observable
volume), Nyg4ijure is the crustal event rate per star calculated in our study, and x,;s is the
effective fraction of events that will actually be detected. The latter number is unconstrained

and depends on the specific mechanisms ultimately leading to detection, observational biases,
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Figure 6.4: Number of events in the first 1 kyr as a function of the crustal magnetic energy. Each
point represents a specific model, with colors indicating the value of B, as in the legend.

and both physical (beaming, distance, absorption, etc.) and instrumental (sensitivity, field of view,
band-width, etc.) limits.

In the case of magnetar bursting activity happening in the magnetosphere, x,;s depends on the
crustal response to failure (one can expect that only the outermost events can further affect the
magnetosphere), the propagation of the disturbance outside, the magnetospheric dynamics and
the emission mechanism. Besides these fundamental physical uncertainties, emission beaming,
distance and absorption will affect x,;,, resulting in an expected value much smaller than one.

For FRBs, according to Rane et al. (2016), the observed rate is estimated to be Nyps ~ 103 —10%
per day per sky above 4 mJy per ms. Considering as a reference the number of galaxies within the
distance of the prototypical FRB repeater FRB121112, ~ 107, and assuming ~ 10 magnetar per
galaxy with < 1000 yrs, we would expect a potential number of FRB-emitting magnetars of about
Niources ~ 108. Equating these numbers, we obtain a constraint xflrsb X Nrailure ~ 1075 -107* per
day. This means that models with high crustal magnetic energy, E¢,, g > 10*6 erg, which have
Ntqiture ~ 1 per day, are compatible with x,;; < 1.

Similarly, very young (< 1 kyr) Galactic magnetars are expected to be Ngoyrces ~ 10. The
observed rate of outbursts for them (excluding older magnetars) is Nops ~ 1073 — 107 per day
(Coti Zelati et al., 2018). Therefore, xffsl“”c x Nfaiture ~ 107° — 1074, similarly to the FRBs.

This preliminary estimate, although plagued by uncertainties on the total number of sources
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and the still incomplete statistics, shows that the range of events detected per star, xyis X Nfqizure,
in the FRB and Galactic magnetar outburst scenarios, are at least compatible. This points to a
possible common origin of crustal triggers, even though they manifest in different ways.

As this chapter comes to a close, it is essential to highlight that the investigation of 3D effects
in the activity induced by the strong magnetic fields of magnetars has remained relatively unex-
plored until now. However, a promising breakthrough has been achieved with the development of
the advanced code MATINS, which is extensively described in Chapter 7. This innovative tool
opens up exciting avenues for further research into 3D studies. In the upcoming chapters, we
will delve into the realm of three-dimensional investigations, embarking on an exploration of the

capabilities and insights offered by our newly introduced code MATINS.
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CHAPTER

THE 3D CODE MATINS

pon witnessing the physical results using the 2D code, we now unveil the expansion to 3D

with the introduction of MATINS, a new three-dimensional code for MAgneto-Thermal

evolution in Isolated Neutron Stars, based on a finite-volume scheme. This chapter
primarily relies on the research conducted by Dehman et al. (2022), where we concentrate on
introducing the cubed-sphere coordinates and the magnetic evolution formalism, with a particular
consideration of crustal-confined magnetic fields. The MATINS code will soon be available to the
public, providing a valuable resource for the high-energy astrophysics community focused on
exploring various astrophysical aspects related to highly magnetized neutron stars. The code can
be accessed at the following URL:

https://github.com/csic-ice-magnesia/MATINS.

The internal magnetic field evolution of isolated neutron stars has been extensively explored
through 2D simulations (Pons and Geppert, 2007), which were later coupled to the temperature
evolution (Aguilera et al., 2008; Pons et al., 2009; Vigano et al., 2012; Vigano et al., 2021). These
models successfully explained the general properties observed in the population of isolated
neutron star (Vigano and Pons, 2012; Vigano et al., 2013; Pons et al., 2013; Gullén et al., 2014,
2015). Recent efforts were devoted to investigate the magnetic evolution without the restrictions
of axial symmetry. Wood and Hollerbach (2015) and Gourgouliatos et al. (2016) presented the
first 3D simulations of crustal-confined fields employing a pseudo-spectral code adapted from the
geo-dynamo code PARODY (Dormy et al., 1998) to the neutron star scenario. These simulations
revealed new dynamics and the creation of long-living magnetic structures at various spatial
scales. Even using initially axisymmetric conditions, the growth of initially tiny perturbations

breaks the symmetry, and non-axisymmetric modes quickly emerge and grow (Gourgouliatos and
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Pons, 2020). These non-axisymmetric modes typically have length scales comparable to the crust
thickness.

Generally speaking, for sufficiently high enough magnetic fields (B > 10'* G), the Hall cascade
keeps transferring energy to small scales (Gourgouliatos et al., 2016), which in turn enhances
Ohmic dissipation and eventually keeps the star hot and X-ray visible for longer timescales,
as seen in 2D simulations (Vigano et al., 2013). Another interesting result is the formation of
magnetic spots on the neutron star’s surface (Gourgouliatos and Hollerbach, 2018), using extreme
initial configurations previously explored in 2D (Geppert and Vigano, 2014). Very recently, De
Grandis et al. (2020) presented the first 3D magneto-thermal evolution code with increasing
physical self-consistency, applied to different sub-classes of neutron stars (Igoshev et al., 2021b,a;
De Grandis et al., 2021). However, these simulations employ simplified microphysics and back-
ground structure. For a comprehensive review of magneto-thermal evolution models, refer to
Pons and Vigano (2019).

Different systems of coordinates and numerical methods have been employed to address 3D
MHD in a shell, in other astrophysical scenarios. In some cases, finite volume/finite difference
schemes are employed with Cartesian coordinates using the "star-in-a-box" approach (Kapyla,
2021). However, this choice is not optimal for several reasons. Firstly, magnetic fields and physical
quantities often exhibit rapid variations in the radial direction, making it more convenient to treat
the radial coordinate separately from the other two coordinates. Secondly, since the star’s surface
is approximately spherical (with possible deviations being much smaller than other relevant
scales), describing it in Cartesian coordinates becomes computationally expensive compared
to coordinate systems that incorporate a radial direction. The need to refine all directions to
solve strong radial gradients and the discretization of spherical boundaries onto the Cartesian
grid introduce spurious noise, leading to artificial modes that can only be partially mitigated
by increasing the resolution (see Appendix A of Vigano et al. (2021) for further details). A
more natural choice would be to use spherical coordinates, as done in two dimensions. However,
the coordinate system exhibits irregular behavior on the axis, resulting in several numerical
limitations, some of which are quite compelling. One option is to exclude the axis from the grid
to avoid complications related to coordinate singularities. Finally, instead of employing finite
volume/difference schemes, an alternative approach is to utilize Pseudo-spectral methods that
make use of spherical coordinates. However, these methods come with the disadvantage of a
complex formalism required to convert the equation into the spherical harmonics space, as well
as limitations in capturing the discontinuities generated by the non-linear Hall term (eq. (3.11)).
Therefore, we prefer the use of a finite volume scheme.

In this study, we employ the cubed-sphere coordinates, originally introduced by Ronchi
et al. (1996). Codes based on such a grid have been used to simulate various physical scenarios,
including for instance: general circulation models for Earth or planets (Breitkreuz et al., 2018;
Ding and Wordsworth, 2019), general relativity (Lehner et al., 2005; Hébert et al., 2018; Carrasco
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et al., 2018, 2019), MHD accretion (Koldoba et al., 2002; Fragile et al., 2009; Hossein Nouri
et al., 2018), solar wind (Wang et al., 2019), seismic waves (van Driel et al., 2021), and dynamo
in a shell (Yin et al., 2022). In this work, we use this unique coordinate system, adapted to the
Schwarschild metric, to develop a new code designed to handle the Hall term in the induction
equation for low physical resistivity.

MATINS stands out due to its distinctive features in comparison to PARODY -based published
works (De Grandis et al., 2020, 2021; Igoshev et al., 2021b,a). These notable features include:
(i) coupled magneto-thermal simulation with the use of the most recent temperature-dependent
microphysical calculations, (ii) the use of a star structure coming from a realistic EoS and
the inclusion of the corresponding relativistic factors in the evolution equations, (iii) the use
of finite-volume numerical schemes discretized over a cubed-sphere grid, allowing for better
capture of non-linear dynamics, (iv) flexibility in incorporating new physics, (v) comprehensive
documentation and modularity for public use, (vi) optimization and use of OpenMP.

In this chapter, our objective is to investigate the global evolution of the magnetic field in
isolated neutron stars, which are relativistic stars where general relativity corrections play a
significant role. The structure of these neutron stars is provided by the TOV equations (Oppen-
heimer and Volkoff, 1939), which solve the hydrostatic equilibrium assuming a static interior
Schwarzschild metric, as described in §2.3. We can either prescribe a simple shell, or build the
background model of the neutron star using different models of nuclear EoS at zero temperature.
For a detailed description on the numerical structure of MATINS, we refer the reader to §3.4.

This chapter is structured as follows. In §7.1, we prescribe the cubed-sphere formalism applied
to a Schwarschild metric, and the numerical scheme used in the three dimensions magnetic
evolution code. In §7.2, we display the inner and outer magnetic boundary conditions used in
this study. Finally, the numerical tests and the comparison with 2D axisymmetric models are

presented in §7.3.

7.1 The cubed sphere formalism with the Schwarzschild interior

metric

7.1.1 Patches and coordinates

In the cubed sphere formalism, initially introduced by Ronchi et al. (1996), one of the three
coordinates corresponds to the radial direction, like in spherical coordinates. This results in the
volume being composed of multiple radial layers. As depicted in Fig. 7.1, each layer is covered
by six non-overlapping patches that are topologically identical. These patches can be visualized
as the result of inflating the six faces of a cube, until it forms a spherical shape. Consequently,
each patch is bordered by four patches and is naturally described by two angular-like coordinates,
akin to the role of the standard spherical coordinates 8 and ¢. We adopt the same notation as

the original paper, denoting the patch coordinates as ¢ and n, both in the range [-7/4 : n/4].
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Figure 7.1: Exploded, cubed view of the patches (Ronchi et al., 1996). Each patch is identical
and is described by the coordinates ¢ and 7, both spanning the range [-n/4;7/4]. In the exploded
view ¢ and 7 grow to the right and upward, respectively, for all patches (only patch I is explicitly
drawn here). Arrows identify the 12 edges between patches. The coordinate values (¢,n) of the
corners for each of these patches are written in the bottom part as well.
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These two coordinates are orthogonal to the radial direction but are non-orthogonal to each other,
except at the patch centers. They uniformly cover the two directions, meaning that the patch
shape remains invariant under any rotation of nn/2 (where n is an integer) around the center
of the patch. The transformation relations between the cubed-sphere, spherical, and Cartesian

coordinate systems are reported in Appendix A.1.

7.1.2 Metric

We follow the same approach as in Ronchi et al. (1996), but using Schwarzschild interior metric

solution of the TOV equation. We introduce the auxiliary variables that will be used in our

formalism
X =tan({),
Y =tan(n),
5=1+X2%2+Y?2,
1
C=(1+X>V2=_—
( ) c0s(@)’
1
(7.1) D=(1+Y?)2=—_,
cos(n)

The metric tensor exhibits the same functional dependence on the auxiliary variables across

all patches. In the unit vector basis, it can be expressed as follows:

1 0 0
(7.2) gij=|0 1 -%L
XY
0 -%p 1
The inverse of the tensor metric reads
1 0 0
-1 _ C’D?  CDXY
(7.3) g;j =10 5 5
0 CDXY C2p?
5 5

In all patches, the radial versor é, is orthogonal to the plane formed by é; and é; unit vectors,
which are not in general orthogonal to each other.

Below, we will employ vectors using either their covariant components, denoted by lower
indices, or their contravariant components, denoted by upper indices. Let us focus first on the

geometrical elements (see §A.3 for a comprehensive derivation). The contravariant components
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of the infinitesimal length element! at a given position {r,¢ ,n} are

dl"(r)=eMdr,

2rC2D
dif(r,e,m) = —=—dg,
2rCD?
(7.4) dinr,&,m = 2= —d.
We define the covariant components of the surface elements in terms of the contravariant length
element:
4r? 9.9
dS,(r,&,n) = @C D=dnd¢,
2re D
dS¢(r,é,n) = Wdrdﬂ,
2reMC
(75) dSn(r,E,n)z Wdrdf

For further details on the derivation of egs. (7.5) we refer to the Appendix, in particular egs. (A.26)
- (A.27).

In our work, we utilize the covariant components of the cross product to compute the covariant
surface components (see §A.2.2.2). These components are then employed in the curl operator
within the context of finite volume schemes (see §7.1.3).

Last, the infinitesimal volume element is obtained by doing the mixed product between the
three geometrical lengths:

A 4r2C2D?

(7.6) AV ==

drdédn

7.1.3 Induction equation in neutron star crust

We study the non-linear evolution of magnetic fields in neutron star crusts with special attention

to the influence of the Hall term, evolving the induction equation:

B
7.7) 22 _Vx[nyVx(eB)+ —

V x(e*B)] xB]|.
ot 47tene[ x (e B)]x

The curl operator in the cubed-sphere coordinates, needed to compute J and to advance B,
can be written in the following concise form in our non-orthogonal metric (applied to a given

vector A):

. dl”e, dl*e; dlley
- - 0 0 0
(7.8) (VxA)= Jgardian dr dé g dng |,
dl"A-e, dI°A-e; dI"A-e,

1Note that the factor two difference with respect to Ronchi et al. (1996) arises because the geometrical elements
used in the circulation extend twice the size of the cell (once per each side around a central point, see as an example
the red solid lines in Fig. 7.2).

96



CHAPTER 7. THE 3D CODE MATINS

where /g = V&/CD. Explicitly, the components read:

r dé 0 dn
(VxA) = Faltdn 0_6( ! 'en)_d_éa—(dlfA es)l,
df n AN Y o X n Al
f(dl A )_50_6(_(” Af)
dn 6 ¢,6), Xdn 0 N ]
. _GN T (ggep8) ¢ 240 O (2 gpepn
(7.9) dfan(dl J+ Cac an( di‘a”)
dr dn o . ... 0
(VxA) = gl | dr oy A er) = 5 (A )|
_dr r@aA’ 0 nAn XY o nAc ]
(7.10) = 25| W Gy~ o AN+ oy 5 (A%
dr dé o
VxA ‘A-e)- 22 (@qrra
( ) \/_dlrdl‘f[ (dl ) dr af(dl ) ’
dr XY o0 déoAT
— Z (415 A8 SAM r=>
(7.11) i ar( (A0~ Gy 5 AT~

where in the second equivalences we apply the Stokes theorem on an infinitesimal surface.
For any field, for output and plotting purposes we calculate the 8 and ¢ components, using

the transformations detailed in Appendix A.1.

7.1.4 Numerical schemes and computational features

We employ an equally spaced grid in the two angular coordinates of each patch with steps of
d¢ =dn, and a uniform step in the radial coordinate, dr, fine enough to adequately sample the
large density and field gradients in the crust.

To evolve the magnetic field, we discretize the induction equation (eq.(3.11)) in the cubed-
sphere coordinates, in our shell domain. Using the geometrical elements of §7.1.2, we calculate
the egs. (7.9)-(7.11) in our discretized scheme. We compute the circulation as a second-order
accurate line integral along the edges of a cell face and divide it by the corresponding area, like
in our previous 2D codes (Vigano et al., 2012; Vigano et al., 2021). The surface around which the
circulation is performed includes the area of the four grid cells surrounding each point (therefore,
all geometrical elements related to a given point extend one cell size at both sides along the
considered direction). A detailed sketch of the circulation is illustrated in red on the left hand
side of Fig. 7.2. As noted in previous works (see Appendix A of Vigano et al. 2019), rising the
accuracy of the line integral (for instance, considering the values at the corners of the face) tends
to create more numerical instabilities. Therefore, we stick to this second-order recipe.

To advance in time, we utilize an explicit fourth-order Runge-Kutta scheme. Although other

Runge-Kutta schemes are also implemented in the MATINS code, we conducted a thorough
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Figure 7.2: Schematic view of two contiguous equatorial blocks, e.g., patch I (black) and patch
IT (blue), and the ghosts cells of patch I (endpoints of the red dashes). The view is centered on
the common vertical boundary line. The pseudo-horizontal coordinates ¢ of the ghost points of
one grid, i.e., patch I, coincide with the second points along the ¢ coordinates of the last one
interior grid points of the contiguous block, i.e., patch II. The ghost points are traced by the
red line, and the values of the fields along the pseudo-vertical coordinate, 1, are obtained by
interpolations among the adjacent patch points (blue letters). Note that for other pairs of patches,
the correspondence of coordinates may be less trivial (see Table 7.1 and §A.4). A sketch of a
centered discretized circulation which extends twice the size of the cell (once per each side around
a central point (Z, j, %)) is displayed on the left hand side of this plot, in red. The circulation shown
here is applied to calculate the radial component of the curl operator for a given vector A, i.e.,
(VxA).

exploration of different orders of the Runge-Kutta methods (first-, second-, third-, fourth-, and
sixth-order Runge-Kutta methods). Through this investigation, we found that the fourth-order
Runge-Kutta method offers the most efficient and most stable performance compared to the
other tested methods. More details are provided in §E. In explicit algorithms, the stability of
the method is constrained by the Courant condition, which limits the timestep to ensure that
the fastest wave cannot travel more than one cell length in each time step. An estimate of the
maximum allowed timestep for this non-linear system can be written as:

(ALY

7.12 dth = kemi
( ) crmin th+T]]points

where k. is the Courant number and (Al)% = [(d1")72 +(d1%)"2 + (d1")"2]"! represents the square
of the shortest resolved length scale, and the minimum is calculated over all the numerical points
of the domain. Note that we are adopting for analogy a definition of the Courant constraint, which

is well defined for a system in which the velocity is an independent variable: in that case, the
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maximum allowed timestep is linearly proportional to the grid size, and the proportionality con-
stant is determined by the method (0.4 for RK4). In our case, the electron velocity is proportional
to V x B, hence the (non-rigorous) estimation for the maximum timestep is quadratic with the
the grid size, and we don’t have an exact number for the value of k. for a given time-advance
method. We instead fine-tune its optimal value by a series of numerical experiments, summarized
in Appendix §E.

The numerical stability of the magnetic evolution in the two codes (MATINS and the 2D),
for a given initial setup, seems comparable: numerical instabilities start to appear at late times,
when the star cools down and consequently the dynamics become largely Hall-dominated. This
similarity with the 2D is surprising: here we don’t employ the upwind-like scheme, the Burgers-
like treatment for the toroidal field and the hyper-resistivity, which were all helping the numerical
stability in 2D. As discussed in Vigano et al. (2012); Vigano et al. (2021), in 2D all of them can
be formulated and implemented in a compact way, without violating the field divergence and
exploiting the axial symmetry, which allows a separation by components of the toroidal and
poloidal field. In 3D, applying the same schemes is not possible by construction, and analogous
more sophisticated ways to stabilize the code have not been developed so far.

MATINS is coded in Fortran90 with a modular design approach. In this framework, the
microphysics and star’s structure modules offer a diverse range of options for EoSs. For in-depth
information on the numerical structure of MATINS and a comprehensive list of available EoS
choices, please refer to §3.4.

MATINS uses OpenMP to optimize the main loops. The computation bottlenecks are repre-
sented by the spherical harmonic decomposition needed in the boundary conditions and by the
calculation of the circulation (done twice per each time sub-step). Among the two, the former
takes more weight as the resolution increases. The code is faster when compiled with Intel com-
pilers, compared to GNU. To give an idea, for the magnetic evolution simulations starting with
~10™ - 10'® G, here presented, and the typical resolution used, e.g., N, = 40 and N¢=N,=43
per patch, the total computational time for a run of 100 kyr is less than 1 day using six 19-10900
processors (2.80 GHz). For such a simulation, about ~ 150 thousand iterations are needed to reach
100 kyr of evolution and it takes about 0.24 s per iteration. The computational time goes up to 2
days if one utilizes one processor instead of six (i.e., scalability efficiency 2/6 ~ 0.3). Due to the
relatively low number of points (< 108 in total for the resolutions used here), the scalability with
openMP is decent only up to 6 processors. Therefore, we usually use 6 processors, a number that
also takes advantage of the division by 6 patches. The computational cost of the simulations is
set by the large number of iterations needed (¢(10°) for 100 kyr at the resolution here employed),
which is in turn limited by the maximum timestep allowed, eq.(7.12). The latter scales with the
square of the resolution Al: our computational cost rises then with ~ (Al)®. For further details on
the scalability of MATINS, please refer to Appendix E.

Further optimization of the code is still possible and would potentially improve the perfor-
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Figure 7.3: Figure adopted from Ronchi et al. (1996). Construction of one of the six meshes from
two sets of angularly equidistant great circles.

mance, but will not affect the physical results shown here.

7.1.5 Treatment of the edges between patches

When computing the curl operator introduced in eqs.(7.9)-(7.11) at the edges (corners) of the
patch, one needs information about the values of the functions in some points which lie in the
coordinate system(s) of the neighbouring patch(es). A way to deal with this issue is to extend one
layer of ghost cells in each direction, for each patch (refer to §A.4). The field components at the
ghost cells are obtained by interpolating the vectors in the neighbouring patch coordinates.

Fig. 7.2 illustrates the mapping between two contiguous patches. By using the same regular
grid size in both patches, we observe that the ghost vertical grid line in one patch (e.g., patch I in
Fig. 7.2, represented by the vertical dotted red line) coincides with the interior vertical grid line
of the contiguous one (e.g., patch I in Fig. 7.2, represented by the blue vertical line). This is due
to the fact that the coordinate lines of the six patches which we employ to represent the entire
spherical surface are arcs of great circles (as depicted in Fig. 7.3). Consequently, the coordinate
lines of a given black join smoothly along one direction with those of the contiguous one. As a
result of this choice, only a one-dimensional interpolation along the vertical i direction will be
required. It is worth noting that since ¢ and 1 have the same grid spacing dé =dn = A and the

same range [—7/4;7/4], this idea can be applied in both the vertical and horizontal directions.

