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Abstract: Polarization mode dispersion can introduce quantum decoherence in polarization

encoded information, limiting the range of quantum communications protocols. Therefore,

strategies to nullify the effect would reduce quantum decoherence and potentially increase

the operational range of such technology. We constructed a quantum model of polarization

mode dispersion alongside a two-level absorbing material. The two-level material serves

to destructively measure one of two orthogonal polarization modes, thus projecting the

polarization onto the other state. The theoretical results are supported by a numerical simu-

lation in Mathematica Documentation where we compare the evolution of the polarization

state with and without the absorbing material. We find that this strategy is effective in

suppressing the effects of polarization mode dispersion, and that this method produces a

global phase shift related to the waveguide’s birefringent properties.

Keywords: Zeno; polarization mode dispersion; polarization; quantum Zeno effect; PMD;

optical fibers; fibers; waveguides

1. Introduction

Polarization mode dispersion (PMD) is a near unavoidable feature of fiber optical

communications, wherein the polarization state of light passing through a medium (optical

fibers) shifts as it travels [1]. In fibers, for example, this is a consequence of birefringence

present in the waveguide due to unintentional variations in the shape of the core [1–4].

Various environmental effects (wind, temperature, etc.) can cause the fibers to bend

and twist, further randomizing the birefringence and introducing PMD into the fiber [5].

Strategies employed to compensate for and avoid it include intentionally exaggerating the

birefringence such that cross-talk between two orthogonal polarization states is negligible,

creating polarization-maintaining fibers (PMFs) [1,6–9], among other methods [10,11].

Unfortunately, due to the significant delay in one polarization with respect to the other, the

large birefringence of PMFs induces decoherence in entangled polarization states.

PMD can be particularly detrimental to quantum communications as qubit-encoded

(especially entangled) states in the polarization degree of freedom are susceptible to deco-

herence or errors as a result, limiting the range of quantum communications relying on such

states. Some errors can be avoided or corrected through the use of cluster states [12–14] and

error-correcting codes [15], but these, of course, have their limitations such as scalability

issues from large overhead in required physical resources or that they cannot be reversed.

Quantum repeaters [16] are another clear method to circumvent these issues, though they

of course rely on quantum teleportation, itself a communication protocol, and as such
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are subject to the same limitations. In other words, improving the distance over which

quantum coherence is maintained inherently improves the utility of repeaters.

Our proposed method relies instead on the quantum Zeno effect, the phenomenon

in which repeated measurements (or interactions) prevent a quantum system from evolv-

ing [17,18]. Creative use of the Zeno effect can induce unusual phase shifts or turn proba-

bilistic processes into fully deterministic ones and it has been proposed for several such

purposes [19–22], and experimentally demonstrated [23].

In our case, the Zeno effect is induced by the introduction of a two-level absorbing

medium into the evanescent field of an optical waveguide (fiber for instance). The ab-

sorbing medium will be assumed on resonance with a given frequency of either right- or

left-circular polarized photons, while the photon passing through will be the opposite

polarization. Such dipole transitions are known to follow selection rules based on the

angular momentum difference ∆ml between the ground and excited states [24]. In this case,

absorption (emission) of left-circular polarization changes the absorber’s quantum number

ml by −1 (+1) while right-circular polarization has the inverse relationship. Materials with

these properties, such as rubidium vapor, are common in experiments that require optical

pumping or electromagnetically induced transparency [25–27].

Without loss of generality, we will assume throughout this paper that the absorbing

medium is resonant with left-circularly polarized photons while the photons traveling

through the fiber will be assumed right-circularly polarized. The presence of the absorbing

material will serve to destroy any left-circularly polarized photons that appear in the

waveguide, while letting right-circular photons through unhindered. The proposed design

and its operation are depicted in Figure 1. By suppressing the effects of birefringence, it

is in principle possible to transmit arbitrary qubits encoded in the polarization degree of

freedom without introducing any decoherence.

Figure 1. Visual outline of the proposed PMD suppression technique. (a) Outline of major assump-

tions of the scenario, with a single photon passing through a narrow-bandwidth filter, followed by

entering an optical waveguide (fiber) containing an absorbing medium. (b) An example cross-section

of an optical fiber overlaid with an electromagnetic field, with an elliptical shape rather than the

ideal circular shape. This causes the differential refractive index between horizontal and vertical

polarizations. (c) A simple depiction of the polarization state at the input and output of a fiber with

and without the absorbing medium. Without absorbers, the polarization is unknown at the end,

whereas the polarization is preserved with the absorbers present.

