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Abstract: Polarization mode dispersion can introduce quantum decoherence in polarization
encoded information, limiting the range of quantum communications protocols. Therefore,
strategies to nullify the effect would reduce quantum decoherence and potentially increase
the operational range of such technology. We constructed a quantum model of polarization
mode dispersion alongside a two-level absorbing material. The two-level material serves
to destructively measure one of two orthogonal polarization modes, thus projecting the
polarization onto the other state. The theoretical results are supported by a numerical simu-
lation in Mathematica Documentation where we compare the evolution of the polarization
state with and without the absorbing material. We find that this strategy is effective in
suppressing the effects of polarization mode dispersion, and that this method produces a
global phase shift related to the waveguide’s birefringent properties.

Keywords: Zeno; polarization mode dispersion; polarization; quantum Zeno effect; PMD;
optical fibers; fibers; waveguides

1. Introduction

Polarization mode dispersion (PMD) is a near unavoidable feature of fiber optical
communications, wherein the polarization state of light passing through a medium (optical
fibers) shifts as it travels [1]. In fibers, for example, this is a consequence of birefringence
present in the waveguide due to unintentional variations in the shape of the core [1-4].
Various environmental effects (wind, temperature, etc.) can cause the fibers to bend
and twist, further randomizing the birefringence and introducing PMD into the fiber [5].
Strategies employed to compensate for and avoid it include intentionally exaggerating the
birefringence such that cross-talk between two orthogonal polarization states is negligible,
creating polarization-maintaining fibers (PMFs) [1,6-9], among other methods [10,11].
Unfortunately, due to the significant delay in one polarization with respect to the other, the
large birefringence of PMFs induces decoherence in entangled polarization states.

PMD can be particularly detrimental to quantum communications as qubit-encoded
(especially entangled) states in the polarization degree of freedom are susceptible to deco-
herence or errors as a result, limiting the range of quantum communications relying on such
states. Some errors can be avoided or corrected through the use of cluster states [12-14] and
error-correcting codes [15], but these, of course, have their limitations such as scalability
issues from large overhead in required physical resources or that they cannot be reversed.
Quantum repeaters [16] are another clear method to circumvent these issues, though they
of course rely on quantum teleportation, itself a communication protocol, and as such
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are subject to the same limitations. In other words, improving the distance over which
quantum coherence is maintained inherently improves the utility of repeaters.

Our proposed method relies instead on the quantum Zeno effect, the phenomenon
in which repeated measurements (or interactions) prevent a quantum system from evolv-
ing [17,18]. Creative use of the Zeno effect can induce unusual phase shifts or turn proba-
bilistic processes into fully deterministic ones and it has been proposed for several such
purposes [19-22], and experimentally demonstrated [23].

In our case, the Zeno effect is induced by the introduction of a two-level absorbing
medium into the evanescent field of an optical waveguide (fiber for instance). The ab-
sorbing medium will be assumed on resonance with a given frequency of either right- or
left-circular polarized photons, while the photon passing through will be the opposite
polarization. Such dipole transitions are known to follow selection rules based on the
angular momentum difference Am; between the ground and excited states [24]. In this case,
absorption (emission) of left-circular polarization changes the absorber’s quantum number
m; by —1 (+1) while right-circular polarization has the inverse relationship. Materials with
these properties, such as rubidium vapor, are common in experiments that require optical
pumping or electromagnetically induced transparency [25-27].

Without loss of generality, we will assume throughout this paper that the absorbing
medium is resonant with left-circularly polarized photons while the photons traveling
through the fiber will be assumed right-circularly polarized. The presence of the absorbing
material will serve to destroy any left-circularly polarized photons that appear in the
waveguide, while letting right-circular photons through unhindered. The proposed design
and its operation are depicted in Figure 1. By suppressing the effects of birefringence, it
is in principle possible to transmit arbitrary qubits encoded in the polarization degree of
freedom without introducing any decoherence.

a
Filter Fiber with Absorbers

9085 298, 9208, 0So 2
8% 8 &% 8o oy

258 385 883 888 888

k(o) o k(@ +¢)

b Cc
No Absorbers
° °
IR) 1?)
With Absorbers
° )
IR) [R)

Figure 1. Visual outline of the proposed PMD suppression technique. (a) Outline of major assump-
tions of the scenario, with a single photon passing through a narrow-bandwidth filter, followed by
entering an optical waveguide (fiber) containing an absorbing medium. (b) An example cross-section
of an optical fiber overlaid with an electromagnetic field, with an elliptical shape rather than the
ideal circular shape. This causes the differential refractive index between horizontal and vertical
polarizations. (c) A simple depiction of the polarization state at the input and output of a fiber with
and without the absorbing medium. Without absorbers, the polarization is unknown at the end,
whereas the polarization is preserved with the absorbers present.

