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ABSTRACT 

We discuss the irpplications of a theory in which scale and 

chiral invariance are spontaneously broken, and the di.laton cr- appears 

as a mixture of the two isoscalar members of the scalar nonet. From 

standard assumptions for the conformal properties of the axial-vector 

current, we predict the ratio of the cr'ITrr and crNN coupling constants, 

and test the hypothesis of £-dominance. At first, we neglect the ef­

fects of scale violation. Then, the calculated width of the dilaton, 

~• appears to exceed the limit given by the Adler-Weisberger sum 

rule for -rrrr scattering, while £-dominance seems to work. Using 

the method of collinear dispersion relations, we estimate scale­

breaking effects, which are found to be large. In the real world, our 

result for r agrees with other expectations, both experimental and 
er 

theoretical. However, the spin-2 gravitational radius of the pion is 

found to be double the prediction of £-dominance. This is consistent 

with experimental indications that £-dominance fails. We discuss 

meson-baryon scattering and its relation to parameters measuring the 

breaking of chiral symmetry in the energy density. Our interpretation 

of a recent result of Cheng and Dashen is that scale invariance is 

spontaneously broken, and chiral SU(2} x SU(2) is a much better 

summetry than SU(3). By requiring consistency with a sum rule of 

von Hippel and Kim, we find that data for -rrN scattering are not 

consistent with the dimension of the chiral-violating scalar being -1. 
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I. HISTORY AND PHILOSOPHY OF BROKEN SCALE INVARIANCE 

The investigation of scale and conformal transformations 

and. the associated quantum number, dimension, began in 19i0. 

However, only in the last two or three years has this subject 

received widespread attention. After noting the main historical 

developments, we discuss the modern theory of broken scale 

invariance, which forms an important extension of current algebra. 

The chapter concludes with some introductory remarks about our 

investigation and its relation to other aspects of the theory. 

Elementary technical remarks which complement the main text can 

be found in Appendix A. 

I. 1. Role oi the Stress-Energy Tensor 

There is an elementary rule, known to all students of Physics, 

which states that all equations should balance dimensionally. Adopting 

the natural units h = 1, ·c = 1, the only independent dimensional unit 

is that of length, L; it has the same dimensions as time and mass. 

The Schrodinge.r wave function '1' (x) has the dimensional character 

-3/2 L , since In the Schrodinger equation 

for a hydrogen atom, 

- (vz 
2m + = . a ( _.) 

l ot 1f' t, X ( 1. 1) 

both sides of the equation have the dimensional quality L -s/z. 

One must not confuse these elementary remarks with the more 

sophisticated meaning that we shall attach to the term, 11dimension". 
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We shall investigate the hypothesis that the world of strongly inter­

acting particles~' is approximately invariant under scale transfor­

mations 

X -+X 1 = pX 
IJ, µ µ 

(p>O}, ( 1. 2) 

and the associated special conformal transformations 

X -> X 1 

µ fJ, 

2 2 2 
= {x - c x }/(1 - 2c,x + c x ) µ µ ( 1. 3) 

These transforinations correspond to unitary transformations U( p, c) 

on the vector space formed by solutions of the equations of motion 

under .consideration. Dimension is a property of linear operators on 

this space. 

Taking Eq. (1. 1) as an example, linear operators on the 

vector spa_ce formed by the functions 'f (t, x) are constructed from 

i, t, a/ai, a/at, and constants. The symbol for mass, m, actually 

represents the linear operator mI, where I is the unit operator. 

So, although m is a quantity of the type L -l in length units, it is 

assigned dimension zero, according to our use of the term. The 

dimension of an operator is measured by its dependence on 

i, t, a/ax, a/at. Thus, Eq. (1. 1) is not invariant under the 

2 
transformations U(p, c), because 'v /2m has dimension -2, 

while e
2 
/Ix I has dimension -1. 

,:,Electromagnetic, weak and .gravitational interactions are treated in 
the lowest order of perturbation theory. 
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The group of conformal transformations on Minkowski space 

consists of Poincare transformations, (i. e. , 3-rotations, boosts, 

and translations), and the transformations giv;en by Eqs. ( 1. 2) and 

(1. 3). Conformal transformations were first considered shortly 

after Einstein formulated the Special Theory of Relativity in 1905. 

Ignoring gravity, relativity requires the equations for closed physical 

systems to retain their form under Poincare transformations. It was 

gradually realized that the formulation of a relativistic theory of 

gravity would involve the consideration of all coordinate transfor­

mations. This prompted the discovery of Bateman(l) and 

Cunningham(l) that the largest group of space-time transfor­

mations which leaves Maxwellls equations invariant is the conformal 

group. This property results from the absence of dimensional 

constants in the theory--photons have zero mass and couple to the 

dimensionless quantity, charge. 

The observation of Bateman and Cunningham means that 

Maxwell's 

frames as 

equations have the same 

. . . 1 f ( 2) 1n 1nert1a ra,mes . 

form in uniformly accelerated 

By substituting x = (t, 0, 0, 0) µ 

and cµ = (0, 0, 0, -½a) in.Eq. (1. 3), we obtain x 3 = ½ 

of the proper time T 1 = P in the primed frame. 

2 
aT 1 in terms 

This corresponds 

to uniform acceleration a in the x3 - direction, i. e. , hyperbolic 

-1 2 2 -2 
motion (x3 + a ) - x~ = a in x' -space. 

The theory of broken conformal symmetry must not be 

confused with other extensions of these considerations, such as 

"Conformal Relativity11
{
3). In conformal relativity, one imagines 
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that masses transform like a/ax, so the equations of motion for 

free 1nassive particles, such as the Dirac equation (ip' - m) 'Y =0, 

are invariant. Such transformations may be worth consideration in 

classical physics. However, in quantum mechanics, each value of 

the mass corresponds to,a different vector space, so Conformal 

Relativity cannot be used as a symmetry theory for the vector space 

,· which describes the states of systems of elementary particles. 

It should also be noted that the conformal transformatiqns 

to be discussed here are not general-relativistic transformations. 

From the point of view required by 11General Relativity", the effect 

of gravity would have to be included in all equations such that 

covariance under all coordinate transformations on general­

relativistic space is achieved. The proper time dT= .... /g (x) dxµdx v 
V/ µv 

is invariant under such transformations. These properties are not 

shared by the theory '?f broken conformal symmetry. The group of 

conformal transformations on Minkowski space is not a symmetry 

of the world, although it is a symmetry of theories of massless free 

particles such as the photon. In Eqs. (1. 2) and (1. 3), x is a 
µ 

4-vector in 1',1inkowski space, so an element of proper time dT is 

~ 2 -2 given bydx
0 

- dx •. In terms of small increments d
1 

x, d
2

x at x 

which become d
1 
x', d2x 1 at x', Eqs. (1.2) and ( 1. 3) imply 

( 1. 4a) 

(1. 4b) 
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respectively. Thus dT is not invariant under scale or special 

conformal transformations. On the other hand, angles are locally 

preserved, since d
1 

x•d2x/(d
1

x
2 

d
2

x
2

} ½ is an invariant. This 

property accounts for the name "conformal". 

For our purposes, gravitational effects are regarded as 

external, which means that gravitational fields are not operators on 

the vector space oi particle states, The influence of gravity is 

measured by the local stress-energy tensor operator 8 (x), in µv 
first-order perturbation theory for the gravitational coupling. The 

coupling of an external field o g (x) to a system of elementary 
µv 

particles is given by the action 

(1. 5) 

where er 
1

, er 2 are space-like surfaces. This assumes that the 

linearized approximation of the relativistic theory of gravity remains 

valid at microscopic distances. Poincare invariance is ensured by 

the conservation laws 

il·e = 0 (1. 6} µv 

aA1n = eµv - e = 0 , (1. 7) X.µ \) vµ 

where 

mx.µv = x ex. - X ex.µ (1. 8) 
µ V \) 
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is an angular momentum density, and the generators of Poincare 

transformations are 

(1. 9) 

(1. 10) 

Elementary properties of matrix elements of 8 , and the 
µ\) 

corresponding canonical Lagrangian formalism are discussed in 

Appendix A. Many textbooks on introductory field theory mention a 

non-fundamental quantity called the canonical energy-momentum 

tensor, T -:/ T . When written in terms of T , an angular 
µ\) \)f.l. µ\) 

momentum density contains a model-dependent term which is 

interpreted as a spin angular momentum density. Details of the 

relation ( 4) between T J..l,\! and 8µ\! may also be found in 

Appendix A. 

( 5) 
In 1921, not long after Noether observed that a 

conservati?n law is implied by each invariance of the action integral, 

• Bessel-Hagen(6) obtained the conservation laws which are required 

by conformal invariance of Maxwell's equations, (apart from Eqs. 

( 1. 6) and ( 1. 7), of course). Invariance under conformal transfor-

mations involves 11dilation" and 11 special conformal 11 currents: 

(1.11) 

( 1. 12) 

Bessel-Hagen's laws £or Maxwell's theory are 
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cP· ii9 = 0 µ (1.13) 

,/x 
0 µv - (1. 14) 

i. e. , the trace e µ, 
µ of the stress -energy tensor for photons vanishes. 

