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Abstract

In quantum theory, it is usually assumed that events are embedded in a global causal or-
der. In this thesis, we examine the consequences of lifting this assumption from a quantum
information perspective, building upon the recently developed “processes matrix” formal-
ism. We first investigate why and how certain processes can violate “causal inequalities” —
constraints on the probability distributions that all causally ordered processes satisfy. This
sheds light on possible criteria to distinguish physically relevant processes from those that
appear to be mere mathematical artefacts of the formalism. Second, we study a specific
class of physically implementable processes, in which the order in which two parties, Alice
and Bob, apply their operations is put in a coherent superposition of “Alice being before
Bob” and “Bob being before Alice”. We demonstrate that these resources allow for a
reduction of the communication required to complete a certain task, and then prove that
this advantage scales exponentially with the length of the parties’ inputs. Third, we apply
the formalism to a fixed causal order with three parties “Alice being before Bob” where
the causal relationship between Alice’s and Bob’s event is in a quantum superposition of a
direct causal link and a shared common cause. We develop a criterion to distinguish such
a situation from classical mixtures of causal structures and propose a physical implemen-
tation combining a coherent spatial superposition of a mass with general relativistic time
dilation, two features that are expected to be present in any quantum gravity theory.






Zusammenfassung

Die Quantentheorie beruht iiblicherweise auf der Annahme, dass Ereignisse in eine globale
Kausalordnung eingebettet werden konnen. Diese Dissertation setzt sich, aus der Per-
spektive der Quanteninformation, mit den Konsequenzen des Verzichts auf diese Annahme
auseinander, aufbauend auf dem kiirzlich entwickelten “Prozessmatrix-Formalismus”. Wir
untersuchen zunichst inwieweit gewisse Prozesse “kausale Ungleichungen” — Bedingungen
auf der Ebene der Wahrscheinlichkeitsditribution, die fiir alle Prozesse mit kausaler Ord-
nung gelten — verletzen konnen. Dies wirft ein neues Licht auf mogliche Kriterien um
physikalisch sinnvolle Prozesse von denen, die blole mathematische Artefakte des For-
malismus sind, zu unterscheiden. Daraufhin betrachten wir eine spezifische Klasse von
Prozessen die physikalisch implementiert werden kénnen, bei denen die kausale Beziehung
zwischen den zwei Parteien, Alice und Bob, in einer kohérenten Superposition von “Alice
implementiert ihre Operation vor Bob” und “Bob implementiert seine Operation vor Alice”
ist. Wir zeigen, dass diese Ressourcen fiir eine bestimmte Aufgabe die Moglichkeit eroffnet,
das Ausmaf} der bendtigten Kommunikation zu reduzieren und beweisen, dass diese Re-
duktion exponentiell mit der Lange der Inputs der Parteien skaliert. Schliellich wenden
wir den Formalismus auf ein Szenario mit drei Parteien und fixierter kausaler Ordnung an
(“Alice vor Bob”) bei dem die kausale Beziehung zwischen Alice’s und Bob’s Ereignissen
in einer koh&renten Superposition zwischen einem direkten kausalen Einfluss und einer
gemeinsamen Ursache ist. Wir entwickeln eine Methode, um eine solche Situation von
einer inkoharenten Mischung zu unterscheiden und schlagen als physikalische Implemen-
tierung ein Gedankenexperiment vor, das eine rdumliche Superposition einer Masse mit
der allgemein relativistischen Zeitdilatation kombiniert — zwei Aspekte, die in jede Theorie
der Quantengravitation berticksichtigen muss.
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Chapter 1

Introduction

Archibald Wheeler’s famous intuition that physical quantities ultimately derive their signif-
icance from answers to binary questions—epitomized in the slogan “it from bit” [Whe90]—
has two facets. Its ontological aspect is beyond the grasp of physics, but the related
methodological question is meaningful: can and should physics study phenomena from the
point of view of information science?

The only way to answer the question is to explore this possibility, in particular in
areas of physics where other approaches have not always been satisfactory, such as in the
field of quantum theory. Indeed, quantum information, the study of the way information
is carried and transformed by quantum systems has proven to be wildly successful. It
has contributed to significant advances in quantum computing, quantum cryptography,
quantum many-body physics and understanding Bell’s inequalities and their violation.

In this dissertation, we will apply the quantum information paradigm—without making
any ontological assumptions or claims—to the study of phenomena arising within and
beyond standard quantum theory. The main toolbox that we make use of is the recently
developed process matriz formalism [OCB12, ABC*15], proposed to study causality from
a quantum information perspective. This introduction will give a brief overview over
the formalism and some of the open questions arising in its development, putting the
contributions in the thesis in an overarching context.

1.1 Higher-order operations and process matrices

The process matrix formalism has proved to be a convenient tool because it combines two
useful features. First, it provides a unified representation of quantum states, quantum
operations on states and “higher-order” operations on quantum operations. Second, it
allows for arbitrary causal structures for those higher-order operations on operations. We
will briefly describe these two characteristics in this section; for a more thorough treatment
of the subject, we refer the reader to Appendices D.1 and D.2.

Choi-Jamioltkowski isomorphism and quantum combs

Quantum systems are usually described by states in Hilbert spaces. For a pure state in
the Hilbert space H!, a more general mized state is represented by a density matrix p € I,
where I is the space of linear operators on H!. The evolution of a quantum system and its
associated quantum state can be described in very general terms by quantum operations
on the quantum state, that is, a completely positive trace preserving (CPTP) map or
quantum channel M : I — O, where O is the space of density matrices corresponding to
the output of the map [NCO00]. In a graphical representation of a circuit, such an operation
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can be represented by a “box” acting on a “wire” that stands for the quantum system (see
Fig. 1.1 (a)).

An equivalent representation of the linear map M, which puts input and output Hilbert
spaces on an equal footing, is obtained by applying M to one half of a maximally entangled
state, leaving the other half untouched. The resulting positive matrix M € I ® O contains
information about the output of the map for every possible input state. The isomorphism
between M and the matrix M is called Choi-Jamiotkowski (CJ) isomorphism [ChoT75,
Jam72]. In the convention that will use throughout the thesis,! it is given by:

M :=[(Z o M)|IWINT e IwoO, (1.1)

where Z is the identity map, |I)) := Z;lz{ |77) € Hr ® Hj is a non-normalized maximally
entangled state and T denotes matrix transposition in the computational basis.

Besides quantum operations on states, one can also consider linear operations on quan-
tum operations. This can for instance be relevant to investigate “black-box” or “func-
tional” quantum computing, in which algorithm takes unknown quantum operations as an
input [CDP08a, AFCB14]. Consider, for instance, a supermap transforming a quantum
operation W(M) = M’ where M’ : I' — O’ is a quantum operation acting on a state
in I’ (see Fig. 1.1 (b)). A natural normalization condition in this case is that W map
CPTP maps to CPTP maps. Making use of the CJ-isomorphism of (1.1) for quantum
maps again, one can think of W not as a supermap acting on maps, but rather as a map
acting on the CJ-matrix M € I ® O or, by applying (1.1) again, as a CJ-matrix itself:
WelOoOeI'®0'.

When considering supermaps of a several different quantum maps W(M 4, Mp, M¢c,...)
W', things get more complicated. One type of supermaps corresponds to “quantum circuit
with open wires” or “quantum comb” [CDP08a, CDP08b, CDP09, BCDP11], into which
the maps or systems are plugged in, resulting in another (super)map (see, for instance,
the supermap acting on four maps depicted in Fig. 1.1 (c¢)). Quantum combs have a clear
physical interpretation, since they can be implemented by a sequence of quantum channels
with memory [CDP09].

Each open wire of the quantum comb corresponds to a Hilbert space,? and the full
quantum comb’s CJ-matrix is an element of the tensor product of the Hilbert spaces cor-
responding to all open wires. Applying a supermap W to its inputs M, (“plugging the
operations into” the circuit) in terms of CJ-matrices W and M; is simple. The resulting
(super)map’s CJ representation W' is the partial trace over the Hilbert spaces correspond-
ing to connected wires of the product of W and the tensor product of maps @), M;; it is an
element of the tensor product of Hilbert spaces corresponding to all open wires remaining
after connecting the operations.

tTconnected Hilbert spaces [W . ® Mz = W, (12)

7

The quantum comb formalism provides a unified treatment of states, maps, and su-
permaps of any order—all of them are quantum combs. This feature simplifies a number
of optimization problems over parts of quantum circuits [BCD*10, BDPS14, BDPC11].
However, it is important to realise that the assumption that all supermaps can be imple-
mented as quantum circuits is nontrivial. In particular, it implies that the supermap has
a fized causal order of applying those operations—the order in which they feature in the

1Other conventions differ by a complex conjugation or a transpose.
2This guarantees that the supermap is linear in its inputs, i.e., that each operation acted upon is
“plugged into” the quantum circuit exactly once.
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Figure 1.1: Circuit representation of different types of quantum (super)maps with a fixed
causal order. The elements belonging to the (super)maps are depicted in solid red, the
systems or operations acted upon (to be “plugged in”) in dashed black: (a) an operation
mapping a state to a state (€ O), (b) an operation mapping a quantum map to a quantum
map (€ I’ — O'), (c¢) an operation mapping four quantum maps to a state (€ O’).

corresponding quantum circuit. In the next section, we will see that this assumption can
be lifted to describe a wider range of linear supermaps.

Dropping causality: process matrices

Dropping the assumption that linear quantum supermaps apply quantum operations they
act upon only according to a fixed order is not completely straightforward. This is related
to normalization, which was touched upon in the previous section. We call a general
supermap normalized if it maps normalized (super)maps to normalized (super)maps, for
instance normalized density matrices or to CPTP maps. For quantum combs, this condition
is automatically satisfied because quantum comb is built from a sequence of CPTP maps,
i.e., from quantum channels with memory. If we drop the assumption of causal order for
the supermap, this is not the case anymore and additional normalization conditions have to
be imposed “by hand”. They guarantee that the supermap is well-behaved (or “valid”)—a
precondition for developing a physical interpretation and implementation of the supermap.
In order to distinguish supermaps with a fixed causal order from the broader class of valid
quantum supermaps, we will call the latter “processes”, and their corresponding CJ-matrix
“process matrices” following the standard terminology used introduced in Ref. [OCB12].

The conditions for the validity of process matrices are conveniently formulated on the
process matrix level. Eq. (1.2) also applies to process matrices without a fixed causal
order. Requiring normalization simply means that the process matrix W applied to any
collection of CJ-matrices of CPTP maps (MFFTT) should be a valid (normalized) process
matrix itself [OCB12], which means that taking the trace over the remaining open wires
with any collection of CPTP maps (NCPTF) should be equal to one:?

3Which can be interpreted as a “trivial” valid process matrix.
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Figure 1.2: Supermaps mapping two quantum maps M 4, Mp to a probability. For quan-
tum combs, either (a) M4 is applied before Mp or (b) Mp before M4. A general
quantum process (c) has no such a priori structure besides being normalized.

At this point, an interesting question is whether validity of process matrices is not
ultimately equivalent to a fixed causal order, which applies to quantum combs, which
would make the class of process matrices equivalent to the class of quantum combs. The
first interesting case® to test this hypothesis is that of process matrices mapping two CP
maps M4, Mp to a probability, graphically depicted in Fig. 1.2. A quantum comb can
either apply M4 before Mp or Mp before My, while a general process has no such
restriction.

Oreshkov, Costa, and Brukner [OCB12] provided an explicit example of a valid process
matrix (fulfilling the constraint of Eq. (1.3)) which is neither a quantum comb nor a causally
separable process, that could be decomposed as a convex combination of quantum combs.
This shows that there are mathematically well-defined quantum supermaps which cannot
be represented as quantum circuits with open wires. We will examine some previously
studied mathematical results, physical interpretations, and applications of such processes
in the following section.

1.2 Interpretation and applications of the process matrix
formalism

To study interpretations and applications of such “causally nonseparable” processes, it will
prove useful to interpret the CP maps the process acts upon as laboratories belonging to
parties: Alice implements M 4, Bob M p, Charlie M¢, etc. In these laboratories, standard
quantum theory applies, that is, the the parties apply standard quantum experiments,
including measurement and preparation of states. In this context, the process encodes the
causal relations between the different parties and the presence or absence of a causal order
in the process has a physical significance. As a simple example, take a process with a fixed
causal order where Alice is after Bob (i.e., M4 is applied after Mp in the corresponding
circuit); in this case, there can be no signalling from Alice to Bob. From this point of

4For maps acting on a single operation or only on states, the normalization condition is equivalent to
causality [OCB12].
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view, causally nonseparable processes, such as the one found in Ref. [OCB12] are resources
allowing the parties to complete certain tasks or “games”, potentially with an advantage
over processes with a definite causal order and convex combinations thereof.®

Causal inequalities

The most general type of task is as follows: each party is given a (possibly empty) input
and the goal is that each party (or only a subset thereof) provide a correct output, which
depends on the inputs of one or more other parties. Let us first consider games where
the inputs and outputs are classical bit strings. Each party will implement a quantum
instrument [DL70]—a set of CP maps corresponding to the outcomes of a generalized
measurement and repreparation—corresponding to their classical input. The output is
given by the result of this generalized measurement.

In the bipartite case, two parties are each given an input bit: = for Alice and y for
Bob. We denote Alice’s CP maps (in their CJ representation) by Mj‘x and Bob’s CP maps

by M;;ly. Since Alice and Bob implement a valid quantum instrument, the sum over the
outcomes of the CP maps is a CPTP map, that is:

tray Y My" =14 trp, Y My =151, (1.4)
a b

where 1 is the identity matrix.
For a given process matrix W given as a resource to the two parties (see Fig. 1.2 (c)),
the conditional probability distribution is given by applying Eq. (1.2):

p(a,blz,y) = tr [W . Mf“x ® ng]. (1.5)

A very simple task is for Alice to output Bob’s input (a = y) and for Bob to output
Alice input (b = z), the “Guess Your Neighbour’s Input” game [BAF*16]. The probability
of success can be expressed as:

1
Psuce = pla =y,b=1x) = 1 Z Oa,y0b,z tT [WMZ'QE ® Mgly]. (1.6)
z7y7a7b

Any causally ordered process is of the type where Alice’s operation is applied first
(A < B) or Bob’s operation is applied first (B < A), as graphically depicted in Fig. 1.2
(a) and (b). To identify which probability distributions p(a,b|z,y) can be obtained with
such processes takes four steps [BAFT16] that are very similar to the ones used to charac-
terize probability distributions compatible with local realism in the study of Bell inequal-
ities [Bel64, BCP"13].

First, one enumerates all deterministic probability distributions (i.e., mappings from
x,y to a,b) for the given scenario, such as the one where Alice and Bob have an input and
an output bit (in this case, there are 4* = 256 such deterministic probability distributions).
Second, one eliminates those probability distributions that are not compatible with either
A < B (the condition being p*=8(a, b|z,y) = p(alz)p(b|z,y,a)) or B < A (the condition
being pP=4 = p(bly)p(alz,y,b)), leaving only deterministic probability distributions com-
patible with a fixed causal order (in the example with one bit of input and output per party,
112 of them). Third, one takes these probability distributions as vertices of a polytope in
the space of probability distributions (its dimension is the product of the dimensions of

5In the game interpretation, such convex combinations can allow for “two-way signalling” in the sense
that the probability distribution of Alice’s output depends on Bob’s input and vice-versa.
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a,b,x,y, i.e., 2* = 16 in our example). The polytope represents all the strategies resulting
from access to shared randomness among Alice and Bob, which includes randomly choosing
between the causal orders, i.e., all correlations arising from causally separable processes. Fi-
nally, one can compute an alternative representation of the polytope, in terms of its facets.
Some of these facets describe trivial constraints (such as normalization of probabilities);
the nontrivial ones can be interpreted as “causal inequalities”.

For the simple example of one bit of input and output for Alice and Bob, there are two
nontrivial causal inequalities [BAF116], one of which is a bound on the success probability
of the GYNI task that holds for all causally separable process matrices Wiep:

(1.7)

N

1
pzﬁgc = psep(a =Y, b= x) = 1 Z 5a,y6b,x tr [WSEPMZ‘I & ng} <
x7y7a7b

Any probability distribution that lies outside this causal polytope, and thus violates
one or more causal inequalities, is the signature of an underlying causally nonseparable
process. We emphasize that this conclusion can be drawn without any assumptions about
the dimension Alice’s and Bob’s input and output space or on the maps that Alice and
Bob implement—it is “device-independent” [ABGT07]. Causal inequalities are analogous
to Bell inequalities, whose violation rules out that the underlying state is separable without
requiring additional assumptions about its dimension or on the operations used to produce
the probability distribution.

A number of examples of processes that enable the violation of different types of causal
inequalities when combined with adequate local maps for Alice and Bob were found in
Refs. [OCB12, BAFT16]. In these bipartite examples, it is interesting to note that the
causal inequalities are apparently not violated maximally. For instance, the logical bound
of GYNI inequality of Eq. (1.6) iS psyec = 1, yet numerical optimization indicates that
process matrices seem to be able to reach only pgycc &~ 0.62 [BAFT16]. For a slightly more
complicated causal inequality and for a restricted class of operations, it was proven that
valid process matrices cannot reach the logical bound and the actual bound (analogously
to the “Tsirelson bound” [Tsi80] for Bell inequalities) was derived [Brul5]. It was also
shown that for three parties, there are causal inequalities that be maximally violated by
valid process matrices [BW13], adding to the similarity between Bell inequality violation
and the violation of causal inequalities.

Yet, a number of interesting questions remained open. First, what type of operations do
the parties need to implement to violate causal inequalities? In the two-party case, there is
a proof that when Alice and Bob are limited to classical operations®, no violation of causal
inequalities is possible [OCB12, BB16], prompting the hypothesis that quantum mechanics
and the violation of causal inequalities are intricately linked. We will come back to this
hypothesis in Chapter 2. Second, the physical meaning of processes that violate causal
inequalities was poorly understood. Their most straightforward interpretation—in terms
of “channels going back in time”—seems to be physically implausible. One possibility
would be that respecting causal inequalities could itself be a fundamental principle, and
only processes that do not allow for their violation are physical. We will explore this
possibility in detail in Chapter 3.

Causal witnesses

Since there is a correspondence between Bell inequalities to device-independently certify en-
tanglement and causal inequalities to device-independently certify causal nonseparability,

5That is, all their CP maps can be diagonalized in the same basis.
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it is natural to explore the analogy further. There are entangled states that do not allow for
the violation of any Bell inequalities so they admit a local hidden variable model [Wer89].
While their entanglement cannot be certified only on the basis of probability distributions,
it can in principle be inferred device-dependently, from a full state tomography. Actually, a
partial tomography is often sufficient to compute the expectation value of an “entanglement
witness” [CS14], an operator R which has positive eigenvalues for all separable states, but
negative ones for (some) entangled states: tr[psep - R] > 0 Vpsep-

In the same way, one can define “causal witnesses”—operators .S that has positive eigen-
values for causally separable processes but negative ones for (some) causally nonseparable
ones [ABCT15]:

tr[Weep - 5] >0 ViWep. (1.8)

Interestingly, and in contrast to entanglement witnesses, the optimal causal witness can be
computed efficiently for any causally separable process, since the corresponding conditions
are semidefinite constraints [ABC115].

The parties can measure the expectation value of the causal witness S by decomposing
it in a basis of CP maps, performing a partial process tomography. The correlations Alice
and Bob, together with the knowledge of what operators they are implementing, allow for
the device-dependent certification of causal nonseparability, for every causally nonsepa-
rable process. In between causal inequalities—without any additional assumptions—and
causal witnesses—relying on complete knowledge of the operations implemented—there
are a number of weaker assumptions to certify causal nonseparability. One of them is
to rely only on an assumption about the dimension of the quantum systems acted upon.
The significance of this “semi-device independent” [LVB11, PB11] certification of causal
nonseparability is shown in Chapter 4.

Applications

Another way of interpreting the certification of causal nonseparability through causal wit-
nesses is as a task that the parties have to achieve. In this case, the inputs are no longer
bit strings, but unknown quantum operations. For instance, take three parties: Alice,
Bob, and Charlie. Alice and Bob are each given unitaries (U4, Up) that either commute
([Ua,Ug|] = 0) or anticommute ({Us,Up} = 0). They are “black boxes” that cannot be
used more than once (for instance to tomograph them). Charlie then has to determine
whether the unitaries commute or anticommute.

As first shown in Ref. [CDPV13], this task cannot be successfully completed using
processes with a definite causal order between Alice, Bob and Charlie, yet there is a
process matrix that allows for it: the “quantum switch”. In this process, the order (Alice
before Bob or Bob before Alice) in which the operations are applied to a target system prp
is controlled by the value of a quantum control system o¢. It is causally non-separable and
can be thought of as a coherent superposition of circuits (or of directions of communication)
controlled by a control qubit, see Fig. 1.3 for a graphical representation.

Using the quantum switch with the control state |[+)- = (|0) + [1)5)/V/2, Alice and
Bob simply apply their unitaries U4 and Up to the target state |¢)7). Charlie then receives
a state with that has an amplitude proportional to the commutator [Uy4, Ug||¢r) and to
the anticommutator {Ua, Ug} |1r) in the superposition basis (|0), + [1))/Vv/2, such that
a measurement can distinguish between the commuting and the anticommuting case. The
quantum switch thus allows for the discrimination to be successfully completed with just
one use of the unknown unitaries Ua,Upg, while an ordered circuit would require either
Alice or Bob to apply their unitary at least twice. This advantage in the number of queries
to blackbox unitaries can be extended to n unitaries with an adaptation of the task and of
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Figure 1.3: The “quantum switch”: a coherent superposition of circuits involving three
parties. When the control qubit is in the state |0)., Alice’s operation is applied before
Bob’; when the control qubit is |1), Bob’s operation is applied before Alice’s. A coherent
superposition of the control qubit leads to entanglement between the control qubit and the
causal order. Charlie can use this property, for example to determine whether Alice’s and
Bob’s unitaries commute or anticommute.

the process, resulting in a reduction in query complexity from O(n?) for causally separable
processes to O(n) for causally nonseparable processes [ACB14].