In Section 2, we will construct a theoretical model for PMD acting on a single photon
of right-circular polarization, followed by a derivation of the Zeno effect acting on the
photon in such an environment. Section 3 will show the results of a numerical simulation
corroborating the theoretical predictions, Section 4 will briefly overview how this scheme
might be implemented, and we will conclude this paper in Section 5.
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2. Theory

We consider the situation depicted in Figure 1. A single photon is injected into an
optical fiber after passing through a narrow frequency-bandwidth filter. The general
single-photon state is given by [28,29]

$(0)) = e [ dwg(w)if,[0). M

The function g¢(w) is determined by the source. Introducing a narrow-bandwidth filter
replaces g(w) with a Gaussian distribution centered on frequency wpr. The constant ¢y is a
suitable normalization constant, and the subscripts k and s refer to the wavenumber and
polarization, respectively. To obtain the time-dependence of the polarization, we apply the
positive-frequency component of the electric field operator in one dimension [30]:

Z 2TH;Z(Uk A (kxfwkt)ﬁkrs' (2)

Applying Equation (2) to Equation (1), and replacing g(w) — exp [—(w — wp)?/ 0], we
obtain the time-dependent state

wl:)z

= CN/dw\fe ”IZf et eikurn | ) — jelkviv V)] (3)

where we have further assumed that the photon begins in the polarization state |R) =
(1H) =i[V))/V2.

Note that the wavenumber is different for the two polarization states as a consequence
of the birefringent medium. In general, these values will themselves change with time,
but we have assumed a constant birefringence. This is valid provided that the interac-
tion strength between the absorbing medium and light is strong compared to the degree
of birefringence.

We will leave the majority of this derivation for Appendix A.1, but a few important
replacements will be noted here. We first assume constant birefringence, and the narrow-
bandwidth filter permits us to perform a Taylor expansion of the wavenumber about the
filter frequency

ks:k0,5+as(w_wF)+,Bs(w_wF)2 (4)

and the frequency under the integral is replaced by

W = Wfr +E€. (5)

As noted in Appendix A.1, the narrow-bandwidth filter permits the replacement of v/w
with a constant value /wr, simplifying the integrand, after which the integral is taken
over by all frequencies as an approximation. Physically, the narrow-bandwidth filter limits
the range of frequencies present in the fiber such that higher-order effects of the refractive
index other than dispersion ;s are negligible. We also replace x; — vst = ct/n;, where
is the refractive index of an s polarized photon.
Evaluating the integral (3) under these approximations, we obtain

(AHXH H2 (wyxy =2
4(— Ly +ippay) 4( 1 +lﬁv"v)

(\/+—ﬁ TE)

This general result is reducible to

(6)
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1 . .
(1)) ~ = (et | H) — ie 0! |v)) )
V2
where
202cEs t— o0t
%=1 a . ®)
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Note that the convenient form of the polarization time-dependence in (7) is valid for
timescales much smaller or larger than t = 1,/ (202|Bs|c) for either polarization s.
A time-evolution operator is easily obtained by inspection, from (7),

R —ipyt
ut) = [e 0 e_gpvt‘|/ )

from which we can derive the dynamics of the system under continuous observation [18].
Projecting this operator an infinite number of times within a finite time T produces the
effective time-evolution operator:

V(T) = g%(¢H+¢V)T|R> (R| (10)

The full derivation is provided in Appendix A.2. Interestingly, the phase shift of the
polarized state under the Zeno effect is equivalent to the average of the horizontal and
vertical phase shifts, necessarily those of the short timescale in (8).