Until a few years ago, work on the conformal group was con­

fined to extensions of the discoveries of Bateman, Cunningham, and 

Bessel-Hagen to other theories for free particles. (7 ) The only sur­

prise was the observation of McLennan and Havas (7 ) that the usual 

canonical theory for massless spin-0 mesons cannot be formulated 

in exactly the same fashion. According to the textbooks, (S) the 

Lagrangian density ½(o¢)
2 

leads to the expression o cf ovcf-½g )0¢ )
2 

µ µ . 
for the stress -energy tensor, which is not traceless. Following the 

11dictates II of canonical variational theory for the Lagrangian density, 

they included extra terms in a9µ and ~v• so the direct connection 

between the vanishing of 8 µ and scale invariance was lost. This 
. jJ, 

approach was being followed as late as 1969. (9 ) 

In 1962, Huggins (lO) pointed out that the standard formula for 

8 derived from a Lagrangian ciensity arbitrarily disallows terms 
µv 

like (o o 0
2

),1..
2

. The addition of such a term does not affect µ. V - gµV y., 

the expressions {L 9) and (1. 10) for the Poincar~ generators or the 

conservation equations (l. 6) and (1. 7). With a suitable choice of 

coefficient for the new term, an expression for ff µv which satisfies 

Bessel-Hagen's conservation laws is obtained: 

8 µv (1. 15) 
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Then we have 8 µ = 0 for the zero-mass spin-0 field</,. This "new, µ 
.. ( 11) 

improved". stress-energy tensor was first proposed by Gursey 

in a different context. It was resurrected by Callan, Coleman and 

Jackiw (CCJ) (l 2) and Brown and Gell-Mann (l 3) because of the con­

nection with conformal transformations. CCJ showed that, for re­

normalizable field theories, the new improved 8 has finite matrix µv 
* elements when renormalized, unlike the old 6µ,v 

The construction of the generators of dilations and special 

conformal transformat:i_ons was initially tackled by Wess, (I 4 ) using 

the old 8 µv· Given the new, improved 8 we can now write down the . µv 

dilation operator 

,.. 3 I 3 D (x ) = j d X ~ e = d X ~ 
o oµ o 

and the special conformal operators 

(1. 1 7) 

Eqs. (1. 16) and (1. 1 7) can be. understood from another point ' 

of viewP S, 
16

) Instead of applying the infinitesimal transformations 

represented ·by op and ocµ• we can impose the potentials 

(1. 18) 

(1.19) 

* Strictly, the extra term should be written (oµ,ov- ggv 0
2

)(1 + i::) 2
, 

where 8 is an infinite constant cancelling (¢ )
0

, which is also infinite. 
The finite constant 8' = 8 - (¢ )0 is not determined by the proof of 

.. renormalizability. 
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with a corresponding change 6A1 2 in the action o'f the elementary , 

particle system given by Eq. (1. 5). We identify 6A1 2 with the 
' 

change in action caused by the non-conservation of the generators G 

for transformations represented by the parameters 6et according to 

the action principle (l ?) 

= • (G(l} - G(2)) 6a (1. 20) 

Therefore, taking 6a 

D(2)-D(l) = (1.21) 

K (2)-K (1) = 
µ µ 

( 1. 22) 

( For example, the change in coordinates represented by 6c = (0, 0, 0, ½oa} µ 

corresponds to uniform acceleration 6a in the z-direction. Equiva-

lently, one could suppos_e that a constant force is acting. The cor re­

sponding potential, ½ og = - 6az, follows directly from Eq. (1. 19) }. 
00 

The integrands of Eqs. (1. 21) and (L 22) may be written 

= e µ, 
µ a\JX = 2x e v 

µv µ v 

so, apart from additional conserved operators, Eqs. (1. 21) and 

(1. 23) 

(1. 22} imply Eqs, (1. 16) and (1. 17). The conserved operators are 

eliminated by requiring a consistent free field theory at t = ± oo. 

In the limit of scale invariance, D = J d 3
x 6:= 0, we can actu­

ally infer 0: = 0 because of the theorem (Appendix A) which states 

that J d 3 
x s (x) = 0 imp.lies s (x) = 0 if s (x) is a local, spin-0 oper -

a tor. (l 3) Therefore, scale invariance implies conformal invariance, 
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The scale transformation (1. 2) corresponds to a transformation 

U(p) = exp [i D(x ) log p] (1. 24) 
0 

on the vector space of particle states. The dimension t of a (suit­

ably chosen) field c/ (x) is specified by 

c/ (x)-+ c/1 (x 1) = U(p) ~ (x) U(p)-l = p -,r, c/ (px) (1. 25) 

The infinitesimal form of Eq. (1. 25) is 

i[D(x ), ~(x) J = (-l + x•o)c/(x) 
0 

( 1. 26) 

Because of the canonical commutation relations 

a c/ ( o, o) J 
0 

(1. 27a) 

(1. 27b) 

free fermion fields 'l' have dimension - 3/2, while free boson 

fields c/ have dimension -1. To obtain the latter result, it is 

necessary to explicitly check that o c/ has dimension -2, since 
0 

the time dependence of D(x } does not always permit the orders of 
0 

operation of D(x ) and o to be interchanged. Further details 
0 0 

are given in Appendix A. 

In general, special conformal transformations with finite C 

2 . ' 
do not preserve the sign·of (x-y) , where x and y are any two 

points in Minkowski space. (l 4) Therefore, care is needed when 

µ 
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attempting to interpret the corresponding unitary transformations 

because of trouble with the causality condition 

[ A(x) , B (y) :_ = 0 , (for (x-y) 2. spac elike), ( 1. 2.8) 

where A(x) and B(y} are dynamical observables such as currents. 

However, infinitesimal transformations o c do not display this µ 

unfortunate behavior, so causality places no restrictions on the use 

of equal-time commutation relations of the £orm( 9} 

,./ a ,./ "- "-2. ,J i[K (x). ¢'(x) J = rt y, - 2.x (tg + iZ: ) 'f + (2.xµx - OµX )o,'f J µ 0 µ a,µ (J, µ I\. 

where the nilpotent matrices rt characterize the conformal µ 

( 1. 2.9) 

representation to which' ¢' belongs, and L is the spin matrix 
!l,\) 

(x a - X o, ) ¢' (x) µ \) \) I\. 
- i I: >6'(x) • , µv ( 1. 30) 

I. 2.. Early Applications 

The first attempt to connect the conformal group with experi­

ments in particle physics was made by Kastrup. In a long series of 

papers, (IS) he tried to apply the idea(l 4) that masses should be un­

important at high energies. In field-theoretic terms, the conformal­

invariant kinetic energy terms are supposed to dominate the non­

invariant mass terms in the Lagrangian. Then, treating the conformal 

group as an approximate degeneracy symmetry of the world, he 

deduced that high-energy amplitudes should be roughly "conformal 
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invariant" in momentum space. Let us summarize the evolution of 

this point of view. 

Evidently, belief in this reasoning leads to the expectation 

that high-energy amplitudes depend only on dimensionless functions 

of the momenta. For example, if A(s, t) is the amplitude for .the 

scattering of two spinless particles,* 

A(s, t) = f (s /t) (s, t large, ) (1.31) 

is obtained, implying that A is energy-independent at large scatter­

ing angles. 

In order to derive Eq. (1. 31), it is essential to assume that 

the _limit in which all ;masses vanish is smoothly connected to the real 

world. The validity of this assumption will be questioned later. The 

zero-mass limit is the limit of scale invariance, ( 8 µ) = 0, if no µ 

scalar mesons are coupled to the vacuum via 8 µv·** The amplitude 

Aµv = (py p 4 \ eµ, v \pl' p 2 ) can be expanded in powers of k = p 3 + p 4 

- p
1 

- Pz according to· Law's method for bremsstrahlung. (l 9 ) The 

O(k-l) terms, A Born, are represented by Feynman graphs in which 
µv 

8 hooks on to external lines. The non-sin'gular term, A contact 
~ ~ , 

given by 

A = A Born 
µv µv + A contact 

µv + (1.32) 

is determined by the conservation laws (1. 6) and (1. 7), w~ich may 

be written 

* 2 2 
For p 1 + Pz --p 3 + p 4, we define s = (p 1 + p 2 ) , t = (p 3 - p 1) 

** Discussion of this alternative begins in Section I.3. 
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= 0 = A vµ (1. 33) 

in momentum space. • The condition of scale invariance, Aµ= 0, µ 

requires 

(1. 34) 

which is equivalent to Eq. (1. 31 ). 

Kastrup further speculated that the large s behavior given 

by Regge pole theory at small t results from approximate conformal 

invariance. The t-dependence of amplitudes was assumed to be com­

pletely changed by the effects of finite masses, since Regge behavior 

is obviously not compatible with the t-channel dependence of Eq. 

(1.31). 

The problem with this idea is summarized by the fact that 

Regge behavior was originally observed (
2

0) in solutions of the 

Schrodinger equation, which severely breaks scale invariance. The 

situation is less clear in relativistic field theory. Because of re­

normalization, amplitudes contain logarithms as well as powers of 

the momenta and masses, so it is a question of whether the leading 

term at large s • contains log s or not. 

Now, it has been known for a long time (
21

) that there is a 

connection between renormalizability and the dimension of an inter­

* action. The Lagrangian density of a renormalizable field theory 

contains interaction terms with dimension /, ~ -4. Examples are 

* The situation for non.polynomial Lagrangians is reviewed in Ref. 
22. Study of the corresponding amplitudes at high energy is just 
beginning. 
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A cp 3 and e Aµ J , which have dimensions µ . -3 and 
~~ 

-4 respectively. 

For superrenormalizable theories, (i.e., both the bare and physical 

coupling constants are finite), the dimension ,is greater than -4. 

