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Abstract

Matter alters its properties remarkably when confronted with extreme conditions such as
temperatures as high as in the early universe. The emergence of the Quark-Gluon Plasma and
restoration of electroweak symmetry through phase transitions are but the most prominent
phenomena to invigorate studies of gauge theories at finite temperatures. If the temperature
is sufficiently high, static observables are effectively described in a reduced dimension by a
framework known as Dimensional Reduction.

The computer algebraic multi-loop treatment of perturbation theory for finite-temperature
theories is at the core of this thesis. It adopts sophisticated tools from zero temperature to
decimate typically vast numbers of Feynman integrals with the objective to automate the
dimensional reduction. To accomplish this, integration-by-parts identities pertinent to both
massless and massive loops at finite temperature are illuminated. Additionally, an inclusion
of higher-dimensional operators in these theories is first motivated and then generalised.

The developed tools are applied to review the advancements of [1] in chapter 4 and [2] in
chapter 5. There, we analyse the dimensionally reduced theories of high-temperature QCD,
namely electrostatic and magnetostatic QCD.

We inspect three-loop contributions stemming from non-static modes to the magnetostatic
coupling in dimensionally reduced hot Yang-Mills theory [1]. By including dimension-six
operators the result is found to be infrared finite and influenced by all scales in the QCD
hierarchy. Incorporating also electrostatic effects indicates a non-perturbative ultrasoft gauge
coupling at O(a§/2).

Based on its relevance in cosmology, we determine another low-energy coefficient in elec-
trostatic QCD, the Debye mass. By including effects from massive fermions up to two
loops [2], energy ranges of (1 GeV-10 TeV) are scanned to show the smooth crossing of
quark mass thresholds.
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Notation

Throughout this thesis natural units are used if not stated otherwise: ¢ = kg = h = 1. To
regulate divergences in the occurring theories, a mass-independent regularisation scheme, the
modified Minimal Subtraction scheme (MS), is employed. It rescales the arbitrary renormal-

isation scale parameter p
02 = dme E 42 (0.1)

in dimensional regularisation where 7z is the Euler-Mascheroni constant. Therein, momentum
integrations are regulated by defining the spatial measure in d = 3 — 2¢ dimensions, whereas
the spacetime dimensionality is denoted by D = d + 1 = 4 — 2e. While Greek indices
assume values in p,v € {0,...,d}, Latin indices take up 7,5 € {1,...,d}. The integration
in Euclidean position space is performed along imaginary time 7 and spatial coordinates x;
with four-vectors X = (7, x;):

/XE/OBdT/x:;/X, /xz/ddx, ﬁE%. (0.2)

Sum-integrals with Euclidean momenta K = (k,,, k;) are comprised of

o) LS 2

implicitly defined in the Matsubara four-momenta w,, = (2n+o)n7T with 0 = 0(1) and n € Z
for bosons(fermions), respectively. In contrast energies are denoted as

Wl =\ /K2 +m? . (0.4)

iii
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Chapter 1

Motivation

Nature spreads over a broad range of scales of which some are well separated and a unified
theoretical description of physics across the whole spectrum appears on the outset to be an
untenable task. In fact, some theories that work well at large distances will fail to give precise
predictions for short distances. It is then rather natural to exploit the hierarchy of a multi-
scale system to construct effective theories that focus on the degrees of freedom relevant to
the problem at hand. This is the concept of Effective Field Theories (EFT).

One such successful EFT is the Standard Model (SM). Underpinned by precision experi-
ments at the LHC, it proves a viable contender to study the physics on the subatomic level
on the basis of its theoretical building blocks

gSM = SU(B)QCD X SU(2) X U(l)y . (1'1)

weak
These consist of quantum electrodynamics and Electroweak (EW) theory which undergoes
spontaneous symmetry breaking at the scale of the vacuum expectation value of the Higgs
field at v = 246 GeV [3]. The other sector is Quantum Chromodynamics (QCD), the theory
of quarks and gluons, which describes interactions mediated by the strong force.

The framework of Thermal Field Theory (TFT) studies these and other field theories at
finite temperature. Together finite chemical potential and temperature span the equilibrium
phase diagram of the theory. Scanning its phase structure over a vast range of scales should
reproduce the thermal history of the universe and how it cooled down starting from a very hot
and dense state. One yet puzzling question is how accurately the Standard Model describes
this evolution. Testing its phase transition and description of nature under extreme conditions
allows to uncover theoretical shortcomings such as its failure to explain the net baryonic
asymmetry [4] or produce detectable gravitational wave signatures [5, 6, 7]. Whereas these
are phenomena related to electroweak theory, we focus on the QCD sector G, of the SM
gauge group at small chemical potential.

In this regime the finite-temperature picture of QCD comprises two phases. At low tem-
peratures confinement [8] constitutes a hadronic phase in which particles are colour-neutral
built from quarks and gluons. In this region the strong coupling is truly strong and ad-
equately described with non-perturbative methods. By raising temperature and density,
different confinement arrangements begin increasingly to overlap and their confinement be-
comes ambiguous — the quark-gluon plasma (QGP) emerges. Thus, at high temperatures
asymptotic freedom [9, 10] asserts a small (or not so strong) coupling that allows to employ
perturbation theory [11]. The transition between the two phases is a smooth crossover for
physical quark masses. Consequently its critical temperature 7, is ambiguous and depends
on the observables that are considered. The current definition finds it at 7, ~ 155 MeV
[12, 13, 14, 15].

However, Linde’s infamous infrared (IR) problem [16] corrupts perturbative calculations
below a certain temperature scale in a TF'T. This relates to the fact that at finite temperature
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certain modes with large correlation lengths, so-called soft modes, become non-perturbative.
In turn, their presence compromises perturbation theory in the IR regime of the theory. For
a non-Abelian gauge theory like QCD, this happens close to the confinement-deconfinement
phase transition crossover temperature 7;.. Indeed, it directly roots in the colour-magnetic
fields, the spatial components of the gauge field, that directly affect the IR dynamics. Since
their perturbative treatment fails, a possible cure of this impasse is a resummation of loops
generated from the soft modes by summing IR divergent terms to all orders. A systematisa-
tion in this approach is less straightforward when advancing to higher-loop orders which is
already conceivable at two-loop level.

High-temperature Dimensional Reduction (DR) provides an automatic all-order resum-
mation which systematically by-passes the IR problem. Since the perturbative integration
over ultraviolet (UV) modes is infrared safe it ensures that the weak-coupling expansion in the
UV is under control. The remaining effective theory is one of light static, time-independent,
modes in a reduced dimension. Owing to a clean dissection of scales within a TFT, tempera-
ture normally sets the shortest scale besides degrees of freedom with much larger correlation
lengths. To them spacetime effectively appears to be 3-dimensional which entails all the low
energy physics of the full theory for non-dynamical observables. This allows to conflate the
best features of both worlds, the perturbative and non-perturbative ones by using them at
energy ranges where they apply best. By construction, the matching of the EFT is purely
perturbative for which the effective coupling is required to be small. Once the EFT is con-
structed, further UV scales can be integrated out iteratively until the new effective theory
becomes non-perturbative. The IR dynamics of the modes related to this sector can then be
studied with lattice methods.

This thesis focuses on strongly coupled interactions at high temperatures addressing an
automated pipeline for performing dimensional reduction. We motivate the necessity of
an augmented basis of higher-dimensional operators inside electrostatic QCD (EQCD) and
magnetostatic QCD (MQCD), the dimensionally reduced effective theories of QCD. Thereby,
we compute two matching coefficients of EQCD, namely the 3-loop effective gauge coupling
gy and the 2-loop Debye mass m,, including quark mass effects in the latter. An algorithmic
automation for potentially interesting scalar extensions of the SM is envisaged.

The machinery of Feynman rules expresses a QFT as a diagrammatic theory and sys-
temises the computation of amplitudes. Any succession of this diagrammatic computation
ties together three stages: combinatorics, algebra, and analyticity. The combinatorial part
encompasses the generation of Feynman diagrams based on the field content of the consid-
ered theory. As computations typically encounter a few thousands of diagrams, an automated
approach becomes indispensable already at this step.

At zero temperature a plethora of sophisticated automated methods exists for perturba-
tive loop computations in contrast to finite-T" algorithms. The demand for unprecedented
precision in calculations for hadron collider physics entices more activity in the develop-
ment of new techniques. These pushed the limit to 5-loop computations tackling the QCD
B-function [17, 18, 19] and fermion anomalous dimension [20, 21].

Finite-temperature enhances the complexity of the occurring integrals by their sum-
integral analytical structure of the propagators. While the rest of the Feynman rules remains
unaltered, most algebraic methods can be recycled. A common strategy to decimate the
number of integrals is to find algebraic relations among them based on the symmetries of the
integrand and measure. Especially the reduction by integration-by-parts (IBP) bears great
potential in this simplification and was established for finite-7" in [22]. The reduction con-
cludes once a finite set of irreducible master diagrams [23] is assembled. Their total number
depends on how many scales appear in the integrals.

The analytic evaluation of those leftover master sum-integrals poses a core difficulty be-
cause only a specific class of diagrams allows to be treated generically. Merely few systematic



methods are available because different observables usually bear different mass dimensions.
Now every computation of a new physical problem requires to evaluate a whole set of new
sum-integrals of the corresponding mass dimension. At orders beyond 2-loops these known
techniques only work on a few of the appearing integrals while some are still completely un-
known — even for fully massless bosonic cases.

The first chapter introduces prerequisites how to perturbatively study theories at finite
temperature. Hence, sec. 2.1 addresses equilibrium perturbative Thermal Field Theory. One
prominent subtlety, the IR divergence problem, is addressed alongside the implementation
of renormalisation for the UV in sec. 2.2 and resummation for IR divergences in sec. 2.3.
To tackle the latter, in sec. 2.4 scale separation at high temperatures is used to introduce
Dimensional Reduction as a means to construct a suitable EFT that provides an alternative
for resummation to evade the IR problem.

Beyond the introduction, the thesis scopes the following topics. Chapter 3 outlines a state-
of-the-art automation of DR for a general thermal field theory and consecutively QCD. We
follow a specific diagrammatic example through all the steps of the automation and discuss
the algebraic and analytic treatment therein. Based on these algorithmic implementations,
chapter 4 studies the cancellation of IR divergences in the dimensionally reduced EFT of hot
Yang-Mills wherein the inclusion of higher-dimensional operators is motivated and becomes
inevitable. In chapter 5, we investigate cosmologically relevant temperature ranges of a
Debye mass within QCD and focus on mass effects stemming from fermions. Additionally,
appendix A provides the reader with thermal and vacuum integrals while appendix B lists
the employed integration-by-parts reductions and identities.
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Chapter 2

Introduction

The two main formalisms developed for the treatment of quantum field theories at finite
temperature are the real-time (Schwinger-Keldysh) formalism [24, 25] appropriate for out-of-
equilibrium systems and the imaginary-time (Matsubara) formalism [26] adequate for theories
in thermal equilibrium. Computations of thermodynamic equilibrium properties provide an
initial point for non-equilibrium evaluations. Setting the stage in the following chapter, we
concentrate on the latter formalism pertinent to the research publications described in this
thesis.
A pedagogical account on both formalisms is collected in [27, 28, 29].

2.1 Perturbative Thermal Field Theory

Throughout most epochs during its evolution the universe is thermalised. This assumption
of equilibrium is justified because time scales of external observations are large enough such
that time scales on which dynamical, statistical processes occur are suppressed in comparison.
As a result, distribution functions of bosons and fermions are exponentially close to their
equilibrium values.

Relativistic quantum field theory is a theory describing multi-particle creation and an-
nihilation. The most fitting description of the statistical behaviour of such a theory leaves
the particle number unrestricted but imposes conditions on the conservation of energy and
commuting number operator. This is captured by the grand canonical ensemble. In order
to fix the conserved mean values of energy and particle number, Lagrange multipliers are
installed, namely temperature § = 1/7 through a heat bath and chemical potential p; with
a particle reservoir.

At equilibrium the density matrix p(3) = e #" encompasses all the information of the
system with the Hamiltonian H = H — Np and the charge density N' = [ 4Ty, For
the remainder of this thesis we are interested in the situation where p = 0 equivalent to
inspecting the canonical ensemble. The central object to access thermodynamic quantities is
the partition function

Z(B) =Trp(B) , (2.1)
and derivatives thereof. For an observable O the expectation value is defined
(0} = 5= Tep(B)O (22)
= T . .
T EE) T

The cyclicity of the trace gives rise to the KMS (Kubo-Martin-Schwinger) [30, 31] relation
for the 2-point function

(01(1)0a(t) 5 = (Oa(t) O1(t +iB)) 5 - (2.3)
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The key to the Imaginary Time Formalism (ITF) is to interpret the Boltzmann weight
e PM as a time evolution operator U(t) = e~"*. Since 3 is real the system evolves along the
negative imaginary time axis [32] by a time period of At = —if3.

Time evolution has a well defined representation within the path integral formalism. By
extending it to said imaginary time evolution it reproduces eq. (2.1) with the generating
functional

t—if
zZ=C D® exp [z/ dt/EM(QJ,au(I))} : (2.4)
b.c. t; x
where @ collects a set of different fields and C'is a (infinite) normalizing factor. The integra-
tion spans over the interval [t;, ;] between initial time ¢; and final time t; = t; — i equal to
the initial time with imaginary shift.

The analytic continuation of time to complex values ¢t € C adds additional freedom in
the choice of the integration path C in the complex plane. The imaginary part of this path
must be monotonically decreasing in order for the propagators to be analytic in time. The
simplest curve compatible with this and further restrictions [27] parameterises time vertical
in the complex plane t(7) = t; — it

B
Z2=C D® exp [—/ dT/EE(@,(?#(I))] , (2.5)
b.c. 0 b

with real-valued 7 € [0, 8] and independent of the initial time ¢; = 0 which drops out after
a linear variable transformation provided H is t-independent. This imaginary-time path
integral is the ITF. In this implementation a finite-temperature D-dimensional quantum
field theory is equivalent to a D = d + 1 theory with d spatial dimensions and one compact
time dimension. Through the previous analytic continuation ¢(7) = —i7 the Minkowskian
Lagrangian converts into the Euclidean Lagrangian Ly = —Ly(t — (7)) and on the finite-7
interval bosonic (fermionic) fields ¢(¢) assume (anti-)periodic boundary conditions (b.c.)

¥(0,2) = —(B,x) . (2.7)

These arise as a consequence of the trace in eq. (2.2) and the Grassmann nature of the
fermionic fields. In the description of a field theory in the ITF, a temporal discrete Fourier
sum decomposes the particle fields into Matsubara [26] modes

$(ra) =T > ¢u(2)e™ T, w, =

n=—oo

. , neZ. (2.8)
= (2n+ 1)7T (fermions)

wp =2nnT (bosons)
%,
The so-called Matsubara frequencies wy, w;, arise through the (anti-)periodicity conditions of
the fields in a finite time interval which dictates discrete energy levels kg. Alternatively they
can also be established by the (anti-)periodicity of the corresponding Fourier transformed
propagators together with the KMS condition eq. (2.3) and the definition of the time ordered
product.

The topology of spacetime corresponds to that of R3 x Sé similar to that of a Kaluza-Klein
theory. The sums of Green’s functions that are encountered as a consequence of eq. (2.8) can
also be understood as a sum over images tagged with the corresponding winding number n
in w, and for every full circle in the compactified time direction the price of e % is paid.

Indeed, the Matsubara imaginary time formalism is ideal for studying equilibrium systems.
Setting the integration limits in eq. (2.5) trades the time variable for the temperature ¢t —
of the heat bath. This swap discards most the dynamics of the temporal direction but gains
a theoretical description of the static behaviour of system at finite-T'.
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The advantage of the ITF is that the zero-temperature Feynman diagram machinery
of perturbative computations extends straightforwardly. To reason this, we summarise the

mappings from the vacuum theory
/ = ;25 ’
K K

GI\{(Kla"'uKn) ’_> GE(k;l,...,kn),

@2m)H @D (K) s §(K), (2.9)
by introducing the notation§(K) = B8, o(27)?6@ (k) and [, = [ éijr)%fl. The first line
indicates that Euclidean Green’s functions Gy depend dynamically only on the d-dimensional
momenta (k). The Matsubara frequencies act like mass parameters, mediate the temperature,
and make themselves felt only inside the propagators. Where the free frequency-momentum
space propagator amounts to

1 1
) 2 2T 2 7 (2.10)
wi +k2+m wy, +wi

A(wn, k)
with energies w* = wy, in eq. (0.4). Concretely, Matsubara frequencies appear on internal and
external lines of the Feynman diagrams. Taking functional derivatives of the path integral
5‘;[]‘]] in eq. (2.5) with respect to some external source J poses no structural difference such
that vacuum vertices remain unmodified. At the vertex, momentum and mode conservation
is deployed through the changed d-function. Lastly, vacuum loop integration is replaced by
sum-integrals.

For very high temperatures the non-static non-zero modes ¢,+o become infinitely heavy.
Intuitively infinitely heavy particles decouple at zero temperature [33]. However, at finite
temperature this decoupling is incomplete and instead non-static modes generate a tower
of effective vertices that affect the static modes which become non-perturbative. In general
these corrections cannot be ignored.

First, we discuss the short and large distance properties of finite-temperature theories.

2.2 Regularisation of ultraviolet divergences

The processing of the short distance (large-k) or ultraviolet (UV) behaviour of a finite-
temperature theory is already covered at zero temperature. In fact, the theory remains
unaltered in the UV because modes with wavelengths shorter than the finite temporal extent
x|, |zo| < B fail to perceive the (anti-)periodicity of time. To show this explicitly, the
fermionic and bosonic imaginary-time propagators in mixed (7,k) “Saclay” representation
are employed by a discrete Fourier transformation [34]:

G(r) =T e Awn, k), (2.11)
- einT 1

G(r) = T%; (@2 + w7 = %nB((“)) [G(B_T)w +e™| (2.12)

= eionT 1

G(r) = T%; (@) + 7] =5, [np(w + p)e BB oy (w — ,u,)em] . (2.13)

The above identities are established by directly evaluating the sums as a contour integral
in the complex plane using Cauchy’s residue theorem with the single-particle distribution

functions 1

N /w (W)
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for Bose-Einstein (ng) and Fermi-Dirac (ng) distributions.
The frequency sums can be converted into a sum over vacuum propagators (7' = 0) with
a temporal shift ~ nf [27] such that in Euclidean position space

G(r,x;T) = i G(t+nB,x;T =0). (2.15)

n=—oo

The UV sensitivity of the theory is related to singular points in Euclidean spacetime X2 = 0
since the Euclidean vacuum propagator develops a pole G(X;T = 0) ~ 1/|X|4"! = | X|~2
in d = 3. Representing the thermal propagators by eq. (2.15) shifts X? = (7 + nfg)? + x?
which only becomes singular for the temperature-independent vacuum contribution (n = 0).
Consequently, a direct evaluation of Matsubara sums splits sum-integrals Z into a vacuum
part (T'= 0) and analytic temperature-dependent pieces

Z=0%+7". (2.16)

In general the temperature-dependent terms mix with zero-7T" ones and renormalisation is not
at all obvious. However, one can show that the above considerations still hold [35]. Therefore,
the zero-temperature renormalisation machinery applies to render the theory finite in the UV.

The root source of these short-distance divergences are the theoretically bare unphysical
parameters inside the Lagrangian [36]. As they are non-observable they appear in intermedi-
ate stages of calculations but can be systematically removed by undergoing the stages of (i)
regularisation and (ii) renormalisation.

Regularisation controls arising divergences at large momenta in a mathematically trans-
parent manner. Multiple viable choices to employ such a regulator exist such as a momentum
cut-off or Pauli-Villars fictitious mass term [37]. Commonly for the resulting quantities to be
physical they must be independent of their regulator. A practical candidate is dimensional
regularisation proposed by t’Hooft and Veltman [38, 39]; for a review of the topic see [35, 40].
It introduces a regulator by analytically continuing the spacetime dimension to d € C. One
choice is to shift d — d — 2¢ with a small deviation € > 0 from the actual dimension and UV
divergences appear as 1/e-poles.

The above shift affects the dimensions of the couplings of the theory. To retain the
correct total integral dimension, an arbitrary but finite renormalisation scale y is introduced.

As an example, a bare coupling is dimensionful in general d which is of [g;] = u® with
canonical dimension A = % and renders combinations u4=4g2 = ;1 =2¢¢2 dimensionless. This

multiplicative dimensional factor is then compensated by the measure of the d-dimensional

integral
=52.7E \ € dd—26k
— ,—2€ u-e
L= (57) [ars] 247

wherein the parameter u was inserted by 1 = p~2¢u2¢. Thus, the square bracket in p=2¢[...]

has integer mass dimension. One other central feature of dimensional regularisation is the
vanishing of scaleless integrals
1
2e
[ / — =0, (2.18)
K [F2]™
which arises as a consequence of the limit m — 0 in eq. (A.16). For multi-loop computations

this proves a decisive simplification as it reduces the number of integrals immensely in most
cases.

The second stage to render the theory UV-finite is renormalisation which is essentially a
reparameterisation of bare parameters in terms of physical ones using a specific scheme. This
absorbs divergences by the prescription of multiplicative renormalisation using the renormal-
isation constants Z, that do not depend on dimensional parameters (masses, momenta) [41].



2.2. Regularisation of ultraviolet divergences

This rescaling recovers the original bare (unrenormalised) theory Lagrangian that features
the set x € {z;} of possible fields {®;} C {x;} and couplings {g;} C {x;}

Ty = ;LA“ZQC:BR . (2.19)

Here A, (€) is the canonical dimensionality of the bare coupling xs. The subscripts denote
bare (B) and renormalised (R) quantities.

By scheme we refer to the specific choice of finite parts inside the renormalisation constants
Zy. The running of a generic coupling ¢g(u) in one scheme will then in general be different
from the one in another scheme g(u) # ¢'(1). Subsequently, the scale p inside the square
brackets of eq. (2.17) is rescaled by ji? = 4we~7® y2. This is the MS scheme [42] wherein the
renormalisation constants Z, assume the form

2
gA
Z,=140Z, =1+ > at> “’Zk : ai:(47:)2, (2.20)

where the normalisation for the couplings is chosen as a;. At Ni-loop order inverse e-powers
reach up to degree N which are weighted with powers of the couplings respective to the loop
level. The general expression to absorb all these divergences is given by the renormalisation
counterterms 07, ({x;}) that depend on all couplings. All the 1/e-divergent terms (k > 0) are
determined through the UV behaviour of the theory. Finite terms (k = 0) in the expansion of
Z, are in principle allowed but depend on the renormalisation scheme; the MS-scheme omits

Zg(cl’o) = 0 and leaves them untouched.

Although physical quantities should be independent of the chosen renormalisation proce-
dure they are still affected. The reason is that practical expansions merely reach up to fixed
and finite order in perturbation theory. The appearance of the scale parameter [ is a remnant
of this fact and the Renormalisation Group Equation (RGE) monitors scaling properties of
the renormalised quantities with the change of the renormalisation scale.

As a general concept, the anomalous dimension monitors the p-dependence of the theory in
physical parameters such as couplings or masses but also unphysical ones like wave functions.
As a flow function of Z, it is defined by

dln Z,
dlnp2
A special case of the definition in eq. (2.21) is the S-function which is but the anomalous
dimension of the coupling g; with different normalisation. It is solely concerned with the
running of the couplings {g;} C {x;} in the theory

dal-
T gz = Ailtas)) (2.22)

where a; = g?/(4m)? is the normalisation established in eq. (2.20) for a generic renormalised
coupling g; = ¢;(¢?). Qualitatively the 3-function distinguishes three different scaling be-
haviours of a theory depending on its overall sign

Vo = (2.21)

e ((g) > 0, the coupling vanishes at small momenta as 1 — 0, the theory is infrared free
and confines in the UV.

e ((g) <0, the coupling vanishes at large momenta as y — oo the theory is asymptotically
free and confines in the IR.

e ((g) =0, the theory is scale invariant.

In the ensuing sections the focus lies on the second point and theories that show asymptotic
freedom such as QCD.

We observed how to handle UV divergences in finite-temperature theories by recycling the
well known counterterms from the vacuum. Next, we discuss ramifications for the infrared
when putting a theory at finite temporal extent.
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2.3 Resummation of infrared divergences

On the end of the spectrum where distances are large (small-k), the thermal character of the
theory introduces new complications compared to zero-1. One issue is the infamous Linde
Infrared (IR) problem [16] of thermal gauge theories which is fundamentally related to the
bosonic nature of the constituent fields.

Fermionic degrees of freedom are not plagued with IR divergences as observed from their
fermionic zero mode (=) integral with wf = 7T

1
oy /M2, 2.23
/kk2+M§ (2.23)

where M& = m? + (7#T)2. The limit m; — 0 faces no risk of IR divergences.
Contrarily, bosons experience an aggravated scenario. Their infrared sensitivity of arising
diagrams is inspected starting from the massless bosonic two-loop sum-integral

O w2 gATR AT 2

K Ko

How the massless limit m = 0 affects this diagram is seen when evaluating its factorising one-
loop components Z; and Z, which behave differently in the IR. By splitting the sum-integral
o
> [-X

measure
¥ =7 f+f o
K ko= —o00 koz0’%X Vg
/
zi 4T / , (2.25)
K Kk

we recover two parts, one for the non-zero modes and one for the zero mode. Conventionally
j’K denotes a sum-integral over K, with the prime indicating that the Matsubara zero mode
is omitted in eq. (0.3). Therefore, the most general 1-loop bosonic tadpole sum-integral Z,
is computed which is split via eq. (2.25). While for the zero-mode a direct computation of
the integral in dimensional regularisation is feasible, the non-zero (n # 0) contributions can
be expanded in a series of small masses. For w, # 0 this is allowed as integrands in the

expansion are of
(m?)"
/ . (2.26)
k [wi + k2
The bosonic and fermionic results are listed in egs. (A.39) and (A.40).
Naively the zero mode of Z{nzo) is UV divergent while Zén:()) is IR divergent. Due to
the lack of a scale in the denominator both should vanish in dimensional regularisation. The
strategy is to regulate both kinds of divergences, the IR by adding a mass regulator m to their

zero mode (n = 0) propagator and the UV by using eq. (A.15) with dimensional regularisation
d = 3 — 2¢. Their radial contributions

e 1 _ 1 m
A 0):/1~/dkkd L ~m™3%, (2.27)
k [k2 4+ m?2] [k2 + m?]
e 1 _ 1 1 m
z 0):/2~/dkkd = Lo (2.28)
Kk [k2 +m2] [k2 + m?] m

are UV finite but only the first one is also IR finite. In fact, an infinite number of integrals is
plagued with IR divergences with increasing severity with the number of propagator powers.

10



2.3. Resummation of infrared divergences

This kind of divergence at m,; = 0 arises because bosons develop a dynamical mass at
finite temperature
m;(T) = g"T' +m; , (2.29)

where m, is a zero-temperature mass. A perturbative treatment of bosonic propagators that
disregards this mass inevitably leads to IR divergences.

Resummation [43, 44] provides a means to cure the theory of these IR divergences by
shifting the pole mass. The integral in eq. (2.24) belongs to a general set of diagrams that
needs to be summed to all orders. These arising (N 4 1)-loop “Daisy” ring diagrams factorise
N-hard one-loops and one soft N-propagator loop

o T rq "
QT 2N _ 2N N
o | [ | [f | - tadtal
OOoO k1 [k% + m2] Ko KQ
T2 N gT 2N
2N |, 3—2Np| | L7 3
x g [m T] [12] xm°T [m(T)] , (2.30)

employing m(T') inside the zero-T vacuum integrals I N.m from eq. (A.15). The soft thermal
mass is kept only on the propagators while safely omitted in the hard loops. An analogous
factorisation is absent at higher loop levels. Therefore, one is confronted with a case-by-
case study rather than a systemisable problem. Alternatively, resummation can be achieved
along a reorganisation of the Lagrangian by adding an effective mass term to the free theory
Lagrangian while equally subtracting the same term in the interacting Lagrangian [45, 46].