The question remains, what conditions are required for the Zeno effect to be successful?
In general, the physical situation in which the Zeno effect arises is any of those cases where
the transition into some undesired state (in our case, the opposite polarization) is much
slower than the higher-order transition into and then out of the undesired state into another
“measuring” state (in our case, an excited absorber state). In such a situation, any growth
in the population of the undesired state is quickly lost to the measuring state, ultimately
leaving the undesired state at 0 probability.

To this end, we calculate the relevant transition rates for |R)|G) — |L)|G) and
IR)|G) — |R)|E). The first- and second-order transition probabilities as a function of
time are calculated using the formulae [31]

1 i A A |2
Poos(t) = | [t A1) ay

and

P 0) = [ age [ [ " B ) ol 1 () ) 12

Here, H(t) is the time-dependent interaction Hamiltonian and i and f denote the
initial and final states of the system, respectively. The Hamiltonian of our system is given by

A= Hy+ H; (13)
where
2 At A At L.
H, :hw(aRaR—i—aLaL—i—l)—f—Ewoo'z (14)

Ay =hd+rA(ao +ale) (15)



Entropy 2025, 27,27

50f16

is the interaction Hamiltonian. Finally, w is the frequency of light and wy is the resonant
frequency of the two-level absorber, and these are assumed equal in the calculation. The
parameter A is the coupling between the absorber and the light, and o is the Pauli Z spin
operator with 6= the Pauli ladder operators, given in matrix form as

A o 1| ,._ 0 of . 1 0
U+:l0 ol @ :l ,UZ:l ] (16)

10 0 -1
These operators are those used in the the Jaynes-Cummings model, wherein ¢ facilitates

transitions out of the ground state |G) and into the excited state |E) while ¢~ facilitates the
reverse transition. ¢; returns the energy of the ground and excited states [30].

The phase component of the interaction Hamiltonian, , is obtained from Equation (9)
and is given by

o om0
& [0 ¢v] (17)

in the linear basis.  facilitates the phase shift in the horizontal and vertical components
of the polarization due to PMD. In evaluating (11) and (12), our initial and final states
are in terms of circular polarization states, but we perform the calculation in the linear
basis, rewriting a% — (a1, —ial,)/v/2 and a% — (af, + ial,)/ /2 and their corresponding
lowering operators.

With all this, we calculate the first- and second-order transitions from an initial state
li) = |R)|G), into final states | f) = |L)|G) and |f) = |0)|E). Our time-dependent transition
probabilities, Prg—,1.c and Prg—,0c, are therefore

2 4
Pro16(t) = 3 (9n — @v)? + 1 (0 — 932 (18)
and
A2t4 )
PrGg—oE(t) = 3T(¢H —¢v)~. (19)

Note that the result in (18) has both a first- and second-order contribution while that of (19)
only has a second-order contribution as the first-order probability is 0. Similar results can
be obtained for the opposite case (left-polarized photon into right-polarized and excited
state of a right absorber).

Taking the ratio of the probabilities, Py,r = PrG— 16/ PrG—0E, provides some insight
into the necessary conditions for the Zeno effect. Conditions under which the ratio is
small indicate that the absorption rate is much larger than the transition rate to left-circular
polarization. The ratio as a function of time is

8 2
Py/E(t) = Fvroins ﬁ(fPH + ¢v)2. (20)

As long as the coupling parameter between the absorbing medium and the photon mode,
A, is significantly larger than the sum of the horizontal and vertical phase shift parameters,
then the second term disappears. The same cannot be said for the first term, where the
inverse dependence on time means that there is always some short time period during
which the phase transition is faster than the absorption. Thankfully, this can be mitigated
by increasing the coupling parameter and consequently decreasing the time during which
PMD may proceed. In a physical sense, this would be accomplished by either placing the
absorbing medium deeper within the evanescent field or by simply increasing the density
of the absorbing medium around the field. Either method introduces an effective increase



Entropy 2025, 27,27

6 of 16

in absorption rate. Nevertheless, the ratio is only large when t~A~! or smaller, after which
the ratio declines, meaning that as long as A is sufficiently large, the time over which the
polarization can shift will be quite small, meaning the accumulated probability that the
photon will shift in polarization will remain small.

3. Numerical Simulation

In the previous section, we looked at the theoretical case of a photon passing through a
waveguide of constant birefringence, determined the time-dependence of the polarization,
and constructed an approximate time-evolution operator producing PMD. From here,
we were able to determine an effective time-evolution operator from a Zeno effect, and
determine transition probabilities of polarization shift and absorption as a function of time,
providing some insight into necessary conditions for a Zeno effect.