100



CHAPTER 7. THE 3D CODE MATINS

edge | patches q’s p’s

1 11 T =q/a, T = _z/4 nt, n'l
2 M-I | & =4, = —qja | gl pllI
3 NIV | e —ga &V = —g/a | ol pIV
4 IV-I WV —g/a, & = —q/4 v, nl
5 I-v 171 = /4, nV =-7n/4 elogv
6 1.V nl =n/4, &V = n/4 e nV
7 II1-v " = /4, nV = n/4 eI _gv
8 V-V | gV =4, =-ma | &V, Y
9 I-VI nl = —n/4, V1 = n/4 vt
10 | VI | pll=-mia, V=g | I V1
11 | HI-VI | g = —g/a, gV = —g/a | I _gVI
12 | IVVI | pfV =g/, VI =—q/a | &V VI

Table 7.1: Coordinates at the 12 edges. Identification of coordinates at the twelve edges of the
cubed sphere: pair of patch numbers, pair of values of the pseudo-perpendicular coordinate q
identifying the interface, parallel coordinate p (the one to be mapped from one patch to the
other when ghost points are defined). For a visual representation, please refer to the diagrams in
section §A.4.

We now formalise the mapping of coordinates between two different patches. Let us consider
a point close to the edge between two patches. We shall call, for each patch, p the value of the
point coordinate parallel to the interface, and g the one pseudo-perpendicular to it (since the
coordinates are not orthogonal except along the central axes of each patch). We shall use the
superscript ° to indicate the original coordinate system (for which we know (p?, ¢°)). The mapping

of the point in the adjacent patch (superscript ™) is then given by

o T
(7.13) q" = 5800400~ 5 5
tan(p?®)
ny _ o
(7.14) tan(p )_Sgn(qedge)—tan(qo)’

where sgn(q? dge) is here used to identify the two edges in the original patch coordinate system,

q; dge = +7/4, respectively. In the scenario where we are mapping ghost points to the adjacent

patch they fall into, we encounter a set of points with different {p°} = {-7/4 + /(N — 1))7/2}
(i =0,N —1) and the same ¢° = sgn(quge)(n/4+ A). Therefore:

(1.15) a" = -sgn(a%y,) (5 -2)
m tan(p®)
1 _ _tan(®) -
(7.16) tan(p™) tan (Z +A)

Table 7.1 provides the correspondence of the direction for each edge, which involves two patches.
The sign in the table indicates the direction of growth of the coordinate: if they have the same

(opposite) sign, the two coordinates p increase in the same (opposite) way.
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Once the position of the ghost points is determined, we define a set of relative distances to
the first neighbours, needed to linearly interpolate the vectors:
m _ po

(7.17) w=2 - elo:1l

At the center of the edge, the distance W is zero since the ghost point coincides with a point of
the adjacent patch (point "O" of Fig. 7.2). Note that the set of distances is universal, valid for any
pair of patches.

The vector components at the ghost points are calculated in the coordinate system of the
adjacent patch as follows:
(7.18) AT =F1, (1-W) + F2,5"W,
where F 12’;’.17 and FZX:;}” are the vector components at the corresponding grid points in the
adjacent patch surrounding the ghost point. Importantly, the angular components of the vector
A, need a change of coordinates from the adjacent to the original patch by using the Jacobians
detailed in Appendix A.2:

¢ _ ¢ n
A _JAC(1,1)AgAdj+JAC(1,2)A

gAdj
_ ¢ n
(7.19) AT =JAC2, 1)AgAdj + JAC(2,2)AgAdj.

At the edges (corners) between two (three) contiguous patches, there are two (three) coexisting
coordinate systems, each one assigning slightly different values to the vector components. To
guarantee identical field components at the egdes/corners between the patches, and to minimize
numerical noise, we perform an averaging process after each sub-timestep and at each point
along the edges. This averaging involves taking the values of electric currents and electric fields
obtained from each patch and combining them appropriately. To achieve this correction for the

angular components, an appropriate change of coordinates is required.

7.2 Boundary conditions

7.2.1 Inner boundary conditions

For simplicity, the inner boundary conditions are imposed by demanding that the normal (radial)
component of the magnetic field has to vanish at r = R.. Under such assumptions, the Poynting
flux at r = R, is zero and no energy is allowed to flow into/from the core.

We note that, when using a second-order central difference scheme for the second derivative
of a function, combined with our choice of the inner boundary conditions causes a numerical
problem known as odd-even decoupling or checkerboard oscillations. This results in the numerical

decoupling of two slightly different solutions, one for the odd grid points, and another one for
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Figure 7.4: Difference between fixing the odd-even decoupling (eq. (7.20), solid line) and not (dots),
for a representative evolved radial profile of a magnetic field component at a given angle. As a
representative example, we show BY in the upper right corner of patch II.

the even grid points. In order to relieve this, we increase the radial coupling among the nearest

neighbours (found at a distance dr), as follows:
¢ 1 ¢
E°(R.)= EE (R.+dr),

1
ENR.)= §E”(Rc +dr),

R
Bf(Rc—dr)zR "’d BYR,),

c—ar
(7.20) BNR,—-dr)= R, B(R,)
' ¢ R.—dr o

In the equations above, we omit the angular dimensions for clarity. This choice reduces the
tangential current at the crust-core interface and improves the stability during the evolution.
In Fig. 7.4, we illustrate a representative case of the difference in radial profile of a component

with (solid line) and without the prescription above (dots).

7.2.2 Outer boundary conditions: potential field

We enforce an external potential (current-free) solution for the magnetic field at the surface of the
star. By excluding surface current sheets, all components of the magnetic field remain continuous
across the outer boundary. These boundary conditions are determined by VxB =0 and V-B =0.
Consequently, the magnetic field can be expressed as the gradient of the magneto-static potential

Xm, which satisfies the Laplace equation:

B=Vyn,
(7.21) VZym =0.
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The spherical harmonics expansion of the scalar potential y,, reads:
oo m=+1 I+1 l

(7.22) Xm ——BoRZ Z Yim 6, ¢’)(bm( )+ ”7(1%) )

where By is a normalization, b;" corresponds to the weight of the multipoles, and Y;,, are the
spherical harmonics. In this study, we use the Yj,, decomposition in §B.4, since we are interested
in working with the real set of spherical harmonics (Laplace spherical harmonics). The latter
forms an orthonormal and complete set. One can choose real functions by combining complex
conjugate functions, corresponding to opposite values of m. Note that we exclude [ = 0 since it
corresponds to a magnetic monopole, which violates V-B = 0. The dimensionless weights b;”
and c¢;" are associated to / and m multipoles of two branches of solutions. The second branch,
o (r/R)l, diverges for a domain extending to r — oo, like the magnetosphere, therefore we set
¢/ =0.

The normal components of the magnetic field B" are evolving and known at the surface of the
star at each timestep. However, to impose potential boundary conditions, we need to determine
the angular components of the magnetic field at the surface and one cell above the surface of the
star. We proceed as follows.

The continuity of B” across the surface enables us to express it in terms of the magneto-static

potential as:

1 OXm BO oo m=+I R\[+2
7.23 B" = = 1+ 1)Y;,(0,0)07 | —
(7.23) A or | ghD l:Om;l( ¥in(0,9)5; (r)

Next, we evaluate the weights of the multipoles b;" by applying the orthogonality properties
of spherical harmonics to eq. (7.23), resulting in:
m e MRE) r .
(7.24) b = m = BY;,(0,0).

Using this information, we can evaluate the angular components of the magnetic field for r = R.

142 0Ym (0, ¢)

(7.25) —BOZ Z bm( ) -

=0m=-1

1+20Y;,0,¢
ap

which are then converted into the B¢ and B” components in the code.

(7.26) BY = i i_ ( )

sm(G)

Finally, analogously to what described for the inner boundary (§7.2.1), we prevent the radial
odd-even decoupling at the surface by setting the values of the tangential components of the
magnetic field as the average between the values one point above and below the surface.

A more realistic outer boundary condition can be achieved by coupling the interior crustal
evolution with the magnetosphere using PINN (Urban et al., 2023). While this coupling was

initially performed in 2D (see Appendix C), we are currently working on implementing it in 3D.

104



CHAPTER 7. THE 3D CODE MATINS

7.3 Numerical tests

7.3.1 Diagnostics

A necessary test for any numerical code is to check the instantaneous (local and global) energy
balance. Any type of numerical instability usually results in the violation of the energy conserva-
tion, or any other physical constraint (the divergence condition). Therefore a careful monitoring
of the energy balance is performed. The magnetic energy balance equation for Hall-MHD can be

expressed as:

P
(7.27) a—t(e

2
B

) _itg,-v.(cs)

where Q; = 4nnyd 2/¢? is the Joule dissipation rate and S = cE x B/4r is the Poynting vector.
Integrating eq. (7.27) over the whole volume of the numerical domain, we obtain the balance
between the time variation of the total magnetic energy E,,,s = fV(e(Bz/Sn)dV, the Joule
dissipation rate @y = fV eXQ jdV, and the Poynting flux through the boundaries S;,; = J: S e S
ndS. In our case, the boundaries are the star surface and the crust-core interface, so that S;,; is

given by the integration of S, over them. Thus, the volume-integrated energy balance is

d
(7.28) aEmag"‘Qtot"'Stot =0.

In addition, we calculate the local magnetic field divergence in the cubed-sphere coordinates

using Gauss’ theorem:

1710 0 0
.B= —|— r, Yy n
(7.29) V-B v ar(dSrB )+ aé(dS(gB )+ an(dS”B ).

Starting from an initial divergence-free magnetic field (see §B.3 for more details), we monitor
that indeed the divergence of the magnetic field does not grow in time above some tolerable error.
We achieve this using the constrained transport method implemented in our code, which ensures
the conservation of the magnetic field’s divergence through the finite volume scheme. To measure

this, we compare the volume integral of (V- B)?
(7.30) Dg= f (V-B)*dV

to a physical quantity with the same units and scaling, e.g., the integrated values of the square

of the effective current
(7.31) Dy = f [V x (e!B)?dV ,

or to (B/ < dl >)?, where < dl > is the geometrical mean of the cell’s edge lengths. We verify
that during the evolution, the divergence of the magnetic field always remains several orders of

magnitude smaller than the other quantities throughout the star.
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A detailed analysis of the spectral energy distribution is performed in this study. The explicit
calculation of this quantity is done using the poloidal and toroidal decomposition of the magnetic
field described (see Appendix B.1). The magnetic energy content in each mode, considering the

relativistic corrections, can be expressed as:

1 I(+1)
(7.32) Eip=o f eMdr 11 +1) r—2q>l2m +(@),,)° + 92, |,

where (ng is the radial derivative of @;,,, explicitly given by eq. (B.6). The first two terms in
eq. (7.32) account for the poloidal magnetic energy and the last term accounts for the toroidal
energy. The total energy density is simply > ;,, E7y.

For a more comprehensive and quantitative analysis of the 3D magnetic evolution, we conduct
a survey of the magnetic energy spectrum (Chapter 8). This allows us to observe the redistribution
of magnetic energy across different spatial scales, shedding light on how the system evolves over

time.

7.3.2 The purely resistive benchmark

A classical benchmark test that enables the comparison of analytical solutions is the evolution
of axisymmetric modes under Ohmic dissipation only (zero magnetic Reynolds number) and
constant magnetic diffusivity, denoted as 1. In this limit, and neglecting the general relativistic

correction, the induction equation for the case of Ohmic dissipation is then given by:

0B
(7.33) — =-npVx(VxB).
ot
The Ohmic eigenmodes consist of force-free solutions satisfying V x B = aB, where « is a constant

parameter. Then, we have

0B 9
7.34 —=- B.
(7.34) Y, Ny
which shows that each component of the magnetic field decays exponentially with the same

diffusion timescale 74 = 1/(1y a?).
(7.35) B(t)=e "Bt = 0).

Note that the evolution of each component is decoupled in this case. A solution for eq.(7.34) in
spherical coordinates is described by factorized functions, where the radial parts involve the
spherical Bessel functions. The regularity condition at the center selects only one branch of the

spherical Bessel functions (of the first kind), which, for the (I,m) = (1,0) mode, is given by:

BT = BoR cosQ(Si’;x B cosx)’
r X X
BoR ;
BY = 0 sin (su;x _cosx —sinx),
2r x
(7.36) BY = aRBosm (sznx B cosx),
x2 x
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Figure 7.5: Bessel test: radial profiles of the magnetic field components at different Ohmic
timescales, with 74 = 0.25 Myr. A comparison of the numerical (solid lines) and the analytical
(diamonds) solutions for a model with wave-number in unit length, @ =2 km™!, in a spherical
shell of radius [R. =5:R = 10] km. LHS panel: B"/B radial profile at the north pole of the star.
RHS panel: BY/B radial profile at the upper right corner of patch 2 (equatorial patch). Bottom
panel: B®/B radial profile at the bottom left border of patch 2, with By a normalization factor.

where By is the normalization factor, x = ar is a dimensionless quantity, and R = 10 km corre-
sponds to the maximum radius of the spherical shell.
In the limit where x approaches 0, we recover the solution corresponding to a homogeneous

field aligned with the magnetic axis:

0
B" = kB, cos ,
3
BY - _kBOsan’
3
(7.37) B?=0.

For more details, we refer the reader to §5.4 of Pons and Vigano (2019).
Considering the spherical Bessel functions as initial conditions, and imposing the analytical
solutions for B”, B*, and B" as boundary conditions (egs. (7.36)), we follow the evolution of the

modes during several diffusion timescales.
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Figure 7.6: The average absolute L? error as a function of #/14, for B"/By (dots), BY/By (dot-
dashed lines) and B?/By (solid lines) components of the magnetic field. We have verified that the
maximum absolute L? error is of the same order as the average one. The values are much smaller
than the mean square of the initial magnetic field, which is of order 0.13(2).

Fig. 7.5 compares the numerical (solid lines) and analytical (diamonds) solutions of the
magnetic field components for a magnetic field of order one, at different diffusion timescales,
for a model with @ =2km™, in a spherical shell defined by r € [5: 101km, with a resolution of
N, =40 and N; = N,, = 43 points per patch in the cubed-sphere coordinates. One can notice that
the magnetic field has decreased below the visible scale in the figure around 47;. Moreover the
analytical and numerical results are indistinguishable in the graphic.

To quantify the deviation, we evaluate the average L? absolute error in terms of the deviation
from the analytical solution, as shown in Fig. 7.6 for B” (dots), BY (dash-dotted lines) and B? (solid
lines). The angular field components exhibit higher error than the radial component, primarily
due to the patchy grid employed. The L? error saturates after one diffusion timescale for the two
angular field components and after two diffusion timescales for the radial component. We have
checked that by varying the resolution, the errors scale with A?, validating that the method is of

second order.

7.3.3 A comparison between the 2D and the 3D magnetic codes

For the general case including the Hall term and with variable diffusivity and electron density,
no analytical solution is available. However, since extensive results from 2D simulations are
available, a detailed comparison of the 3D magnetic code presented here and the 2D code (Vigano
et al., 2012; Vigano et al., 2021), helps to probe the validity of the results of the 3D code.

For this comparative analysis, we use analytical fixed radial profiles for the magnetic diffusiv-

ity 5 and the Hall prefactor f3 in both codes. For the Hall prefactor f;, we utilize the following
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fit adopted from Vigano et al. (2021)

s km?2
(7.38) Frge =0.011 k7R m ]

Myr 102G

where k=10, b = 1.8, 7 and R, are r and R, given in km. This radial profile exhibits a super-
exponential rise of about three orders of magnitude throughout the crust.

For the magnetic diffusivity 1, we use the analytical radial profile

(r—R.)ko (R-r) [km?2

7.39 =6
(7.39) np(r) (R—Rc)k0+ &R | Myt

b

with 29 =3.5 and k1 = 4.

The initial magnetic field is an axisymmetric crustal-confined field with a poloidal dipole of
104 G at the polar surface and a toroidal component consisting of a sum of a quadrupole and an
octupole with a maximum value of 1015 G.

We use a grid resolution of N, = N¢ = N = 30 per patch (meaning 61 points from pole to pole
and 120 along the equator). A similar resolution is used in the 2D code, e.g., Ny = 60 and N, = 30.

The results of the comparison for an evolution up to ¢t = 80 kyr are displayed in Figs. 7.7,
7.8, and 7.9. The radial magnetic profiles for the three components of the magnetic field are
displayed in Fig. 7.7 at t =0, 5, 10, 20 and 80 kyr: B” at the north pole in the panel on the left,
BY at the equator in the panel on the right, and B? at the equator in the panel at the bottom.
The 3D results are represented with solid lines, whereas the diamonds correspond to the 2D
results. Throughout the evolution, the maximum magnetic Reynolds number is much greater
than unity, e.g., R,, ~ 100. Therefore, the Hall term dominates in the induction equation. The
observed evolution is very similar. Local differences in the values of the components are typically
less than a few percent, except for the radial component of the magnetic field at late times, which
are likely due to the slightly different numerical implementation of the inner and outer boundary
condition used in the two codes.

An important point is assessing to which extent the 3D numerical code preserves axial
symmetry. If we start with a pure m = 0 mode, one should expect that this symmetry is kept
to some small error, during the whole evolution. To give a quantitative measure of possible
deviations, we study the energy spectrum (eq. (7.32)) by monitoring the evolution in time of each
mode.

In Fig. 7.8, we plot in logarithmic scale the energy spectrum as a function of m (E,, =Y ; E;;,)
at t =0 (in black) and after ¢ = 80 kyr (in yellow). The spectral magnetic energy is concentrated
at m = 0 as expected. The rest of the modes are zero to the round-off error, except the modes
with m = +4, and higher harmonics, having anyway six or seven orders of magnitude less energy
than the main one. They are caused by the discretization over the cubed-sphere grid, and in
particular by the four patches that cover the tropical latitudes over the entire azimuthal direction.
Their contribution to the energy spectrum is negligible. We remark that this unavoidable error

introduced by the cubed-sphere grid is not increasing in time and it remains several orders
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Figure 7.7: Radial profiles of the magnetic field components. On the left, we show the radial
profile of the normal component of the magnetic field B" at the north pole of the star. In the
RHS panel and the panel at the bottom, we illustrate the radial profiles of the two angular
components of the magnetic field, namely B and B?, respectively. These profiles are displayed
at the equator of the star. The solid lines correspond to the results of the 3D code, whereas the
diamonds correspond to those of the 2D code. Different colors correspond to different evolution
time.

of magnitude smaller than the magnetic energy contained in the m = 0 mode after 80 kyr of
evolution. Moreover, it decreases for higher resolution.

In Fig. 7.9, we present the different contributions to the total energy balance as a function of
time in the panel on the left, the energy stored in the toroidal and poloidal components in the
panel on the right, and a measure of the evolution of the divergence of the magnetic field in the
panel at the bottom. The solid lines in the graph represent results from the 3D simulation, while
the dashed lines correspond to the 2D simulation. We observe that the total energy is conserved
more accurately in the 3D code, with a deviation of approximately ~ 3% after 80 kyr of evolution.
In contrast, the 2D simulation exhibits a deviation of around ~ 15% during the same period. We
attribute these minor differences in the energy balance to the use of spherical coordinates in the
2D simulation, which may introduce more numerical errors near the axis.

As seen in the central panel, for this model, most of the magnetic energy is stored in the
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Figure 7.8: Evolution of the magnetic energy spectrum as a function of m (summed over all /),
for the axisymmetric case. We show ¢ = 0 (in black) and ¢ = 80 kyr (in yellow). Throughout the
evolution, the power contained in all m # 0 modes never grows above 10™* the power in the m =0
mode.
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Figure 7.9: The results of the comparison between the 2D (dashed lines) and the 3D (solid
lines) codes up to ¢ = 80 kyr. Left panel: energy as a function of time. Energy balance in black,
Joule dissipation in red, magnetic energy in blue and Poynting flux in yellow. Right panel: total

magnetic energy in black, poloidal magnetic energy in blue, toroidal magnetic energy in red.
Bottom panel: D4 in black and D in blue (eq. (7.30) and eq. (7.31) respectively).
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poloidal field, while the toroidal field represents approximately ~ 15% of the total magnetic
energy at ¢ = 0 and approximately ~ 34% at ¢t = 80 kyr. The increase in the relative fraction of
the toroidal energy is caused by the non-linear term, leading to some redistribution of magnetic
energy between the poloidal and toroidal components.

In the right panel, we conduct a comparison between the square of the divergence of the
magnetic field integrated in the star volume (eq. (7.30)) and the volume-integrated 2 (eq. (7.31)).
Both quantities share the same units, erg/cm?, making this comparison an effective way to
assess the level of conservation of the divergence constraint. The variations between the 2D
and 3D values of D4 are likely attributed to the different coordinate systems utilized. However,
it is important to note that despite these differences, D; remains several orders of magnitude
lower than D, and it exhibits relatively constant behavior over time. Generally speaking,
we can conclude that the results from both codes are in agreement, considering the expected
grid/formalism-dependent numerical errors.