While the weak-coupling expansion could be justified in the underlying theory it might
be compromised for degrees of freedom sensitive to IR scales. We saw in eq. (2.30) that
the perturbative expansion breaks down for m(T") < g7 starting from 3-loop order (N = 2).
However, resummation remedies the IR divergent behaviour of the Daisy diagrams. A similar
treatment is not feasible for diagrams that contribute at the order

.......... Vo3
{E 2f - >N+1 o g5 [n{]ji)] , (2.31)

with Matsubara zero modes on every line. While diagrams up to N < 3 are IR regular, modes
with thermal masses of m(T) < ¢?T contribute to O(g%) at all loops N > 3. Consequently
at finite order infinitely many diagrams need to be considered regardless the size of g. This
invalidates perturbation theory and exposes the non-perturbative nature for said modes.

To be more concrete, we inspect the effective expansion parameter for light particles
(m; — 0) at asymptotically high-T" and weak-coupling g < 1

€B/Fr = 92 nB/F(wp) = (2.32)

9 w<r T (1+1 _w,
2 tor)>

“p
eT F1 Wp

where |p| is a typical momentum of the heat bath featuring in the energies w, = /p? + m?.
The Bose-Einstein or Fermi-Dirac factors are a direct result of the explicit summation of the
Matsubara frequencies inside propagators of the Feynman rules. Reflecting the constant in-
teractions within the plasma this affirms that the weak-coupling expansion of the full theory
is invalidated once values wy, > m(T") ~ ¢°T are assumed for bosons; fermions remain pertur-
bative. Then the respective expansion parameter ez ~ g7’/ wp is of order unity regardless if
temperatures are high. Thus, bosonic degrees of freedom with light thermal masses O(g2T)
become non-perturbative which is the aforementioned Linde IR problem. As it relates di-
rectly to the Matsubara zero-mode, a physical interpretation is that of a massless particle in
a reduced dimension. As seen in the d-dimensional vacuum tadpole integral I Nom ™ md—2N
in eq. (A.15), a reduced dimension causes an increased IR sensitivity.

11
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The following section aims to discriminate those degrees of freedom that are supposed to
be treated non-perturbatively. Effective theories equip us with a framework to treat all IR-
safe modes perturbatively because integrating out heavy degrees of freedom is a UV process
and therefore IR-safe.

2.4 Effective theories at high temperatures

The idea behind Effective Theories (EFT) states that length scales much shorter than the
actual physical problem are negligible for its description. An immediate example is the
separation of scales visible by reading this thesis. Hierarchically grouped into chapters,
paragraphs, and single words, the effect of omitting or misspelling certain words is next to
irrelevant to comprehend the text as a whole. Intuitively we are even all experts of EFTs
when throwing of a snowball. Neither do we have to probe the sub-atomic structure of the
constituent snowflakes nor consider quantum gravity to be successful. It suffices entirely to
operate on the level of Newtonian mechanics paired with a certain amount of aim.

In quantum field theories this principle is known as decoupling. Let us assume the fun-
damental theory consists of light fields (¢;,m) and heavy fields (¢p, M) with hierarchically
ordered respective masses m < M. By integrating out the heavy degrees of freedom in the
partition function eq. (2.5), an effective action for the light fields

Sloi, dn] — Seald] (2.33)

is constructed. An actual path integration over heavy fields gives rise to highly non-local
operators [35] which, when perceived at length scales at which the effective theory is valid,
will look local again. Since their treatment starting from the full theory causes many sub-
tleties, a more economical and infrared-safe approach is the matching of Green’s functions,
interchangeably referred to as “integrating over” (although technically different).

The matching encodes the physics of the ultraviolet scales within the parameters of the
EFT which is demanded to respect the symmetries of the fundamental theory. A viable
form to write down a local effective action of the light fields S.4[¢;] is by means of higher-
dimensional operators O,,. With n > 4 it is of the form

Sealtr] = /x{ﬁeﬁ-[qﬁl} + Z;(”Jn (;})n} ; (2.34)

where L.g[¢] is a renormalisable low energy Lagrangian with parameters dependent on the
high scale theory and O, are suppressed by the heavy mass M.

In the limit of asymptotically high masses (M — oo) the error made by neglecting these
additional terms is diminished both in the action and the Green’s functions. Therefore, inside
an EFT at zero temperature infinitely heavy fields decouple from the theory which is known
as the Appelquist-Carazzone decoupling theorem [33]. The next section argues why a similar
intuition fails at finite temperature.

2.4.1 High-temperature Dimensional Reduction

We recall that the fields which reside in (d + 1)-dimensions at finite temperature constitute a
d-dimensional Euclidean theory at zero temperature with an infinite number of fields. Each
of these modes corresponds to a propagator of the form A(w,,p) = [p? 4+ M?2]~! with masses
M?2 = w2 +m? and m, are potential zero-temperature mass scales in the fundamental theory.
Those IR modes with wavelengths much larger than the finite temporal extent |x|, |zg| > 3
or vice versa M, < T cannot resolve the time coordinate. For them space appears to be
effectively d-dimensional.

12



2.4. Effective theories at high temperatures

Possible scales |p| ~ ¢g"T in the expansion eq. (2.32) induce a rigorous momentum scale
hierarchy which is parameterised by powers of the coupling g. Typically the field modes
of a TFT and the effective expansion parameter ez are discriminated along the following
theoretical organising principle.

e The hard scale |p| ~ g°T ~ «T or fully perturbative scale e ~ O(g?). Characteristic for
individual particles in a thermal bath, these modes carry momenta or masses of the hard
scale, are weakly coupled and influenced by the heat bath only at next-to-leading order.
The corresponding modes are the non-static (n # 0) Matsubara modes of both fermions
and bosons. Lacking a Matsubara zero mode, fermion fields are included altogether at
this scale. Being only temperature-dependent, ¢g°T is also the highest scale in possible
constructed EFTs and sets the upper limit of which scales these theories can resolve.

e The soft scale |p| ~ ¢gT' or barely perturbative scale e ~ O(g). Associated with
collective excitations and interactions of the particles with the thermal bath, the related
modes develop the aforementioned dynamical mass scales m,(T"). At this order, these
are related to the static degrees of freedom (n = 0) such that static temporal (colour-
electric) modes of non-Abelian fields develop a Debye mass m,, ~ m,(T).

e The ultrasoft scale |p| ~ ¢g*T/m or non-perturbative scale e ~ O(1). Static spatial
(colour-magnetic) modes of non-Abelian fields are strongly coupled amongst each other
and also develop a thermal mass my, ~ m,;(T). The latter is, however, purely non-
perturbative.

Because of this confining, non-perturbative, structure of the ultrasoft sector, additional
smaller momentum scales are forbidden and cannot be generated dynamically. Note that,
massive bosonic fields may assume all three scales depending on their zero-temperature mass
m; since all thermally generated masses will be either of the same or of lower order. Noth-
ing forbids those scalar masses to be of the same order as the non-zero Matsubara modes
m,; ~ 71, in which case those fields should also be integrated out together with the hard
modes [47, 48].

If the coupling ¢ in the fundamental theory is sufficiently small, the scales are split
hierarchically ¢?T/m < gT < ©T. Exploiting the above classification of the fields, an EFT
is constructed for the light static degrees of freedom at the soft and ultrasoft scale. These
modes perceive spacetime only in a reduced d-dimensional setting — this is the principle of
Dimensional Reduction (DR).

The strategy behind every effective theory is to express the parameters of the effective
theory in terms of the ones at the high scale. Thus, dimensional reduction integrates out hard
(and soft) scales and maps the couplings and temperature from the (d + 1)-dimensional to a
d-dimensional theory (cf. fig. 2.1). By construction, the Green’s functions of the remaining
degrees of freedom reproduce the ones from the full theory up to a relative error [49]. Note
that fermionic modes are hard modes and therefore the effective theory is purely bosonic.

The dimensionally reduced EFT is described by the effective action with sufficiently sup-
pressed operators O,, with n > 4 of the form

Say = ;L{£3d+7§5(;91?)7l} . (2.35)

In contradistinction to eq. (2.34), non-vanishing higher-dimensional operators compromise
an exact decoupling at finite-temperature [50]. The main reason is that now the parame-
ters of the effective theory themselves depend on T'. Interactions generate softer scales and
dynamical masses m,;(T) ~ ¢"T with n > 0 — these are the screened masses [51]. The ac-
curacy of a dimensionally reduced EFT, the second term in eq. (2.35), is bounded by errors

13



2. INTRODUCTION

£Fu117 (d + 1)-dlm

hard + nT Dimensional Reduction
mp Ly, d-dim
soft + g'T Integrate out temporal scalars
my, ¢ L4, d-dim

ultrasoft + ¢*T/m

Figure 2.1: Scale hierarchy of a (d+1)-dimensional thermal field theory at high temperature, and construction
of effective theories at different steps of the dimensional reduction. The first step integrates out all hard non-
zero modes. The second step integrates out temporal scalars with soft thermal masses mp. At the ultrasoft
scale, light static scalars and gauge fields remain.

of O (mZ(T)/M?*(T)) with the UV scale M(T) ~ g"™T and m < n. For the highest scale we
have M(T') ~ «T. At low momenta and despite infinite-temperature or masses, DR proves
merely to be valid up to ¢"~". In other words, the correction terms in the EFT operator
expansion compete with terms from the perturbative expansion ¢ < 1. In this setup an
expansion in the weak-coupling is only valid if both corrections originating from the EFT as
well as higher-order loops are included. This is an expression of how the decoupling theorem
fails for thermal EFT.

At the same time it tells us how to deal with it, namely by establishing power counting
arguments to determine which terms in the EFT expansion and which loop orders in the
perturbative expansion ought to be considered. Lacking this amount of consistency in the
renormalisation leads to non-vanishing IR divergences — as will be highlighted in chapter 4.

2.4.2 Parameter matching

The final ingredient in the construction of the dimensionally reduced EFT is the matching,
the mapping of the UV parameters of the parent theory onto the effective ones. The procedure
equates n-point correlation functions in the full- and effective theories inside their domain of
mutual validity. As we demand, the EFT reproduces the infrared of the full theory and is
valid below a certain scale m(T') which is dubbed the matching scale. This is where the two
theories get compared and all externally input scales such as external momenta are fixed at
similar order ¢; < m(T).

For a theory with UV scales M, IR scales m, couplings g amongst light fields, and cou-
plings G involving at least one heavy field, we obtain for a generic n-point Green’s function

Full theory : T(q1,...,qn;9,m, G, M), (2.36)

EFT: Tu(qi,...,qn:3,7), (2.37)

where g, are respective EFT parameters as functions of G and M. Since T',, is an expansion
in inverse powers of the UV scale 1/M only the IR scales remain therein. The difference of
the two renormalized correlators is the matching contribution

I_‘M = Fn - fn 5 (238)

where T'y; is analytic in m while the individual terms on the right can contain non-analyticities
which cancel in the difference. Thus, treating IR scales as small perturbations, an expansion
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in (m,q;) of 'y, and T, causes the latter to vanish. Because all scales in the constituting
integrals of T',, are expanded out, the resulting individual terms produce scaleless integrals
which vanish in dimensional regularisation. Therefore, the matching is entirely established
by an IR expansion of the full theory and the construction in eq. (2.38) is understood as
subtracting out the IR dynamics of the theory. Hence, the matching is only affected by UV
scales and thus IR-safe.

To guarantee the equivalence of the Green’s functions they are matched. In a scale sepa-
rated TFT such as described in the context of dimensional reduction this is accomplished by
equating

1
= *Fn((ha"'vqn;gvma G7 M)(¢1¢n)4d ) (239)

Tulans s 4ui G (@1 - Gu)sa = 7

for a general set of n-external fields, and T-dependent parameters. The inverse factor of 1/T
accounts for the explicit T-integration in the action of a static Lagrangian. By fixing the low
energy parameters m to fulfill the above equality up to a given order in perturbation theory
the dimensionally reduced theory is fully determined. The normalisation factor for the fields
(¢i)3q of the effective theory is then related to the matching of their 2-point functions.

A dimensionally reduced thermal field theory restricts to the static regime of utility (see
sec. 2.4.1). Since matching computations are conducted therein, it is necessary to decompose
tensor structures of correlation functions and isolate static components. Resembling zero-
temperature, now this approach involves one additional tensor, namely the proper velocity
of the heat bath u, = (1,u) with condition

u? =uut =1, (2.40)

The temperature T is defined in the rest frame of the heat bath where it is timelike with
the Euclidean velocity u, = (1,0). Because of this distinguished frame the heat bath breaks
O(1, d) Lorentz symmetry explicitly to the group of spatial rotations O(d). The metric tensor
0, respects this disjunct structure separately with a spatial S,,, and temporal T},,, spacetime
metric (cf. appendix A of [1])

5w/ = Tul/ + Sw/ ) Tul/ = 5#051/0 ) S/U/ = 5ui5ui y  qu = 6uiQi . (241)

At some places it is then more illuminating to use a S/T-basis instead of the full -function
and velocity wu,. When advancing to higher-point correlators this becomes practical.

A static external Euclidean momentum () is purely spatial (go = 0), of the order of a soft
scale ¢; ~ O(gT), and orthogonal to w, with @, = (0,q) and permits the scalar products
u-Q =0and u- K; = k;,. For a 2-point function of gauge bosons the propagator, its inverse
and the self-energy are all symmetric second rank tensors, and a linear combination of

5;w , QuQV y  UplUy U,uQV + uuQ,u ) (2'42)

is the most general tensor thereof.

2.5 QCD in Euclidean spacetime

Describing the strong nuclear force, the four-dimensional action and Lagrangian of Quantum
Chromodynamics (QCD) at finite temperature composes of

Sacp —/ dT/‘CQCDv (2.43)

ﬁQCD = gauge + ﬁghost + ng + L"ferrmon + 5£QCD ) (244)
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with counterterms necessary for renormalisation at 7' = 0 contained in 6Lqcp. The different
sectors assume

1
Lonnge = —F5 F

45 Ty
‘cghost = auEaDMCa s
]' a
ng = E(QMA#P ;
ﬁfermion = &(p + ml)¢ 9 (245)

with a local SU(N,) symmetry that leaves the Lagrangian invariant. The corresponding local
gauge transformation U(z) = 9" (®)7T" ¢ SU(N,) transforms the gauge field A, — A,

A= U(z) (AM + Zﬂ) Ul(a) . (2.46)

Here, A, = A}T € R @ su(N,) are the gauge fields that take real values in (d + 1)-
dimensions and T the generators of the non-Abelian SU(N,) with structure constants f.
Their colour index @ = 1,..., N, depends on the total number of colours .. In the funda-

mental representation the covariant derivative and field strength tensor take the form

D,[A] =0, —igA,, (2.47)
a __ a a abc pb pc
F,, =0,A) —0,A, +gf*" A A, . (2.48)
Quark fields 9; carry Dirac, colour, and the flavour indices i = 1,..., Ny dependent on the

number of fermion flavours Ny. We employ Hermitian Dirac matrices 'yL = 7, obeying the
Clifford algebra Clgii(R) with {y,,7.} = 26,,. The covariant gauge fixing term L, and
ghost sector L. are in accordance with the Faddeev-Popov construction [52].

All fields and couplings « € {A,B,c,¢;,9,m;,£} in QCD are renormalised where B
accounts for a background field of A (cf. sec. 4.2.1). By fixing the dimensions for the bare
fields and couplings to

(2.49)

—2d-2d-2d-1 4—
dim{AaBaCa¢ivg7mi’§}: {d d d d d7170} ’

2 7 2 7 2 7 27 2
a dimensionless action is realised. Recurring thermal logarithms from bosonic and fermionic
integrals respect the notation [49]:
ﬂe'YE
n—r-= J
4l

Concretely, the following conventions relate renormalised and bare fields (or wave functions)

Ly =1 Li=Ly+2mn2. (2.50)

1/2
B, =2Zy/*Bt = (1+62,)" /B,
1/2
AL =2Z)PA0 = (1+62,) 248,
A =72 = (1+462)%

vs = 202 = (1+62,)%y (2.51)

while the renormalised coupling gy, quark masses m;, and gauge fixing parameter & relate to
their bare counterparts by

95 = 17 Zyg = 1> (g7 +09%) |
on = Zymi = (] +om7)

§s =ZE=(1+6Z)¢, (2.52)

m
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where gy is dimensionless. Then, we list the 3-loop renormalisation group equation (RGE)
for QCD by following eq. (2.22)

dIn g2 (4m) (4m)* (4m)® (47)
_ > n+2 _ 92(/1)
dlnm = il
W = Z()<7m)na ) (2.53)

the bare coupling gz and quark masses are re-expanded in terms of the renormalised gauge
coupling from eq. (2.52). The RG constants Z; and Z,, read to 2-loop order

2 4 2

%=1 iy ? fin {{2 - fg] +06), .
2 4 _ 2

Ty =1+ (497‘52 2(7;”)0 + (497‘:)4 [(7’:)1 = (%)Oﬁoe2 20mh | | gy (2.55)

As a non-Abelian gauge theory QCD exhibits confinement in the IR and asymptotic
freedom in the UV. Succeeding the discussion below eq. (2.21), we inspect the one- to three-
loop QCD p-function

Bo = é(—llNC + 4T, Ny) , (2.56)
B = _%41\73 + 230 T.N; +4C.T.N; , (2.57)
B2 = —2§Z7N3 + 1;1;5 NZT,N; + ?NCCFTFNf

—2C%T,N; — 12578 N.T2N? — %C’FTFQNE , (2.58)

with further coefficients known up to 5-loops in vacuum [17, 18, 19]. Since its leading order
coefficient is negative By < 0 for N; < %NC it is also for the physical case N, = 3, N; = 6
and the coupling diminishes at short distances. Therein, quarks and gluons behave as free
particles at high energy scales and perturbation theory holds. In the low-energy regime the
scenario is reversed and QCD becomes strongly coupled, the theory confines, colour-neutral
bound states are formed, and the theory requires non-perturbative treatment.

The one- and two-loop QCD quark mass anomalous dimension v, is

(ym)o = —=3Cy (2.59)

97 3 10
(Ym)1 = —Cy (GNC + 505 - 3TF> : (2.60)

with respective results up to 5-loops in [20, 21]. Since the anomalous dimension -, bears no
dependence on the quark masses inside the MS-scheme, we suppress the quark flavour index.
The relation between the anomalous dimension and the quark mass renormalisation becomes
apparent when taking the derivative of the bare mass which is invariant under renormalisation
group transformations
0— dmg  dZ, i dm
Cdlnpg?  dlnp?  dlnp?’
——

TYm

(2.61)

where the second term is per definition eq. (2.21) the anomalous dimension.
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2.5.1 Thermodynamics of QCD

Finite-temperature QCD allows to study the transition from an unconfined (quark-gluon) to
a confined (hadron) phase [53]. In the unconfined phase the theory describes a Quark-Gluon
plasma (QGP). Depending on different values of the light quark masses m; = my 45 in the
theory the character of the transition is determined at vanishing chemical potential p ~ 0.

e m; — o0o. First-order transition.
Infinite and large quark masses decouple from the theory and in the resulting pure
SU(N) Yang-Mills gauge theory the transition is defined by the Z (V) center symmetry
(see below).

e m; — 0. First-order transition.
Zero and light quark masses induce the global chiral symmetry in the QCD Lagrangian
Loep (2.44). Hence, the phase transition can be defined by chiral symmetry breaking
and restoration with the chiral condensate (1)) as order parameter.

e Physical quark masses m;. Crossover transition.
Since symmetry features remain unaltered across the transition, its nature is one of a
smooth crossover. Both chiral and center symmetry are explicitly broken by the quark
masses.

Because the latter transition is a smooth crossover for physical quark masses [54, 55] its
phase transition critical temperature (7)) is not uniquely defined. Relating it to observables
affected by chiral symmetry such as the chiral condensate and susceptibility, the crossover
temperature of T, ~ 155 MeV was readily determined by refs. [12, 13] and recently extended
to finite chemical potential by refs. [14, 15]. Studying static observables non-perturbatively
with both the fundamental theory of QCD and its dimensionally reduced one, agreement
was found up to T ~ 2T, for e.g. spatial string tension [56, 57, 58] or spatial correlation
lengths [59].

As mentioned above, in Yang-Mills theory (YM), the pure-gluonic sector of QCD!, the
breaking of the Z(IV;) center symmetry governs the confinement-deconfinement transition [60,
61]. This is a global symmetry of the theory at finite temperature. While the bosonic fields
have to obey periodic boundary conditions in the path integral (2.5) once the time direction
is compactified in the I'TF, this need not be true for the gauge transformation itself

U(r+B,x2) ==2U(T,2), (2.62)

where z € SU(N.) is a twist. However, for a transformation (2.46) of gauge fields to be
invariant

A (1,x) = Z(AM(T, x) + ;6H> 2t (2.63)

z must be independent of spacetime and commute with all elements of SU(NN,). This condition
is only realised if the z-twist is in the center of the gauge group z € Z(N.) such that
z = e2™"/Ne] with integer values n € {0,..., N. — 1}.

The action of SU(N.) hot YM without matter in the fundamental representation, is
invariant under the Z (V) center symmetry. A phase transition always relates to an order
parameter which for the center symmetry in QCD is given by the Polyakov loop. The latter
is in general not invariant under a Z(N,) transformation. At low temperatures the Polyakov
loop vanishes and center symmetry is restored while at high temperatures it is spontaneously
broken to one of the N, physically equivalent vacuum states. The transition is first order.

The symmetry breaking patterns that drive the phase transition in the full theory need to
be either respected or restored by the dimensionally reduced theory. The above Yang-Mills

n comparison to eq. (2.44), the Yang-Mills Lagrangian composes of LyM = Lgauge + Lghost + Lt
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example shows that the spontaneous breaking of center symmetry is essential for the dynamics
at the phase transition and its realisation. Chapter 4 discusses how the dimensionally reduced
theory of QCD tackles this issue.
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Chapter 3

Computer-algebra tools for
thermal perturbation theory

Thermal perturbation theory entails great potential of automation in analogy with zero-
temperature computations. As indicated in the motivation, the pipeline undergoes a com-
binatorial, algebraic, and analytic evaluation that stretches from the generation of Feynman
diagrams to the treatment of a small set of master integrals. Once the theories of interest
contain multiple fields and scales or the computation reaches loop or leg orders that surpass
the 1-loop level, their systematic treatment becomes indispensable. Dimensional reduction,
as a purely perturbative process, is an ideal candidate to demonstrate the implementation of
this kind of systemised algebraic manipulation.

This chapter introduces the cornerstones of automated dimensional reduction, the corre-
sponding computer-algebra tools and in-house algorithmic implementations.

3.1 Automated Dimensional Reduction

How automated is automated? To showcase this question, we monitor various stages of a
perturbative computation inside a thermal field theory and show the journey of the 2-loop
2-point QCD diagram including one fermionic line within the most complicated topology

“n-{1- (31)

with the negative sign (—1) for the respective fermion loop.

3.1.1 Computer algebraic implementation

The necessity of precise predictions for hadron collider physics sparked the development of
a wealth of zero-temperature algorithms to handle the computation of Feynman diagrams.
Their different stages of computation are cast to a succession of pre-existing public packages.
The standard procedure consists of a diagram generator like qgraf [62] or FeynArts [63]
based on a model file that codifies particle and vertex properties of the theory. It determines
topologies and combinatorial symmetry factors in accordance with the external and internal
field content, loop-, and leg number.

What follows is an algebraic stage that simplifies the arising integrals and tackles group-,
Lorentz- and Dirac algebra. One all-purpose software implementation is FeynCalc [64]. The
final reduction and analytic solution of integrals involves methods as Integration-by-parts
(IBP) [65, 66], difference equations [67], or Mellin-Barnes transformations [68]. Software that
offer these features amongst others are reduze [69] or FIRE [70] using s-bases, region-bases
or explicit integration by sub-diagrams.
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3. COMPUTER-ALGEBRA TOOLS FOR THERMAL PERTURBATION THEORY

The main complication of finite-temperature perturbative calculations presents itself only
when analytically evaluating sum-integrals. Thus, this thesis establishes the following algo-
rithm which holds for a generic EFT matching computation. While implemented in FORM [71],
the loop computer’s best pattern matching friend, it handles most levels of Feynman integral
calculus. Its central steps are

(i) Feynman rule generation
(ii) Graph generation with qgraf [62] and visualisation with axodraw [72]
(ili) Momentum shifts to canonical bases
(iv) Feynman rule insertion and algebraic manipulations
(v) Taylor expansion in (soft) external momenta g7 and heavy mass scales
(vi) Scalarisation and decoupling of external momenta via tensor decomposition
(vii) Integral reduction with IBP identities based on a Laporta type [67] algorithm
(viii) Analytical or numerical solution of the remaining master integrals (cf. appendix A.1)

The following summary addresses various waypoints how to exploit the prevailing in-
formation of the integrals to algebraically simplify them towards a few calculable integrals.
Otherwise the scaling of the problem is far from linear when examining higher-loop orders.

3.1.2 Feynman rules and model generation

Merely starting from the model Lagrangian requires the direct generation of a model file and
the corresponding Feynman rules. This allows ggraf to assemble all the topologies with the
given field and vertex content. Their group-, Lorentz- and Dirac structures are automatically
determined by (cycle)symmetrising over individual fields and maximally symmetrising terms
in the input Lagrangian. To ensure correct relative signs in the rules, tests against known
correlators are run.

The corresponding QCD Feynman rules are generated based on the particle content and
the Lagrangian in eq. (2.44) exemplified in listing 3.1 for the QCD gluon 3-point vertex with
functions

e vrtx() for vertices,
e prop() for propagators,
e ext () for external lines,
in agreement with [73]. The contributing QCD particles are denoted with
o (ge3), g13 for (external) SU(3) gauge field (B,), A,
e (hg3), gh3 for (anti-)ghosts (¢?), %,

e (uq), qu for (anti-)quarks (1), .

Inserted into diagram (3.1) and based on external and internal momenta this creates the
corresponding topology in listing 3.2.
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3.2. Combinatorics

Listing 3.1: Feynman rule for the QCD 3-gluon vertex by matching patterns id 1lhs = rhs in FORM notation
with d_(m1,m2)= 0., ,m, and p1(m1) momenta pi,m,,. The functions tr3() correspond to traces over SU(3)
group generators defined in eq. (3.48) while sg3 is the QCD gauge coupling,

id vrtx(gl3(a31?,m1?,p1?),gl3(a32?,m27?,p27),gl3(a33?,m37,p37)) =
+tr3(a31,a32,a33)*(pl1(m2)-p3(m2) ) *(2*d_(m1,m3) *sg3)
+tr3(a31,a32,a33) *(pl (m3)-p2(m3) ) * (-2*d_(m1,m2) *sg3)
+tr3(a31,a32,a33) *(p2(m1) -p3(m1) ) * (-2*d_(m2,m3) *sg3)
+tr3(a31,a33,a32)*(p1(m2)-p3(m2) ) * (-2*d_(m1,m3) *sg3)
+tr3(a31,a33,a32) *(pl(m3)-p2(m3) ) * (2*d_ (m1,m2) *sg3)
+tr3(a31,a33,a32) *(p2(m1)-p3(m1) ) *(2*d_(m2,m3) *sg3) ;

Listing 3.2: Topology eq. (3.1) generated by ggraf in FORM notation with functions vrtx() for vertices,
prop() for propagators, and ext () for external lines.
+(-1)*

ext (ge3(-1,kql) ,ge3(-2,-kql))*
prop(qu(1l,-k1),uq(2,k1))*

prop(qu(3,-ki+kql) ,uq(4,ki-kql))*

prop(qu(5,k2) ,uq(6,-k2))*

prop(qu(7,k2+kql) ,uq(8,-k2-kql) ) *
prop(gl3(9,-k1-k2),gl3(10,k1+k2))*
vrtx(ge3(-1,kql) ,uq(4,k1-kql) ,qu(l,-k1))*
vrtx(ge3(-2,-kql) ,uq(6,-k2) ,qu(7,k2+kql) ) *
vrtx(gl3(9,-k1-k2) ,uq(2,k1) ,qu(5,k2))*
vrtx(gl3(10,k1+k2) ,uq(8,-k2-kql) ,qu(3,-ki+kql))

3.2 Combinatorics

3.2.1 Momentum shifts and expansion

A generic Feynman diagram is classified by IV internal loops, its number of N, external lines,
N, = N, — 1 independent external lines, and Ny internal lines or propagators. Its integral is
expressed in the form

e o e
(81, SN T, -, TN ) = =N, ~s LS ) :
(e} [124 A7

with propagators A, = pg + m? and explicit numerator Lorentz structure N#1-Hn  The
latter consists of all potential tensor structures of N, independent external momenta ¢; and
N loop momenta k;. This especially includes all possible scalar products amongst loop
momenta (k; - k;) and mixed momenta (p; - k;) where p; are composed of linear combinations

N Ne
pi = Z Aijk; + Z 0ijq; - (3.3)
J=1 Jj=1

The index i is restricted only by letting the matrices \;;,0;; € {—1,0,1}. Then the number
of unique propagator momenta corresponds to the fixed number Ng of irreducible scalar
products within a diagram

1
Ny = §Nk(Nk+1)+Nqu . (34)

Here the first term amounts to the number of scalar products between loop momenta while
the second term counts mixed loop and external momenta. In essence there is a redundancy
in eq. (3.2) because the possible number of scalar products is limited by Nj.