In early investigations of large-s behavior, classes of diagrams 

were summed by specifying the kernel of a Bethe-Salpeter equation. 

Superrenormalizable 11.cp
3 

theory was found to give Regge behavior, 

whereas similar examination of theories in which only mass terms 

break scale invariance gave sa logys at large s, (23 ) so it seemed 

that the controlling factor is the manner in which scale invariance 

is broken. However, the present status of the subject is that some 

of the diagrams previously thrown away become unexpectedly im­

portant at large s when summed. In a rigorous study of perturbation 

theory for quantum electrodynamics, Cheng and Wu(
24

) have obtained 

logarithmic behavior at large s, (contra Kastrup 1s suggestion). In 

Acp 3 
theory, a power law in s is obtained only if A is less than a 

critical value. (
25

) Since this power law is merely due to the Born 

term dominating at large s, we doubt that these attempts to connect 

Reggeism with broken s.cale invariance will prove profitable. Alter­

native schemes have beE;ln proposed, but the status of these sugges­

tions is shrouded in controversy. (26 ) 

Renormalization involves the introduction of a cutoff mass M 

which breaks scale invariance.. Since the limit M-> co is taken at 

some stage in the calculation, it is not surprising that scale invariance, 

unlike gauge invariance, cannot be preserved by this procedure. (Z 7) 

* We refer to the unrenormalized dimension in this paragraph. 
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Barring the presence of arbitrary cutoffs, the logarithmic terms 

blow up in the limit of zero mass. Part of the infinity corresponds 

to the emission of an infinite number of massless particles 

accompanying each external particle which was well-defined in the 

massive theory. This phenomenon is called the "infrared problem". 

It causes single-particle states and the S-matirx to be ill-defined in 

this limit,,:, and destroys the belief that all high-energy amplitudes 

should be approximately conformal invariant in momentum space. (28} 

Broken conformal invariance cannot be treated as an approximate 

degeneracy symmetry for on-mass-shell amplitudes. 

In particular, Eq. (1. 31} must be abandoned. For example, 

infrared contributions' dominate the radiative corrections to 

electromagnetic scattering process es at high energies and large 

momentum transfers. (29) It might be supposed that Eq. (1. 31) could 

be saved by 11 going off-mas s-shell11
• By avoiding particle ~tates and 

considering vacuum-expectation values of T-products, the zero-mass 

limit can be discussed because there are no emitted particles which 

can initiate the infinite bremsstrahlung. However, when the zero­

mass limit is applied to the vacuum-expectation value representing an 

off-mass-shell extension of (p p I 8 Ip p ) the 
3' 4· µv l' 2 massive' 

analytic behavior p~ 
l 

destroyed. (30) Once 

about the on-mass-shell point p~ = 0 is 
l 

again, logarithmic terms appear, this time in 

:,::: 
There is one uninteresting exception, which is obtained by supposing 

that all interactions can be turned off before the masses vanish. Even 
then, the zero-mass limit need not be smooth--e. g., vector fields 
have mass singularities. 
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2 2 
the form log (p ./p .}. They invalidate the derivation of Eq. (1. 31), 

l J 

because they do not scale. 

In 1966, Kastrup( 3 l) recognized that his earlier work could 

not provide a good description of high-energy processes because of 

the infrared problem. Therefore, he considered amplitudes in 

which soft mesons are emitted in addition to the two primary 

particles being scattered. In the CM frame, the differential cross 

section for the emission of N mesons was written 

( 1. 35) 

at large energies and scattering angles E, 8 of the primary particles. 

The probability distribution PN of the soft mesons was assumed to 

be of the Poisson type: 

(1. 36) 

where N( E,' 8} is the mean multiplicity of the secondary mesons at 

(E, 8 ). By interpreting the total ( 11 inclusive11
) cross section, 

dd TOT /do,, as the 11 non-infrared11 contribution to ddN/dO. in 

Eq. (1. 35), with all long-distance infrared effects incorporated in 

PN, Kastrup speculated ;that it would mainly depend on short-distance 

interactions, which were supposed to be conformal invariant: 

(E, 8 large} . ( 1. 3 7} 
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This intuition was guided by examples from electro­

magnetism, (Z 9) with one important difference. Vacuum polarization 

causes the short-distance behavior of quantum electrodynamics to be 

' {32) 
modified by logarithmic terms. Thus Coulomb's Law becomes 

_s:g_ [ V(r) = 4'ITr 1 
2a· 

- 3-rr (log mr + 5/6 

( v = 1. 781. .. ) , ( 1. 3 8) 

at distances r much smaller than the Compton wavelength of the 

electron. Therefore, logarithmic dependence is not necessarily due 

to infrared effects. For the purposes of Kastrup 1 s argument, it must 

be supposed that strong interactions do not contaminate the leading 

r-singularity with logarithms. 

Eq. ( 1. 36) is a separate proposal which corresponds to 

independent emission of soft mesons. However, most of these soft 

mesons are pions, which carry isospin, so their emission is 

constrained by the requirement that the production of exotic states 

be damped. Therefore, it is not clear that PN should be given by a 

Poisson distribution, (33) although experiments( 34) are not 

. inconsistent with this possibility provided that P 0 is treated as 

the probability for non-diffractive elastic scattering. 

Scaling laws like Eq. (1. 37) have become the subject of 

intensive investigation recently. The processes involved are 

typically of the form 
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A + B _, C + anything ( 1. 39) 

where B is a hadron and all energy variables are large. The 

Observatl·on(
35

) f 1· 1 f d • 1 t· 1 t d t' o sea 1ng aws or eep 1ne as 1c e ec ropro uc 10n 

(A;: C;: electron, B;: proton in Eq. (1. 39),) together with Bjorken's 

(36) • 
explanation of the phenomenon, were follbwed by a large number 

of papers in which the scaling laws are "proved11 in various models 

or from various assumptions and approximations. We refer to 

review articles< 37} for comparisons of these methods, and restrict 

our attention to the connection with broken scale invariance.:~ 

I.3. Modern Formulation of Broken Scale Invariance 

A few years ago, Mack( 39) and Wilson( 4 0) replaced these 

qualitative observations with concrete proposals which provide a 

natural extension of current algebra, broken symmetry, and the 

corresponding set of low-energy theorems. These proposals, 

together with the work of Brown and Gell-Mann{l 3} on the manner 

in which conformal symmetry is violated, form the basis of our 

present-day understanding of the subject. 

The central quantities in current algebra { 41 } are the octets 

of vector and axial-vector current densities ::r a 
µ 

a 
and ;y5 µ { a ;: 1. .. 8}, 

which arise in electromi3-gnetic and weak interactions of hadrons. In 

!l< 
In view of the previous discussion, analyses in which the conformal 

group is treated as an approximate degeneracy symmetry in 
momentum space cannot be taken seriously. These papers are listed 
and criticized in the review articles by Carruthers {Ref. 38} and 
Wilson (Ref. 28}. 
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first-order perturbation theory for the electromagnetic and weak 

coupling constants, hadronic amplitudes are proportional to matrix 

elements of the electromagnetic current density 

+ 

and the weak current density 

w 
J (x) µ 

respectively, where e~1s0 is the Cabibbo angle. (
42

) 

The time-components of the current densities may be 

integrated to form the sixteen charges 

= f' 3 a 
. .I d ·x ~ 

0 
(x) 

= f' 3 a 
LI d X 3-'5o(x) 

( 1.40) 

( 1. 41) 

( 1. 42) 

The lack of conservation of most of these charges is indicated by 

dependence on the time x . Only isospin T = (F 1 , F
2

, F 3) and 
0 

2 8 
hypercharge Y = r-;- F are conserved by strong interactions. 

"/ 3 
The 

group SU{3), which is used to classify particle states according to 

the "Eightfold Way'', (43 ) is generated by the octet of charges, Fa. 

The basic postulate of current algebra (4 l) requires that the 

SU{3) generators obey the SU(3) algebra even when they are not 
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conserved, and further, that this property extend to an SU(3) xSU(3) 

algebra involving all sixteen charges: 

[ 
a b ]· i fabc Fc(x ) F (x

0
), F (x

0
) = 0 

~a(xo), F~(x0)] = i fabc F~(xo) ( 1. 43) 

~~(xo). F~(x0)] = i fabc Fc(x ) 
0 

The coefficients fabc are the structure constants, of SU(3). 

Applications of Eq. (1. 43) have been reviewed by Adler and Dashen( 44) 

and Renner. ( 45) 

No such postulate is possible for the conformal group. (l 3) 

Equal-time commutation relations such as(4b) 

= D(x ) 
0 

p 
0 

( 1. 44) 

i [M. , D(x )] 
• 10 0 

= ( 1. 45) 

are required by the known properties of 8 under Poincar~ 
µv 

transformations, so the exact conformal algebra can be satisfied 

only in the limit of exact conformal symmetry, 8 µ .... O. A complete 
µ 

account of the broken conformal algebra is given in Appendix B. 