These advantages are significant because the generalized quantum switches have a clear
physical interpretation and can in principle be implemented in the lab. For instance, the
proof-of-principle of the quantum switch superposing the order of two parties was first im-
plemented in Ref. [PMA™115] and subsequently extended in Ref. [RRF*17] to show causal
nonseparability by direct measurement of a causal witness. It is therefore also interest-
ing to explore other similar processes in terms of information processing power. Since the
query complexity advantage was proven for a task derived from a causal witness [ABCT15],
one can examine tasks connected to semi-device independent certification of causal non-
separability. In Chapter 4, we show that the associated advantage is a reduction of the
communication necessary to achieve a specific task; in Chapter 5, we study the way this
advantage scales with the input length.

Physical relevance

The quantum switch and similar processes, which consist of the quantum superposition of
causally ordered processes, are also interesting from a foundational point of view. In any
theory of quantum gravity, the causal structure (determined by general relativity) should
be dynamic and quantized, and it is reasonable to expect that quantum superposition
of causal structures will be one of its features. While not being in any way a theory of
quantum gravity, the process matrix formalism can nevertheless be used to describe such
situations.

One effect that can be expected from the interplay of general relativity and quantum
theory concerns the gravitational time-dilation arising from a massive body in a quantum
superposition of positions. It should lead to entanglement between proper time of a clock
close to the mass and the position of the mass. Take Alice and Bob to have initially
synchronized clocks and the events in their laboratories to be defined with respect to their
local clocks: Bob’s operation being applied at local time 75 and Alice’s at local time 74. If a
massive body is put in a superposition between being close to Alice and close to Bob, it can
also put the causal relationship between the two events defined by Alice’s and Bob’s local
clocks in a superposition. If the difference is sufficiently large, one can achieve a situation
in which, for one position of the mass, Alice’s event can be before Bob, while, for the other
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position, Bob’s event is before Alice’s. In this way, the quantum switch can be implemented
gravitationally, giving rise to a number of foundational questions [ZCPB17, CRGB17]. In
Chapter 6, we study a conceptually similar, but more realistic scenario, in which the
gravitational time dilation can be arbitrarily small, only moving Bob’s event in or out of
Alice’s event’s lightcone.

1.3 Outline of the thesis

The thesis consists of five chapters, each corresponding to the main text of a published
paper. Supplementary information to each chapter is contained in the corresponding ap-
pendixes.

Maximal incompatibility with a global causal order

Chapter 2 deals with causal inequalities for multipartite scenarios and makes progress on
two major open questions of the process formalism. The first result is about the mazimal
violation of causal inequalities by process matrices. Extending a previous result for the
three-party case [BW13], we show that process matrices can maximally violate some causal
inequalities for three or more parties. The second result concerns the role of quantum
mechanics for the violation of causal inequalities. We mentioned in the previous section
that in the two-party case, Alice and Bob have to implement genuinely quantum operations
in order to violate causal inequalities. Surprisingly, for three and more parties, this is not
the case. The process matrices and the operations of the parties can be chosen to be
diagonal in the parties’ computational basis, so that they effectively are only operations
on classical bits. The corresponding “classical process matrices” can therefore produce just
as intriguing violations of causal inequalities as genuinely quantum ones.

Nonseparable processes with a causal model

Chapter 3 investigates the relationship between causal inequalities and causal witnesses in
the bipartite case. The previously known two-party causally nonseparable processes [OCB12,
BAF'16] capable of violating causal inequalities with the appropriate strategies have no
clear physical interpretation, while the “quantum switch”, a three-party process that can-
not violate causal inequalities [ABCT15] has a physical interpretation. This prompts the
conjecture that the violation of causal inequalities is somehow forbidden by nature, while
causal nonseparability is not. We show that there are two-party processes that are non-
separable and cannot violate any causal inequality, yet also lack any physical interpreta-
tion. Additionally, we give numerical evidence to show that a more sophisticated criterion,
related to the capability of a process to violate causal inequalities when the parties addi-
tionally share entanglement [OG16] appears to be similarly inadequate in distinguishing
between physically implementable processes and mere mathematical artefacts.

A novel quantum communication resource

In Chapter 4, we develop a criterion for causal nonseparability that lies between the device-
independent violation of causal inequalities and the device-independent violation of causal
witnesses. A semi-device independent [LVB11, PB11] certification of causal nonsepara-
bility is based merely on the conditional probability distribution and an assumption on
the dimension of the quantum systems that leave the parties’ laboratories, but makes no
assumptions on the operations the parties implement. Inspired by a quantum causal wit-
ness, we introduce a three-party task that cannot be completed for any process with a fixed
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causal order if the quantum systems exchanged are restricted to qubits. We then show
that, using the quantum switch and putting the order of communication in superposition,
the parties can succeed with unit probability, even if when restricted to sending out qubits.
This shows that the quantum switch can reduce the amount of communication necessary
for certain tasks and that its causal nonseparability can be certified with very restricted
assumptions.

Exponential communication complexity advantage

Chapter 5 builds upon the previous result by examining the way the communication ad-
vantage of the quantum switch scales with the length of the inputs given to the parties.
We first show that when requiring deterministic success for a suitable generalization of the
task, using the quantum switch as a resource can reduce the amount of communication
required (the “communication complexity”) exponentially. We then show that this com-
munication complexity advantage remains even when allowing for a bounded probability of
failing, showing how powerful a resource the superposition of the direction of communica-
tion can be.

Quantum superpositions of causal structures

In Chapter 6, we apply the process matrix formalism to a slightly different scenario. We
consider a fixed underlying causal structure with three events A, B, C. A is before B and
C and B is before C, but the causal relationship between A directly influencing B and A
and B sharing a common cause. We develop the tools to distinguish such a quantum causal
structure from a merely classical mixture of direct and common cause processes and define
“witnesses of causal nonclassicality”. We then propose an implementation of the process
involving quantum superposition of a massive particle and general relativistic time dilation.
The entanglement between the position of the mass and the proper time of Alice and Bob
leads allows for the causal relationship between events defined with respect to Alice’s and
Bob’s local clocks to be put in a superposition, for arbitrarily small superpositions.



Chapter 2

Maximal incompatibility of locally
classical behavior and global causal
order in multi-party scenarios

Abstract

Quantum theory in a global space-time gives rise to non-local correlations, which cannot be
explained causally in a satisfactory way; this motivates the study of theories with reduced
global assumptions. Oreshkov, Costa, and Brukner [OCB12] proposed a framework in
which quantum theory is valid locally but where, at the same time, no global space-time,
i.e., predefined causal order, is assumed beyond the absence of logical paradoxes. It was
shown for the two-party case, however, that a global causal order always emerges in the
classical limit. Quite naturally, it has been conjectured that the same also holds in the
multi-party setting. We show that counter to this belief, classical correlations locally
compatible with classical probability theory exist that allow for deterministic signaling
between three or more parties incompatible with any predefined causal order.

Published. A. Baumeler, A. Feix, and S. Wolf. Maximal incompatibility of locally classi-
cal behavior and global causal order in multiparty scenarios. Phys. Rev. A, 90(4):042106,
2014.

Contribution to the main proof establishing the maximal violation of causal inequalities
for any dimension and to the writing of the manuscript.
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2.1 Motivation and main result

According to Bell [Bel81], correlations cry out for explanation. In such a spirit, already
Einstein, Podolsky, and Rosen (EPR) [EPR35] had asked for an extension of quantum the-
ory that incorporates a causal explanation [Rei56, Wis14] of the correlations arising when
two parts of an entangled quantum state are measured. Such an explanation can describe
the emergence of the correlations either through pre-shared information or through influ-
ences. Because of relativity, EPR argued further, the latter cannot be the cause of such
correlations. Later, (finite-speed) influences were ruled out by theory [WS15, BBLG13] and
experiments [Asp82, SS97, WJST98, Asp99, RKM 101, SBvT08, GMR™13]. Therefore, still
according to EPR’s reasoning, physical quantities need to be predefined. This, however,
had been rejected by Bell [Bel64] under the assumption that spatially separated settings
can be chosen (at least partially [Halll, BG11, PRB"14]) freely and independently; such
correlations are called non-local. Remarkably, this means that there are not predefined yet
correlated physical quantities emerging in a space-like separated way. However, although
the EPR program as such may have failed, it seems natural to continue to ask for a causal
explanation of non-local correlations. A possible approach is to refrain from considering
space-time as fundamental, treating it as emerging (potentially along with other macro-
scopic quantities) from a deeper fundament [Par03, Woo84, BLMS87, D’A11] — compa-
rably to temperature. A step in this direction was taken by Hardy [Har05, Har07] with his
program of merging general relativity with quantum theory, in which he proposes to extend
the latter to dynamical causal orders, a feature of relativity (see [Brul4] for a recent review
on quantum theory and causality). Chiribella, D’Ariano, and Perinotti [CDP09, CDPV13|
studied quantum supermaps called “quantum combs” that allow for superpositions of
causal orders. Based on Hardy’s idea, Oreshkov, Costa, and Brukner [OCB12| developed
a framework for quantum correlations without predefined causal order by dropping the
assumption of a global background time while keeping the assumptions that locally, nature
is described by quantum theory and that no logical paradozes arise. Some causal structures
emerging from this framework cannot be predefined [OCB12, BW14, Brul5] — just like
physical quantities exhibiting non-local correlations [Bel64, Tsi80, GHZ89, GHSZ90]. If,
in the two-party case, we consider the classical limit of the quantum systems, i.e., enforce
both parties’ physics to be described by classical probability theory (instead of quantum
theory), then a predefined causal order always emerges [OCB12]. This is in accordance
with our experience and, hence, natural and unsurprising; it strongly indicates that the
same may hold in the multi-party case [Cos13]. This, however, fails to be true, as we show
in the present work.

2.2 Input-output systems, and causal order

By definition, measurement settings and outcomes are classical, i.e., perfectly distinguish-
able. Therefore, we think of physical systems as black boxes which we probe with classical
inputs and that respond with classical outputs. When taking this perspective, we describe
all physical quantities, i.e., outputs, as functions of inputs. The party S is described by a set
of inputs V(S) = {Ai} chosen freely by S, and by a set of outputs Q(S) = {X;} the party
can access (instantiations of the inputs and outputs are denoted by the same letters but in
lowercase). Since we refrain from assuming global space-time as given a priori, we cannot
define free randomness based on such a causal structure, as done elsewhere [CR11, GR13].
Instead, we take the concept of free randomness as fundamental — in accordance with
a recent trend to derive properties of quantum theory from information-theoretic prin-
ciples [CFS02, BZ03, CBH03, Bra05, PPK*09, CDP11, MM13, PW13] — and postulate
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S

S =4 T &3

Figure 2.1: If party T can freely choose an input (here, visualized by a knob), and party S
can read off an output that depends on 1’s input, then 7' can signal to S, which implies
that S is in the causal future of T' (S = T).

inputs as being free.

Outputs are functions of inputs. Based on this relationship, we define causal order. If
an output Xj; is a function of A;, we say that X; causally depends on A; and is in the
causal future of A; or, equivalently, that A; is in the causal past of X, denoted by X; = A;
or A; = X;. The negations of these relations are denoted by # and A. This definition
does neither induce a causal order between outputs nor between inputs nor between any
output and the input it does not depend on.

Let us introduce a second party 7' described by the set of inputs V(T') = {By}x and
with access to the outputs Q(T') = {Y;}1. Outputs can depend on inputs of both parties.
If party S has an output that depends on an inputs of 7', then we say that T' can signal
to S (see Figure 2.1). In the following, we will assume unidirectional signaling: If S can
signal to T, then T' cannot signal to S. This enables us to causally order parties. If at least
one output of S depends on an input of 7', but no output of 7' depends on any input of S
(which is the condition for unidirectional signaling), then S is in the causal future of T.
Formally, if there exist X € Q(S) and B € V(T) fulfilling X > B and if for all Y € Q(T)
and for all A € V(S), the relation Y % A holds, then we have S = T.

Consider a two-party scenario with parties S, T, each having a single input A, B, a single
output X,Y, respectively, and a shared random variable A. We call a theory compatible
with predefined causal order if all achievable probability distributions P(x,y|a,b) can be
written as a convex mixture of possible causal orders, i.e.,

P(z,yla,b) = Pr(a) Z Pr(A|a) Pr(z|a, A\, a) Pr(yla, b, \, )
A
+ Pr(—a) Z Pr(A|—a) Pr(x|a, b, \, ~a) Pr(y|b, A, ~a) ,
A

where « is the event S < T, and A is an instantiation of A that depends on a input not in
either of the sets V(S) or V(7). For more than two parties, the definition of predefined
causal order becomes more subtle. Suppose we have three parties S, T, and U, where S
is in the causal past of both T" and U. We call a causal order predefined even if S is free
to choose the causal order between T' and U [Cos, Gial. In general, in a predefined causal
order, a party is allowed to determine the causal order between all parties in her causal
future. Hence, a theory with the parties Sy, ..., S,_1, inputs Ay, ..., Ay,_1 (shorthand A),
and outputs Xy, ..., X,—1 (X), respectively, is compatible with predefined causal order if
all achievable probability distributions P(x|a) can be written as

n—1
P(x|a) = Z Pr(a; A —apg A -+ A —ai—q) Pr(x|a, S; is first) ,
=0

where «; is the event that each party S either is in the causal future of S; (S; 2855)
or has no causal relation with S; (S; A S; and S; # S;). The term Pr(x|a, S; is first) is a
convex mixture of distributions compatible with the causal structures in which S; is first
and chooses the causal order between the remaining parties.
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2.3 Game

The following multi-party game cannot be won in a scenario with predefined causal order.
Denote by Sp,...,S,—1 the parties that participate in the game. Each party S; has a
uniformly distributed binary input A; as well as a binary output X; and access to the
shared random variable M uniformly distributed in the range {0,...,n —1}. The random
variable M belongs to a dummy party (we need her as a source of shared randomness).
For given M = m, the game is won whenever S,,’s output X,, is the parity of the inputs
to all other parties, i.e., X,, = @, “m A;. Therefore, the success probability for winning
the game is

1 n—1
Psucec = ﬁ Z Pr{ X,, = @Az M=m]. (21)
m=0 i#m

In a setup with predefined causal order, this success probability is upper bounded
by 1—1/(2n). To see this, note that if, without loss of generality, Sy is first, she will remain
first. For n > 2, the last party can be specified by Sy. Thus, all the terms of the sum in
expression (2.1) are 1 except for the first summand, reflecting the fact that Sy herself has
to guess the parity of the other’s inputs, which is 1/2. By repeating the experiment w(n)
times, one can bring the winning probability arbitrarily closely to 0.

2.4 Framework for classical correlations without causal
order

Instead of assuming that locally, nature is described by quantum theory [OCBI12], we
take the classical limit of the systems and thus assume that locally, nature is described by
classical probability theory. In addition to this, we require the probabilities of the outcomes
to be non-negative and to sum up to 1; this excludes logical paradoxes [OCB12, CDPV13].
We suppose that each party has a closed laboratory that can be opened once — which is
when the only interaction with the environment happens. When a laboratory is opened,
the party receives, manipulates, and outputs a state. Thus, in the setting of local validity
of classical probability theory, such a laboratory is described by a conditional probability
distribution Pp)7, where I is the input to and O is the output from the laboratory.

Let us consider the parties as described in the game. We denote the input to S;
by I; and the output from S; by O;. Therefore, the ith local laboratory is described by
the distribution Py, 0,14,1,- As we do not make global assumptions other than that the
overall picture should describe a probability distribution, we describe everything outside
the laboratories by the distribution W (see Figure 2.2) satisfying the condition that for any
choice of ag, ..., an—1, i.e., for any probability distribution Px, oy 1y,---, Px
the values of the product with W i.e., the values of

n—laon—lun—17

Pxy0010 * -+ PXp 1,00 11101 " Loyl 1100,,00 1 5 (2.2)

and in general of

POO\IO et P0n71|fn71 ’ PIOv---7[n71|007---7On71 ) (2'3)

are non-negative and sum up to 1. For tackling this condition formally, we represent a
probability distribution Px as a real positive diagonal matrix Px with trace 1 and diagonal
entries Px(x). A conditional probability distribution Px/y is a collection of (unconditional)
probability distributions Pxy_, for each value of y. Thus, we represent Pyy similarly,
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Figure 2.2: Party S; is described by Py, o,4,,1,- Her output O; is fed to W, which de-
scribes everything outside the laboratories. Therefore, W also provides the input I; and is
described by W = Pp 1. 1100,...00_1-

yet with trace |Y|, where ) is the set of values y can take, and we use the symbol PX|y.
The values Px|y—,(z) are ordered with respect to the ordering of the subscripts of Px|y,

e.g., for binary X and Y the matrix PX|Y is

Pxy=0(0) 0 0 0
0 Pyy—1(0) 0 0
2.4
0 0 Pxjy=o(1) 0 24
0 0 0 Pxy=1(1)

The condition that the probabilities Px|y—,(x) sum up to 1 for fixed y is reflected by
the condition that if we trace out X from the matrix pX|Y (denoted by trx PX|Y), we

are left with the identity. The product of two distributions Px and Py in the matrix
representation corresponds to the tensor product denoted by Px ® Py. To obtain the
marginal distribution from a joint distribution, we use the partial trace. This implies that
the output state of a laboratory Pp,|r,, given the input state P, is try, (PO” ;- (1o, ® PIZ.)),
where 1o, is the identity matrix with the same dimension as Pp,. This allows us to
use the framework of Oreshkov, Costa, and Brukner [OCB12], where we restrict our-
selves to diagonal matrices, i.e., all objects (W and local operations) are simultaneously
diagonalizable in the computational basis and can, hence, be expressed using the iden-
tity 1 and the Pauli matrix o,. We know from their framework [OCB12] that if we
express Pr 1. 110q,..,0,_, 85 & matrix W = ¢y, 9i, where c is a normalization constant
and g; = Rio® - @ R 1 @T;0® - ®T;,—1. For every 7, the summand g; represents
a channel from all S; with tr'7; ; = 0 to all S} with tr R; ; = 0. In order to avoid logical
paradoxes, g; must describe a channel where at least one party is a recipient without being
a sender [OCB12]. In other words, g; must either be the identity or there exists j such
that T; ; = 1 and tr R; j = 0.

2.5 Winning the game perfectly

To win the game using this framework, we need to provide the distribution Pz, 7. (0p,...0,_1
and all distributions describing the laboratories. For that purpose, we use the fact that if
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a set {g; }1 of matrices with all eigenvalues in {—1, 1} forms an Abelian group with respect
to matrix multiplication, then ), ; g; is a positive semi-definite matrix. To prove this,
take the eigenvector v which has the smallest eigenvalue Apiy, 2-€.,

Zgiv = Z )\;,V = )\minv7 (25)

el il
where A} is the eigenvalue of g; with respect to the eigenvector v. Let g;, be an element

contributing negatively to Amin, ¢.€., g;,v = —Vv. As the set forms a group, for every j
there exists a k # j such that g;, - g; = gx. This implies =AY = A}y and Yoict A =0.

Construction of W,, for odd n

We construct the distribution Py, 1 0,...0,_, for odd n > 2. Let {g;}; be the set of
matrices that can be written as ¢; = gi1 ® gi2 ® - -+ ® gi n, With the objects g;, € {1,0.},
and with an even number of o.’s for each « € I. We use the notation g; ;.x to denote
the matrix g; ; ® gi j+1 ® - ® g; k. The fact 02 = 1 implies that the product g; - g;, for
every i,j € I, is a tensor product of 1 and o, with an even number of ¢,’s, and is thus
an element of {g;};. Furthermore, all elements mutually commute, have all eigenvalues
in {—1,1} and, hence, each element is an involution. Therefore, their sum is a positive
semi-definite matrix. The distribution Py, 1 | 0,,..,0,_, @ a matrix W, is built by
taking the sum over all group elements, where the matrix g;; of the group element g;
contributes to the input I of party S, and to the output Og_1 mod n of the party labeled
by (k — 1 mod n),

Wn = Py,..1._1100,....0n-1 = 2% Z 9i @ Gi2in @ gi - (2.6)
el
By construction, W, is positive semi-definite, i.e., all probabilities are positive. Be-
cause n is odd, there exists for each group element g; (# 1) at least one position k such
that g; 1 ® gik+1 modn = 0> ® 1, which excludes logical paradoxes. Furthermore, for ev-
ery i € {0,1,...,n—1} the object W,, contains the channel from all parties Sj(#i) 10 57 —
a condition to perfectly win the game.

Example: W3

For illustration, we construct W5. The group from which W3 is constructed is {go, g1, g2, 93 }
with the group elements

=111, (2.7)
n=1®0.®0;, (2.8)
92:0'z®]l®0'z, (29)
g3=0,Q0, Q1. (2.10)
The matrix Wj is thus
1
W3:§(1®6+1®oz®az®oz®az®1 (2.11)

+0,01®0,01R0, R0,
+0.00.01Q0,01®0;).
The second summand of W3 represents a channel from Sy, S7 to So, the third summand

represents a channel from Sy,.S2 to Sy, and finally, the last summand represents a channel
from Sp, Sy to Si.
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Figure 2.3: The conditional probability distribution W3 is a mixture of a circular identity
channel with a circular bit-flip channel.