In this section, we perform a numerical simulation in Mathematica Documentation
of our physical system using the model derived in the previous section. We look at a
few relevant cases where we vary the time-dependence of the absorber coupling and the
birefringence. Each case is compared with the evolution in the absence of absorbers, shown
in Figure 2. The time-dependence from the short-time regime of Equation (8) is shown here.

1,
0.75

— [®o)

Probability 09

025 /- == e
O'r"/' |—¢—¢-l|"'_" ||-|—|-||}|I-¢-ll—|—|—l] e |0)|EL)
to  tao tf ff
Time

Figure 2. Time-evolution of the polarization state in the approximate form given in Equation (7)
as it propagates through a birefringent medium. No absorbers are present. The black curve is the
probability that the photon is right-polarized, the red dashed curve signifies left polarization, and the
blue dotted curve represents the probability of excitation of the absorbers.

The simulation is performed by first constructing the Hamiltonian followed by solving
the time-dependent Schrodinger equation [32]:

n PO _ g5 (). @)

We assume that the initial state is [¢(tp)) = |R)|G) and H(t) is taken from
Equations (13)—(15). We further assume an infinite number of absorbers with which the
incident photon interacts as it travels through the birefringent medium; therefore, the cou-
pling parameters are approximated as a single, continuous potential. In our first case, we
examine the case where, as in our theoretical treatment in the last section, the birefringence
and coupling to the absorbers is held constant. That is, the ¢s does not vary in time, nor
does the coupling parameter, A. This simplest case is shown in Figure 3.

We see from Figure 2 that in the absence of absorbers, the polarization shifts cyclically
as expected. Comparing with Figure 3, we see that introducing the absorbing medium
drastically reduces the probability of transition at any time. Increasing the coupling
parameter A continues this trend to make transitions negligible in probability, as expected,
thus realizing the total suppression of PMD. As predicted in the previous section, the
required coupling strength for an effective PMD suppression increases along with the
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degree of birefringence. In the example of Figure 3, the difference ¢y — ¢y is only about a
1% difference from their average.

1. T =1
075 — |— — — + — | — Rio)

Probability O-5[~ — [~ — — T |
025 —|— — — + — || °° )ie)
O.rq.'rn-o—‘n-r-r—p-c r‘-|4r-|-r-|-1mI-+r-|-|—Pl-1 v ‘0)‘EL)

to tao tas tf

Time

Figure 3. Time-evolution of the polarization state in the presence of absorbers. All curves are labeled
as in Figure 2.

As a matter of interest, we compare an additional scenario. Shown in Figure 4 is a
simulation in which we assume an adiabatic approximation, where we slowly turn on
the absorber coupling [31]. This case may be somewhat more applicable to a physical
implementation of this scheme, as it will generally be the case that PMD will begin to affect
an incident photon before it has a chance to interact with any additional absorbing material
within the waveguide’s path. The time-dependence of A(t) is shown in Figure 5.

1. | |
Y | — ko
Probability 0-5[~ — [— — — + — |
0257 /AL N T £)3)
e i aatx | IIEET VI
f a0 Qr i

Time

Figure 4. Time-evolution under an adiabatic approximation. The coupling parameter A is slowly
turned on until it reaches a maximum at time #) and is slowly turned off at time ¢, ;.

I I
| |
| |
| |
A(t) | |
| |
e L
to tao tar t

Time

Figure 5. Time-evolution of the coupling parameter A(t) assuming an adiabatic (slowly turned
on) potential.