Equations such as (1. 45) show that D(x ·) and K (x ) do not 0 µ 0 
'' 

have the Lorentz behavior indicated by indices such as µ because 
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they are not conserved. The definitions ( 1. 16) and ( 1. 1 7) of these 

generators involve the plane of integration, x = constant. Taking 
0 

x = 0 for simplicity, boosting corresponds to rotation of this plane 
0 

about x= 0 towards the light cone, so the generator changes by an 

amount which can be determined by Gauss's theorem. In general, if 

c/(x) is a local operator, with known behavior under Lorentz 

transformations, the operators 

d¢' (x} = i [D(x) - x•P, c/(x)J 
0 

k/(x) 

are also local, but may have obscure properties under boost 

transformations. Similar considerations were involved in the 

formu~ation of the local generalizations 

= , etc. , 

of Eq. (1. 43). Corresponding to the fact that the non-conserved 

charges defined in Eq. ( 1. 42) are not scalar or pseudo scalar 

operators, the assumption that the equal-time commutator in Eq. 

(1. 48) is a vector or pseudovector implies the conditions( 44 , 47) 

[r 3 µ a .... 
d x x. a 2< ( o , x ) , 

,, 1 µ. = 0 ., etc. 

Similarly, if the gradient terms in 

( 1. 46) 

(1. 48) 

( 1. 49) 
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= grad. terms ( 1. 50) 

are supposed to be absent, the condition 

(1. 51) 

is obtained. The example f = J has appeared in the literature~
48

) 
\) 

The nature of the breakdown of a symmetry can be specified 

by giving the symmetry properties of the appropriate current 

divergences. In Gell-Mann's theory of broken chiral symmetry, (4 l} 

the energy density is written 

= u 
0 

( 1. 52} 

where 0
00 

is invariant with respect to chiral SU(3} x SU(3}, and 

u
0 

and u 8 befong to a set of scalar densities ¾ and pseudo scalar 

densities vb, (b = 0 ... 8), which form a (3,, 3) + (3, 3) represen­

tation of SU (3) x SU(3): 

[ Fa(xo)' ub(x)] i fabc C = u (x} 

[ Fa(xo}' vb(x)} = i fabc vc(x) 

[ F:(x
0

), ub(x)] • dabc c( ) 
( 1. 53) 

= - l V X 

[ F;(x
0

}, vb(x) l .. abc C = l Cl u (x} 
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where the Clebsch-Gordan coefficients dabc are symmetric in 

a= 1 ... 8, b,c = 0 ... 8, with dObc = J'[13 °be· The assumption 

that the equal-time commutators in Eq, (1. 53) are spin-0 operators 

implies the same property for [ 8
00

(x), F(Sl(x
0

) J, which can there­

fore be specified by integrating ove'r d 3x and using the theorem of 

Appendix A for spin-0 operators:( 13 • 
41

} 

i ( 8 (x}, Fa(xo)·] = oµ-;Ja(x) 
00 µ 

i ( 8
00

(x), F~(x
0
)] 

(1. 54} 

= oµ3i;f1 (x) 

The.SU(3) x SU(3) properties of the current divergences follow by 

writing o3i as a linear combination of the u's or v 1s, using Eqs. 

(1. 51}, (1. 52), and (1. 53}; e.g. 

jT + C 

JT 
a 

V (a= 1,2,3}. ( 1. 55} 

Thus, the deviation of c from - ft measures SU(2) x SU(2) 

violation. ( 49 ' 50} Gell-Mann, Oakes, and Renner( 49 ) obtained the 

value c'::' - 1. 25. 

The feature of this theory which influences our work is the 

absence of a term 

2 ( a a - g a } s (x} 
µ V µv 

( 1. 56} 
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in 8µ\J, where s(x) is not invariant under SU(3} x SU(3} or gauge 

transformations. The existence of S would imply that Eq. ( 1. 54) 
jJ, \) 

is invalid, and even our basic assumption 

( 1. 57) 

would no longer be true; {i.e. , 3'5"- would have mixed dimension}o 

This point is discussed at length in Chapter I I. 

The breakdown of scale invariance has been similarly 

treated. (l 3' 4 o} The energy density is decomposed into the scale-

invariant term, 8 and scale-violating terms w : oo' n 

r: w n n 
( 1. 58} 

with dim 8 = -4, and dim w = ,f', f -4. Eqs. (1. 44) and (1. 58} 
oo n n 

imply 

w . 
n 

( 1. 59) 

Therefore, the assumption that r, (J, + 4) w is a scalar density is n ·n n 

a necessary and sufficient condition for the theorem(l 3 , 16) 

to hold. 

8 µ = 
µ w 

n ( 1. 60) 

Eq. ( 1. 60) is often called the "Vi rial Theorem" because it 

resembles the well-known theorem of classical mechanics. ( 5 l) The 

vi rial, A = q • p, where (q, p} are canonical momenta, is the classic al 
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r3 i - --analogueofthedilationoperator D(O) = . .Id xx 8
0
i(O,x) ~ -ix•V. 

Denoting ti"me-averaging by ( ), ( \) usually vanishes, which 

a a 
implies that the Hamiltonian H = H(q, p) satisfies (p • 'apH )= (q· 0qH). 

2 
For H = p /2m + V{r), with V = i VJ.,, (Vt= homogeneous 

function of degree t in r), the classical vi rial theorem is 

(1.61) 

where T is the kinetic_ energy. 

The majority of the many successful applications of current 

algebra depend on the hypothesis that the axial-vector current is 

partially conserved {PCAC). (
52

) According to this hypothesis, 

(0µ3<
5

µ.) satisfies an unsubtracted dispersion relation in the square of 

the momentum transfer, t ; near t = 0, the dispersion integral is 

dominated by the pole of the appropriate O meson, (rr, K, or T)). 

For example the relevant matrix elements for nucleons are 

[ 
2 2 ] • = u (P + ½k) ½,.a - i y..,__ y 5 FA (k) - ik..,__ y 5Fp(k) u(P -½k), 

(1. 62} 

and 

- a 2 
u (P + ½k) ½T Ys u(P - ½k} DN(k } 

( 1. 63) 

with a = 1 , 2, 3 and 
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DN(t) = 2~ FA(t) + t F p(t) 

2 
m g1TNN 1 roo dt 1 ImD(t 1 ) 1T 

+ = 2 1T \3m )2 f (m -t) 
1T 'iT 'IT 

The pion decay constant, f , is defined by 'IT 

( t I - t) ( 1. 64) 

( 1. 65) 

fl g1TNN is the pn'IT+ coupling constant, and FA (t), F p(t) are the 

axial and induced pseudo scalar form factors of the nucleon. When 

the continuum integral is neglected at t = 0, Eq. {l. 64} implies 

• ld T • 1• • ( 53 ) the Go berger- re1man re ation. 

( 1. 66) 

where gA = F A(O}~ i. 24 is the ratio of the axial-vector to vector 

coupling constants in neutron 8-decay. Similar relations may be 

deduced from K and 11 PCAC. Adopting the no-subtraction 

hypothesis, the distance of the pole from t = 0, (i. e. , m 
2

( o- , ~)) , 

is a rough measure of the accuracy of these relations. 

It is possible to regard the success of formulae like Eq. 

( 1. 66) as an indication of approximate chiral invariance of the 

Hamiltonian; but not of the vacuum, so that parity-doubled 

multiplets do not appear; i.e., chiral invariance is said to be 

11 spontaneously broken11
• (

54
) For example, in the limit of chiral 



-27-

SU(2) x SU(2} symmetry, oµJ~µ vanishes for a::: 1, 2, 3, and Eq. 

(1. 64) becomes 

F p(t) ::: - 2MN FA (t)/t ( 1. 6 7) 

Either ~ vanishes, or there is a pole at t::: 0 due to the p,resence of 

a massless pion. The latter alternative is much more attractive, 

since m2 -+ 0 closely approximates the real world, while parity-
rr 

doubling would be expected in the other case. Then, by evaluating the 

residue of the pion pole in F p(t), we recove~ Eq. ( 1. 66) as an exact 

relation. Since matrix elements of 0µ~
5

µ contain the £actor 

m
2 

/(m
2 

- t}. the limit a!J.3-
5 

.... 0 is non-uniform in t ; e.g., 
'Ir, iT µ 

lim lim 
o µ 3' -+ 0 t -+ 0 D (t) 

5µ N ( 1. 68) 

The non-invariance of the vacuum arises through Eq. (1. 65). 

When the vacuum is chirally transformed, soft mesons are added to 

form a new state which, in the limit of chiral symmetry, could also 

be called a vacuum. Thus there is an infinitely degenerate set of 

vacua in this limit. Only one of them corresponds to the unique 

vacuum state of the real world. It is distinguished by the require­

ment(55) 

, {:=::l O in the real world) o (L 69) 

Eq. (1. 69) summarizes .the observation that particle multiplets may 

be classified according to the SU(3) group generated by Fa, a::: 1 ... 8, 
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and not the group SU(3} generated by* Fa= exp(i SF~) Fa exp(-i BF~), 

for example. The violation of physical SU(3) is not spontaneous. 

An infinitesimal chiral transformation is accompanied by the 

emission or absorption of a finite number of soft mesons. Thus, if 

</(x} is a local operator, and the limits qm -,Q are taken correctly, ~.o:, 

. (4445) 
the soft-meson formula (e.g., for p1ons) ' 

lim 
qm-,Q (B, rr(q1), rr(q2), ...... , rr(q} !</(O)!rr(qj+l), ..•... , rr(qn).A) 

m=l ... n 

( 1. 70) 

n corresponds to the a term in a power-series expansion of 

ia,F5 ,1. -io,F 5 
e 'P e . In the real world, Eq. (1. 70) becomes an approxi-

mate relation which can be obtained by pole-dominance methods. Sum 

rules may be obtained by supposing that the n-pion amplitude obeys an 

unsubtracted dispersion relation in a suitable variable. 