It can easily be verified that if the three parties Sy, S1, and Sp input Po,.0,,0,(00, 01,02) = 1
into W3, then W3 outputs the distribution

3, 0 =02, = 0p, 12 = 01,
. . . _ 1 . — . — . —
Pry.1,.1,(i0,71,12) = { 5, g = 02, i1 = 0o, 2 = 01, (2.12)
0, otherwise,

where 0; = 0; ® 1. Therefore, W3 implements a uniform mixture of the loops where the
input of party S; mod 3 is sent to party S;i11mod 3, and where the input of party S; mod 3
is flipped and sent to S; i1 mod 3 (see Figure 2.3) [Bru]. It is evident from Figure 2.3 that
logical paradoxes are not possible. If all intermediate parties forward what they receive
(by applying any reversible transformation), both loops (see Figure 2.3) cancel each other
out, i.e., the correlations interfere destructively. Then again, if one intermediate party
does not forward what she receives, the loop is broken. Conversely, any party can signal
to her predecessor in the loop, because then an even number of bit-flips are applied, and
thus the correlations interfere constructively. The same reasoning holds for any W, for
odd n > 2.

Construction of IW,, for even n

The above construction works for odd n > 2. For even n, the group contains the el-
ement 02", which leads to a logical paradox since all inputs are correlated to all out-
puts [OCB12]. This can also be seen in Figure 2.3, where for even n, the sum of both
channels leads to a logical paradox. In this case (n even), we double the dimensions of the
output of the second-to-last party and of the input of the last party, and construct the
distribution based on the group of matrices for the case of n — 1. Let {g;}; be the group
used to construct W,_1. The set for n parties is the Abelian subgroup {¢; ®g¢.}1U{g:;®g}}1,
I— o . c— g . oD
where 9; = 9i1 @ Gi2 and g; = g; - 02 .
The distribution Py, 1, 110,,....0,_, @ a matrix W, is constructed as before, with the
exception that g} is considered a single submatrix,

1 _ _ _
Wn =g > (gi ® i ® gizn—1® 9 ® gi1 +9i ® g; @ Jign—1 D g ® gi,1> - (213)
il

Again, by construction, W,, fulfills all requirements and contains all channels required to
perfectly win the game.
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Example: W,

As an example, we construct the matrix Wy. The group {hg, h1, ha, hs, ha, hs, hg, h7} for Wy
is constructed from the group {go, g1, 92,93} and has the elements

ho=g0®gy=1®1lel)e(lel), (2.14)
hM=g®g=01R0,20,)2(1®0,), (2.15)
ha=g2® gy =(0:01®0,)® (0. ®1), (2.16)
h3293®9§:(Uz®02®1)®(UZ®UZ)v ( )
hi=go®g)=(0,®0,®0,)®(1x1), (2.18)
hs=g1®g¢=(.2121)2(1x0,), (2.19)
he=g2Rgy=1R®0.01)® (c.1), (2.20)

( ® ( (2:21)

hi =330 =101R0,)® (0, R0,).

The matrix Wy is thus

W4:3i2(]1®10 (2.22)
+t1I®o,®o,®1R0, R0, R0, 1R, @1
+0.901®0, 00,0110, R0, 1Ko,
+0.®0.,¥01RQ0,QRo, R, TR0, R0, Vo,
40, R0, R0, 101 ®r, R, QLRLI®o,
+0. 911180, 311010, R0,
+1R®R0, 1R, ¥TR,RLIR0, 1R 1

+1R180.00.00.0180, 00,00, 1).

The second to the fifth summands represent the channels that are used to perfectly win
the game.

The conditional probability distribution Wj responds to input Po,.0,,0,,05(00, 01,021, 02,2,03) =
1 with the following output

Pry.1y,15,15 (0, 1,2, 13,1, 73 2) = (2.23)
1, io =03, i1 = 0p, iz = o1,
131 = 02,1, 13,2 = 029,
1. do =03, i1 = 0, iz = 01,
13,1 = 02,1, 132 = 02,2,
1. do =03, i1 = 0, iz = 01,
13,1 = 02,1, 132 = 02,2,
1. ig =03, iy = 0, ia = o1,
13,1 = 02,1, 132 = 022,
0, otherwise,

\

where 03 1, 022 are both bits of the random variable Os, i3 1, i3 2 are both bits of the random
variable I3, and where 0; = 0; @ 1. Therefore, W, implements a uniform distribution of
four circular channels (see Figure 2.4).

By construction of Wy, no logical paradox arises. More intuitively, in any strategy
that does not break any of the four circular channels of Figure 2.4 (i.e., every party’s
output depends on its input), parties Sy and Ss use the first bit, the second, or both bits
to communicate. If they use the first bit, then the correlations arising from the first two
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Figure 2.4: The conditional probability distribution Wy is a mixture of four circular chan-
nels. The channel from Sy to S3 is a two-bit channel (double line). If the &1 operation
for the channel from S5 to S3 is outside the circle, then the @1 operation is applied to the
first channel, i.e., the first bit is flipped, if it is inside the circle, then the @1 operation is
applied to the second channel, i.e., the second bit is flipped.

loops and the last two loops of Figure 2.4 interfere constructively. Both pairs together,
however, break the loop. If they use the second bit, then the first and the third loop, and
the second with the last loop yield the same output in every cycle. In total, all loops cancel
each other out. For the last case as well, where both bits are used for communication, the
correlations from the first and the last loop interfere constructively, and so do the second
and the third. Ultimately, again, all loops cancel each other out, and no logical paradox
can be created.

For larger even n, the conditional probability distribution W, as well is constructed
out of four loops, as in Figure 2.4, that cancel each other out when one tries to build a
logical paradox. For n = 2, the same construction does not work, because the two-bit
channel cannot be used to signal from its source to its destination — it can only be used
when combined with other channels. In a two-party scenario, however, in order to win the
game, each party needs to signal to the other.

Winning strategy

For odd n, the strategy Q" = PXFmi,OiIAi:ai,Ii for party S; to win the game is

Q= Qo © QT = (“(‘2”") o (5. (2:24)

where a; =q; fori =m+1 (mod n), and a; = a; + x; otherwise. The strategies for even n
are equivalent to the strategies for odd n, except that S,,_o has a two-bit output and S,,_1
has a two-bit input. Depending on M, they use the first, second, or both bit(s) to receive
or send the desired bit. All local operations are classical since they are diagonal, i.e.,
consist only of measuring and preparing states in the o, basis.
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The distribution P(z,|ag, ..., an—1, M =m) is

> P(xla,M =m) (2.25)
z;€{0,1}
= > Qe e ®Q® - ®Qn 1) W (2.26)
IiE{O,l}
i#Em
_2(1+( 1) - ) (2.27)

where we rearranged the submatrices of Q" in the trace expression such that the ordering
of the conditional probabilities in W,, match. This result is obtained because after taking
the trace, each term except 1 and (—1)X’"+Zi¢m 4i is either zero or depends on a vari-
able Xj(,) which, in the process of marginalization over X;(,), cancels out. For each m,
the winning probability is

Pr| Xy =@Ai|M=m|=1.
i#Em
Therefore, the game is won with certainty.

Example: n = 3

The probability of obtaining x( in the case M = 0 is

P(molao,al,ag,M = O) (2.28)

= Z tr[(Q0;® QY ©QY; ®Q)o® QY0 ®Q%) - Wi

z1,22€{0,1}

1tr []l®6} ro+x1+x2+taotal ro+aitaz r1+x2+aotaz
=55 2 (141 +(-1) +(~1) )

£t1,£172€{071}

1

= 5 (1+ (-pmorete). (2.29)

Therefore, the probability of the event Xg = A1 @ As is 1. The distribution of X; in the
case M =11is

P($1’a0,a1,a2,M = 1) (230)
— é Z (1 + (_1)$0+I2+a0+a1 + (_1)$0+w1+332+a1+a2 4 (_1)x1+a0+a2) (2_31)
:Co,CCQG{O,].}
1
= 5(1 + (—1)*rtaotaery (2.32)

and, finally, the distribution of X5 in the case M =2 is

P($2|G0,CL1,CL2,M = 2) (2.33)
:é Z (1 + (_1)x2+a0+a1 + (_1):Eo+m1+t11+a2 + (_1)ro+x1+$2+ao+a2)
z0,z1€{0,1}
1
= = (14 (—1)rtootaory, (2.34)

2
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The probabilities of the events X7 = Ag ® Ao and X9 = Ay @ A; are both 1. Therefore,
the game is won with certainty.

Intuitively, in the case M = m, party Sm+1mod3 sends Om+1mod 3 = Gm+1 mod 3 ON
both circular channels of Figure 2.3. Thus, party Sy,12 mod 3 receives the uniform mixture
of I;+2mod3 = @m+1mods (left channel of Figure 2.3) and 1,42 mod 3 = @m+1mod3 ® 1
(right channel of Figure 2.3). Party S),12 mod 3 thereafter sends O, 42 mod 3 = Im+2 mod 3P
Gm+2 mod 3, ¢-€., the uniform mixture of O.,4-2 mod 3 = Gm+1 mod 3BGm+2 mod 3 31d Op42 mod 3 =
Gm+1mod3 D Gm+2mod3 @ 1, on both circular channels, yielding the deterministic in-
put Iy = @41 mod 3 D A2 mod 3 t0 party Sp,.

Example: n =4

In the example n = 4, we explicitly write the local operations for the third and fourth
parties, as the third party has a two-bit output, and the fourth party has a two-bit input.
The local operations for the third party (S2) are

114+ (—=1)%2t*24, 1
50 = ( (j i )@Q’Q

® Qb

11+ ( 1“20Z®UZ)

"=
<1®1>®Q2
=

11+ (- a2+1’2]1®az)

® Q5
with

Q= (W> . (2.35)

Party 4 (S3) uses

2
m=1 I'® ]l®]1+(_1)$30'z®02>

m=0 I s (]l®]1+(—1)x3crz®]l)

where we use shorthand @ for

Q= <]l s (_1)a3+m30'z> . (2.36)

2

The distributions of Xy, X1, X2, X3, under the condition M =0, M =1, M =2, M =
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3, respectively, are

P(xolag, a1, a2,a3, M =0) = %(1 +(—1 9[»‘0+a1+a2+a3) ’
P(z1l|ag,a1,a2,a3, M =1) = %(1 + (-1 $1+ao+a2+a3) ’
P(z2]ag, a1, a2,a3, M = 2) = %(1 + (—1)Tataotartasy
P(x3|ap, a1, a2,a3, M =3) = %(1 + (~1 ws+ao+a1+a2)

Therefore, the event Xog = A1 ® Ay @ As, given M = 0, the event X1 = Ag® A> P As, in the
case M =1, the event X9 = Ag ® A1 ® As, if M = 2, and the event X3 = Ag P A1 P Ao
in the case M = 3 have probability 1. Which implies that the game is won with certainty.

By consulting Figure 2.4, we can describe the strategy in the following way. If M = m,
then party Sp41mod4 sends @11 mod 4 to the next party by using all four channels of
Figure 2.4. Each of the next two parties in clockwise orientation, i.e., party Si+2 mod 4
and party S;,+3mod 4, sends the parity of what she receives from the previous party and
her input (@42 mod 45 @m-+3 mod 4, respectively). Depending on M, parties Sy and S3 use
the first, the second, or both single-bit channels. In particular, if M = 0, then S uses the
first channel to communicate to S3 — the second channel is ignored. For M =1 they use
both channels, i.e., the parity of the inputs to both channels is equal to the bit S5 sends.
For M = 2, the two-bit channel between S5 and Ss is ignored. Finally, for M = 3 they use
the second channel. By doing so, S,, obtains @41 mod 4 + @m+2 mod 4 + @m+3 mod 4, as the
introduced bit-flips from the four channels (see Figure 2.4) cancel each other out.

2.6 Conclusion

In an attempt to construct a theory that combines aspects of general relativity and quan-
tum theory, Oreshkov, Costa, and Brukner [OCB12] proposed a framework for quantum
correlations without causal order. They proved that some correlations are incompatible
with any a priori causal order and, therefore, are not compatible with predefined causal
order although they satisfy quantum theory locally. We consider the classical limit of this
framework and show that in sharp contrast to the two-party scenario [OCB12], classical
and logically consistent multi-party correlations can be incompatible with any predefined
causal order. To show this, we propose a game that cannot be won in a scenario with
predefined causal order, but is won with certainty when no causal order is fixed.

Recently, the ideas of indefinite causal order and of superpositions of causal orders were
applied to quantum computation [Har09, Chil2, CDFP12, CDPV13, ACB14, Mor14]. Fur-
thermore, Aaronson and Watrous [AW09] showed that closed timelike curves render classi-
cal and quantum computing equivalent. Our result is similar in the sense that the winning
probability of the game is the same for the quantum and for the classical framework. Since
the W object in Figure 2.2 can be thought of as a channel back in time, closed timelike
curves can be interpreted as being part of the framework. Closed timelike curves per se are
consistent with general relativity [G6d49]. However, Aaronson and Watrous take Deutsch’s
approach [Deu91] to closed timelike curves which, as opposed to the framework studied
here, is a non-linear extension of quantum theory — such extensions are known to allow
for communication faster than at the speed of light [Gis90].
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Chapter 3

Causally nonseparable processes
admitting a causal model

Abstract

A recent framework of quantum theory with no global causal order predicts the existence
of “causally nonseparable” processes. Some of these processes produce correlations incom-
patible with any causal order (they violate so-called “causal inequalities” analogous to Bell
inequalities) while others do not (they admit a “causal model” analogous to a local model).
Here we show for the first time that bipartite causally nonseparable processes with a causal
model exist, and give evidence that they have no clear physical interpretation. We also
provide an algorithm to generate processes of this kind and show that they have nonzero
measure in the set of all processes. We demonstrate the existence of processes which stop
violating causal inequalities but are still causally nonseparable when mixed with a certain
amount of “white noise”. This is reminiscent of the behavior of Werner states in the context
of entanglement and nonlocality. Finally, we provide numerical evidence for the existence
of causally nonseparable processes which have a causal model even when extended with an
entangled state shared among the parties.

Published. A. Feix, M. Aratijo, and C. Brukner. Causally nonseparable processes admit-
ting a causal model. New J. Phys., 18(8):083040, 2016.

Contribution in conceiving the research project, deriving the main results and proofs,
and writing the manuscript.
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3.1 Introduction

It is well-known that quantum mechanics is at odds with naive notions of reality and local-
ity as predicted by Bell’s celebrated theorem [Bel64, CHSH69]. One might wonder whether
peculiar quantum features could challenge other fundamental notions, like the concept of
causality, as well. The process matriz formalism of Oreshkov, Costa and Brukner [OCB12]
was developed to explore this question—studying the most general causal structures com-
patible with local quantum mechanics for two parties A and B.

Surprisingly, the formalism predicts causal structures which are “causally nonsepara-
ble”: they correspond neither to A being before B nor to B being before A, nor to a prob-
abilistic mixture thereof. These causal structures can produce correlations incompatible
with any definite causal order, violating so-called “causal inequalities” [OCB12, BAF*16].!

However, the empirical relevance of these results is still completely unclear. Do they
appear in some physical situations or are they merely a mathematical artifact of the process
matrix formalism?

For three and more parties, there are causally nonseparable processes whose physical re-
alization is known—one instance is the “quantum switch” [CDPV13] where the causal order
between two parties A and B is controlled by a quantum system belonging to a third party
C. Processes of this kind, however, cannot violate causal inequalities [ABCT15, OG16]:
they admit a “causal model”, i.e., a causally separable process is capable of reproduc-
ing their correlations. Their causal nonseparability can only be certified through device-
dependent “causal tomography” or “causal witnesses” [ABC'15]. This is analogous to
states which are entangled but cannot violate Bell inequalities, i.e., for which a “local
model” exists [Wer89].

Since the only causally nonseparable processes known to be physically implementable
have a causal model, it is tempting to conjecture that the inability to violate causal in-
equalities without [Brul4| or with [OG16] operations extended to shared entangled states
by all parties singles out the physical causal structures from unphysical ones. Ref. [0G16]
contains an example of a tripartite process matrix with a causal model but which does
not remain causal under extensions, i.e., is not “extensibly causal”, demonstrating the
difference between the two notions for more than two parties.

In this paper, we provide an example of a bipartite causally nonseparable process
with a causal model. Furthermore, we give numerical evidence that bipartite nonsepa-
rable processes exist which do not violate causal inequalities, even when extended with
entanglement. No physical interpretation is known for these processes.

The paper is organized as follows: Sec. 3.2 introduces the process matrix formalism and
the definitions of causal nonseparability and causal inequalities. In Sec. 3.3, we define a
class of two-party causally nonseparable processes and construct a causal model for them.
This shows that the sets of causally nonseparable and causal inequality violating processes
are distinct also in the bipartite case. Since the causally nonseparable processes with a
causal model can be interpreted as the mixture of physically implementable process with
an unphysical process, this gives evidence that they are not implementable in nature.

In Sec. 3.4, we provide an algorithm to construct nonseparable processes with a causal
model by composing a random causally separable process with a non-completely posi-
tive map on one party. Using a random sample generated by a “hit-and-run” Markov
chain [Smi80, Smi84], we also show that nonseparable processes with a causal model have
nonzero measure in the space of all processes.

'For two parties, the operations implemented to violate causal inequalities have to be quantum [OCB12];
surprisingly, for three or more parties, classical operations are sufficient [BFW14].
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In Sec. 3.5, we construct a family of “Werner processes”, which mimic the behavior
of Werner states [Wer89] with respect to nonlocality and entanglement. The Werner pro-
cesses’ causal nonseparability is more resistant to the introduction of “white noise” than its
ability to violate causal inequalities. This shows that the analogy between causal nonsepa-
rability and causal inequalities on the one hand, and entanglement and Bell inequalities on
the other, extends beyond what was previously known [OCB12, Brul5, ABC*15, OG16].

Finally, in Sec. 3.6, we examine the behavior of the processes with added shared en-
tanglement between the parties. While some of the processes we constructed do wviolate
causal inequalities when extended in this way (are not “extensibly causal”), numerical
calculations indicate that the ability to violate causal inequalities disappears when adding
a little white noise, at which the causal nonseparability is preserved. We conjecture that
there are processes which are extensibly causal, and yet not physically implementable.

3.2 Causal nonseparability and causal inequalities

Quantum circuits can be thought of as a formalization of causal structures with a definite
causal order. They consist of wires, representing quantum systems, which connect boxes,
representing quantum operations. While for quantum circuits, the order of the operations
is fixed [CDPO09], situations where the order of operations is not well-defined are readily
represented in the process matriz formalism [OCB12], which can be thought of as a gen-
eralization of the quantum circuit formalism. We will briefly introduce the main elements
of the formalism; a more detailed introduction to it can be found in Ref. [ABC*15].

A quantum operation maps a density matrix p4, € Ar to a density matrix pa, € Ao
(where A; (Ap) denotes the space of linear operators on the Hilbert space HA1 (H40)).
The most general operations within the quantum formalism are completely positive (CP)
maps My : Ar — Ap. Using the Choi-Jamiotkowski [Cho75, Jam72] (CJ) isomorphism,
one can represent every CP map as an operator acting on the tensor product of the input
and output Hilbert spaces:

My = [(Z @ MDD € 41 Ao, (3.1)

where 7 is the identity map and |I)) := Zj:i |77) € Hi®H is a non-normalized maximally
entangled state; T denotes matrix transposition in the computational basis.

The CJ-isomorphism can also be used to represent “superoperators” or “processes”
which map quantum maps to quantum maps, quantum states or probabilities [GWO7,
CDPO08b, CDP09, LS13, OCB12]. In this paper, we will focus on processes mapping two
quantum operations &5 and nZ—corresponding to the Choi-Jamiotkowski representation
of Alice’s and Bob’s CP maps—to a probability (see Fig. 3.1). Requiring linearity of
probabilities in the operations, we can represent it as

p(&S,1h) = tr[W - & @ ),
WeAr® Ao @ Br ® Bo.

To ensure positivity of probabilities for all pairs of possible CP maps (as well as for extended
operations where the parties share additional entanglement) the “process matrix” W has
to be positive semidefinite W > 0 [OCB12]. The normalization of probabilities implies that
tr[W - £CPTP @ nCPTP] — 1 for all CJ-representations of completely positive trace-preserving
maps €CPTP and nCPTP [OCB12].
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¥ 55
My %% Mp
Al 1B

Figure 3.1: Representation of a bipartite process W, which linearly maps Alice’s and Bob’s
CP maps M 4, Mp to a probability. Ay (By) represents Alice’s (Bob’s) input Hilbert space
and Ap (Bp) Alice’s (Bob’s) output Hilbert space.

We call a process WA=B (WB=4) “causally ordered” if it does not allow for signalling
from Bob to Alice (Alice to Bob), which is equivalent to the conditions [ABCT15]

WA<B — trBo [WA<B] ® ]]-BO/dBoa
WB<A =tra, [WB<A] & ]lAO/dAO.

A process matrix WP € W, that can be decomposed into a convex combination
(0 < ¢ <1) of causally ordered processes is “causally separable”:

Weep = qWA=B 4 (1—q)WwB=4, (3.6)

It was recently shown that one can efficiently determine whether a process is causally
(non)separable using a semidefinite program (SDP). Here we will use the SDP for “random
robustness” [ABC*15]
min A
st. W =wA=B L wB=4 _\1°,
WA-<B _ trBo [WA-<B] ® ﬂBo/dBoa
WB-<A _ ter [WB-<A] ® ]lAO/dAoa

(3.7)

where 1° := 141408180 /(4 4 dp,). The random robustness R, (W) is defined as the result
of the optimization R, (W) := Agpt.

If R, (W) < 0, the SDP gives an explicit decomposition of W into W4A=E and WH=4;
if R.(W) > 0, the process is not causally separable. The value of R,.(W) is also an
operational measure of “causal nonseparability”. It is related to the minimal amount of
“white noise” 1° that needs to be mixed with the process to make it causally separable.
That is, for v > R,.(W), the process (y1° + W)/(1 + ) is causally separable.