After presenting the MATINS code and conducting extensive testing, as illustrated in this
chapter, our focus in Chapter 8 will be on performing the first 3D coupled magneto-thermal
simulations using MATINS. These simulations will incorporate the most recent temperature-
dependent microphysical calculations at each point of the star, utilizing Potekhin’s publicly
available codes (Potekhin et al., 2015). Additionally, the simulations will be based on a realistic
EoS for the star structure and will include the corresponding relativistic factors in the evolution
equations. In §8.1, we will employ isothermal cooling, and in §8.2, we will conduct the first 3D
coupled magneto-thermal simulation applied to a highly complex initial magnetic field topology

in the crust, similar to what was recently obtained by proto-neutron star dynamo simulations.
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3D MAGNETO-THERMAL SIMULATIONS

he configuration of the neutron star’s magnetic field at birth remains largely unknown,

and understanding how to generate strong dipolar fields that can explain the timing

properties of magnetars is still an open question (see e.g. Igoshev et al. (2021c) for a
review). Various scenarios have been discussed in the literature to explain the origin of the
magnetic field in magnetars. Magnetic flux conservation can lead to the strongest magnetic fields
in the case of highly magnetized progenitors that could be formed in stellar mergers (Ferrario
and Wickramasinghe, 2006; Schneider et al., 2019; Makarenko et al., 2021). However, this may
not explain the formation of millisecond magnetars, as highly magnetized progenitors tend to
be slow rotators (Shultz et al., 2018). An alternative scenario for achieving fast rotation and a
strong magnetic field involves magnetic field amplification through a turbulent dynamo in the
proto-neutron star (Raynaud et al., 2020). Recent MHD local and global simulations have been
proposed to quantify this magnetic field amplification.

On one side, box simulations with simplified background fields have demonstrated the
development of the magneto-rotational instability (MRI) (Balbus and Hawley, 1991; Akiyama
et al., 2003; Obergaulinger et al., 2014; Rembiasz et al., 2017; Aloy and Obergaulinger, 2021). On
the other side, global simulations have explored various dynamo mechanisms in proto-neutron
stars (Raynaud et al., 2020; Reboul-Salze et al., 2021; Masada et al., 2022; Barrere et al., 2022),
taking into account the effects of differential and rigid rotation, as well as convection. As typically
observed in dynamo simulations, the system attains an equilibrium configuration. Even though
the fields are far from static, the energy distribution across scales (or multipoles) achieves a state
of statistical quasi-equilibrium. This results from the balance of forces in the magnetized fluid.

The magnetic energy within the proto-neutron star is dispersed across a broad range of

spatial scales, with the non-axisymmetric and toroidal components dominating over the large-
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scale poloidal dipole. Although the total energy is compatible with magnetar-like magnetic fields,
it is dominated by the small-scale structures in the system.

In this context, the approach and findings of these studies represent a significant advance
that enhances the highly simplified depictions of static idealized equilibria known as twisted
torus (Ciolfi and Rezzolla, 2013; Sur and Haskell, 2021), which are frequently utilized as initial
field configurations. It is worth noting that these large-scale axisymmetric configurations exhibit
a markedly distinct spatial distribution of magnetic energy compared to dynamo configurations.
Despite this difference, they have been commonly employed as the starting point for the long-term
evolution of neutron stars.

In this chapter, we present the first 3D simulations performed using MATINS, with a back-
ground structure coming from a realistic EoS, the most recent temperature-dependent micro-
physical calculations, and the inclusion of the corresponding relativistic factors in the evolution
equations (Dehman et al., 2022). In §8.1, we evolve the crustal temperature using a simplified
treatment, adopted from Yakovlev et al. (2011) and considering different non-axisymmetric initial
configurations. Then, in §8.2, we perform the first 3D coupled magneto-thermal simulation using
MATINS (Dehman et al. (2022) & Ascenzi et al. in preparation) and considering a complex initial
magnetic field topology similar to Reboul-Salze et al. (2021) in terms of spectral distribution
(Dehman et al., 2023b).

8.1 Isothermal cooling

8.1.1 Physical setup

In this section, we employ the analytical approximation for the temperature evolution proposed
by Yakovlev et al. (2011), as follows:

10km t

2GM
(8.1) T(¢) = 3.45 x 108K (1 -5
C R*

) [1+0.12 R )2] (t—c)me“
where t. is some fiducial (normalization) time-scale and it is set to the age of the Cas A supernova
remnant (330 yr). For our model, M =1.4M; and R, = 11.7 km. It has been shown that this time
dependence is accurate during the neutrino cooling stage (Yakovlev et al., 2011).

The simulations consider a stratified electron number density and a temperature-dependent
resistivity. The electrical conductivity required to calculate 7, is determined locally at each

timestep, taking into account the temperature, local density, and composition.

8.1.2 Initial magnetic topology

To assess the sensitivity of our results to uncertain initial conditions, we have explored three
distinct magnetic field topologies, all confined to the crust, following a similar approach to Aguilera

et al. (2008). The specific radial dependence and the method for constructing a divergence-free
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Table 8.1: Initial Models Considered. [ and m are the initial non-zero multipoles considered in
each model. B, is the average initial magnetic field. E 1,5, is the initial magnetic energy (all in
the crust). Etor/Emag is the fraction of the crustal toroidal energy. For all these models, we are
confining the field lines to the crust of the star. We use the simplified cooling described in the text
(eq. (8.1)), except in two models ("deactivated").

Models | Ip0 M pol lior | Mior | Bavg(t0) | Bmax(t0) | Emag(t0) | Etor/Emag | Simplified | Tfxed
[G] [G] [erg] (¢0) Cooling [K]
L5 1,2, [ -1,0,1, [ 1,2, [ 0,1, [ 2x10M¥ | 7x10™ | 2x10% 63% activated -

3,5 2,3 3,5 | 2,3
L5-T1e9 | 1,2, | -1,0,1, | 1,2, | 0,1, | 2x10M | 7x10¥ | 2x10% 63% deactivated | 10°
3,5 2,3 3,5 | 2,3
L5-T28 | 1,2, | -1,0,1, | 1,2, | 0,1, | 2x10M | 7x10¥ | 2x10% 63% deactivated | 2 x 108
3,5 2,3 3,5 | 2,3
L1 1 0 1 1 3x10™ [ 6.5x10™ | 4x10% 95% activated -
L10 1,6, | -5,-1,0, | 1,3, | -5,0, | 104 3x10™ | 6x10* 10% activated -
7,10 | 1,7,8 | 17,10 | 2,9

magnetic field are outlined in detail in Appendix B.3. It is worth noting that the numerical
scheme inherently preserves the local divergence up to machine error, ensuring accuracy in our
simulations.

The different models studied in this section have an average initial magnetic field of ~ 1014 G,
corresponding to total magnetic energies of the order of ~ 10%° erg. These models are summarized
in Table 8.1. Most of the magnetic energy is contained in the toroidal component, except for the
last model. The variations in these models arise from the different relative weights of multipoles
in their initial configurations. In the second and third models (L5-T1e9 and L5-T2e8), we keep
the temperature fixed during the evolution at 109 K and 2 x 108 K, respectively. It’s important
to note that we have deliberately chosen arbitrary combinations of a relatively small number of
multipoles, rather than the expected smooth cascade over a wide range of them, as suggested
by the proto-neutron star configurations mentioned earlier. The total evolution time for the first
three models (L5, L5-T1e9, and L5-T2e8) is 70 kyr, while for the L1 model, it is 85 kyr, and for
the L10 model, it is 100 kyr. However, for some models, the total evolution time is constrained by
numerical instabilities that arise at late times when the temperature drops significantly below
108 K (e.g., T(100kyr) ~ 107 K from eq. (8.1)), leading to an increase in the magnetic Reynolds
number. The appearance of these instabilities also depends on the initial magnetic field strength
and topology. This behavior is similar to what we have observed in our 2D magneto-thermal code
(Vigano et al., 2021).

For all the models displayed in Table 8.1, we utilize a resolution of N, =40 and N; = N;, =43
per patch, which corresponds to a total of 172 grid points around the equator and 87 points along
a meridian from pole to pole. With this resolution, we analyze up to [ = 30 for the multipole

expansion.
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8.1.3 L5 model

The first model, denoted as L5, has an average magnetic field strength of approximately 2x 1014 G
and reaches a maximum of around 7 x 1014 G. The initial configuration is characterized by a
large-scale topology, representing a sum of multipoles up to / = 5. Notably, this model is Hall-
dominant, and throughout its evolution, it reaches a maximum magnetic Reynolds number of
about R,, ~ 200.

In Fig. 8.1, we examine the [ energy spectrum (summing eq. (7.32) over all m’s) in the left panel
and the m energy spectrum (summing it over all I’s) in the right panel, at various evolution times.
At time zero, one can clearly distinguish the multipoles imposed initially. However, as we initiate
the evolution, a portion of the magnetic energy begins to transfer from the large-scale multipoles,
into the smaller-scale ones. Moreover, we observe the excitation of higher-order m modes in
the system. By the time we reach 1kyr, most of the magnetic energy is concentrated in the
initially imposed multipoles, but a fraction of it has already been transferred to [ =4 —10. As we
continue the evolution up to 5 and 10 kyr (red curves), the transfer of energy toward small-scales
persists, gradually filling the entire spectrum. Around 20 kyr, the magnetic energy spectrum
appears to have attained a quasi-stationary state, referred to as the Hall-saturation. Since the
dissipation scales as L2/n; (where L represents the typical spatial scale of the field curvature), the
smaller-scale structures dissipate faster compared to the larger-scale ones. Simultaneously, the
larger-scales continuously feed the smaller-scale ones thanks to the Hall term in the induction
equation. This process is known as the Hall cascade, leading to an equilibrium distribution
of magnetic energy across a broad range of multipoles, displaying an approximate {2 slope
(Goldreich and Reisenegger, 1992).

Indeed, the cascade and saturation processes require two main conditions to occur successfully:
(i) Hall-dominated dynamics, which necessitates a sufficiently large magnetic field to ensure
that the Hall term is dominant during the evolution of the system,; (ii) an initial configuration
that allows the full development of the Hall cascade. As a matter of fact, poloidal and toroidal
fields exhibit asymmetric coupling, with odd multipoles of the former being more coupled to even
multipoles of the latter.

In the case of axial symmetry, one can maintain a helicity-free configuration if the initial field
consists only of / = 1,3,5... poloidal components and / = 2,4,6... toroidal components. Consequently,
not all multipoles are excited, and only odd/even families will manifest in the spectrum. However,
in a general non-axisymmetric case with arbitrary combinations of initial multipoles, the Hall-
dominated dynamics can lead to less clear relative weights of couplings between different modes.
In such scenarios, the behavior of the system may be more complex, and various modes can be

excited in the magnetic energy spectrum due to the interplay of different initial multipoles.
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Figure 8.1: L5 model. Left panel: | energy spectrum. Right panel: m energy spectrum. The energy
spectra are displayed at times 0, 1,5, 10,20, 30,40,50,60 and 70 kyr (see color bars). The =2 slope
corresponds to the Hall cascade equilibrium distribution of magnetic energy over a quite broad
range of multipoles.

8.1.4 The impact of temperature dependent microphysics

To appreciate the role of temperature-dependent microphysics on the magnetic field evolution, we
conduct a comparison up to 70 kyr, considering an identical magnetic field configuration in two
scenarios: one with temperature evolution (L5 model) and two without temperature evolution (L5-
T1e9 and L5-T2e8 models). For the LL5-T1e9 model, the microphysical coefficients are computed
at T = 10° K, while for the L5-T2e8 model, they are calculated at T = 2 x 108 K. It’s worth noting
that T' = 10° K corresponds to the temperature of a neutron star during the first years of its life,
while T = 2 x 108 K corresponds to the temperature at approximately 10 kyr in the L5 model. This
comparison allows us to understand better the influence of temperature on the magnetic field’s
long-term evolution under different microphysical conditions.

The results at different evolution times are depicted in Fig. 8.2. The upper panel illustrates
the comparison between L5 (solid lines) and L5-T1e9 (dash-dotted lines) models, while the bottom
panel shows the comparison between L5 (solid lines) and L5-T2e8 (dash-dotted lines) models. At
the initial time, all three models overlap. Throughout the evolution, a transfer of magnetic energy
towards small-scale structures is observed in all cases. However, a distinguishable behaviour
emerges during the field evolution in the first case (upper panel of Fig. 8.2). Model L5-T1e9
experiences significant dissipation over time with minimal redistribution of magnetic energy
across different spatial scales. In other words, the [ energy spectrum retains the same shape at
t =10 and 70 kyr for LL5-T'1e9. After 10 kyr, approximately 70% of the total magnetic energy has
dissipated for the L5-T1e9 model, while only 35% of the total magnetic energy has dissipated for
the L5 model. As a result, L5-T1e9 is predominantly Ohmic-dominant, while L5 is Hall-dominant.

In contrast, the evolution over time of the L5 and L5-T2e8 models displays a relatively
comparable behavior (bottom panel of Fig. 8.2). At around 5 kyr, the transfer of energy is slightly

more efficient in the L5-T2e8 model. This is because the temperature value considered for the
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Figure 8.2: A comparison up to 70 kyr of the / energy spectrum for L5 model, with temperature
evolution (solid lines) and without temperature evolution (dash-dotted lines). The temperature is
fixed to T' = 10° K in the upper panel, and to T = 2 x 108 K in the bottom panel. In the upper panel,
the comparison is illustrated at ¢ = 0 (black), ¢ = 10 kyr (dark red) and ¢ = 70 kyr (yellow) and
in the bottom panel at t = 0 (black), t = 5 kyr (red), t = 10 kyr (dark red) and ¢ = 70 kyr (yellow).
The 1~ slope corresponds to the Hall cascade equilibrium distribution of magnetic energy over a
quite broad range of multipoles.

L5-T2e8 model, i.e., T = 2 x 108 K, is lower than the temperature value at ¢ ~ 5 kyr obtained using
eq. (8.1). Consequently, the magnetic Reynolds number is slightly higher for the L5-T2e8 model
due to the lower magnetic resistivity associated with lower temperatures. Around 10 kyr, the
[-energy spectra of the two models appear quite similar. However, at approximately 70 kyr, the
results of the two simulations begin to diverge again. The L5-T2e8 model has experienced more
dissipation compared to the L5 model, as at this stage, the magnetic Reynolds number is higher
for the L5 model. Nonetheless, it’s important to note that both models, L5 and L5-T2e8, remain
Hall-dominant throughout the evolution.

The contrasting behaviors of the time evolution of the energy spectrum underscore the
significant impact of temperature-dependent microphysics. In the first case (upper panel of
Fig. 8.2), the differences in spectra are substantial, whereas in the second case (bottom panel
of Fig. 8.2), the differences are more subtle. For a Hall-dominated field, the specific value of the
magnetic diffusivity primarily determines the resistive scale, which corresponds to the width of
the inertial range where the Hall cascade is observed. It’s important to note that in the second
comparison (bottom panel of Fig. 8.2), we set the diffusivity assuming T = 2 x 108 K, which
is not far from the average temperature value during the first 50 kyr. However, much larger
differences could be obtained by manually fixing very different values of n, and n; (or by fixing
much larger or smaller temperatures). This test demonstrates the sensitivity of the magnetic
energy redistribution and dissipation behavior to temperature-dependent microphysical effects.
To achieve more realistic and accurate results, a 3D magneto-thermal code coupled with realistic

microphysics becomes essential, as we will present in §8.2.
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Figure 8.3: Field lines in the crust of a neutron star, for L5 model on the left, L1 model in the

center and LL10 model on the right, at ¢ = 0 (upper panels) and after ¢ = 50 kyr (bottom panels).
The color scale indicates the local field intensity, in units of 102 G.

8.1.5 Different initial multipolar topology
8.1.5.1 Magnetic field lines

To investigate the influence of different magnetic field topologies, we examine three distinct
models, each with different initial multipoles. In addition to the LL5 model presented in §8.1.3,
we have the L1 model, featuring a pure dipolar field with [ =1 in both the poloidal and toroidal
components. On the other hand, the L10 model encompasses a broader combination of initial
multipoles, extending up to / = 10. Throughout the evolution, the maximum magnetic Reynolds
number reaches approximately ~ 200 for the L5 model, ~ 150 for the LL1 model, and ~ 50 for the
L10 model.

In Fig. 8.3, we present the magnetic field lines for the L5 model (left panels), L1 model (central
panels), and L10 model (right panels) at two evolution times: ¢ = 0 (upper row) and ¢ = 50 kyr
(bottom row). At ¢ = 0, the distinct magnetic field configurations adopted in these models are
clearly discernible. However, after a few Hall timescales, approximately 50 kyr, the field lines
become more tangled, yet one can still identify the initial magnetic field configurations. The
neutron star has retained the memory of its initial large-scale topology despite the complex

evolution and tangling of the magnetic field lines.
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8.1.5.2 Energy spectrum

The time evolution of the energy spectrum (as a function of /) is presented in Fig. 8.4. On the
left, we depict the L.10 model, while on the right, we show the L.1 model. For the L.L10 model, the
weights of the initially defined multipoles can be inferred from the black energy spectrum in
the left panel of Fig. 8.4. Throughout the evolution, a redistribution of magnetic energy across
different spatial scales occurs in both cases. However, the L10 model exhibits a tendency to inject
magnetic energy into / = 16 — 18 and / = 20 more than other modes. Additionally, a less evident
bump in the energy spectrum appears at [ =27 and / = 29. These bumps are more pronounced at
the early stages of the evolution, e.g., up to # = 40 kyr.

The injected energy into these small-scale modes is relatively small compared to the initially
dominant modes in the system. Nonetheless, this peculiar energy injection at small-scale struc-
tures could be indicative of the Hall instability (Gourgouliatos and Pons, 2020) that might occur
in such an initial field configuration for higher magnetic Reynolds numbers. As the evolution
progresses, the magnetic energy is redistributed more uniformly across the small-scale structures,
and the lower part of the spectrum, i.e., from [ = 12 up to I = 30, follows the 2 slope (Goldreich
and Reisenegger, 1992). However, the [-energy spectrum retains a strong memory of the initial
configuration, particularly at low /s, throughout the entire evolution, even at ¢ = 100 kyr. This
is because the largest-scales have longer timescales, approximately ~ L2/(f,B), where L repre-
sents the length scale of the field (related to /). Consequently, it becomes challenging to transfer
energy out of or into these larger-scales. In other words, the inertial range of the Hall cascade
encompasses scales with sufficiently short timescales, maintaining the memory of the initial
configuration over extended periods.

The transfer of magnetic energy across different spatial scales appears to be smoother for the
L1 model compared to the L10 model. In the case of the L1 model, the energy spectrum is well
described by an I =2 power-law up to I = 20. However, for smaller-scale multiples, i.e., I > 20, we
observe an excess of energy. This injection of energy into the smallest structures grows over time
and becomes more evident at around ¢ ~ 70 — 80 kyr, although it remains orders of magnitude
lower than the dominant dipolar mode at / = 1. Further investigation of different initial magnetic
field topologies and their astrophysical implications is left for §8.2, as the present section focuses

on the broader understanding of the magnetic field evolution in neutron stars.

8.1.5.3 Poloidal and toroidal decomposition

Using the notation in eq. (7.32), we can decompose the magnetic energy into its poloidal and
toroidal parts. In Fig. 8.5, we present the evolution of the poloidal and toroidal magnetic energy
for different models.

For the L5 model, at the early stages of evolution, the bulk of the magnetic energy is stored in
the toroidal field (approximately ~ 63%), with the poloidal energy accounting for about ~ 37%

of the total magnetic energy. As the evolution progresses, we observe that the toroidal field
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Figure 8.4: [ energy spectrum up to 100 kyr for LL10 model (left panel) and up to 85 kyr for L1
model (right panel). See color bars to identify the ages. The =2 slope corresponds to the Hall
cascade equilibrium distribution of magnetic energy over a quite broad range of multipoles.

tends to dissipate almost 5 times faster than its poloidal counterpart, leading to an inversion
of the poloidal-toroidal ratio. This phenomenon occurs because the toroidal energy is effectively
redistributed into smaller-scale multipoles, which subsequently dissipate faster. Meanwhile, a
significant portion of the poloidal energy remains in the dominant / = 1 mode (upper right panel).
However, after a few Hall timescales, the system eventually reaches a state of approximate
equipartition of magnetic energy between the poloidal and toroidal energy spectra, as a result of
the Hall-dominant evolution.

For the L1 model (central panels), most of the magnetic energy, approximately ~ 90%, is
stored in the toroidal component. In contrast, for the LL10 model (bottom panels), the majority
of the magnetic energy is concentrated in the poloidal component. Despite the evolution over
~ 100 kyr, the magnetic energy remains predominantly stored in the dominant mode for each
model (L1 in the toroidal and L10 in the poloidal). Nonetheless, approximate equipartition of
magnetic energy between the poloidal and toroidal components is also achieved at approximately
~ 10kyr, but only at smaller-scales. The large-scales of the initial configuration are not easily
forgotten or created and retain a significant memory throughout the evolution.

These results confirm that the system favors the redistribution of magnetic energy between
the poloidal and toroidal components to stabilize the evolution. However, it’s important to note
that achieving this saturated configuration, known as the Hall attractor (first introduced by
Gourgouliatos and Cumming (2014)), takes tens of kyr, which coincides with the typical active
timescale of magnetars. Throughout this stage, the spectra and topology still depend on the
initial configuration.

In Fig. 8.6 and 8.7, we illustrate the meridional cuts at longitudes 0 — 180° (left panels),
90 — 270° (central panels), and equatorial cuts (right panels) of the poloidal ® and toroidal ¥
scalar functions for the L.L10 model. The top panels represent the initial configuration at ¢ = 0, the

central panels show the state at 20 kyr, and the bottom panels display the evolution at 50 kyr.
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Figure 8.5: Decomposition of the poloidal and toroidal magnetic energy. Poloidal magnetic energy
is represented with dash-dotted lines, toroidal energy with dots, and total magnetic energy with
solid lines. Upper panels: L5 model. Central panels: L1 model. Lower panels: L10 model. Left
Column: Poloidal and toroidal decomposition of the magnetic energy as a function of time. Right
column: [ energy spectrum at ¢ = 0 (black), ¢ = 10 kyr (dark red), and after 50 kyr (olive).
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Figure 8.6: Model L10. Evolution of the ® poloidal scalar function, at 0, 20 and 50 kyr (from top
to bottom). In the left panels, we show the meridional cuts at the longitudes 0 — 180° (cutting
through the center of patches I and III). In the central panels we illustrate the meridional cut
at the longitudes 90 — 270° (through the center of patches II and IV). In the right panels, we
represent the equatorial 2D cuts. The crust is greatly enlarged for visualisation purposes.