In Section 2, we will construct a theoretical model for PMD acting on a single photon

of right-circular polarization, followed by a derivation of the Zeno effect acting on the

photon in such an environment. Section 3 will show the results of a numerical simulation

corroborating the theoretical predictions, Section 4 will briefly overview how this scheme

might be implemented, and we will conclude this paper in Section 5.
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2. Theory

We consider the situation depicted in Figure 1. A single photon is injected into an

optical fiber after passing through a narrow frequency-bandwidth filter. The general

single-photon state is given by [28,29]

|ψ(0)⟩ = cN

∫

dωg(ω)â†
k,s|0⟩. (1)

The function g(ω) is determined by the source. Introducing a narrow-bandwidth filter

replaces g(ω) with a Gaussian distribution centered on frequency ωF. The constant cN is a

suitable normalization constant, and the subscripts k and s refer to the wavenumber and

polarization, respectively. To obtain the time-dependence of the polarization, we apply the

positive-frequency component of the electric field operator in one dimension [30]:

Ê(x, t) = i ∑
k,s

√

2πh̄ωk

V
êk,sei(kx−ωkt) âk,s. (2)

Applying Equation (2) to Equation (1), and replacing g(ω) → exp [−(ω − ωF)
2/σ2

F], we

obtain the time-dependent state

|ψ(t)⟩ = c′N

∫

dω
√

ωe

−(ω−ωF)
2

σ2
F e−iωt[eikH xH |H⟩ − ieikV xV |V⟩] (3)

where we have further assumed that the photon begins in the polarization state |R⟩ =

(|H⟩ − i|V⟩)/
√

2.

Note that the wavenumber is different for the two polarization states as a consequence

of the birefringent medium. In general, these values will themselves change with time,

but we have assumed a constant birefringence. This is valid provided that the interac-

tion strength between the absorbing medium and light is strong compared to the degree

of birefringence.

We will leave the majority of this derivation for Appendix A.1, but a few important

replacements will be noted here. We first assume constant birefringence, and the narrow-

bandwidth filter permits us to perform a Taylor expansion of the wavenumber about the

filter frequency

ks = k0,s + αs(ω − ωF) + βs(ω − ωF)
2 (4)

and the frequency under the integral is replaced by

ω = ωF + ϵ. (5)

As noted in Appendix A.1, the narrow-bandwidth filter permits the replacement of
√

ω

with a constant value
√

ωF, simplifying the integrand, after which the integral is taken

over by all frequencies as an approximation. Physically, the narrow-bandwidth filter limits

the range of frequencies present in the fiber such that higher-order effects of the refractive

index other than dispersion βs are negligible. We also replace xs → vst = ct/ns, where ns

is the refractive index of an s polarized photon.

Evaluating the integral (3) under these approximations, we obtain

|ψ(t)⟩ = c′′N
( e

(αH xH−t)2

4(− 1
2σ2

F

+iβH xH )

√

− 1
2σ2

F

+ iβHxH

|H⟩ − i
e

(αV xV−t)2

4(− 1
2σ2

F

+iβV xV )

√

− 1
2σ2

F

+ iβV xV

|V⟩
)

. (6)

This general result is reducible to
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|ψ(t)⟩ ≈ 1√
2

(

e−iϕH t|H⟩ − ie−iϕV t|V⟩
)

(7)

where

ϕs =







2σ2
Fc

βs
ns

, t → 0+

ns
4βsc (

αs
ns

− 1)2, t → ∞
. (8)

Note that the convenient form of the polarization time-dependence in (7) is valid for

timescales much smaller or larger than t = ns/(2σ2
F|βs|c) for either polarization s.

A time-evolution operator is easily obtained by inspection, from (7),

Û(t) =

[

e−iϕH t 0

0 e−iϕV t

]

, (9)

from which we can derive the dynamics of the system under continuous observation [18].

Projecting this operator an infinite number of times within a finite time T produces the

effective time-evolution operator:

V̂(T) = e
i
2 (ϕH+ϕV )T |R⟩⟨R| (10)

The full derivation is provided in Appendix A.2. Interestingly, the phase shift of the

polarized state under the Zeno effect is equivalent to the average of the horizontal and

vertical phase shifts, necessarily those of the short timescale in (8).

The question remains, what conditions are required for the Zeno effect to be successful?

In general, the physical situation in which the Zeno effect arises is any of those cases where

the transition into some undesired state (in our case, the opposite polarization) is much

slower than the higher-order transition into and then out of the undesired state into another

“measuring” state (in our case, an excited absorber state). In such a situation, any growth

in the population of the undesired state is quickly lost to the measuring state, ultimately

leaving the undesired state at 0 probability.