Scalarisation casts integrals with explicit tensorial Lorentz signature to purely scalar in-
tegrals. Since open Lorentz indices of n-point functions relate to external lines, one either
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3. COMPUTER-ALGEBRA TOOLS FOR THERMAL PERTURBATION THEORY

Listing 3.3: Topology eq. (3.1) generated by qgraf in FORM notation with functions vrtx() for vertices,
prop() for propagators, and ext () for external lines. Momentum shifts from eq. (3.3) onto the corresponding
2-point 2-loop auxiliary topology are applied.

+(-1)*

ext(ge3(-1,kql) ,ge3(-2,-kql))*

prop(qu(l,-k1),uq(2,k1))*

prop(qu(3,-ki+kql) ,uq(4,ki-kql))*

prop(qu(5,-k2) ,uq(6,k2))*

prop(qu(7,-k2+kql) ,uq(8,k2-kql)))*

prop(gl3(9,k2-k1),gl3(10,-k2+k1))*

vrtx(ge3(-1,kql) ,uq(4,k1-kql) ,qu(l,-k1))*

vrtx(ge3(-2,-kql) ,uq(6,k2) ,qu(7,-k2+kql) ) *

vrtx(gl3(9,k2-k1) ,uq(2,k1) ,qu(5,-k2))*

vrtx(gl3(10,-k2+k1) ,uq(8,k2-kql) ,qu(3,-ki+kql))

projects out their dependence or shifts these indices onto external momenta and metric ten-
sors. This facilitates the subsequent computations.

An auxiliary topology or integral family A is an ordered, minimal, and complete set of
M propagators with M = N,. Concretely, minimality requires the inverse propagators to be
linearly independent while completeness ensures that all N, scalar products can be expressed
by inverse propagators. This corresponds to the basis of momenta:

An,.N. = {pl- i=1,...,M; {pi} linearly independent} . (3.5)

Momentum shifts onto the auxiliary topology canonise the integral in (3.2)
I(Sl,. . .,sNd;m1,...,mNd) — I(Sl,. S SMMY, .. ,mM) , (36)

and reduce the different momenta in the topology of eq. (3.1) to one representation with
minimal amount of scalar products; see listing 3.3. Furthermore, this moves the information
of contracted Lorentz indices of scalar integrals from the numerator into the denominators
and mitigates complicated polynomials of different scalar products in the numerator to the
maximal amount of Nj.

This fixes the content of propagators but still allows Ny different scalar products in the
numerator. Because they are also contained in the propagators this is another redundancy.
We remove it through an expression with inverse propagators and by iteratively applying the
identity

(p-k)i 1 (1 A= Cilp-k)i

A c, ), iel,...,. M, (3.7)

where the propagator A; = Ci(p - k); + (...) contains the corresponding scalar product
with coefficient C;. This systematically moves scalar products from the numerator into the
denominator on the cost of additional but canonised terms. The resulting integrals

1

s S€ZM, 3.8
ay AT LAY (3.8)

I(Sl, .. .,SM) = Isl..,sM =

are characterised by points s in the M-dimensional parameter space of powers s;.

The possibility to uniquely identify integrals benefits their further algebraic treatment.
One such unique classification separates recurring integrals into sectors and tags them with a
sector identification number sID. In this sense a sector is a unique binary base representation
indicating which of the M propagators are present in the set Ay, n, and sID assigns every
possible combination of denominators to a unique sector. Further unique classification of a
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3.2. Combinatorics

whole integral is achieved in accordance with [69] using the scheme:

sID(I;) = 20(81)2M_i , sector ID , (3.9)
t(ls) = ZZ: 0(s;) , number of denominators , (3.10)
r(ls) = zz: 0(si)si , denominator powers , (3.11)
s(Iy) = i —0(—s;)si , numerator powers (dots) , (3.12)

q(Z3) = zl: 0oy , Matsubara mode powers , (3.13)

where 6(z) is the Heaviside theta function. Starting from the basis eq. (3.5) in a given integral
I, then t(I,) counts the number of different propagators, r(Is) the total number of positive

powers of these propagators, and s(Is) the total number of negative powers. In case of a
sum-integral Zg- (see below eq. (3.49)), q(Zs) gives the total power of the zero-momentum
components. Conversely, these classifiers were chosen such that for a given sID its binary
base representation and complexity are uniquely determined by the set {¢,r,s,q}.

The integral family of a given loop and leg level depends on its maximally difficult integral
with t...,. propagators. Typically, it suffices to characterise integrals with M = t.., at low
loop levels. However, sometimes also more than one maximally difficult topology exists and
one needs M > t,.. propagators to capture all sectors.

The maximal amount of combinations in a binary system with M digits amounts to 2™
but in general not all sectors are relevant or physical. To decide which of them are relevant

sectors, we see that there are multiple possible sectors sID for every t-level but only

S = f: (At/‘[) <2M (3.14)

t=Ny

are physical sectors. Additionally, we already disposed of the trivial zero-sectors that have
less propagators than loops (t < Ng).

In this discrimination certain sectors describe the same topology. Such redundancies are
related to symmetries of the integral measure and the propagators. They can be eliminated
upon linear transformations of the loop momenta

N, Nq
ki%ZMijkj"i_ZNiij , t=1,...,Ng. (315)
j=1 j=1

Where we consider M;; as an invertible [N, x Nj]-matrix and | det M| = %1 to avoid possible
d-dimensional dependences in the exponent of the Jacobian matrix. When only vacuum
diagrams (N, = 0) are considered eq. (3.15) simplifies to its first term.

By definition, the complete auxiliary topology Ay, in eq. (3.5) expresses every propagator
as a linear combination of elements of the basis after acting with M;;

M
A, — A= Z A, +c, ¢, c=const., (3.16)

n=1
such that integrals remain within the same integral family. Figure 3.1 collects all unique
sectors and relations amongst them for 2-loop tadpoles with auxiliary topology Ao and 3-

loop with As. To summarise, the above classification and momentum shifts allow to group
certain sectors:
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—6— [

t=5——""— |62

t=4— 60] t=3——

P S -

Figure 3.1: The subsector tree of tadpole auxiliary topologies Ay (right) and As (left) for different sector
identities sID and number of denominators ¢.

(i) Physical sectors. A non-vanishing integral possible to map onto a graph with given
momenta.

(i1) Trivial zeros t < Nj. The number of propagators ¢ is less than the number of loops Ny
in the diagram but dimensional reduction sets the integral identical to zero.

(iii) Non-trivial zeros rank(M) < Nj. The number of propagators t is larger or equal than
the number of loops Ny, in the diagram but an adequate momentum shift eq. (3.15) sets
the integral to zero.

(iv) Trivial antisectors t > t,... The number of propagators ¢ is larger than the number of
propagators of the maximally difficult topology t,,.x-

(v) Non-trivial antisectors. The number of propagators ¢ is less or equal than the number
of propagators of the maximally difficult topology .., but it is impossible to map the
integral onto a graph.

The complexity of the integrals decreases further by expanding in external momenta g;.
The resulting terms are Taylor coefficients evaluated at ¢; = 0 up to the relevant order in
g;- As argued in sec. 2.4.2, external and loop momenta exhibit a scale separation ¢; < k;
because in the matching the full theory is expanded in IR scales. The exact identity

1 1 2%k-q+¢ 1 (3.17)
(k+q24+m?2 K+m?2 k24+m?2 (k+q)?2+m?’ '

permits an iterative treatment where m is an arbitrary mass scale on the propagator. While
the first term is independent of external momenta it comes with the same UV and IR be-
haviour as the original integral. However, subsequent terms in eq. (3.17) decrease the super-
ficial degree of UV divergence and increase the degree of IR divergence.

We need to apply eq. (3.17) iteratively to reproduce the correct terms up to fixed order
in ¢. This cancels all poles at ¢?> = 0 of the correlators that may arise at diagram level. To
be specific, the expansion generalises

1 = (nti— 1\ (=2k-q— %)
[(k+q)2+m2]"_;< i )[k:2+m2]n+ (3.18)

with n > 0. Inside the resulting integrals the presence of external momenta is removed from
the propagators and entirely contained in the numerators. There they still appear in scalar
products but the corresponding topologies are all vacuum tadpoles.

Thereafter, external momenta inside scalar products are extracted. This is achieved
by Tensor Integral Decomposition (TID) based on the rotational symmetric structure of the
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integrals. The decoupling of the remaining tensor indices is performed with totally symmetric
tensor structures combining external momenta or metric tensors such as

Ouv s Ouwpo = 0u0ps + 0upOue + Ougdup (3.19)
with the generalised Kronecker symbol
Oiy iy = Oiyig - -+ Oig, _1is, + (2n — 1)!! permutations . (3.20)

A non-trivial illustration is the decomposition of (k*k" kLB ) which corresponds the rotation-
ally invariant expectation value. We arrive at a composition of metric tensors by anticipating
its most general ansatz

('K KPR = A(k*)00p0 + B(E*)8,p000 + C(k*)0,u00u, (3.21)
where the coefficients are functions of k2. To recover these, both sides of the above are
multiplied by either d,,0,0, 0,010, OF d,50,, and the system of equations is solved

(k*) = Ad* + Bd+ Cd = Ad + Bd* + Cd = Ad + Bd + Cd* , (3.22)

which yields A = B = C, where

1

AR = Ty

(k*y . (3.23)

Moreover, all emerging structures are systematically decomposed to decouple external
momenta. While the above example shows a specific case, a generalisation of this decomposi-
tion of external Lorentz indices is desired. For a generic tensor decomposition and decoupling
of the external momentum and loop momenta, one can insert factors J; 0iy..4,, yielding

1ol

k k

i1.nia 01 ia

The factors in the denominator of eq. (3.24) are evaluated exactly. The special case gives

i ... Fia y -
+a—2)!
= (o= DU ==

This shifts the open tensorial indices into open Lorentz structures. Their pre-factor is then
of combinatorial nature and in general a d-dimensional polynomial. After contraction the
external momenta factorise completely from the integral. Odd numbers of loop momenta
vanish by integration such that o € {2k : k € N} in eq. (3.24).

Thus, the tensor decomposition simplifies the initial auxiliary topology to vacuum tadpole
diagrams with a reduced mass scale. This means also Ny only consists of the pure-loop part
Ny = Ni(Ni+1)/2 in eq. (3.4) and Ng-loop vacuum topologies T} i pictorially identify

Tiap = @t,sm ) (3.26)

represented by their sector (sID) and number of propagators ().

Oiy.ig O (3.25)

1ol

3.2.2 Feynman graph polynomials

Internal symmetries reduce the number of Feynman diagrams when applied systematically.
Such a method ideally accesses all the symmetry information inside a given diagram in order
to find all sector shifts and sector symmetries. One strategy is to construct all possible shifts
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by eq. (3.15) and select only those that map onto the targeted sector. This is less obvious
because with an increased loop order the number of possible shifts becomes large.

Most internal symmetry information is encoded in graph polynomials which are the first
and second Symanzik polynomials. These parametrically represent Feynman integrals and
permit a classification

T(v— 2N Ny Ny y— 4 (Npt1)
I(s) = W/ iz ([[deia ™t 5(1-3 o “2761 ’ (3.27)
Hi:dl [(si) Jai>0 i—1 = Fr—5N

where v = ) N, Si Sums over exponents of Ny internal lines. Many variants arrive at the
Symanzik polynomials with definitions outlined in [74]. U and F depend on the Feynman
parameters x; in the sum of denominators

Nd Nk Nk
dowipi+mi) = keMpsks +2) Qr -kt J (3.28)
i=1 r,s=1 r=1

where M is a [Nj X Ni]-matrix and @ is a Nji-vector of external momenta. Performing a
general momentum shift k; — k; + >, M ﬁngk fixes the graph polynomials to

U = det(M) , (3.29)
F =det(M)[QM'Q + J|u~2, (330)

where p is an arbitrary scale to render the integral (3.27) dimensionless. The graph polyno-
mials are homogeneous in z; with degree Ny for U and Ny + 1 for F, where U is a positive
semi-definite function in the domain where all z; > 0; concretely each monomial has coeffi-
cient +1.

Vacuum integrals simplify the situation because then their graph polynomials agree up
to a proportionality constant U oc F once Q = 0 and J = const. in eq. (3.28). This holds for
the fully equal massive case J = ) N, Tim; = m and for the massless case m; = 0. Otherwise
the metric is best derived in the space of products UF. Based on a specific binomial sector
representation one can read off the polynomial by computing the determinants det(M). For
example, the binary representation of the integral in sector sID=62 is I;;;;;, defined in
eq. (3.49). Its massless limit translates to

5
N wpt = w5 ki — 2wy (ky - ko) + @y k3 — 2u5 (ky - ky) + w35k (3.31)
i=1

using the notation x;;. , = x; + x; + - - - + 3. Without external sources the matrix
T145 —T4 —s

M=|-24 z 0 (3.32)
—XI5 0 I35

permits a single graph polynomial
U = 21T95%34 + X2X5T34 + T3T4X05 . (3.33)

Note that as expected every monomial in U/ has coefficient (+1). When characterising Feyn-
man integrals there are various options for arriving at the first Symanzik polynomial. In fact,
in our example even six sectors {31,47,55,59,61,62} attain eq. (3.33). These are grouped
into equivalence classes labelled by their highest valued sector. To compare two polynomials
Uy with Us a normal ordering of the terms in the polynomials per sector becomes necessary
to determine equal sectors. A metric is defined using a variant of the algorithm described

28



3.3. Algebra

1,1

sHool
@6,63 5,62 @ 4,51 %4,60 QO 3,56

Figure 3.2: Vacuum topologies up to 3-loops consisting of the 1-loop tadpole, 2-loop Sunset, factorised 2-
loop tadpole, 3-loop Mercedes-, Spectacles-, Basketball diagrams and two factorised 3-loop topologies. Sector
identities sID and number of propagators t are given.

in [75]. This retrieves the graph isomorphism which is known to belong to the NP complexity
class.

As an example we can a priori determine the number of vacuum topologies at different
l-loop levels. They are fixed and at 3-loop order, 5 different vacuum topologies feature
(cf. fig. 3.2) which are Tg 63, T5 62, Tu51 of the form 3 x (3€), Tyeo of (2¢) x (1¢), and T3 56
of factorised (1¢)3. The sector symmetry of Tt 63 is equivalent to a regular tetrahedron and
thus isomorphic to the symmetric group Sy.

3.3 Algebra

Once integrals are condensed to a scalarised set, the remaining task is to deal with the different
algebraic sectors of the theory. This necessitates an automatic implementation of Lorentz
algebra, group Algebra, and Dirac algebra using either projectors to avoid open indices or
explicit treatment of tensor structures.

3.3.1 Lorentz algebra

In the previous section, we described how Lorentz tensor indices are shifted onto the external
momenta in the computation. In case of multiple external momenta it is still non-trivial to
deal with the decoupled g;.

In the following, the case of a rank-2 tensor is illuminated, namely the gluon self-energy
IT,,,. Owing to the presence of the heat bath, eq. (2.42) constrains the possible allowed struc-
tures such that for a spatial external momentum g, = 6,;¢; three independent components
IIg, Il and II;, remain

Ioo(q) = Ix(q?)

I, (q) = (@-j - qq“’) M () + 221, ) (3.34)

which are scalar functions. The spatial part is d-dimensionally transverse (¢;II;; = 0) as re-
quired by the Slavnonv-Taylor identity [76, 77] wherefore longitudinal contributions IT;, vanish
consistently order-by-order and possible time-spatial cross-terms Ily;, IT;y vanish identically.

At 2-point, Lorentz projectors are especially practical because particle conservation at
the vertex fixes all external indices. Relevant for the loop calculation are

IPEV = 5#0&/0 )

_ duqv
P, = b = 2%
qud
IPZV = Z2V , (3.35)
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which denote the transverse I}, longitudinal IPZV, and temporal IP)j, projection operators.
Contracting the generic tensor structure of the self-energy amplitude in eq. (3.34) with these

projectors fixes the transverse part Il
I = (PT IP/TW + P, IPZV + P, IPﬁV) I, = (Pr+ Py + (d = 1) P 11, + P10, (3.36)

with coefficients Py 1. Substituting in eq. (3.35) and setting the following values for the
projector coefficients P gives
1

I, = — (P, —P; )10, = H|PE: )

d—1 — a1 Pr=gty =0

II
II

L= H‘PE:O,PT:O,PL:I )
E = H‘PE:LPT:O,PL:O : (3.37)

We note that within the dimensionally reduced theory tensor structures are purely spatial.
Hence, the temporal Il is not present. While the simplicity of the 2-point function is partic-
ularly convenient such a treatment is less apparent and unique at higher-point correlators.

3.3.2 Group algebra

The generators 73 of a compact semi-simple Lie group form a Lie algebra
(T3, T} = if™ Ty, (3.38)

with representation R and its totally antisymmetric structure constants f2¢ that are indepen-
dent of any representation. After normalising the structure constant also the normalisation
of the generators is set for any representation. Taking traces over generators is encountered
throughout almost any computation of Feynman diagrams in QCD. The appearing structures
are group invariants defined as quadratic, cubic, and n-th order Casimirs C),(R)

SPTITE = Cy(R) ,  dap TOTETSE = C3(R) , ... (3.39)
Furthermore, the generators satisfy an inner product relation
Tr (TSTE) = T(R)6* , (3.40)

where T'(R) is the Dynkin index of the corresponding representation. Multiplying both sides
of eq. (3.40) with §% relates the quadratic Casimir to the index

d(R)Cs(R) = T(R)A(G) . (3.41)

Two prominent representations of generators for the su(N) algebra are the adjoint (7')
and fundamental (7)) representation with

(T8)ig = (T, (TR = —if ™, (3.42)

whered,j € {1,...,N}anda,b € {1,..., N?>~1}. Using that the group dimension d(SU(N)) =
N? — 1, distinct values of dimensions and group invariants of these two representations for a
general SU(N) are

(N2 -1)

fund.: dy =N, Cp= o

adj.: dy=(N? -1), Cy=N, Ty=N,
1
3 (3.43)
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3.3. Algebra

Listing 3.4: Factorised colour structure of eq. (3.1) with fundamental traces of the form tr3(ai,...,an)
from eq. (3.48).
[diagl=

+tr3(a3i9,a3i110)*tr3(a3el,a3e2) *

tr3(a3i9,t3(1i315,1312))*

tr3(a3110,t3(i313,1318))*

tr3(a3el,t3(i8i1,i314))*

tr3(a3e2,t3(1317,1316))*

d_(i3i1,i3i2)*d_(i3i3,i3i4)*d_(i3i5,i31i6)*d_(i3i7,i3i8)*

(499 terms);

Listing 3.5: Factorised colour structure of eq. (3.1) after applying the Fierz identity (3.46). Ca3 is the adjoint
and C£3 the fundamental quadratic Casimir

[diagl=
+C£3*( 499 terms)
+Ca3*( 499 terms);

using 6?6 = d(R). This allows to project open group indices of n-point gauge field cor-
relators and is practical to treat the 2-point colour gauge field external structure. For any
representation, the relation

T ([79, 7Y T) = i f*Tr (TITE) = if ™ T(R) | (3.44)

translates traces over generators to the structure constants of the group up to the index of
the representation. Ultimately adjoint generators are traded for traces over fundamental ones

if*Ty = Tr ([T, T°]T°) . (3.45)
The latter decomposes further by using the Fierz identity
“ o 1 1
(T)ij(T" ) = 3 0it0kj — N%‘% ; (3.46)

that splits contracted fundamental su(N) generators where a is summed implicitly. The
identity states that the generators form a complete set of traceless NV x N matrices, where
tracelesness is implemented by the 1/N-term. A powerful application is that, any trace in
any representation can be brought back to traces over fundamental generators and products
of traces are translated to single traces.

Typical terms that appear in a computation contract 7% from multiple traces

Te(...7%.. )T (...T"...). (3.47)

In case of external particles in the fundamental representation the overall colour structure
consists of T%-strings (T ...T%");;. In our example (3.1) the following colour structure is
factored off the remaining terms and takes the form in listing 3.4 with fundamental traces
and strings of generators

tr3(al,...,an) = Tr (7% ...T"),
tr3(al,...,an,t3(i1,i2)) = (T ... T )i, - (3.48)

After applying the Fierz identity eq. (3.46) the colour factor simplifies significantly giving
rise to its adjoint (Ca3) and fundamental quadratic Casimirs (C£3); see listing 3.5.

In general higher-loop computations introduce higher-order group invariants [78]. The
reason for this is that traces can span over many more group generators than the ones
outlined above. Therefore, the colour structures of different terms after applying the Fierz
identity can always be mapped onto the basis of group invariants.
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3.4 Automated sum-integral reduction

In the passing, we establish a compact parameterisation for tadpole sum-integrals with vectors
s € ZM and a € NVk

aq
Za — kO
$1;01 — Ss1
K
K{a1}
a1 7.002
Zalozg — i klo kQO
§18283;0102 — Asl ASZ ASS ’
K {o1}Ky{opy 2T
a1 7,09 7,03
Za1a2a3 — kl() kQO k30 (3 49)
515253545556;010203 — ASTAZAB AT A% AT :
Kl{Ul}K2{O'2}K3{J3} 1 2 3 152 1~ 83 23
employing propagators A, = K? with implicit masses on the lines when unambiguous.

Otherwise they are made explicit A, ,, = K 2+ m2. Also the fermion signature is implied in

the Matsubara four-momenta K2 = [(2n 4 0;)7T]? + k2 and o; = 0(1) for bosons(fermions).
The inclusion of a chemical potential in the partition function eq. (2.1) induces a shift in the
zero-component of the fermionic momenta Ky — Ky+(ip, 0) or accordingly in the Matsubara
frequencies

wy = @y =wy, +ip= 2n+ 7T +ip . (3.50)

Generally also bosonic and fermionic masses are allowed. Full bosonic integrals with {o;} =
o =0or {a;} = a =0 are identified as

200 =2,. (3.51)

For computations with massless bosons different fermionic masses {m;} = m # 0 allow a
compressed notation
ze o =7% (3.52)

simio si{mios}

Vacuum integrals in d-dimensions will be denoted in equal fashion but as
Ism » (3.53)

only consisting of subscripts.

The computation becomes more involved when considering fermionic lines since traces
over gamma matrices require correct monitoring of fermion chains inside the diagrams. Open
fermionic lines can only appear on external legs while internally fermions form only closed
loops due to fermion number conservation at each vertex. Therefore, every vertex reduces
the number of independent line signatures o; by one. For the 2-loop tadpole sum-integral in
eq. (3.49) one relation exists:

o1 = (02+03) (mod 2). (3.54)

Most efficiently one iteratively contracts vertices and propagators around the loop to obtain
an ordered list of Lorentz indices and colour indices. Those can be used for vy,-matrix-
and colour tensor contraction. As from 3-loop level onwards more than one fermion loop
is encountered, these need to be treated separately handling both Dirac and colour algebra
along the loop.

After all the above considerations, the final list of vacuum integrals is in general still
large. For the example in eq. (3.1) there are ~ O(100) integrals to be calculated as seen in
listing 3.6 using the internal representations

Zggm;g = Z(fb(§), fm(m), fc(g), fqo(g)) ) (355)
Ly, = Z(fb(s), fm(m)) . (3.56)
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Listing 3.6: List of vacuum diagrams for eq. (3.1) after external momentum expansion and tensor integral
decomposition. The different integrals correspond to the notation in eq. (3.55).

[diagl=

+Z(£fb(1,1,1) ,fm(1,1,0),fc(1,1),£q0(0,0))*( 6 terms)
+Z(£fb(1,1,2) ,fm(1,1,0) ,fc(1,1),£q0(0,0))*( 10 terms)
+Z(fb(1,1,2),fm(1,1,0) ,fc(1,1),fq0(1,1))*( 4 terms)
+Z(£fb(2,1,0) ,fm(1,0,0) ,fc(1,0),£q0(0,0))*( 4 terms)
+Z(fb(2,1,0),fm(1,1,0) ,fc(1,1),£q0(0,0))*( 4 terms)
+Z(fb(2,1,1),fm(1,1,0) ,£fc(1,1),£q0(0,0))*( 10 terms)
+( 65 lines)

+Z(£fb(5,1,1) ,fm(1,1,0) ,fc(1,1),£q0(4,0))*( 2 terms);

3.4.1 Integration-by-parts identities

Integration-by-parts (IBP) identities [65, 66] take a pivotal role in multi-loop calculations.
Their ability to reduce the number of Feynman integrals by extracting linear relations amongst
them provides a powerful tool using the differential operator

0

and inserting it into the integrand I’. The resulting integral, a surface term,
0 , .
0= ET pul' (K1, kN, qu, - an,), i=1,..., Ny, (3.58)
ki 1,1

vanishes according to the d-dimensional divergence theorem where p,, is a linear combination
of loop- and external momenta in line with eq. (3.3). The index ¢ is not summed over as it
holds individually for every loop momentum k;.

A generalisation to finite temperature is straightforward [22]. In eq. (2.8) we have seen
that the (d + 1)-theory in the ITF is one of a sum over an infinite number of massive fields
that live in d-dimensions. The dynamical degrees of freedom are the d-dimensional momenta
and the Matsubara frequencies act as masses. The salient point is that by applying the d-
dimensional differential operators of eq. (3.58) under a sum-integral every term in the sum
equates to zero individually. As an example, we look at the 1-loop tadpole integral Zgi,
with general mass on the propagator Ay ,, = K 2 + m? with particle signature o1 = 0(1) and

D=d+1

0 kot kot kot

v AEhd (el
K{o1} Ok AK’m K{o1} AK’m AKl’m

kal a1+2 kozl
= i {(d - 281)A501 + 251 Os1+1 + 281m2 S?Jrl }
K{o1} K,m Akm A¥m
2 2
= (d—2s1) Z8},, + 251 Zo 1y, +250m° Z00 (3.59)
Arising scalar products are converted into propagators by replacing
K> =Ny, —kj—m®. (3.60)
The final recurrence relation yields
251 —d
+2 1 2
Z o = 21 Z&ioy =M 2 10,
281 —d
1,17 = 5551 —m?1, (3.61)
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3. COMPUTER-ALGEBRA TOOLS FOR THERMAL PERTURBATION THEORY

where the last line uses the raising and lowering operators for propagators (ny) and Matsub-
ara frequencies (n¥)

n, Zg = Z%snil... ’
n*t 7% = Z;0nF (3.62)

This allows to translate thermal massive IBPs to either vacuum zero-temperature IBPs by
setting all n™ = 0 or massless IBPs by letting all m; = 0. Analogously the O;; generate a set
of Nigp = Ni(Nj + Ny) relations. The vacuum diagrammatic result at 2-loop order produces
Oij = {011, 012,021,022} that form a coupled system of partial recurrence relations

0= (d — 281 — 83) + 83 3+(2_ — 1_) + 251 1+(1+ + m%)
+533, (17 =27 + 37 £ m? —m3 +m3),

0=(s3—52)+522+(3- —1_)+s33:(1-—2_)

+592, (1T 427 —3" 4t m2 4+ md —m3) —s33, (1T — 27 + 37 £ m? —mi +m3),

0= (83 — 51) + 51 1+(3, — 2,) + 83 3+(2, — 1,)

+s11. (2T +17 =3 +mi +mF —m3) — 533, (27 —1T + 37+ mi —mi+m?),

0=(d—2sy —s3) +533,(1_ —2_)+ 2592, (27 +m3)
+533. (27 =17 + 3" +mi —m?3 +mi). (3.63)

The linear transformations of the IBP relations are exploited to map amplitudes as a sum
over irreducible Master Integrals (MI) I; [79]

I(s) = Y _ri(d,§)1;(d) , (3.64)

(2

where r; are rational functions of the form poly,(d, §)/poly;(d). This subset is irreducible and
integrals cannot be expressed as a linear combination of others. Their number is known to
be always finite [23] and possible to be determined a priori the reduction process [79].