Throughout the evolution, the poloidal function, initially dipole-dominated (lower right panel
of Fig. 8.5), undergoes only slight changes. Conversely, the initially more complex toroidal scalar
function, dominated by the [ = 10 mode, experiences significant rearrangements. Furthermore,
there is a drift of the toroidal scalar function toward the surface of the star, indicating the
importance of coupling this code with the magnetosphere’s evolution (Akgiin et al., 2018; Urban
et al., 2023).

After exploring various initial field configurations using MATINS, our simulations have

confirmed that the magnetic field’s spectra and topology retain a strong memory of the initial
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Figure 8.7: Model L10. The evolution of 2D cuts of the ¥ toroidal scalar function. Same cuts and
times as Fig. 8.6
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Figure 8.8: Spectrum of the total magnetic energy at different evolution time up to 100 kyr
(Hall balance is reached in the system). Left panel: [—energy spectrum. Right panel: m—energy
spectrum.

large-scales, which are relatively resistant to restructuring or creation during the evolution. This
finding highlights the importance of the large-scale configuration acquired during neutron star
formation, as it significantly influences the magnetic field’s topology at all stages of its evolution.
Consequently, in §8.2, which is based on the research conducted by Dehman et al. (2023b), we
will investigate a complex initial field inspired by core-collapse supernovae simulations, utilizing
for the first time the 3D coupled magneto-thermal version of the MATINS code. This approach
involves solving the heat diffusion equation as described in §3.2, instead of adopting the simplified
cooling approach mentioned in this section. Our goal is to gain a deeper understanding of the
magnetic field evolution and cooling process in neutron stars, incorporating more realistic initial

conditions.

8.2 3D coupled magneto-thermal evolution

8.2.1 Initial topology

In recent years, significant efforts have been dedicated to MHD simulations of core-collapse
supernovae (e.g., Obergaulinger et al. (2014); Mosta et al. (2014, 2015); Bugli et al. (2020);
Aloy and Obergaulinger (2021); Powell et al. (2022); Obergaulinger and Aloy (2022)). These
simulations hold intrinsic importance in understanding the underlying explosion mechanisms
and the fundamental physics of hot dense matter (Janka, 2012; Obergaulinger and Aloy, 2020).
Furthermore, core-collapse supernovae simulations play a crucial role in defining the charac-
teristics of its compact remnant, a hot proto-neutron star (e.g. Pons et al. (1999); Barrere et al.
(2022)). As described in §2.1, the highly dynamic process consists of three main stages. After the
core bounce, the system has a cool central region and a hot mantle, emitting neutrinos while
accreting material. In about 20 s, a proto-neutron star forms, becoming extremely hot and liquid

with a large radius. After several minutes, it becomes transparent to neutrinos, shrinking to a
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Figure 8.9: Decomposition of the poloidal and toroidal magnetic energy as a function of time.
Poloidal magnetic energy is represented with red color, toroidal energy with blue, and total
magnetic energy with black solid lines. The dots correspond to the axisymmetric components of
these energies and the dashed lines to the non-axisymmetric components. The axisymmetric and
non-axisymmetric components are taken in proto-neutron star dynamo simulations with respect
to the axis of the proto-neutron star rotation. This has no role in our simulations and we define
these components with respect to the magnetic axis, starting with only m =0 for a dipole.

final radius of 10 — 14 km, marking the birth of a neutron star. The long-term cooling is initially
dominated by neutrinos and later by photon emission from the surface (Burrows and Lattimer,
1986; Keil and Janka, 1995; Pons et al., 1999).

We start from the work by Reboul-Salze et al. (2021), who performed global simulations
using MagIC (Wicht, 2002). They consider a shell representative of the convective region of
a proto-neutron star, and simulate the dynamo coming from the typical differential rotation
profile seen during an advanced state of the core-collapse (about 1s of its lifespan). At saturation,
they found a very complex topology, with most of the magnetic energy contained in the toroidal
axisymmetric large-scale component (especially the quadrupolar component given by winding)
and in the non-axisymmetric small- or medium-scale size magnetic structures, both for the
toroidal and the poloidal components. The large-scale dipolar component represents only about
~ 5% of the average magnetic field strength.

We adopt an initial field with an angular spectral energy distribution, shown in the upper
left panel of Fig. 8.10, comparable to (Reboul-Salze et al., 2021, Fig. 7 top panel). Here we
indicate toroidal (blue)/poloidal (red) and axisymmetric (spherical harmonics order m = 0)/non-
axisymmetric (m # 0) components as a function of the spherical harmonics degree /. In MATINS,
although the evolved quantities are the magnetic field components, we prescribe the initial
field in terms of the toroidal and poloidal decomposition, based on the Chandrasekhar-Kendall
expressions (Chandrasekhar, 1981) as detailed in §B.1.

The initial configuration is then a smooth cascade in / (truncated for simplicity at [ = 20)

and m, with an exception for the quadrupolar toroidal component which dominates. The average
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Figure 8.10: Spectrum of the toroidal magnetic energy (blue) and the poloidal magnetic energy
(red) as a function of the spherical harmonics order / at ¢t =0,10,50 & 100 kyr. The dots correspond
to the axisymmetric components of these energies and the dashed lines to the non-axisymmetric
components. The total number of multipoles in the system is I,x = 40 and the initial number
of multipoles is [ = 20. The top left panel of this figure (¢ = 0) is inspired from a core-collapse
generated turbulent field (Reboul-Salze et al., 2021, Fig. 7 top panel).

initial magnetic field of a few 10'* G, corresponds to a total magnetic energy of the order of
~ 6 x 10* erg. Note that axial symmetry here refers to the rotational axis in the proto-neutron
star phase, but the rigid rotation of the neutron star plays no role in the magnetic evolution (we
don’t evolve the full MHD, with the momentum equation, which includes the Coriolis force, since
the background is assumed static for the solid crust). Therefore, hereafter, in our simulations, we
take as the reference axis the proto-neutron star rotation axis.

Since no specific information on the radial distribution of the magnetic energy is available in
Reboul-Salze et al. (2021), we adopt an arbitrary set of initial poloidal ®;,,(r) and toroidal W¥;,,,(r)
radial scalar functions (see §B.3 for more details). It’s important to note that this particular
choice is not based on any specific physical rationale; rather, it is solely intended to match a

pure dipolar field at the surface when ¢ = 0. In order to test the sensitivity of the results on the
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Figure 8.11: Field lines in the crust of a neutron star at ¢ = 0 (on the left), £ = 10 kyr (in the center)
and ¢ = 50 kyr (on the right). The color scales indicates the local field intensity in units of 10'2 G.

initial radial function, we also conducted a test where the radial function for the dipolar poloidal
component has been applied to all the other poloidal multipoles (producing an initial current
sheet at the surface, see below).

Certainly, it would be unrealistic to assume that the initial configuration of the neutron star
at birth exactly matches the ones simulated during the proto-neutron star stage. In reality, there
are numerous MHD timescales that can influence the evolution of the magnetic topology. On
one side, proto-neutron star will experience a shrinking to the final neutron star size, which will
probably imply an increase of the energy by flux conservation (here considered since we obtain
similar volume-integrated energy spectra). On the other side, the smaller-scale will experience a
fast decay as soon as the dynamo processes will stop feeding them. For this reason, we selected
the first [ < 20 multipoles. However, the details of the spectral slope for the small-scales are not

important, since the Hall effect quickly regenerates them via direct cascade (Chapter 7).

8.2.2 Results

In this section, we present the results of our simulation. The studied model has an average
magnetic field of a few 104 G and a dominant Hall evolution (the magnetic Reynolds number is
greater than unity with an average of R,, ~ 200 — 300 and a maximum reaching up to R,, ~ 1600
during evolution). We adopt a grid resolution of N, =40 and N¢ = N, = 43 per patch (a cubed-
sphere has 6 patches), corresponding to a total number of resolved multipoles in the system of
about /ax ~ 40. We follow the evolution for 100 kyr, an age where most neutron stars have cooled

032 ergs™1). For a more

down enough to be hardly detectable (bolometric thermal luminosity L < 1
quantitative analysis of the 3D magnetic evolution, we survey the magnetic energy spectrum to
observe the redistribution of the magnetic energy over the different spatial scales.

We analyze the [ and m energy spectra at different evolution times, depicted in the left

and right panels of Fig. 8.8, respectively. The transfer of magnetic energy occurs from large- to
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small-scales, where the smaller-scales are initially empty, indicating a dominance of the direct
cascade. Around 20 — 30 kyr, the magnetic energy spectra reach a quasi-stationary state known
as Hall-saturation. The dissipation of small-scale structures happens more rapidly compared
to large-scale ones, leading to an enhancement of Ohmic heating in the system. However, the
former continuously receive energy input from the latter, facilitated by the Hall term in the
induction equation. This phenomenon is referred to as the Hall cascade, which arises due to the
Hall-dominated dynamics. It results in an equilibrium distribution of magnetic energy across a
broad range of multipoles, approximately following an [~ slope, as reported by (Goldreich and
Reisenegger, 1992; Dehman et al., 2022).

Throughout ~ 100 kyr of evolution, the total magnetic energy drops by about half an order
of magnitude as indicated in Fig. 8.9 (solid black line). We also display in the same figure the
decomposition of the total magnetic energy (black) into its poloidal (red) and toroidal (blue)
components. The dots correspond to the axisymmetric components (m = 0) and the dashed lines to
the non-axisymmetric ones (m # 0). The studied initial topology has a poloidal field governed by its
non-axisymmetric component whereas the toroidal field has a significant contribution from both
axisymmetric and non-axisymmetric pieces. For the first ~ 10% kyr, the dissipation of magnetic
energy is relatively small compared to later time. One could notice that the magnetic energy is
transferred from the toroidal to the poloidal field during the evolution. The most efficient transfer
in terms of relative energy increase, is for the poloidal axisymmetric field, probably because it is
initially much weaker than the others. It shows a significant growth of one order of magnitude
during the first 40 — 50 kyr. A saturation occurs for rest of the evolution (i.e., the system has
reached the Hall balance). This quasi-constant energy trend appears for both the poloidal and
the toroidal axisymmetric energy for ¢ < 50 kyr. At the same time, a strong transfer of magnetic
energy to the poloidal non-axisymmetric component takes place. The non-axisymmetric toroidal
energy tends to dissipate faster than the total magnetic energy in the system. That is because
part of the toroidal non-axisymmetric is transferred to the poloidal non-axisymmetric energy. The
latter dominates the axisymmetric toroidal component at ~ 10 kyr and the non-axisymmetric one
at ~ 50 kyr. Nevertheless, the total toroidal field governs the magnetic energy at all time (solid
blue line).

For a further understanding, we study in Fig. 8.10 the evolution in time of the spectra.
We display four snapshots of the toroidal (blue)/ poloidal (red) and axisymmetric (dots)/non-
axisymmetric (dashed lines) components as a function of the spherical harmonics degree ! at
different evolution time, e.g., t = 0,10,50 & 100kyr. At ~ 10kyr, a transfer of energy to the
non-axisymmetric toroidal dipole (blue dashed line, / = 1) takes place due to the inverse Hall
cascade. A significant transfer of energy to the poloidal axisymmetric field happens at large- and
small-scales. Instead, at late time (Hall balance is reached in the system) the dipolar component
dissipates. For a better understanding, we discuss the behaviour of small- and large-scales

independently. During the evolution, the small-scale modes (10 </ < 40) gain a significant
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fraction of the magnetic energy thanks to the Hall cascade in the system. The different behaviors

are listed below

¢ At ¢t = 10kyr, both toroidal components (i.e., axisymmetric and non-axisymmetric) decay
in time, whereas the two poloidal components gain energy at small-scales. That also
agrees with Fig. 8.9 and indicates equipartition at small-scales, since isotropy is easier to
achieve. As a matter of fact, the peculiar crust geometry (a thin shell of ~1km) and the
strong stratification, play against isotropy and, therefore, equipartition between large-scale

components.

¢ At about 40 — 50 kyr, the system approaches a Hall-balance (see also Fig. 8.8). At this stage,
one can notice a slightly different behaviour for the axisymmetric and the non-axisymmetric
components. On one hand, the axisymmetric components reach an approximate equipar-
tition of the magnetic energy between poloidal and toroidal components at small-scales.
That is in agreement to what was found using the axisymmetric 2D code (Pons and Vigano,
2019). A change of phase in the oscillations occur on a timescale of 40 — 50 kyr. On the other
hand, for the non-axisymmetric modes, the slight toroidal dominance over poloidal seen at
10 kyr inverts at 50 and 100 kyr. That is due to a transfer of energy from toroidal to poloidal
field which, however, can be interpreted as equipartition of energy on the small isotropic

scales.

Minor differences appear in the spectrum at 50 and 100 kyr and that is because the system has
reached the Hall balance and the spectra remains stationary as it is shown in Fig. 8.8. Note also
how the large-scales barely evolve, compared to the others. This is another confirmation that the
neutron star tends to a universal behaviour (Hall cascade) for intermediate and small-scales, but
it has a strong memory of the large-scale magnetic topology at birth (Dehman et al., 2022). This
has important implications to relate current observables to the formation process (proto-neutron
star stage).

The field lines in the crust of a neutron star at £ =0, 10 and 50 kyr are displayed in Fig. 8.11.
The magnetic field lines are highly multipolar and many small-scale structures cover the surface.
The field lines are very tangled throughout evolution, making it difficult to discern any clear
dominant component.

In Fig. 8.12, we show the evolution of the thermal luminosity and (in color scale) of B,,, the
dipolar component of the poloidal magnetic field at the surface of the star (value at the magnetic
pole). For such an initial configuration, the luminosity ranges from 5 x 1032 — 1033 erg/s in the
neutrino cooling era, soon after, in the photon cooling era (t~ 10%) yr, the luminosity drops sharply
below 1032 erg/s. The abrupt change in the slope of the cooling curves at ages ~ 300 yr is due to
the choice of the superfluid gap (Ho et al., 2015). The rapid cooling during the photon cooling
era is also caused by the low core heat capacity, which in turn depends on the assumed pairing

details. A comprehensive revision of the microphysics embedded in magneto-thermal models can
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Figure 8.12: Luminosity curve as a function of time. The colorbar indicates the evolution of the
dipolar component of the poloidal magnetic field at the surface of the star (value at the magnetic
pole).

be found in Potekhin et al. (2015). On the other hand, B, drops from ~ 1012G to ~4x 1011 G
without any noticeable increase.

At the surface of the star, we define the average field strength in each multipole / as follows

psur 1 r 0-5
Bl = [Efdg((B 7+ B +B"?)]

B2 0.5
_[2o my2 [ —2A(R) 2
(8.2) - G (e ®a+ 1 +1a+D)|
where e 2M®) ig the relativistic metric correction at the surface, b]" are the dimensionless weights

of the multipoles entering in the spherical harmonics decomposition of the radial magnetic field
(eq.(7.24)), and By is the normalization used in the code.

In the top panel of Fig. 8.13, we show the time evolution of B?“rf as a function of /. At t=0, the
neutron star surface is dominated by the dipolar mode due to the specific radial function that we
assume for each multipole in this case. However, as soon as we start the evolution the small-scale
modes become dominant at about 1 kyr. Then the system reaches some sort of balance throughout
the evolution. The balanced configuration is dominated by small-scale structures only (/ = 10).
This finding implies that during the evolution the B, value (the colorbar of Fig. 8.12) is much
weaker than the one inferred for most magnetars (101 — 1015 G), when the classical spin-down
formula is used to interpret the timing properties.

So far we have focused only on different choices of the tangential distribution of magnetic
energy (the initial multipole weights). However, the initial radial profile of the topology (i.e., the
set of radial functions of each multipole (/,m)) is also an important parameter that potentially
affect our results (also connected to the outer and inner boundary conditions). For this reason,
in the bottom panel of Fig. 8.13, we compare the evolution for two different initial sets of radial
functions (both equally arbitrary), which result in very different initial shapes of B?urf. The solid

lines correspond to a set of radial functions that allow a smooth matching with a pure dipole
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Figure 8.13: Time evolution of the surface average field strength as a function of / (eq. (8.2)). Top
Panel: evolution up to 100 kyr. The colorbar reflects the evolution in time. Bottom Panel: Compari-
son of the evolution for different radial functions at ¢ = 0 (black), 1 kyr (red) and 20 kyr (yellow).
The solid lines correspond to the radial function that fits the potential boundary conditions (§B.3
of Appendix B) and results in an initial purely dipolar field at surface (black solid lines), whereas
the dots correspond to (Aguilera et al., 2008, eq. (8)) applied to both toroidal and poloidal field.
The latter allows an initial distribution of small- and large-scale multipoles on the star’s surface.

outside (see §B.3), confining inside all the other multipoles. The dots correspond to another
set of radial functions that allows an initial distribution of small- and large-scale multipoles
on the star’s surface, with an initial non-zero tangential current that is quickly dissipated
by the re-arrangement of the field. Both simulations are quickly dominated by small-scale
structures (around ~ 1kyr, shown in red) and converge to a similar spectral distribution of B?“rf
after approximately 20 kyr, signifying the attainment of Hall balance. From the comparison of
these two simple choices, it seems that, independently from the initial radial distribution of the
magnetic field inside the neutron star’s crust, the star surface is anyway dominated by small-scale

structures.

8.2.3 Discussion

Based on our analysis of the results (§8.2.2), we observed that the surface dipolar component
experiences no significant growth over this timescale, regardless of the initial radial distribution
of the magnetic field in the neutron star crust (see Fig. 8.13, bottom panel). We argue that a
dominant surface dipolar magnetic field could only arise if the initial magnetic energy distribution
is primarily concentrated in the dipolar component alone (either in the crust or in the core).
Similar to our previous work and PARODY-based studies (Gourgouliatos and Pons, 2020; Igoshev
et al., 2021a), we find a wide range of spatial scales in which the magnetic energy is distributed,
and the large-scale components are sub-dominant. However, it remains unclear how core collapse
could lead to a neutron star with such an almost pure dipolar configuration. In fact, several

observations suggest that internal non-dipolar components (such as toroidal and multipolar
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components) are dominant in various astrophysical sources, including low field magnetars (Rea
et al., 2013; Tan et al., 2023), high-B pulsars (Zhu et al., 2011), CCOs with outbursts (Rea et al.,
2016), spectral features in magnetars (Tiengo et al., 2013), and XDINS (Borghese et al., 2017).
Lastly, in Dehman et al. (2020), the 2D simulations demonstrated that the dipolar poloidal field
(Bp) played a minor role in determining magnetars’ bursting activity, and the magnetic energy
stored in the star’s crust served as a better indicator.

These features, already partially explored in Gourgouliatos and Pons (2020); Igoshev et al.
(2021a) (where they started with only small-scale multipoles), could be suitable for describing
CCOs, X-ray sources with luminosity ranging between 1032 — 1034 erg/s, located at the centres of
supernova remnants, with an estimated surface dipole magnetic field in the range 101° - 1011 G.
The dissipation of such weak large-scale component alone cannot provide sufficient thermal
energy to power their observed X-ray luminosity. It is believed instead that CCOs have a hidden
strong magnetic field due to the fall-back accretion (Ho, 2011; Vigano et al., 2012). This magnetic
field dissipates in the star interior to provide the bright thermal luminosity of CCOs (Fig. 8.12).

It is plausible that certain physical effects may come into play during the collapse or in the
early life of the neutron star, resulting in the presence of large-scale dipole magnetic fields at
the star’s surface, with intensities exceeding 10'3 G. One potential mechanism could involve a
strong inverse Hall cascade triggered by helical magnetic fields (e.g., Brandenburg (2020) for
box simulations). However, such behavior has not been observed in global simulations thus far,
indicating that there might be some crucial dynamics that we are currently overlooking, which
could lead to the organization of sustaining currents on a large scale.

On one hand, the proto-neutron star dynamo simulations are intrinsically influenced by
the chosen simplistic boundary conditions (see, e.g., Raynaud et al. (2020) for a comparison
between perfect conductor and potential configurations), which are, in any case, not realistic
for the dense, hot, and plasma-filled environment of the proto-neutron star. On the other hand,
the magnetic field sustained by currents in the core might be significant, particularly in the
long-term, given that its evolution timescales are presumably longer (although see Gusakov
et al. (2020)). Nevertheless, it remains uncertain how to generate a strong poloidal dipolar field,
supported by robust toroidal and organized currents, during the proto-neutron star or early
neutron star stages.

A radically different alternative, compatible with the absence of strong dipolar fields, is
conceivable. It is possible that the values of B, are consistently lower if the electromagnetic
torque is primarily dominated by magnetospheric effects, such as particle winds and the presence
of strong and extended loops charged with particles. This concept finds support in observations
of the Sun (Yeates et al., 2018) and Zeeman-Doppler studies of main sequence stars (Neiner
et al., 2009), which have inferred magnetospheric topologies displaying field lines stretched
by the wind and exhibiting complex configurations. The presence of strong magnetospheric

structures could also align with the existence of small hotspots (with radii less than 1km),
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as commonly inferred from magnetars’ X-ray thermal spectra during quiescence or outbursts.
Additionally, these structures could be associated with the more extensively studied resonant
Compton scattering, which gives rise to the observed non-thermal tails in spectra. However,
quantifying the supplementary contributions of the magnetosphere to the spin-down remains
limited by the models proposed by Tong et al. (2013), warranting further investigation to support
this scenario. In this regard, the coupling of the interior evolution with the magnetosphere plays
a crucial role in enabling the flow of currents and, ultimately, leading to the presence of a larger
surface dipolar magnetic field (Akgiin et al., 2018; Urban et al., 2023).