We have made the same choice for the coupling parameter in Figure 4 as in Figure 3.
Notice that while the probability remains significantly reduced, it is not nearly as good as
in Figure 3. Increasing the coupling reduces this just as in the other case, but it requires
much stronger coupling to reach similar suppression. Furthermore, the adiabatic “turn
off” of the coupling can lead to inconsistent outcomes. See Figure 6 for a comparison
between two somewhat different lengths of time over which the coupling parameter is at a
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maximum. The coupling parameter here is 5 times larger than in the previous examples, so
suppression is fairly strong overall, but simply shortening the maximum coupling time
tr — to by an arbitrary choice of 10% (5% in the total time of the simulation) yields a much
smaller probability that the photon exits in a left-polarized state. The case of Figure 4
ending in a nearly perfect right-polarized state is nothing more than a happy coincidence.
It is uncertain what exactly the minimum transition rate can be for any given coupling
parameter, “turn on” rate, etc. though in the case of Figure 6, we found probabilities as low
as 59.6% remaining in the right-polarized state.

a b

0.75 — |R)‘G)

Probability 0-5 == |Z)6)
0.25 T
'

0 AT T LT CY PTG Y f"a‘..,’. AT TT AT T ey 5 Y |0>|EL>

to tho taf 1o tho taf tf
Time Time

Figure 6. Time-evolution under the assumption that the coupling parameter A is turned on slowly. A
is chosen to be especially strong for a significant suppression of PMD. Both plots are the same, but in
(a), trf — to is arbitrarily larger than that same period in (b).

This is due to the significant transition rate in the short time regime, as expected
from the analysis of Equation (20). This does not, however, necessarily pose an issue if
the coupling is suddenly “turned off”, as would be the case when the photon exits the
waveguide, for instance. Whether this would introduce any quantum decoherence from
which-path information [33] is as of yet unclear. Ultimately, this suggests that for imple-
mentations of this design, it is of great importance that the incident photon experiences
strong interaction with the absorbing medium quite early, or else the output will become
much harder to control.

These numerical simulations demonstrate, as a proof of concept, that the Zeno effect
can be used to suppress the polarization mode dispersion under appropriate conditions [27].

4. Physical Implementation Discussion

In this section, we will discuss how this technique might be used to protect the
quantum coherence of an arbitrary qubit. Figure 7 shows a simple schematic depicting a
photon of arbitray polarization |i) = «|H) + B|V), representing an arbitrary qubit where
we could assign the logical representation |H) = |0) and |V) = |1). By splitting the photon
into two paths with definite polarization with a polarizing beam splitter (PBS), the photon
becomes entangled with the vacuum of the other mode, becoming

) = |y') = a|H)[0) + B|0)| V). (22)

The spatially separated photon can be assigned the logical representation |H)|0) = |0)
and |0)|V) = |1), in a 1-to-1 correspondence with the previous encoding. Finally, in spite
of the fact that the polarization is not determined, it is known which path corresponds
to a horizontal and a vertical photon, so it is a simple matter to place quarter waveplates
(QWPs) in either path to convert |[H) — |R) and |V) — |L).

At this stage, the quantum coherence of the system is entirely intact, though it has
been transferred to a larger Hilbert space. Regardless, the photon then passes through
a fiber with absorbers of right-circularly polarized photons or left-circularly polarized
photons, preserving the polarization in either path, without determining the spatial path,
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and simultaneously the polarization, of the photon. After exiting the fiber, the photon
may be recombined into one path with another pair of waveplates and a PBS, or sim-
ply measured depending on need. In either case, the quantum coherence of the qubit
should remain preserved throughout the process, even if the physical qubit itself has been

separated spatially.
State o |H)+B|V) a|H) [0) + 40} [v) a[R) |o) +5[0) |L)
Mirror Horizontal Photon |] Piig:otn

> | o

Fiber with
QWP Left Absorbers

Schematic ' Left
/ Vertical Photon R |] Photon=

Source Fiber with

Polarizing Qwp Right Absorbers
Beam Splitter

Figure 7. A schematic demonstrating an arbitrary polarization-encoded qubit protected via our
proposed technique. A photon with arbitrary polarization is split into two paths by a polarizing
beam splitter, followed by passing through quarter waveplates (QWPs) such that horizontal photons
become right-polarized and vertical photons become left-polarized. The photon is split into two
paths, with both paths protected by appropriate absorbers as they pass through optical fibers.

The obvious cost in this situation comes from requiring a number of resources (fibers,
waveplates) proportional to twice the number of qubits required for any given protocol.
However, this may be an acceptable trade-off in situations where external environmental
influences on waveguide birefringence are unavoidable.