The generators O;; have properties of elements of a Lie group [80]. That is they fulfill
the commutation relations

[0ij, Oirjr] = 65Oy — 831 Oy51 (3.65)

which decimates the effective set of IBP relations to a total amount of Nigp = N + N, + 1
for a given point in parameter space s. Since the system of equations of an IBP reduction is
overdetermined knowing a priori which information is redundant decreases the computational
effort in the solution.

One can also show that Lorentz-invariance (LI) identities are merely a composition of IBP
relations. IBP relations are part of the class of generalised recurrence relations [81, 82, 83].
These relate integrals of different spacetime dimensions and reduce them even further.

3.4.2 The Laporta algorithm

With growing system size, number of loop momenta N > 1 and IBPs in eq. (3.58) one is
confronted with a system of multivariate difference equations. In order to tackle this problem
with discrete mathematics, extreme efforts have to be taken and in most cases no closed
solution can be found with current methods. Practically, certain algorithms allow to solve
the system of equations and still find a reduction using direct decomposition-by-intersection
methods [84, 85, 86] or systematic Gaussian elimination. The latter is known as the Laporta
algorithm [67] and in the following a brief outline is given.
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3.4. Automated sum-integral reduction

The first step is to establish a unique ordering prescription for integrals using lexico-
graphical ordering. This provides a metric in the parametric search space of integrals and
the complexity of an integral is determined unambiguously. From eq. (3.49) the following
succession is implemented as the most complex integral using egs. (3.9)—(3.13):

(1) Largest t,
(2
(3
(
(

Largest r,
Largest s,

4) Largest q,

)
)
)
)

5) Greatest power s;,

(6) Greatest power «;.

Steps (1)—(4) determine the integral complexity and (5)—(6) its uniqueness. For fixed integral
mass dimension with eq. (3.68) steps (1)—(3) already define the integral uniquely.

To cover the search space of all integrals that are needed, IBP generators are applied on
a list of initially supplied seed integrals. These consist of all possible integrals up to fixed
(t,r,s) at zero-T and (t,r,s,q) for finite-T. Thus, for every combination of (¢,r,s,q) one

finds
—1 +M-—-t—-1
N(Ts) = (’;_1) ( P ) , (3.66)

N(Tirsq) = N (Iirs) (Nk + q) |

N (3.67)

integrals where the first binomial factor counts the number of distributions of positive powers
and the second factor counts the remaining combinations for negative powers of denominators.
For finite temperature this gets multiplied by the factor of possible powers of Matsubara
frequencies producing N (Iys4) thermal seeds.

The resulting system of IBP relations is ordered according to the above prescription.
That is first every equation is tagged by its most complicated integral, which we define as its
complexity. Then the ordering descends starting from the least complex relation, which is the
one with the simplest integral representative. This list is supplied to the Laporta algorithm.

If temperature is the only scale of the integrals, the IBP relations do not mix dimensions
amongst the thermal sum-integrals. From eq. (3.57) it is clear that any IBP generator acts
dimensionless leaving the mass dimension untouched. This has an immediate implication on
massless thermal sum-integrals of eq. (3.49):

N M
dim(Z2] = NpD + > i =2 si (3.68)
=1 =1

for any level in the reduction. This stands in contrast to the scenario where more scales are
involved or at T = 0. In the latter case mass dimensions allow the whole tower of seeds to
take part in the reduction.

The Laporta algorithm (c.f. algorithm 1) starts from the least complex IBP relation

0= Z ;% . (3.69)
J

This contains its most complicated integral Z; which is brought to the Lh.s. expressing it in
terms of simpler ones

_ / r_ G
Zy=-> dz;, = o (3.70)
il
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Listing 3.7: List of master integrals of eq. (3.1) after IBP redcution with relations in eq. (3.63). The integrals
correspond to the notation in eq. (3.55).

[diagl=

+Z(£b(1) ,fm(0) ,£c(0) ,£q0(0))*Z(£fb(2) ,fm(1) ,fc (1) ,£q0(0))*( 2 terms)
+Z(£b(1) ,£fm(0) ,£c(0) ,£q0(0) ) *Z(£b(3) ,fm(1) ,£c(1),£q0(0))*( 2 terms)
+Z(£fb(1) ,fm(1) ,£c (1) ,£q0(0))*Z(£b(2) ,£fm(0),£c(0),£q0(0))*( 2 terms)
+Z(£fb(1) ,fm(1) ,£c (1) ,£q0(0))*Z(£fb(2) ,fm(1) ,fc (1) ,£q0(0))*( 2 terms)
+Z(£fb(1) ,fm(1) ,£c(1),£90(0) ) *Z(£b(3) ,fm(1) ,£c(1),£q0(0))*( 2 terms)
+Z(£fb(2),£m(0) ,£c(0) ,£q0(0))*Z(£b(2) ,fm(1),£fc(1),£q0(0))*( 2 terms)

+Z(£b(2) ,fm(1) ,£c(1),£q0(0)) "2*( 4 terms)

+Z(fb(2) ,fm(1) ,£c (1) ,£q0(0))*Z(£fb(3) ,fm(1) ,fc(1),£q0(0))*( 2 terms)
+Z(fb(1,1,2),fm(1,1,0) ,£fc(1,1),£q0(0,0))*( 2 terms)
+Z(£fb(2,1,2) ,fm(1,1,0) ,fc(1,1),£q0(0,0))*( 2 terms);

This has the advantage that resubstitution into previously solved IBPs is unnecessary as it
will be the first time Z; is encountered. The resulting identity is substituted in all other
yet to be solved IBP relations. This is the same procedure as Gaussian elimination and the
process is repeated until the number of solved equations surpasses the number of degrees of
freedom i.e. integrals that need to be solved for.

Algorithm 1 Laporta algorithm [67]

Require: Initialise i = j =0, k = 0, iya = N(¢,7,8,q), Nigp = Ni(Ng + Ng)
for i < i, do
for j < Nip do
Apply j-th IBP on i-th seed
Symmetrise integrals of j-th IBP relation
end for
end for
while N > 0 do
Solve least complex relation 0 = ) ; ¢;Z; for most complicated integral Z; therein.
Resubstitution
end while

Extra care has to be taken with spurious poles which are singular pre-factors of master
diagrams. Sometimes the coefficients in the linear relations of the acquired IBP relations can
have poles for certain dimension. To circumvent this issue one needs to find basis transfor-
mations by hand or via automation.

Depending on the order in the expansion of external momenta the list of vacuum diagrams
reduces significantly. Only a few master integrals of eq. (3.1) remain for leading order in the
external momentum g. Some of the 2-loop integrals have factorised to 1-loop tadpoles; see
listing 3.7.

3.5 Master sum-integrals

At some point all the information of scale separation and symmetry aspects is depleted and
the remaining master sum-integrals are maximally reduced. At zero temperature various
algorithms were developed in great extent using difference equations [67], sector decompo-
sition [87], differential equations [88], or Harmonic Polylogarithms [89]. When it comes to
sum-integrals this final step is a far less automated process.

Indeed, the sum-integral analytic structure is the root source for a whole set of difficulties.
As rotational invariance O(d) only holds for the spatial components of integration momenta
the temporal ones take the role of non-dynamical masses. For every loop order of integration
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3.5. Master sum-integrals

one additional scale enters the integral such that at Ni-loop integrations one faces a Ng-scale
problem. Not only increases this the dimension of the search space during an IBP it also
significantly worsens the number of possible master diagrams.

Purely massless integrals permit a semi-automatic treatment employing methods used
by Arnold and Zhai [90]. At lower loop levels these approaches work successfully. To reach
higher levels the general idea is to exploit analytically known lower-loop sub-topologies of
the diagram. Naturally at one-loop most integrals can be solved analytically for the massless
case. Once more scales and especially masses are included, only numerical solutions exist
even at one-loop order.

3.5.1 Massive sum-integrals

The “Saclay method” [91, 92] allows to handle most of these integrals as shown in [93]. This
approach first computes the frequency sums before splitting the integral into vacuum and
temperature-dependent pieces. The idea is to convert the Ng-fold summation over Matsub-
ara frequencies into a M-fold one for every propagator by inserting the representation of
Kronecker-delta functions

CE
5(k0):T/ dr ethoT | (3.71)
0

Thereafter, one iteratively applies the Saclay representations of the propagators G(7) and
G(7) in egs. (2.12) and (2.13) and integrates over the remaining 7. Exponentials are then
removed by converting them into distribution functions

Buw 66‘” 1
such that the resulting expression contains monomials of maximal order (ng)"* and frac-

tions of linear combinations of the M energies wy.

The simplest example is the 1-loop massive (fermionic) bosonic tadpole o = 0(1) which
accords with the 7 = 0 special case of their mixed propagators egs. (2.12) and (2.13). Therein
the frequency summation is straightforward and the emergent terms are grouped into a mas-
sive vacuum tadpole and a temperature-dependent integral with one power of the distribution
function

1 1
A %{{U}M = I7*(m1) + /k %o |:n+(w1) +n—(wy) (3.73)

= I (m1) + 21, , (3.74)

with Z7, from eq. (A.43). The two distributional cases are defined implicitly

) np(w) (bosons)
na(w) = {—nF(w + )  (fermions) (3.75)

In the zero-mass and zero chemical potential limit the momentum integral allows an ex-
plicit evaluation eq. (A.39). Special care has to be taken in the summation of the fermionic
imaginary-time propagator @(T) as it is not symmetric under 7 — —7 in the presence of a
chemical potential.

However, once m # 0 no closed form exists!. Further denominator powers s; > 1 of
Z,,.1 are evaluated in appendix A.3 by taking mass derivatives. A physical interpretation of
the second finite-temperature term is that of forward scattering of an external particle off a
particle in the plasma. A diagrammatical application of this procedure are the cutting rules
of thermal integrals introduced in [94].

!Nonetheless, for 1 # 0 and m = 0 closed forms exist with examples in appendix A.3.
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Chapter 4

Testing accuracy of
Dimensional Reduction:
Higher-order operators

This chapter, summarising the work reported in [1], investigates the accuracy of Dimensional
Reduction (DR) and motivates the inclusion of higher-order operators when reaching higher
accuracy levels in the DR of QCD [95, 96, 97, 98, 99]. As a consequence, their significance
for the dynamics at the ultrasoft scale emerges.

Higher levels of accuracy in the matching of the effective field theories necessitate the
approach of higher loop levels. Thus, we reproduce the 3-loop gauge coupling from four-
dimensional Yang-Mills theory and argue that its (1/¢€)-logarithmic infrared divergence after
renormalisation as found in [100] is a natural consequence of the absence of decoupling in
thermal effective theories [50].

As an introduction, we revisit the first appearance of the operator-augmented dimension-
ally reduced theory of hot QCD in a computation by Chapman [101] in arbitrary dimension
and generalise its concepts.

4.1 Dimensionally reduced effective theories of QCD
The dimensional reduction of QCD, by the generic rules in [49], undergoes two stages (cf. ta-
ble 4.1). First non-zero Matsubara modes are integrated out which encompasses all fermionic

¢, and non-zero bosonic A, degrees of freedom. The resulting dimensionally reduced EFT
is purely bosonic, known as Electrostatic QCD (EQCD) and defined by the action

EQCD / 'CEQCD ’ (4-1)

LpqeplA] = 4F5Fg + D“bAbD“CAg 41 5 AGAG
+ IAf;)Agzzxgmvo + IAfﬁ)XabchgAlg)AgAg , (4.2)
where [ x = % fx since the fields reside in d-dimensions and the 7-integration yields the

prefactor 1/T = foﬁ d7r. The theory was used successfully in the past to study the high
temperature behaviour of QCD [95].
Other structures appearing in the Lagrangian are

DI =599, — g fAS (Ag)ap = —if*CAS, TrTT" = —X% = 5N, . (4.3)
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Start: Thermal QCD

Scale Validity Dimension Lagrangian Fields Parameters

Hard T d+1 Locp (2.44)  Fpu, i, c® g,m;
l Integrate out n # 0 modes and fermions
Soft T d Legon (A1) Fyj, Agyc®  ggymg, AL, AP

l Integrate out temporal adjoint scalar Ag

Ultrasoft g2T/7T d »CMQCD (4-14) Fij7 c® Gas My

End: d-dimensional Yang-Mills

Table 4.1: Dimensional reduction of (d+ 1)-dimensional hot QCD into effective d-dimensional theories based
on the scale hierarchy at high temperature. The effective couplings are functions of the couplings of their
parent theories and temperature and are determined by a matching procedure. The first step integrates out
all hard non-zero modes. The second step integrates out the temporal adjoint scalar Ay with soft Debye mass
mg. At the ultrasoft scale, only ultrasoft spatial gauge fields A; remain.

(T%)pe = —if% from eq. (3.42) are the Hermitian generators of su(N) in the adjoint repre-
sentation with the electrostatic coupling gr and the covariant derivative

Fij = —[Di,Dj], DilA] = 8 —iguA; (4.4)

9e
The general form of colour tensors

X 0102::Gn = fMnG1M £M12M2  fMn—10nMn (4.5)

compactly denotes traces over n-adjoint generators Tr (T3 ... Ty") = (—i)" X% and cap-
tures all arising colour structures of operators in the Lagrangian with symmetry properties
filed in appendix A of [1]. These are exploited to generate the arising Feynman rules.

It is to be noted that the operator basis for the adjoint scalars couplings )\(El),)\,(az) is
redundant because of the linear relation Tr A3 = 1(Tr A2)? for N, < 3. Focussing on general
N, the distinction between these operators is kept.

Another possibility to represent the scalar operators is the fundamental representation
(cf. e.g. [57]). To illustrate their agreement, we rewrite )\(El’2) = )\](3171’3) in the adjoint scalar
sector £, of the EQCD Lagrangian in eq. (4.2) which provides again a complete basis. The

latter is compared with the fundamental scalar sector Ly of the Lagrangian from [57]

1 1
Ly = IASL (Tr A [A2])° + @Ag; Tra[AY] (4.6)
Lo =2 (Tr e [A2])° + APL Tr  [AL] . (4.7)

After symmetrisation of both terms, the conversion {)\1(51,1);7 /\(EQL} — {/\g%, Ag%} identifies

1

1
AW ==

Ne
L= (2NN ) A =00 (4.8)

12

We drop the subscripts (F, A) retaining A(E%jf) = /\(El’Q) since all coefficients are henceforth

in the adjoint representation as instituted in the action (4.1). Upon further notice colour
traces are understood in the adjoint representation Tr , {AB} = Tr {AB} = A, By, denot-
ing Try as the trace in general representation (R). At higher loop orders additional group
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4.1. Dimensionally reduced effective theories of QCD

invariant structures appear (cf. sec. 3.3.2). Hence, defining the scalar coupling parameters
more compactly proves beneficial

N2+ 1) A 5N AP

TN, 2 T g

__ 10 AL L (V2 +36) A2

'T 6N, g2 12N, g2’

o2y AN s Ag>A§>+(N3+36> A2 (49)
T 18N\ g2 18 gt 144 2 ) '

The contributing operators in the above action render the dimensionally reduced theory
super-renormalisable

9o = Gark + 69z , (4.10)
m2 =m2, +om2 . (4.11)

Only the thermal mass of the colour-electric modes my acquires a counterterm [102, 103, 100]

gz =0, (4.12)
s — <gchT>2 A(kg — 4N)

. (4.13)

E 167 €
Any left-over IR divergence at 3-loop level on the full theory side fails to cancel against
counterterms on the EQCD side. Hence, potential higher operators have been truncated but
generally must be accounted for since EQCD is merely an EFT.
The second step of the reduction integrates out the soft dynamics of the adjoint scalar

field Ag. The resulting theory is an effective one for static ultrasoft gauge field modes known
as Magnetostatic QCD (MQCD) and defined by the action

1
SyoenlA ;/ ~FAFS 4.14
MQCD[ } x 4 ¥ J ( )

with the magnetostatic coupling gy, inside the covariant derivative

Ej = L[DZ, D]] 5 Dz = 81 — ’L'gMAi 5 (415)
9um

which equals purely three-dimensional Yang-Mills theory with truncated higher-dimensional
operators. To obtain its effective coupling gy, the matching of correlation functions with
EQCD is conducted. The MQCD gauge coupling then depends on the couplings of the high-
scale theory gy = gun(ge, mg) which in this case are the EQCD gauge coupling g and mass
scale mg. Both of are previously determined themselves through matching from full QCD.
Through a rescaling of the gauge fields Ay — A?Tl/ 2 it is seen that the only scale in the
theory is g,, itself.

4.1.1 Deficiencies of dimensionally reduced QCD

One of the main pillars of constructing a successful EFT is to preserve symmetries. In
the following, we inspect what influences the pure-gluonic phase transition in dimensionally
reduced QCD and which aspects of the fundamental theory are maintained.

Electrostatic QCD, the dimensionally reduced effective theory of hot QCD, reproduces
the center symmetry only partially. Instead of spontaneously, EQCD breaks the symmetry
explicitly [104], singling out one vacuum state instead of N, physically equivalent ones. The
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4. HIGHER-ORDER OPERATORS

culprit is that a transformation under Z(N.) produces N, vacua that are of Ay ~ 27T/g
originating from the second “twist” term in eq. (2.63). Now their scale O(g~'T) is even well
above the hard scale and thus the dimensionally reduced theory cannot resolve this UV scale.
The only vacuum that is in reach of the validity of the theory is Ay ~ 0 around which the
EFT is an expansion of.

Another issue is the lack of light fermionic degrees of freedom. On the one hand, it
is convenient that the effective theory is one of purely bosonic modes which obviates all
complications related to fermions on the lattice. The only place they appear is through
the effective couplings. On the downside, the absence of fermions obstructs the EFT from
respecting the full parent symmetries such as flavour structures or chiral symmetry breaking.

Different observables exhibit different sensitivity to the given scales in the theory. In
this context non-perturbative EQCD dynamics yields less satisfactory results concerning the
pressure of hot QCD [105] which is affected by all three scales: hard, soft, and ultrasoft.

4.2 Dimension-six operators in EQCD

The sole source of a remaining divergence after renormalisation identifies as higher-dimensional
operators that were previously neglected when truncating EQCD. A standard procedure to
construct the higher-order Lagrangian was already pursued in [101] for coupling coefficients
in d = 3. Following the strategy there, a covariant derivative expansion of the heat kernel
is applied to assemble an operator basis. Later, through a more economical approach, we
construct a different basis which generalises the higher-dimensional operator inclusion beyond
YM and QCD.

The advantage of a covariant derivative expansion of the effective action of the static
modes is that the resulting 3-dimensional effective action will be inherently invariant under
spatially-dependent gauge transformations. For pure gauge SU(V) this amounts to expanding
the functional determinants in

det(—D?) 1, det(—D?*§,, —2[D,, D))

SalAl=In ———= — =1 4.16
aldl =M oy ~3 det(—023,,,) ’ (4.16)
always subtracting the zero-gluon field contributions. Since
. > dt —xt
Inz =— lim —e "+ (v + Ine€) |, (4.17)
e—0F € t

regulates the logarithm, it implies the identity for ratios of various determinants in the
Schwinger proper time representation [106]

det(K) B  dt K Ko
In det(Ko) /0 " Tr (e e ). (4.18)

To evaluate the determinant, the functional trace in eq. (4.18) is taken by employing any
kind of complete set of states for the spacetime degrees of freedom

Tre K = /ddm Tr (z]e 5 z) | (4.19)

while internal indices are left untouched. Conveniently a plane wave basis |z) ~ exp(ip,z,)
is introduced expanding the covariant derivative and commuting it to the right

d3 o d3
lim p e D2t — im P

ip(z—a’) D? 49D 2 49
doa ) (@m)? Jm | Gope (DA 2D =) (4.20)

42



4.2. Dimension-six operators in EQCD

which has the effect of a shift 9, — d, + ip, inside the derivatives. The ghost functional
determinant expands as

det(— dt

det

d
1 p

Pty {exp [(D* +2iDyp,)t] 1 — 1} . (4.21)

Since the trace over spacetime degrees of freedom was performed, the above left-over trace
is understood over internal indices only i.e. colour or Lorentz indices. Due to the compacti-
fication of the Euclidean time coordinate at finite temperature neither zg, running from 0 to
1/T, nor py, in the sum over Matsubara modes, are dynamical.

A t-expansion up to first non-zero terms after spatial momentum integration is given by

Bp - (24)?
Tr T —p“t D2 \=") . D 242 1 =
J, ;/(%)36 D G D
Tr / TN e P (1 - 2p3t) D3 . (4.22)
X n

(47775)%

Rotational invariance allows only even powers in D. Hence, the next valid order are four
powers of D assuming

3 N2 4
Tr/ d p o [1D4t2 +3(2Z) (p- D)2D* + (24) (p-D)4t4] 1—
X

2! 3! 4!
1 2
- T 7p0t
r/ 180 Ze

(47Tt)

X {15#[1)#,1),,]2 +3062(1 — 2p2t)([Ds, Do)? + {[Ds, [Ds, Do), Do})} . (4.23)

Similarly the operators for DS are acquired in [101]. The last line uses the cyclicity of the
trace to trade strings of covariant derivatives for commutators. Terms consisting only of Dy
are grouped in the effective potential

_ a7 po)2t] — it
Veﬂ“/o i 2T {exp [(Do +ipo)?] — ¥} 1, (4.24)

which gives rise to mass terms A2, quartic A3, and sextic couplings A§ of the adjoint scalar
field. The gauge field determinant

det(—D?5,, — 2[D,, D))

det(—923,,,) ’ (425)

expands similarly as the functional ghost determinant. After integration-by-parts and trace-
cyclicity eliminate redundancies, the integration over proper time is performed. This yields
an effective action for static modes and specifically the augmentation of the action eq. (4.1)
by dimension-six operators [1]

5SEQCD[A] - 291?:/ Tr {Cl ( o ,uu) + CZ (DMF;LO)Q
+ZgE [CS nv Vp p,u +C4 FO,u FI/O +C5 AO( o /J,Z/)FOI/]

+ 92 [Cs AZF, + Cr AgF,, AgF,, + Cs AGFG, + Co AgFo, Ao Fy,]

+ql [ClOAg]} . (4.26)
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et LA X XX
L —— @

Figure 4.1: Dimension-six operator induced vertices for EQCD in eq. (4.26) containing the “Chapman
vertices” as filled blobs. Solid lines represent the adjoint scalar Ag and curly lines the spatial gauge boson A;.

The coefficients C; are obtained through thermal integration of the ¢; of [1],
!/ c.
Ci = i ?26 = Zg;ocz- . (427)
K

We note that Zs, ~ (125;§r734T2) shows a 1/T? suppression in temperature which justifies
the success of the truncated eq. (4.2) at high-temperature studies [95]. The effective action
eq. (4.26) introduces the effective vertices depicted in fig. 4.1 which represent 1-loop inser-
tions of the full theory by a filled blob. These vertices are dubbed “Chapman vertices” in
accordance with [101]. In contrast to the strategy pursed there, we compute them in general
dimensions through matching.

Therefore, the next section introduces a facilitating formalism.

4.2.1 Background Field Formalism

Matching computations usually necessitate the evaluation of many n-point functions. The
Background Field Gauge (BFG) [107] formalism facilitates this vastly. While keeping gauge
invariance explicit at all levels also the gauge coupling renormalisation in QCD can be per-
formed by only computing self-energies.

We revisit the original partition function in the conventional functional approach [108]

zm:/bA@%ﬁﬂ@m{<ﬁ4+%mguqmﬁ}, (4.28)

with source J and implicit integration over X in e.g. [ y G*G“. This is the generating func-
tional for the disconnected n-point Green’s functions G by taking functional J-derivatives
of Z[J]. Connected Green’s functions G,(;n) are contained in the generating functional

WJ] =InZ[J] . (4.29)

Its derivative with respect to J yields

(4.30)

where A assumes the role of a vacuum expectation value of A in the presence of a source .J.
A Legendre transform of W[J] defines the one-particle irreducible (1PI) effective action

HM:WM—AJL (4.31)

which gives the one-particle irreducible (1PI) Green’s functions I'™ of the theory. An ex-

pansion in powers of external sources J or A shows how the different generating functionals
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4.2. Dimension-six operators in EQCD

are composed

ZU =) % /d4a:1 o d 2, Gz, x) J(21) . T () (4.32)
n=0

LV[J}::jg:qi!j/d4m1...d4xn(}§”(x1,..,mn)J(ml)...J(xn), (4.33)
n=0

i =% % /d4m1 e T (@, ) Aw) . Alzn) (4.34)
n=0

and which derivatives can be taken.

In contrast to the conventional approach above, the background field approach encounters
an analogous set of generating functionals subscripted with b. Their relation to the original
quantities

{Z,W.T} = {2, Wy, Ty} , (4.35)

is subject of the following discussion. The background field generating functional is retrieved
after expanding the gauge fields A, around a non-dynamical, classical background field By
and introducing quantum fluctuations A,

A, — B+ A, . (4.36)

Only the A, are the dynamical variables of integration. The shift is understood only in the
classical action
_ A 56& A 1 ~ava a pga
Zy[J,B] = | DA det Sob | Py T S[A+ B+ 2—§G G —JiAL ) ¢ s
A 66(1 A 1 ~ava a( A a —J-B
= [ D(A+ B) det Sob | XPY S| +B]+2—§GG —Ji(A+B), | re ,
= Z[J]e B . (4.37)

where the second step recovers the initial effective action up to a multiplicative factor. Taking

the logarithm, the generating functional for connected Green’s functions Gg") becomes
WylJ, B] = In 2,J, B] = W[J] — / JB . (4.38)
X

Equivalently to the conventional approach eq. (4.30) defining a vacuum expectation value of
A in the presence of a source in the BFG formalism gives
o OWR[J,B]  OWIJ] -

a _ — — BY = A% _ B@ 4.
Y ¥ (4.39)

which relates A to its conventional value A. Both are now related through a shift with the
background field B. Finally, the modified effective action is the Legendre transform

mAm:MMm—/JA
X
:WM—/Jw+m,
X

— W] - /X JA=T[A]=T[A+ B, (4.40)
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4. HIGHER-ORDER OPERATORS

where the last line expresses A = A+ B from the relation (4.39).~ Consequently, the modified
and conventional effective action are equivalent and by setting A = 0 it follows that

Ty[0, B] = T[B] . (4.41)

Thus, the effective action can be determined through I'y[0, B]. Eventually the background
field in T'[B] is replaced by the original field by a field redefinition 4, = B, (1+ O(g2)). The
striking difference between both sides in eq. (4.41) is the gauge condition in T

~a __ abc ey oAb _ myab b
G = (9, + gf ™ BS) AL = DB AL (4.42)

This is the background field gauge. It is an unconventional but entirely valid gauge that
mixes B and A compared to the usual covariant gauge-fixing in I'. The latter is equivalent to
computing graphs with no B-fields in the loops and no A-fields as external lines. Concretely
this involves summing all 1PI vacuum graphs of the theory in the presence of the background
B-field. The major advantage of the BFG is that only vacuum graphs have to be considered.
The equality eq. (4.41) guarantees gauge independent physical quantities to be identical on
both sides. For deriving the Feynman rules, recall that vertices including one regular gauge
field have no contribution to 1PI diagrams and are therefore safely discarded. The gauge
parameter ¢ becomes also explicit in 3-point and 4-point gauge vertices [107].