Finally, this study marks a groundbreaking achievement as we present, for the very first
time, a fully 3D coupled magneto-thermal evolution applied to an initial complex magnetic
field topology, while incorporating a realistic star structure, the microphysics, and the general
relativistic corrections. Our simulations complement and extend recent efforts in describing crust-
confined 3D magnetic field evolution from PARODY -based published works (Wood and Hollerbach,
2015; Gourgouliatos et al., 2016; Gourgouliatos and Pons, 2020; De Grandis et al., 2020, 2021;
Igoshev et al., 2021b,a), which had limitations in predicting thermal luminosity. Moreover, our
simulations break free from axial symmetry restrictions, employing the cubed-sphere formalism
to properly treat the axis, distinguishing them from the conventional 2D magneto-thermal code
(Vigano et al., 2012; Vigano et al., 2021) and box simulations (Brandenburg, 2020).
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CHAPTER

CONCLUSIONS

n this thesis, we have presented a comprehensive study of the magneto-thermal evolution
in isolated neutron stars. Our investigations have shed light on the physics of neutron
star interiors, which operate under extreme conditions within these compact celestial
objects. Throughout our research, we have conducted numerous astrophysical applications,
covering both theoretical and observational aspects. Furthermore, we developed a groundbreaking
3D code called MATINS, which accurately models thermal luminosity, timing properties, and
magnetic field evolution, while considering realistic star structures and microphysics. Notably,
our simulation tackled the highly complex initial magnetic field topology in the crust, similar to
that recently obtained by proto-neutron star dynamo simulations (Dehman et al., 2023b). As a
result, MATINS stands as the most realistic 3D coupled magneto-thermal code to date.
Several key conclusions can be drawn from the diverse studies performed during this doctorate.
To begin with, a comprehensive understanding of the cooling process in young and middle-aged
magnetars is crucial for interpreting observational data. In particular, we reevaluated neutron
star cooling curves, taking into account envelope models and extreme magnetic field topologies.
Our research revealed that the surface temperature (T;) is highly sensitive to the magnetic
field strength. Specifically, the state-of-the-art envelope model (Potekhin et al., 2015) predicted
significantly higher T'; for strong magnetic fields compared to older models, leading to substantial
changes in photon luminosity: from high luminosity epoch (during the neutrino cooling era) to a
very low luminosity phase (soon after entering the photon cooling era). The impact of this trend is
most evident in models where the magnetic field penetrates the star’s core, with electric currents
circulating there. In contrast, in crustal-confined models, the additional energy released by Joule
heating close to the star’s surface is very effective and governs the energy balance equation, which,

in turn, counterbalances the effect. As a consequence, the location of bulk electrical currents
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within the star determines whether middle-aged magnetars appear relatively bright or exhibit
very low luminosities, making their persistent emission undetectable as X-ray sources.

Our results also contribute to a better understanding of different isolated neutron star classes
based on observational data. For instance, bright middle-aged magnetars like 1E 2259+586
can be explained by crustal-field with magnetized light envelopes, while all XDINS require a
strong component of crustal-field. However, the envelope model can vary, being either light or
heavy, and either magnetic or non-magnetic. Additionally, the middle-aged faint pulsars, such
as PSR B0656+14, may be explained by the presence of a light element envelope. This becomes
particularly relevant for neutron stars with low magnetic fields, where light envelopes result
in cooler neutron stars compared to heavy envelopes as they age beyond 10% yrs, irrespective of
the field configuration. Furthermore, the existence of strongly magnetized neutron stars with
detectable thermal emission at later times strongly supports the presence of a crustal magnetic
field.

This study emphasizes the crucial consideration of all factors in the complex theory of
neutron star cooling. Neglecting the envelope’s role or using non-magnetized envelopes can
lead to discrepancies up to one order of magnitude compared to observational data. Conversely,
accurately estimating surface luminosity is vital for constraining source properties like surface
magnetic field strength or age. These insights have significant implications for population
synthesis studies of pulsars and magnetars. The inability to detect certain sources introduces
observational biases that can greatly influence birth rate and field distribution predictions.

In Chapter 5, a thorough comparison was conducted between observations and theoretical
simulations. To comprehend the behavior of cold and young observed pulsars, machine learning
techniques were employed for statistical analysis. The results revealed that EoSs capable of
triggering fast-cooling processes within the first 103 yrs of their lifespan can account for these
cold and young sources. This study contributes significantly to constraining nuclear EoS, as a
suitable EoS should elucidate both exceptionally bright objects like magnetars and extremely
faint objects at young ages. Taking into account a simplified meta-modeling approach Margueron
et al. (2018), the excluded range is estimated to encompass approximately 75% of the proposed
EoSs.

Then in Chapter 6, we focused on exploring the magnetic-related activity and crustal fail-
ures in young magnetars. Through simulations, we made a remarkable discovery: the dipolar
component, which most FRB-magnetar models currently rely on, actually plays a minor role
in determining the bursting activity of the magnetosphere when triggered by crustal failures.
Our investigations revealed that the crustal failure rate changes significantly by several orders
of magnitude when varying the magnetic field configuration from a large-scale, smooth core-
threaded field to a multipolar field confined in the crust, even with the same dipolar poloidal
value (B,). However, we observed that the crustal magnetic energy serves as a reliable tracer of

the expected number of events, regardless of the specific field topology. To better constrain the
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detectable fraction of events, further observations and a deeper understanding of disturbance
propagation and burst emission mechanisms are essential.

The core of this thesis lies in the development and application of the MATINS 3D code.
The MATINS code will soon be available to the public, providing a valuable resource for the
high-energy astrophysics community focused on exploring various astrophysical aspects related

to highly magnetized neutron stars. The code can be accessed at the following URL:
https://github.com/csic-ice-magnesia/MATINS

We have intentions to consistently enhance and expand this open-access code at regular intervals.

MATINS deals with realistic nuclear EoS allowing to obtain a realistic star’s structure and
microphysics. The code is based on finite volume scheme applied to the cubed-sphere formalism,
and it is second-order accurate in space and fourth-order accurate in time. The cubed-sphere
formalism is a peculiar gridding technique widely used in different fields of physics, and it allows
to solve partial differential equations in spherical geometry avoiding the axis singularity problem:
a common problem that emerges when adopting finite volume/difference scheme in spherical
coordinates.

We have shown that MATINS is stable and can follow to late times the evolution of the
internal coupled magneto-thermal evolution in the crust of neutron stars. It conserves the total
energy contained in the system and the divergence-free condition of the magnetic field. Moreover,
it has been extensively tested, against analytical solutions, e.g., the purely resistive test (§7.3.2),
and numerical axisymmetric solutions replicable by our 2D code (§7.3.3).

The simulations performed using the MATINS code are described in Chapter 8. Initially,
we adopted an isothermal cooling profile based on Yakovlev et al. (2011). Different initial field
configurations were explored (§B.3) using this code. Our simulations (see §8.1) confirm that a
strong magnetic field in the range of 10 — 1015 G, results in the Hall cascade redistributing
energy across a wide range of scales, exhibiting a slope of approximately ~ I~2. Moreover, at
small scales, there is an approximate equipartition of energy between the poloidal and toroidal
components. However, reaching this saturated configuration, known as the Hall attractor, takes
tens of kyr, which coincides with the typical activity timescale of magnetars. During this stage,
the spectra and topology retain a strong memory of the initial large scales, which are considerably
more resistant to restructuring or creation. This underscores the significance of the large-scale
configuration during neutron star formation in determining the magnetic field topology at any
age during its evolution.

Finally, we tackled the heat diffusion equation in 3D and conducted simulations considering
an exceptionally complex initial magnetic field topology derived from proto-neutron star dynamo
simulations (Dehman et al., 2023b). This marks a pioneering achievement as we present, for
the first time, the most realistic 3D simulation to date. It includes fully 3D coupled magneto-
thermal evolution (§8.2), a realistic star’s structure, temperature-dependent microphysics, solves

the axis singularity problem thanks to the cubed-sphere formalism, accounts for relativistic
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corrections, and utilizes the state-of-the-art envelope model existing in the literature, along
with an initial magnetic field topology derived from proto-neutron star dynamo simulations.
With this initial setup, we found that the simulation does not account for the X-ray luminosity
observed in Magnetars. Instead, it can explain the luminosity observed in low-field magnetars and
CCOs. Furthermore, the surface dipolar component, responsible for the dominant electromagnetic
spin-down torque, does not exhibit any increase over time when initiated from this initial topology.

The work presented here is not without limitations. The potential boundary conditions
assumed in the simulations, where the current is not allowed to circulate outside the star, may
affect our results. However, we have recently conducted a study (Appendix. C) where we coupled
the interior evolution with the magnetosphere in 2D, using the PINN approach. This study
highlighted the significance of such coupling on the interior evolution. The PINN approach has
made this investigation more feasible in three dimensions, allowing for more comprehensive
insights into the system. Currently, we are actively working on extending these results to the 3D
domain.

Furthermore, we anticipate that future research will delve into understanding the 3D mag-
netic field evolution in the core of a neutron star. Additionally, our finite volume code, utilizing
cubed-sphere coordinates, could be extended and generalized to include MHD simulations and
turbulence, eliminating the need to cut the axis. This enhancement would enable a fully spherical
three-dimensional finite volume/difference code capable of studying turbulence.

In conclusion, the work presented here has made a significant contribution to the field of
neutron star research, offering crucial insights into their complex magneto-thermal evolution.
These findings effectively bridge the gap between theoretical models and observational data,
providing valuable understanding of the behavior of these enigmatic cosmic entities. Moreover,
the versatility of these simulations extends to various astrophysical studies, encompassing
investigations into crustal failures, outbursts, population synthesis, and more. We are hopeful
that this research will establish a robust foundation for future investigations into the physics of

neutron stars and their astrophysical significance.
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APPENDIX

THE CUBED-SPHERE FORMALISM

A.1 Coordinates transformations

All evolution calculations represented in Chapter 7 and 8 are performed in the cubed sphere
coordinates, with a few exceptions. The potential boundary conditions are imposed in spherical
coordinates (§7.2.2). Thus, a transformation from spherical to cubed-sphere coordinates is needed
at each magnetic timestep. This transformation has also been used in some other cases, in
particular when defining the initial magnetic field in spherical coordinates, e.g., the Bessel test
(§7.3.2). Instead, the transformation from cubed-sphere to spherical coordinates is applied to
generate the output files.

We follow the same approach as in Ronchi et al. (1996), but using Schwarzschild interior
metric solution of the TOV equation (§2.3). We introduce the auxiliary variables that will be used

in our formalism

X =tan({),
Y =tan(n),
6=1+X2+Y?2,
1
C=(1+X%HV2= Tt
(A1) D=(1+Y»)"2= %(n)

The metric tensor exhibits the same functional dependence on the auxiliary variables across
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all patches. In the unit vector basis, it can be expressed as follows:

1 0 0
_ XY
(A.2) gij=lo 1 -X¥
XY
0 -%p 1
The inverse of the tensor metric reads
1 0 0
-1_ C?D?  CDXY
A3 S N i
0 CDXY c%p?
5 5

In all patches, the radial versor e, is orthogonal to the plane formed by e and e;, unit vectors,
which are not in general orthogonal to each other.
The covariant components (lower indexes) of a vector are obtained by contracting the metric

tensor with its contravariant components, as follows:
(A4) V= gijVj.

Conversely, the contravariant components (upper indices) of a vector are obtained by contracting

the inverse of the metric with the covariant components of a vector.
(A.5) Vi=g;lV;

The spherical coordinates consist, as usual, of: r € [R.,R ], representing the distance to the
origin between the crust-core interface and the surface; 0 € [0, 7], known as the co-latitude, or
polar angle, which measures the angle with respect to the North pole (x = y =0, positive z in
Cartesian coordinates); ¢ € [0,27], denoting the azimuth angle defined in the x — y plane, starting
from the x-axis. Each patch of the unit sphere is centered around a Cartesian axis, as illustrated
in Fig. A.1. The transformations between these different coordinate systems are identical to those
described in Ronchi et al. (1996); Lehner et al. (2005).

The coordinate directions of the patches are indicated in the exploded view of Fig. 7.1 and can

be described qualitatively as follows:':
* PatchI:centerinx=1(0=3,0=0); e —~e,, e, — e..

* Patch IL: centerin y=1(0=5,¢ = 3); e — —ey, e;, — e.

Patch III: center in x = -1 (0 = 5, = 7); e — —ey, e, — e.
¢ Patch IV: centerin y=-1(0 = %,(/) = 37”); e;— ey, e;—e;.

* Patch V: center in z =1 (6 =0, ¢ undefined); e — e, e;, — —ey.

Patch VI: center in z = —1 (0 = 7, ¢ undefined); e; — e,, e;, — e,.
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Figure A.1: The cubed sphere represented with respect to Cartesian coordinates. The x-axis is
directed outwards piercing the centers of patch I (e,) and III (—e,, behind, not visible), the y-axis
goes to the right, piercing the centers of patch II (e,) and IV (-e,), the-z axis is directed upwards,
piercing the centers of patch V (e,) and VI (—e,).

With this notation, we have the following relations between cubed sphere, spherical and

Cartesian coordinates, for each patch:?
¢ Patch I (Equator)

X =y/x=tan¢
Y =z/x=1/tanfcos¢
x=r/V8, y:rX/\/g, z=rY/V5
0 = arctan[(cos & tann) 1] = arctan(C/Y)
(A.6) b=¢

IThe direction is denoted for brevity using the symbol “—”, and is exact only at the center of each patch. As the
points approach the edges, the indicated direction becomes less straightforward, and the angular deviation increases
up to a maximum of /4 (notably at the three-patch common corners).

2The transformation from cubed sphere to Cartesian coordinates is taken from §4.1.3 of Lehner et al. (2005). They
use a grid that is equally spaced in b = X and a =Y, rather than being equally spaced in ¢ and 1. Note also that their
patches 0-5 correspond to I-VI here, in the same order. The 6(¢,n) and ¢(¢,n) are derived in this work with simple
trigonometric relations, starting from the definitions X (6,¢) and Y (0, ¢). For the polar patches, we have employed the

identities sin(arctan )=+ | 8|/1/1+ B2 (e, "+"if >0 and "-"if < 0) and cos(arctan f) = 1//1+ 2.
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¢ Patch II (Equator)

X =—x/y=—-1/tan¢
Y =z/y =1/tanfsin¢
x:—rX/\/(?, y:r/\/(?, 2=rY/V6
0 = arctan(C/Y)

(A7) p=¢+3

¢ Patch III (Equator)

X =y/x=tan¢
Y =—-z/x=-1/tanf cos ¢
x=-r/V8, y= —rX/\/g, z=rY5
0 = arctan(C/Y)
(A.8) p=¢+m

¢ Patch IV (Equator)

X =—x/y=-1/tan¢

Y =—z/y=—-1/tan0Osin¢
x=rX/V§, y:—r/ﬁ, 2=rYNGS
0 = arctan(C/Y)

(A.9) p=c+"
2
e Patch V (North)

X =y/z=tanfsin¢
Y = —x/z=—tanfcos¢
x=—rY/¢§, y=rX/¢§, z=rlV6
6 =arctan V5 —1

if (X>0,Y <0) ¢ =—arctan(X/Y) (region «a)

if (X>0,Y>0) ¢ =n—arctan(X/Y) (region p)

if (X<0,Y >0) ¢=mn—arctan(X/Y) (region y)

(A.10) if (X<0,Y <0) ¢=21—arctan(X/Y) (region §)

142



APPENDIX A. THE CUBED-SPHERE FORMALISM

¢ Patch VI (South)

X =—-y/z =—tanfsin¢
Y = —x/z=—tan6cos¢
x=rY/¢5, y:rX/\/g, z=-rIV6
6 = —arctan(vV5 — 1)
if (X>0,Y <0) ¢ =n+arctan(X/Y) (region a)
if (X>0,Y >0) ¢ =arctan(X/Y) (region f)
if (X<0,Y>0) ¢=2r+arctan(X/Y) (region y)
(A.11) if (X <0,Y <0) ¢ =n+arctan(X/Y) (region 0)

Please note that along the equatorial-centered patches I-II-III-IV, the ¢ coordinate coincides
with the ¢ coordinate in spherical coordinates, with a phase shift of (0,7/2,,371/2) respectively.
Additionally, the transformation into the 6 coordinate remains the same in all four patches, as
they cover the same co-latitude.

For the polar patches, the transformation is less trivial. It’s important to remember that the
arctan function tends to 7/2 (i.e., patches I-IV and X > 0 in patches V and VI) and 37/2 (i.e., X <0
in patches V and VI) if the argument tends to +oo (i.e., when the denominator Y of the ratios
X/Y and C/Y approaches zero). This behavior is essential to consider when dealing with the
coordinate transformations in these polar regions.

To ensure that ¢ is defined in the range [0;27] and 6 in the range [0; 7] within patch V and
patch VI, a subdivision of each of these patches is required. This subdivision becomes crucial as
the sign of the X/Y ratio changes within these subregions, as shown in Fig. A.2. Consequently, in
order to guarantee that ¢ spans the interval [0;27], a "+7" adjustment (i.e., subregions § and y
of patch V and subregions a and § of patch VI) or a "+27x" adjustment (i.e., subregion § of patch V
and subregion y of patch VI) must be added to the expression of ¢p. This ensures proper continuity

and coverage of the full range for the azimuthal angle.

A.2 Jacobians

In order to transform vectors from spherical coordinates to cubed sphere coordinates, we need
the Jacobian matrices. Hereafter we indicate only the 2 x 2 Jacobian relating the transformation

of the tangential components, since the radial coordinate is the same.

¢ Patch I-IV (Equator)
A12) A% (o0 cCD/sV2)(A?
' A7) \-1 XxYy/5v2)\A¢
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Patch V Patch VI
n, n,
g e a b
o+ Back ¢p+n ¢+2rn Front
X <0 X>0 X<0 X>0
Y>0 Y>0 Y>0 Y>0
Y p Y p
¢+ 2n b+ b+nx
X<0 X>0 X<0 X>0
Y<O0 Y<O0 Y<O0 Y<O0
5 Front a 5 Back a
d : c h ! f
4

Figure A.2: Subdivision of patch V and patch VI. Each of these patches is divided into four
sub-regions, and each of these sub-regions has a different sign of the X/Y ratio. This subdivision
is crucial to properly define ¢ in the range [0 : 27].

AY XY/CD -1)[A¢
(A.13) =
A?| \6Y2/cD o0 |\A"
e Patch V (North)
AS 1 DX -DY/5V2\ (A"
(A.14) =
A (-1 \cy  CXx/5v?)\AY
AP 1 X/D Y/C \[A¢
(A.15) =
A?| (-2 \-YsY2/D Xx65V2/C)\A"
e Patch VI (South)
A¢ 1 -DX DY/sV2 )\ (A"
(A.16) =
Al (5-1)¥2\-CY -CXx/5V2]\A?
AP 1 -X/D -Y/C \[A¢
(A.17) S
APl -2 \ysY2D -Xx5V2/C)\AN
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Keep in mind that the quantities X, Y, D, C, and 6 (egs. (A.1)) are functions of ¢ and 1, which
means that the Jacobian varies depending on the location within the patch. Additionally, it’s
worth noting that in the equatorial patches, vectors transform in a consistent manner due to the
symmetrical construction of the four patches. In these equatorial patches, ¢ and 1 are directed
in the same way, resulting in their mutual interfaces aligning along the n direction. However,
this symmetry does not apply to the polar patches, where the orientation of ¢ and 7 is different,
making the vector transformations more complex in these regions.

On the axis, the angular components of vectors in spherical coordinates and the corresponding
Jacobians are ill-defined, and as a result, they are not used. Therefore, when a transformation
from spherical to cubed-sphere coordinates is required (e.g., for boundary conditions or when
the initial field is given in spherical coordinates), the angular components in the cubed-sphere
coordinates are averaged. This averaging process involves considering the 8 closest neighbors in
the tangential direction surrounding the axis point at a specific radial layer.

At each patch edge, to transition from the coordinate system of the adjacent patch to that of
the original patch, we utilize a Jacobian matrix to compute the vectors at the ghost cells and at
the interface. The Jacobian is constructed by passing through spherical coordinates. For instance,
to transition from the north patch to an equatorial patch, JAC, is obtained by multiplying the
Jacobian required to go from the north patch to spherical coordinates (eq. A.15) and the Jacobian
needed to go from spherical coordinates to an equatorial patch in cubed-sphere coordinates
(eq. A.12). On the other hand, to move from an equatorial patch to Patch VI, JAC results from the
multiplication of eq. (A.13) and eq. (A.16).

A.2.1 Dot product

Considering the metric tensor defined in eq. (7.2), the dot product is given by:

1 0 0 b"

a-bZ(ar at a") 0 1 —% b¢
o - 1 J{&"

XY . .
=arbr+afb5+a"b"—C—D(a‘bn+a"b"r).
(A.18)

The presence of the mixing term —)% (a‘fb’7 + a”bf) arises from the fact that e; - e, # 0 since these

two unit vectors are non-orthogonal. Therefore, the off-diagonal terms of the metric tensor are

non-zero due to the non-orthogonality of these basis vectors.
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A.2.2 Cross product

A.2.2.1 Contravarient component

The contravariant component of the cross product is given by
(A.19) (axb) =a'bighle; s,

where gkl is the inverse of the metric, ;;, = \/g €;; is the covariant Levi-Civita tensor, ¢;j;, is
the usual Levi-Civita symbol, and /g is the square root of the determinant of the metric. The

latter is given by

Lo 0 X2y?2 5
_ XY | _ _
(A.20) detlgl=|0 1 -¢p —1—02— D2 - C2D2’
0 _XY 1
CD

with /g =6Y2/CD.
The contravariant component of the cross product is then written as follows:
(@xb) = i/2(a‘fb’7 —a"b%)e
CD '

1 r r r r
+W(CD(a”b ~a'b")+ XY (a"b% — a'b") e

1 r r r r
(A.21) +m(xy(anb ~a'b")+CD(a"b" —a*b") ey,

A.2.2.2 Covariant component

The covariant components of the cross product are given by:

(A.22) (axb) =a;bjgr &7,
Here, g3; is the metric, £/ is the contravariant Levi-Civita tensor, and it is given by:
(A.23) sk _ sgn(det[g])gijk’

V&

where sgn(detlg]) = (—1)4. If the metric signature contains an odd number of negatives (q), then
the sign of the components of this tensor differs from the standard Levi-Civita symbol. However,

to simplify our work and avoid dealing with the contravariant Levi-Civita tensor, we can write

(axb); = aibjgkl?:ijk
(A.24) = griging ot a"b’,

The covariant Levi-Civita tensor can be expressed in terms of the contravariant Levi-Civita

tensor as follows:
(A.25) vl = gklgiugjvéijk.
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Therefore, the covariant components of the cross product are given by:
(A.26) (@ xb); =&yp1a”d”,

where, with the help of the metric tensor from eq. (7.2), they can be expressed as follows:

51/2 .
(@xb), = C—D(a“b" —a"bt)e”
51/2
+ C—D(a”br —a"b")e*
61/2
(A.27) +C—D(arb“r—a€br)e’7.