To this end, we calculate the relevant transition rates for |R⟩|G⟩ → |L⟩|G⟩ and

|R⟩|G⟩ → |R⟩|E⟩. The first- and second-order transition probabilities as a function of

time are calculated using the formulae [31]

Pi→ f (t) =
∣

∣

∣

1

ih̄

∫ t f

ti

dt′⟨ f |ĤI(t
′)|i⟩

∣

∣

∣

2
(11)

and

Pi→ f (t) =
∣

∣

∣

1

(ih̄)2

∫ t f

ti

dt′
∫ t f

ti

dt′′ ∑
m

⟨ f |ĤI(t
′)|m⟩⟨m|ĤI(t

′′)|i⟩
∣

∣

∣

2
. (12)

Here, ĤI(t) is the time-dependent interaction Hamiltonian and i and f denote the

initial and final states of the system, respectively. The Hamiltonian of our system is given by

Ĥ = Ĥ0 + ĤI (13)

where

Ĥ0 = h̄ω(â†
R âR + â†

L âL + 1) +
1

2
ω0σ̂z (14)

is the rest Hamiltonian and

ĤI = h̄Φ̂ + h̄λ(âLσ̂+ + â†
Lσ̂−) (15)
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is the interaction Hamiltonian. Finally, ω is the frequency of light and ω0 is the resonant

frequency of the two-level absorber, and these are assumed equal in the calculation. The

parameter λ is the coupling between the absorber and the light, and σz is the Pauli Z spin

operator with σ̂± the Pauli ladder operators, given in matrix form as

σ̂+ =

[

0 1

0 0

]

, σ̂− =

[

0 0

1 0

]

, σ̂z =

[

1 0

0 −1

]

(16)

These operators are those used in the the Jaynes–Cummings model, wherein σ̂+ facilitates

transitions out of the ground state |G⟩ and into the excited state |E⟩ while σ̂− facilitates the

reverse transition. σ̂z returns the energy of the ground and excited states [30].

The phase component of the interaction Hamiltonian, Φ̂, is obtained from Equation (9)

and is given by

Φ̂ =

[

ϕH 0

0 ϕV

]

(17)

in the linear basis. Φ̂ facilitates the phase shift in the horizontal and vertical components

of the polarization due to PMD. In evaluating (11) and (12), our initial and final states

are in terms of circular polarization states, but we perform the calculation in the linear

basis, rewriting â†
R → (â†

H − iâ†
V)/

√
2 and â†

R → (â†
H + iâ†

V)/
√

2 and their corresponding

lowering operators.

With all this, we calculate the first- and second-order transitions from an initial state

|i⟩ = |R⟩|G⟩, into final states | f ⟩ = |L⟩|G⟩ and | f ⟩ = |0⟩|E⟩. Our time-dependent transition

probabilities, PRG→LG and PRG→0G, are therefore

PRG→LG(t) =
t2

4
(ϕH − ϕV)

2 +
t4

16
(ϕ2

H − ϕ2
V)

2 (18)

and

PRG→0E(t) =
λ2t4

32
(ϕH − ϕV)

2. (19)

Note that the result in (18) has both a first- and second-order contribution while that of (19)

only has a second-order contribution as the first-order probability is 0. Similar results can

be obtained for the opposite case (left-polarized photon into right-polarized and excited

state of a right absorber).

Taking the ratio of the probabilities, Pϕ/E = PRG→LG/PRG→0E, provides some insight

into the necessary conditions for the Zeno effect. Conditions under which the ratio is

small indicate that the absorption rate is much larger than the transition rate to left-circular

polarization. The ratio as a function of time is

Pϕ/E(t) =
8

λ2t2
+

2

λ2
(ϕH + ϕV)

2. (20)

As long as the coupling parameter between the absorbing medium and the photon mode,

λ, is significantly larger than the sum of the horizontal and vertical phase shift parameters,

then the second term disappears. The same cannot be said for the first term, where the

inverse dependence on time means that there is always some short time period during

which the phase transition is faster than the absorption. Thankfully, this can be mitigated

by increasing the coupling parameter and consequently decreasing the time during which

PMD may proceed. In a physical sense, this would be accomplished by either placing the

absorbing medium deeper within the evanescent field or by simply increasing the density

of the absorbing medium around the field. Either method introduces an effective increase
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in absorption rate. Nevertheless, the ratio is only large when t∼λ−1 or smaller, after which

the ratio declines, meaning that as long as λ is sufficiently large, the time over which the

polarization can shift will be quite small, meaning the accumulated probability that the

photon will shift in polarization will remain small.

3. Numerical Simulation

In the previous section, we looked at the theoretical case of a photon passing through a

waveguide of constant birefringence, determined the time-dependence of the polarization,

and constructed an approximate time-evolution operator producing PMD. From here,

we were able to determine an effective time-evolution operator from a Zeno effect, and

determine transition probabilities of polarization shift and absorption as a function of time,

providing some insight into necessary conditions for a Zeno effect.