Renormalisation is another virtue of the background field gauge. Since the gluon and
ghost fields appear strictly inside loops, their renormalisation constants cancel mutually.
Thus, their renormalisation is unnecessary. The gauge invariant effective YM action should
exhibit only a multiplicative divergent factor, renormalising such that

1 1
Ff, =23 |0,A% — 0,A% + gZ,Z3 f* AL AC | (4.43)

which is only gauge-covariant by demanding

ol

Zy=17, (4.44)

Introducing a background field gauge in the EQCD action shifts the spatial gauge fields
and leaves the electrostatic Ag unaltered

After adding a general covariant gauge term the electrostatic Lagrangian (4.2) produces

1 . 1, 2
SpoonlA] = /X{4F”[B + A2+ 3 (D*(B + A)AD)
- %m%ASAg - %/\(El)AgAgAgAS - %Agz)xabchgAgAgAg

+ %(ng[B]Af)z + SEE} : (4.46)
where Afj denotes the adjoint field, A the colour-magnetic gauge field and dLy incorporates
higher-order operators wviz. eq. (4.26). The background field gauge-fixing condition shows
explicitly D[A] — D[B] as from eq. (4.42); see [56] for corresponding Feynman rules.

Since the effective action is now both gauge invariant under the effective Beg and the
original background field B, we obtain the effective coupling g (or gy) through a 2-point
computations of the background gauge potentials denoted by B}, [57]. Therefrom, we Taylor-
expand the gluon self-energy (3.34) in both the bare gauge coupling g, and the soft (or
ultrasoft) external momentum |q| = g ~ O(¢7)

n(¢®) =Y ¢ g1 (0), (4.47)
n=0 /=1

46



4.2. Dimension-six operators in EQCD

with transversal and temporal components IT = {IIg,II;}. The gauge coupling then yields
(cf. ref. [57])

gi = gQT{l — g° I, (0)
(1T, (0))? = T4 0)
(T, (0))* — 21T}, (0)TT5y (0) + Ty (0) § (4.48)

to second order in the external momentum g¢2. It is to be noted that all Taylor coefficients
I/, (0) are manifestly gauge-invariant. Because the external momentum is decoupled only
massive tadpole integrals arise which facilitates the computation. The method to regularise
the theory will be dimensional regularisation as it is convenient when facing scaleless sub-
loops which render the whole graph zero in the chosen scheme.

4.2.2 Determination of dimension-six coefficients

As mentioned, the Chapman vertices [101] were previously obtained in three-dimensions.
Generally, computations that insert these operators can lead to ultraviolet-divergent integrals.
In strict dimensional regularisation the generalisation of the ¢; to arbitrary d-dimensions lifts
said divergences and is therefore indispensable.

To achieve this, a matching computation is conducted starting from the full theory
eq. (2.44). Utilising the background field gauge, this necessitates the computations of the
corresponding n-point correlation functions present in the 1PI action eq. (4.34)

TeolB] = 503N Bo(an) BY(a2) 5501 + )42 (@1) (4.49)
DeolB) = Ot B @) - B (00) 801+ + @) 0% a1, a) . (450)

focussing on 1-loop contributions. More generally, in any matching procedure the coefficients
of higher-dimensional operators will depend on the couplings of the theory and on possible
mass scales in the loops. For EQCD this means that the ¢; in eq. (4.27) are functions of g?
and possible fermionic mass contributions. While the former are regarded as higher order
effects, fermionic masses generate no IR divergences and are omitted in this section but we
return to them in chapter 5.

In the next step the n-point correlation functions are matched onto the effective vertices
in the action 55&5)@. The latter composes of all the appearing group and Lorentz tensor
structures that respect the external field content of the vertex up to a fixed order in mass
dimension. One example is the dimension-six electrostatic QCD gluon 3-point vertex which
can be chosen to have the minimal basis

3N,
5515%)013 = A} (q) Ai(r) Al (s) FY8(q 47+ 5) <¢ ngE{6 )

K

X {gl ququp + 52 Q#qyrp + 53 q/,Lrqu + 54 T/,LQVQp
2 2 2 2 2 2
+S#,,[§5q 9, +&q T, + &8 qp} +TW{§8q qQ T & qT,+&0s qp}} . (4.51)
One economical strategy to approach a minimal set of basis operators is to symmetrise in all
external (gauge) fields A}ji(g;). This first relabels the entire set of indices (g;, pi, a;) of every

term such that (¢; < ¢j, i < pj,a; <> aj) and then acts with the full symmetries of the
tensor structures to remove redundancies. This leaves only the choice to consistently pick the
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4. HIGHER-ORDER OPERATORS

“simplest” basis which is straightforwardly implemented using the lexicographical ordering
of a computer algebra system.

By applying the same symmetrisation on both 551%)@ and the resulting computation
F(EQCD, they exhibit the same set of basis operators and the coefficients in the effective action
are readily obtained. Finally, by acting with the same symmetry operation on the effective
Lagrangian eq. (4.65) a unique mapping between the bases {{;} — {¢;} allows to infer the
coefficients ¢;. The explicit coefficients defined in eq. (4.27) read

N
41 —d 8 —a)a 1
Clch[ +( )]23;0—155:23;%
i=1

120 48
d—1)(d—=5) (d—5)(4+a)a Nord—5 1
[ IS T PV ) |
1-d
CB—Wv
_([@-1)d-5) , (d-5)a
GTa= 60 T o
., _ (AL= )5 =)
Cq4 — C7—Ta
2l—d)(5-d) (d—5)a
¢5 — 21 = 30 6
%+wzw—if—@,
(d-5)(d=3)(d—1) (d—5)(d—3)a
= 20 + 3 ’
(d-5)(d-3)(d—1) (d—5)(d—3)a
“= 30 ; 6 ’
SCEL (UL TUEE w2

in general spatial dimension and gauge with abbreviated parameter
a=(1-¢), (4.53)

shifted from the conventional one in the gluon propagator. For generality C;,Cs include
fermionic effects while ¢, . . ., 1 are given for Ny = 0. Curiously, some coefficients cg A%FOQM,
cg AgFo,AoFy,, and cro A$§ couple to evanescent operators wherefore their effect vanishes in
d = 3. To access the coefficient cig requires the computation of the 6-point gluon effective
vertex [1].

4.3 The EQCD effective coupling to 3-loop level

The ensuing sections evaluate the 3-loop magnetostatic coupling in d-dimensions following the
algorithm sketched in chapter 3. This is to demonstrate that soft and ultrasoft observables
are IR finite and indeed influenced by all scales in the QCD hierarchy. Integrating out the
hard and soft scales requires all the contributions above and even including the ultrasoft
scale.

The strategy is to first determine the EQCD effective gauge coupling g, accounting for
genuine hard scale contributions and overlapping insertions (one hard blob) at the soft and

'The determination of fermionic effects for cs, ..., cio is technically more challenging and subject of future
investigations.
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Figure 4.2: 3-loop bosonic contributions to the gluon 2-point function Zp in 4-dimensional QCD in the
background field B, (cf. ref. [109]).

ultrasoft scale (cf. sec. 4.3.2). Only then its contribution to g,, is given. We restrict to Ny = 0
contributions at the hard scale such that masses are manifest only in EQCD by the single
dynamically generated mass scale m; = my from the Lagrangian (4.2). Inverse propagators
are labelled to uniquely identify momenta and masses on the diagram lines A; = p? + m?.

4.3.1 Power counting

At 3-loop order, the full theory generates a precision of O(g®). The argument of decoupling
in sec. 2.4.1 requires to both take both into account higher-order operators and higher-loop
orders to conduct a well defined weak-coupling expansion. Thus, the question remains which
operators are to be kept in EQCD and MQCD to cover all terms contributing to g°.

We have seen that these operators are generated from a “¢-loop hard” computation inside
the fundamental theory and are of order g?/T? (cf. sec. 4.2.2). They appear in calculations
through their (blob) insertion inside hierarchically lower scales after the DR. At the soft scale
they assume at 1-loop order

%:;Q +1-©- +1-Q- +;Q+O({>—), (4.54)

which increases the effective order of the actual computation. A 2-loop soft result eventually
competes with 3-loop hard results in the matching. The factor “1-loop soft” is of ~ ¢?T'mpg ~
g3T and the one from “2-loop soft” of ~ (¢g>T)? ~ ¢g*T?2. For the 1-loop result to be still
within the range of accuracy one requires for n-insertions

20

n
372 x <?2) ~ 32 > g6 (4.55)

which only applies for £ = n = 1. Either one insertion with higher precision of coefficients or
multiple insertions of higher-dimensional operators will then exceed the targeted accuracies in
the weak-coupling expansion. Therefore the higher-order terms in eq. (4.54) do not contribute
in our analysis.

A similar argument follows from the power analysis of even higher-dimensional operators.
Their leading order hard coefficient is of ~ ¢g?/T%. Inside a soft loop they are even further
suppressed.

4.3.2 The hard contribution
The 3-loop contribution to the effective gauge coupling g2 originates from the 2-point back-

ground field computation; its diagrams are depicted in fig. 4.2. After renormalisation by
using QCD vacuum counterterms for the gauge coupling eq. (2.52) and fields eq. (2.51), the
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resulting expression still contains a logarithmic (1/¢)-divergence [109],

1
Ten[B] = 5 Bi(@) Bj(r) 8 0(q + 1) (¢°0;; = 4,;) (£, + 0Z55) (4.56)
2 4 nr2
N[22, 1] gNZ[68, 341 10
s (47)2 [3 Ly 3] (4m)2 [3 T I
6 nT3
 gONB[748 , (6608  10982Cs , .
(am)" [ o Lo o7 135 Ly + (finite) | + O(g°) , (4.57)
sz, = INOIG | s (4.58)
B (4m)6 e g ’

with ¢, = {(n) the zeta-function from eq. (A.7) and L; defined in eq. (2.50). We know already
that the theory receives no UV counterterms from the full theory side. EQCD is, however,
also super-renormalisable such that the left-over divergence §Z, appears as a puzzle at first
sight. The following sections reason why the cancellation of such a divergence in the hard-soft
matching fails and still is rather natural in dimensionally reduced thermal field theories.

To distinguish contributions that affect the ultrasoft scale, we define analogously to
eq. (4.56), the d-dimensional self-energy in the background field formalism with the quadratic
part

1
[iiaco[B] = 5B1(a) BY(=a) (%0, — ;) (2, +62,) , (4.59)

casting possible divergences into §Z, and denoting finite parts Z, in contrast to the hard
result (Z,).

4.3.3 Soft/hard overlap contribution

Insertions of dimension-six operators originating from 2- to 6-point Chapman vertices mani-
fest themselves as hard blobs in the diagrams consisting of soft (and later ultrasoft) fields.

According to the power counting scheme in sec. 4.3.1 the first relevant order is 2-loop?
where contributions to both Z, and 07, emerge. Its explicit form is

1 "goNg
0ot ocol ] = 5 B2 (a) B 3%8(q + 1) (3 55 ) o)
K
2 2
mE(Sij (¢ 52’3’ - qﬂj) 4;9; 7t

using the covariant gauge parameter £ from eq. (4.46) and the 2-loop two-mass sunset integral
H, from eq. (A.24). The coefficients C1,Ca, C3 (cf. ref. [1]) are determined from diagrams
with a single insertion of higher-dimensional n-point vertices. Here, all 2- to 6-point Chap-
man vertices contribute to the effective action; for the corresponding diagrams see fig. 4.3.
Substituting the coefficients C; from eq. (4.52), we get

2The 1-loop contributions inside EQCD from eq. (4.54) are of O(g*mg/T) ~ O(g°) which is of higher order
than the hard IR divergence. Nevertheless, it is the largest finite hard part of Zp stemming from the soft
scale theory but without effect on §Z5.
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Figure 4.3: 2-loop 2-point EQCD gluon contribution to Zz in the background field B;* with insertion of one
dimension-6 vertex denoted by a filled blob (cf. fig. 4.1). This is the soft/hard overlap contribution (cf. ref. [1]).

1
5> Sinen [ B] = —5 B (a) B(r) 0°0(q +r)(4°0;; — 0:;) (g NE) Hy ()

y (d—3)(d —4)%(d® — 10d? + 23d — 44)(C; + C2)
3d(d —5)(d —T7)
N (d* — 18d3 + 95d2 — 210d + 192) C3 N (d® — 13d? + 36d — 36)(Cy — 2C7)

d(d—5) 3d
AP 13+ z];zd ~6)(C+Cr) |, (d-3)(d —;)(208 +Co) } L (6]

with Hy(mg) ~ 1/(4€). Taking the limit of d = 3 — 2¢ yields the 1- and 2-loop overlapping
soft /hard contributions to the background field 2-point effective action (4.59). Indeed, these
bear a divergent part at O(g%)

7 —q . (N 2 men (875,
B (4m)2 ) 27T \ 72
2 3 - /
G2 N\? (1097 61¢, i ! 103771
- Ly+2ln (-2 )+ 1.62
((47r)2> <549 5 U " 2men ) TG, ™ B2686 (462)

2 3
g2 N.\? /1097 61¢;
Z = — 4.
025 ((471')2) <1098 Be (4.63)

employing g2, = ¢*(1 + O(g)) to leading order. Summing up the two left-over logarithmic
IR divergences 62, in eq. (4.58) and 07, in (4.63), we witness a cancellation of 1097/1098
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of the 1/e-poles resulting from EQCD

gON3T? < (3 > 1

0Z,+ 07, = —
0% (8m)2 \ 1287472 ) 45¢

+0(g%) (4.64)

where the bracket (...) oc Z3 factors the contribution from the six-dimensional bosonic
sum-integral.

4.3.4 Ultrasoft /hard overlap contribution

The hard modes also induce dimension-six operators at the ultrasoft scale. In resemblance
with the spatial part of §Spqep (4.26), the higher-dimensional part of the MQCD action is

6SuqenlA] = 267 /X Te {C, (DiFyj)? +igyCy Fyy FyyFii (4.65)

These operators contribute to infrared dynamics and physical quantities which are accessible
non-perturbatively. We want to determine if those dimension-six operators generate an ultra-
violet divergence cancelling the one in eq. (4.64). However, inside loops, MQCD is a scaleless
theory and all integrals computed perturbatively vanish in dimensional regularisation.

To retrieve only the ultraviolet divergent part stemming from the MQCD dynamics, we
introduce an infrared regulator. Resorting to [110], this is implemented by dealing an equal
fictitious ultrasoft mass parameter mq ~ O(g4T /) to the gauge fields A¢ and the (anti-)
ghost fields ¢, ® which renders their propagators massive

)
(arat@) = "0 (5 - -9 LY

(e wretie) = 221, (4.66)

P +mg

The resulting theory is IR-safe and its IR dynamics is shielded by the cut-off which, in the
limit mqg — 0, retains only the UV dimensionally regularised contribution.

In analogy with soft/hard eq. (4.60), we inspect the 2-loop® IR cut-off result. The coeffi-
cients D1, Do, D3 define as

1
5Ti (B) = 5 Bf (a) B)(r) 6°8(g + r)(g5N?)

2 2
mG(Sij (q 5z'j - qiqj) 4;9; q*

Two master integrals remain within the explicit expression of the D;, namely the two-mass
H,(m¢) and three-mass Hs(mg) sunset diagram in eq. (A.24)

_d-3
d-2
9d? — 28d + 24

Hﬂm&>,

Dy D3 Hy(me) + Dy3 Hy(mg)

(4.68)

D3=53(@M—3Xd—%%@@%)+ 3

with coefficients D;; summarised in eqgs. (C.1)-(C.3). Inserting values for the coefficients
M- -+, Xq7 from ref. [1] both D; and D3 vanish exactly. The finite part of the remaining Dy

3The 1-loop IR cut-off result, proportional to I(mg) ~ mgq, vanishes duly in the limit mg — 0.
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is {-dependent while the relevant 1/e-pole is not. Proceeding in Feynman gauge, the result
resembles the form of eq. (4.60):

g6 NS

M~ 'cC

4d
4
X {HQ(mG) (g(d —3)(3d® — 105d* 4 1058d> — 4536d? + 8602d — 5808) C;

1
ST [B] = 5 Bf(a) BY(r) 6™6(q + 1) (4°0;; — 4:0;)

—4(d — 3)(d — 2)(19d* — 135d + 332) cg>
4
— Hy(mg) (27(d — 3)(15d* — 440d> + 3231d* — 8332d + 5808) C
+ %(d —2)(5d® — 291d” + 1480d — 1992) (33> } : (4.69)

wherein, by construction of the higher-dimensional MQCD action (4.65), only the coefficients
Cy and C3 appear. The two remaining master integrals contain the same UV divergence
Hy4(m) = T?1=4/[(47)%4€] + O(1). Therefore, terms Cy Hy, C3H,, and Cy Hy with overall
factor (d — 3) are of O(e”). Only the term proportional to the three-mass sunset CsHj
contributes 1/e-divergently.

Together with the coefficient C3 (4.52), the UV contribution originating from MQCD
becomes

1
=55 Bj(r) 6°6(q + 1) (4*0;; — 4;5)

gONT? (G 1) [1 i
(82 <128W4T2> <—45> {6 +2Lpy +4In <3mc> + 0(1)} - (470)

Really, by comparing with the joint left-over divergence related to the genuine hard §Z, and
soft /hard §Z,, computation in eq. (4.64), the result is rendered finite

5,02 (B]

02+ 02+ 0825, =0. (4.71)

This demonstrates the principles of a strict expansion in the weak-coupling for dimensionally
reduced thermal effective theories. Only when including higher-dimensional operators that
contribute at equal coupling order, the g-expansion is well defined and thus physical results
are finite such as g2 from EQCD.

4.4 Can we proceed to MQCD?

Since also the soft scale O(gT") contributes to the construction of the ultrasoft effective action,
we may pose the question if it can be integrated out as well. As parent theory to MQCD,
following the usual EFT recipe, the effective coupling at the infrared theory gy, is determined
by the parameters of the soft scale theory which are ¢g; and mg*. Since this is essentially
a computation where we already know the EQCD gauge coupling, now genuine soft scale
contributions and overlapping insertions (one soft blob) at the ultrasoft scale are required.

While reproducing known results for the background field 2-point function in super-
renormalisable truncated EQCD at 1- and 2-loop [56, 57], in the following stages, we review
its 3-loop extension attained in ref. [1]. Henceforth, Z, denotes these purely soft contributions
to Z, in eq. (4.59).

‘95 = gr(g,m;) and mp, = mg(g, m;:) are themselves effective couplings of the hard scale theory and there-
fore functions of the QCD gauge coupling g and possibly also quark masses m; although in this computation
we set Ny = 0.
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Already the 1-loop contribution exemplifies all important algorithmic steps. Its single
loop momentum {k} = {k1} and external momentum ¢ form the canonical basis of the form
eq. (3.5)

Aralg] = {k1, k1 —q} - (4.72)
As a non-trivial example, we evaluate the transversal self-energy I1.(¢?) explicitly from the
two non-vanishing 1-loop diagrams in dimensional regularisation with symmetry factors

1 dP. — P
3 (D ——dNT e

1 ,_O‘ _ Q%NCT PG[_4 (kl : q) + 4k5% + q2] — PL[Q (kl . q) + q2}2q%
2 -2 P12+ m2)[(kr — q)? + m)

, (4.73)

after contraction with projectors P, (P}, +P;,) and P, P, from eq. (3.35). Concentrating
on the strictly transverse terms proportional to P,, we perform the scalarisation utilising
(k1-q) = (k2 + ¢* — (k1 — q)?)/2 before expanding g-dependent denominators up to O(q")
in accordance with eq. (3.17) . Summing both diagrams and abbreviating the notation via
the momentum basis eq. (4.72) and explicit propagator masses with notation in eq. (3.6), the

remaining terms take the form
gaN.T
2

HT(‘]Z) = q

2
((1 — d>110;10 + 101;01 — (2m2 + q2) 111;11> . (4.74)

Next, we carry out the Taylor expansion in the external momentum described in eq. (3.17)
which affects the last two integrals Ip1;10 and I11;11. This splits-off the external momentum ¢
and the remaining integrals are purely massive tadpoles with the basis

Ay = {k1} , (4.75)

and a total sector number of 2! = 2. These discriminate between the zero sector and the
sector with powers of A; = k? +m2. Given the overall factor ¢~2, we need to expand up to
O(q?) to account for all contributions

Tot.o1 = i1 — ¢*Toa +4(k1 - @) T30 = I,

(4.76)

d—2 d—4)(d -2
L = Iog — ¢*Is1 +4(k1 - q)*Ia1 = L1 <— _ 2! ) )) ,

q
2m?2 24m?

where odd powers in the loop-momentum k; vanish due to symmetries ky — —k; of I;;; and
the tensor decomposition eq. (3.24) splits-off ¢ in scalar products of even power. Recall that
the aim of the decomposition was to remain with a small number of tadpole integrals which
becomes explicit in the above steps. For the vacuum 1-loop tadpole a single IBP relation
exists when evaluating the total derivative inside I,,.1 producing the recursion

251 —d 1
ik S (4.77)

Is 410 =
for positive integers s; € Z*. In fact, this is a special case of eq. (3.61) for 1T = 0. Inserting
eq. (4.76) into (4.74) and keeping terms up to O(q°) retrieves

2
(1 g N.d—2
Z) = e C 2 I (my) (4.78)

mg 12

where individual longitudinal parts cancel mutually permitting the transverse contribution.
After dimensional regularisation, the insertion of the 1-loop tadpole master integral I(myg) in

eq. (A.16) yields
2 —2¢ = 2€
1) _ (9eNTp fi 1 2
Zy' = = . 4.

o ( 16mmy ) <2mE> [3 +0(€) (4.79)
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1 1 1
~ :+1~@~ +1~@~+Z*®-+1~@+1*@’+5'@~+406d1ag8

Figure 4.4: 3-loop gluon 2-point function Zz in EQCD in the background field B¢ (cf. sec. C.1) with leading
diagrammatic symmetry factors. Curly lines denote spatial gauge fields A; and solid lines the adjoint scalar
ﬁeld Ao.

The resulting expression exhibits no &é-dependence. These properties are only valid for the
combined result of all sub-graphs while on diagram level a gauge parameter dependence could
be explicit. Additionally, we witness UV convergence as all 1/e-poles vanish.

At 2-loop level, the momenta in the reduction procedure adapt analogously {k} = {k1, ka2}
which constitute the vacuum-integral basis

AQ - {kla k?) kl - k?} ’ (480)

after the integrals are expanded and the external momentum is stripped off. The present
symmetry of the integrand
]{51 — —kg s ]{32 — —kl R (4.81)

nullifies terms with odd combined powers of k1 and ks in the numerator as they vanish under
the symmetric integration boundaries. Similarly, within the 22 = 8 sectors, the algorithmic
computation gives a &-independent result in the numerator of eq. (3.64) and contributing
diagrams in [56]

~(2) _ (93:1\%)2 (d—4)(d—2) [di” — 10d? + 23d — 44

12 20d—7)(d—5)d )‘] I(mg)?, (4.82)

showing transverse structure and utilising A from eq. (4.9). Insertion of the massive 1-loop
tadpole master I(my) yields

- INTP2N\? ( p \*[19 4
Z9 = <9E . ) ( s ) [9—%3)\—1—(’)(6)} . (4.83)

16mmyg 2mg 18

The arising € and d dependences originate from products of both the scalarisation and the
expansion in the master integrals. All divergent parts vanish in the expansion leaving only
a finite contribution and terms of O(e) which vanish when ¢ — 0. Notably, the scalar
Ae-dependent part accords with ref. [57] which, however, is stated for the fundamental rep-
resentation. The conversion (4.8) transforms 21(32) in eq. (4.83) to coincide with [57].

When facing computations at 3-loop level, efficiency becomes indispensable. The genuine
EQCD 3-loop background field self-energy demands all tools outlined in chapter 3. The
loop-momenta {k} = {k1, k2, k3} employ the auxiliary vacuum topology

Az = {k‘bkz,k&kl—kz,kl—k&kQ—kB} . (4.84)

The number of possible massive lines is M = 6 with 2/ = 26 = 64 discriminable sectors. A
priori the computation features 5 different vacuum topologies (viz. fig. 3.2) which are 3 x 3¢,
20 x 1¢ and 1£3, with totally O(450) diagrams. Some representatives are listed in fig. 4.4.
Luckily only three topologies namely, the basketball and the two factorised 1- and 2-
loop diagrams enter the 2-point EQCD gluon self-energy when expanding in the external
momentum. The remaining integrals project onto a few mass footprints® by exploiting mo-
mentum shifts. Consecutively, left-over integrals reduce with integration-by-parts identities.

5The signature of masses m = (ma,...,ma) on the lines of an integral in a parameterisation as in eq. (3.49).
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Compactly, the 3-loop contribution to Z, with generic gauge parameter £ writes as

3
Z® - (ifﬁ) [(r1+f1)(d) I(mp)?® +19(d) m2 By(mg) + (15 + 73) (d) m2 By(ms)| , (4.85)

with the four-mass B, and two-mass B, basketball diagrams from eq. (A.30). The d-
dimensional polynomials r;(d) employ a condensed notation for the gauge part summarised
in eq. (C.5) and 7;(d) for the scalar part in (C.7).

All &-proportional terms cancel duly and the result is completely gauge-independent.
The remaining three master integrals, namely the factorised tadpole I® and the two massive
basketball integrals B, and B, are worked out in appendix A.l. By counting e-powers at
d = 3 — 2¢ in eq. (4.85), we need to expand to O(€?) for I, O(e') for By, and O(°) for B, to
reproduce all divergent and finite e-parts. Their explicit forms are put into eq. (4.85) from
which the dimensionally regularised result is attained

—%\ 3 — €
2;3):<953NCTM 2) ( ji )6 [1 L Alm2 =4

16mmyg 2mg 6e 6e
N 2(23510 + 12600¢, — 1101 1n 2)
945
AN+ 2402 — k(5 — 8In2 31 —241n?2
Ml Gl 9n ) + o n2) . o), (4.86)

including scalar contributions of )\(El) and )\(E2) in terms of A\, k1 and k2 given in eq. (4.9).

We encounter 1/e-divergences from both the vector and scalar field sector. However, the
question remains if they originate from the infrared or ultraviolet. To clarify this, an IR
regulator separates the UV analogously as displayed for MQCD in eq. (4.66) and we reiterate
the 3-loop EQCD computation although now giving an equal fictitious mass mg ~ O(gT)
(instead of mg) to all three fields, the adjoint scalars A, gluons B, A%, and ghosts e, et
the associated diagrams are those depicted in appendix C.1 extended by the ghost field
sector. The resulting divergence is the scalar one for the (k2 — 4\)-term in eq. (4.86). Two
intermediate consequences can be stated at this point: (i) the scalar-sector divergence is
purely UV and (ii) the vector-sector divergence is purely IR.

The single parameter that receives renormalisation in EQCD is the electrostatic adjoint
scalar mass parameter mg. Because the operator-truncated theory is super-renormalisable
only the proper mass counterterm (4.13) is scale-dependent §m?2 # 0. It is retrieved from the
2-loop® adjoint scalar self-energy II Ao Ao(q2) at zero-external momentum; for corresponding
diagrams see fig. 4.5. It is noteworthy that the result is not manifestly gauge invariant and
can bear an explicit gauge parameter £. To check against the IR sensitivity, the computation
is conducted with and without the above IR regulator (cf. eq. (4.66)) yielding the 1/e-parts

M, (0) = (gféif [— B 0(1)} , (4.87)
M, 0 (0) = (9126]\;)2 [—w T 0(1)] , (4.88)

which resembles the 3-loop divergent part of Z 5. The IR-shielded II,, , ., shows a gauge-
independent UV divergence, identified as the mass counterterm ém?2 in eq. (4.13) in adjoint
representation.

5The 1-loop Ao self-energy is proportional to I(mg) which carries no UV divergence in d = 3 — 2¢
viz. eq. (A.16).
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Figure 4.5: Diagrams contributing to the 2-loop EQCD adjoint scalar-field (Ao) self-energy I, 4,. Curly
lines denote spatial gauge fields A;, dotted lines ghost fields ¢®, and solid lines the adjoint scalar field Ag.