In our work, we utilize the covariant components of the cross product to compute the covariant
surface components (as discussed §7.1.2). These components are then employed in the curl

operator within the context of finite volume schemes (as detailed in §7.1.3).

A.3 Infinitesimal geometrical elements

A.3.1 Infinitesimal lengths: contravariant components

The contravariant components of the infinitesimal length elements of a sphere with radius r are:

(A.28) dl” =M r,

. 2rD d&  2rC2D
A.29 dlf = -
( ) 8 cos?¢ 1)

dg,

2
(A.30) dl = 2rC dn _ 2rCD dn,
6 cos?n 1)

A.3.2 Infinitesimal lengths: covariant components

By utilizing eq. (A.4), we can calculate the covariant components of the length element as follows:

dl, = grrdl" + gredl® + grpdl"
(A.31) =dl" =M dr.

dle = gerdl™ + geedl® + gendl”
¢ XY

—dl i
CD
2rD
(A.32) = rT(Cde—Xde).
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dly = gnrdl” +gnedl® + gpydl"

XY
=dI"-——di*
CD
2
(A.33) = rTC(DZdn _XYdo).

A.3.3 Infinitesimal areas: contravariant components

The area elements are determined by the magnitude of the cross product of the various length
elements.

The contravariant components of the infinitesimal radial surface element are as follows:
(A.34) dS™ =dl* xdl".

Using eq. (A.19), we get

r2CD 4dédn e 1612
= e
62 cos2icos?n CD
4r2e~*C?D?

ds”

The contravariant component of the infinitesimal surface element ¢ is determined by

dSt =dl1" xdl”

3 2rCD%eMdrdn
h 5372

(A.36) (CDe; +XYey).

The contravariant component of the infinitesimal surface element 7 is determined by

dS" =dl" xdl*®

3 2rDC%2eMdrdé
h 53/2

(A.37) (XYes+CDey).

A.3.4 Infinitesimal areas: covariant components

Following eq. (A.26), we can define the covariant components of the surface elements in terms of
the contravariant length elements.

The covariant component of the radial surface element is defined as

dS, =ldlgxdl,|
=dI°d1"E,,
=dI°dI"\/g eeyy

B 4r?
= 3%

(A.38) =dS’,

C?D2%dnd¢
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as expected from eq. (A.4). The covariant component of the infinitesimal surface element ¢ is
defined as:

dS¢=|dl, x dl, |
= d1"d1" &,

B 2re’D

(A.39) = W

drdn.
Whereas, the covariant component of the infinitesimal surface element 7 is defined as:

dS,=dl, xdl|
=dl"dI%Epey

2reMC

(A.40) = Wdrdf-

A.3.5 Infinitesimal volume element

The infinitesimal volume element is obtained by calculating the mixed product of the three

geometrical lengths.

dV = (dI¢ xdl")-dl" = (dl; xdl,)-dl, =dS,dl"
=(dl"xdl")-dl* = (dl, xdl,) -dl; = dS:dl°
= (dl" xdl°)-dl" = (dl, x dl;)-dl, = dS,dl"

_ Ar) 47'2C2D2

(A.41) 5372

drdnd¢.

A4 Treatment of the ghost cells

When computing the curl operator introduced in eqs. (7.9)-(7.11) at the edges (corners) of the
patch, one needs information about the values of the functions in some points which lie in the
coordinate system(s) of the neighbouring patch(es). A way to deal with this issue is to extend one
layer of ghost cells in each direction, for each patch. The handling of ghost cells adds another
layer of complexity to the cubed-sphere coordinates. This complexity arises due to the six distinct
coordinate systems composing the cubed-sphere coordinates.

In this section, we provide a series of schematic depictions illustrating pairs of adjacent
patches. These depictions significantly aid in understanding the arrangement of ghost cells,
particularly when it involves connecting one of the equatorial patches with either the north
(patch V) or south patch (patch VI). In the figures below, each panel illustrates the ghost cells of
the original patch in pink. The orientation of the axes within each patch, i.e., { and 7, is displayed
in each diagram. The ¢ axis corresponds to the orientation of the spherical ¢ coordinate. In

this context, p represents the value of the point coordinate parallel to the interface, while q
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signifies the coordinate pseudo-perpendicular to it. It is important to note that the coordinates
are non-orthogonal except along the central axes of each patch. The original coordinate system,
denoted by (p°,q?°), is indicated using the superscript °, whereas the mapping of a point in the
adjacent patch is marked with the superscript ”. For additional details, please refer to §7.1.5
and Table 7.1. The Jacobian jacinv corresponds to the transformation from a specific patch of
the cubed-sphere coordinates to spherical coordinates, while the Jacobian jac corresponds to the
transformation from spherical coordinates to one of the cubed-sphere coordinates. The schematic
representation displayed in Fig. A.3 is applicable to every pair of contiguous equatorial blocks,
encompassing patch II-III, patch ITI-IV, and patch IV-I. However, the complexity increases when
dealing with the interconnection of an equatorial patch with either the northern patch or the

southern patch.

 —_—
S
d C —’6” e d C e
7' ! ; nt
I ] | I
él 5] 5”
—_— > D —
a b l f a b f
T T
§’=Z+d€ §’=Z—d§
1 r 1 r
=——+d =———d
4 2 ¢ ¢ ) ¢
patch I — spherical patch I — spherical
jacinveq(Z, L1, q° =& po=y jacinveq(nang —1,:,:,) g =&l po =yl
qm — f”, pm — 7]” qm — 51’ pm _ ’]l
spherical — patch / spherical — patch I/
jaceq(nang +1,:,:,0) jaceq(O, L)

Figure A.3: Schematic depiction of two adjacent equatorial blocks, e.g., patch I and patch II, is
provided. The LHS and RHS panels illustrate the ghost cells of patch I and patch II in pink,
respectively. The orientation of the axes &, !, &1 and n!! is depicted in each diagram. The ¢ axis
represents the orientation of the spherical ¢ coordinate. Here, p denotes the value of the point
coordinate parallel to the interface, and ¢ represents the coordinate pseudo-perpendicular to it,
recognizing that the coordinates are non-orthogonal except along the central axes of each patch.
The original coordinate system (for which we know (p?,q°)) is indicated by the superscript °,
while the mapping of the point in the adjacent patch is denoted with the superscript ™. For further
details, please refer to §7.1.5 and Table 7.1. The Jacobian jacinv., corresponds to eq.(A.13),
while jac., corresponds to eq.(A.12) This schematic representation applies to every pair of
contiguous equatorial blocks, including patch II-III, patch III-IV, and patch IV-I1.
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Figure A.4: Same as Fig. A.3. The Jacobian jacinv, corresponds to eq.(A.15), while jac, corre-
sponds to eq. (A.15). The LHS and RHS panels illustrate the ghost cells of patch I and patch V in
pink, respectively.
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Figure A.5: Same as Fig. A.3 and Fig. A.4. The LHS and RHS panels illustrate the ghost cells of
patch IT and patch V in pink, respectively.
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Figure A.6: Same as Fig. A.3 and Fig. A.4. The LHS and RHS panels illustrate the ghost cells of
patch III and patch V in pink, respectively.
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Figure A.7: Same as Fig. A.3 and Fig. A.4. The LHS and RHS panels illustrate the ghost cells of
patch IV and patch V in pink, respectively.
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Figure A.8: Same as Fig. A.3. The Jacobian jacinv, corresponds to eq.(A.17), while jacg corre-
sponds to eq.(A.17). The LHS and RHS panels illustrate the ghost cells of patch I and patch VI

in pink, respectively.
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Figure A.9: Same as Fig. A.3 and Fig. A.8. The LHS and RHS panels illustrate the ghost cells of

patch IT and patch VI in pink, respectively.
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Figure A.10: Same as Fig. A.3 and Fig. A.8. The LHS and RHS panels illustrate the ghost cells of
patch III and patch VI in pink, respectively.
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Figure A.11: Same as Fig. A.3 and Fig. A.8. The LHS and RHS panels illustrate the ghost cells of
patch IV and patch VI in pink, respectively.
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APPENDIX

THREE-DIMENSIONAL MAGNETIC FIELD FORMALISM

B.1 Poloidal and toroidal decomposition

In MHD, various formalisms can be used to describe the magnetic field. In this context, we
present the most common notations found in the literature. For any three-dimensional, solenoidal
vector field B, representing the magnetic field, we can always introduce the vector potential A
such that:

(B].) B:VXA.

The magnetic field B can be represented using two scalar functions, ®(x) and ¥(x), which
define its poloidal and toroidal components, respectively, based on the Chandrasekhar-Kendall
expressions (Chandrasekhar and Kendall, 1957):

o(ro

or
(B.2) B, =VxVYEk .

Here, k is an arbitrary vector. This decomposition proves particularly useful in problems where
k can be taken to be normal to the physical boundaries, and the boundary conditions in the
toroidal direction are periodic. Consequently, when dealing with a spherical domain and using
the cubed-sphere coordinates (r,¢,n), the suitable choice for k& is r.

In accordance with the notation of Geppert and Wiebicke (1991), the fundamental concept
involves expanding the poloidal function ® and the toroidal function ¥ as series of spherical
harmonics at time zero to establish the initial conditions. Expressing the two scalar functions, ®

and W, as series of spherical harmonics, we get:

1
(B.3) O(t,7,0,¢) = ~ Y Dy (r, )Y (0, )
I,m
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1
(B.4) ¥(t,r,0,p) = - Y Wi (r, )Y (0, ).
I,m

In this context, the expansion involves considering the degree I =1,...,1,,, and the order m =
—1,...,1 of the multipole. It is important to note that in 3D, the toroidal field is a combination of
the two tangential components of the magnetic field, while the poloidal field is a mixture of all
three components. This presents a more intricate scenario compared to the 2D case, where the
toroidal part is solely comprised of the azimuthal component, and the poloidal part consists of
the other two components of the magnetic field.

Combining the poloidal and toroidal components of the magnetic field, one can express the

three components of the magnetic field in spherical coordinates as follows:

1
=3 lZl(l + 1), (r)Y;1,(0, ),

IR OYzm(6,¢>) 1 0Y1,, (0, )
=5 2P * i o im =5 2
(B.5) = __Z\P m( )OYlm(Q (P) 1 ZCD aYlm(H,(P),

rsan

0¢
where CD;m represents the radial derivative of ®@;,, and is given by:

oA OPum(r) | 1- e M0

(B.6) @) (r)= =

q)lm(r)-

Refer to §B.5 for a thorough explanation of the derivations.

B.2 Spectral magnetic energy

To achieve a comprehensive quantitative analysis and gain insights into the results, as well as
to investigate the distribution of magnetic energy across various spatial scales and multipoles
within the defined system, we examine the energy spectrum. Our goal is to track the evolution
of the / and m energy spectrum over time within the volume of a neutron star. To compute the
spectral energy, we utilize the poloidal and toroidal decomposition of the magnetic field as defined
in eq. (B.5). The magnetic energy content in each mode, accounting for relativistic corrections,

can be expressed as follows:

1 1
®B.7) Bin =g [ ar i@+ <520}, + (@), 9,
V4

The e and e¢ terms are seen in §2.3.
The first two terms in eq. (B.7) account for the poloidal magnetic energy and the last term
accounts for the toroidal energy. The total energy density can be obtained by summing over all /

and m modes, i.e., Y ;,, Eim.
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To determine the spectral energy distribution as given in eq. (B.7), one needs to reconstruct

the three radial scalar functions, namely @;,,, q)ém, and W¥;,,, which are defined as follows:

1
B. Dy, (r) = B"Y;,,(0,),
(B.8) ()= 7 f dS,B"Y1n(60,¢)
;o der 00V BY Y,

(B.9) =105 ) 5 (B 56" * simg ¢ )
and

1 dS,( B? aY;, 0Yim
(B.10) v, ()= f : L —B‘/’—l).

[1+1) r \sinf 0¢ 00

For a detailed explanation of the derivations, refer to §B.6.
For r = R, the spectral magnetic energy in c.g.s. units, including the relativistic correction,
can be expressed as:

)(2l+4)

r

>r_ 1 -
(B.11) EZR = & f R (e PO+ 12 +10+1)
Ilm

Refer to §B.7 for a comprehensive derivation.

B.3 Initial models

The initial topology of the magnetic field can be constructed by selecting a specific set of spherical
harmonics that define the desired configuration. For example, for a dipole, we use Y;_1 ,,, for a
quadrupole, we use Y;—g ,,, and for a multipolar topology, we can create it by combining several
spherical harmonics, expressed as Y ;,, Yi,,(0, ).

The choice of the set of spherical harmonics determines the angular part of the magnetic field
topology. This selection offers flexibility, allowing researchers to tailor the topology as per their
requirements. In our study, we enforce potential magnetic boundary conditions and use a set
of radial scalar functions ®@;,,(r) and ¥;,,(r) that ensure a smooth matching with the potential
boundary conditions. This approach enables us to construct a magnetic field configuration that
satisfies the desired properties at the boundaries.

We adopt the radial profile of the dipolar poloidal scalar function, ®;_1 ,,(r), as described in
eq. (8) of Aguilera et al. (2008). This profile smoothly connects to a pure dipolar field outside,
neglecting relativistic corrections. It ensures continuity in the function and its first derivative.

The expression for ®;-; ,,(r) is given by:
(B.12) Dj—1 ;(r) = Dour(a +tan(uR +)b)

where @ is the normalization and

_ sin(ur) B cos(ur) _ cos(ur) B sin(ur)

(ur)? ur T (ur)? (ur)

(B.13)

>
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U is a parameter related to the magnetic field curvature, and its value needs to be determined for
a specific surface radius R .
For higher-order multipoles of the poloidal scalar function (I > 1) and all the toroidal scalar

function contributions W;,,(r), we restrict their presence to the crust of a neutron star as follows:

(B.14) DBy (), ¥im(r) x —(R—7)%(r—R,)*
where the proportionality means that every multipole can have a different normalization (i.e.,
its initial weight). Note that this particular choice has no specific physical ground, further than
matching at ¢ = 0 with a pure dipolar field at the surface.

From ®;,,(r) and ¥;,,(r), we construct the magnetic field components defined by egs. (B.2). We
utilize the curl operator in cubed-sphere coordinates, given by eqs. (7.9)-(7.11). This construction
ensures that the initial topology of the magnetic field is divergence-free up to machine error, and

effectively eliminates any axis-singularity issues.

B.4 Spherical Harmonics

The spherical harmonics are characterized by forming an orthonormal and complete set, as

expressed by the following integral equation:

2 b4 ,
(B.15) f d¢ f YO, )Y (6, $)sin0d0 = 6116 mm,
0 0

where 6;; and §,,,, are Kronecker delta functions. This property is essential for various mathe-
matical and physical applications involving real spherical harmonics on the surface of the sphere.
6 equals 1 when [ =1’ and m = m/; otherwise, 6 is equal to 0. The notation Yl’,”’*(6,</)) represents
the conjugate of the spherical harmonics.

We are interested in utilizing the real set of spherical harmonics, also known as Laplace
spherical harmonics. To work with real functions, one can construct them by combining complex
conjugate functions corresponding to opposite values of m. In this manner, the real spherical

harmonics Y;,,(0,¢) are defined as follows:

% (Y +ym) =/ 2 E%;Z;; P]*"(cosB)cos(mep) m>0,
144/ 251—;1 P?(cos@) m=0,

(=1)™ [m| Iml*y _  /2l+1 (U—=|Im|)! plm| .
W(Yzm —Ylm )= ‘/%(HIZD! le (cos@)sin(|m|¢p) m <0.

Indeed, the real set of spherical harmonics also constitutes an orthonormal and complete set,

leading to the following expression for their orthonormality condition:
2m b4
(B.16) j(; d([)[) Yim(0,0)Y0(0,0)sin0d0 = 0170 mm»
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where the solid angle dQ = sin8dfd¢ = dS,/r?. This relationship allows us to express the

orthonormality condition in the cubed sphere formalism as:

das,
(B.17) | S Xm0, 600,00 = 8106

Other spherical harmonics properties relevant to our formalism are:

0Yim Yy 2l+1)m
(B.18) fdQWW = (l(l +1)- T)6ll’6mm’7
and
dQ 0Y;, 0Yyi, @Ql+1)m
B.19 = 0100 mm!-
(B.19) f sin20 0p 0¢ g WCmm

The Laplace transform of the spherical harmonics is defined as:

10%Y  cos® 3Y 1 0%y
Y 002  Ysin0 00  Ysin20 o¢?

(B.20) -1l +1).

aYlm

To determine the spherical harmonics Y;,, and their derivatives, —5* and Yin

o)
formalism, we express them in terms of the associated Legendre polynomials, which constitute a

needed in our

non-orthogonal set of functions defined as:

d™P(x)
B.21 PM(x) = (-1 (1 —xH2 =2,
( ) ;) =(=D"(1—-x%) o
Here, P;(x) represents the Legendre polynomial. To compute the associated Legendre polynomials
for different values of [ and m, we use one of the many recurrence relations available, such as

the following:

s (%2 - DPP (0 -+ m-DP, @) m=0,
P'(x) =
(-1l - DL - 222 m=1.
Note that the associated Legendre polynomials P} for m <0 are not required in our formalism.
Once we have the set of associated Legendre polynomials, we can easily find the spherical

harmonics using the definition of the real spherical harmonics, Y;,,.
The partial derivative 08Y7;,,(8,¢$)/0¢, is given by:

25;1 8;2;: P (cosB)sin(m¢) m>0,

0Y 1, (0,¢)
(B.22) % =40 m =0,
|m| 2%—;1 8;:2:;; P}ml(cosﬂ)cos(lml(,b) m < 0.
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For the partial derivative 0Y7},,(0,¢)/00, we have:

21+1 (I-m)! 0P (cos0)
o Txm) CoS(mp)——75— m >0,
0Y;,(0,p) ) [2IE1 9P} cost) o
00 "V & a0 m =0,
I—|m))! 0P‘m‘(cost9)
A i (jm|¢) gy m <O0.

The expression for 0P;"(cos6)/060 for m = 0 is non-zero when / > 0 and is given by:

~3(@+m)a=m+ DPPIcos0) - P (cosd)]  0<m=i-1,
Pll(cose) m=0,
—lPll_l(cose) m=1.

The choice of the recurrence relation for m > 0 ensures that B? goes to zero at the poles of the

sphere.

B.5 Mathematical derivation of eq.(B.5)

In this section, we provide a comprehensive derivation of eq. (B.5). This derivation encompasses
the incorporation of general relativistic corrections within a three-dimensional framework.

The toroidal component of the magnetic field is given by

By = -rxVY¥,

ey OV ovY
B.23 =% 2% ..
(B.23) sinf oo *a0

¥ is defined in eq. (B.4), thus

0Yim(0,¢)
o

e¢
Z\Pmu L

(B.24)

Im(r)————

The poloidal component of the magnetic field can be derived from the toroidal vector potential.

The latter is expressed as follows:
(B.25) Air=-rxVo .

@ is defined in eq. (B.3), thus

4’

(B.26) Avor=— Zszm() e“’Z@m()
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The poloidal component of the magnetic field is then given by:

Bpol =V xAgr,

(1aA¢ 1 aA9+A¢cose)
=e,|— —
"\r 80 rsin® 0¢ rsin0

(B.27) reg(——+=—].

Using eq.(B.26), one can express the radial component of the magnetic field, B”, as follows:

0*Yim(©0,¢) 1 0°Vim(0,¢)  cos0 0Yim(0,¢)
B.28 D + .
(B.28) Z m(r )[ 0% sin20 A2 sinf 90
By utilizing the property of Laplace’s spherical harmonics defined in eq. (B.20), B” can be ex-
pressed as:
1
(B.29) B" = ) U1+ DDy (1Y (6, ).
Ilm

The angular derivatives of the poloidal component of the magnetic field, Bgol and Bﬁol’ including

the relativistic correction, are expressed as follows:

aY, (9 Y[ 40Py (1) (1—e M)
(B30 pol = Z lm e é’: * Dy ()|,
1 0Y1m(0,P) [ _1) 0P (1) (1—e M)
B.31 ¢ _ ") o
®3D pol  rsind % P € or T " 1m ()

Using eq. (B.6), we can express the poloidal component of the magnetic field as follows:

1
Byoi = €r—5 3 10+ )@y ()Y 10, 9)
im

1 Y1 (6,
+e0—2®;m(r)¥
Y1 (0
(B.32) ¢—Z @ (r )M

a¢

Here, the term dDEm(r) incorporates the relativistic corrections (eq. (B.6)).

Combining the poloidal and toroidal components of the magnetic field (eq. (B.23) and eq. (B.32)),
the three components of the magnetic field in 3D spherical coordinates in spectral space are given
by:

1
(B.33) B = - Y 11+ DDy (MY 100, )
Im
0_lyg n¥m@¢) 1 0Y;,,(0, ¢)
(B.34) B’ = r%oblm(r) rsmHZ\P I (P)— = 5
__= aYlm(Q <P) 1 Y, (0, (P)
(5:59) - Z\Ijlm( ) rsinglz' ( ) 0¢
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B.6 Mathematical derivation eq.(B.7)

To compute the spectral magnetic energy, one needs to determine three radial scalar functions,
Dy, (1), @;m(r), and ¥;,,(r). To compute ®;,,(r), we utilize the expression for B” of the magnetic
field (eq. (B.33)) and the orthogonality property of spherical harmonics (see §B.4). This allows us

to express ®@;,,(r) as follows:

r2 f dQB" Y Y (0,0) = Y10 + 1)y (r) | dQY 1 Yy
Im Im

(B.36) =) Op(MIU+1),
lm
thus
(B.37) %@lm(r) > 3 (l+ T f dS;B Y (0, ).