A so-called “dual SDP” to (3.7) can then provide the optimal “causal witness”, i.e.,
a hermitian operator S such that tr[Wse, S| > 0 for all causally separable processes
Weep [ABCT15]. The property tr[W S] < 0 can be verified experimentally by measur-
ing a set of operators for Alice and Bob, certifying that the process W is not causally
separable. Note that, in analogy to entanglement witnesses [CS14], this certification of
causal nonseparability relies on a partial tomography of the process and thus requires
trust in Alice’s and Bob’s local operations: it is “device-dependent”.

It is well-known that the entanglement of a quantum state can be certified device-
independently (without requiring trust Alice’s and Bob’s operations) if the probability
distribution resulting from a set of measurements violates a Bell inequality [ABG107].
In an analogous way, causal nonseparability can be device-independently confirmed using



CHAPTER 3. NONSEPARABLE PROCESSES WITH A CAUSAL MODEL 30

causal inequalities [OCB12, BAFT16, ABC*15, OG16, BEFW14], where the “non-causal”
correlations between Alice and Bob alone suffice to show that the process they use is not
causally separable, without additional trust in their local operations.

The condition for a probability distribution to be “causal”, i.e., not to violate any
causal inequality, is simply that it can be decomposed into a convex combination of a
probability distribution which is no-signaling from Bob to Alice? (pa<p) and a probability
distribution which is no-signaling from Alice to Bob (pp<4) [BAFT16]:

Pcausal = qPA<B + (1 - Q)PB<A- (38)

Note that the correlations generated by a causally ordered process cannot violate any
causal inequality.

For the scenario where Alice (Bob) has an input bit = (y) and outputs one bit a (b),
one causal inequality is a bound on the probability of success of the “guess your neighbor’s
input” (GYNI) [BAF*16]:

. (3.9)

DN | =

1
PGYNI = ;p(a =y,b=2zlz,y) <

Some valid processes and local strategies which result in correlations violating (3.9) are
described in Ref. [BAFT16].

The relation between causally nonseparable processes and the violation of causal in-
equalities is not yet fully understood. On the one hand, there exist causally nonseparable
processes that can be physically implemented [PMA™15] but have a causal model—they
do not violate causal inequalities [ABCT15, OG16]. An example of such a process is the
“quantum switch” [CDPV13]. On the other hand, there are processes that can violate
causal inequalities, but it is not known if they can be realized in nature, prompting the
conjecture that only processes with a causal model are physically implementable [Brul4].

Another natural feature to investigate is the (in)ability for a process to violate causal
inequalities, even when extended with an entangled state shared by all parties. We will
call processes which do not allow for such a violation “extensibly causal” [OG16] and come
back to this concept in detail in Sec. 3.6.

In the bipartite case, all previously known nonseparable processes violate causal in-
equalities and it is not clear if nonseparable processes with a causal model even ex-
ist [BAFT16]. In the next section, we explicitly provide a class of nonseparable bipartite
processes that allow for a causal model.

3.3 Causally nonseparable processes with a causal model

We will consider the following class of processes (all the operators are understood to act
on qubits, da, = da, = dp, = dp, = 2):

1
WASB .=1° 4+ —(1ZZ1 +1XX1+1YY1),

12
Wh=A .=1° 4 i(Z]lXZ),
W i=qWA=B 4 (1 — g4 e WH=4 —¢1°, (3.10)

2When Alice is given the input z and outputs a (Bob is given an input y and outputs b), no-signaling
from Bob to Alice implies that the marginal probability on Alice’s side does not depend on Bob’s input:

>y pa<s(ablry) = 37, pa<p(ablzy’), Yy, y'.
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Here 1, X, Y, Z are the Pauli matrices and the tensor products between the Hilbert spaces
Az, Ao, Br, Bo are implicit, as in the remainder of the paper. The process matrix (3.10)

is positive semidefinite for ¢ < ¢ — 1 + %

and causally nonseparable for € > 0.
As shown in Appendix A.1, its random robustness is R,.(W) = e. It is maximal for
g=+v3—1~0.732, where ¢ = % — 2~ 0.309.

The proof that the process (3.10) cannot be used to violate any causal inequalities, for
any local strategy® consists of two steps: (i) we show that the set of correlations compatible
with W is the same as the set of correlations achievable with W5 (where T2 denotes the
partial transpose of the systems B;Bo with respect to the computational basis); (ii) we
verify that WTB is valid and causally separable, hence cannot violate causal inequalities.
Taken together, this establishes that W cannot violate any causal inequalities either and
therefore admits a causal model.

The first part of the proof is simple. Using definition (3.2) and the self-duality of
transposition, we rewrite the probability distribution:

plablzy) = tr[WEE @ nb] = te[WTPEL @ ()] (3.11)

Additionally, for any quantum instrument [DL70] {n}}, the instrument {n}*} is also valid,
since transposition maps completely positive maps to completely positive maps and trace-
preserving maps to trace-preserving maps?. This establishes (i), namely that the correla-
tions achievable with W5 are the same as those compatible with W-—note that this holds
for any process, even when WTB is not positive semidefinite, and therefore not a valid
process matrix. In such a case, the probability distribution will be well-defined for local
measurements, but not when extending the process with an entangled state between Alice
and Bob, an extension which is physically meaningful and to which we will come back in
Sec. 3.6.

For the class of process matrices given in Eq. (3.10), W5 4s always positive semidef-
inite. We will now explicitly decompose WTB as a convex combination of causally or-
dered process matrices, proving that it is causally separable (formally, this implies that
R.(WTB) <0).

First, one should notice the similarity of WA=E with the process matrix DZ/<5

2/3
depolarizing channel (with % probability of depolarizing and % probability of perfectly
transmitting the state) from Alice to Bob

of a

1
Dyl =1+ (IZZ1+1XX1 - 1YY1), (3.12)

where only the sign of the term 1YY 1 differs compared to W4=B of (3.10). This exactly

corresponds to a partial transpose of the systems BB, such that WA=E = (D;‘BB yIs
Using the definition of the depolarizing process D;‘BB = %]lo + %I“HB, where T4=B =
147 1) ((1]0P1 180 /2. Since (WB=NT5 = WB=A we can write WT5 as:
2
W =210 4 1P (L gk WP e
2
= %IA<B+(1—q+6)WB<A+ (3(1—6)]10, (3.13)

3Note that our proof guarantees the existence of a causal model, which means that the correlations
belong to every causal polytope, without restriction on the number of inputs and outputs for each party.
“The condition on the CJ representation of a CPTP map is that trg, M550 = 157 and it implies
tr (MBIBO)T :ILBI
Bo .
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Figure 3.2: For W of Eq. (3.10) to be a valid process, € < €,(¢q) (in the region below the
red curve). A process only generates causal correlations for € < €.(g) (the region below
the dotted blue curve). Since €, < €, every valid process of the form (3.10) allows for
a “causal” probability distribution. e€,pt and gopt are the parameters maximizing causal
nonseparability.

which is a convex decomposition into causally ordered processes as long as € < e.(q) =

%. Since e < g —1+ (17(1)3& for the process given in Eq. (3.10) to be valid, and

qg—1+ 4/ % < €.(q), the whole class of processes defined in Eq. (3.10) cannot
violate causal inequalities. For a graphical representation of this relationship, see Fig. 3.2.

This concludes the proof and provides an explicit causal model for the process W with
the instruments {£¢} and {ng}: the process W5 with the instruments {2} and {nzT}.
Since WTB is causally separable, it can be interpreted as a probabilistic mixture of two
causally ordered processes. There are infinitely many such decompositions since the term
1° in Eq. (3.13) can be split and added to 274=5 and (1 — g+ €)W5=4 in any proportion.

W can be taken to be WTB composed with a transpose map on B. The process matrix
4(14=B)TE becomes positive (meaning that the associated map is completely positive)
when adding at least 23—(1 of white noise. However, the maximal noise that can be admixed
by transferring the 1° term in (3.13) is % — €, which is strictly smaller. Therefore, the
causal model for W suggests a natural interpretation for it as a convex combination of
an unphysical channel from Alice to Bob (as it is not completely positive) with a physical
channel from Bob to Alice. This provides some evidence—yet not a proof—that the process
W is not physically implementable.
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3.4 Random causally nonseparable processes with a causal
model

In this section, we develop a method to construct a broad class of causally nonseparable
processes with a causal model. Given a random causally separable process, one applies a
positive, but not necessarily completely positive map Qp(-) on Bob’s side:

Wsep7 = QB(WSep)- (314)

If the resulting process has negative eigenvalues, it is discarded; otherwise, it is a valid
process matrix. Using the same argument as in the preceding section, we know that the
resulting process Wep? will have a causal model. Sometimes—and these are the interesting
cases—the process will also be causally nonseparable. This can readily be checked this via
SDP (3.7).

We generated causally separable process matrices Wyep (where da, = dp, = da, =
dp, = 2) according to an asymptotically uniform distribution using the “hit-and-run”
technique (see Appendix A.3 for details) and Eq. (3.14), using the transposition map 2
for Qp. We found that most (69%) of the resulting matrices were positive and hence valid
process matrices. About half of these turn out to be causally nonseparable while—by
construction—allowing for a causal model (we denote this set by Wr(éz}p) The histogram of
the resulting causal nonseparabilities is shown in Fig. 3.3. There is therefore a finite prob-
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Figure 3.3: Histogram of the random robustness R, of the subset of 690 (=~ 69%) valid
processes Weep? generated from 1000 uniformly distributed causally separable processes
(see Appendix A.3) and applying partial transposition on Bob’s side. The 366 (~ 53%)
which are causally nonseparable, while admitting a causal model, are represented in red.

ability of generating a nonseparable process with a causal model starting from a random
of causally separable process. Since the map 158 is measure-preserving, the set of causally
nonseparable processes which admit a causal model is of the same dimension as the set of
valid processes W itself (see Appendix A.2 for details).
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3.5 “Werner” causally nonseparable processes

We will denote the set of causally nonseparable processes as Whgep. It is composed of the
(c)

set of processes with a causal model (Whsep) and the set of processes that can violate causal
inequalities (Wl(lggl))), which are graphically represented in Fig. 3.4.

We now construct bipartite processes violating a causal inequality, but which, mixed
with some amount of “white noise” 1°, turn into causally nonseparable processes with a
causal model. This behavior is reminiscent of “Werner states”, which violate Bell inequal-
ities until a noise level of up to % but are entangled when mixed with noise up to a level of
% [Wer89]. It shows that the analogy between causal inequalities and causal nonseparabil-
ity, on the one hand, and Bell inequalities and entanglement, on the other hand, applies
to the two-party case.

The idea is to use a convex combination of a process in Wlﬁgip and a process in Wéiég,
which is also invariant under partial transposition with respect to B®. In this way, one can
generate a broad class of “Werner causally nonseparable processes”.

We will use the process defined in Eq. (3.10) with the maximal causal nonseparability:

L - A< L <A i_ o
Wopt == (V3 — L)W B+\/§WB (\/3 2)11, (3.15)

together with the process

Wocs = 1° + —= (1221 + Z1X Z), (3.16)

1
44/2
which was proposed and shown to violate causal inequalities in Ref. [OCB12]. In Ap-
pendix A.1, we show that the resulting mixture

Whnix(@) = aWopt + (1 — a)Wocs (3.17)

has nonseparability Rmix(a) := Ry(Whix(®)) = aR,(Wopt) + (1 — )R, (WocB), where
R,.(Wocs) = V2 — 1 is the random robustness of Wocg.

Following the same argument as in the previous section, we can now examine the causal
nonseparability of Wgﬁ, since, by transferring the partial transpose onto Bob’s CP maps,
we know that it can produce exactly the same correlations as Wyix. Its nonseparability

' (@) = R.(WIE(a)) is again the weighted average (see Appendix A.1) of the nonsep-

arabilities of W12 and of WgJCBB = Wocs:

opt
Rp(@) = aR.(Woi2) + (1 — &) Re(Wocs)
2
= Ryix(a) + ?O‘RT(W;E) < Ruix(a), (3.18)

where we used RT(WOTp}g) = 2\/2_4 < 0 and R, (Wocp) = V2 — 1. This means that there is

a finite gap between the nonseparability of Wyx and the nonseparability of Wr};f(
Using a see-saw algorithm [BAFT16], we numerically verified that Wiy (a) indeed vio-

lates the causal inequalities of Ref. [BAFT16] as long as W12 is nonseparable (R/ . (a) >
: 3(v2-1)
0), i.e., when a < Tava2ys 0.6987.
This gap translates into a gap between the level of white noise 1° that Wy,ix can tolerate
before admitting a causal model and the level of noise at which it becomes nonseparable.

We therefore define the “Werner process” as a convex combination of 1° and Wiix(«):

Wwer (7, @) = (1 = 7)Whix(a) + 7v1°. (3.19)

50r, in the more general scenario described in the previous section, is invariant under the non-
completely-positive operation Qg (-).
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Figure 3.4: Schematic depiction of different types of process matrices. Wr(lrsfg) is the set of
process matrices which can violate causal inequalities and Wésgp is the set of nonseparable
process matrices which admit a causal model and Wi, is the set of separable processes.
The process Wiix := aWopt + (1 — @) Woce, where Wy, admits a causal model and Wocgn
doesn’t, gives rise to “Werner type” processes Wiyer (7, @) := (1 — v)Whix(a) +1°, which
have a causal model but are causally nonseparable for a certain level of noise (3.21).

Using the definition of nonseparability (3.7), one can verify that the following relations
hold (see Appendix A.1):

Rmix
WWer <7 < ﬂv a> € Wnsepa
1+ Rmix(a) (3 20)
R . (« ’
T mix
W (72 T ) € W

As Wiyer can violate causal inequalities only if WVTVET is causally nonseparable (remember
the proof of Sec. 3.3), we conclude from (3.20) that

mix (@) Rumix ()
Wiyer | —— A" <y« 20T ) e WO 3.21
‘We <1 + Rinix(a) =9 1+ Rmix(a) G nsep ( )
which mimics the behavior of Werner states. See Fig. 3.4 for a graphical representation of
the location of Wiy with respect to the different sets of processes.

3.6 Relationship to extensibly causal processes

In the context of the physical implementability of process matrices, it is natural to consider
the extension of a process matrix with an entangled state shared between the parties. A
process is “extensibly causal” if, even when extended with a shared entangled state, it
cannot violate causal inequalities [OG16].

Extending a physically implementable process with an entangled state shared among
the parties should also result in a physically implementable process. On this account, it is
important to consider not only whether a process has a causal model, but rather whether
it has such a model when extended with an entangled state. In Ref. [OG16], an example of
a tripartite process with a causal model but which is not extensibly causal was presented,
showing that both notions really differ and that the violation of causal inequalities can be
“activated” by entanglement—and for which no physical implementation is known.

Note that the proof (Sec. 3.3) of the existence of causal model for W does not hold
when the process is extended with an entangled state between Alice and Bob. It therefore



CHAPTER 3. NONSEPARABLE PROCESSES WITH A CAUSAL MODEL 36

cannot prove that W is extensibly causal. It crucially relies on the fact that the transpose
{(ng)T} of a valid instrument for Bob {772} is still a valid instrument. However, taking the
full transpose on Bob’s instrument would lead to a “causal model” with a partial transpose
of the shared entangled state, which can lead to negative probabilities. Conversely, the
partial transpose of Bob’s instrument (with no transposition on Bob’s part of the entangled
state) is not a valid instrument and does not yield positive probabilities in general.

To numerically study whether Wy from Eq. (3.15) is extensibly causal, we extended it

with a maximally entangled state of two ququarts (|¢>A}B} = 1(/00) 4 [11) + |22) 4 [33))):

Wext = Wopt ® ‘(b) <¢‘AIIB/I . (3.22)

We chose a maximally entangled ququart state because we believe that extending Wyt
with a higher dimensional state would not improve its ability to violate causal inequalities.

Using the see-saw algorithm, we optimized Wey for a violation of the simplest causal
inequalities [BAFT16]. We found that Wy is able to violate (by about 8 - 107°) the GYNI
inequality (3.9), which proves that W,y is not extensibly causal. Incidentally, it also shows
that in the bipartite case as well, the violation of causal inequalities can be “activated”
using entanglement.

If we adopt the view that extensively causal processes are physical, the activation of
violation of causal inequalities, this suffices to exclude W, in the same way as the tripartite
process with a causal model but which is not extensibly causal, given in Ref. [0G16],
independently of the argument based on the decomposition of Sec. 3.3. However, this is
not possible anymore when admixing a small amount of white noise: (1 — k)Wey + £1°.
We ran the see-saw algorithm for different levels of white noise and found no violation of
GYNI for k > 3.3-10* (see Fig. 3.5 for a graphical representation of the relationship
between noise and violation of GYNI). Similarly, neither the other causal inequality from
Ref. [BAFT16] nor the “original” causal inequality from Ref. [OCB12] could be violated
through see-saw optimization.

This gives reasonable evidence® that Wopt mixed with very little white noise is exten-
sibly causal, while still being causally nonseparable (see Fig. 3.6 for a graphical represen-
tation). The argument for unphysicality of Sec. 3.3 still applies to it. This leads us to
conjecture that some extensibly causal processes cannot be physically realized.

3.7 Conclusions

We studied the classification of causally nonseparable process matrices for two parties and
found that composing a class of causally separable processes with a transpose map on one
party’s side results in nonseparable processes with causal models, i.e., that cannot violate
causal inequalities.

Since the only interpretation we know relies on applying a non-completely positive map
(which is itself is unphysical) to a valid process, the conjecture that processes which do
not violate causal inequalities are physically implementable is undermined.

We also provided a simple algorithm to generate nonseparable processes with causal
models—starting from a random separable process and composing it with a positive, but
not completely positive map on one party’s side. With a finite probability, this yields a
nonseparable process with a causal model and shows that the measure of such processes
is nonzero within the space of valid processes. The “hit-and-run” algorithm we used to
generate random process matrices might be of independent interest.

STt falls short of being a proof because (i) the entangled state added in Wey is finite-dimensional; (ii)
the see-saw technique is not guaranteed to converge to the global optimum; (iii) only the three known
bipartite causal inequalities were tested, inequalities with more settings might still be violated.



37 3.7. CONCLUSIONS

0.50006 |- .

0.50004 |- .

PGYNI

0.50002

0.5 F=mmm === mm oo emma ool

074

Figure 3.5: Numerically optimized (see-saw) violation of the GYNI inequality Eq. (3.9), us-
ing the noisy extended process (1—x)Wexs+£1° (see Eq. (3.22)) and causal bound (dashed).
For a noise level of £ > 3.3 - 1074, the algorithm fails to find a strategy violating the in-
equality, as well as for the other known bipartite causal inequalities [BAF*16, OCB12].

Figure 3.6: Schematic depiction of the sets process matrices with respect to extensible

causal separability. Wi, is the set of separable processes, Wr(fslgl), is the set of process

matrices which can violate causal inequalities, Wﬁ‘;;‘g) the set of processes with a causal
model but which can violate causal inequalities when extended with entanglement, such
as Wopt. Based on our numerical evidence (see Fig. 3.5), we conjecture that the set Wr(fs(g%
of processes which are causally nonseparable and “extensibly causal” is not empty. Note

that the set of nonseparable processes with a causal model is Wﬁélp = Wr(gg% U Wﬁﬁg‘ﬁ)



CHAPTER 3. NONSEPARABLE PROCESSES WITH A CAUSAL MODEL 38

We then developed the analogy between entanglement /nonlocality and causal nonsep-
arability /noncausal correlations by providing a process analogous to a Werner state: it
starts having a causal model when mixed with a certain amount of white noise, while still
being strictly causally nonseparable.

Finally, we studied whether our processes still have a causal model when extended with
an entangled state shared between Alice and Bob (whether they are “extensibly causal”).
The numerical evidence prompted us to conjecture that some of the nonseparable processes
we studied are extensibly causal, while not being physically implementable.

An important question remains open: if some processes which have an (extensible)
causal model are nonphysical, which other criterion should be used to rule them out?
One fairly natural approach is to postulate a “purification principle”, according to which
physically realizable processes can be recovered as part of a pure process in a larger
space [AFNB17].
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Chapter 4

Quantum superposition of the
order of parties as a
communication resource

Abstract

In a variant of communication complexity tasks, two or more separated parties cooperate
to compute a function of their local data, using a limited amount of communication. It
is known that communication of quantum systems and shared entanglement can increase
the probability for the parties to arrive at the correct value of the function, compared to
classical resources. Here we show that quantum superpositions of the direction of commu-
nication between parties can also serve as a resource to improve the probability of success.
We present a tripartite task for which such a superposition provides an advantage compared
to the case where the parties communicate in a fixed order. In a more general context,
our result also provides the first semi-device-independent certification of the absence of a
definite order of communication.

Published. A. Feix, M. Aratdjo, and C. Brukner. Quantum superposition of the order of
parties as a communication resource. Phys. Rev. A, 92(5):052326, 2015.

Contribution in conceiving the research project, deriving the main results and proofs,
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4.1 Introduction

In its short history, the field of quantum information has been very successful in discover-
ing and explaining differences between classical and quantum information processing—in
particular a variety of advantages that the use of quantum resources confers over the use
of classical resources [NCO0O].

Quantum resources provide important benefits regarding communication complexity
tasks [Yao79, Ya093, KN06] where two or more separated parties compute a function of
their input strings, seeking to maximize the probability of success under the constraint of
limited communication between them. Communicating quantum bits and sharing entan-
glement are two well-known resources that can be used to improve success probability in
such scenarios [BCMd10].