2 
From the previous discussion, it would appear that m and 

1T 

2 
mK indicate the magnitude of SU(2) x SU(2) and SU(3) x SU(3) 

violation, respectively. However, this conclusion is not 

~:, In the special ~ase 8= ,r JT, we have Kuo I s transformation. ( 56) 

See Ref. 55 for comments on Kuo's work. 

** For example, in rrN scattering, the limit of zero pion energy should 
be applied to the forward amplitude. 
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automati.c--i.t might be an accident that m'IT is small. The test of 

this idea is the relative accuracy of the predictions of pion and 

kaon PCAC. This is a controversial point at present. (57 • SS) The 

main issue is whether the data for K 
3 

decay( 59 ) imply a large 
,f., 

violation of the soft-pion prediction. (6 0) This involves contradictory 

experimental data and a theoretical extrapolation of order ~m,r , 

2 
not 0(m ). In our view, tl;ie experimental data are not good enough 
-- 1T 

to indicate the correct theoretical extrapolation to the soft-pion 

point. Since the other soft-pion theorems are in· excellent agree-

ment with experiment>!(, we assume that 

SU(2) x SU(2) violation. 

2 
m 

rr 
measures 

Since SU(3) is a degeneracy symmetry, the variational 

( 61 p:(~{,: 

principle 

may be applied to 8
00 

(\) = 8
00 

- u
0 

- c}_u8 to obtain 

(1. 71) 

(1. 72) 

where e::;:: O. 2 is a parameter indicated the inaccuracy (~ 20 'Ji'.) of 

SU(3)-symmetric results. Applying Eq. (1. 70) with n = 1, the left­

hand side of Eq. (1. 72) may be evaluated, implying the result of 

>:( (57) 
We disagree with the claim of Brandt and Preparata that the 

failure of naive soft-pion theorems for electromagnetic reactions such 
as '!To_, 2 y, TJ-> 3,r is connected wi.th_ a large violation of SU(2} x SU( 2) 
invariance. The contents of this paragraph are more fully discussed 
in Chapter I I I. 

,::* The states I~{\))) are normalized to one particle per unit volume. 
States I *) are normalized invariantly. See Appendix A. 



-30-

Gell-Mann, Oakes and Renner/49 )'!-

. 2 2 4 4 2 2 
c = - JT + 2/2 m /m + 0(m /m , m e/m ) ::: - 1. 25 . 

'll' t) 'll' 11 'll' t) 

(1.73) 

The manner in which conformal invariance is realized may 

involve similar considerations. Mack( 39 ) observed that the failure of 

the argument leading to Eq. ( 1. 31) can be traced to the failure of 

A:{k = 0) = (p3 , p 4 j 8 ~ j p 1 , Pz) to vanish in the limit of conformal 

invariance. Therefore, the limit 8µ _, 0 is non-uniform in momentum 
µ 

transfer squared, the vacuum is not invariant under conformal 

transformations, and Aµ has to be responsible for the soft-particle 
µ 

emission which forced Kastrup to adopt Eq. ( 1. 37) instead of Eq. 

(1. 31). In the zero-mass limit, this corresponds to infinite pair 

creation by the conformal generators when the vacuum is conformally 

transformed. In that case, it is difficult to construct a rule 

governing the soft-particle emission. 

Mack proposed a con;tpletely d1fferent and much simpler 

mechanism for the soft-particle emission. He supposed that matrix 

elements of aµ~ = 8 µ at low frequencies are, to a good approxi-
µ µ 

mation, given by a nearby pole in the 8µ channel which is due to a µ 

low-lying isoscalar S-wave mr resonance which we call the dilaton, o-. 

* E~uation (1. 73) does not depend on the value of s, defined by 
( 'll' I u I 'll') = s ~- PCAG gives s ::: 0( 1), but does not determine the 
actual value of s. We thank Professor K. Wilson for pointing this 
out. 
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This assumption requires <BI 8~ I A) to be universally proportional 

to the amplitude for A-iB + o-(soft), i.e., dilatons couple to mass. 

The dilation current is said to be partially conserve:d (PCDC 

hypothesis). 

The relation between PCDC and conformal symmetry is 

analogous to that between PCAC and chiral symmetry. (l 3) In the 

limit of conformal invariance, the dilaton becomes massless and, 

in general, matrix elements of 8 have a dilaton pole at zero 
fl\) 

momentum transfer. The presence of this pole allows heavy 

particles such as the baryons to remain massive in this limit. The 

action integral becomes conformal-invariant, but the presence .of the 

massless Nambu-Goldstone boson o- is responsible for the non­

invariance of the vacuum: 

1 2 
- - F (k k - g k ) 

3 er µ \J fl\J 
( 1. 74) 

Imposition of the condition e µ .... 0 results in exact relations for soft­
µ 

dilaton amplitudes. The universal constant of proportionality, F , 
er 

which is given in the units of a mass, is analogous to the PCAC 

proportionality constant, (2£ ) -l. In order that the scale-invariant 
1T 

relations for soft-dilation amplitudes remain approximately true as 

scale invariance is broken, the low-mas.s dilaton state is assumed 

to dominate an unsubtracted dispersion relation for < e µ) at small 
. µ 

values of the momentum transfer. That is the PCDC hypothesis. 

Conformal invariance is said to be spontaneously .broken. 
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Some aspects of Mack's proposal ( 1967} were anticipated 

several years earlier. In 1960, Gell-Mann and Levy(
52

} noticed 

that, in the o--model, ."the cr-coupling is responsible £or the 

nucleon mass. 11 With the benefit of hindsight, we can now say that 

this occurs because the o--model obeys the PCDC hypothesis in the 

special case (2£ }-l = -F . In 1962, Gell-Mann( 62} suggested that 
'IT er 

matrix elements of 8 µ obey unsubtracted dispersion relations which 
µ 

can be dominated by scalar mesons. However, the connection with 

scale and conformal transformations was not mentioned. 

The simplest scale-invariant calculation is the derivation of 

the o- MM coupling constant, Go- MM' where M is a spin-0 meson. 

The. form-factor expansion 

( 1. 7 5} 

is required by the conservation laws of Poincar~ invariance, Eqs. ( 1. 6) 

and (1. 7). Eq. (1. 9) implies H
1 

(0) = 0. In the limit of scale 

invariance, 8 µ -, 0, _Eq. {l. 75) becomes 
µ 

2 
{2m -M ( 1. 76) 

Since a o--pole is permitted to appear at k
2 = 0 in H 2(k2}, mM need 

not vanish. Use of Eq. ( 1. 74} to evaluate the residue of this pole 

implies the scale-invariant result( 39 ' 62 , 63 • 64) 

Fa-Go- MM ( 1. 77) 
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Because the normalization of fermion states differs from that of boson 

-1 
states by a factor (2 • mass) • the corresponding result for the 

dilaton-baryon coupling u'u go-BB is>:, 

( 1. 78) 

We expect m 2 to give a rough indication of inaccuracies in these 
(J" 

scale-invariant results, just as m 
2

( 0- .~) measures the effects of 

the violation of chiral invariance. The estimation of corrections due . 

to the lack of scale invariance of the real world is a major aim of 

this investigation. 

There remains one aspect of the discussion in Section I. 2 

which needs a quantitative formulation--Kastrup' s idea that strongly 

interacting systems are approximately scale-invariant at short 

distances. The appropriate formalism was constructed by Wilson( 4 0} 

two years ago. He considered operator-product expansions of 

the form 

A(x + y/2) B(x - y/2) = I: C (y) 0 (x) 
n n n (1. 79) 

where A(x} and B(x) are local operators with dimensions t A, t B. 

The sum I: is countably infinite, [O (x)} is a set of local operators 
n n 

(including the identity}, and C (y) are c-number functions of the . n 

4-vector y . Wilson considered short-distance expansions only; µ 

i.e. , he required all components of y to be small. Examples of 

,:,: 
If needed, some elementary details which supplement this discussion 

can be found in Appendix A. 
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Eq. (1. 79) arose( 65) in studies of renormalization in perturbation 

theory, and in the problem of constructing a field theory for 

composite particles. Wilson postulated that Eq. (1. 79) is a general 

property of local relativistic quantum mechanics. It is obviously 

' true for free field theories, and is also valid for renormalized inter-

acting fields A(x), B(x) to all orders in pert1:1rbation theory. (66) 

Therefore, in its most general form, Eq. (1. 79} constitutes a very 

weak assumption.* 

The strong assumption is that, to zeroth order in scale 

violation, only a limited number of operators On(x) of dimensions -f,n 

appear, where the leading singularities of the corresponding C (y) 1 s 
n 

,{',A+ tB - tn 
are·homogeneous functions of the form y ; i.e. , the 

leading singularities are determined by a scale-invariance argument. 

The exponent of y is simply obtained by inspection, or by commuting 

both sides of Eq. (1. 79) with the dilation operator D(x ) , with 
0 

.... -' ...... 
X :: y , X-t Y• 

0 0 
Logarithmic functions of y, which are due to 

scale-breaking effects, are assumed to be less singular, so the scale­

invariant terms dominate at short distances y. This means that 

D(x ) is a slowly varying function of time. 
0 

This point of view is difficult for a field theorist to accept. 

In renormalizable field theories, (i.e., dim £. t == -4 to first order 
1n 

' 
in perturbation theory), the leading singularity of C is 

n 

logarithmically more singular than the corresponding (scale-invariant) 
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singularity for free fields,· due to the effects of vacuum polarization. 