In this section, we perform a numerical simulation in Mathematica Documentation

of our physical system using the model derived in the previous section. We look at a

few relevant cases where we vary the time-dependence of the absorber coupling and the

birefringence. Each case is compared with the evolution in the absence of absorbers, shown

in Figure 2. The time-dependence from the short-time regime of Equation (8) is shown here.

Figure 2. Time-evolution of the polarization state in the approximate form given in Equation (7)

as it propagates through a birefringent medium. No absorbers are present. The black curve is the

probability that the photon is right-polarized, the red dashed curve signifies left polarization, and the

blue dotted curve represents the probability of excitation of the absorbers.

The simulation is performed by first constructing the Hamiltonian followed by solving

the time-dependent Schrodinger equation [32]:

ih̄
d|ψ(t)⟩

dt
= Ĥ(t)|ψ(t)⟩. (21)

We assume that the initial state is |ψ(t0)⟩ = |R⟩|G⟩ and Ĥ(t) is taken from

Equations (13)–(15). We further assume an infinite number of absorbers with which the

incident photon interacts as it travels through the birefringent medium; therefore, the cou-

pling parameters are approximated as a single, continuous potential. In our first case, we

examine the case where, as in our theoretical treatment in the last section, the birefringence

and coupling to the absorbers is held constant. That is, the ϕs does not vary in time, nor

does the coupling parameter, λ. This simplest case is shown in Figure 3.

We see from Figure 2 that in the absence of absorbers, the polarization shifts cyclically

as expected. Comparing with Figure 3, we see that introducing the absorbing medium

drastically reduces the probability of transition at any time. Increasing the coupling

parameter λ continues this trend to make transitions negligible in probability, as expected,

thus realizing the total suppression of PMD. As predicted in the previous section, the

required coupling strength for an effective PMD suppression increases along with the
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degree of birefringence. In the example of Figure 3, the difference ϕH − ϕV is only about a

1% difference from their average.

Figure 3. Time-evolution of the polarization state in the presence of absorbers. All curves are labeled

as in Figure 2.

As a matter of interest, we compare an additional scenario. Shown in Figure 4 is a

simulation in which we assume an adiabatic approximation, where we slowly turn on

the absorber coupling [31]. This case may be somewhat more applicable to a physical

implementation of this scheme, as it will generally be the case that PMD will begin to affect

an incident photon before it has a chance to interact with any additional absorbing material

within the waveguide’s path. The time-dependence of λ(t) is shown in Figure 5.

Figure 4. Time-evolution under an adiabatic approximation. The coupling parameter λ is slowly

turned on until it reaches a maximum at time tλ0 and is slowly turned off at time tλ f .

Figure 5. Time-evolution of the coupling parameter λ(t) assuming an adiabatic (slowly turned

on) potential.

We have made the same choice for the coupling parameter in Figure 4 as in Figure 3.

Notice that while the probability remains significantly reduced, it is not nearly as good as

in Figure 3. Increasing the coupling reduces this just as in the other case, but it requires

much stronger coupling to reach similar suppression. Furthermore, the adiabatic “turn

off” of the coupling can lead to inconsistent outcomes. See Figure 6 for a comparison

between two somewhat different lengths of time over which the coupling parameter is at a
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maximum. The coupling parameter here is 5 times larger than in the previous examples, so

suppression is fairly strong overall, but simply shortening the maximum coupling time

t f − t0 by an arbitrary choice of 10% (5% in the total time of the simulation) yields a much

smaller probability that the photon exits in a left-polarized state. The case of Figure 4

ending in a nearly perfect right-polarized state is nothing more than a happy coincidence.

It is uncertain what exactly the minimum transition rate can be for any given coupling

parameter, “turn on” rate, etc. though in the case of Figure 6, we found probabilities as low

as 59.6% remaining in the right-polarized state.

Figure 6. Time-evolution under the assumption that the coupling parameter λ is turned on slowly. λ

is chosen to be especially strong for a significant suppression of PMD. Both plots are the same, but in

(a), tλ f − tλ0 is arbitrarily larger than that same period in (b).

This is due to the significant transition rate in the short time regime, as expected

from the analysis of Equation (20). This does not, however, necessarily pose an issue if

the coupling is suddenly “turned off”, as would be the case when the photon exits the

waveguide, for instance. Whether this would introduce any quantum decoherence from

which-path information [33] is as of yet unclear. Ultimately, this suggests that for imple-

mentations of this design, it is of great importance that the incident photon experiences

strong interaction with the absorbing medium quite early, or else the output will become

much harder to control.