A novel type of quantum resource—the quantum switch—, allows for the order in which
quantum gates are applied to be in a quantum superposition, using an auxiliary quantum
system that coherently controls the order in which the gates are applied [CDPV13|. The
quantum switch has been shown to reduce the required number of queries to “blackbox”
unitaries required to solve certain computational tasks [CDPV13, CDFP12, Chil2, ACB14,
PMA*15].

Here we find that the quantum control of the direction of communication between parties
is a novel, useful resource in communication complexity protocols. We demonstrate this by
considering an explicit three-party communication task, in which Alice and Bob are each
given input trits and Charlie has to determine whether they are equal or not. They are
not allowed to share entanglement and the total communication is restricted to two qubits.
We show that, when the order of communication between parties is fixed (or classically
mixed), the success probability is bounded below one. However, using the quantum switch
to superpose the direction of communication between Alice and Bob, there exists a protocol
that always succeeds.

4.2 Process matrix formalism

Superpositions of the direction of communication are readily described in the process matrixz
formalism, first introduced in Ref. [OCB12]. We will briefly review some of its key aspects;
for an extensive introduction to the subject, we refer the reader to Ref. [ABCT15].

The most general quantum operation, a completely positive (CP) map, maps a density
operator p4, € Ay to a density operator p4, € Ap. Here, A; (Ap) denotes the space of
linear operators on the Hilbert space HA! (H40); in general, the dimensions d A; and dy,
of HA1 and HA° do not have to be equal.

Using the Choi-Jamiotkowski [Cho75, Jam72] (CJ) isomorphism (where we follow the
convention of Ref. [ABCT15]) one can represent a CP map My : A — Ap as an operator

My = (T @ MA)(III]]" € Ar & Ao, (4.1)

dy, | .. . . .
where 7 is the identity map and |I) := > ]z{ |77) € Hr®?H is a non-normalized maximally
entangled state and T denotes transposition. The inverse transformation is

MA(p) :tI‘][(p@]l)MA]T. (4.2)

Similarly, for two completely positive maps M4 : A; — Ap and Mp : Bf — Bo, the joint
CJ-matrix is the tensor product of the CJ-matrix of the individual maps € A; @ Ap ® B ®
Bo.

One can use this isomorphism to conveniently represent higher-order operations [GW07,
CDPO08b, CDP09, LS13, OCB12], which map quantum maps to quantum maps. These
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“superoperators” or “processes” can also be represented as CJ-matrices themselves, by
applying the CJ-isomorphism repeatedly.

One can also meaningfully define operations acting jointly on states and operations.
We will restrict our attention to the class of processes W mapping two CP maps and two
states to two states:

W(Ma, Mp,oc,pr) =trap{W -Ms® Mp®@oc® pr} = por. (4.3)
4.3 Processes with and without a definite order of
communication

Quantum circuits form a well-known class of processes in which gates corresponding to the
operations M4 and Mp appear in a fixed order (as depicted in Fig. 4.1). Either M4 is

ocC ocC
U v
pr -HMaltl_HMsH pr HMs L HMalH-

Figure 4.1: Examples of quantum circuits (in red) mapping two CPTP maps M4, Mp
and two states oc, pr to a state pip. The order of applying gates is well-defined—A < B
for the left circuit and B < A for the right one.

applied before M p (corresponding to processes of the type Wa<p) or M is applied before
My (corresponding to processes Wp<4) [CDP09]. Identifying My (Mp) with Alice’s
(Bob’s) operation, these “ordered processes” correspond to a definite order of signaling
between Alice and Bob. More generally, we will also refer to classical mixtures thereof,
which correspond to a classical random variable controlling the order of the process,

Word. := pWa=<p + (1 = p)Wp=<4, 0<p <1, (4.4)

as “causally separable processes” [ABC*15, OG16].!

Not all physically implementable processes are causally separable: The quantum switch,
first introduced by Chiribella et al. [CDPV13], corresponds to the process Wsy, which
applies two CP maps to a target system pr in an order that is controlled by the value of a
quantum control system o¢. The quantum switch for pure target and control states [¢),
|#)~ and unitary operations Uy (Up) on Alice’s (Bob’s) side is given by

Wew(Ua; U, |9) ¢ [¥)7) = (019) [0)o UsUa [$) 1 + (11¢) 1) UaUs |4) 1 (4.5)

and can be extended by linearity to mixed states and general CP maps on Alice’s and
Bob’s side [Chil2]. It is neither of the type Wa<p nor of the type Wpg<4. Since it is
an extremal process, it also cannot be decomposed according to Eq. (4.4), which shows
that there is no definite order of signaling for the quantum switch [ABCT15]. Rather, one
should think of it as a coherent superposition of circuits or of directions of communication,
controlled by a control qubit:

75 (00 0T} ) + e —{Ts-{Ta ). (46)

'Note that the definition of causal separability in Ref. [0G16] slightly differs from the one presented
here.
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It has been shown that using such a quantum control of circuits provides an advantage
in query complexity for certain computational tasks [CDPV13, CDFP12, Chil2, ACB14].
It has also been implemented experimentally, using an interferometric setup [PMAT15].

4.4 The tripartite Hamming game

To demonstrate the relevance of the quantum switch in communication scenarios, we will
introduce a communication game closely related to the distributed Deutsch-Josza promise
problem [DJ92, BCW98, BCMd10] the Simultaneous message passing model (SMP) [YaoT79,
BCWdO01] and Random access codes (RACs) [Wie83, Nay99, ANTSV02, HINT06, ALMOO0S].

In our tripartite game—as for the SMP—, Alice and Bob receive input strings and
Charlie computes a function of them. Communication between all the parties and shared
(classical) randomness are also allowed. Charlie has to compute the parity of the Hamming
distance of Alice’s and Bob’s input strings, generalizing the function of the distributed
Deutsch-Josza promise problem (here, however, no promise on the Hamming distance of
the inputs is required).

More precisely, Alice and Bob both are given n trits (x € {0,1,2}"™ and y € {0,1,2}"
respectively), Charlie computes the Hamming parity f(z,y) defined as

f(z,y) = @6%%. (4.7)
i=1

In addition, the total length of the transcript communicated by Alice, Bob, and Charlie is
restricted to be m bits (or qubits). This defines the (nlogy 3, m)-Hamming game depicted
in Fig. 4.2; the average success probability associated to it will be referred to as pgycc.-

y € {0,1,2}"

|

Bob

x € {0,1i2]7 ) \

Alice

AN
h -

Charlie

J/ pSuCC.
f(a:, y) = @?:1 Ow;y;

Figure 4.2: Tripartite (nlog, 3, m)-Hamming game where Alice and Bob receive input
strings of the length nlog, 3 bits, and Charlie has to compute f(x,y). The total commu-
nication is m bits or qubits; no entanglement is pre-shared.

Next we show that for the (logy 3, 2)-Hamming game (which is equivalent to the equality
game for trits) the success probability is bounded below one when Alice, Bob and Charlie
are restricted to using a causally separable process, i.e., when the direction of signaling is
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fixed or controlled by a classical random variable independent of the inputs. In contrast,
using quantum control over the direction of signaling—the quantum switch—, Charlie can
always compute f(x,y). This demonstrates that causally nonseparable processes are useful
resources for communication tasks.

Causally separable classical strategy

We will first consider the case where Alice, Bob and Charlie can only implement classical
operations and use a process with a definite order of communication (or a mixture thereof).
The optimal strategy involves Alice encoding her input trit  into a bit a(z) and sending
it to Bob, who sends the function b(a,y) to Charlie, who finally outputs a function g(b).

The deterministic strategies are the vertices of a convex polytope in the 9-dimensional
(all possible combinations of x and y) space of probabilities p(c|z,y). Given that Alice, Bob
and Charlie share randomness, they can probabilistically combine determinstic strategies,
reaching every point inside the convex polytope.

For equally distributed inputs, the probability of success for Charlie to output f(z,y) =
82,y is bounded by?:

1 7
pgucc. = § ZP(C = 6$,y’$7 y) < § (48)
z,y

One deterministic strategy saturating this bound consists in Alice encoding whether her
input is 0 or not (a(z) = d,0) and Bob answering 1 only if he is sure that Alice and he
both have input 0 (b(a,y) = dy,004,1). Charlie simply returns Bob’s answer. This strategy
will fail only for input pairs x =y =1and z =y = 2.

Causally separable quantum strategy

We now turn to the case where Alice, Bob and Charlie use a causally separable process
(consisting of quantum channels) and have access to quantum operations, as shown in
Fig. 4.3. The parties are allowed to share randomness but not entanglement. In the
optimal protocol with two qubits of communication in total, Alice encodes her input trit
into a qubit x +— p, and Bob applies a CPTP map B, for each value of his input trit y
onto the incoming qubit; Charlie then performs a two-outcome positive-operator valued
measure (POVM) {C},,} on the resulting state.

z € {0,1,2} y €{0,1,2}
| l

1 qubit 1 qubit
Alice Bob Charlie
Pz By (pz)
l Pce.
c

Figure 4.3: Optimal causally separable protocol for the equality game, where no entangle-
ment is shared among the parties.

2Note that it is also a facet of the polytope, since it is saturated by vertices spanning an 8-dimensional
affine subspace.
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For equally distributed inputs, the probability of success for causally separable strate-
gies is bounded by

P S+ max (Ztr{Cle(px)}+Ztr{003y(ﬂx)} , (4.9)

9 pﬁ?v{By}v{Cm} z Ty
which, in Appendix B, we prove to be

Ptee. < 7 (4.10)

S| Ut

Here, an optimal state preparation by Alice is

1 —T
lao) :\ﬁ (’0>+6 /4|1>>,
(4.11)

where p, = |agz){az|. Bob projectively measures in the basis |a,), ]aj), where ]ajﬁ is

1

. T T ™
|0y + |1)), ]a1):sm§]0)+e /4cos§\1>,\a2>: 5

orthogonal to |a,), and prepares the state |z+) = %(!0) + 1)) or |z—) = %(]0) — [1)),
depending on the outcome.

Charlie simply applies a projective measurement in |z+)-basis, the outcome of which
constitues his guess c¢. The probability distribution arising from the optimal quantum
strategy is shown in Table 4.1.

Table 4.1: Conditional probabilities of success with a causally separable process, for the

optimal strategy (4.11), reaching p2.. = %.

2,y 00 01 02 10 11 12 20 21 22
pole=degley) [ 17 5 1 1 1 7 1 1

Quantum superposition of the order of parties

We now show that when Alice, Bob, and Charlie can use the quantum switch to implement
quantum control over the direction of communication between Alice and Bob, they can
violate Eq. (4.10) maximally (pZs¥ = 1).

Alice and Bob apply unitaries U7, Ug to a target system and the quantum switch
coherently superposes the order in which they are applied. Charlie receives the resulting
state and applies a two-outcome projective measurement II7,II7. Since Alice and Bob
only have access to a qubit subspace, they each only send one qubit out of their lab,
while Charlie sends no system out. The total communication between Alice, Bob and
Charlie is m < logy(da,, - dB,, - dc,) = 2 qubits, in accordance with the assumptions of the
(logy 3,2)-Hamming game.

Alice and Bob choose a Pauli gate corresponding to their input trit U};l = U}é =o0; and
the control state is |¢) = |z+) (the state |¢), is irrelevant), see Fig. 4.4. Inserting this
into Eq. (4.5), Charlie receives the state

Wsw(o':pa Oy, |l‘+>c > |77Z)>T)

= —5(0coy02 )+ Do a0y [0)y) (4.12)

= S(e-)e oy @l W) + It (o, 0a} 1)),

where [+, ] is the commutator and {-, -} the anticommutator.
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Figure 4.4: Linear optical implementation of the protocol using the quantum switch [CIJT,
ACB14]. The control state |¢), is encoded in polarization and the target state [¢), in
another photonic degree of freedom. Alice and Bob apply Pauli operators on the target
system depending on their input z and y. Charlie performs a measurement in |z+) basis
on the outcoming control system C' and consequently outputs d,,. Note that in the
experiment of Ref. [PMA™15], the control state was instead encoded in path.

If Charlie chooses a projective measurement on the resulting control system C', with
It = |z+)(z+|, and II" = |z—)(z—|s, he can determine whether [o,,0,] = 0 or
{oy, 0.} = 0 (because of the commutation relations of the Pauli matrices, one of them is
always the case). If the former is true, Charlie deduces that x = y, otherwise, that x # y.
Hence, he can compute f(z,y) = 0, with unit probability, violating the bound (4.10).

Note that the protocol can be extended to any (mlog, 3, 2m) Hamming game (Alice and
Bob each are given m trits and have access to an m-qubit system). Alice and Bob apply
&), 0z, and ), oy, respectively; Charlie, by measuring the control qubit in |z4)-basis,
can still determine whether [); 02,, &), y,] or {Q); 02,, @), 0y,]} is zero. Since for each
different trit, a factor of —1 appears when permuting the corresponding Pauli matrices, an
even number of differences in the trit strings of Alice and Bob will result in a vanishing
commutator, and an odd number of differences in a vanishing anticommutator. Using the
quantum switch, Charlie can therefore always find the Hamming parity (4.7).

4.5 Conclusions

We demonstrated that a quantum superposition of the direction of communication between
parties is a useful resource in communication complexity problems. This was explicitly
shown for the (logy 3,2)-Hamming game, where the probability of success for processes
with a definite or classically mixed order of signaling is violated by using the quantum
switch as a resource. The result points to the necessity for a general resource theory of
communication to account for superpositions of the direction of communication. Note that
having access to the quantum switch is not equivalent to sharing a maximally entangled
state between Alice and Bob—for instance, the latter (through dense coding [BW92]) makes
computing any binary function of two trits for Alice and Bob possible by exchanging just
two qubits of communication, which is impossible with the quantum switch.

Our result also provides the first semi-device-independent [LVB11, PB11] way of certi-
fying the causal nonseparability of a process, where Alice’s and Bob’s system is known
to have (at most) a given dimension, but the operations themselves are not trusted.
It lies between the stronger fully device-independent certification of causal nonseparabil-
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ity [OCB12, BAF 16, OG16]—which was already shown to be impossible for the quantum
switch [ABCT15, OG16]—and the weaker device-dependent certification through causal
witnesses [ABCT15].

It would be interesting to improve the scaling (with the length of the inputs) of the re-
duction in communication achieved by using the quantum switch. To compute Hamming
parity of two m-trit input strings, 2m qubits need to be exchanged using the quantum
switch; making use of a process with a fixed order of communication, one can easily con-
struct a protocol requiring only m(1 + logy 3) qubits. Hence, both resources result in the
same asymptotic scaling of communication for the Hamming game.
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Chapter 5

Exponential communication
complexity advantage from
quantum superposition of the
direction of communication

Abstract

In communication complexity, a number of distant parties have the task of calculating
a distributed function of their inputs, while minimizing the amount of communication
between them. It is known that with quantum resources, such as entanglement and quan-
tum channels, one can obtain significant reductions in the communication complexity of
some tasks. In this work, we study the role of the quantum superposition of the direction
of communication as a resource for communication complexity. We present a tripartite
communication task for which such a superposition allows for an exponential saving in
communication, compared to one-way quantum (or classical) communication; the advan-
tage also holds when we allow for protocols with bounded error probability.

Published. P. Allard Guérin, A. Feix, M. Aratjo, and C. Brukner. Exponential commu-
nication complexity advantage from quantum superposition of the direction of communi-
cation. Phys. Rev. Lett., 117(10):100502, 2016.
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5.1 Introduction

Quantum resources make it possible to solve certain communication and computation
problems more efficiently than what is classically possible. In communication complex-
ity problems, a number of parties have to calculate a distributed function of their inputs
while reducing the amount of communication between them [Yao79, KN06]. The minimal
amount of communication is called the complexity of the problem. For some communi-
cation complexity tasks, the use of shared entanglement and quantum communication
significantly reduces the complexity as compared to protocols exploiting shared classical
randomness and classical communication [Yao93, BCMd10]. Important early examples for
which quantum communication yields an exponential reduction in communication com-
plexity over classical communication are the distributed Deutsch-Jozsa problem [BCW98|
and Raz’s problem [Raz99].

Quantum computation and communication are typically assumed to happen on a def-
inite causal structure, where the order of the operations carried on a quantum system is
fixed in advance. However, the interplay between general relativity and quantum mechan-
ics might force us to consider more general situations in which the metric, and hence the
causal structure, is indefinite. Recently, a quantum framework has been developed with no
assumption of a global causal order [OCB12, ABC*15, OG16]. This framework can also
be used to study quantum computation beyond the circuit model, for instance using the
“quantum switch” as a resource — a qubit coherently controlling the order of the gates in
a quantum circuit [CDPV13]. It has recently been realized experimentally [PMAT15].

It was shown that this new resource provides a reduction in complexity to n black-box
queries in a problem for which the optimal quantum algorithm with fixed order between the
gates requires a number of queries that scales as n? [ACB14]. The quantum switch is also
useful in communication complexity; a task has been found for which the quantum switch
yields an increase in the success probability, yet no advantage in the asymptotic scaling
of the communication complexity was found [FAB15] (see Chapter 4). Most generally,
no information processing task is known for which the quantum switch (or any other
causally indefinite resource) would provide an exponential advantage over causal quantum
(or classical) algorithms.

Here we find a tripartite communication complexity task for which there is an expo-
nential separation in communication complexity between the protocol using the quantum
switch and any causally ordered quantum communication scheme. The task requires no
promise on inputs and is inspired by the problem of deciding whether a pair of unitary
gates commute or anticommute, which can be solved by the quantum switch with only one
query of each unitary [Chil2]. If the parties are causally ordered, the number of qubits that
needs to be communicated to accomplish the task scales linearly with the number of input
bits, whereas the protocol based on the quantum switch only requires logarithmically many
communicated qubits. This shows that causally indefinite quantum resources can provide
an exponential advantage over causally ordered quantum resources (i.e., entanglement and
one-way quantum channels).

5.2 Communication scenario

The tripartite causally ordered communication scenario we consider in this paper is illus-
trated in Fig. 5.1. Alice and Bob are respectively given inputs z € X and y € Y, taken
from finite sets X, Y. There is a third party, Charlie, whose goal is to calculate a binary
function f(z,y) of Alice’s and Bob’s inputs, while minimizing the amount of communica-
tion between all three parties. We shall first assume that communication is one-way only:
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from Alice to Bob and from Bob to Charlie. Furthermore, we grant the parties access
to unrestricted local computational power and unrestricted shared entanglement. We will
also consider bounded error communication, in which the protocol must succeed on all
inputs with an error probability smaller than e.

In quantum communication, the parties communicate with each other by sending quan-
tum systems. Conditionally on their inputs, the parties may apply general quantum oper-
ations to the received system, and then send this system out. We require that the parties’
local laboratories receive a system only once from the outside environment. We impose
this requirement to exclude sequential communication, in which the parties communicate
back and forth by sending quantum systems to each other at different time steps. Alice’s
laboratory has an input and output quantum state, consisting of N4, and N4, qubits,
respectively; similar notation is used for Bob’s and Charlie’s systems. We seek to succeed
at the communication task on all inputs with error probability lower than e, while minimiz-
ing the number of communicated qubits N := N4, + Np,. The optimal causally ordered
strategy is for Bob to calculate f(x,y) and then communicate the result to Charlie using
one bit of communication; in this case N4, is a good lower bound for N.

P
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~

~
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Figure 5.1: Causally ordered quantum communication complexity scenario. Conditionally
on their inputs x and y, Alice sends a state p, to Bob, who then applies a CP map B, and
sends the system to Charlie. The unlimited entanglement shared between the parties is
represented by |¥). The optimal causally ordered protocol is the one that minimizes the
number of qubits in p, (which is a lower bound for the communication complexity of the
task)

5.3 Causally ordered communication complexity

The communication complexity of any causally ordered tripartite communication complex-
ity task can be bounded by considering the bipartite task obtained by identifying Bob and
Charlie as a single party. Bearing this in mind, we prove a tight lower bound on the quan-
tum communication complexity of an important family of one-way bipartite deterministic
(error probability ¢ = 0) communication tasks, which in turn implies a lower bound on
the communication complexity of causally ordered tripartite tasks. This result appears in
Theorem 5 of Ref. [Kla00], but we present a different proof here.
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Lemma 1 For deterministic one-way evaluation of any binary distributed function f :
X xY — {0,1} such thatVz1,29 € X, with x1 # x2, Iy € Y for which f(x1,y) # f(z2,y),
the minimum Hilbert space dimension of the system sent between two parties sharing an
arbitrary amount of entanglement is d = [\/W ] Equivalently, the minimum number of
communicated qubits is [logs d].

Proof We recall a well-known result of quantum information [HJS'96], establishing that
if Alice and Bob share unlimited entanglement, the largest number of orthogonal (perfectly
distinguishable) states that Alice can transmit to Bob by sending a d-dimensional system
is d®. Therefore, they can deterministically compute f if Alice sends a system of Hilbert
space dimension [\/ﬁ ]

Suppose by way of contradiction that the Hilbert space dimension of the communicated
system is only ([\/W ] — 1). The maximal number of orthogonal states that can be
transmitted by Alice to Bob is ({\/mw —1)%2 < | X|. Therefore, there exist inputs 7, x5 €
X such that the corresponding states p;, p2 transmitted to Bob are not orthogonal, and
thus not perfectly distinguishable [NC00]. By our assumption about the function f, there
exists an input y € Y such that f(x1,y) # f(xz2,y). Therefore, if Bob receives the input
y, he will need to distinguish between p; and py in order to output the function correctly,
but this cannot be done with zero error probability. |

The previous lemma establishes that for a very large class of deterministic communica-
tion complexity tasks, it is necessary for Alice to communicate all of her input to Bob. In
these cases, the only advantage achieved by causal one-way quantum communication is a
reduction by a constant factor of two due to dense coding [BW92]. An important example
of this form is the Inner Product game [CvNT13, NS02]. Note that Lemma 1 does not
apply to relational tasks such as the hidden matching problem [BYJKO04], for which there
is an exponential separation between quantum and classical communication complexity.