In particular, renormalized quantum electrodynamics is not scale­

invariant at short distances; (see Eq. (1. 38) ). Non-renormalizable 

theories (dim £. t( -4), necessarily treated in lowest order, increase 
1n 

the singularity by a factor y -l. Only superrenormalizable field 

• theories {~im £. t) -4) are scale-invariant at short distances. (67) 
1n 

In conventional field theory,* the only known example is the un-

realistic >,._c/
3 

interaction. 

However, the. success of current algebra favors Wilson's ideas. 

In practice, Eq. (1. 79) is applicable only when the fields A(x) and 

B(x) are the local operators from which current algebra is constructed: 

a a · 
the vector and axial-ve~tor currents Jµ(x) and 3-'Sµ(x}, the stress-

energy tensor 8 , 
µv 

and derivatives such as aµ;_:i;5~(x) and 

a 3' - a 3' . According to Wilson's hypotheses, the term containing 
µ \) \) µ 

currents in the operator-product expansion of the unequal-time 

commutator of two currents is given by 

abc \ 1'") 1'") 1'") ( -2) 2 1'") {-3) 2 l c + f o ( g x - o x - o x ) E ( x } + ( 1 + 4 a) x x x E ( x } ~ ( O} , µv. v µ µ v µ v -1'"l 

+ .. . . . . . , ( 1. 80) 

~·< 
'This discussion is restricted to polynomial interactions in 4-
dimensional ·Minkowski space. Further examples of superre­
normalizable polynomial interactions exist if one takes the liberty of 
reducing the number of spatial dimensions. Of much greater interest 
is the existence of many 4-dimensional nonpolynomial Lagrangians 
which are superrenormalizable, and do not appear to have the diseases 
of the A$6 3 interaction. To our knowledge, no work has been done 
on the short-distance behavior of such theories. See Ref. 22. 



-36-

with similar expressions for products involving an axial-vector cur­

rent. (68) The c-number functions E( -n) contain powers of x
2

, and 

vanish for spacelike x
2 

( n) 2 2 • -n 2 -n 
E - (x ) = ( -x + i ex ) - ( -x - i ex ) 

0 0 

(n= integer) 0). 

(1. 81) 

The constants a, S, Y are not determined by current algebra; the 

limit x .... 0 of Eq. (1. 80) yields 
0 . 

;J ( 0, X) , ,, ( 0, 0 ) [ 
a .... "'lrb =- l 
0 0 J, 

(1. 82) 

which is the completely local version of Eqs. (1. 43) and (1. 48). Thus 

operator-product expansions at short distances are generalizations of 

current algebra. 

If logarithms were present in Eq. ( 1. 80), they would destroy 

the equal-time commutators (1. 82)--for small times x , the co-o 

efficient of o 3 (x) would contain the quantity log mx , which diverges 
0 

when the equal-time limit is taken. In order to obtain the singularity 

structure of Eq. ( 1. 80), the scale-violating terms in the energy 

density must have dimension t )-4. Also, according to the basic 
n 

hypothesis of current algebra, Eq. (1. 82) does not depend on the 

magnitude of the violation of SU (3) x SU(3) symmetry. Therefore, 

the term u in 8 which breaks SU(3) x SU(3) invariace must also 
00 

break scale invariance, ·and have a dimension ,t. ,) -4. (4 0) Thus 
u 

the decompositions (1. 52) and (1. 58) of 8 may be combined to give 
00 
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== e 
00 

+ o + u ( 1. 83) 

where 8 is both scale- and chiral- invariant, and o breaks scale 
00 

invariance but not chiral invariance. Also, we note that if there are 

any scale-violating pieces in the currents, they have dimension )-3. 

Some understanding of the nature of Schwi:0:ger terms (S. T. } 69) 

can be gained if the hypothesis of scale invariance at short distances 

is accepted. For currents, we have the example 

( 1. 84) 

Assuming that the constant s does not vanish, there is a finite third-

order S.T. The term 

originally discovered by Schwinger is infinite: 

t lim 2. 3 -, 2 
1 s -orders. T. in [3i (O,x), J(O, CY)]== - x .... o rr l£'v. o (x)/x . 

• 0 l O l 0 
( 1. 8 5) 

Contrary to the usual lore, there is a second-order S. T. in 

[:J
0

(0,x}, 3'
0

(0, 0) J, but practical calculations are not affected because 

it is a c-number. Commutators involving the stress-energy tensor 

may be similarly analyzl:)d: 

I . 
[ 8µ)x}, eaS(O)] == l4oµovoaoS + 2(gµvoaoS + ga.Soµov-gµvgaS02}02 

-3(g o o + g o o + g o o + g o o - g o o 2 _ 0
2)0

2 l 
µo, v S µS \J a va µ .. S v S a IJ, µa, v a gvo:.gµS j. 

' 
(-2) 2 

E (x) CI+ ..... (1.86} 

7 
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If the constant {: is not zero, a fifth-order S. T. 4,/ i C 'ii'/v 
2

} 
2 o3 

(x) 

-> ' -> 
appears in [8 (0,x}, 8 .(0,0}]. 

0 0 01 

A consequence of scale invariance at short distances is 

"scaling" of the total cross section o-TOT(q
2

) for e+ e - ... anything. 

at large, time-like values of q
2 

(with q == sum of e +, e - momenta}: 

2 2 2/ 4 J 4 iq ~ x ( I µ ! o-TOT(q ) == -l61r a 3q d x e 0 J (x} Jµ (0} 0) 

42/2 3 +- +-~-32,r a sq ~-12rr go-(e e -,µ µ ). ( 1. 8 7) 

The q
2

-dependence of Eq. (1. 87) was first obtained by Bjorken( 70) 

from different considerations. The connection with scale invariance 

was noted by Wilson. (
23

) In the event that s vanishes, the 

dominating term has the q
2

-dependence (q
2

) -S-,e, at high energies, 

where t is the minimum dimension of the scale-violating terms in 

(28)>!< 
the stress-energy tensor. 

On the other hand, many extra assumptions are needed in 

order to obtain the scaling laws for deep inelastic electroproduction. 

The relevant matrix element is*•!< 

* This analysis neglects two-photon exchange, which may involve 
sufficient dynamical enhancement to dominate the one-photon contri­
bution, even though it is formally suppressed by a factor a 2 , For 
example, suppose that the two-photon term scales, as if dominated 
by the c-number part of J a (x) J ~(y} J V(z) J

O 
(0) for x~ y'r':j z~ O; (in 

general, other values.of x,y, z are as important}. Fors== 0, t== -2, 
the two photon term begins to dominate at energies greater than 

~J 137 GeV, because the cross section is then given by 
2 .2 4 2 3 • 4 2 

crTOT(q } == c 1 a (1 GeV) /(q} + c2 a/q , (C 1,c2::constants}. 
*>:c 

Momentum transfer q = initial minus final electron momenta. 
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+ M-2(pa - qa,p•q/q2)(pB-qBp•q/q2)Wz(q2,\J) • 

( 1. 88) 

with M\J = q •p, and nucleon spins averaged. In terms of the ingoing 

and outgoing energies E, E 1 and scattering angle 8 of the electron 

in the laboratory frame, the total inelastic scattering cross section 

f • 1 . d 1 . (? l) roman unpo ar1ze nuc eon 1s 

( 1. 89} 

Brand/72) and Ioffe(?Z) have shown that, in the deep inelastic 

limit considered by Bjorken (
36

} ( -q
2

, \)-+ oo with w = -q
2 

/ q •p fixed}, 

points near the light cone are emphasized. This follows from the 

IAB frame parametrization 

p = (M,0,0,0) , q = \J(l,0,0,Jl + Mw/\J ) . ( 1. 90) 

iq ·x 
The factor e in Eq. ( 1. 88) oscillates rapidly except for the 

region Ix - x
3 

j ( \)-l, i.e., near the light cone x
2 = O. Therefore, 

0 ~ 
it is necessary to extend Wilson's hypotheses to the light cone( 73) if 

a connection between the scaling laws and broken scale invariance 

is sought. In order to obtain Bjorken1 s result that W 
1

, \JW 2 are 
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functions of w alone in the deep inelastic region, the operators 

0 in the light-cone expansion of [ J (x) , J (0) J must 
C(,1CX,2··· cx,J µ v 

h d
. • . (68) 

ave imension 

t ( J) = - ( J + 2} (J=2,4,6, .... } (1. 91) · 

Then the p-dependence of W µv(q, p} , obtained from the spin-J part 

+ traces , (1. 92) 

4 iqx CX,10'.z·••O..J 
correctly matches the q-dependence given by f d x e • • C · (x). . µv 

At present, it is not understood how these methods may be 

applied to inclusive processes (Eq. (1. 39)) in which no leptons 

participate. In field theory, it is formally possible to write the total 

cross section as the matrix element of an operator product. • However, 

in order to emphasize the region near the light cone y
2 = 0, this 

expression must be replaced by one in which the fields A(x), B(x) 

forming the operator product in Eq. (1. 79) represent systems of 

"Traces" stands for terms such as g p ... p , g g 
cx,l az ~ cx,J cx,l crz a 3 a 4 

. . 2 J-2 2 2 J-4 
Pa, ... p , ...... , which contribute q (p•q) , (q ) (p·q) , 

5 a,J 
...... relative to the contribution (q -p/ of the term which scales, 
and are therefore negligible iD; the deep inelastic limit. 
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infinite mass.>!< In an approach which involves on-mass-shell 

amplitudes, A(x) has to be the source of at least two strongly inter­

acting particles. For A(x) to be local, these particles X, Y must 

be strongly correlated so that their amplitudes J factorize, 

J (X + i .... Y + f) ;:: a(X, Y) ( f jA(O) I i) , ( (X - Y) 
2 

-->OO), ( 1. 93) 

as in the leptonic case. In strong interaction physics, the idea of 

factorization occurs mainly in Regge theory. Assuming that Reggeism 

works at large momentum transfers, A{x) would be the source of a 

reggeon. The conceptual difficulties involved here should be compared 

with the derivations of scaling laws from the multiperipheral( 75) or 

. (76) . 
parton models, where it makes little difference whether leptons 

are present or not. 