The EQCD mass counterterm renormalises the scalar sector of eq. (4.86). This is achieved

) 2

by re-expressing the 1-loop result Z(;l in eq. (4.79) by the renormalised mass m?% = m2,+dm?,

assuming a counterterm of the form

B (2N.T\?
om? =2 (< 4.
Me = 167 ’ (4.89)
with a general parameter 3, and re-expanded up to first order in §m?2,
~(1 ~(1 1 5m2 ~(1
20+ o) = Z0mt] = = (5 ) T2 ).
B (gNT N’
= == o) . 4.90
6e \ 16mmpgr +0(1) ( )

From now on subscripts “R” are dropped and renormalised quantities are assumed. Finally,
inserting the adjoint counterterm eq. (4.13) with 5 = 4(kg — 4X) gives

N

16mmyg 6€

According to our source analysis above, the scalar 1/e-divergences of A- and ko-dependent
contributions at 3-loop level renormalise and render the result finite in the UV

2 2 2
. RN\ 1 [(@NTN\[19 4
7, =1 - A
B + (167rmE> 3 + <167TmE 18 + 3

2 3 _
gsN.T 8(k2 —4A) fi
1 1
+<16me> K T3 "\ 2my

N 2(23510 + 12600¢, — 1101 1n2)
945
N 52X\ + 24X — k1(5 — 81In2) + K2(19 — 241n 2)
9

67, = (gENCT> 1o, (4.93)

+0(g%) , (4.92)
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w@i = +;Q +;'Q +;»C>(+1«Q

Figure 4.6: Contributing 4 diagrams to 3-point 1-loop EQCD gluon correlation function in the background
field By'.

We showed that both the residual vector divergence 67 5 ~ (g2/my)? and the additional
gauge-dependent divergence in eq. (4.87) originate from the infrared. It therefore appears
that further IR contributions are required for dm?2 with 3 # 0 in the counterterm (4.89) to
match this divergence. In the next section another source of IR divergences is envisaged.

4.4.1 Ultrasoft/soft overlap contribution

Also the soft scale induces higher-dimensional operators at the ultrasoft scale. In a similar
manner, the MQCD coefficients in eq. (4.65) are extended by a soft dimension-six term

/Ci 67,
= -+ T [ ————, i=1,3, 4.94
¢ ¢K6+ /k[k:2—|-m%}3 i=13 (4.94)
K

allowing to identify the coefficients built up from EQCD as to first order g% = g2, u?(1 +
O(g))- The difference to EQCD (4.27) is that now the suppression follows I3, ~ 1/m3.

The soft dimension-six coefficients ¢; are determined by matching of effective n-point
vertex functions at 1-loop level in EQCD. Because the space of parameters only consists of
¢1, 3 they are uniquely fixed by computing the 3-point vertex; for diagrams see fig. 4.6. The
effective action 551&?%@ assumes the spatial part of eq. (4.51) with relabelled & — . By
projecting the MQCD Lagrangian eq. (4.65) onto the same operator-set, a unique mapping
between the bases {&;} — {&} infers the coefficients in eq. (4.94)

§=0, &=28, &=-46, &=-2¢,
& =303, & =861 —303, & =3035—4¢ . (4.95)

Thereafter, also the six-dimensional contributions to the EQCD 3-point correlation function
FI(\?%CD is projected onto the &£-basis reading

~ ~ 1 ~ ~ 1
51_07 62__%7 63—_%7 54_%7
~ 1 ~ 1 ~ 1
— —_—— = — 4.
€5 60 ) €6 20 ) §7 60 ) ( 96)
which solves for ¢; with eq. (4.95)
1 1
Cq = ——— Co — ——— . 4.
T 7100 BT T80 (4.97)

Alternatively a covariant derivative expansion of the EQCD effective action gives rise to
the same coefficients [111]. More non-trivial cross-checks are possible by inspecting higher
n-point vertices with n > 3.

Together with the second terms of the coefficients in eq. (4.94) and the recycled soft/hard
result ¢; — ¢ (4.69), the UV contribution originating from MQCD becomes

~ 1
5T [B] = 5B (a) BY(r) 6°8(q + 1) (°0;5 — i0y)

2 —2¢\ 3 _ _
gulNT ™™\ 1\ [1 [ [
X < 6rme > < 45>{6+21n<2mE>+4ln <3mG>+(’)(1)} . (4.98)
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By comparing with the left-over divergence related to the genuine soft computation eq. (4.93),
the magnetostatic gauge coupling is not rendered finite

2 3
~ ~ 2 N.T 13\ 1
(SZB + 5ZB,IR — <1Ié[7'("[;;E> <90 g 5 (499)

and bears a residual soft gauge-independent IR divergence. Only if the mass parameter re-
13

ceives a contribution of the form of eq. (4.89) with 8 = —¢ the result becomes finite.
In conclusion, by including higher dimensional operators in EQCD and MQCD, we in-
spected the computation of soft IR observables in sec. 4.3 and ultrasoft ones in sec. 4.4. The

main implications are as follows:

(i) Soft observables (Og) ~ g2[1 +...] are finite and all contributing divergences cancel
duly in eq. (4.71).

(ii) Ultrasoft observables (O,,) ~ g2 [1+ ...] experience a partial cancellation of IR diver-
gent terms in eq. (4.99).
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Chapter 5

Improving accuracy of
Dimensional Reduction:

A two-loop QCD Debye mass

Along the lines of [2], we review the determination of the Debye mass m, as a matching
coefficient of a dimensionally reduced thermal theory. Concretely, we focus on 4-dimensional
thermal QCD and increase its precision at two-loop order by incorporating massive quarks.
As a consequence, the ensuing chapter analyses the crossing of quark mass thresholds of the
Debye mass at high temperatures T' > 1 GeV relevant for cosmological applications.

5.1 Debye screening

Screening is a collective effect that emerges when particles that propagate through a plasma
interact with light constituents of that plasma. In an Abelian gauge theory such as QED
propagating charges attract a net amount of opposite charged particles that engulf them —
screen them — by a finite radius. Beyond that radius the electric field decreases exponentially
with the distance r from the charge. The potential then takes a Yukawa form oc e™™e" /1,
where the parameter mg is dubbed an electric or Debye mass which characterises the strength
of the exponential fall-off with the distance from the particle.

In non-Abelian gauge theories different modes are screened at different length scales.
Based on the scale hierarchy in sec. 2.4.1, we discriminate the degrees of freedom and in-
spect which screening length applies. Recall that thermal masses (2.29) arises as particles
that propagate in a heat bath are affected by their constant interaction with the medium.
For a non-Abelian plasma, of a SU(NN.) gauge theory with N¢ fermions in the fundamental
representation, colour-electric fields get screened at the order of my ~ ¢T’

m? = g*T? <J§C + ]:Sff> +0(g°T?) (5.1)
which was first evaluated in [112]. Colour-magnetic fields, however, are not screened at this
order m,, ~ 0 x g7'. Only at the next natural order we find a non-zero contribution for their
screening mass m,, ~ ¢>T. Its computation is unattainable with a finite set of diagrams [113],
particularly, since at this order QCD modes are non-perturbative [16].

Various definitions of a gauge-invariant and infrared-safe Debye mass are known. A non-
perturbative definition in [114] relates it to the inverse correlation length of time-reflection
odd operators. The first few terms including non-perturbative contributions [115, 116] yield

N LO
my =me° + (gQT)E In Tgr;]?r +eng*T + dyng>T + O(¢*T) (5.2)
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where the leading order term m[° equals the one in eq. (5.1). The higher-order corrections
cy and dy,n, are already non-perturbative and computed numerically [115] and analyti-
cally [117]. The issue with the above definition is that the constructed correlator depends on
the choice of the operators and their quantum numbers.

Another account [118] of an infrared-safe and gauge-independent Debye mass in full ther-
mal QCD defines it in terms of the pole of the static gluon propagator. Besides the above
ones, for the remainder of this thesis we focus on a different definition.

5.2 A Debye mass at high temperatures

The Debye mass is defined uniquely and gauge-independently as a matching coefficient of a
dimensionally reduced effective theory. Thereby it is purely perturbative, part of a broader
concept inside an EFT, and furthermore infrared safe because dimensional reduction is an
ultraviolet process. Henceforth, the Debye mass refers to the purely perturbative contribution
of eq. (5.2).

Analytic computations of the Debye mass reach up to levels of 3-loop in pure Yang-
Mills [119, 100] and 2-loop including massless fermions [120]. Strikingly, little improvement
was achieved on the inclusion of fermionic mass effects. Most of all, the inclusion of quark
masses is technically challenging already for the 1-loop massive case [93]. Additionally it
introduces many yet unknown master diagrams that show a delicate IR behaviour. In [2], we
extend the current limit to 2-loop order.

The EQCD mass parameter is determined through the matching of the poles of the static
gluon propagator. Therefore, the zeros of the inverse propagators for the QCD and EQCD
side amount to

q’ + 1y (q*)| o2 =0, QCD, (5-3)
Q> +mp+11, . (q2)‘q2:_m% =0, EQCD, (5.4)

where Iyy(q) = I,(¢?). Note that this follows the prescription for general correlators in
eq. (2.39).

Taylor-expanding the 2-point correlation functions IT1(q?) both in the bare gauge coupling
gy and the soft external momentum |q| = ¢ ~ O(gT") for QCD reads

n=0

with the Taylor coefficients H](ﬁ) up to f-loops containing vacuum sum-integrals. An analogous
treatment for EQCD has now perturbatively small m, ~ O(¢T) and ¢ ~ O(¢gT) which
are, compared to T, allowed scales to expand in. Since these are the only two scales in
EQCD, all surviving integrals are vacuum ones with scaleless propagators. In turn, these are
rendered zero in dimensional regularisation and especially all self-energy coefficients Ilg, give

(n)

a vanishing result IT} ’; (0) = 0. As a consequence eq. (5.4) identifies
mZ =m? . (5.6)

Indeed, m? is merely a matching coefficient in the EQCD Lagrangian (4.2) and, through
its fully perturbative determination, captures the perturbative contribution to the Debye
mass and is only sensitive to the hard scale. The expansion (5.5) iteratively solves the first
matching condition eq. (5.3) order by order. The leading order is 1-loop which composes of

m%,le = HEIE(O) = 92 HEl (O) ) (5'7)
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with extension to 2-loop next-to-leading order (NLO)
b0 = Mg (0) = mig 1T, (0)
Mg o E2¢ Mg 11,
= T, (0) 4 g [ 1,00) = T, )T, 0)] (5:5)
and 3-loop next-to-next-leading order (NNLO)
m%,u = HE3£(O) - m]%],QZH;EIZ(O) + (_m§,12)2ng1e(0)

— PTL,(0) + g [Hm(m - Hm(om;m(m] (5.9)

+ 96 |:HE3(O) - HEl (O)Hfﬂz(o) - H;EI(O)HEQ(O) + HEl (O) (H;m (0>)2 + (HEI(O))2H;]1(O)

With regard to the 2-loop QCD Debye mass m%ﬂ in eq. (5.8), the diagrams that contribute

to the different self-energy orders Hg;) = {II,,,I1,,,II,,} are both fermionic, displayed in
ref. [2], and bosonic in [120]. The 2-loop QCD Debye mass requires renormalisation

m%,ze = gl%{ I, (0)

N
dIl_, (0
48 |5y (0) — 1, (0TI, 0) + (919 + 0,0)115,(0) + S w2 m? T2 ) 5.30)
=1 g

where we inserted the counterterms for the gauge coupling 4,9, 59 and quark masses dm?
from eqgs. (2.54) and (2.55)

1 11N, 1 ALY 52 L 6C
(4m)? 3e 2g_(471')2 3e P (42 e

9= — (5.11)

Whereas massless terms receive contributions only from the gauge coupling renormalisation
Zg4, masses are renormalised by the RG constant Z,,.

5.2.1 The reduction

Since the integrals that compose the contributing diagrams are vacuum sum-integrals and
aware of the temperature scale T, all the thermal integral reduction machinery introduced in
chapter 3 applies. The starting point for the following discussion are the integration-by-parts
relations eq. (3.63) for 2-loop massive vacuum sum-integrals Z;ls‘;ig;ii parameterised (without
masses) in eq. (3.49).

The list of integration-by-parts relations with a single scale inside the integral is exhaus-
tive. The system eq. (3.49) simplifies parametrically and the mass scale can be factored out of
the integrals which is the case in massive vacuum integrals. Since the Matsubara frequencies
act as masses every loop order introduces one extra scale in the computation and an ¢-loop
computation becomes an f-scale problem.

The generated massless (m; = 0) system of 2-loop equations eq. (3.63), after systemati-
cally combined, drastically decimates the number of master integrals and gives rise to many
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identities that factorise into 1-loop sum-integrals

Zi1;11 =0,

Z211;11 = —(d—2)1(d—5)Z2;IZ2;1 )

11901 = (‘1_2)1(61_5)(22;122;1 - 2Z2;1Z2;0) )

Zo19,11 = (d—2)2(d—7)(Z3;122;1 - Z3;122;0) )
2

Z3i,11 = _m(za;lzm + Z31Z50) » (5.12)
among integrals without irreducible scalar products; which is indicated by the lack of super-
scripts. A similar reduction for general masses is not guaranteed.

Once quark masses are included, the number of integration-by-parts relations diminishes
and becomes highly constraint. However, for some special mass configurations non-trivial
relations exist — even among massive 2-loop thermal integrals. The two identities pertinent
to our analysis, originate from vanishing surface terms of the symmetric integrals

0= i 8 { (d - 28)k1i + 2k10 (klo in - kQOkli) _ kli kli - in }
an) Ok, | Ag, Ay, 0%k, Ay A2 55 A AZ 5l AL
+¢ - { a2k, _ 2y (ki ky, — kaokr,) (s =Dky, } (5.13)
{K1K2} 81{:21 AKI AK25§<1*K2 A%ﬁ AKQ(sIS(lfKQ A%ﬁ AKZ(Sf(?,IKQ ’

with massive propagators A, = K2 + m? and massless ones 6, = K2. For s € Z the above
yield the IBP relations eqgs. (B.3) for Zyjy.419.47 at s = 1 and (B.4) for Zyy;.410.4; at s = 2.
Higher s-values still yield IBP relations but not necessarily without superscripts. Applying
these reductions to the Taylor coefficients of II; and Il with the sum over Ny = 3,...,6
massive fermion flavours, produces a small set of master integrals. At 1-loop level these
acquire egs. (B.6)—(B.12), whereas at 2-loop the results amount to egs. (B.13)—(B.11).

The fermionic contribution to the 1-loop Debye mass is manifestly of thermal nature.
This is reassuring since the Debye mass, as a purely thermal effect, should vanish in vacuum.
At 1-loop this is particularly obvious due to the separation of zero-temperature parts in
the sum-integrals in accord with eq. (3.73) such that Z  , = I}*; + Z{ ;. We proceed on a
purely algebraic level using IBP relations eq. (3.61), I3% = —(d—1)/ (2m2)I 1%. Since vacuum
integrals come in (d + 1)-dimensions, the remaining terms take the following form

Nt
M, (0) = Ne(d = 1)2Zy 5 — 2 [(d— 1) 2], +2m? Z3,] | (5.14)
=1
d?>+d+10
1T, (0) = — [6 —(d— 3)6] NeZay
1 & 1
+3 > [(d —-1) (Z;i — m2[{f‘;> + 4m22Z3Tﬂ»] : (5.15)
=1 ?

and consequently all mass derivatives of m2 are also finite. The last line evaluates the first-
order Taylor coefficient of II;, which shows the divergent vacuum contribution I7%;.

A similar dissection applies for the integrals appearing at 2-loop. Vacuum parts cancel
upon each other and the remaining contributions are all either purely thermal or factored
(thermal) x (vacuum) such as in I, x I}, and therefore vanish at zero temperature.
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5.2. A Debye mass at high temperatures

5.2.2 Master sum-integrals

We parameterise both the effective coupling and the Debye mass as in [121] with MS-
renormalised masses and couplings

4 —
m2 = T?{ (1) g, + afjj) gy + 0<gﬁ>} , (5.16)
A0 6(r
ge = T{QQ(ﬂ) + ?47(:;; gy + &gﬁ Yoy + 0(98)} : (5.17)

For the renormalised 2-loop contribution to the QCD Debye mass, we obtain

d? —11d + 46 5
B6 — ch(d - 1)2210 ——(———Zyo Tt 29
i 6 0N,

d? — 5d + 28 26
H@{ (=0, 2z | [E=502 7, 2]
C

Sog (d=1)Zy,; + 477%223;2‘
=) Zlo[ % -

+2(d = 1)(d = 3) 21, Za + 27 Zo; [2Z3,0 — Zoyy]

—2m3(d —4) [(d— 5)Zy19.4i + 4m122212;ii] }

Ny

8 2(5m?
+CF;|:(d_3>Z2§i+4m12Z3§i:| [(d_QZZ;i+ Ch >m12+2(d )[Zlo le]
W2y +2m2 2y || (d = 1)2Z,. + 4m22,  — 3229 5.18
+3 Z —1)Zy,; +2m;Zy; | |(d—1)Zy; + 4m; 87N, | (5.18)

,Jl

using the counterterms from above eq. (5.11) which, after cancelling divergences stemming
from fermionic and bosonic Z,, = 1/ [(47)%€] + O(1), yield a finite overall result. Quark
mass renormalisation eq. (2.55) evidently affects only Cr N¢-proportional terms whereas gauge
coupling renormalisation contributes to all N2, N N;, and NZ-terms.

A factorisation into 1-loop diagrams parallel to eq. (5.12) fails and more master diagrams
require analytic evaluation. Besides 1-loop tadpoles for massless bosons Zg, o in eq. (A.39)
and massive fermions Z ; in eqs. (A.43)-(A.46), the results for the effective gauge coupling gy
and the Debye mass also comprise unfactorised 2-loop master diagrams yielding the following
set:

2.

Mgt g Lz 212 (5.19)
2. 11 11

9e© Zivgis Lz Zorgui o L11zui s Lt VASDR i 13 - (5.20)

The masters Zy1y.;;, 21194, and Zyy,,,; constitute an integral basis! for the genuine 2-loop
sector of m2. Coincidentally, the coefficient of Zy114; vanishes on an algebraic level. The
latter is given in [122] and eq. (A.64) where it was evaluated applying the Saclay method
(cf. sec. 3.5.1). Only two masters remain to be evaluated and in principle Z,,;; is attainable
from Z);y,;,; by a mass derivative on the third propagator line. However, since that line is
bosonic and eventually massless, the integral is plagued with IR divergences at intermediate

stages of its calculation. A thorough discussion that demonstrates that the integral is indeed

1 Using the IBP relation eq. (B.5) also a different basis is conceivable which replaces Z212.:; — Z311.4-
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5. A Two-LOOP QCD DEBYE MASS

finite after taking thorough precautions in dimensional regularisation is summarised in [2]
and appendix A.3.1.

Including also massive fermions in IT/,, yields a more precise contribution to the 2-loop
effective gauge coupling g2 via eq. (4.48). Its set of master diagrams is enhanced by additional
ones with non-vanishing Matsubara frequencies in the integral numerators. The computation
of Zy13,; demands similar treatment as Z;;,;, but its thermal contributions are highly IR~
sensitive. We give an IBP reduced expression for the fully massive II, in eq. (B.15) in the
basis of eq. (5.20) which agrees with [57] in the limit m, < T

The Debye mass is re-expressed in terms of its explicit masters for the massless fermion
limit m; < T reproducing [123]

ag, TE* %—F%, (5.21)
o i (1; )2 (22L; + 5)

4 % (11Lb—4Lf+Z> —]\5(2Lf—1)—CFNf, (5.22)
ay, I %(22% +1)— SN Ly, (5.23)

where Ly and Ly are defined in eq. (2.50) and the first line equals the classic result eq. (5.1).
Once quark masses are included, the oy -coefficients comprise explicit flavour summations.
An expansion up to O(e") yields

N, &
o, d=3-2¢ ?C _ 42 [ZITZ + mfZQTZ} , (5.24)
i=1
d=3—2 N\ 2
oy, <3> (2214 + 5)
N 5
2 1 i 44
i=1 i
8 9 4m?
+ (47m)2 Z1Tz - 2m12 (Z2Tz) T : Z?Tz - 4m22 {Zﬁglz - QW?ZSQ)M] }
Ve 2 -2
1 12m: 4
+  4Cs(47)? Zm?{B + (477); [miz + 3} - 4[2{2. - 2m$Z§i] }ng;i
i=1 i
8 a 1
2 T 27T T 27T
+ §(4W) i]Z:1 |:Zl;i +m; Z2;z':| [22;3' +2mjZs; + (an)? In mjg] ; (5.25)
Nf -9
—3-2¢ N, 2
o, 1E? ?C(zsz +1) -3 > [ln % + (4@%&] , (5.26)
i=1 i

employing massive thermal integrals ZsTl;1 which we handle in integral representation? in
appendix A.3 and integrate numerically since they lack a closed form. The genuine 2-loop
thermal integral Zﬁg)n is evaluated in eq. (A.86) and its mass derivative Z;?“ in eq. (A.104).
The limit m; < T reproduces the zero-mass result eq. (5.22). In all thermal integral expres-

sions the negative-sign convention for fermion distributions is implied (cf. eq. (3.75)).

2 Alternatively a representation utilising convergent sums over modified Bessel functions is conceivable

2l = % . @%mKl("—%"), while K, are modified Bessel function of the second kind [34].
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Figure 5.1: The 1-loop QCD Debye mass m%/T2 as a function of the temperature 7" in units of MeV in the
range (300 MeV — 10 TeV). The different solid lines originate from varying the number of quarks in the range
Ni = 1,...,6 with chosen renormalisation scale i = jiopt = 277" Dashed lines indicate the limit m; < T
using eq. (5.21).

5.2.3 Numerical evaluation

The visualisation of the quark mass dependence of the Debye mass (cf. fig. 5.3), follows the
strategy in [2]. Therefore, the RGE for ¢?(ji) in eq. (2.53) is solved numerically in both -
directions with the initial value ag(m,) = 0.1181 4+ 0.0011 [3], imposing continuity whenever
a quark mass threshold is crossed at i ~ m, and the value of Nt is changed. Therefore, 5-loop
runnings for the gauge coupling g2 [17, 18, 19] and quark masses m, [20, 21] are adopted and
their PDG values for m, [3] are used. As a consequence the running of the quark masses
dynamically affects the position of their thresholds i = m,(f).

Intuitively the MS-renormalisation scale f is of the order 7" in the context of the running
of the Debye mass. This is justified since my, in its perturbative generation, is sensitive
to only the hard scale. However, to achieve maximal decoupling [50] and convergence in
the dimensional reduction, one needs also to account for the non-static modes that make
themselves felt in the subtraction scale of the effective theory i oc 27T and induce its exact
proportionality. This becomes apparent in a renormalisation scheme that demands the slope
of the 1-loop effective coupling to vanish and g2 is therefore minimally sensitive to changes
in 1. The latter is known as the procedure of minimal sensitivity [57, 100]. For a specific
number of colours and massless fermion flavours one optimises fiop; = AnTe~(EFO) with
¢ = (N; — 16TxN¢In2)/(22N, — 81 N¢) which is independent of the gauge parameter as it
should be in the chosen scheme [124]. For finite quark masses the minimisation condition has
to be solved numerically for every value of T'.

The influence of non-static modes on the renormalisation scale for the Debye mass as a
function of temperature is one of higher-order [2]. Hence, we want to indicate how sensitive
the result is on the choice of  and which magnitude these corrections assume. In our
numerical analysis, we retain fiopy ~ 277" and vary the proportionality in the renormalisation
scale i = (0.5...2.0) x 27T

The thermal 2-loop functions Z;;, and Zy5 and also 1-loop Z;., and various mass-
derivatives thereof, are integrated numerically. For efficiency reason starting at 2-loop, the
implementation is adapted within QUADPACK routines of the GSL library in C++ .

The 1-loop QCD Debye mass for different fermion flavours in the range Ny = 1,...,6
is shown in fig. 5.1 with their limiting case m; < T as a reference according with [100].
Every quark mass threshold is crossed over a broad enough range of temperatures to not be
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Figure 5.2: The 2-loop QCD Debye mass m%/T2 as a function of the temperature 7" in units of MeV in the
range (300 MeV — 10 TeV). The different solid lines originate from varying the number of quarks in the range
Ni =1,...,6 with chosen renormalisation scale [i = figpt = 27T Their lower limit is chosen as T' 2 my, x0.15
with my, the highest quark mass of the N¢-theory. Dashed lines indicate the limit m; < T using eqgs. (5.21)
and (5.22).

resolvable on their own. By comparing between Ni-values, various plateau regions become
discernible. The most prominent one occurs around T' ~ 70 GeV when the top quark mass
threshold is crossed.

The 2-loop level (cf. fig. 5.2) pronounces the deviation from their m,; < T limit at low tem-
peratures even further. Since the effective theory is an EFT founded on the high-temperature
scale separation of QCD, results are expected to become increasingly unreliable at low tem-
perature. With a renormalisation scale of the order of the high-scale i ~ T', large logarithms
appear in eq. (5.25) once certain masses set the largest scale themselves m,; > T'. In other
words the DR fails to resolve these scales at low-T'. Therefore, the curves in fig. 5.2 are shown
up to values of T" where the effective theory is still valid choosing this limit at 15% of the
value of the highest quark mass my_ in the Ng-theory. For Ny = 6 this relates to the top
mass with a regime of utility 7" > m, x 0.15.

The crossing of quark thresholds occurs within equivalent temperature intervals as at 1-
loop and approaches the high-T" limit qualitatively similarly. The dependence on higher-order
effects is diminished while precision is increased at 2-loop level. Inspecting the specific case of
N¢ = 6 in fig. 5.3, this is to validate the argument above that higher-order effects are indeed
subleading.
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Figure 5.3: 1-loop (green) and 2-loop (red) QCD Debye mass m3 /T2 as function of temperature T, in units
of MeV. The variation of fi = (0.5...2.0) X figpt with figpt = 27T is indicated by the light correspondingly
coloured bands. Visible plateau when crossing the top mass threshold around 7'~ 70 GeV.
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Chapter 6

Conclusions and outlook

To fully study the infrared behaviour of dimensionally reduced thermal field theories, con-
tributions from higher-dimensional operators must be included. The intuitive picture is that
the non-static modes decouple at high temperatures because their masses become infinitely
heavy like in every other effective theory. This is not entirely true. Due to the dynami-
cal generation of the light masses the Appelquist-Carazzone [33] decoupling theorem breaks
down at finite temperature. Consequently, corrections from higher-order operators enter at
the same level as higher orders in perturbation theory.

The foundation of this thesis is a computer algebraic algorithm that fully automatically
streamlines the matching of dimensional reduction as outlined in chapter 3. Its goal is to
compute n-point correlation functions of the fundamental theory with different configurations
of external legs. These are matched onto the effective vertices in the EFT. The procedure
allows for a much more general treatment of DR while bearing enough potential to be scaled
up for higher accuracy computations with more loops and legs.

Indeed, we showed [1] how higher-dimensional operators are necessary for understanding
the logarithmic divergences of the effective magnetostatic gauge coupling g,, in the dimension-
ally reduced theory of hot Yang-Mills. A remnant IR divergence found at 3-loop level [100]
was revealed to reside in the set of dimension-six operators in EQCD and MQCD that is
indispensable for a well-defined expansion in the weak-coupling.

Their influence on the IR dynamics could be even more prominent. We found that even
though the soft scale O(gT) is parametrically well above the ultrasoft scale O(g*T), it still
contributes in the cancellation of the aforementioned IR divergences 1097 times more than the
cancelling contribution from higher-dimensional MQCD operators. Including such operators
in simulations might allow for an improved accuracy in the description of the IR dynamics
in EQCD.

When matching the electrostatic onto the magnetostatic theory, the dimensional reduction
integrates out the soft scale or concretely the dynamical mass m. Therein, the dimension-six
operators are generated in the ultrasoft theory, namely MQCD. Contrarily, a full cancellation
of mass-suppressed 1/m3-terms fails. Together with an ambiguity of the Debye mass they
render the effective coupling of the ultrasoft theory g,, non-perturbative at (’)(ag/ 2). One
explanation is that EQCD is indeed confining rather than barely perturbative as discussed
in sec. 2.4. In this case the ambiguities inside m; would then be a natural consequence.
To better understand the behaviour of the theory, a computation to access the first non-
perturbative orders would be illuminating but also involve investigations of 1/m3-suppressed
operators in MQCD.

Returning to 2-loop level where no such problems are present, the matching computation
of the Debye mass my in QCD with massive fermions is conducted [2]. Aiming for astro-
nomically large scales T' > 1 GeV, we witnessed smooth crossing of the quark mass thresholds
(cf. fig. 5.3). The cornerstones of this computation are the non-trivial IBP reductions for
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massive 2-loop sum-integrals in eq. (5.13) as well as the evaluation of the remaining master
sum-integral Z,,, filed in appendix A.3.1.