These numerical simulations demonstrate, as a proof of concept, that the Zeno effect

can be used to suppress the polarization mode dispersion under appropriate conditions [27].

4. Physical Implementation Discussion

In this section, we will discuss how this technique might be used to protect the

quantum coherence of an arbitrary qubit. Figure 7 shows a simple schematic depicting a

photon of arbitray polarization |ψ⟩ = α|H⟩+ β|V⟩, representing an arbitrary qubit where

we could assign the logical representation |H⟩ = |0⟩ and |V⟩ = |1⟩. By splitting the photon

into two paths with definite polarization with a polarizing beam splitter (PBS), the photon

becomes entangled with the vacuum of the other mode, becoming

|ψ⟩ → |ψ′⟩ = α|H⟩|0⟩+ β|0⟩|V⟩. (22)

The spatially separated photon can be assigned the logical representation |H⟩|0⟩ = |0⟩
and |0⟩|V⟩ = |1⟩, in a 1-to-1 correspondence with the previous encoding. Finally, in spite

of the fact that the polarization is not determined, it is known which path corresponds

to a horizontal and a vertical photon, so it is a simple matter to place quarter waveplates

(QWPs) in either path to convert |H⟩ → |R⟩ and |V⟩ → |L⟩.
At this stage, the quantum coherence of the system is entirely intact, though it has

been transferred to a larger Hilbert space. Regardless, the photon then passes through

a fiber with absorbers of right-circularly polarized photons or left-circularly polarized

photons, preserving the polarization in either path, without determining the spatial path,
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and simultaneously the polarization, of the photon. After exiting the fiber, the photon

may be recombined into one path with another pair of waveplates and a PBS, or sim-

ply measured depending on need. In either case, the quantum coherence of the qubit

should remain preserved throughout the process, even if the physical qubit itself has been

separated spatially.

Figure 7. A schematic demonstrating an arbitrary polarization-encoded qubit protected via our

proposed technique. A photon with arbitrary polarization is split into two paths by a polarizing

beam splitter, followed by passing through quarter waveplates (QWPs) such that horizontal photons

become right-polarized and vertical photons become left-polarized. The photon is split into two

paths, with both paths protected by appropriate absorbers as they pass through optical fibers.

The obvious cost in this situation comes from requiring a number of resources (fibers,

waveplates) proportional to twice the number of qubits required for any given protocol.

However, this may be an acceptable trade-off in situations where external environmental

influences on waveguide birefringence are unavoidable.

Phase differences from environmental factors can be monitored and adjusted using

the Hong–Ou–Mandel (HOM) interference, by adjusting the path length of one of the two

paths to continually find the HOM dip for a photon pair with tight time correlation. For

more details, see [34]. Other phase stabilization protocols are known. For instance, Ref. [35]

employs a classical probe laser in a Mach–Zehnder configuration, actively measuring these

fluctuations and correcting for them in real time.

Another important consideration is, what sort of materials might accomplish our goal?

That is, absorb one circular polarization and not the other. Rubidium is commonly used, as

an element with transitions that can absorb both left- and right-circular photons [27,36],

with a 780 nm absorption line absorbing/emitting right-circular polarization and a 794.7 nm

absorption line absorbing/emitting left-circular polarization. Quantum dots can be con-

structed with the absorption of circular polarization in mind [37], and thus, may be usable

for our purposes as well with careful engineering.

It is worth emphasizing that a material which is close to resonance with a particular

frequency of right- but not left-circularly polarized photons will not be the same as a

material close to resonance with the same frequency of left- but not right-circularly polar-

ized photons. Thus, two different materials roughly close to resonance with the desired

frequency may be necessary. Other methods, such as the Stark or Zeeman effects, may be

employed to manipulate quantum levels, increasing the available options for materials.

Ultimately, employing this method on arbitrary polarization qubits will require careful

consideration of spectroscopic properties to find an appropriate pairing.
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5. Conclusions

Our investigation demonstrates that the quantum Zeno effect is a promising method

for suppressing PMD in optical and quantum communications. It avoids probabilistic and

scalability issues with cluster states and error-correcting codes [12,13,15] and allows for the

preservation of arbitrary polarization states, but without the destruction of the quantum

coherence of entangled polarization states that is present in PMFs. This last advantage,

however, does require that the state be split into two separate waveguides as the technique

will absorb one or the other circular polarization state as it passes through one waveguide

since one of the two will be absorbed. Any quantum communication protocols relying

on this technique, therefore, will necessarily require twice as many waveguides (fibers)

as qubits.