The angular components of the magnetic field contain mixed toroidal and poloidal contributions.

6Yl m

Therefore, to calculate <I>’ (1), we first multiply eq. (B.34) by —5z* and integrate over the solid

angle:

Y, dQ 0Y i 01
dQ Wi .
()f ( ) *LYmO | 5 g

[
sinQ 0

aYlm
B.38 dQBf? —m —
(B.38) rf a0

lm

Then, we multiply eq. (B.35) by and integrate over the solid angle:

¢
(B.39) r f dQBY O¥im _ =2 Yim()

dQ Yip 0¥im ) f dQ (aYzm)
sinf  0¢

sinf 00 d¢ sin20

Im Zm

Summing eq. (B.38) and eq. (B.39), and applying the orthogonality properties of Spherical Har-
monics (eqgs. (B.18) and (B.19)), we obtain:

1 ds aY; B? aY;
B.40 (D/ — f r (BG m + m)
540 % tm (") ;‘l(l+1) r 30 sinf 0
To calculate ¥, (r), we multiply eq. (B.34) by Snll 5 agjp’” and integrate over the solid angle:
dQB? aY, dQ aYy,, 0Y, dQ (0Y;, )2
(B.41) rf N (r )f — I N W) | ( Z’") :
sin@  0¢ lm sinf 00 op i sin“0\ 0¢

GYZ m

Then, we multiply eq. (B.35) by =5g* and integrate over the solid angle:

0Yim

(B.42) r f dQBY —lm dQ 0¥y 0Yim
‘ 26

- _ 0Yim
Z‘I’lm(r) dQ( ) +Z<Dlm(r)f win 09 00

Subtracting eq.(B.41) from eq.(B.42) and applying the orthogonality properties provided in
eqs. (B.18) and (B.19), we obtain:

1 ds,( B? oYy, aYlm)
B.43 ¥ = -B? .
(B.43) % tm(r) %zan)f r (sine ¢ a0
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The spectral magnetic energy is expressed as follows:
(B.44) Emag = % f M ridr f dQ((B"?+(BY? +(B?)?).
The radial magnetic energy is defined as:

Epd= f Mrdr f dQ(B’Y
(B.45) =y e’“”% f dQ D@, (P) Py () Y (0, 9) Y1 (0, ILL'(L + 1)1 +1).

Im

By applying the orthogonality property of spherical harmonics (eq. (B.17)), we can derive:
(B.46) Erad Z A(r) 2(l + 1)2Q)2 ).

The angular magnetic energy is expressed as follows (assuming [ =1’ and m = m/):

E20E = fe“r)r2drfd9((30)2 +(B7)
— | A2 ’ Yim(0,4)
_fe r drfdg[rzlzn;((blm(r)) ( %0 )

2 aYzm<9,¢>)2
> v, o0 S

TR a¢>

+—=
rzsznze

+

Zcblm(r)%m( )

sm@

e %\le(r)( 30

S T R

r2sin20 o
(B.AT) rszHZ(D (r)\ylm(r)aYln(;(:,(P)aYlm(H,([))'
Thus,
By = f M”d"Z( (r))2+‘1’12m(r) f dQ[(aYl”(;f"”))2+Siig@(alef’@)Z].
(B.48)

Utilizing the orthogonality properties of spherical harmonics as defined in egs. (B.18) and (B.19),

we find:

Im

(B.49) EX = f AdrY 10+ 1)[(c1>;m(r))2 +2 ().
Im

The spectral magnetic energy in c.g.s. units, including the general relativistic correction, is

expressed as:

(B.50) Eim =g [0 ar 1+ 0[R2 0+ (@, )+ 9,0,
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B.7 Mathematical derivation eq.(B.11)

At the surface of the star, the radial scalar function is known (see §7.2.2 for more details). This is
a result of considering potential boundary conditions (V2y,, = 0). Therefore, for r = R, the three

components of the magnetic field are defined as B = Vy,,:

R\(+2)
B = e—/l(r)ZYlmblm(l + 1)(7) ,
Im

R )(Z+2)

aY;
Ba:‘zblma—ﬁ(‘

r

sz

b

(B.51)

(R )(l+2)

sm@

The radial spectral energy E?R is expressed as follows:
ETZER = f MIriar f dQ(B")?,
R (2l+4)
(B.52) = / e_Mr)r2drlZ(l + 1)21;?,"(7) :
m

The angular component of the magnetic energy E ng , is defined as:

(1+2) (1'+2)
R R 0Y ;1 OY
B.53 E’Zsz M2 g bimby ( ) (—) fdQ—’"—’"
(B-53) 0 rL 2 binbim r 30 a0

Applying the orthogonality property as described in eq. (B.18), we obtain:

(2[+4)
2[+1
Bon By =f el(r)’“zdrzb?m(}j) (l(z+1)——( l+2 )m).
im r

The angular component of the magnetic energy EfR, is expressed as:

1+2) (7'+2)
R R dQ 8Ym 0Y)m:
B.55 Erszf Mp2dry" Y bimbr ( ) (—) f =
(B:55) ¢ rlml’ - m ot r sin?0 0 0P

Applying the orthogonality property as described in eq. (B.19), we obtain:

@D 91 + 1ym

> R
(B.56) Er(p—R =[el(r)r2dr2b?m(—) 3
Im r

Note that eq. (B.56) cancels with the second term of eq. (B.54). Therefore, the spectral magnetic

energy for r = R, in c.g.s. units and including the relativistic correction, is expressed as:

lm

R (21+4)
(B.57) Bl == f M’”“”r%erb?m(e‘“(”)(z+1)2+1(l+1) —) :
lm
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CRUST-MAGNETOSPHERE COUPLING USING PHYSICS-INFORMED
NEURAL NETWORKS

he magnetosphere of a neutron star plays a crucial role in explaining various observational

properties (Beloborodov, 2009; Akgiin et al., 2017). Although our work does not delve into

the 3D connection between the star’s interior magnetic evolution and its magnetosphere,
we present the results of a novel approach using physics-informed neural networks (PINN). This
approach allows us to examine the astrophysical scenario and investigate the impact of the
force-free magnetosphere on the neutron star’s magnetic field evolution in 2D.

Conducting a global simulation for the entire domain is computationally expensive because
it requires an elliptic solver for the exterior solution (Akgiin et al., 2016; Akgiin et al., 2017;
Stefanou et al., 2023). To tackle this challenge, Urban et al. (2023) explored the applicability of a
PINN solver for elliptic problems, with a specific focus on modeling the force-free magnetospheres
of non-rotating, axisymmetric neutron stars.

In this appendix, we provide a concise explanation of what a PINN is in §C.1. Moving forward
to §C.2, we offer a brief reminder of the axisymmetric magnetic field formalism in terms of
poloidal and toroidal stream functions, denoted as &2 and 7, respectively. In §C.2.1, we utilize
PINN to recover the 2D potential boundary conditions, allowing us to assess its performance.
Subsequently, in §C.2.2, we couple the interior 2D magneto-thermal evolution with the force-free
magnetosphere, providing a brief evaluation of the impact of the new boundary conditions on the

final outcomes.
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Figure C.1: A schematic representation of a deep fully-connected neural network.

C.1 Physics-Informed Neural Networks

Neural networks (NNs) serve as powerful tools for approximating complex mathematical func-
tions (Hornik et al., 1989). They consist of interconnected layers of neurons, with each neuron
performing transformations on the input data. The specific arrangement of these interconnected
layers defines the NN’s architecture. The most common type is the Fully Connected Neural
Network (FCNN), where neurons are linked to all neurons in the preceding and succeeding layers,
as depicted in Fig. C.1. Training a NN involves adjusting its parameters, namely weights and
biases, to minimize the disparity between the predicted output and the desired output. This
optimization process is achieved through backpropagation, which utilizes gradient descent to
update the parameters.

The standard approach to training a NN involves using data with true solution values at
specific points in the input domain. However, this method requires a large number of training
examples to establish a reliable relationship between inputs and outputs. For astrophysical
systems, this would mean relying on data from an extensive set of observations.

The key innovation in PINN is the integration of physical laws into the training process.
Instead of focusing on the difference between predictions and real data or exact solutions, PINN
minimizes the residual of the governing partial differential equations (PDEs). Although using
data in the loss function can be helpful for optimization, it is not essential in practice. The loss

function used in training aims to make the NN’s prediction as close to an exact solution as
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possible, incorporating the physical constraints directly (Urban et al., 2023).

One of the notable advantages of PINNs is their ability to handle various boundary conditions
and source terms, making them versatile PDE solvers capable of approximating solutions for
different operators and boundary conditions. By intelligently encoding the boundary conditions
as part of the network’s input, PINNs generalize well to provide solutions for various points and
boundary conditions in the domain. For a more detailed exploration of the PINN solver for elliptic

problems, we suggest referring to Urban et al. (2023).

C.2 2D magnetic field formalism

In general, any magnetic field (or any divergence-less, i.e. solenoidal field) can be expressed as the
sum of a poloidal and a toroidal field (Chandrasekhar and Kendall, 1957; Chandrasekhar, 1981),
as described in Appendix B. Specifically, in the case of axisymmetry, we define the poloidal and

toroidal stream functions as &2 and 9, respectively. The magnetic field can then be represented

as:
(C.1) B=VZxVp+IT V¢,
where V¢ = r;ﬁ, with ey being the azimuthal unit vector, r representing the radius, and 0

indicating the polar angle in spherical coordinates (r,08,¢). The poloidal and toroidal stream

functions can be expressed in terms of the vector potential A, and By, respectively:

(C.2) P =rsinb Ay,

(C.3) T =rsin6 By.

C.2.1 Potential boundary conditions

We initiate by testing the PINN’s performance considering a crustal-confined magnetic field
topology and implementing vacuum boundary conditions, which imply no electrical currents
circulating in the envelope and across the surface. To enforce these boundary conditions, we
utilize a multipole expansion of the radial magnetic field at the surface, following the method
described in Pons et al. (2009); Pons and Vigano (2019).

The coefficients of the multipole expansion in 2D can be computed from the radial component

of the magnetic field at the surface of the star as follows:

20+1 7

(C4) b= 201D Jo

B"(R,0)P;(cos0)sin0d0,

where P; are the Legendre polynomials.
During the evolution, at each time step, we calculate the b; coefficients using eq. (C.4). In the

classical approach, we explicitly reconstruct the values of B” and B? in the external ghost cells as
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Figure C.2: A snapshot of the magnetic field evolution and the electric current at 10 kyr, obtained
using OLD (left panel) and PINN (right panel). In the left hemisphere, we show the meridional
projection of the magnetic field lines (white lines) and the toroidal field (colors). In the right
hemishphere, we display the square of the modulus of the electric current, i.e., |J|2 (note the log
scale). The crust has been enlarged by a factor of 8 for visualization purposes.

follows:
I max R 1+2
(C.5) B =) b(I+1)P, (cosa)(7) ,
1=1
I max 1+2
(C.6) BY = —sin® Y b;Pj(cosB) (—) ,
=1 r

where R represents the radius of the neutron star. For brevity, we refer to this procedure using
the nomenclature "OLD".

In the new PINNs approach, we utilize the b; coefficients obtained from the Legendre
decomposition as inputs to the PINN. The PINN, in turn, provides values of the poloidal flux
function 2 (eq.(C.2)) or any required component of the magnetic field by taking derivatives.
Admittedly, in this case (vacuum boundary conditions), the PINN approach may not offer any
apparent advantage since we already know how to construct the analytical solution. However,
our intention is to ensure that the simulations produce results without any undesirable effects
before proceeding to more complex cases.

To compare the different techniques employed, as described above, we conducted axisymmetric
crustal-confined magnetic field simulations using the 2D magneto-thermal code (Vigano et al.,
2021). The simulations were performed on a grid with 99 angular points (from pole to pole) and
200 radial points. The initial magnetic field consists of a poloidal component of 10 G (value
at the pole) and consists of a sum of a dipole (b1 = 1), a quadrupole (bg = 0.6), and an octupole
(b3 =0.3). Additionally, the initial toroidal quadrupolar component has also a maximum initial
value of 10 G.

We set the maximum number of multipoles to [ax = 7 for the PINN and /,,,x = 50 for the
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classical approach (OLD). The reason for using different /,,,x values is to assess the impact
of truncating the multipole number when employing the PINN. Training the PINN with a
high number of multipoles requires additional hidden layers, making the training process
computationally expensive. However, our primary objective in this study is to test the effectiveness
of the PINN rather than achieving extremely accurate results.

The results of the comparison at ¢t = 10 kyr are depicted in Fig. C.2. On the left (right) side,
we present the magnetic field profiles obtained with OLD (PINN) boundary conditions. The
overall evolution of the magnetic field and electric current is very similar between the two
approaches. However, slight differences arise due to the multipolar truncation in the PINN case.
It is important to note that if we set the same maximum number of multipoles for both systems,

we obtain nearly identical results.

C.2.2 Force-free boundary conditions

To couple the internal field evolution with a force-free magnetosphere using the PINN solver,
we need to extend the vacuum case (§C.2.1) with additional steps. In our magneto-thermal
evolution code, we impose external boundary conditions by providing the values of the magnetic
field components in two radial ghost cells for every angular cell. In the vacuum case, once the
multipolar decomposition of the radial field over the surface is known, the solution in the ghost
cells can be built analytically. However, in the general case, one must solve an elliptic equation
on a different grid, which must extend far from the surface to properly capture the asymptotic
behavior at long distances (Akgiin et al., 2016; Stefanou et al., 2023).

This process is indeed computationally intensive since it needs to be repeated tens of thou-
sands of times as the interior field evolves. However, once we have trained the PINN, it becomes
a valuable tool that enables us to rapidly obtain the necessary values of the solution in the ghost
cells. We proceed as follows. At each evolution time step, we must know the toroidal function

T (22). For the sake of simplicity in this application, we use a quadratic function:
(C.7) T(P) = 51P + 5992,

where s; and sg are parameters controlling the relative strength of the toroidal and poloidal
components, the region where the toroidal field is non-zero, and the non-linearity of the model.

Then, at each time step, we perform a fit to the values obtained from the internal evolution
just one cell below the surface. This fitting process yields the coefficients s; and sg required for
the quadratic interpolation defined in eq.(C.7).

Next, we include s; and sg as additional input parameters during the forward pass of the
PINN (Urban et al., 2023). Subsequently, the PINN provides us with the poloidal flux function &
and the magnetic field components necessary for the ghost cells in the magneto-thermal evolution

code. The toroidal flux function 9 can be constructed from & (eq.(C.7)), which is then used to
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Figure C.3: Same as Fig. C.2. A snapshot of the magnetic field evolution and the electric current
at 80 kyr. Left panel: force-free boundary conditions. Right panel: vacuum boundary conditions.

determine the By component of the magnetic field using eq.(C.3). Armed with this information,
the internal evolution can proceed to the next time step.

We assume an initial force-free magnetic field with a poloidal component of 3 x 1014 G at the
polar surface and a maximum toroidal field of 3 x 1014 G. To investigate the impact of different
boundary conditions, we consider two cases: force-free boundary conditions (left panel of Fig. C.3)
and vacuum boundary conditions (right panel of Fig. C.3).

The results of the comparison are shown in two snapshots at ¢ = 80 kyr of the evolution, using
the same initial model. We observe distinct magnetic field evolutions depending on the applied
boundary conditions. With force-free boundary conditions (left panel), a stronger toroidal dipole is
present near the surface, slightly displaced towards the north. This stronger toroidal component
compresses the poloidal field lines closer to the poles. On the other hand, when using vacuum
boundary conditions (right panel), the poloidal field lines retain a certain symmetry with respect
to the equator, and the dominant toroidal component becomes quadrupolar and concentrated at
the crust/core interface.

Moreover, the distribution of the electric current in the stellar crust differs between the two
cases. Enforced by the vacuum boundary conditions, the current tends to vanish around the poles
and close to the surface, similar to what was observed in Fig. C.2, despite the initial field topology
being different. However, with force-free boundary conditions, currents near the surface are not
forced to vanish. In the left panel, the slightly more yellowish region in the northern hemisphere
and mid-latitudes indicates that significant current flows into the magnetosphere. These dif-
ferences in current configurations have significant implications for the observed temperature
distribution, as discussed in Akgiin et al. (2018).

This study highlights the importance of coupling the evolution of the interior magnetic field
with the magnetospheric field. Interestingly, our results demonstrate that the computational cost

of using a PINN is more than an order of magnitude lower than that of a finite difference scheme,
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with only a slight compromise on accuracy. These promising findings pave the way for future
extensions to 3D problems, which would otherwise be prohibitively expensive with generalized

boundary conditions. Currently, we are actively working on extending these results to the 3D
domain.
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APPENDIX

OBSERVATIONAL DATA

ithin this appendix, we present a comprehensive overview of the data reduction pro-
cesses and analytical methodologies utilized in our study of the selected sample of
isolated neutron stars, as outlined in Chapter 5. The timing properties and age es-
timates of these stars are detailed in Table D.1, whereas Table D.2 delves into the emission

properties attributed to the thermally emitting neutron stars.

D.1 On the data reduction process

For all the chosen sources, we examined the available observations within the XMM-Newton
and/or Chandra archives, selecting only one or a few observations per target. In particular, our
selection adhered to the subsequent criteria:
(i) For each source, we gave preference to XMM-Newton observations over Chandra when
exposure times were comparable, owing to the former’s larger collecting area. We favored Chandra
for young neutron stars accompanied by notably bright nebulae, where Chandra’s excellent spatial
resolution played a crucial role in discerning the thermal emission from the source.
(i) When multiple observations were available, preference was given to those with the longest
exposure. Additionally, we selected multiple observations conducted very close in time, such as
those separated by approximately a few days.
(iii) In the case of variable sources, like magnetars, our search was limited to observations carried
out during quiescence, and we again selected the one with the lengthiest exposure.
After identifying and downloading the final dataset, we proceeded with the data reduction
procedures. The subsequent paragraphs detail these procedures for both instruments.

In this study, we will exclusively incorporate data from the EPIC-pn detector (Striider et al.,

2001) aboard XMM-Newton. Data reprocessing was conducted utilizing XMM-NewtonScience
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Analysis Software (SAS) v. 20.0.0. To enhance the quality of the data, we initially filtered the event
files to exclude periods of elevated background activity. We systematically examined potential
pile-up effects using the EPATPLOT tool. For source count extraction, a circle with a 30-arcsec
radius, centered on the source coordinates, was typically employed. Nevertheless, exceptions
were made for sources enveloped by a pulsar wind nebula, for which a 15-arcsec region was
chosen to minimize contamination from neighboring non-thermal emissions. Conversely, a region
of the same size and shape, positioned at a sufficient distance from the source on the same
charge-coupled device (CCD), was selected for background estimation.

All Chandra observations utilized in this study were conducted using the Advanced CCD
Imaging Spectrometer (ACIS; Garmire et al., 2003). The data underwent processing, reduction,
and spectral extraction within CIAO v. 4.14, employing standard pipelines. The most up-to-date
CALDB calibration files were consistently applied. For the source region extraction, a circular
region with a 3-pixel radius was employed. This size was chosen to minimize potential contam-
ination from any surrounding nebula (if present). Similarly, a region of the same dimensions,
positioned far from both the source and the nebula, was designated as the background region.
Science products, including spectra, redistribution matrix files, and ancillary response files, were
generated using the specextract task. In a few cases, the measured count rate reached a level
where pile-up effects became significant. In these cases, a PILEUP component was incorporated
into the spectral model used to describe the data in XSPEC, allowing for accurate incorporation of

pile-up-induced alterations in the spectra.

D.2 Spectral analysis

The spectral analysis was carried out using XSPEC v.12.12.1. To ensure reliable statistical results,
all spectra were binned to contain a minimum of 20 counts per bin, allowing for the use of y2
statistics. However, for a few sources, the spectral statistics were insufficient for this grouping
strategy and the corresponding y2 statistics. In these cases, a grouping of 10 counts per bin was
employed, and the Cash-statistics were adopted instead.

In all data models employed to describe the data, we included the TBABS component to account
for interstellar absorption effects. The photoelectric cross-sections were set to the values provided
by Verner et al. (1996), while the elemental abundances were set to the standard tables by Wilms
et al. (2000).

Various models were tested for each source, including a simple blackbody component (BB)
described using BBODYRAD within XSPEC, a double BBODYRAD model (2BB), a combination of
blackbody and power-law components (BB+PL), and a double blackbody plus power-law model
(2BB+PL). To estimate the thermal luminosity for each source, the flux associated with the
blackbody component(s) was calculated using the f1ux command in XSPEC. Finally, the known

distances of the sources were utilized to convert these fluxes into thermal luminosities (L;z).
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To account for uncertainties in the estimated distance and/or the flux estimation process, a
conservative 20% relative error was assigned to each L, value. Detailed information on estimated

Ly, values, along with selected parameters for the best-fitting model, can be found in Table D.2.