We now seek to establish a communication complexity task for which indefinite causal
order can be used as a resource. In the following we assume that the parties have local
laboratories, and that they receive a quantum system from the environment only once.
They then perform a general quantum operation on their system, and send it out. An
example of a noncausally ordered process is the quantum switch [CDPV13], whose use
in the context of communication complexity is shown in Fig. 5.2. Charlie is in the causal
future of both Alice and Bob, and an ancilla qubit coherently controls the causal ordering of
Alice and Bob; both the target state and the control qubit are prepared externally. Assume
that Alice and Bob apply unitary gates Us and Up to their respective input systems of N
qubits. The global unitary describing the evolution of the system from Charlie’s point of
view is

V(Ua,Ug) = [0) (0], @ (UpUa): + [1) (1], @ (UaUp)t, (5.1)

where the index ¢ denotes the control qubit, and the unitaries U4 and Up act on the target
Hilbert space of N qubits.

Using the quantum switch, one can determine whether two unitaries Uy, Ug commute
or anticommute with a single query of each unitary, while at least one unitary must be
queried twice in the causally ordered case [Chil2]. Explicitly, consider the quantum switch
with the control qubit initially in state |+), = %(!0)6 +|1),.) and with initial target state
[¢),. If A and B apply local unitaries Uy and Up, the resulting state after applying
V(Ua,Up) is

(00, © UsUa [0), + 1), ® UaUa 1)) 5:2)
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(I0>c+1>c>  [6)s

i

Y

Figure 5.2: Communication complexity setup using the quantum switch. A qubit in the
state %(\O) . +11).) coherently controls the path taken by a system of N qubits in initial
state |¢),. One path goes first through Alice’s lab and then Bob’s, while the other path
goes first through Bob’s lab and then Alice’s. Alice and Bob are given classical inputs
x € X,y €Y, and Charlie (using the control qubit) computes a binary function of their

inputs f(z,y)

If Charlie subsequently applies a Hadamard gate to the control qubit, the resulting state
is

5100, @ (U4, Up} ), — 1), @ [U,Up][6),). (53)

Suppose that Alice and Bob randomly choose unitaries from a set & and that there
exists a state |¢), such that YU,V € U, either [U,V]|¢y), = 0 or {U,V}|¢), = 0. Then
Eq. (5.3) shows that the quantum switch with initial target state |¢)), and control qubit
|+).. as inputs allows Charlie to discriminate between these two possibilities with certainty
by measuring the control qubit in the computational basis.

5.4 The Exchange Evaluation game

We now define a communication complexity task, the Exchange Evaluation game FE,,, for
any integer n. In this game, Alice and Bob are respectively given inputs (x, f), (y,g) €
75 x F,, where F}, is the set of functions over Zy that evaluate to zero on the zero vector

Fo={f: 28 — Zy| f(0) = 0}. (5.4)

Charlie must output
EEy(x, f,y,9) = [(y) ® 9(x), (5.5)

where the symbol & denotes addition modulo 2. This game can be interpreted as the sum
modulo 2 of two parallel random access codes [ANTSV99].

We first construct an encoding of the inputs (x, f), (y,¢) in terms of local n-qubit uni-
taries that all commute or anticommute; we then use the previous observation to conclude
that the switch succeeds deterministically at this task with n qubits of communication.
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We start with some definitions. The group of Pauli X operators on n qubits is defined as
Xx)=X{"0X53?®- -0 X", (5.6)

where z; is the ith component of the binary vector x € Z3. Here, X; is the single qubit
Pauli X-operator acting on the ith qubit, and Xi0 = I; is the single qubit identity matrix.
We associate to every f € F), a diagonal matrix

D(f) =Y (1) |z) (a], (5.7)

zELY

where |z) is the state such that Z; |z) = (—1)* |z), with Z; the single qubit Pauli Z operator
acting on qubit 7. The set {D(f)} rer, consists of all diagonal matrices with entries &1 in
the computational basis, such that the first entry is +1.

We define the set of unitaries

Un = {XX)D(I(x, f) € Zy x F}, (5.8)
which has dimension
U, | = 22" =L, (5.9)

This superexponential scaling of |U,,| is essential to establish a communication advantage
with the quantum switch. Also note that

X(x)D(f)X(y)D(9)|0) = (~1)/¥ |x D y). (5.10)

Therefore, when acting on the n-qubit input state |0), the elements of U, all commute or
anticommute with each other, and

[X(x)D(f), X(y)D(9)][0) = 0,if (~1)/®) = (~1)9>)
{X(x)D(f), X(y)D(g)}|0) = 0,if (—1)/¥) = (~1)96+1,

Therefore, the game is equivalent to determining whether the corresponding unitaries
X(x)D(f) and X(y)D(g) commute or anticommute when applied to the state |0). By
the discussion following Eq. (5.3), this problem can be solved deterministically by Charlie
using the quantum switch with O(n) qubits of communication from Alice to Bob, with
a strategy consisting of applying the unitary corresponding to their input according to
Eq. (5.8).

5.5 Exponential advantage

We now show that the Exchange Evaluation game satisfies the conditions of Lemma 1; this
will allow us to conclude that for deterministic (e = 0) evaluation in the one-way causally
ordered case, EF'E, requires an amount of communicated qubits that grows exponentially
with n.

Proposition 2 For every (x1, f1), (X2, f2) € Z§ x F,, such that (x1, f1) # (X2, f2), there
exists (y7g> € Zg X FTL such that EE’R(le f17y7g) 7& EETL(X27f27yvg)'

Proof First note that EE,(x1, f1,¥,9) # EE, (X2, f2,y,¢) if and only if

[1(y) @ fa(y) © g(x1) @ g(x2) = 1. (5.11)

Then, since (x1, f1) # (X2, f2), either x1 # xg or fi # fo holds. We check that the

conditions of the lemma are satisfied in both cases.
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(i) Case where x; # x3:

Suppose without loss of generality that x3 # 0 and define g as the function such that
g(x1) =1 and g(z) =0, Vz # x1. Also, because f1, fo € F,, f1(0) = f2(0) = 0. Therefore,
the function g we just defined and y = 0 satisfy Eq. (5.11).

(ii) Case where f; # fa:
Let y € Z% be a vector for which f; and fa differ, so that fi(y) + f2(y) = 1. Then this
y and the zero function g(x) = 0Vx satisfies Eq. (5.11). |}

According to Eq. (5.9), the dimension of the set of inputs to EE, is |U,| = 22"+~ 1.
Direct application of Proposition 2 with Lemma 1 establishes that the number of qubits of
communication required for deterministic success in the causally ordered case is % logy Uy | =
$(2" +n — 1) = Q(2"), using dense coding. In comparison, we have seen that with the
quantum switch as a resource, we need only n qubits of communication between Alice and
Bob to calculate this function. We thus conclude that for the Exchange Evaluation game,
there is an exponential separation in the deterministic communication complexity of FE,.

Note that with two-way (classical) communication, it is possible to solve the Exchange
Evaluation game with 2n + 2 bits of communication, simply by having Alice and Bob
send their vectors x, y to the other party, followed by local evaluation of f(y) and g(x)
by the parties and communication of the result to Charlie. We emphasize that once we
allow two-way communication, the quantum advantage can also disappear in traditional
quantum communication complexity (comparing causally ordered quantum communica-
tion with classical communication): this is the case for the distributed Deutsch-Jozsa
problem [BCW98], but not for Raz’s problem [RBK11].

For causally ordered communication complexity tasks, the exponential quantum-classical
separation does not always continue to hold when allowing for protocols to have a small but
nonzero error probability € > 0. Indeed, looking at early examples of tasks, the advantage
disappears for the distributed Deutsch-Jozsa problem [BCW98]|, while it remains for Raz’s
problem [Raz99]. We prove in Appendix C that the one-way quantum communication
complexity with bounded error for E'E, scales as 2(2"), and thus that the exponential
separation in communication complexity due to superposition of causal ordering persists
when allowing for a nonzero error probability.

To show that it is possible to operationally distinguish quantum control of causal order
from two-way communication one could introduce counters at the output ports of Alice’s
and Bob’s laboratories, whose role is to count the number of uses of the channels. Such an
argument has already been made in Ref. [ACB14] to justify a computational advantage.
We can model a counter as a qutrit initially in the state |0), whose evolution when a
system exits the laboratory is |i) — |i + 1 mod3), where ¢ € {0,1,2}. Then, for both
one-way communication and the quantum switch, the counters of Alice and Bob will be
in the state |1) at the end of the protocol; for genuine two-way communication, at least
one of these counters will be in the final state |2). Therefore, the expectation value of the
observables N = Z?:o i) (i| for the counters allows us to distinguish realizations of the
quantum switch, such as [PMAT15], from two-way quantum communication.

5.6 Conclusions

In conclusion, we have found a communication complexity task, the Exchange Evalua-
tion game, for which a quantum superposition of the direction of communication — the
quantum switch — results in an exponential saving in communication when compared to
causally ordered quantum communication. An interesting feature of this game is that it
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is not a promise game, as are most known tasks for which quantum resources have an
exponential advantage [BCMd10].

In future work, it would be interesting to explore other information processing tasks for
which the quantum switch — or other causally indefinite processes — may yield interesting
advantages. For example, one could look at the uses of the quantum switch for secure
distributed computation [Yao82, Lo97, BCS12, LLWJ13]. Indeed, imagine that Alice and
Bob both want to learn about the value of FE,,, in such a way that the other party does
not learn about their inputs. They could achieve this goal by enlisting a third party and
using the quantum switch with the EF,, protocol.
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Chapter 6

Quantum superpositions of
“common-cause”’ and
“direct-cause” causal structures

Abstract

The constraints arising for a general set of causal relations, both classically and quantumly,
are still poorly understood. As a step in exploring this question, we consider a coherently
controlled superposition of “direct-cause” and “common-cause” relationships between two
events. We propose an implementation involving the spatial superposition of a mass and
general relativistic time dilation. Finally, we develop a computationally efficient method to
distinguish such genuinely quantum causal structures from classical (incoherent) mixtures
of causal structures and show how to design experimental verifications of the nonclassicality
of a causal structure.

Published. A. Feix and C. Brukner. Quantum superpositions of “common-cause” and
“direct-cause” causal structures. New J. Phys., 19(12):123028, 2017.

Contribution in conceiving the research project, deriving the main results and proofs,
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6.1 Introduction

The deeply rooted intuition that the basic building blocks of the world are cause-effect-
relations goes back over a thousand years [Ari33, Hum75, Rei56] and yet still puzzles
philosophers and scientists alike.

In physics, general relativity provides a theoretic account of the causal relations that
describe which events in spacetime can influence which other events. For two (infinitesi-
mally close) events separated by a time-like or light-like interval, one event is in the future
light cone of the other, such that there could be a direct cause-effect relationship between
them. When a space-like interval separates two events, no event can influence the other.
The causal relations in general relativity are dynamical, since they are imposed by the
dynamical light cone structure [Bro09].

Incorporating the concept of causal structure in the quantum framework leads to nov-
elties: it is expected that such a notion will be both dynamical, as in general relativity,
as well as indefinite, due to quantum theory [Har07]. One might then expect indefinite-
ness with respect to the question of whether an interval between two events is time-like
or space-like, or even whether event A is prior to or after event B for time-like separated
events. Yet, finding a unified framework for the two theories is notoriously difficult and
the candidate models still need to overcome technical and conceptual problems.

One possibility to separate conceptual from technical issues is to consider more gen-
eral, theory-independent notions of causality. The causal model formalism [SGS93, Pea00)]
is such an approach, which has found applications in areas as diverse as medicine, social
sciences and machine learning [IRW11]. The study of its quantum extension, allowing for
non-local correlations [WS15, CL14, HLP14, Fri16] or including new information-theoretic
principles [PB15, CMG15, CS16] might provide intuitions and insights that are currently
missing from the theory-laden take at combining quantum mechanics with general relativ-
ity.

Recently, it was found that it is possible to formulate quantum mechanics without
any reference to a global causal structure [OCB12]. The resulting framework—the process
matriz formalism—allows for processes which are incompatible with any definite order
between operations. One particular case of such a process is the “quantum switch”, where
an auxiliary quantum system can coherently control the order in which operations are
applied [CDPV13]. This results in a quantum controlled superposition of the processes
“A causing B” and “B causing A”. The quantum switch can also be realized through a
preparation of a massive system in a superposition of two distinct states, each yielding a
different but definite causal structure for future events [Zycl5, ZCPB17]. Furthermore, it
provides computational [ACB14]| and communication [FAB15, AFAB16] advantages over
standard protocols with a fixed order of events. The first experimental proof-of-principle
demonstration of the switch has been reported recently [PMA™15].

Given that one can implement superpositions of two different causal orders, one may
ask if and how one could realize situations in which two events are in superpositions of
being in “common-cause” (A does not cause B directly) and “direct-cause” (A and B share
no common cause) relationships. Here we show that such superpositions exist and how to
verify them.

We develop a framework for the computationally efficient verification of coherent super-
positions of “direct-cause” and “common-cause” causal structures. We propose a natural
physical realization of a quantum causal structure with the spatial superposition of a mass
and general relativistic time dilation using the approach developed in Refs. [ZCPB17,
Zycl5]. Finally, using the process matrix formalism, we define a degree of “nonclassicality
of causal structures” and show how to design experimental verifications thereof using a
semidefinite program [NN87].
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6.2 Quantum causal models

To formalize the pre-theoretic notion of causality, the standard approach is to use causal
models [SGS93, Pea00], consisting of (i) a causal network and (ii) model parameters. The
causal network is represented by a directed graph, whose nodes are variables and whose
directed edges represent causal influences between variables. The causal influence from A
to B is identified with the possibility of signaling from A to B. To exclude the possibility
of causal loops, one imposes the condition that the graph should be acyclic (a “DAG”),
which induces a partial order (“causal order”) over the variables. The model parameters
then determine how the probability distribution of each variable or set of variables is to
be computed as a function of the value of its parent nodes.

Fully characterizing the causal model requires information which is available only
through “interventions”, where the value of one or more variables is set to take a spe-
cific value, independently of the values of the rest of the variables. In the resulting causal
network, the connections from all its parents are eliminated. Intervening on all relevant
variables is sufficient to completely reconstruct the full causal model [Pea00]. Since this is
often practically impossible, it is crucial to investigate the possibilities of causal inference
from a limited set of interventions.

Moving to quantum causal models, we will define variables as results of generalized
quantum operations applied to incoming quantum systems (“local operation”). Formally,
a local operation My : Ar — Ap is a map from a density matrix ps, € Ar to pa, € Ao
(where A; (Ap) denotes the space of linear operators on the Hilbert space HA! (HA0)).
The Choi-Jamiotkowski (CJ) isomorphism [Cho75, Jam72] provides a convenient represen-
tation of the local map as a positive operator M4 € A; ® Ao (the explicit definition is
given in Appendix D.1).

The quantum causal structure, which is the quantum analogue of the classical causal
network, maps the aforementioned local operations to a probability distribution. It can
be thought of as a higher order operator and can be formally represented in the “super-
operator”, “quantum comb” or “process matrix” formalisms [GW07, CDP08a, CDP09,
BCDP11, LS13, OCB12].

We will focus on quantum causal structures with three laboratories (three nodes in the
graph) A, B and C compatible with the causal order “A is not after B, which is not after
C” (A < B < (). This means that there are no causal influences from B and C to A, nor
from C to B (see Fig. 6.1). (Since C is last, C’s output space Cp can be disregarded.)

In the process matrix formalism, the quantum causal structure is represented by the
matrix W € A;® Ao ® Br® Bo®C1 [OCB12, ABC*15]. The probabilities of observing the
outcomes i, j,k at A, B,C (corresponding to implementing the completely positive (CP)
maps M}g, My, Mé respectively) are given by the generalized Born rule:

p(A=i,B=75C=k)=te[W My e M, M. (6.1)

The quantum causal structure and local operations should generate only meaningful
(that is, positive and normalized) probability distributions. In addition, we require the
probability distributions to be compatible with the causal order A < B < C. Note that
both “common-cause” and “direct-cause” relationships between A and B are compatible
with this causal order.

In terms of process matrices, these conditions are equivalent to requiring that W sat-
isfies [ABCT15]:

W >0, W=~Lasp<c(W) (6.2)
trW = dAodBO-
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L a<p<c(-) is the projection onto processes compatible with the causal order A < B < C,
defined in Appendix D.2. Eq. (6.2) defines a convex cone W, eq. (6.3) a normalization
constraint.

Figure 6.1: Space-time diagram of two causal structures compatible with the causal order
A < B < C: (a) direct-cause process W9¢ with a quantum channel between Ao and Br;
(b) common-cause process W with a shared (possibly entangled state) between A; and
By, but no channel between Ap and By (A and B are space-like separated).

Following the standard DAG terminology, a purely “direct-cause” process W€ contains
only a direct cause-effect relation between A and B, excluding any form of common cause
between A and B. Any correlation between A and B is therefore caused by A alone
(Fig. 6.1(a)) and Fig. 6.2(a)). Tracing out C; and Bp, the process matrix is a tensor
product pA7 @ W4oB1 In our scenario, it will prove natural to extend this definition to
include convexr mixtures of direct-cause processes, i.e.,

trCIBo Wdc — Zpip;‘ll ® WiAOBI’ (6.4)
[

where p; > 0,> . p; = 1, p?’ are arbitrary states and I/ViAOBI arbitrary valid channels
between Alice’s output and Bob’s input, representing to direct cause-effect links between
A and B.

Such a process can be interpreted as a probability distribution over states entering
Ar and corresponding channels from Ap to By. In the DAG framework, such probability
distributions can be obtained from a graph with an additional latent node that acts as a
common cause for all the observed nodes or simply ignorance of the graph that is imple-
mented. Every channel from A to B with classical memory can be decomposed in this
way; see Appendix D.7 for details.

On the other hand, a purely “common-cause” process W does not include any direct
causal influence between A and B (Fig. 6.1 (b)) and Fig. 6.2 (b)). This implies that there
is no channel between Ap and Bj. Therefore, when Bp and Cj are traced out, the process
factorizes as

tre, B, W = o181 @ 140, (6.5)

where 64781 is an arbitrary (possibly entangled, possibly mixed) state, representing the
common-cause influencing A and B.

6.3 Classical and quantum superpositions of causal
structures

One possibility of combining direct-cause and common-cause processes consists in allowing
for classical mixtures thereof: imagine that flipping a (possibly biased) coin determines
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Figure 6.2: Circuit representation of the causal structures of Fig. 6.1, where [¢;) and |¢)
are states, W;, Wy and W, are CP trace preserving (CPTP) maps (lines can represent
quantum systems of different dimensions). (a) The direct-cause process W9 is the most
general one satisfying (6.4); (b) the common-cause process W is the most general one
satisfying (6.5).

which process will be realized in an experimental run. Formally, this is described by a
process W™ which can be decomposed as a convex combination:

W — qW e + (1 — q)W?, (6.6)

where 0 < ¢ < 1, W9 satisfies (6.4) and W satisfies (6.5). Note that such a classical
mixture was experimentally implemented in Ref. [RAVT15].

Can there be causal structures exhibiting genuine quantum coherence, i.e., that cannot
be decomposed as a classical mixture of direct-cause and common-cause processes (while
respecting the causal order A < B < C)?

We now give an example of such a coherent superposition. It is analogous to the
“quantum switch” [CDPV13], which coherently superposes two causal orders A < B < C
and B < A < C, where the causal structure is entangled to a “control” system C’}O) added
to C’s input space'. To keep the notation simple, we define it in the “pure” CJ-vector
notation (see Appendix D.1):

) = <|0>C§°) )1 B | 1)y 40C1 | 1)) BoCi”

Sl

(0) (2) (1)
+L)CT ) ACr | 1y)AoBr | 1)) BoCr )
Wcoherent — ‘w> <IU‘ (67)

where |I)) := 2?21 |77) represents a non-normalized maximally entangled state—the CJ-
representation of an identity channel. The corresponding superposition of circuits is shown

!See Ref. [MRSR17] for a different type of quantum causal structure proposed independently.
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in Fig. 6.3. WWeoberent gatisfies neither the direct-cause condition (6.4) nor the common-
cause condition (6.5) and is a projector on a pure vector, so it cannot be decomposed
into any nontrivial convex combination, in particular not a mixture of direct-cause and
common-cause processes. This proves that the process’s causal structure is nonclassical.
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Figure 6.3: Coherent superposition of a direct-cause and a common-cause process, imple-
menting the causal structure Weherent of (6.7).

6.4 Physical implementation of the quantum causal
structure

The causal structure Weeberent waould not be of particular interest if it were a mere the-

oretical artifact. We now give an explicit and plausible physical scenario to realize the
quantum causal structures in models which respect the principles of general relativistic
time dilation and quantum superposition. We utilize the approach recently developed for
the “gravitational quantum switch” to realize a superposition and entanglement of two
different causal orders [Zycl5, ZCPB17].

Consider two observers, Alice and Bob, who have initially synchronized clocks. We
define the events in the respective laboratories with respect to the local clocks. Bob’s
local operation will always be applied at his local time 7p, while Alice’s is applied at
her local time 74. We will consider two configurations, which will be controlled by a
quantum system. The state of the control system is given by the position of a massive
body. In the first configuration, all masses are sufficiently far away such that the parties
are in an approximately flat spacetime. The events in the two laboratories are chosen such
that the event B is outside of A’s light cone and the common-cause causal relationship is
implemented. The coordinate times of the two events, as measured by a local clock of a
distant observer, are t4 ~ 74 and tp ~ 7. (Fig. 6.4(a)). In the second configuration, a
mass M is put closer to Bob’s laboratory than to Alice’s such that his clock runs slower
with respect to hers due to gravitational time dilation. With a suitable choice of mass
and distance between Alice and Bob, the event B, which is defined by his clock showing
local time 75, will be inside A’s future light cone. In terms of coordinate times one now
has t)y = 7a/v/—g00(A) and t's = 75/+/—go0(B), where goo(A) and goo(B) are the “00”
components of the metric tensor at the position of the laboratories. This configuration can
implement the direct-cause relationship (Fig. 6.4 (b)).