I. 4. Comments on our Research and Related Work 

We have investigated Mack's proposal that conformal 

invariance is spontaneously broken. Our method involves the 

simultaneous use of PCDC, PCAC and well-known techniques of 

current algebra. These noti.ons are combined in a completely 

general fashion. Of course, our results are approximate in the real 

world, because we have to saturate dispersion integrals with 

>!< In Eqs. ( 1. 87) .and ( 1. 88). J11.(x) = A(x) = B{x) is the source of an 
infinite-mass virtual photon. In the ambitious scheme of Brandt and • 
Orzalesi {Ref. 74) for strong interactions, the infinite-mass condition 
is satisfied by taking the formal field-theoretic expression an infinite 
distance off mass shell, {thereby ensuring that their assumption can­
not be checked experimentally). 
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low-lying meson states. In this section, we give a superficial 

treatment of our assumptions and some of our results, postponing 

controversy and detailed discussion to other chapters. Most of our 

work has already appeared in published(l S) or preprin/77 ' 78) form. 

From the formulae (1. 23) for the divergences of the dilation 

and special conformal currents, we see that the corresponding 

Nambu-Goldstone bosons (dilatons) must be spin-0 isoscalar mesons, 

even though the special conformal generators carry a vector index. 

In order that SU(3) is realized as a degeneracy symmetry with no 

accompanying Nambu-Goldstone bosons, the dilaton states must 

become SU{3) singlets in the limit of scale invariance. We assume 

that there is just one di.laton, o-, but our formulae are easy to 

generalize if this turns ·out to be invalid. This assumption is 

motivated by the nonet structure of the meson spectrum. It cor-

. p G + + responds to the existence of only two (J , I ) = (0 , 0 ) mesons in 

the real world. They are mixtures of the SU(3) s~nglet state with 

dilation quality and the eighth member of an octet. We identify 

these mesons as the currently fashionable 8(700) and e: 1(1060) 

resonances.* When the mixing of these particles is properly 

taken into account, m 
2 = m 

2 
measures the violation of scale and 

er e: 

conformal invariance. 

>,< 
These mesons are also called 11

0
+(700) and 11

0
+ (1060) or 5,:< (1060); 

see Ref. 79. We shall use the symbol.so-, e: interchangeably. At 
no stage do we refer to o-( 410), which was observed in a few early 
experiments, but now appears to be extinct. 
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Originally, it v:7as thought that this set of assumptions is 

inconsistent with the facts. (
63

• 
3

0} Taken at face value, Eq. (1. 77) 

implies G = 0(m
2

}, so that, comparing it with Eq. (1. 78} for 
Ci"IT 1T 1T . • 

nucleons, the dilaton width would be only a few MeV. This contradicts 

all expectations concerning the resonance structure of the (a+, o+) 

channel. Expe~iments( 79 , 
81

} vaguely indicate I' ~400 MeV for the 
E: 

width, a value which theory strongly supports via the Adler-Weisberger 

sum rule for 1T 1T scattering, (S
2

) 

2 1 co / 2 2 
8 £TI" = ,r J

2
m dW W (o- + _ (W} - o- + + (W}} (W - m'IT} , 

1T 1T 1T 1T 
TI" (1. 94} 

where W is the center-of-mass energy. Adler(
82

} pointed out that 

the p and £ contributions to the integral are not large enough to 

satisfy the sum rule: there must be a large contribution from the 

+ + (0 ,0) channel. It is known that E: 1(1060) couplesweaklytopions, 

so satisfaction of Eq. (1. 94) depends on I' o- being of the order of 

several hundred MeV. 

However, when the magnitude of scale violation is taken into 

account, one realizes that Eqs. (1. 77) and (1. 78) can be approxi­

mately true only if the square of the mass involved, (i.e. , m ~ or 

2 
MB , ) is large enough to swamp scale-violating effects, represented 

2 
by m . By assuming Eq. (1. 57), we were able to prove that the 

(i 

next order in scale violation is given by ( l 5) 

F G ~ 
O" (i 1T 1T 

2 
m 

(i 
(1. 95} 
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The calculation assumes that SU(2} x SU(2} is a very good sym-

t 
(49,50} 

me ry. 

This conclusion ·was independently arrived at by J. Ellis(
33

} 

from similar physical assumptions. A superficial comparison of 

his work with ours does not give the impression that any connection 

exists, because the formalisms are so different. In fact, the ef­

fective Lagrangian formalism of Ellis is designed to reproduce the 

results of the traditional methods ~f current algebra, which we used. 

Kleinert and Weisz, (34} who were unaware of our work, translated 

Ellis's work int9 a language which resembles ours. 

It is instructive.to look back at earlier attempts to calculate 

the width of the er( 700}, and to understand why initial attempts to 

combine chiral and conformal invariance gave either no result or 

the wrong result. It turns out that the o--model is very misleading; 

over-reliance on it for gaining insight caused _much confusion. 

Before broken scale invariance became fashionable, the 

standard practice, (especially in hard-pion calculations,) was to 

assume that the matrix elements of the so-called "er-termsm:< 

ab r-r;:;- r-r7-:r ab . a b 
~ = ( A/ 2 / 3 u 

O 
+ ✓ 1 / 3 u 8) 6 = 1 [ F 5 , v J . (a, b = 1 , 2, 3). 

(1. 96) 

are dominated by a o--meson pole. Then one obtains (2f }-lG = -m2 , 
-rr er-rr-rr er 

~< .... 
Note that £,j'l.l'r u

0 
+ JTT3 u 8 • v} form a ( ,¾;,½) representation of 

SU(2) x SU(2). The unfortunate name "er-terms" is a legacy of the 
er-model, in which the "er" field is given by r.ab = o ab "er". 
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because the o--term can be evaluated by applying a soft-pion theorem 

(Eq. 1. 70} with n = l}. However, this is a "fake" derivation, because 

there is no way of telling which combination of u
0 

and u 8 should be 

dominated by the o--meson, while the soft-pion theorem can be 

arbitrarily changed by varying the angle 'l.' in the operator Y:( 'l.') 

whose matrix elements are to be dominated: 

If 'l.' = rr/2 is assumed, (as indicated by the o--model}, the Adler­

Weisberger rule (1. 94} is completely saturated by the o--pole alone, 

leaving no room for the p and f contributions. (This is hardly 

surprising since the . p and f mesons do .not appear in the er-model}. 

The correct way to approach the problem is to write the 

Goldberger-Treiman relation for the ~ -decay of a dilaton into a 

. (85, 15) 
p10n 

(2£ )-1 G 
Tr (f Tr Tr 

m 2 F (0) 
o- er rr (1. 98} 

where F (0) is the appropriate axial coupling constant, (i.e. , the 
(j" TI' 

quantity analogous to g A in Eq. (1. 66} }. The failure of PCDC for 

(rr I 8 ~ I rr), (which gives Eq. { 1. 77) for pions,} indicates that in the 

real world, one cannot dominate (rr I I:( 'l.'} J rr) successfully by the O". 

However, for the purposes of comparison with linear models, (63 ) 

for which the extrapolation from the er-pole to zero momentum 

transfer involves no error, we give the result of the naive O"'­

dominance-plus-soft-pion-theorem calculation: 
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F ( 0) = - sin 'l' . 
Ci 1T 

( 1. 99) 

Thus, if we had appealed to an SU(3) x SU(3) o--model, where the 11 0- 11 

field transforms like u ~ we would have obtained F (0) = - J2/ 3, 
0 (i1T 

instead of F (0) = -1 given by the ordinary SU(2) x SU(2) model. 
0-1T 

We note· that, within the accuracy of their saturation 

assumptions, the work of Gilman and Harari~Sb) is correct: they do not 

fix 'l' arbitrarily.>:< They require satisfaction of the sum rule (1. 94), 

together with all other current-algebraic and superconvergent sum 

1"ules implied by Regge asymptotics for pion-baryon scattering. 

They find 'l.'::: 1T/ 4 is needed in order to fit the data for the width of·· 

the p. Then the o--pole contributes sin2 'l.'::: ½ of the right-hand 

side of Eq. (1. 94). 

The essential point of the work of Ellis(S 3) and this author(l 5 ) 

was that Eq. ( 1. 57) fixes F (0) within the accuracy of the saturation. 
Ci '11' 

assumptions involved:(l 5} 

F F (0) f ~ ½ 
(i (i '11' '11' 

(1. 100) 

Eq. (1. 100) implies Eq .. (1. 95) when combined with the Goldberger­

Treiman relation (1. 98). The derivation is considered in Chapter I I. 