6.1 Outlook and future work

Future work focuses on the automated application of dimensional reduction to various thermal
field theories which has one striking advantage: A systematic implementation of all order
resummation. An immediate continuation in dimensionally reduced QCD is to put forward
extensions of different matching parameters such as the

(i) 3-loop QCD Debye mass including massless fermionic matter in the fundamental rep-
resentation. This increases its accuracy from current hot Yang-Mills computations at
this order [119, 100]. Once fermions are allowed inside diagrams, the set of symmetries
that comes to aid for purely bosonic integrals is drastically diminished. The reason is
fermion number conservation which constraints the diagram isomorphism founded on
momentum shifts that lead back to the same diagram. Consequently more topologies
and integrals occur.

(ii) 2-loop EQCD effective gauge coupling g2 including quark mass effects. Based on already
IBP-reduced expressions eq. (B.15), the set of master integrals is enlarged and receives
additional IR-divergent integrals.

(iii) 4-loop Yang-Mills pressure going beyond the currently known contributions up to ¢%1In g.
Tackling the next purely perturbative contribution at ¢% fosters new higher-loop sum-
integral evaluation techniques especially since present attempts are barely automated
for bosonic 3-loop integrals. There genuine vacuum integrals without lower-loop sub-
topologies are either unknown or demand a case-by-case study. A typical example is
the Mercedes type integral (cf. fig. 3.2).

With all this improved understanding from the side of QCD, the same tools can now
be applied to other gauge theories, particularly Beyond the Standard Model theories with
extended Higgs sectors, which may possess first order phase transitions leading to important
cosmological consequences. Studying these effects with dimensional reduction was reinvigo-
rated after staying dormant for some time.

Then dimensional reduction can be used in the electroweak theory to compute the effective
potential for the Higgs field. There DR is superior since direct resummations at higher orders
are inconsistent. One major culprit is its generalisation to higher-dimensional operators
included in the parent theory. In dimensional reduction this necessitates the matching of the
corresponding effective n-point functions on both theory sides. Equally, those higher-point
functions need to be accounted for in the conventional approach with the Daisy resummed
thermal effective potential [125] where they are incorporated in thermal masses. Whereas
this procedure is the only way for the effective potential to mitigate the IR problem, it is
nevertheless oblivious to some infrared sensitive pieces originating from those higher-order
diagrams.

The constructed in-house algorithm provides a framework that generalises dimensional
reduction for a whole class of different theories beyond the Standard Model where scalar ex-
tensions can assume representations of complex n-tuplets. The salient point is that only the
stage of group-algebraic manipulation is the one that needs extra generalisation. Previous
attempts address the special cases of complex multiplets for the singlet (n = 1) [48], the
doublet (n = 2) [126, 127], and the real triplet (n = 3) [128]. Higher-dimensional representa-
tions such as the quintuplet (n = 5) and septuplet (n = 7) are considered in [129]. However,
their application in the context of electroweak phase transitions (EWPT) is less exploited
and open for further investigations.
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Furthermore, integration-by-parts identities not only offer a strong tool to facilitate the
formidable task to compute thousands of Feynman diagrams by finding equalities in their
parameter space. They also spark interest in their own understanding. Many IBP relations
show a strong sign of systematics during the reduction and the Laporta algorithm offers a
brute force method to still apply them. However, there is very little understanding how to
uncover the general solutions of the system of relations. One example is the conjectured
factorisation of massless thermal integrals at 2-loop order.

Attempts for direct decomposition-by-intersection methods [84, 85, 86] of certain dia-
grams in the vector space of master integrals demonstrate how this process can be facilitated.
The advantage is that the computation of a large number of relations can be omitted and the
initial to-be-reduced integral is directly projected onto a minimal basis. Therefore employing
these methods at finite temperature is envisaged.
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Appendix A

Master integrals

This appendix collects vacuum and thermal master integrals appearing in chapters 4 and 5.
Along their evaluation one encounters the dimensionally regularised integration measure

d—1
d% = p*tdp H sin'~1¢; d6;
=1
= p?dpdQy_1 = pT dpdQy_s sin® 26,1 d04_1 , (A1)

where 6; is the angle to the i-th axis, with 0 < #; < 2w and 0 < 6; < 7 for ¢ > 1 for the
(d — 1)-dimensional surface area. The angle parameterisation z = p - k/|p||k| with respect to
one external vector k reads [130]

dQ2q—o /°° dl/“ 9y d=3
= | = dpp dz(1—27)2 A2
/p /p /(27T)d 0 -1 ( ) ( )
_ dQq—1 [ d—1 _ /Oo d—1
—/ (%)d/o dpp™™" = cq ; dpp™ ", (A.3)

where the second line shows the special case of a z-independent integrand. The d-dimensional

angular integral evaluates directly with abbreviations

o Q1 _ 2 Qo 4 (Ad)

BET@T TR amir (@) @00 @S (L)

A.1 Vacuum integrals

In order to display the results for physical quantities, we define the standard Passarino-
Veltman type functions [131], in Euclidean spacetime:

1
I(m) = /K g (A.5)

_ 1
B(Q;m17m2):/K [(K—i—Q)?—i—mﬂ [K2+m§] : (A.6)

When dealing with discrete sums we encounter polylogarithms, generalised (Hurwitz) and
Riemann Zeta functions in their sum-representation

Li(z EZ = (q+k)°, (=D k", (A7)
k=1 k=0 k=1
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and integral representations

Lig(d2) = +— /Oo dz x_i_l , (A.8)
'(s) Jo etz 1 F1
C(s,q)zlﬂ(ls)/oooda:‘wgg_le_x), (A.9)
0o s—1
(s = 1-,(15)/0 dx ;7_1
%0 s—1
- _Els)pé) /0 do | (A.10)

for Re(s) > 1. Sum-representations of Hypergeometric functions and Hypergeometric Appell
functions are defined as

= (a1)n - (ap)n 2"
Fylon,..oyap; Br,..., Byiz] = Y s Opin 2 A1l
PP A R AR (A-11)
. e _ o (@)min(B1)m(B2)n 21" 2y
Fy [ar; Bu, B2; 15 21, 22) = m,gn:o Dmen el (A.12)

with (a), = I'(a + n)/T'(a) the Pochhammer symbol. The integral representations of two
special cases of Hypergeometric functions are given as

I
2filon, 02 faiz] = F(OéQ)F((ﬁﬁll)— ag)
X /1 daj‘xazfl(l _ x)517a271(1 . Zx)fal 7 (Alg)
0
D(m)

Fi o Br, B2y s 21, 22) = T(a)l (71 — 1)

1
X / dea®t 11 —2)n 11— 212) P (1 — 202) ™72 . (AL14)
0
Below we derive and list the set of master integrals encountered in this thesis in dimensional
regularisation. We utilise the case of denominators A, = k? + m? that depend on a single

mass scale m.
The one-loop tadpole integral has an analytic solution in terms of Gamma functions

b = O

=296\ € [;2]9—s1 T (g — @
= La ) T b9, (A.15)
R Bkrm Ar (4m)z  T(s1)
—2e¢ 7o\ 2
d=3-2¢ _mp =T ¢ ji \* 2 3¢
Il;m = 747_‘_ <2m> {1+26+6 |:4—|— 2:|
+ € {8 + 30 — 7§3] + 0(64)} , (A.16)
2,,—2¢ =\ 2€
dacne AT (i (1 G
Lgm == (47)? (m) {e e [1 + 2]
+ €2 [1 + % - %”’] + 0(63)} : (A.17)

where I(m) = I1.p.
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For the generalised 2-point function first Feynman parameterisation is applied before the
integral is symmetrised in my, my

B(@sm,ma) = )

1
/ dx/ 3
[K? 4 2(1 — 2)Q? + (1 — z)m? 4+ amj]
2 2
— 1 In
(47‘() [ + + nm1m2+ Q2 mg
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Q? ' h<\/(m1 + ma)? +Q2>] - (A8

Moreover, the two-loop sunset integral [51, 132] with masses m, and m,43 = Zf m,; and mass

fractions
ms ) 2 ms )\ 2
mi mi
yields in d-dimensions
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M123

where the last line evaluated the sunset in d = 3 — 2¢ and with general masses while abbre-
viating sums over denominator powers s; and masses m;

Sy = Z Sjo 0 My = Z m; . (A.22)

jefi} Jeli}
The sunset I111,, with equal masses m,; = m occurs in two variations which decompose in
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terms of hypergeometric functions o F; and factor 1-loop tadpole diagrams [133, 134]

d—2 1
hi1mmo = —meQ(h;m)Q ;

d—2 3 4-d  5-d 3] _as 2a0(5—d) )
Litmmm = ———— = | 2F L= = Lim)”, A2
i === (A 551550 7 g ) e 4

where the first line is generated by the two-loop IBP relations eq. (3.63). The triply massive
Hs(m) or doubly massive H,(m) abbreviate

Hi(m) = Iitimmm ,  Ha(m) = Iitt;mmo - (A.24)

Special mass configurations with higher denominator powers for the sunset (A.20) have the
closed forms
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F(g)r(81)r(82)r(3123 + 83 — d)

d
X oF [823 — 505128 d;s123 +s3 —d;1—p| (A.25)

ﬂQQ’YE > 2e [m2]d—8123
4

X

1513253;mm0 = <

Arr éﬂ)d d d
st RS
o ()
4 _ 5,)D (2 — 53)T (523 — 4)T(s125 —
ey e

2
where p = <%) for mo < m; with an apparent symmetry s; <> so. The result in eq. (A.26)

is recovered from eq. (A.25) in the limit m; — mg or conversely p — 1. The limit my — 0 in
eq. (A.27) is achieved by p — 0 and the identity

I'(e)(a+b—c)
NORO)

I'(e)I'(¢c—a—Db)

+ I'(c—a)l'(c—1b)

2F1[a, b;¢; 2] = sFifc—a,c—bic—a—b+1;1—2)(1—2)°7970

oFifa,b;a+b—c+1;1—2], (A.28)

inducing symmetry in so <> s3.

The 3-loop level encounters integrals such as cubic powers of one-loop tadpoles but also
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basketball integrals (cf. [110, 135]) which have the structure
I10011,m = (’E

/ T3
1 83 S4
klka,kS Akl mi Akg mQA k‘3 ms Akg k3,m4

d=3-2e _m1234,u_ T3< e )66{ yo4 1 Z m1234
(4m)? M1234 de i m1234 i

2m; . 2m;
Jre[13+C2 Z<<1— m >L12<1— m >
i—1 1234 MM1234
1 my
- (lm2 % +81In m1234>>] + 0(62)} . (A.29)

where m 53, = Zf‘zl m; is the sum over all massive lines and Lis is the dilogarithm. The two
cases featuring in the three-loop EQCD gluon self-energy in eq. (4.85), namely the two-mass
B, and four-mass B, basketball diagram abbreviate special mass configurations of I110011,m

By(m) = I110011;mm00mm > Ba(m) = I110011;mm0000 (A.30)

which equate to

ST i\ 6
Bi(m) = @ - €4W)T <2m)
7C2

{1+8 4ln2+e[52+2—321n2+41n 2:|+O(62)}, (A.31)

By(m) = {:@ _ m&:)Tg (2;”)66 {216 Fate [26+ 25442] —I—C’)(e2)} L (A32)

using Liz(1) = (2 = 72/6.

A.2 DMassless sum-integrals

The tensor decomposition outlined in sec. 3.2.1 consists of the extraction of the sum-integral
tensor structure onto the tensors defined in egs. (2.41) and (3.20) and the decoupling of
the external momentum (cf. eq. (3.25)). In one-loop tadpole sum-integrals with bosonic or
fermionic four-momentum dependence denoted by K = (k,,, k), non-vanishing tensor sum-
integrals carry an even number of Lorentz indices. Its simplest example with two open indices
1, v establishes the relation

KK, koko kik;
¥ pias = wond s+ omo et
K K K
k2 1 k2
= 6;A05V0¢ [Kg] + 5IM§VJ 5’] di}([l{?]sl

k2 1L K2 —k2
= 5M05V0¢ W + (5ui(5yi8 W
K

K
0 i Ovi
= 5“05VOZ§1 Hoa d [Zgl o Z.S21;U]
281—2—d 52(51,1 281—2—d
= |8.00y el R rll | P
[“0 "o 1) | d ( 251 — 1) )] 1o
T'u,/(281 -3 - d) + (5”,/
2(s1 — 1) it 439
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A.3. Massive sum-integrals

which extends the list of basic sum-integrals in appendix B in [1]. Once more indices appear in
the tensor structure all possible combinations of 7}, and J,,, appear and their combinatorial
factors are determined through tensor decomposition. By changing basis onto the S/T-basis
eq. (2.41) we show how some of the relevant sum-integral relations are altered viz.

KK, (6 — d) Thy + S,
Ty i e S (A.34)
K
i K,K,K,K, _ i (8 —d)(6 — d)TM,,p(7
K10 48 K6
K K
6 —d)(T,,S,, + 5 permutations) + S, s
4+ ( ) HV=p 48K6 ) Hvp } , (A35)
i K,K,K,K;K,Kg _ i (10— d)(8 —d)(6 — A)Twpoap
K12 480K6
K K
n (8 = d)(6 — d)(TywpoSap + 14 permutations)
480K6
(6 — d) (TwSpoas + 14 permutations) + S, p0a
n p2pral i wpoaf L (A.36)

When considering a rescaling of the spatial momenta k; — 2k; and a partition of the

Matsubara sums as
D= +>, (A.37)

nez even  odd

one can relate fermionic sum-integrals to bosonic ones:

Zo = (22 meamdtl )z (A.38)

s f T s1;0

The explicit solutions for the bosonic and massless fermionic one-loop sum-integrals evaluate
to

Zgs=
i (Fey e
=y S0 _ oT Con ot d (A.39)
KAKI Am (477)% T (s1) 1
2y = O
S (Yl )
K AN 4 (4@% T (s1)
L o U e
X [C (251 a d,2 127r> + (-1) C<251 ag al,2 +Z27r>} , (A.40)

where in the latter a non-zero chemical potential p is included after first integrating over d
spatial dimensions and then summing over Matsubara modes. In the limit ¢ — 0 the scaling
behaviour eq. (A.38) is recovered.

A.3 Massive sum-integrals

The massive 1-loop tadpoles need a different treatment when evaluated in one of the two
regions of high- (7" > m) and low-temperature (7" < m). Only the former guarantees a
formal evaluation in closed form because the sum over Matsubara frequencies is absolutely
convergent.
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However, in accordance with the Saclay method (cf. sec. 3.5.1), we carry out the sum-
mation explicitly and higher powers of denominators of eq. (3.73) are obtained by taking
mass derivatives. The different spatial integration parts are parameterised using units of
temperature. In d = 3 — 2¢ the e-expansion for the thermal part of eq. (3.73) gives

o) d—1
2ty =4 [ ap ) + )]
’ 0 2wp
=2 YE € oo 2
nee —2¢C3—2¢ —2¢ P
_ <477> 722 2/0 dpp2 %{m(wpwn(wp)] . (A.41)
By taking momentum derivatives of ny(w,) relates
ni — |pd—1+4n o _(d_ n—1
P —=np(wp) = (P (wp) (d=1+mn) [ p" ne(wp) , (A.42)
p b 0 P

for (d —1+n) € Z*. The thermal part of the 1-loop sum-integral tadpoles becomes

A [ et i) (A.43)
25 - (a-2) / pjwp [m(wp) + n_<wp>} , (A.44)
Z5 = Tf:(d —9) /p ”;2(:’5) [wlp + W] + (o), (A.45)
=T / n;Qng) [wl L1- Z;(ww (o)1 =2 o)

+ (F<-). (A.46)

Their m; — 0 for fermions

1 1 pu 1 nu 1w
Zyy=—=|c[-1,2 -t s i) = A4
L= Ty [C( 9 lzw) +C< "2 H%)] 24 T a2 (A.47)
_ e (Lo~ LY
Zoyy = [‘I’ (2 22W>+‘1’<2+127r>] ; (A.48)
__1 1 _r Lo
281 = [y [C <3’ 2 Z27r> e (3’ 2 sz)] ’ (A-49)

agrees with eq. (A.40) relating the n-th derivative of the Digamma function

U,(2) = ()" nll(n+1,2). (A.50)

A.3.1 Two-loop massive sum-integrals

The calculation of the general sunset sum-integral with arbitrary masses m; with ¢ = 1,2, 3
on the basis of [47] is of the form

ara k1o k2,
lell;Qm B i A A } OAKl—KzﬂTLS N /k (27T)d5(k1 —hat k‘g) Z 6(k10 - k20 + k30)

K1,K» Ki,m1 = K2,m2 1,k2,k3 k10k20k30
aq 7.a9

T8+ @[, + @) [, + @b

(A51)

Thus, the twofold sum over Matsubara frequencies is rewritten as a threefold sum with the
Kronecker §-function eq. (3.72) and the fermionic and bosonic imaginary-time propagators
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A.3. Massive sum-integrals

egs. (2.12) and (2.13) employed. Additional variants of the sunset sum-integral eq. (A.51)
are required, where lines are weighted with powers of Matsubara f{equencies or irreducible
scalar products. Hence, both sides of the propagators in G(7) and G(7) are differentiated

(a OqG Z an 0416

[w2 + w?]

wn T

(A.52)

However, the propagators G(7) exhibit a kink at 7 = 0. Already a second order derivation
needs to identify recurring instances of the original propagator and arising J-functions

2 (_w%)ezwnT w2 wn T
(0-)? G(r) :sz —TZ( 1+ M)e "

= —5(7;) + W?G(7), (A.53)
(0-)" G(r) = — zn: w2520 (1) 4 WP G(7) | (A.54)

which permits an extension to higher-order derivatives. Here the standard summation formula
for bosons and fermions is used

TZ T = § 0(7 mod S),

TZ@“""T = 26(7 mod 283) — §(7 mod ) . (A.55)

why

On the integration domain 7 € [0, 3] both sums act in the same way. Focussing primarily
on the basic sunset (a; = 0), the sum over Matsubara modes is executed using the Saclay-
Method, outlined in sec. 3.5.1, to arrive at

Ziim = / (2m)46 (k1 — ko + k3) D(wy, wa, w3) . (A.56)
k1,k2,ks3

For the case Z;;, = Z1},.,, and including a chemical potential eq. (3.50), we get the integrand

1
4w1wa3(w1 + wo + w3)

E E na Dl wlawjawk)
8(,<J1WQW3

i£j£k o==%1

D(W1,(JJ2,(/J2) —

Z Z ng(wj)nr(wi)Da(wi, owj, Twy,) | (A.57)

8www
12 Szgéjyékafr +1

where the sum Z##k = Z(ijk):(l 2.3),(2,3.1),(3,1,2) accounts for all cyclic permutations of
mass signatures

1 1
Dy (wi, wj, wy) = - ;
wi twj+wr wi—wj—wg
1 1
Do (wi,wj, wy) = + . (A.58)

Wi —wj +wp Wt wj — Wk

The compactly denoted distribution functions n4(w;) in eq. (3.75) are fermionic for i = 1,2
and bosonic for ¢ = 3. The energy fractions are reorganised by identifying zero-temperature
objects. To verify their correspondence one explicitly integrates over zero-momenta ki,, k2,
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in the vacuum part. By inspecting its poles the integration is determined using the method
of residues. Thereafter, the sunset reads

_ vac
lel - lel

+ Z Z/na Z imi;mj,mk)

i#j#k o==x1

BB il o

1#j#k o,7=%1

inserting B(Q; m1, ma) from eq. (A.6). For compactness the notation with on-shell Minkowskian
four-vectors is introduced:

’CZ’ . /Cj = wiwj — ki . kj s ]Cl = (wi, kl) . (A.GO)

The result in eq. (A.59) corresponds to the application of cutting rules [94] splitting the
sum-integral into a vacuum part, one-cut parts and two-cut parts. Where the cut line is put
on-shell and weighted by the corresponding thermal distribution. The double integration over
[...] in the third line is split into a 2-dimensional radial integral over k; = |k;| and two angular
integrals parametrising the angle between the integration momenta z = k; -k;/|k;||k;|. Using
symmetries k; — —k; rewrites this integral

d—3

/ /OO dk kd no'(wl) nT CL)] /de 2 /+1 dz (1 — z2) 2 d;3
2w; 20Twiw; + mi —m? —m? + 2k;k;z
1

J

oodkjj k] Ny Wz) nT(wj) 1 + d ) ) )
/ / 2 2w; 2w Qkikj / dz P In [20'7—sz]' +mj —mj —my + Qkika] .
(A.61)

Here the angular integral in d-dimensions identifies as the hypergeometric function oF} in
eq. (A.11):

/ﬂd (1-22)% r (4’ 45
z =
1 20Twiw; + mi — m? —m? +2kkjz T (d—1)20Tww; + mi — mjz —m? — 2k;k;
-1 —4k;k;
AlLE—g— A.62
2 2 QUTwaJ + mk, mj2 — m — 2k;k; ( )

Since momenta get integrated out, the integral only depends on the ordering of the masses.
Internal propagators of the two-cut thermal contributions go on-shell when the momenta of
the cut lines become collinear in some Lorentz frame. In dimensional regularisation collinear
divergences are regulated via the sin?=20 term in the Jacobian eq. (A.1).

Inserting the thermal part Z7 ; of the 1-loop master from eq. (3.73) into eq. (A.59), yields

Zin =211
+ Y Z7, B(—imimy,my)
ik
dpp dgq ne(w?)n-(w))
+ Z Z / 2(2m)? 2w 2w?

1#j#k o,T==%1

207'ww +m2—mZ-—m2+2
xn[ T — P (A.63)
mj

207'w w + mk . m? — 2pq
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A.3. Massive sum-integrals

Two further configurations of eq. (A.51) involve (a1 = 1,2 = 1) and (a1 = 2,a2 = 0).
Focussing on the latter its integrand is
w1 1
4(,«}2(«)3 (wl + wo + wg) 4wows

> ) no(wi) D (wi, wj, wr) 4w2w3 > no(wi)

D(W1,WQ,OJ2) -

8 waw 37,75]75160' +1 1>1 o==%1

Z Z Ng (wj)nr(wi)Da(wi, ow;, Twg)
8OJ20J3 1#£j#£k o,r==%1

S T anledmlen )
4(.«]2(.«]3 i,j>1o0,7==%1

Again it is possible to identify a pure vacuum piece that corresponds to the first line. It is
obtained by carrying out the integrals over ki, kg, in

2
Z20,vac _ / klo _ 1 [
1lm = = -
K1,K> AK17m1AK2,m2AK1—K2,m3 d+1

where Lorentz symmetry permits to decompose the vacuum part even further. Similarly, the
one-cut terms get modified

miZy + Zys Zy%s) (A.65)

k:%o 1

= B(Q, mi, mQ) + ZV@C . (A66)
K, A1’<1,TVL1AK1*QJ712 d+1 [ ]

BEY(Q;my,my) =

In order to write the result in closed form, we employ

20,vac
Zi) = Z3

ngw .
+ 3 3 [ St cimimm

1#j#k o==%1
Ne(w;i) nr(wj) 1
+ //wl J |:
zygy:ékcmzﬂ:l wj —(UICI'—TK:J'P—F?TL%
-2 Y ([ ) ([ e (A7)
K 2w; K 2w ) ’
i,7>10,7==%1 g J

Inserting thermal 1-loop parts from eq. (3.73)

20,vac
Zih = 2
+ Z ZiiB(Q’O)(—imi;mj,mk)
itik

dk; k dk] k‘] ng(wi) nr(wj) 2
DI T

jk>10,7==%1

+1 1
X 2 d
/1 Z2O’Twle‘ + m,% - m? — m% + 2k1kj2

dpp dqq ng(wh) nr(wy)
n Z / 5 2 s

m)?2 2 2
o,r==+1 w2 Ld3

dz
1 207wbwi +m? —m3 —m3 + 2pgz

— Z1,7E, (A.68)

XQ/H p2+q2+m%+2pqz
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and evaluating the radial integrals on the right

20,vac
lel - lel

+ Z ZlT;iB(Q’O)(—imi;mj,mk)

i#j#k
d d Ne (W nv(wq)
9 [QJTw’qu + 'mk mj2 —m?+ 2pq}
207Ww] +mj —m3 —mi — 2pg
- /f dpp ;qq no (wh) nr (w) (owh — Tw)?
o1 )2 2wh 2w3 pq

« In |:20'ng0.)§ +m? —m3 —m? + 2pq}

A.69
20Twhwl +m2 —m3 —m3 — 2pq ( )
the quadratic 1-loop thermal contribution in the last line combines duly with the integrand
in the second radial integral. The encountered integrals are

(e +b2) (a —b)* 26 2d
d =2 5 F 12— ——
/1 Z(c—|—dz)r3 (c—d)P 1[’ —of; ’ba’dc} ’
+1
+1 « 1+o _
/ dz(a—l—bz) :l(a—l—bz) 11— o bc — ad ,
1 c+dz a (c+dz)b (c+dz)b
+1
Hoa4bz b ad — be
d = — ——1 d
/1 Y ds dz+ 7 n[c+ dz] _1,
+1 1 1 +1
d =-1 d A.70
[ oo = qiler el (A.70)
in the limits o — {0, 1}.
A.3.2 Two equal heavy masses
The cases of physical interest
mi=mo=m, m3z3=0, (A.71)

are encountered in the Taylor parameters of the Debye mass eq. (5.18). To achieve higher
powers in the denominators, mass derivatives of the form

ala -1 sicl d st ala

are taken before enforcing zero-mass limits. The vacuum contributions can be taken from
eq. (A.20) in d = 4 — 2¢. In dimensional regularisation, we expand eq. (A.51)

1 1
?Z£112n+ Z(nzn Zﬁ)) +O(e) , (A.73)

lel;m - 1im
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with the corresponding expansion parameters

Z(_g) _ _m% + m% + m%
Hm 2(471')4 ’

3 )

(=1) ? Zy;

3 .
me:_ 4Zm <ln2+ ) 2(47;)2’

3 _ _

1 2 T
g m? [ln2u2+3lnu2—|—+@}
i 2 m; m; 2 2

1 =2 52
+ 5 Z (mZQ +m? _mi) ln%ln qu _R(m%am%>m§)L(m%7m%amg)}

) _

1
111;m — (47r)4

ik i M
3 ZT(l)
+ Z Zigo) ReB(O)( img;mj, my) —I—Z In)?
i#j#k
dpp dgq no(w?) r(w]q)
+ Z Z / (2m)? 2w4 Qw?