If the mass M is initially in a coherent spatial superposition of a position close and a
position far away from Bob, the quantum superposition of causal structures Weonherent 1S
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Figure 6.4: Space-time diagrams of events in a superposition of casual structures, as seen
from a distant observer. Bob’s laboratory is moving along a time-like curve, indicated by
the circles showing his laboratory before and after 7. (a) If the mass M is far away from
Bob, the event at his local time 75 is space-like separated from A and a common-cause
causal structure is realized. (b) If M is sufficiently close to B, because of time dilation,
B’s event at time 7g, is in the future light cone of A, establishing a direct-cause structure
between A, B and C. For a coherent superposition of the positions of M (the position
of M being the control system C}O)), the quantum causal structure will be described by
Weoherent, as given in (6.7).

implemented. The position of the mass acts as the control system C}O);2 it can be received
by Charlie, who can manipulate it further (in particular, measure it in the superposition
basis). Any possible information about the causal structure (direct cause or common cause)
encoded in the degrees of freedom of the laboratories, such as for example in the clocks of
the labs, must be erased, possibly using the methods of Ref [ZCPB17].

Note that, in contrast to the superposition of different causal orders [Zyc15, ZCPB17],
the time dilation necessary to “move B in or out” of the light cone can, in principle, be
made arbitrarily small, if Bob can define 7 and thus the event B with a sufficiently precise
clock?.

To give an idea of the orders of magnitude involved: for a spatial superposition of the
order of Az = 1 mm and a mass of M = 1g, Bob’s clock should resolve one part in 10%7 to
be able to certify the nonclassicality of the causal structure. This regime is still quite far
from experimental implementation, since the best molecule interferometers [EGA'13] do
not go beyond M = 10% amu, Az = 10~%m, while the best atomic lattice clocks achieve
a precision of one part in 10'® [NCH*15]. An additional difficulty consists in avoiding
significant entanglement between the position of the mass and systems other than the
local clocks. Nonetheless this regime is still far away from the Planck scale that is usually
assumed to be relevant for quantum gravity effects.

We also stress that the process Wegherent, although it cannot be decomposed as a convex
combination of a common cause and a direct cause process, is still compatible with the
causal order A < B < C and, as such [BDPC11], can be realized as a quantum circuit, as
shown in Fig. D.1 (b) of Appendix D.2.

2The state |0) corresponding to the mass being far away from Bob and the state |1) corresponding to
the mass being close to Bob.

3If Bob’s clock cannot resolve the interval 75(1 — 1/4/—goo(B)) within the time 75, the event B will
be inside or outside A’s light cone randomly and independently of the position of M, adding noise to the
process.



67 6.5. VERIFYING THE NONCLASSICALITY OF CAUSAL STRUCTURES

6.5 Verifying the nonclassicality of causal structures

We now provide an ezxperimentally accessible and efficiently computable measure of the
nonclassicality of causality.

Let us first define the set S of operators which are positive on any convex combination
Weenv of direct-cause and common-cause processes (i.e., processes satisfying (6.6)):

SES=t[SWON >0 YW, (6.8)

If S is positive on all convex combinations of direct-cause and common-cause process
matrices, then it is also positive on all direct-cause (tr[S W9 > 0) and common-cause
(tr[S W] > 0) processes individually.

Since W9 is a direct-cause process (6.4), if and only if the operator tre; B wde s
separable with respect to the bipartition (A7, Ao Br), we effectively require S to be an en-
tanglement witness [HHHH09, CS14] of the reduced process for the bipartition (A7, Ao Br).
The full characterization of the set of entanglement witnesses is known to be computation-
ally hard [Gur03]. Instead, we will use the positive partial transpose [Per96, HHH96]
criterion as a relaxation to define an efficiently computable measure of nonclassicality.

Enforcing that S is positive on common-cause process matrices in terms of semidefinite
constraints is straightforward: since the condition for W (6.5) to be a common-cause
process is already a semidefinite constraint, the “dual” constraint for S to be positive on
all common-cause process matrices is semidefinite as well.

The operators in the set Sspp (explicitly constructed in Appendix D.4) are defined as
those that obey the condition of having a positive parital transpose and being positive on
all common-cause process matrices. Every S € Sgpp has positive trace with any W™,
Conversely, tr[ST] < 0 certifies that the process W is a genuinely nonclassical causal
structure—the operators S can therefore be used as nonclassicality of causality witnesses®*.

It is crucial to realize that for every given genuinely quantum W, one can efficiently op-
timize—the optimization is a semidefinite program [NN87]—over the set of nonclassicality
witnesses to find the one that has minimal trace with W:

min tr[.S W]
(6.9)
st. S€S8spp, 1/do—S e W,
where W* is the dual cone of W, given in Appendix D.3. The normalization condition
1/do — S € W* is necessary for the optimization to reach a finite minimum and confers
an operational meaning to C(W) := —tr[Sop W]: it is the amount of “worst-case noise”
the process can tolerate before its quantum features stop being detectable by witnesses
in Sgpp (in analogy to the “generalized robustness of entanglement” [Ste03]). Because
of its ability to certify the quantum nonclassicality of causal structures, we will refer to
C(-) as the “nonclassicality of causality”. Note that C(-) satisfies the natural properties of
convezity and monotonicity under local operations (see Appendix D.5).

To experimentally verify the properties of a process like Weoherent " one can use the
semidefinite program (6.9) to compute the optimal nonclassicality of causality witness
Sopt for JWeoherent - The nonclassicality of causality C(Weherent) can be measured by de-
composing Sopt in a convenient basis of local operations. In general, this is as demanding
as performing a full “causal tomography” [ABC*15, RAV*15, CS16].

“The “causal witnesses” introduced in Ref. [ABCT15] are conceptually different, since they examine
whether a process can be decomposed as a convex mixture of causally ordered processes. All of the processes
we study here have a fixed causal order A < B < C.
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6.6 Causal inference under experimental constraints

There are two reasons to consider witnesses that are subject to certain additional restric-
tions. First, there might be various technical limitations arising from the experimental
setup [RAV115, PMAT15], which make full tomography impractical. Second, in analogy
to the classical case, it is of conceptual interest to investigate the power of quantum causal
inference mechanisms working on limited data. In particular, one might want to inves-
tigate differences between quantum and classical causal inference algorithms under such
constraints.

As an application of this method, we will examine witnesses for the process W eoberent
In the following, we will consider qubit input and output spaces, i.e., dim A; = dim Ap =
dim By = dim C}O’m) = 2 for simplicity and computational speed. The optimal witness
for Weoherent, Obtained from the optimization (6.9) using YALMIP [Lof04] with the solver
MOSEK [mos15], leads to a nonclassicality of causality of C(T/7eoherent) — tr[Sopt Weoherent)
~ 0.2278.

An intriguing feature of quantum causal models is that direct-cause correlations (Fig.
6.1 (a)) and common-cause correlations (Fig. 6.1 (b)) can be distinguished through a re-
stricted class of informationally symmetric operations [LS13], sometimes called “obser-
vations” [FJV13, RAVT15] that are non-demolition measurements (we refer the reader to
Appendix D.8 for certain issues with this definition). We can constrain a witness S"4™meas to
consist of linear combinations of such non-demolition measurements through an additional
condition to the semidefinite program (6.9), given in Appendix D.6.

Surprisingly, purely “observational” witnesses are sufficient not only to distinguish
common-cause from direct-cause processes, but also to distinguish a classical mixture of
direct-cause and common-cause processes from a genuine quantum superposition, since
— tr[Sé‘g{neaSWCOherem] ~ 0.0732.

Since measurements and repreparations and even non-demolition measurements are
often challenging to implement [GLP98], it can also be useful to consider a nonclassicality
of causality witness S which can be decomposed into unitary operations for A and
B, and arbitrary measurements for C'. The requirement can also easily be translated in
a semidefinite constraint, given in Appendix D.6. One finds that — tr[SgstltaryWCOherent] ~
0.1686. A summary of the different constraints mentioned in this section can be found in
Appendix D.6.

6.7 Conclusions

We presented a three-event quantum causal model compatible with the causal order A <
B < C which is a quantum controlled coherent superposition between common-cause and
direct-cause models, not a classical mixture thereof.

The experimental implementation we proposed is of conceptual interest, since it re-
lies both on general relativity and the quantum superpositions principle, two elements we
expect to feature in a full theory unifying quantum theory and general relativity. Inter-
estingly, both the mass of the object and the separation between the two amplitudes can
be arbitrarily small, as long as Bob has access to a sufficiently precise clock to define the
instant of his event B.

In order to experimentally certify a genuinely quantum causal structure, we introduced
and characterized nonclassicality of causality witnesses and provided a semidefinite pro-
gram to efficiently compute them. Experimental and conceptual constraints are readily
included in the framework.
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The potential of quantum causal structures as a quantum information resource was
recently demonstrated in terms of query complexity [ACB14] and communication complex-
ity [FAB15, AFAB16], but is still poorly understood. It would be interesting to understand
which advantages could be obtained from the coherent superpositions of and common- and
direct-cause processes.

Remark — In the final stages of completing this manuscript, a related work by MacLean
et al. [MRSR17] appeared independently. The difference in the definitions of direct-cause
processes between the two papers and its implications are discussed in Appendix D.7.
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Chapter 7

Conclusion

In standard quantum information theory, quantum operations are embedded in a fixed,
global causal order, which means they can be represented as being “plugged into” a quan-
tum circuit. The process matrix formalism allows for the description of more general causal
structures, including ways of composing quantum operations that cannot be represented
as plugging the operations into a circuit. Certifying that a process is neither causally
ordered nor a classical mixture thereof (not “causally separable”) requires the parties to
implement a suitable set of quantum operations and to examine their experimental out-
comes, and potentially, additional assumptions regarding how the operations were actually
implemented.

In this thesis, we explored questions related to three broad classes of certification of the
causally nonseparable nature of processes. First, device-independent certification, where
the conditional probability distribution resulting from the quantum operations alone (by
violating a “causal inequality”) is sufficient to prove that the underlying process is not
causally separable, without any additional assumption. Second, semi-device-independent
certification, where in addition to the probability distribution, an assumption on the di-
mension of the quantum systems operated is required to prove the causal nonseparability.
Third, device-dependent certification, which requires the full knowledge of the applied
quantum operations to prove nonseparability (by implementing a “causal witness”).

In Chapter 2 we examined the conditions required for a process to produce (device-
independent) violations of causal inequalities and showed that operations on classical bits
and “classical process matrices” can produce maximal violations of causal inequalities for
three or more parties. This shows that the two-party scenario—where genuinely quantum
operations are required to violate causal inequalities—is an exception. In Chapter 3,
we investigated the relationship between the ability to violate causal inequalities and the
physical implementability of process matrices. By giving examples of causally nonseparable
processes which cannot violate any causal inequalities and yet seem to lack any physical
implementation, we provided evidence against the conjecture that all processes that do not
violate causal inequalities are physically implementable.

In Chapter 4 we presented a task for the semi-device-independent certification of the
causal nonseparability of the “quantum switch”, a process known to be physically imple-
mentable. The certification relies on a simple three-party task, which the quantum switch
can perform while using less communication than any causally separable process, by putting
the direction of communication between two of the parties in coherent superposition. In
Chapter 5, we extended this result by showing that the reduction in communication scales
exponentially in the length of the inputs given to the parties, even when allowing for a
bounded probability of failing. The result indicates that, beyond being of foundational
interest, nonseparable processes can provide a significant quantum information processing
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advantage compared to causally ordered ones.

In Chapter 6 we applied the concept of device-dependent certification in a slightly
different scenario, with an underlying fixed causal structure with three events A, B and
C, where A is before B and C' and B is before C'. In this scenario, one can distinguish
“common-cause” causal structures (where A and B share a common cause) from “direct-
cause” causal structures (where A directly influences B). We showed that a quantum
superposition of both falls into neither category by developing a framework of witnesses
of “causal nonclassicality”. We then described a thought experiment implementing such a
process through a spatial superposition of a mass and general relativistic time dilation.

Many aspects of quantum causal structures are still poorly understood. To conclude,
let me briefly mention three areas which seem particularly promising for future research.
The first one is the study of multipartite quantum causal structures. It is plausible that
novel types of causal nonseparability, along with corresponding foundational interpreta-
tions and applications, will appear when increasing the number of parties. In this regard,
a framework device-independent certification of genuine multipartite causal nonsepara-
bility was recently developed [AWCB17], while the corresponding device-dependent and
semi-device dependent definitions still have to be formulated. With these frameworks in
place, it is intriguing to find out whether causality is a phenomenon that emerges when
“coarse-graining” a typical process with a large number of parties into a process with fewer
parties (by tracing out a subset of parties) and in what cases the causal nonseparability is
unaffected by such a coarse-graining.

(b)

Figure 7.1: “Coarse-graining” of a six-party multipartite causally nonseparable process W
to a bipartite process W¢,. The parties A;, Ay and By, B3 implement unitaries and are
traced out. Under which conditions can causal nonseparability survive in the remaining
process Weg?

Finding novel information-theoretic applications of process matrices, in particular of
those that have a physical implementation, is another infant field of research. In this
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regard, recent work to characterise the computational power of process matrices [AGB17]
and a surprising result showing that a quantum superposition of two fully depolarising
channels allows for the transmission of information [ESC18] have made further progress
in this direction. The main challenge would be to combine these different results to build
a non-causal algorithm significantly outperforming any known quantum causal algorithm,
for instance in runtime or memory.

From the foundational point of view, the most interesting open question concerns the
physical implementability of process matrices. In this area, some progress was recently
made by devising a suitable “purity” criterion for process matrices and proposing that all
physical processes are those that can be purified [AFNB17]. This postulate is based on the
assumption that reversibility is a basic physical principle, which non-purifiable processes
would violate. Another way of approaching the question of physical implementability is
to consider the dynamics of causal structures through transformations between process
matrices. One reasonable conjecture is that only processes that can be reached through
reversible transformations are physically meaningful, which allows to rule out a number of
nontrivial processes [CRGB18].

Ultimately, it might be necessary to first qualify what is meant by physical imple-
mentability. The class of processes that can be realized in standard quantum experiments
is of interest, because it is related to potential quantum information applications. On the
other hand, the class of processes that might provide an effective description of quantum
gravity phenomena is—a priori—broader. A recent paper provides a clearer picture of
how a process and its experimental implementation are linked [Orel8], which is an impor-
tant step for defining processes with a standard experimental implementation. Conversely,
it would be interesting to try pinpointing the characteristics of process matrices that do
not have such a standard quantum realization. If it were possible to conceive of a quan-
tum gravity thought experiment represented by such an exotic process matrix, this would
provide a signature for genuine post-quantum behaviour.






Appendix A

Causally nonseparable processes
admitting a causal model

A.1 Analytic proofs for the nonseparabilities in Chapter 3

First, we prove that the class of processes, defined by

1
WwA=B .=1° 4 (1221 +1XXT +1YY1),

1
wh=A .=1° 4+ 1(Z1X2),
Wo=gWA=B 4 (1 — g+ eWB4 —e1°, (A.1)

has causal separability R,(W) = e. To do so, we define a causal witness Sy for it:
1 1
SW:]IO—Z(]IZZ]I+]IXX]I+]IYY]1)—Z(Z]IXZ). (A.2)

We first verify that Sy is a causal witness: tra, Sw > 0 and trp, Sw > 0, which is
a sufficient condition [ABCT15] for S to have positive trace with any causally separable
process. Therefore, tr[WsepSw] > 0 and Sy is indeed a causal witness.

We compute tr[Sy (W + A1°)] = —e + A, which is negative for A\ < ¢ and implies that
R, (W) > €. From Eq. (A.1), it is clear that W + A1° is causally separable for A > €, so
R, (W) < e. This establishes that R,.(W) = e.

Using the same approach, we can show that the process
Whnix (@) := aWope + (1 — @) Wocs, (A.3)

where Wyt is defined in (3.15) and Wocp in (3.16), has nonseparability R, (Wpnix(«)) =

aR(Wopt) + (1 — )R, (Wocs) = 1+ a(% —3).

The convexity of random robustness [ABCT15] implies that the random robustness of a
convex combination is smaller than the convex combination of the random robustnesses, so
R, (Whix) < 1—i—a(i—3). Using the same witness Sy as before, we compute tr[ Sy (Winix+

V3
A1) =—-1— a(% —3) + A which is strictly negative when A > 1+ a(% —3) and implies
that R, (Wmix) > 1+ a(% —3). We conclude that R, (Wnix) =1+ a(% —3).

The same proof (with the same witness Sy given in Eq. (A.2)) can also be used to
show that the causal nonseparability of WEE is again the convex combination RT(WTB ) =

aRy(Wo k) + (1 — a) Ry (Wocs).
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A.2 The dimension of the set causally separable processes

Here we show that the set of causally separable processes Wsep has the same dimension as
the set of valid processes W, which establishes that the set of causally separable processes
has nonzero measure in the set of valid processes.

We will use the Hilbert-Schmidt decomposition of operators. An arbitrary process W
can be decomposed as W = ijklzo aijklafl ® 03»40 ® a,]f’ ® UZBO.

The condition of normalization of probabilities, i.e., tr[WW - M{PTF @ MSPTF] = 1 for
all CJ-representations of completely positive trace-preserving maps MSPTP and Mgp .
implies that some terms of the Hilbert-Schmidt decomposition, corresponding to “causal
loops” are excluded. In particular, agjoo = oo = ojor = Qojkl = jor = ik = 0 for
1,7, k,0 > 1 (see the Supplementary Material of Ref. [OCB12]).

Counting all the “allowed terms” in the Hilbert-Schmidt decomposition, we find that
the dimension dy of W is:

dw = (1+d3, (d%, — ))(dp, —1) + (di, — 1)d, i,

For causally ordered processes in WA=E ¢ WA=B compatible with the causal order
A < B, some additional terms, which allow for signaling from Bob to Alice, are excluded
in the Hilbert-Schmidt decomposition, reducing the dimension to

dya<s = dy,(1+ (dp, — 1)d3,) — 1.

This means that the set of causally ordered processes W4=5 has measure zero within the
set of all process matrices.

Separable processes are convex combinations of and . This means that
all the terms allowed in the Hilbert-Schmidt decomposition of a valid process matrix are
also allowed in the decomposition of separable processes. Therefore W and Wep, share the
same basis and dy = dw,,,-

WA<B WB<A

A.3 Generating uniformly distributed processes

We consider the space of process matrices W as being embedded in R . We wish to obtain
a uniform sample of W according to the dyp-dimensional volume (Lebesgue measure),
which also corresponds to the measure generated by the Hilbert-Schmidt metric. We use
an adaptation of the “hit-and-run” Markov chain sampler [Smi80, Smi84] for this task.
The iteration works as follows:

Algorithm 1

1. Select a starting point Wj.

2. Choose a traceless matrix @;41 from a set of dyy orthogonal traceless matrices and
generate a random sign variable s = +1.

3. Find p such that W; + p(1° 4 sQ;+1) is on the boundary of the set of valid processes.

4. Generate a random real scalar 6 € [0, u]. Take W11 = W; 4+ 0(1° + sQ;4+1) and go
to step 2.

The set of directions is simply the Hilbert-Schmidt basis of allowed terms; it has dimen-
sion dy (see Appendix A.2). For bipartite processes with da, = dp, = da, = dp, = 2,
there are dy = 87 possible directions to choose from.
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Finding the intersection with the boundary of the set of positive processes in step 3
turns out to be a semidefinite program

max [t

o (A.4)
st Wi+ p(1° + sQit+1) > 0.

However, the SDP which computes i at each step of the Markov chain is a bottleneck
of the algorithm. Instead, we can skip it and generate 6 € [0, 1], rejecting and retrying if
the resulting process is not positive:

Algorithm 2
1. Select a starting point Wj.

2. Choose a traceless matrix @;41 from a set of dyy orthogonal traceless matrices and
generate a random sign variable s = +1.

3. Generate a random real scalar 6 € [0, 1]. Take W11 = W, + 0(1° + sQiy1).
4. If Wiy1 > 0, go to step 2, otherwise repeat step 3.

The matrices 1° 4+ @Q; are chosen to be slightly outside the set W by having slightly
negative eigenvalues. Therefore, there is always a finite probability of rejection at step 4,
which guarantees that the algorithm samples uniformly all the way up to the boundary.

The resulting sample {W;}2°, is uniform when two conditions hold [Smi84]. First, from
every W;, W’ the probability to have Wjyq4, = W’ is nonzero, which is indeed true: In
dy steps, one can reach any W' starting from any W;. Second, the uniform distribution
is a stationary distribution of the Markov chain. This is also the case: for any W;, W’ the
probability to reach W' starting from W; in dy steps is the same as the probability to
reach W; starting from W’ in dy steps.

Wnsep

”I"BC Wsep
Zw

c W,

Figure A.1: Schematic two-dimensional cut of W in R the partial transpose 15 here
corresponds to a reflection along the horizontal axis x. The partial transpose of the set of
causally separable processes Weep, consists of three parts: (i) causally separable matrices
(€ Weep), (ii) non-valid processes (Z W) and (iii) valid, causally nonseparable matrices

with a causal model (C Wﬁ‘gip)

An upper bound on the convergence of the hit-and-run algorithm for convex sets (which
is the case for the set W) is known—in particular, the mixing time scales as O(d3) :=
O(d3 polylog d,,), which matches the best known mixing times for other algorithms [Lov99].
For d,, = 87 (which is the case for ds, = dp, = da, = dp, = 2), we would need around
7-107 samples to achieve the same statistical significance as from a one-dimensional hit-
and-run with 100 samples, which we deem sufficient for our purposes.