Phase differences from environmental factors can be monitored and adjusted using
the Hong-Ou-Mandel (HOM) interference, by adjusting the path length of one of the two
paths to continually find the HOM dip for a photon pair with tight time correlation. For
more details, see [34]. Other phase stabilization protocols are known. For instance, Ref. [35]
employs a classical probe laser in a Mach-Zehnder configuration, actively measuring these
fluctuations and correcting for them in real time.

Another important consideration is, what sort of materials might accomplish our goal?
That is, absorb one circular polarization and not the other. Rubidium is commonly used, as
an element with transitions that can absorb both left- and right-circular photons [27,36],
with a 780 nm absorption line absorbing / emitting right-circular polarization and a 794.7 nm
absorption line absorbing /emitting left-circular polarization. Quantum dots can be con-
structed with the absorption of circular polarization in mind [37], and thus, may be usable
for our purposes as well with careful engineering.

It is worth emphasizing that a material which is close to resonance with a particular
frequency of right- but not left-circularly polarized photons will not be the same as a
material close to resonance with the same frequency of left- but not right-circularly polar-
ized photons. Thus, two different materials roughly close to resonance with the desired
frequency may be necessary. Other methods, such as the Stark or Zeeman effects, may be
employed to manipulate quantum levels, increasing the available options for materials.
Ultimately, employing this method on arbitrary polarization qubits will require careful
consideration of spectroscopic properties to find an appropriate pairing.
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5. Conclusions

Our investigation demonstrates that the quantum Zeno effect is a promising method
for suppressing PMD in optical and quantum communications. It avoids probabilistic and
scalability issues with cluster states and error-correcting codes [12,13,15] and allows for the
preservation of arbitrary polarization states, but without the destruction of the quantum
coherence of entangled polarization states that is present in PMFs. This last advantage,
however, does require that the state be split into two separate waveguides as the technique
will absorb one or the other circular polarization state as it passes through one waveguide
since one of the two will be absorbed. Any quantum communication protocols relying
on this technique, therefore, will necessarily require twice as many waveguides (fibers)
as qubits.

Although other methods can promise similar results in the absence of atmospheric
effects and temperature fluctuations, such environmental effects on the waveguides can also
be mitigated with this proposed Zeno effect. In principle, such a technique would further
avoid leaking which-path information to an environment, so that quantum coherence of
entanglement is not destroyed. This is a problem in typical fiber communications in no
small part due to the fact that the unknown stochastic nature of birefringence is exacerbated
by atmospheric effects, causing the information to be rendered unusable for quantum
protocols [5]. The technique described here would bypass these issues in either situation,
though it is limited by the extent to which the phase shift in Equation (10) can be made
equal. In a physical scenario, the absorbers of right-polarized photons may not be the same
type, nor capable of reaching the same coupling or density as the absorbers of left-polarized
photons. This could lead to somewhat different phase shifts through the fiber medium,
and could affect the entanglement quality. Even so, bringing the phase shifts close enough
together should extend the range over which entangled photons can be transmitted, most
particularly if applied in regions of significant PMD. If the phase shifts are known, it can
also be compensated for by simply adding phase delays.

In addition, the technique has potential for applications of nonlocal dispersion can-
cellation [28,29], conditioned on the proper engineering of the refractive indices. Indeed,
nonlocal cancellation of dispersion may be simply combined with this technique to further
improve the transmission rates of entangled photons.

In this investigation, we have demonstrated both analytically and numerically that
a quantum Zeno effect can be employed in birefringent media to suppress PMD. The
limitations on the effectiveness of the method are primarily related to how quickly the
Zeno effect can be applied before significant PMD affects the photon, the coupling strength
itself, and the rate at which the birefringence changes along the length of the waveguide.
It should be particularly useful in protecting fragile quantum information encoded in the
polarization degree of freedom as it travels through waveguides experiencing significant
polarization mode dispersion.
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Appendix A
Appendix A.1. Time-Dependent Polarization

We assume a single photon enters a birefringent medium, such as an optical fiber, after
passing through a narrow-bandwidth filter. The general single-photon state is [28,29]

[9(0)) = en [ dwglw)ifJo) (A1)

where g(w) is approximated by a Gaussian centered on frequency wr from the narrow-
bandwidth filter. The constant cy is a suitable normalization constant, and the subscripts
k and s refer to the wavenumber and polarizations, respectively. To obtain the time-
dependence of the polarization, we apply the electric field operator in one dimension [30]:

N . 27th ;
E(x,t) = 12 TCVwk ék,sﬁk,sel(kx_Wkt)' (A2)
k,s

Transforming Equation (A2) into integral form, then applying it to Equation (A1), and
further replacing g(w) — exp[—(w — wr)?/02] from the filter, we obtain the time-
dependent state

—(w—w )2

2

9()) =iy [dove F et el ) gy, (A3)

We have assumed that the photon begins in the polarization state |R) = (|H) —i|V))/v/2.
Noting the narrow bandwidth, we can approximate the slowly varying 1/w as a constant
equal to the filter center frequency /wr. The wavenumber is specified by the polarization
state e ; as

ks = kos + as(w — wp) + Bs(w — wr)? (A4)

and the frequency under the integral is replaced by

w = wr + €. (A5)
With these replacements, the integral becomes

2

[9(t)) = cy [ dee °F

The factors independent of € have all been absorbed into the normalization constant.

/ " dxe (@ +bxto) _ \/Fe(bz—z;ac)/zm (A7)
—eo P

e—iet[ei(aHe-i-ﬁHez)xH |H> _ iei(“V€+ﬁV€2)XV|V>}' (A6)

Following the identity
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we evaluate the integral and obtain
(acHxH—r)z (mvxv—t)2
1 . 1 : .
., e“*ﬂ*lﬁH’CH) ' eM*ﬂ“ﬁvlv)
(1)) = e (—m——=IH) — i—=——1|")). (A8)
\ a2 TiBHYH \ 2z TiPvav

Making the replacement x; — vst = ct/ns, and converting complex numbers into polar

K%Y 12 K27 12
() = ek (/L S ) i [T 0 |)). (A9)

form, we obtain

where
Xs
=(=Zc-1
Ks (ns ),
Us = 1 + %cztz, (A10)
dof  ny

iarctan 202 By ct

Ys = ¢€ Fng ™,

Taking t — 0, these parameters simplify to s — 1/20% and 75 — exp(2ic2p2c2t?).
Collecting all the time-dependence in the exponents, and dropping all second-order and
higher terms in t yield the result ¢s ~ cZcf2/n2? shown in Equation (8). Taking t — oo
instead simplifies the parameters ys — PBsct/ns and s — exp(irr/2) = i. Canceling a
factor of ¢ from the numerator and denominator of the exponents gives the alternate result
from Equation (8), ¢s ~ ns/ (4Bsc)(as/ns — 1)2. Thus, we obtain our approximate form of
the normalized polarization time-evolution:

9() & 5 (e ) — ie”#)). (a11)

Appendix A.2. Quantum Zeno Dynamics
The quantum Zeno effect relies on making frequent measurements to suppress the
quantum state evolution in some desirable way [17,18]. We begin by looking at an arbitrary
quantum system in a quantum state described by the density matrix gy, which evolves
according to time-evolution operator U(t) = exp(—iHt), where H is a time-independent
Hamiltonian. Measurements are denoted by the projection operator E into some subspace
HF of the total Hilbert space H. g is assumed to belong to Hr. The density matrix at some
time T is found by
p(T) = U(T)pol" (T). (A12)

The probability of the quantum state remaining in Hf is

P(T) = Tr[EU(T)poU(T)E). (A13)

We note that gy = EppE. After evolution for time f and projection, the matrix is
poEU™ (H)E (A14)

where 9(t) = EU(t)E is an effective, non-unitary in H time-evolution operator.
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Performing N measurements over total time T, the matrix evolves as

pNI(T) = [6(T/N)Npo[6"(T/N)IN. (A15)

If we take the limit N — co we can obtain the effective time-evolution operator V(T) for an
ideal Zeno effect from continuous measurement.

The system in question involves an incident right-circularly polarized photon, entering
a birefringent medium, and the destruction of left-circularly polarized photons serves to
project the polarization state back to right-circular. The various terms are, therefore,

00 = [R)(R],
E=[R)(R|,
ont (Al6)
- el 0
u=1", e_i"’vt].
Taking E and U(t) into matrix form, we evaluate 9(t) as
o(t) = EU(t)E
1 |1 i |eut 0 1 i
BNV 0 e vt |—i 1
1 (e_i(PHt +e—i¢vf) i(e—i¢Hf +e—i¢vt)
4 —i(e"i9Ht 4 o=iPVt)  (e=ibut 4 o—igvt) (A17)

1, _; . 1 i
[ ¢rt iyt
4(e +e ) [—i 11

= 2(et e [R) (R,
Taking 9(t) to the Nth power, and replacing t — T/N, we obtain

@N(Z) = L (emionk 4o iov N (R (RN
N 21N T T (A18)
= ox (7N 4+ e N)N|R)(R].