1#j#k o,7==%1

QUTww +mk m
xl[

(A.74)
207’w w —i—mk m

and vacuum parts taken from [132]:

R (m%, m%, m3 \/m1 — 2momy — 2msmq + m2 + m3 — 2mams ,

. t3m . tsm In?t
L(m%,mg,mg):Lu <— > 2)+Ll2 <— > 1>+C2+ 5
mq ma

1 3, mi i
o (4 22 ) —in (g4 L) 4 D I 2L
2 mi mo 4 m2 m2

2 2 2 2
ms —mj —m5+ R (m{,mg,m
ty = 3 1 2 (1 2:M3) (A.75)
2m1m2

When approaching the physical scenario with the denominator power configurations as in
eq. (5.20), individual terms per diagram exhibit both UV and various IR divergences. The
most transparent way to control them is to establish a regulator for the UV via dimensional
regularisation and for the IR using a mass regulator for massless lines. Thus, the two fermionic
masses are identified and a fictitious mass regulator M is kept finite on the bosonic line

mi=mo=m, m3z=DM. (A.76)
Acting with mass derivatives
(_1)53 1 d s3—1
2815283 (m’ m, M) = ( 53 — 1)' <dM2> Zs1521(m’m7 M) ) (A77)
1 d

22153 (ma m, M) Z1153 (m m M) (A78)

- 2dm?

first on the bosonic line, the zero-mass limit M — 0 is taken. Thereafter, mass derivatives
with respect to finite physical masses are performed. The sum-integral splits into a vacuum
part, two one-cut parts, and two two-cut parts, with “cut” meaning that the corresponding
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line is put on-shell and weighted by its thermal distribution:

Zine = 235+ Zity + 21 + 21ty + 2415 (A.79)
d ne(£2p) 1
70 _ i / r(fy / A.80
12 = 7 % Az Q, Q @ +m?[(P— Q)2 +m? po_pp2’ (450
1
Z{1h = =2 lim e (p) { / 3 ] ; (A.81)
M=0Jp  wp L [Q* + MP7[(P — Q) + m?]] pre—p2
_ d ne(Qp) ne(wq) 1
Z" =21 CAS A R , A.82
112 lmo dM2 - Qp Wy (P _ Q)Q + m2 PPe M2.Q%=—m? ( )
o d 1 (wp) ne(wq) 1
ZE =1 / chome Zachm : A.83
12 MIEO dM? paq W Wy (P— Q)%+ M? P2=——m2,Q2——m? ( )
The cuts are
1
[ ']PQZ—mZ = 5 : [ . } 5
Prn==iwp
1
[ Jpre a2 o2 = oL (A.84)

Pn==%18p gn==1iwy

To finite order in e, we obtain for the ny one-cut fermion line contribution

2 ne(wp) [ m™m m 1
dm t [ m N
2 (4m)2m? J,  wp o T ar o) (4.85)

using the expanded B-function (A.6). Considering the ngny two-cut term and by keeping
the mass regulator M finite reads

ZED 1/ 1 (wp) ”F(wq){ 1
112 2 Jpg Wp wg | M* = AM2(m? + wpwy) + Am>(wp + wg)?
+ (wq - _wq)} )
_ 1 / 1 {[np(wp) + 1 (wy)]? _ [nw(wp) — ”F(%)]Z} +6Z | (A.86)
16m* J,, 4 wpwq (wp + wq)? (wp — wq)?
1 [n2(wy) [ 1 1
YA — - / F\"*p / { . Ly }
2 2)p wp —AM?(m? — wpwy) + 4m? (wp — wy)? (wq wq)

- 1 n2 wp q?!
 (4m)Pm? d

1
X 2 — (wg = _Wq)}
{ [Wq - Wp(l - %%)] +p2%§(1 - %M’j)
Moo 1 / n2(wp) /OO 12
(4m)2m? p Wp 0 Wy

v {(wq )1 - (g —wq)} . (A.87)

Here only the first term in the brackets diverges at the pole when M — 0 and p = q. The

identity
1

1 )
lgr(l) N P (A) Fimd(A) , (A.88)
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Figure A.1: m/T = 1.6, q/T = 1. Left: 5Z{f§) as a function of M for both the exact numerical result from
eq. (A.87) and the ansatz in eq. (A.89). Right: Remainder AZg;).

is employed where P stands for the Cauchy principal value. For this reason the g-integral is
extended over the whole real axis which allows to combine both terms. We find the resulting
ansatz for this contribution

2 n2(wy) ™m
52415 = / e Al
112 (47T)2m2 b Wy 2M "’ ( 89)

which is depicted in contrast to the exact expression eq. (A.87) in fig. A.1. The remainder
scales as O(M) for M — 0 and is then exact for M = 0. However, the finite contribution of
O(M?) in eq. (A.87) has the form

2
1
112 » 2m2 g (q2 _p2)2 ( )

The remaining vacuum integral is evaluated as a function of —p?

1 1 1
/q TP TS (A.91)
Alternatively the g-integration in eq. (A.87) can be performed exactly yielding the same 1/M
pole. The ansatz in eq. (A.89) can also be derived by splitting the g-integral into the three
domains [0,p — A],[p — A,p+ A}, [p + A, ] using a cut-off regulator A. Thus showing that
in the neighborhood of p = ¢ one can expand w, in the denominator of the integrand while
outside of this neighborhood one can safely set M — 0.
For the mixed ngng two-cut contribution mass derivatives are converted into derivatives
with respect to momentum and the angular integration is carried out

700 _ _/ s (Qp) 1 (wg) [ (2pg — M?)(p + q)
e pa Wq (2pq — M?)% — 40202

+ - —p)}

2
_ 2 /”F(wq) /“dpns(ﬁp) (P-4 (p+q)
Crpme Sy wn ST (o BB (- )

M—0 2 np(wg) [, np(8p)
2.2 dp
(2m)%m g Wq 0 Q,

M=0 2 /”F(Wq) /Oodp nB(Qp)2
g 0 2

2
p(p+q) — M-

5, M2/( o 2M2q2 +(p— —p)
p*+ oz (Wi +pa+ 7 )

(P + Mr02) (0 = 1) — ?fﬁquQ]
(* + 2302)" = (25pq)”
Moo 2 /nF<wq> /wd 4-ame(Qp) 20"+ MW — S

g 0 B )’

(A.92)
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In the first line integration-by-parts allows to trade mass derivatives of thermal distribution

functions for momentum derivatives M? q M2 — p? d—Q of the logarithmic factor in Z{}}’. In
the second line —fw is factored out and the integration range is extended over the whole

real axis. In lines 3-5 vanishing terms in the limit M — 0 are omitted and remaining terms
combined.

Given the complexity of the integrals the strategy is to first re-expand the distribution
functions, perform the d-dimensional integral and then take care of the Matsubara summa-
tion. Starting from the identity for the distribution functions

1 Wp

ng(wp) = +§ (coth 5 1) , (A.93)
1 w

ne(wp) = —3 (tanhjp - ) , (A.94)

with the application of the series expansion

o0

Yy

n=—oo
[e.9]

Yy _
nzzoo (e %)2 i tanh(y) , (A.96)

this is equivalent to reverting the integral to its full sum-integral where the vacuum part has
been subtracted. Thus, the integral eq. (A.92) is split into two parts and evaluated in strict
dimensional regularisation

o0 > 1 1
d d—3 .
/0 bp <nz_:oo Q2+ (2mm)? 29,

(A.97.1) (A.97.2)

4
> 2p* + M?p? — %wg (A.97)
5 . .
(0 + Tze})

In the sum-integral

m)4—dmd2 Wi((d = 2)w2 — (d—3)m?) 1

(A97.1) = 5(@ (wq + m)(wg —m) sin (%)

d
= M? \? 1
— 2m)4=4¢, +§ 2 d_4[<1—|—> —1]}+(9M2
ﬂ-{( ﬂ-) <4 d P 1( ﬂ-n) 4722 sin (djﬂ—) ( )
d=3-2¢ 1 T m eE

the zero-mode contribution (n = 0) is isolated in the first line and yields the expected o< 1/M
infrared divergence. In the second line finite contributions of O(M?) are summed while
remaining terms are of O(M). This means that only the p*-term in eq. (A.97) contributes
for n > 0 in the zero-mass limit. The vacuum contribution is modified by respective variable
transformations such that a representation with o F) from eq. (A.13) is possible

M3 1dzz 2 (1—2) 54( —i—q—Qz)*2 93— L2
0 m? m?2

(A97.2) = i
3—d d—2 o
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A.3. Massive sum-integrals

— exact
-- ansatz 107° F E
N 3 108 F ;
I 1077 L L
1072 107! 10° 1072 1071 10°
M/T M/T

Figure A.2: m/T = 1.6, ¢/T = 1. Left: Z{‘f? as a function of M for both the exact numerical result from
eq. (A.82) and the ansatz in eq. (A.100). Right: Remainder AZ{%F).

Combining results from eq. (A.98) and eq. (A.99), the final form of the ansatz approaches

2 ne(wpy) [T  m Mee 1 w wp +p
ZBF) _ / F\Wp) | 7T 2 1 | P A.100
U2 (4r)2m? ), w, 2wa+m+ "\ anT +2+2p " wp—p) ]’ (4.100)

which is plotted in fig. A.2 in comparison with the exact numerical result in eq. (A.82). The
remainder behaves as O(M) and thus vanishes in the limit M — 0 numerically validating the
representation of the TR divergence. In the sum Z\7) + Z%5 + Z{15) all (1/M)-divergences
combine to the Matsubara zero-mode contribution

T/ WIMQ]QZQ.Z. . (A.101)
k + ’

To verify that the behaviour in the limit m; — 0 is consistent with the result obtained from
IBP eq. (5.12) individual terms are expanded up to O(m?)

TE
2y 2 o [ M) o () 1 S (2]
p wp 4T 2p wp —p

2

= 12;4[2 + (In¢z)" — In 7]

2) 2 YE 7B 1
! (47:)2 [m? (T;T > Flrzhh <TZ§T ) Fomnze 2] Fom,
(A.102)
(FF) 1 [np(wp) + TLF(Wqﬂ2 _ [np(wp) — nF(Wq)]Q}
Zi1g X /p’q wpwq{ (wp + wg)? (wp — wy)?
477 11 /
- _W [6 + (In¢y) — lnw}
() () e Yo s

Strategically the expansion in eq. (A.102) first performs the integration before executing the
summation. Furthermore the expansion in eq. (A.103) is verified numerically.

Taking another mass derivative as in eq. (A.78) the contributions to Z,,, starting from
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A. MASTER INTEGRALS

eq. (A.79) are worked out independently

28 = 57
e 43 D) Bt o
T
s ()M )

In the second line the mass derivative was exchanged for a linear combination of momentum
derivatives which could be computed using partial integration. We further verify that

1 d
(BF) (
2+ 255 = 1 S (245 + 243

1 ne(wp) meTe Wp wp + D
- 1 e P e B
(47r)2m4/p wp "\ arr Tt 2p t wp — P
1 11 m?
i [ ) [y AL, (b))
(4r)?m* J,  wp 2wy 2p wp —p
1 (d—22)4/nF(wp)m;[ln <me'7E) 1Y (wp+p)]
2 (@4r)?m* J, wp, p 47T 2p wp —p
2
—1—1 12 4/np(wp) {1m21n<wp+p>_mj%ln<wp+]?>+1+wg}
2 (4m)2mt J, wp  [wp 2p wp — P p2 2p wp — P P

2
= 12 4/nF(wp)[<1—|—m22> ln<m€7E>+w§+%ln <wp+p>] ,
(4r)?m* J,  wp 2p 47T P 2p Wp — P

(A.105)

using partial integration in lines 4 and 5. Checking the corresponding massless IBP relation
eq. (5.12), individual terms are expanded up to O(m;)

2 ®\ Wl ow wp + P
ZF) L @) /”F(WP) 1 Y (% e N (e A
212 T 419" X L w + 202 ) "\ anT + 2 T 2 \w,—p

2
= T—[2 +(In¢) —Inm]

24
2m? meE 1 14¢3m? meE 9

2 (P ) m2 - 1 2|+ O(mb
(47)2 [n<47rT> i +2} T a7 [n<47rT> +4] +00mY),

(A.106)

(wp + wgq)? (wp — wg)?

x 1/pq L (“’13+°~’23>{[np(wp)+np<wq>]2 [np(wp)_np(wq)]z}

T2 11
T 24(4n)? {6 +(1HC2)’—ln7r]
m2 meE 1 1 4<3m4 meE 9 .
i " (57 ) * 3]~ s | (g ) +7) 00 4200

confirming eq. (A.107) numerically and eq. (A.106) both analytically and numerically.
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Appendix B

Integration-by-parts relations

The 2-loop QCD Debye mass eq. (5.18) requires the evaluation of the 2-loop Taylor coeffi-
cients eq. (B.13). These are obtained by a succession of massive 2-loop integration-by-parts
relations which are derived in eq. (3.63) and constructively combined in this section. The
integrals that require reduction are the massive fermionic sum-integrals with convention

Za1a2a3 — klllol kgf (kl() - kQO)as (B 1)
s15253;110;0102 — [K12 +m2]s1 [K22 +m2]32 [(Kl . K2)2]s3 ) .

K1 K>
such that
(d—2)(d—5) (d—3)%(d—6)
Z%gg;no;n =T 3omA (229;12?;0 - 2?12?1) - m ???;110;11
C@=3=5) e 1 g 3(d=5) o
16mA 111:110;11 5(d — 4) 112 110511~ T o A1123110511
3(d —3)
+ ngZmZg;o +— A2 (23;12?;0 - 23;12?;1)
2d — 7 1 2m?
Ad—4) <2Z§71 S,o - (d_2)Zg;1ZS;1) + ng(l)?;llogll
2m?
A — A/}
(d— 2)(d—4> 3;142:1 »
(d—2)(d —5) (d — 3)(d? — 9d + 22)
2?223;110;11 = _W (QZI;IZ?;O - Z?;IZI;I) + 16m2(d _ 4) ???;110;11
(d=3)(d=5) 110 1 oo n (d —5) (d=5) /200
T iemA | Z1inioin 2(d—4) 112:110;11 A2 21121110511
(d—3) 1 1
- TTRQZ?;IZS;O + m 2ZS;IZS;O - WZS;IZS;I
2m? 2m?2
+ MZ‘??%HO;H - ng;lzg;l ;
(d—2)(d—5) (d—3)?
Z122 U0l = T A (2Z1;1Z?;0 - Z?;IZ?;I) + WZ???;HO;H
(d—3)(d—5) 1
+ TZH?HO 1nt s 2 (Z2 AT 0 28;129;1) ;
7200 _ (d—3) o000 _ 12000 I (d=5) _a00 (d=3) 0 o
221511011 = Tg g 11511011 T 5 4211011 T T o o A1I2110511 T T g 1 2:0
1 1
4 A2 (ZQ 1Z1 ;0 22;12?;1) ﬁzg;lzg;l
4 2m2 7000 2m* 0 0

311;110;11 — (d—2) 3;142;1
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B. INTEGRATION-BY-PARTS RELATIONS

(d—2)(d—5) (d—3)
Zggino;n = T (221;12?;0 - Zlo;lzl;l) + Wzlo??;ll();ll
(d—3)(d—5) 1
- TZH?;HO;H o2 (ZS;1Z?;0 - ZS;1Z?;1) + ZS;IZS;I )
(d—2)(d—5) (d—3)?
Z???%;no;n = gt (QZ?;1Z?;0 - Z?;1Z?;1) T Tlem? ???;110;11
~(@=3)d=5) 110 ~(@=5) oo ~(d-5) 7200
T emi AliLnonn T T Aol T s 411210
(d—3) 0
+ “am? Z1 1 2 0
(d—2)(d—5) (d—3)
Zg??;no;n = gt (22?;1290 - Z?~1Z?~1) - WZ???;HO;H
(d—3)(d—5) (d —5)
- TZH?;HO;H + 42112 1011~ 5 212?3;110;11
(d—3) .o 1(d—4)
+ 2 Zl 1 2 07 (= 2)28;1Zg;1 2Z311 11011 - (B.2)
Special cases are found for
(d—3) 1
Zor110:11 = T mE 1o + mzZ;lZQ;l ; (B.3)
(d—2)(d—5) 1
Zo1:110:11 = Tznz o+ (d—=4)Zyp01011 + 75 m (2291290 — Z9122.1)
(B.4)
p _(d=3)(d—5) (@-2)(d-5), (d-4)
BILIONL = A U0 T T g g AUliodl T T o 421211011
1 1 1
~ gz \2Z21Z20 = WZQ;1Z2;1 + mzzmzm : (B.5)

B.1 Taylor coefficients

The next-to-leading order contributions to the Taylor coefficients of the QCD gluon self-
energy also contribute directly to the matching of the EQCD effective gauge coupling g2
via eq. (4.48).

At 1-loop level the Taylor coefficients of II, and I, with the sum over Ny = 3,...,6
massive fermion flavours acquire

I,,(0) = Ng(d—1) 210—22 d—1)Zy,; +2miZy,) | (B.6)
dIL,, (0)
d?>+d+10
I, (0) = —[6—(d—3)}NZQO+ Z[ ~1)Zy; +4m2Zs;| ,  (B.8)
2d° 4+ 11d + 2 d—6) —6(d—4
o) - [P (D g
Ny
1 d—1
T [ZB'i+2m12Z4~i] , (B.9)
5| 3 7% ;
II,(0) = 0, (B.10)
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B.1. Taylor coefficients

Nt
d— 25 2
I, (0) = 5 Nyt 3 > Zoy, (B.11)
=1
17-2d  (6+€)¢ 4
" _ B
=

We report also an IBP reduced expression for the fully massive 2-loop II,, and II., in the
basis of eq. (5.20)

Hee(0) = —(d—1)(d = 3)(2 — §)NEZ1,0Z
+ Zf:{(d —1)(d—3) (22 = §)NeZy,; Zo.g + 2Cr [ 21,9 — Z14] Zoy;)
+ 2m? <2N [(d—2) = (d = 3)¢] Zy; Zo + [4CF g NC} (Zy5)*
+4(d —1)Cr [Z1yg — Z15] Zs; — No(d — 5)(d — 4) 2%, )

4
+ 8m; <0Fd 2ZQzZ3z — No(d — 4)Z3%, u>} ) (B.13)

I,,(00 = 0, (B.14)

2 _ _
M,0) = {2%3_2;%3_;;(4%21d7)(ZQ;0)2
- (d—31)2(d2 —31d + 144)21;023;0}
N (Cp (d—1)(d—2)(d—5
BRCIELELIE

m d

1
(Zl;iZI;O - §Z1;'£ZIZ lel 7,7,>

(d— )(d—4) [(d—
4

{ d—;)—5)CF] ((d 5)2112“_(61 3)2“220)

1 1) d+1
mif NC CF:| lel 311

L2
ml2 d d
Cr 2

1)

mi d (le ZlO) Z2z

[3d3 — 21d? + 58d — 52 d® — 9d% + 26d — 6
+ il Nc — 32 CF] 7%, 4

6d
8(d + 5)

2(d2 — 21d + 32)
+ ( 34 NeZ, 230 —
2(d — 4)
I 3d
[(d —4)(3d® — 12d + 4) d>—17d+9
+ Cr —
I 3d(d — 2) 2(d — 2)
4(d—1
RG]

— |3N: +

CF] ZyiZay

Cr (213 — Zvy) Zsy
4(d — 2
m?(d - 4) |:2NC - (3)CF:| Z212 g1
4(d — 22) 16
+my <3chZ??3;ii - 3(d_2)CFZ3;z‘Z2;¢>} : (B.15)

All the above concur with [57] in the limit m; < T.
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B. INTEGRATION-BY-PARTS RELATIONS

The situation is more delicate for II7,. Strikingly, terms inversely proportional to the
mass arise in 1T}, when using this integral basis. To safely take the zero-mass limit requires
high orders in the mass expansion. Also the integrals need then to be evaluated numerically
to high precision at high temperatures. A different basis is in principle conceivable but in
general generates even higher powers s3 ~ 7 of the third denominator in eq. (B.1) which is
highly IR-sensitive already. However, in that basis the mass dependence becomes explicit
and the limit m, = 0 is taken immediately to recover [57].
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Appendix C

Matching of the ultrasoft gauge
coupling

Towards the account of chapter 4, this appendix collects additional details on the 3-loop
computation of the matching of the ultrasoft coupling gy. We utilise the parameterisation
of n-point vertices established in [1], which for the 2-point vertex reads 7,7y, for the 3-
point vertex &;,...,&;,, for the 4-point vertex 1,...,9,, and wy,...,wss, for the 5-point
vertex Kq,...,Ro and Ay,..., Ay, and for the 6-point vertex xi,...,x;4- The redundancy
of this operator basis is visible through the recurring appearance of certain combinations of
coefficients and provides a strong cross check for the consistency of the computation.

We report the coefficients Dy;, Da;, D3 from eq. (4.68) in Feynman gauge (&=1):

Do = 8(d —1)(2d + 3)(d* — 3d — 2)m; — 2(d — 3)(d — 1)way
4+ (d —1)(2d +3) [(d +3) (A1 — 3k1) + 5o + (2d + 1)(203 — K2)]
+4(d —1)[3(& + & — 2&4) +2(d* — 2d* — 8d — 8)&5
—2(d® — d® — 11d — )& — 2(d* — 2)&]
+12d[(4d* + 18d + 13)x1 + (2d* + 14d + 19)x2 + (4d* + 13d + 18)x3
+5(3d + 4) x4 + (d® + 12d + 22) x5
+2(3d* — 11d® — 39d? + 16d + 11)p; — 2(3d> — 25d* + 7d + 5)13
+4(d + 1)(2d® — 11d* — 5d + 9)ap10 — 4(2d* — 12d° + d* + d + 3)t)1a
+ (6d® — 33d® — 22d + 9) — (d — 21)dtpaz + 2d(d + 9)hos — (12d° + 31d — 3)¢bo5
+2(4d® — 27d* — 8d + 11)¢p30 — 2(4d® — 27d? + 2d + 11)2hg1 — 2(8d* 4 9d + 3)1b3s
+ 4d(4d + 1)th3g + 4(4d* — 2d + 3)140
—2(d —1)(d® = 6d* + d — T)wy — 2(d — 1)(d* — 3)ws — (d — 1)(2d* — 19d — 13)was
4+ (d — 6)(d — 1)was + (d — 1)(4d — 9)was — 6(d — 1)%wsy ,

4
Dis = =5 (184 + 41d + 18)m:(d - 1)

3(d— 1)
2

1 1
+ (d — 1) §(9d2 —d+ 21)&)1 + 3(0.)3 + WQ4) + 5(156[ + 13)&)22

+

[(d+3)(A1 — 3K1) + 5A2 + (2d + 1)(2A3 — K2)]

3 1
+ i(d — 2)0.)23 + 6(4d — 27)0.)25 — S(d — 1>W31

4

4
3(2d2 —5d +9)& — g(9d2 +26d 4 24)(d — 1)&s

+ §(4d2 +17d - 9)(&2 + &) +
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C. MATCHING OF THE ULTRASOFT GAUGE COUPLING

4
- §(9053 +26d* — 8d — 21)& + 8(2d — 1)&7

1 3 2 1 2
— 5(27d° + 60d” — 34d — 33)¢py + £ (36d” — 13d — 15)¢3

2
— §(18d3 + 25d? — 6d — 27)910 + 3(18d3 2d* — 3d — )12

1 8d 1
— 6(45d2 +22d — 27)1pgy — fd(9d — 25)tho3 + ;/’24 - 6(12d2 + 37d — 9)1bo3
1
-3 (45d2 + 8d — 33)130 + = 3 (45d2 4d — 33)131 — g(8d2 + 3d + 9)1)g
d2
+ 3¢39 3(4d2 — 9d 4 9)tyo (C.1)

2
Doy = §(3d5 — 81d* 4 302d° 4 1916d* — 8026d + 6032)7

d—19)d
+ (6) [(d+3)(A\1 = 3K1) + 5A2 + (2d 4+ 1)(2A3 — 2)]
2
- 2—7(2d2 + 456d — 1217)(& + &) — 2—7(353d2 — 2460d + 2158)&,

+ §(3d4 — 69d® 4 1085d* — 2669d + 1514)¢5

27(9d4 207d? 4 2951d* — 7542d + 4162)&6

1
— ﬁ(342d3 3346d% + 7035d — 4790)&7 — g(3d4 — 53d® — 63d* + 276d + 139)¢;

1 2 f
+ §(15d3 — 226d? + 180d + 187)tp3 — §(2054 — 37d® — 17d* + 84d + 101)3b19

2 1
- —(6d4 —120d® 4 154d> + 144d — 187)¢19 — —(18d3 — 321d* — 566d + 2491) 19y

18(45d2 481d + 1166) 193 + — (6d2 — 284d + 547)1pay

1 1
- 1—8(18d3 — 426d? — 163d + 2045)1)95 — §(12d3 — 219d? — 274d + 1109)1)39

+ %(4d3 — 79d% 4 86d + 125)1h3; — 3(12d3 — 294d? + 43d + 835)1)3g
- %(6613 156d% 4 262d + 7)tbzg + = 5 (6d3 156d> 4 313d + 94)v40

+ %(d4 — 21d3 4 29d? — 108d + 63)w; — %(d3 — 12d* — 108d + 149)ws
+ é(2d3 — 39d? + 6d — 91)wyg — 1(az — 7)(7d + 20)wa3

1
3(2d2 — 5d 4 24)wyy + - (2d3 54d? + 83d — 125)was + g(11d2 +12d — 5)ws; |

2
Doy = —2—7(15d5 — 335d* + 568d> + 4276d> — 16592 + 12912)n,

(65d3 1320d? + 4945d — 7302) (&2 + &3) — —(35d3 2661d? 4 9853d — 6474)&,

81 81

27(30d4 581d> + 2318d* — 4085d + 1950)&s

81 (90d4 1859d° 4 7995d* — 15115d + 7302)&6

— 8—1(45d4 2467d> + 10578d* — 16427d + 11778)&7
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C.1. 3-loop diagrams

1 f 1.
- E(161d5 — 162d* — 569d + 834)¢); + 5—4(d3 — 864d% 4 2741d — 1122)1)3

1 1
+ §(109d3 — 138d% — 391d + 606)1)10 — E(325d3 — 1008d? + 1157d — 1122)1)19

1 1
+ ——(15d> + 952d* — 3185d + 2850)1)25 — @(15&” — 379d? + 848d + 84))o3

108
1 1
— 574(10612 +91d — 174) 1oy + R(53d2 —109d + 174) (125 — 21h3s + 3was)
— 574(15613 668d> + 1855d — 1470)139 + 3 (5d3 258d? 4 775d — 750)1b31
1
— ﬁ(d2 — 35d + 42)th39 — 2—7(26d2 — 163d + 282)14g
1

— 6(19d3 — 38d? — 71d + 126)w; + 8(d3 + 144d? — 787d + 894)ws
6(5d —1)(3d? — 25d + 30)waz + — o (5d3 231d? + 790d — 840)wo3

— 6(5d2 —30d + 48)way — 1—8(5d3 — 150d? + 319d — 30)ws; , (C.2)

D3 = (d—1) [dny + 45 — wy — was] — 4d [Ph1o + Vg9 + Yyo] + (d + 1)&7
+2(2d + 3) [1hyg + 3] + (3d + 7) [ty + thg5] + 8 [§5 + &5 + &4 + &6l
— 4 [thg + o3 + oy + Vg1 + 10 [theg + P50] - (C.3)

As most coefficients are not fully independent, one can observe that all ©; ;i = 1,...,12
relations listed in [1] are satisfied including

@13 . 5)\1 = 3(5/61 s
O14: Oky =20)3. (C.4)

C.1 3-loop diagrams

The genuine soft EQCD contribution to the ultrasoft gauge coupling in hot Yang-Mills
in sec. 4.4 requires a 3-loop computation of the self-energy of the spatial gluons A{. We
depict all the occurring diagrams in the background field gauge with their respective symme-
try factors. The background field B{ is implied at the endpoint of a line.
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C.1. 3-loop diagrams
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C. MATCHING OF THE ULTRASOFT GAUGE COUPLING
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C.1. 3-loop diagrams

The contributing d-dimensional polynomials of the 3-loop soft contribution to the MQCD
gauge coupling in eq. (4.85) are parameterised by

(d = 2)pi(d)

M) = S 0@ - 9[- (- 0)d—5)d— Dd— 32— Dd’
(@) — (3d — 10)(3d — 8)p2(d)
"R T 198(d - 3)(d — 1)d(2d — 11)(2d — 9)(2d — 7)
_ (34— 10)(3d — 8)ps(d)
5(d) = Srea T 10) @ 8)d—6)(d - D@14 (C5)

with residual non-factorisable polynomials p;(d)

p1(d) = 12d"? — 6284 4 14447d'° — 193505d° + 1689420d° — 10234582d"
+ 44883931d° — 147059385d° + 366585830d* — 6898092444°
+ 929595256d2 — 791686464d + 314842752 |

101



C. MATCHING OF THE ULTRASOFT GAUGE COUPLING

p2(d) = 12d7 — 308d° + 3175d° — 17441d* + 57347d> — 117419d* + 138786d — 70872 ,
p3(d) = 3d° — 60d* 4 359d> — 670d? + 400d + 736 . (C.6)

Finally scalar coupling effects are inspected where the respective abbreviated polynomials of
the factorised result read

_d—2((d—4)(3d° — 49d* + 283d> — 779d* 4 12384 — 1056)
-8 < 3(d—7)(d —5)(d— 3)d
(d—=4)(3d—10)
3

(d —2)%(9d? — 77d + 158) (d —10)(d — 2)?
16(d—6)(d—4)(d—3)d "' 16(d—4)d 2) ’
(3d — 10)(3d — 8)(d? — 5d — 2)

256(d — 6)(d — 4)d

A

71(d)

73(d) = (k1 + (d —6)ra) - (C.7)
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