Although other methods can promise similar results in the absence of atmospheric

effects and temperature fluctuations, such environmental effects on the waveguides can also

be mitigated with this proposed Zeno effect. In principle, such a technique would further

avoid leaking which-path information to an environment, so that quantum coherence of

entanglement is not destroyed. This is a problem in typical fiber communications in no

small part due to the fact that the unknown stochastic nature of birefringence is exacerbated

by atmospheric effects, causing the information to be rendered unusable for quantum

protocols [5]. The technique described here would bypass these issues in either situation,

though it is limited by the extent to which the phase shift in Equation (10) can be made

equal. In a physical scenario, the absorbers of right-polarized photons may not be the same

type, nor capable of reaching the same coupling or density as the absorbers of left-polarized

photons. This could lead to somewhat different phase shifts through the fiber medium,

and could affect the entanglement quality. Even so, bringing the phase shifts close enough

together should extend the range over which entangled photons can be transmitted, most

particularly if applied in regions of significant PMD. If the phase shifts are known, it can

also be compensated for by simply adding phase delays.

In addition, the technique has potential for applications of nonlocal dispersion can-

cellation [28,29], conditioned on the proper engineering of the refractive indices. Indeed,

nonlocal cancellation of dispersion may be simply combined with this technique to further

improve the transmission rates of entangled photons.

In this investigation, we have demonstrated both analytically and numerically that

a quantum Zeno effect can be employed in birefringent media to suppress PMD. The

limitations on the effectiveness of the method are primarily related to how quickly the

Zeno effect can be applied before significant PMD affects the photon, the coupling strength

itself, and the rate at which the birefringence changes along the length of the waveguide.

It should be particularly useful in protecting fragile quantum information encoded in the

polarization degree of freedom as it travels through waveguides experiencing significant

polarization mode dispersion.
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Appendix A

Appendix A.1. Time-Dependent Polarization

We assume a single photon enters a birefringent medium, such as an optical fiber, after

passing through a narrow-bandwidth filter. The general single-photon state is [28,29]

|ψ(0)⟩ = cN

∫

dωg(ω)â†
k,s|0⟩ (A1)

where g(ω) is approximated by a Gaussian centered on frequency ωF from the narrow-

bandwidth filter. The constant cN is a suitable normalization constant, and the subscripts

k and s refer to the wavenumber and polarizations, respectively. To obtain the time-

dependence of the polarization, we apply the electric field operator in one dimension [30]:

Ê(x, t) = i ∑
k,s

√

2πh̄ωk

V
êk,s âk,sei(kx−ωkt). (A2)

Transforming Equation (A2) into integral form, then applying it to Equation (A1), and

further replacing g(ω) → exp [−(ω − ωF)
2/σ2

F] from the filter, we obtain the time-

dependent state

|ψ(t)⟩ = c′N

∫

dω
√

ωe

−(ω−ωF)
2

σ2
F e−iωt[eikH xH |H⟩ − ieikV xV |V⟩]. (A3)

We have assumed that the photon begins in the polarization state |R⟩ = (|H⟩ − i|V⟩)/
√

2.

Noting the narrow bandwidth, we can approximate the slowly varying
√

ω as a constant

equal to the filter center frequency
√

ωF. The wavenumber is specified by the polarization

state ˆek,s as

ks = k0,s + αs(ω − ωF) + βs(ω − ωF)
2 (A4)

and the frequency under the integral is replaced by

ω = ωF + ϵ. (A5)

With these replacements, the integral becomes

|ψ(t)⟩ = c′N

∫

dϵe
− ϵ2

σ2
F e−iϵt[ei(αHϵ+βHϵ2)xH |H⟩ − iei(αV ϵ+βV ϵ2)xV |V⟩]. (A6)

The factors independent of ϵ have all been absorbed into the normalization constant.

Following the identity

∫ ∞

−∞
dxe−(ax2+bx+c) =

√

π

a
e(b

2−4ac)/4a (A7)
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we evaluate the integral and obtain

|ψ(t)⟩ = c′′N
( e

(αH xH−t)2

4(− 1
2σ2

F

+iβH xH )

√

− 1
2σ2

F

+ iβHxH

|H⟩ − i
e

(αV xV−t)2

4(− 1
2σ2

F

+iβV xV )

√

− 1
2σ2

F

+ iβV xV

|V⟩
)

. (A8)

Making the replacement xs → vst = ct/ns, and converting complex numbers into polar

form, we obtain

|ψ(t)⟩ = c′′N
(

√

γH

µH
e

κ2
H γH t2

4µH |H⟩ − i

√

γV

µV
e

κ2
V γV t2

4µH |V⟩
)

. (A9)

where

κs = (
αs

ns
c − 1),

µs =

√

1

4σ4
F

+
β2

H

n2
H

c2t2,

γs = e
i arctan 2σ2

F
βH
nH

ct
.