Table D.1: Timing properties and age estimates of our sample of isolated neutron stars. Here E,,; =
3.9x 10*6P/P3 erg/s is the rotational energy loss and B p=6.4x 1019(PP)V2 G is the magnetic field strength
at the pole, assuming that rotational energy losses are dominated by dipolar magnetic torques. Sources
with multiple/variable P values in the literature are labelled with a *. For references, see the ATNF pulsar
catalog?, the McGill magnetar catalog®, and our online catalog!. We report here in the "method" column a
reference for the method used in archival work to identify 7,, i.e. 1: Supernova Remnant (SNR), 2: Proper
Motion (PM). True age references: Al15=Allen et al. (2015), B18=Borkowski et al. (2018), B20=Borkowski
et al. (2020), B19=Braun et al. (2019), C99=Corbel et al. (1999), FO6=Fesen et al. (2006), LO7=Leahy
and Tian (2007), K13=Kothes (2013), K19=Knies et al. (2018), M09=Motch et al. (2009), M20=Mayer
et al. (2020), N07=Ng et al. (2007), P12=Park et al. (2012), R88=Roger et al. (1988), S06=Smith (2006),
S11=Sushch et al. (2011), S13=Sasaki et al. (2013), S18=Sasaki et al. (2018), T0O8=Tian and Leahy (2008),
T11=Tetzlaff et al. (2011), T12=Tetzlaff et al. (2012), T13=Tendulkar et al. (2013), W97=Wang et al. (1997),
Y04=Yar-Uyaniker et al. (2004), Z16=Zhou et al. (2016).

Source assoc./nick P log(P) log(E’ rot) log(Bp) log(r¢) log(r;) method Ref.
[s] [erg/s] [G] [yr] [yr]
Magnetars
SGR 1627-41 SNR G337.0-0.1 2.59 -10.7 34.6 14.6 3.3 37 SNR! (99
1E 2259+586 SNR CTB109 6.98 -12.3 32.1 14.1 5.4 4.0 SNR S13
XTE J1810-197 - 5,54 -11.5 32.8 14.4 4.5 -
SGR 1806-20 W31 open cluster 7.75 -10.1 33.2 15.2 3.2 29 PM2 T13
CXOU J1647-4552 Westerlund 1 10.61 -12.0 31.5 14.3 5.2 -
SGR J0501+4516 SNR HB9 5.76 -11.2 33.1 14.6 4.2 4.0 SNR Lo7
1E 1547-5408 SNR G327.24-0.1 4.5 2.07 -10.3 35.3 14.8 2.8 SNR
SGR J0418+5729 - 9.08 -144 29.3 13.1 7.6 -
SGR J1833-0832 - 757 -11.5 32.5 14.5 4.5 -
Swift J1822.3-1606 - 8.44 -12.9 30.9 13.8 6.0 -
Swift J1834.9-0846 - 2.48 -11.1 34.3 14.5 3.7 -
1E 1048.1-5937 - 6.46 -10.7 33.5 14.9 3.7 -
SGR J1745-2900 Galactic Center 3.76 -10.5 34.3 14.8 3.3 -
SGR J1935+2154 FRB 3.24 -10.8 34.2 14.6 3.6 -
1E 1841-045 SNR Kes73 11.79 -104 33.0 15.1 3.7 2.8 SNR T08
SGR 1900+14 open cluster 52  -10.0 34.4 15.1 3.0 3.7 PM T13
4U 0142+614 - 8.69 -11.7 32.1 14.4 4.8 -
1RXS J170849.0-400910 - 11.01 -10.7 32.8 15.0 4.0 -
CXOU J010043.1-721134 SMC 8.02 -10.7 33.1 14.9 3.8 -
CXOU J171405.7-381031 SNR CTB37B 3.83 -10.2 34.6 15.0 3.0 SNR
SGR 0526-66 SNR N49 - LMC 8.05 -10.4 33.5 15.0 3.5 SNR P12
PSR J1119-6127 SNR G292.2-0.5 041 -114 36.4 13.9 3.2 3.6-39 SNR
PSR J1846-0258 - 0.33 -11.1 37.0 14.0 2.9 SNR
PSR J1622-4950 - 433 -10.8 33.9 14.7 3.6 -
Swift J1818.0-1607 - 1.36 -10.3 35.9 14.7 2.7 -
SGR J1830-0645 - 10.42 -11.1 32.4 14.8 4.3 -
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3XMM J185246.6+003317 - 11.56 -12.9 30.6 13.9 6.1 -
Swift J1555.2-5402 - 3.86 -10.7 34.2 14.8 34 -
Central Compact Objects (CCOs)
CXOU J185238.6+0040 SNR Kes79 0.11 -17.1 32.5 10.8 8.3 3.8 SNR 716
1E 1207.4-5209 SNR G296.5+10.0 0.42 -16.7 31.1 11.3 8.5 3.8 SNR R88
RX J0822.0-4300 SNR PuppisA 0.11 -17.0 32.3 10.8 8.4 3.6 SNR M20
1E 161348-5055 SNR RCW103 240 <91 - - - 3.3 SNR B19
CXOU J085201.4-461753 SNR Vela Jr - - - - - 3.3 SNR Al5
CXOU J232327.9+584842 SNR CasA - - - - - 2.5 SNR Fo6
1E 0102.2-7219 B0102-72.3 - - - - - 3.3
2XMM J104608.7-594306 Homunculus - - - - - 4.0 SNR S06
CXOU J160103.1-513353  G330.2+1.0 - - - - - 2.9 SNR B18
1WGA J1713.4-3949 G347.3-0.5 - - - - - 3.2 SNR w97
XMMU J172054.5-372652 G350.1-0.3 - - - - - 2.8 SNR B20
XMMU J173203.3-344518 HESS J1731-347 - - - - - 3.6 SNR T08
CXOU J181852.0-150213  G015.9+0.002 - - - - - 3.5 SNR S18
X-ray Dim Isolated Neutron Stars (XDINS)
RXJ0420.0-5022 - 3.45 -13.56 314 13.3 6.3 - -
RXJ1856.5-3754 - 7.06 -13.52 30.5 13.5 6.6 5.6 PM T11
RXJ2143.0+0654 - 9.43 -13.39 30.3 13.6 6.6 - -
RXJ0720.4-3125 - 8.39 -13.16 30.7 13.7 6.3 59 PM T11
RXJ0806.4-4123 - 11.37 -13.26 30.2 13.7 - -
RXJ1308.6+2127 - 10.31 -12.96 30.6 13.8 6.2 6.0 PM M09
RXJ1605.3+3249 - 3.39 -11.80 33.2 14.2 4.5 5.7 PM T12
Rotation-Powered Pulsars (RPPs)
PSR J0538+2817 SNR S147 0.14 -144 34.7 12.2 5.8 ~46 SNR No7
PSR B1055-52 - 0.20 -14.2 34.5 12.3 5.7 - -
PSR J0633+1746 aka Geminga 0.24 -14.0 34.5 12.5 5.5 - -
PSR B1706-44 - 0.10 -13.0 36.5 12.8 4.2 - -
PSR B0833-45 SNR Vela 0.09 -129 36.8 12.8 4.1 3.7-4.2 SNR S11
PSR B0656+14 SNR Monogem 0.39 -13.3 34.6 13.0 5.0 ~49 SNR K18
PSR B2334+61 SNR G114.3+0.3 0.49 -12.7 34.8 13.3 4.6 ~4.0 SNR Y04
PSR J1740+1000 - 0.15 -11.7 374 13.6 3.1 - -
PSR J0726-2612 - 344 -125 324 13.8 5.3 - -
PSR J1819-1458 RRAT 4.26 -12.2 32.5 14.0 5.1 - -
PSR J1718-3718 - 3.38 -11.8 33.2 14.2 4.5 - -
1RXS J1412+7922 Calvera 0.06 -14.5 35.8 11.9 5.5 - -
PSR J1357-6429 HESS J1356-645 0.17 -124 36.5 13.2 3.9 - -
PSR J1741-2054 - 041 -13.8 34.0 12.7 5.6 - -
PSR B1822-09 - 0.77 -13.3 33.7 13.1 5.4 - -
PSR J1836+5925 Next Geminga 0.17 -14.8 34.0 12.1 6.3 - -
PSR J1957+5033 - 0.38 -14.2 33.7 12.5 5.9 - -
PSR J0205+6449 3C58 0.07 -12.7 374 12.9 3.7 2.9 SNR K13
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Table D.2: Emission properties of the thermally emitting neutron stars. Whenever we used multiple
black bodies to model the spectra, we report here only the parameters corresponding to the hottest
component. ': due to the paucity of counts, spectral fits could not be performed and only upper limits on
the thermal luminosity could be posed. ¢: since the distance of the source is unknown, we fixed it to the
arbitrary value of 10 kpc. References for distances: A15=Allen et al. (2015); BO3=Brisken et al. (2003);
B08=Bibby et al. (2008); B14=Bower et al. (2014); B21=Bailes et al. (2021); C02=Clark and Negueruela
(2002): C11=Chang et al. (2012); C75=Caswell et al. (1975); D03=Dodson et al. (2003); DO6=Durant
and van Kerkwijk (2006); D09=Davies et al. (2009); D20=Ding et al. (2020); FO3=Fukui et al. (2003);
FO07=Faherty et al. (2007); F89=Frail and Clifton (1989); GO0O=Giacani et al. (2000); GO8=Gaensler et al.
(2008); G99=Gaensler et al. (1999); H13=Halpern et al. (2013); H99=Hurley et al. (1999); K0O5=Kaspi and
McLaughlin (2005); KO6=Keller and Wood (2006); KO8=Kumar and Safi-Harb (2008); K12=Kothes and
Foster (2012); K95=Koribalski et al. (1995); L08=Leahy et al. (2008); L11=Lin et al. (2011); M01=McClure-
Griffiths et al. (2001); M06=Macri et al. (2006); MG06=McGowan et al. (2006); M13=Miller et al. (2013);
M14=Marelli et al. (2014); N07=Ng et al. (2007); P07=Posselt et al. (2007); P15=Posselt et al. (2015);
R22=Rigoselli et al. (2022); R95=Reynoso et al. (1995); RH95=Reed et al. (1995); S06=Smith (2006);
S11=Speagle et al. (2011); S12=Scholz et al. (2012); T08a=Tian and Leahy (2008); T08b=Tian et al. (2008);
TN10=Tetzlaff et al. (2010); TV10=Tiengo et al. (2010); T11=Tetzlaff et al. (2011); T12=Tian and Leahy
(2012); T22=Tanashkin et al. (2022); V10=van der Horst et al. (2010); W10=Walter et al. (2010); Z05=Zou
et al. (2005); Z14=Zhou et al. (2014); Z21=Zyuzin et al. (2021).

Source d Ref kTypp Ry log(L) bestfit kT.p0; log(Lcpor)
[kpcl [eV] [km] [erg/s] model [eV] [erg/s]
Magnetars
SGR 1627-41 11.0+0.3 HI1 10007303 <022 3308 BB <300 <349
1E 2259+586 32+02 K12 63072 1107 3479 2BB <120 <334
XTE J1810-197 3.6 D20  240+30  20%20 3456  2BB - -
SGR 1806-20 8.6 B08  790+10 09708 3515 2BB <250 <347
CXOU J1647-4552 40715 coz 530730 05704 3354 2BB <120 <334
SGR J0501+4516 1500 L1l 570+110 0.20+0.04 3311 RCS <100 <329
1E 1547-5408 4505 T10 6207630 <09 3336 2BB <150  <33.8
SGR J0418+5729 2.0£03 V10 320430 0.07*097 3090 BB <40 <315
SGR J1833-0832" 10.0° - - - <33.90 - - -
Swift J1822.3-1606 1.6£0.3  S12  49072%  0.06*07l 3248 2BB <70 <325
Swift J1834.9-08467 42+03  LO8 - - <3230 - - -
1E 1048.1-5937 27+¢10 D06 820752  0.8+04 3566 2BB <100  <33.1
SGR J1745-2900 8.3+0.3 Bl4  710+25  0.6+02 3402 BB - -
SGR J1935+2154 9.0£1.7 B2l  490*30  15%13 3360  2BB
1E 1841-045 85713  To8a 430730 66740 3566 BB+PL <200  <34.3
SGR 1900+14 125+¢1.7 D09 550430 27715 3515 2BB <150  <33.8
4U 0142+61 36+05 D06  560+20 25711 3542 92BB+PL <150 <338
1RXS J170849.0-400910 ~ 3.8+05 D06  730+10  0.7°08 3486 2BB+PL <130 <336
CXOU J010043.1-721134  60.6+3.8 K06 38030  9.0*3) 3529 BB - -
CXOU J171405.7-381031 ~ 13.2£0.2 T12  600*70  13+1.0 3444 BB+PL <180 <341
SGR 0526-66 497 M06  490*10 39737 3505 BB+PL <200 <343
PSR J1119-6127 84+04  C04 300750 1.1+£002 333 BB <100 <332
PSR J1846-0258 6.0 K08  970£30  0.5:0.2 3451 BB+PL - -
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PSR J1622-4950" 9.0 - - <3264 - - -
Swift J1818.0-1607" 4.8 - - <3381 - - -
SGR J1830-0645 10% - - - <3430 - - -
3XMM J185246.6+0033177  7.1£0.7  Z14 - - <30.78 - - -
Swift J1555.2-5402" 5 - - <8517 - - -
Central Compact Objects (CCOs)
CXOU J185238.6+004020 7.1 F89  450+20 0.8+03 3348 BB - -
1E 1207.4-5209 21738 GO0 2605  15+05 3343  2BB - -
RX J0822-4300 22+03 R95 520780 1709 3360  2BB - -
1E 161348-5055 3.3 C75  530+20 0.6+03 3386  2BB - -

CXOU J085201.4-461753 0.740.3  Al5 40049  0.24+0.08 32.26 BB - -
CXOU J232327.9+584842 34703 RH95 40073 0.840.2 33.32 BB+PL - -

2XMM J104608.7-594306 24 S06 13804 28715 3257 BB - -
CXOU J160103.1-513353  5.0-11.0 MOl 45030  0.603 3228 BB - -
1IWGA J1713.4-3949 13 F03 540750 02401 33.06 2BB - -
XMMU J172054.5-372652  4.5-10.7  GO8  520x10  0.970% 3389 BB - -
XMMU J173203.3-344518 32  TO8b  500+4  09:02 3386 BB - -
CXOU J181852.0-150213 10 - 44030 06'0% 3332 BB - -
X-ray Dim Isolated Neutron Stars (XDINS)
RX J0420.0-5022 034 P07 49*% 4525 3115 BB - -
RX J1856.5-3754 0.12+0.01 W10  159*29 0.04:+0.02 3168  2BB - -
RX J2143.0+0654 043 P07 108+l 242005 3200 BB - -
RX J0720.4-3125 0297003 P07 81.9+0.02 6.27+0.04 3234 BB - -
RX J0806.4-4123 025 P07 91+l  195:0.03 3149 BB - -
RX J1308.6+2127 050  TN10  87+1  26+02 3134 BB - -
RX J1605.3+3249 010  Ti1  146%3% 0802 3330 2BB - -
Rotation-Powered Pulsars (RPPs)
PSR J0538+2817 15%04  NO7  190+8 15703 326 BB <100  <33.3
PSR B1055-52 0.73+0.15 P15  657; 40*}s 319 2BB+PL <40 <318
PSR J0633+1746 025%022  F07  40+2 7421 316 BB+PL <30 <313
PSR B1706-44 26702 K95  170+20 17733 325 BB+PL <90  <33.1
PSR B0833-45 028+0.02 D03  70+2 109717 327 2BB+PL <40 <317
PSR B0656+14 0.28+0.03 B03  100+x4  14%3, 314 BB+PL <50 <320
PSR B2334+61 31702  MGos 160730 09733 319 BB <60 <323
PSR J1740+1000 1.4 R22 16071} 05703 323  2BB <40 <318
PSR J0726-2612 <10 S11 120+3  2970% 324 BB <60 <323
PSR J1819-1458 3.6£0.9 M3  130+6 127730 337 BB - -
PSR J1718-3718 4575 K05 19030 L7dd o 821 BB - -
1RXS J1412+7922 0.3 H13  230*20 0.14+0.03 311  2BB - -
PSR J1357-6429 2.5 Cl1  360+20 0.14+0.04 322 BB - -
PSR J1741-2054 0.8 Mi14 607  153*1L0 325 BB+PL <60 <324
PSR B1822-09 0.9 z05  170*20  12*19 304 BB - -
PSR J1957+5033 0110 Z21  50+10  7.9*303 303 BB+PL - -
PSR J0205+6449 3.2 K13  160+7  21%3, 325 BB+PL - -
PSR J0554+3107 45 T22  140+90  19*12 333 BB+PL - -
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NUMERICAL PERFORMANCE OF MATINS

n this appendix, we present a comprehensive evaluation of the numerical performance

of the MATINS code. Our analysis centers around two key aspects. In both aspects, we

consider a multipolar magnetic field topology featuring an initial poloidal dipolar field of
Bpo(t=0)= 1014 G at the star’s surface, and a maximum toroidal magnetic field of Bo,(¢ = 0) ~
10' G, with a total average field in the system of Byyg(t =0) = 10 G. The temperature remains
fixed at T' = 3 x 108 K throughout the entire evolution. The maximum magnetic Reynolds number
at ¢t =0 is approximately R'** ~ 250, while the average magnetic Reynolds number is around
RV ~80.

Firstly, we delve into assessing the scalability of the MATINS code using a specified number
of processors and varying resolutions of the magnetic grid. This examination is illustrated in
Table E.1, with the simulation extending over a duration of 100 kyr. Notably, the scalability of
MATINS aligns with a number of processors that are multiples of 6, mirroring the inherent
structure of the cubed-sphere, which encompasses 6 distinct patches.

Additionally, we delve into the evaluation of the MATINS code’s numerical efficacy in relation
to different Runge-Kutta time advancement methods. Referring to Table E.2, we explore various
Runge-Kutta methods, specifically RK2, RK3, RK4, and RK6, while modifying the Courant
number for each. Our exploration spans a Courant number range from k. = 1 to k. = 20, con-
tingent upon the simulation’s stability. In this assessment, we evolve the simulation until the
code crashes because of numerical instabilities. This outcome is anticipated due to the extreme
magnetic field intensity and the magnetic timestep utilized in this test. Our findings underscore
that the fourth-order Runge-Kutta method emerges as optimal in terms of both simulation speed
and numerical stability. This advantage is particularly pronounced at a Courant number of 2. =5,

which delivers faster performance when compared to lower Courant number.
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Table E.1: Numerical performance of the MATINS 3D magnetic code, investigating various grid
resolutions and processor counts over a 100 kyr of evolution. The initial Courant number is set at
ke =0.01 for this test. “Number of Processors” corresponds to the count of processors employed in
a specific simulation. “Number of Iterations” indicates the count of magnetic iterations performed
to achieve a 100 kyr evolution time. “Simulation Time” represents the duration required for
execution on a desktop featuring an Intel Core 19-10900 processor (2.80 GHz). “Time per Iteration”
reflects the time needed for an individual magnetic iteration.

Magnetic Number of Number of Simulation | Time per
grid Processors | Iterations (for 100 kyr) Time Iteration
[day(s)] [s]
40x43x43x6 1 ~2538000 15.8 0.538
40x43x43x6 2 ~2538000 10.2 0.347
40x43x43x6 3 ~2538000 8.28 0.282
40x43x43x6 4 ~2538000 8.15 0.277
40x43x43x6 6 ~2538000 6.93 0.236
40x43x43x6 8 ~2538000 6.91 0.2352
40x43x43x6 10 ~2538000 6.89 0.2348
30x31x31x6 1 ~ 1430000 3.97 0.240
30x31x31x6 2 ~ 1430000 2.60 0.157
30x31x31x6 3 ~ 1430000 2.22 0.134
30x31x31x6 4 ~ 1430000 2.05 0.124
30x31x31x6 6 ~ 1430000 1.82 0.110
30x31x31x6 8 ~ 1430000 1.84 0.111
30x31x31x6 10 ~ 1430000 1.90 0.115
20x23x23x6 1 ~ 636000 0.87 0.118
20x23x23x6 2 ~ 636000 0.57 0.077
20x23x23x6 3 ~ 636000 0.49 0.066
20x23x23x6 4 ~ 636000 0.42 0.063
20x23x23x6 6 ~ 636000 0.42 0.057
20x23x23x6 8 ~ 636000 0.43 0.058
20x23x23x6 10 ~ 636000 0.44 0.060
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Table E.2: Numerical assessment of the 3D magnetic code employing various Runge-Kutta time
advancement methods, e.g., RK2, RK3, RK4, and RK6. The magnetic grid resolution is set to
30 x 31 x 31 x 6, and the simulation is conducted using a single processor. Here, the heading
"Evolution Time" corresponds to the neutron star’s age when the simulation ends. For additional
information regarding the remaining headings, please consult Table E.1.

Runge-Kutta Courant Evolution | Number of | Simulation | Time per
Method Number k&, Time Iterations Time Iteration
[yrs] [s] [s]
RK2 1.0 1755 12298 5360 0.44
RK2 2.0 1763 6372 2788 0.44
RK2 3.0 1843 4396 1906 0.43
RK2 4.0 1056 1770 829 0.47
RK2 6.0 787 936 463 0.49
RK3 1.0 1752 12298 7414 0.60
RK3 2.0 1762 6372 4044 0.63
RK3 3.0 1767 4396 2784 0.63
RK3 4.0 1786 3186 2098 0.66
RK3 6.0 1004 1170 811 0.69
RK3 10.0 740 517 404 0.78
RK4 1.0 1751 12298 9917 0.81
RK4 2.0 1754 6372 5188 0.81
RK4 3.0 1760 4396 3796 0.86
RK4 4.0 1765 3304 2849 0.86
RK4 6.0 1769 2184 1859 0.85
RK4 8.0 1783 1652 1434 0.87
RK4 10.0 1915 1457 1325 0.91
RK4 12.0 7072 6123 4796 0.78
RK4 15.0 3000 1674 1590 0.95
RK4 18.0 1870 832 826 0.99
RK4 20.0 1129 391 369 0.94
RK6 1.0 1752 12298 17472 1.42
RK6 2.0 1753 6372 8813 1.38
RK6 3.0 1755 4396 6751 1.54
RK6 4.0 1755 3304 4845 1.47
RK6 6.0 1755 2184 3196 1.46
RK6 8.0 1757 1652 2470 1.50
RK6 10.0 1762 1316 1985 1.51
RK6 12.0 1285 780 1366 1.75
RK6 15.0 988 465 750 1.61
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