For a continuous Zeno effect, we will take the limit N — oo. However, we will first
transform the complex exponential sum in Equation (A18) into polar form, and distribute
the factor of 1/2 into the result.

1 1 1 1 T7 jarctan [2(L
E(e—z%% _._67147‘/%) - 2\/2—|—2cos [(‘PH _ ‘PV)N}EI tan [&(1)]

) \l 1+ 1cos [(;PH —ov)E] incan [2(3)] (A19)
= ’cos [((,DH — ‘PV)%} ’eiarCta“ leh]

Here, we have taken advantage of the identity cos6? = (1 + cosf)/2 to simplify the
magnitude. The function (T/N) is

) .
)

§(1> _ sin(¢py) +sin (¢v

N cos (pu ) + cos (¢v (A20)

| el
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We now have the limit
T T 1IN n; T
lim z?N(—) = lim ‘cos {(QDH *qbv)fH pNiarctan [£()]
N—oo N N—o0 2N (A21)

1 TN .. Niarctan [g(%)]
= Jimfeos [ = vz | time -

We can tackle each element of the limit separately, though they will both use similar
techniques. In both cases, we will start by setting the argument equal to y and taking
Iny, followed by the use of L'Hopital’s Rule. We start by evaluating the limit of the

magnitude factor:

lim Iny = hm Nln ’ cos [(‘PH - ‘PV)%} ‘

N—o0
. ’ cos [(‘PH Pv) on (A22)
B 131—1’{100 1/N

Applying I'Hopital’s Rule, we obtain
fim Ty = fim (11— pv) ok | sen | cos [ (¢ — ¢v) o | | (@1 — @) T (—1/N?)
N T T TR fl/NZ‘ cos {(¢H — ¢V)%} ‘ .

= lim o M)H _ (PV)%}Sgn[COS {(4’1{ - 4’v)%“ (61 —v)3
v <o [0 ]| |

The “sign” function sgn(x) returns 1 if x is positive, —1 if x is negative, and 0 if x is 0. Note
that limy_,e 1/N = lim,_,¢+ x since N is approaching positive co. The components of the
limit are then each evaluated to be

Tim sin (95— ¢v) 53] =0
Jim sgn|cos [(gn — gv) ]| =1 (A24)

lim |cos [(4)H - 4)V)%} ‘ =1

N—o0

Thus, the limit is evaluated as

lim Iny =0

N—co (A25)

= lim y=1.
N—oo

Following a similar process, we evaluate the limit of the complex exponential term. Due to
the complexity of the calculation, we will first note the derivative of our term ¢(T/N) with
respect to N.

@& _ Tntgy)  Vreos|pn )R]

= = . (A26)
N N2 {cos (4>H ) + cos (¢V%)}
Our new limit is
I\}l_r)llolny = I\%lrn Niarctan [ (%)}
arctan [ (% } (A27)

R S 5 v
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and again using L'Hopital’s Rule we obtain
| o T(=1/NY) (g + ) [1+cos (g — 9v) ]
lim Iny =i lim 5
Noe N7 (L1/N2) {1—&—62(%)} {cos (QDH%) + cos (¢V%)}
:i(¢H+¢V)T§? {1+cos [(‘PH_‘PV)%” B
JEECIECHE)
Looking at the various pieces of the limit, we see that
m £ () 0

. T
Alrlglo cos <¢SN> =1 (A29)

(A28)

lim cos [((]}H - (pv)%] =1

N—oo

The subscript s refers to either H and V. Therefore, the limit evaluates to

lim Iny = %(4)14 +¢y)T
— lim y = e2(@ntev)T,
N—oo

Thus, the effective time-evolution operator in the limiting case of continuous observation is

P(m) = Jim 2 ()

- e%(¢H+¢V)T|R> (R|.

(A31)
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