(A10)

Taking t → 0, these parameters simplify to µs → 1/2σ2
F and γs → exp(2iσ2

Fβ2
s c2t2).

Collecting all the time-dependence in the exponents, and dropping all second-order and

higher terms in t yield the result ϕs ≈ σ2
Fcβ2

s /n2
s shown in Equation (8). Taking t → ∞

instead simplifies the parameters µs → βsct/ns and γs → exp(iπ/2) = i. Canceling a

factor of t from the numerator and denominator of the exponents gives the alternate result

from Equation (8), ϕs ≈ ns/(4βsc)(αs/ns − 1)2. Thus, we obtain our approximate form of

the normalized polarization time-evolution:

|ψ(t)⟩ ≈ 1√
2

(

e−iϕH t|H⟩ − ie−iϕV t|V⟩
)

. (A11)

Appendix A.2. Quantum Zeno Dynamics

The quantum Zeno effect relies on making frequent measurements to suppress the

quantum state evolution in some desirable way [17,18]. We begin by looking at an arbitrary

quantum system in a quantum state described by the density matrix ρ̂0, which evolves

according to time-evolution operator Û(t) = exp(−iĤt), where Ĥ is a time-independent

Hamiltonian. Measurements are denoted by the projection operator Ê into some subspace

HE of the total Hilbert space H. ρ̂0 is assumed to belong to HE. The density matrix at some

time T is found by

ρ̂(T) = Û(T)ρ̂0Û†(T). (A12)

The probability of the quantum state remaining in HE is

P(T) = Tr[ÊÛ(T)ρ̂0Û†(T)Ê]. (A13)

We note that ρ̂0 = Êρ̂0Ê. After evolution for time t and projection, the matrix is

ρ̂(t) = ÊÛ(t)ρ̂0Û†(t)Ê.

= ÊÛ(t)Êρ̂0ÊÛ†(t)Ê

= v̂(t)ρ̂0v̂†(t)

(A14)

where v̂(t) = ÊÛ(t)Ê is an effective, non-unitary in H time-evolution operator.
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Performing N measurements over total time T, the matrix evolves as

ρ̂(N)(T) = [v̂(T/N)]N ρ̂0[v̂
†(T/N)]N . (A15)

If we take the limit N → ∞ we can obtain the effective time-evolution operator V̂(T) for an

ideal Zeno effect from continuous measurement.

The system in question involves an incident right-circularly polarized photon, entering

a birefringent medium, and the destruction of left-circularly polarized photons serves to

project the polarization state back to right-circular. The various terms are, therefore,

ρ̂0 = |R⟩⟨R|,
Ê = |R⟩⟨R|,

Û(t) =

[

e−iϕH t 0

0 e−iϕV t

]

.

(A16)

Taking Ê and Û(t) into matrix form, we evaluate v̂(t) as

v̂(t) = ÊÛ(t)Ê

=
1

√
2

4

[

1 i

−i 1

][

e−iϕH t 0

0 e−iϕV t

][

1 i

−i 1

]

=
1

4

[

(e−iϕH t + e−iϕV t) i(e−iϕH t + e−iϕV t)

−i(e−iϕH t + e−iϕV t) (e−iϕH t + e−iϕV t)

]

=
1

4
(e−iϕH t + e−iϕV t)

[

1 i

−i 1

]

=
1

2
(e−iϕH t + e−iϕV t)|R⟩⟨R|.

(A17)

Taking v̂(t) to the Nth power, and replacing t → T/N, we obtain

v̂N
( T

N

)

=
1

2N
(e−iϕH

T
N + e−iϕV

T
N )N(|R⟩⟨R|)N

=
1

2N
(e−iϕH

T
N + e−iϕV

T
N )N |R⟩⟨R|.

(A18)

For a continuous Zeno effect, we will take the limit N → ∞. However, we will first

transform the complex exponential sum in Equation (A18) into polar form, and distribute

the factor of 1/2 into the result.

1

2
(e−iϕH

T
N + e−iϕV

T
N ) =

1

2

√

2 + 2 cos
[

(ϕH − ϕV)
T

N

]

ei arctan
[

ξ( T
N )
]

=

√

√

√

√

1 + 1 cos
[

(ϕH − ϕV)
T
N

]

2
ei arctan

[

ξ( T
N )
]

=
∣

∣

∣
cos

[

(ϕH − ϕV)
T

2N

]∣

∣

∣
ei arctan

[

ξ( T
N )
]

.