To sample uniformly distributed causally separable processes, we use the rejection
method: after sampling 7 - 107 process matrices (with a warm-up period of 10° discarded
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steps), we randomly select 1000 causally separable processes (rejecting the =~ 92.5% of
nonseparable ones) in the sample.

The map 15 preserves the Lebesgue measure, since it corresponds to reflections in
R . Therefore, if upon applying T2 to random causally separable matrices, there is a
finite probability to obtain a wvalid, causally nonseparable process, this means that the set
of causally nonseparable processes with a separable partial transpose is full dimensional
(see Fig. A.1).



Appendix B

Proof of the causally separable
quantum bound on the equality
game

Here we prove the validity of the quantum bound p2.. < %. We start with Eq. (4.9):

P S max <Ztr{013x(px)}+ > tr{CoBy(pa)} |- (B.1)

9 pT,{By}ﬂ{Cm} x Ty x;éy

We now use the fact that the POVM preceded by a CPTP map is still a POVM (the
elements of which we will call B and Bl) which can be thought of as being applied by
Bob and Charlie together. This allows us to drop the optimization over {C, }:

Poce, <

max <Ztr{B§px}+ Z tr{ngm} . (B.2)

0,1
Prcu{By } x x,y,2£Y

O =

Since tr{Blp} = 1 — tr{Blp}, Vz (the probabilities sum to one), we can rewrite (B.2) as

gps%cc. <6+ max tr B; Py — Z Pz . (B3)
pz,{Bé} Yy T,xF£Y

We notice that each optimization over B; is independent; similarly to the one for op-
timal state distinguishability [NCO00], we find that the optimal POVM elements B; are
projectors on the positive eigenvalue subspace of p, — ZII Ly Pz Using the Bloch vector
decomposition p, = (1 + o - a;)/2, this leads to the result:

1

Q < — max
18 ||as[l,<1,a,€R?

1
Psice. = 5 + (HaO —ap— 32H2+

lai —ap — azl[, + [Jaz —ag — ailly). (B.4)

Choosing ay = (1,0,0)T7 parametrizing aj,as using spherical coordinates, and optimiz-
ing (B.4), the analytical maximum turns out to be

Q

psucc. — ?

S| Ut
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with the optimal preparation and measurement strategies given in Eq. (4.11). Charlie
measures in |r+)-basis; the channels of Bob are explicitly given by
By(p) = TIg plI§ + I plly
Bi(p) = UyII pIT{ U + UL Iy plIy U, (B.5)
Ba(p) = VoIl plI§ U3 + Ually pll; U,

where I = |ag){ao|, I = |a1)(ai1|, IIJ = |az){as| and the corresponding My, =1-
H(J)r,lﬂ' The unitaries Uy 2 correspond to a basis transformation such that Uy 2 |a1,2) = |ao)-



Appendix C

VC-dimension bounds on the
bounded error one-way quantum
communication complexity

In this section we show that if the protocol allows for some error probability, bounded by
e for all inputs, the one-way communication complexity of E'E,, still scales as (2"). As
in Fig. 5.1, we assume that Alice and Bob share unlimited prior entanglement, and that
Alice sends a quantum state to Bob. We note that under the promise that Bob’s input
function is the zero function g = 0, the Exchange Evaluation game reduces to a random
access code [ANTSV99], for which optimal bounds on the bounded error communication
complexity are known [Nay99]. However, it is more straightforward to apply a bound that
uses the concept of VC-dimension [VC15].

Definition VC-dimension. Let f : X xY — {0,1}. A subset S C Y is shattered, if

VR C S,dx € X such that
1, ifyeR.
f(z,y) = , (C.1)
0, ifyeS\R.

The VC-dimension VC(f) is the size of the largest shattered subset of Y.

Given a function f(x,%), we denote by Q!(f) the one-way (from Alice to Bob) bounded
error quantum communication, where € is the allowed worst-case error, and arbitrary
prior shared entanglement is available. We make use of a theorem by Klauck (Theorem 3
of [K1a00]) that relates the bounded error quantum communication complexity of a function
to its VC-dimension.

Theorem 3 For all functions f : X x Y — {0,1}, QL(f) > 3(1 — H(e)) VC(f), where
H(e) is the binary entropy H(e) = elog(e) + (1 — €) log(1l — ¢)

Let us bound the VC-dimension of EE,, : X x Y — {0,1}, where X =Y =Z3 x F,,
by showing that S = {(y,g)|lg = 0,y # 0} C Y is shattered. This is clear, since for any
R C S, there exists the indicator function

1, if (y,0) € R.

0, otherwise,

fr(y) = { (C.2)

so that S is shattered.
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Therefore VO(EE,) > |S| = 2", and Theorem 3 implies that the one-way quantum
communication complexity Q}(FE,) > (1 — H(¢))2" 2. This establishes that the num-
ber of communicated qubits scales exponentially with n even in the bounded error case,
so that the exponential separation between the quantum switch and one-way quantum
communication, established in Chapter 5 for the deterministic case, continues to hold.



Appendix D

Quantum superposition of causal
structures

D.1 Choi-Jamiotkowski isomorphism
The Choi-Jamiotkowski (CJ) representation of a CP map M4 : A — Ao is

My = (T MA)(IDYINT € A; @ Ao, (D.1)

du, | .. . : .
where Z is the identity map, |I)) := 232 |77) € Hr ® Hy is a non-normalized maximally
entangled state and * denotes matrix transposition in the computational basis.

The inverse transformation is then defined as:

Ma(p) = trr[(p© 1)Ma] . (D.2)

For operations which have a single Kraus operator (M (p) = ApAT), one also define a
“pure CJ-isomorphism” [Roy91, BDMS00], which maps the operation to a vector!:

A7) == (1 ® A%) |)) € HA @ HAO (D.3)

The usual CJ-representation of such an operation is simply the projector onto the CJ-
vector: My = |A*))((A*].

D.2 Causally ordered and common-cause process matrices

We first introduce a shorthand that we will use throughout the following appendices:

]lX
xW:i=—QQtrx W, (D.4)
dx

where dx is the dimension of the Hilbert space X.

In this paper, we consider three parties, where the C’s output space Co can be disre-
garded. The process matrix W € A; ® Ap ® B ® Bp ® Cf, which encodes the quantum
causal model, is defined on the dual space to the tensor products of the maps. Since both
the “common-cause” and the “direct-cause” scenarios are compatible with the causal order
A < B < C, we can also represent the process matrix W as a circuit. (see Fig. D.1).

For instance, the coherent superposition of common cause and direct cause, defined
in (6.7), would consist of [¢) = |¢7) ® (|0) + |1))/v/2, W1 and W being control-SWAPs
(where the control is the last qubit, initially in the state (|0) + |1))/v/2).

!Note that there are differing conventions, where the conjugation is omitted.
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Mc
Cr W2
|
M
T 150 -
1%
Ma % M3 —
1‘141 1‘31 ]\/—IIA
|¥)

(a) (b)

Figure D.1: (a) General three-party process matrix W € A;@ Ao®@Br®@Bo®Cr. (b) Since,
in our scenarios, W is compatible with the causal order A < B < C, we can also represent
W as a “causal network”, which can be implemented as a quantum circuit (|¢) is a state,
W1 and Wy CPTP maps; lines can represent quantum systems of different dimensions.)

We now define the projection £4-p~<c(+) onto the linear subspace of process matrices
compatible with the causal order A < B < C, which can be derived from the conditions
given in Ref. [ABCT15]:

Lazp<cW) =W —c, W +B,c; W —B,Boc; W +40B,Boc; W. (D.5)

WA=B=C is compatible with the causal order A < B < C if and only if WA=B=C —
L a<p<c(WA=B=E) holds.

The projection onto the subspace of common-cause process matrices Lec() is given
by composing the projection £4-p<c with the projection onto processes which have no
channel from Ap to By:

Lee(W) :=La<xp<c(W) —c; La<p<c(W) +c,40 La<p<c(W). (D.6)

D.3 Dual cones

Given the definition (6.2) of the cone W, we can characterize the dual cone W* of all
operators whose product with operators in W has positive trace. Remember that W is
the intersection of the cone of positive operators P with a linear subspace defined by the
conditions for causal order: W :=P N La<xp<c-

The dual of the linear subspace L% _ 5 is its orthogonal complement [NN87, ABC*15]

£Z<B<C = £j<B<Ca (D'7)

i.e., the space of operators with a support that is orthogonal to the original subspace.
Additionally, the dual of the intersection of two closed convex cones containing the
origin is the convex union of their duals [NN87, ABC*15], so that

W* == (7) N ,CA<B<C)* = COIlV(73>’< U LIJ&<B_<C)- (D8)
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Since the cone of positive operators is self-adjoint (P* = P), we can combine (D.7) and
(D.8) into W* = conv(P U L} p_c). Explicitly, this means that any operator Q € W*
can be decomposed as

Q=0Q1+Q2

D.9
st. Q1 >0, Lasp<c(Q2)=0. (D-9)

D.4 Nonclassicality of causality witnesses

We will now explicitly construct the set of nonclassicality of causality witnesses Sspp.
The semidefinite relaxation of the direct-cause constraint (6.4) in terms of positive
partial transposition is (using the shorthand introduced in (D.4)):

(o W) Tar > 0. (D.10)

The dual cone (D.11) to the cone of relaxed direct-cause processes defined by the inter-
section of W with the cone defined in (D.10) and the dual cone (D.12) to the cone of
common-cause processes defined by the intersection of W with the linear subspace (6.5)
can be constructed in the same way as in Appendix D.3.

The set of witnesses positive on all positive partial transpose operators is a subset of
entanglement witnesses. Every witness belonging to this set satisfies?:

T
59 =By (S; 1) + So + 53

(D.11)
s.t. 51,52 >0, Laxp<c(S3) =0.

If tr[S9¢ W] < 0, this implies that W is not a direct-cause process as defined in Eq. (6.4).
Note that since we are only considering a subset of entanglement witnesses, the converse
does not hold.

We can now turn to the requirement that S is positive on common-cause processes.
Since condition (6.5) (corresponding to (D.6) together with positivity) defines a convex
cone, we can use the techniques of Appendix D.3 to construct the dual cone, of which the
witness will be an element. This leads us to write S as

S =84+ 55

(D.12)
st.94 >0, Loo(S5) =0,

where the projection onto the common-cause subspace L. is defined in Appendix D.2. W
is not a common-cause process as defined in (6.4) if and only if there exists an S such
that tr[S W] < 0.

Now, combining both conditions, we can construct a set of operators positive on all
mixtures of direct-cause and common-cause processes only in terms of semidefinite con-
straints. To test whether an arbitrary W process is of this type, we can run the following
semidefinite program (SDP) [NN87]:

min tr[S W]
st. S =C;Bo (SlTAI) + S5+ S3 =54+ S5,
S51>0, S9>0, S4>0, (D.13)
La<p<c(53) = Leo(S5) = 0,
]l/do - Sew

2We included the term S> and Ss although they do not make the witnesses “more powerful” to detect
entanglement. S> will become relevant when combining the conditions on direct-cause and common-cause
processes in Eq. (D.13); S3 is included because it could appear in restricted types of witnesses [ABCT 15].




APPENDIX D. QUANTUM SUPERPOSITION OF CAUSAL STRUCTURES 86

The last condition, where W* is the cone dual to W (see Appendix D.3), imposes a nor-
malization on S. It gives the nonclassicality of causality C(W) = — tr[Sop W] the oper-
ational meaning of “generalized robustness”, quantifying resistance of the nonclassicality
detectable by Sspp to worst possible noise [Ste03, ABC*15]. This becomes more intuitive
from the dual SDP, given by

min tr[2/do]
st. WH+Q =W+ wde,
(crBoWI)T4r >0, Wi ew,
CIWCC =Cr4o WCC, we e w.

(D.14)

The process 2-dp/ tr[Q)] can be interpreted as worst-case noise with respect to the optimal
witness Sopt, resulting from the SDP (D.13).

D.5 Convexity and monotonicity

Here we prove that the nonclassicality of causality defined as C(W') := — tr[Sope W], which
results from the SDP (D.13), satisfies the natural properties of converity and monotonicity,
following analogous proofs of Ref. [ABC*15].

Convezity means that C(>_, piW;) < >, piC(W;), for any p; > 0,> . p; = 1. Take Sy,
to be the optimal witness for W;. Any other witness, in particular the optimal witness Sy,
for W := )", p;W; will be less robust to noise with respect to Wj:

tI‘[SWi Wz] S tl“[SW Wz] (D.15)

Averaging over i we have

— tr

Sw ZPsz] <= pite[Sw, Wi, (D.16)

which is exactly the statement of convexity for C.

Monotonicity under local operation means that C(W) > C($(W)), where $(-) is the
composition of W with local operations.

We wish to show that — tr[Sgy)$(W)] < — tr[SwW]. By duality, this is equivalent to

—tr [$* (S$(W))W] < —tr[SW W], (D.17)

where $*(-) is the map dual to $(-). Eq. (D.17) is satisfied if $*(Sg(yy)) is a witness, i.e., is
positive on all mixtures of direct-cause and common-cause operators (tr [$* (S$(W)) Wmix] >
0), and is normalized appropriately (1/do — $*(Ss)) € W*).

The first condition can be seen to hold by applying duality and using the fact that local
operations map any mixture of direct-cause and common-cause processes to a mixture of
direct-cause and common-cause processes. The second condition is equivalent to

tr[1/do — $* (Ssw) ] >0 (D.18)
for every process matrix 2. We apply duality and linearity of the trace to find that
tr [Sg(w)$(Q)} < tr[Q]/do. (D.19)

This relation holds because $(-) maps normalized ordered process matrices to normalized
ordered process matrices and 1/do — Sgpy € W* is the normalization condition for the
SDP (D.13).
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The condition of discrimination (or faithfulness), which would mean that C(W) > 0 if
and only if the process matrix is not a mixture of direct-cause and common-cause processes
(6.6), is not satisfied. Since we relied on a relaxation of the direct-cause condition by
using the positive partial transpose criterion, there are processes which are not a mixture
satisfying (6.6) but for which the nonclassicality of causality is zero.

Therefore, the nonclassicality of causality is not a faithful measure of the nonclassicality
of the causal structure. This is reasonable, since finding such a measure would be equivalent
to finding a fully general entanglement criterion—a problem known to be computationally
hard [Gur03].

D.6 Experimental constraints on witnesses

In this appendix, we give the explicit form of the experimental constraints mentioned in the
main text. When using a constrained class of witnesses, the value — tr[Sé%sttriCtedWCOherent].
can be interpreted as the amount of noise tolerated before the constrained set of witnesses
becomes incapable of detecting the nonclassicality of causality of Wegherent-

A simple example of a restriction simplifying the experimental implementation consists
in disregarding the space 051’2), i.e., to have §' = o2) S as an additional constraint. The

I
nonclassicality of causality is unaffected by this restriction, which shows that the input
spaces 01('1’2) do not carry any additional information about the nonclassicality of causality.

The constraint for the witness to consist only of non-demolition measurements is:
srdmeas = N "o+ o) @ (L+0f) @ (L+0’)®(L+07°)@E,  (D.20)
ijl
where o, (k = 1,2,3) are the qubit Pauli matrices and Ej, [ = 1,...,8 is an arbitrary basis

of projectors on Cy’s three qubits.
The constraint for the witness to only consist of unitary operations® for A and B is:

S =N " B [U)(UF 11740 @ (U (U7 P10 @ BT, (D.21)
ijl
where i,j = 1,...,10 indexes a basis* of the CJ-vectors (see Appendix D.1) of unitaries.

Table D.1: Constrained nonclassicality of causality for different types of constraints on .S,
in descending order.

Constraint on the witness S — tr[S J//coherent]
No constraint 0.2278
Discarding C{"? 0.2278
Unitary operations A, B 0.1686
ND measurement A, B 0.0732

D.7 Definition of direct-cause processes and relationship to
the definitions of Ref. [MRSR17]

Since Ref. [MRSR17] considers two party case, we can merge B and C' to make our scenario
comparable to the one of Ref. [MRSR17]. More precisely, By and C7 are relabeled as B

3Note that according to definition of Ref. [RAVT15], unitary witnesses should also be considered as
“observations” although operationally they are standardly understood as interventions.

4This is because there are ten linearly independent projectors on CJ-vectors for unitaries acting on
qubits [ABC*15].
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and Bp is disregarded, eliminating the necessity to trace over Bp and C7. The condition
for direct-cause processes (6.4) then becomes

wide = Zpipf’ ® W, o1, (D.22)
i

which implies that the states given to A and the channel connecting A and B can be
classically correlated.

In the terminology of DAGs this convex mixture would correspond to tracing over
a (hidden) classical® common cause between A and B. An alternative, more restricted
definition would exclude such classical correlations, i.e.,

wde = pAr @ WAoB:, (D.23)

It is used in Ref. [MRSR17]|. To make the difference apparent, consider the convex mixture
of two direct-cause processes between A and B (here, dim A7 = dim Ap = dim B} = 2):

1 / 4 1 / 4
W = 10) (O (140 o ooy 4 4 1y (1t (1407 — ooalh), (D24)
where the tensor products between the Hilbert spaces are implicit. W™ classically
correlates the channel between Ap and B (a classical channel with or a without bit
flip) to the state in Ay, as shown in Fig. D.2. It is of the type (D.22) but not of the type

(D.23).

%%
:Zipidk/ :Z@'pi
AN

Ag Ag

) Pi Pi

Figure D.2: Quantum causal models respecting the extended “direct-cause” condition
(D.22) can be thought of as a general channel with classical memory (left), or equivalently
as a convex combination of direct-cause processes with no memory (right). W and W; are
general quantum channels, |¢)) an arbitrary quantum state and the gray square represents
a fully dephazing channel (in an arbitrary basis).

.

In Ref. [MRSR17], (D.24) is not considered to be a direct-cause process, nor a convex
mixture (called “probabilistic mixture”) of direct-cause and common-cause processes. It
is instead termed a “physical mixture” of common-cause and direct-cause processes.

We instead use the broader definition (D.22) because we ultimately intend to study
convex combinations of common-cause and direct-cause processes (6.6), which means we
should also allow for convex combinations of direct-cause processes. The restricted defi-
nition (D.23) for direct-cause processes would lead to consider a convex combination of a

SStrictly speaking, it just needs not to produce any entanglement between A7 and (Ao, Br), see Fig. D.2.
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direct-cause and a common-cause process to be a “probabilistic mixture”, but not a convex
combination of two cause-effect processes.

Finally note that the class of processes, which, when post-selected on CP maps being
implemented at B/, result in an entangled conditional process on A;Ap, is defined to be
“coherent mixtures” in Ref. [MRSR17]. All of these “coherent mixtures” are nonclassical
in our terminology (the processes that can be decomposed as (6.6) never result in an
entangled conditional process on A;jAp). It is not clear whether the converse is true.

D.8 Issues in defining a quantum “observational scheme”

Ried et al. [RAVT15] define the “observational scheme” (as opposed to the “interven-
tionist scheme”) on a quantum causal structure as composed of operations satisfying the
“informational symmetry principle”. We examine the subtleties and issues involved in this
definition, in particular regarding the dependence on the initially assigned state.

Ref. [RAVT15] assumes that before the observation, one assigns the (epistemic) state
pA, to the system coming into A’s laboratory. A quantum operation (described by the
Choi-Jamiotkowski representation of the quantum instrument [DL70] { M}, where i labels

the outcome) is applied. This updates the information about the outgoing state p(j)o but
also (through retrodiction) about the incoming state p(j)l. These states are found by
applying the update rules [LS13]:

PS) _ tra, [M,lél PA D ]le]T
@ tr[M}L‘ pAr ® ﬂAo]
o) — 0 [(VPar & Lao) M (y/Pas € Lao)] (D.26)
T tr[(Vpa @ Tag) M (ypa; © 1a,))]
The informational symmetry principle holds if and only if after the operation, the states
assigned to the incoming and outgoing systems are the same:

(D.25)

ol = Pl (D.27)

For Ried et al., an instrument for which this informational symmetry holds is defined
to be an “observation” [RAV'15]. In this sense, there can obviously be “non-passive”
observations such as non-demolition measurements. Any non-demolition measurement in
a basis in which the initially assigned state pa, is diagonal will be an observation in this
sense. This matches the intuition that a classical measurement only reveals information
and does not disturb the system.

If one wishes to implement measurements in arbitrary bases, the only initially as-
signed state which results in informational symmetry is the maximally mixed state p4, =
1/d [RAV*15]. This shows how problematic the definition of observational scheme is, since
it not only crucially depends on an initial (epistemic) assignment p4, but also because there
is only one such assignment which allows all measurements to be “observations”—which
tolerates no amount and no type of noise. In this sense, as soon as the experimenter
changes her beliefs about the incoming state in any way, she will be intervening on the
system, not merely observing it.

Leaving aside these interpretative difficulties, it is interesting to realize that operations
which are unitary also turn out to be “observations” if the initially assigned state is pa, =
1/d: for a unitary operation, p(j)l = px)o = pa, = 1/d. The unitary provides exactly the
same information about input and output states, namely none.

Finally, note that both the framework of Ref. [RAVT15] and the one we developed
rely on the assumption that quantum theory is valid and the correct operations were
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implemented—the analysis is device-dependent. This means that any “quantum advantage”
in inference will not be based on mere correlations in the sense of a conditional probability
distribution of outputs given inputs. This makes the comparison with the power of classical
causal models somewhat problematic.
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