(A19)

Here, we have taken advantage of the identity cos θ2 = (1 + cos θ)/2 to simplify the

magnitude. The function ξ(T/N) is

ξ
( T

N

)

=
sin (ϕH

T
N ) + sin (ϕV

T
N )

cos (ϕH
T
N ) + cos (ϕV

T
N )

. (A20)
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We now have the limit

lim
N→∞

v̂N
( T

N

)

= lim
N→∞

∣

∣

∣
cos

[

(ϕH − ϕV)
T

2N

]∣

∣

∣

N
eNi arctan

[

ξ( T
N )
]

= lim
N→∞

∣

∣

∣
cos

[

(ϕH − ϕV)
T

2N

]∣

∣

∣

N
lim

N→∞
eNi arctan

[

ξ( T
N )
]

.

(A21)

We can tackle each element of the limit separately, though they will both use similar

techniques. In both cases, we will start by setting the argument equal to y and taking

ln y, followed by the use of L’Hopital’s Rule. We start by evaluating the limit of the

magnitude factor:

lim
N→∞

ln y = lim
N→∞

N ln
∣

∣

∣
cos

[

(ϕH − ϕV)
T

2N

]∣

∣

∣

= lim
N→∞

ln
∣

∣

∣
cos

[

(ϕH − ϕV)
T

2N

]

1/N
.

(A22)

Applying L’Hopital’s Rule, we obtain

lim
N→∞

ln y = lim
N→∞

sin
[

(ϕH − ϕV)
T

2N

]

sgn
[

cos
[

(ϕH − ϕV)
T

2N

]]

(ϕH − ϕV)
T
2 (−1/N2)

−1/N2
∣

∣

∣
cos

[

(ϕH − ϕV)
T

2N

]∣

∣

∣

= lim
N→∞

sin
[

(ϕH − ϕV)
T

2N

]

sgn
[

cos
[

(ϕH − ϕV)
T

2N

]]

(ϕH − ϕV)
T
2

∣

∣

∣
cos

[

(ϕH − ϕV)
T

2N

]∣

∣

∣

.

(A23)

The “sign” function sgn(x) returns 1 if x is positive, −1 if x is negative, and 0 if x is 0. Note

that limN→∞ 1/N = limx→0+ x since N is approaching positive ∞. The components of the

limit are then each evaluated to be

lim
N→∞

sin
[

(ϕH − ϕV)
T

2N

]

= 0

lim
N→∞

sgn
[

cos
[

(ϕH − ϕV)
T

2N

]]

= 1

lim
N→∞

∣

∣

∣
cos

[

(ϕH − ϕV)
T

2N

]∣

∣

∣
= 1.

(A24)

Thus, the limit is evaluated as

lim
N→∞

ln y = 0

=⇒ lim
N→∞

y = 1.
(A25)

Following a similar process, we evaluate the limit of the complex exponential term. Due to

the complexity of the calculation, we will first note the derivative of our term ξ(T/N) with

respect to N.

dξ

dN
= −T(ϕH + ϕV)

N2

1 + cos
[

(ϕH − ϕV)
T
N

]

[

cos
(

ϕH
T
N

)

+ cos
(

ϕV
T
N

)]2
. (A26)

Our new limit is

lim
N→∞

ln y = lim
N→∞

Ni arctan
[

ξ
( T

N

)]

= i lim
N→∞

arctan
[

ξ
(

T
N

)]

1/N

(A27)
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and again using L’Hopital’s Rule we obtain

lim
N→∞

ln y = i lim
N→∞

T(−1/N2)(ϕH + ϕV)
[

1 + cos
[

(ϕH − ϕV)
T
N

]]

(−1/N2)
[

1 + ξ2
(

T
N

)][

cos
(

ϕH
T
N

)

+ cos
(

ϕV
T
N

)]2

= i(ϕH + ϕV)T lim
N→∞

[

1 + cos
[

(ϕH − ϕV)
T
N

]]

[

1 + ξ2
(

T
N

)][

cos
(

ϕH
T
N

)

+ cos
(

ϕV
T
N

)]2
.

(A28)

Looking at the various pieces of the limit, we see that

lim
N→∞

ξ
( T

N

)

= 0

lim
N→∞

cos
(

ϕs
T

N

)

= 1

lim
N→∞

cos
[

(ϕH − ϕV)
T

N

]

= 1.

(A29)

The subscript s refers to either H and V. Therefore, the limit evaluates to

lim
N→∞

ln y =
i

2
(ϕH + ϕV)T

=⇒ lim
N→∞

y = e
i
2 (ϕH+ϕV )T .

(A30)

Thus, the effective time-evolution operator in the limiting case of continuous observation is

V̂(T) ≡ lim
N→∞

v̂N
( T

N

)

= e
i
2 (ϕH+ϕV)T |R⟩⟨R|.

(A31)
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