Eq. (1. 100) becomes exact in the limit of scale invariance; in that 

case» it can be derived from the conservation equations al-13-5 =0, 8µ=0, 
µ µ 

without additional assumptions. 
(15)*~:C 

Our 'l' is the same as the '1' of Gilman and Harari. 
** See Appendix C and the discussion in Chapter I I. 
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Ellis I s analysis was preceded by a paper by Isham, Salam, and 

Strathdee (ISS) {37) in which the method of effective Lagrangians for 

both chiral and conforma'i symmetry is introduced. Although ISS 

made use of Eq. { 1. 57), they were misled by the er-model into put­

Hence, they obtained F = - {2£ ) -l and the connection 
Ci 'IT 

with the er 'IT 'IT coupling was lo st. Ellis provided the necessary 

generalization of their work. 

Prior to our work, there were some attempts( 33) to make use 

of equal-time commutators involving the dilation and special conformal 

generators. However, due to some· invalid steps in the course of very 

complicated manipulations, the results obtained were not correct and 

looked unpromising.* (?µr point of view was very different, and the. 

analysis much simpler. 

In phenomenological tests of dispersion relations for backward 

'IT N scattering, it is necessary to include a large contribution due to 

the exchange of a scalar meson. Assuming that the cr(700) is 

responsible, and taking its width to be about 400 MeV, the crN N 

coupling is found to be roughly the. same as the 'IT N N coupling: ( 89 ' 9 O) 

2 
gcrNN / 4'IT ~ 12 (1. 101) 

Making use of PCDC for (NI 8 µ I N ), (Eq. (1. 78) with B = nucleon,) µ . 

and Eq. (1. 96), all the unknown constants drop out, and we 

find ( 1 5, 8 3} 

~~ 
Kleinert and Weisz (Ref. 84} took the trouble to explicitly point out 

the errors. 
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2 
g / g NN ~ m /2m MN, (J"1T1T (J" (J" 1T 

(1.102} 

-1 
where g = (2m } G is a dimensionaless constant·(like 

(J"1T1T 1T (J"1T1T 

go-NN}. The left-hand side of Eq. (1.102) is about 1, compared with 

m2/2m MN':'. 2. 
(J" 1T 

We regarded this result as satisfacto~y, but Kleinert and 

Weisz, ( 34) holding to a more optimistic view of the accuracy of the 

saturation assumptions, decided that the dispersion relation for 

(NI et IN) ne.eds a subtraction.* That would mean that PCDC is 

an invalid hypothesis and the whole endeavour has come to nought. 

To show that this is not necessarily the case, we extended the 

method of collinear dispersion relations( 9 l) to the calculation of 

scale-violating effects. We were able to give an equally good argument 

for the result( 77 ' 78)** 

/ 
2 -1 z 2 

g g ...., m (2m MN} (1 - m /m ) 
O" -rr -rr o- NN ~ o- ,r O" Al 

(1. 103) 

which is in good agreement with experiment. The difference between · 

Eqs. (1. 103) and (1. 102) is a measure of the uncertainty involved in 

making a prediction for G • from the theory of broken scale 
(J" 1T 1T 

invariance. Therefore, PCDC is consistent with our picture of the 

meson spectrum and estimates of the o-NN coupling. 

In particular, the Adler-Weisberger sum rule (1. 94) is over­
saturated when Eq. ( 1. 102) is treated as an accurate formula for 
G0"1T1T• Note that de Alwis (Ref. 92) also has an over-optimisitc 
view of its accuracy. 

** See Chapter I I I. 
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We have also investigated some consequences of the equal­

time commutator 

0 (1. 104) 

which is a slightly stronger condition than Eq. (1. 57). From the 

matrix element of Eq~ ( 1. 104) between a one-pion state and the 

vacuum, we can estimate the slope of the spin-2 form factor of 

<'" l 8 I'"). (77 ' 73) Th" t" t b d • h th ul .. .. 1s es 1ma e may e compare wit e res t 
jJ, \) 

of assuming £-dominance. While £-dominance appears to work quite 

well in the limit of scale invariance, there is a large scale-violating 

effect which indicates that £-dominance may be a poor approximation 

in the real world.* Again, we use the method of coll1.near dispersion 

relations. Our conclusion is· supported by a recent estimate( 9 0) ·of •• 

the fNN coupling constants. 

Because of its large coupling to mesons as well as baryons, 

the dilaton greatly influences the application of broken chiral sym­

metry to low-energy meson-baryon scattering. In particular, the 

recent discovery of Cheng and Dashen (l 0 3) that -(,/2 + c) r,(-rr/2}/ J'3, 

the SU(2) x SU(2) violating part of 8 , contributes 110 MeV to 
00 

the nucleonic matrix element does not necessarily mean that 

SU(2) x SU(2) cannot be a much better symmetry than SU(3). (77) 

If scale invariance is broken to the same extent as SU(3) x SU(3) 

. 
~:<Using the hard-meson method, Raman (Ref. 93) has independently 
arrived at a similar conclusion. He starts from an assumption 
equivalent to Eq. (1. 104), but his methods o~ calculation and approxi­
mation are different from ours. The connection with scale-violation 
is not noted. 
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symmetry, (i.. e., 11 6 vanishes i.n the li.mit of chiral SU(3) x SU(3) 

invariance"), the di.laton pole enhances (NI u
0 

!N) relative to 

( N !u
8 

IN), with the result that we are able to retain most of the 

attractive scheme of Gell-Mann, Oakes, and Renner, ( 49 ) including 

Eq. (1. 73). 

Our most important result concerns ,f,, , the di.mensi.on of u 
u 

or of a current divergence al-1~5µ. U si.ng collinear dispersion 

relations, Fubini and Furlan(9 l) and von Hippel and Kim(ll 3) have 

related the threshold amplitude for meson-baryon scattering to the 

equal-ti.me commutator' (N l ~ 5 + mJF 5, ai-1;,5µ] IN) . Only the 

connected part of this matrix element is involved. Contrary to the 

[
•• µ ] general belief, we show that, unless tu is -1, the F 5 , a ;,5µ 

part of this equal-time commutator should have th~ same order of 

magnitude as the other part, which is the quantity estimated by 

Cheng and Dash en.. Making use of the experimental fact that the 

isospi.n-symmetric ,rN scattering length is very small we observe 

that ( N j [r 5' al-1;,5µ J j N) (connected) does not vanish, and therefore, 

t cannot be -1. * We also point out that a recent criticism of the u . 

von Hi.ppel-Kim paper by Ellis(l0 3) does not affect our analysis. 

We are unaware of any conflict between experiment and our 

scheme for broken conformal and chiral invariance. Some other 

possibilities, both respectable and doubtful, are briefly discussed in 

Sections I I I. 3 and I I I. 4. 

):< 

Fritzsch and Gell-Mann (Re£. 143) and Mandula, Schwimmer, 
Weyers, and Zweig (Ref. 144) note the possibility of directly 
measuring ,f,, in deep inelastic neutrino scattering. u 

-
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In private discussions, we have found many people reluctant 

to consider the spontaneously broken variety of scale invariance. We 

can distinguish three different attitudes: 

(i) Dilaton theories do not coincide with the theoretical 

interests of many workers; 

( ii) Some say that m is too large to allow the successful 
(j 

application of PCDC; 

(iii) There is a feeling that the existence of scaling laws 

for high-energy inclusive processes such as deep 'inelastic electro­

production is harder to explain when a dilaton is present. 

We do not ~ntirely disagree with attitude (ii); at any rate, neither (i) 

nor (ii) constitutes an argument against spontaneous breakdown. Let 

us conclude this chapter by explaining why we do not share the 

sentiments of (iii). (7S) 

As we have often emphasized, conforrnal symmetry must not 

be treated as a degeneracy symmetry in rri.omentt1.•"I:. space because of 

the infrared problem. Exclusive processes a:..·e n0t eXf, ccted to obey 

equations like {i. 31) at .high energies. The observatior. of & acaling 

law fer a~1 inclusive process means that bremsstrahlung efiec'i.s are 

not dominant--:. e. , o:c;_ly short-distance behavior rx:..atte1·s. .-,"l'i. .. 
.l. _,.t.·, 

PCDC ·hypothesis of Ma.ck constrains low-ene:;.·gy be:iavio:c: at 

large_ c:i.stances, cer·cain potentials are supposed tc !1.ave the :o ·.:i 

e:·,:p(- .. :r, r)/ r. This does not obviously conflict ·with Wilson's 
(j 

l-, 1 pothes1s of scale invariance at short disI;ances. In terrrL::; of t...>ie 
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intuitive discussion accompanying Eq. (1. 35}, Mack is concerned 

with the factor PN(E, 8}, WHson with dcrTOT / d0 . 

However, this discussion does not completely answer the 

doubts represented by (iii}. If we are given the set of operators 

ON(x} with dimension tn in the operator-product expansion in 

Eq. { 1. 79}, the assumption that the leading singularities of the 
t + t - t 

C (y} are given by y A B n is easily understood {if one 
n 

forgets renormalized field theory}- -it corresponds to requiring that 

D{x } be a slowly varying function of the time x . PCDC would 
0 0 

seem to be an excellent way to arrange this. The problem is 

understanding why the set of operators O is constrained to obey 
n 

rul~s like Eq. (1. 91}. In the language of effective Lagrangians, (B3} 

one can construct factors exp(t cr-/F } from a dilaton field cr(x} 
. er 

with the anomalous transformation law 

i [D(x } , cr(x} J == -F + x•ocr(x} o er 

It is easy to derive the formula 

(-t + x•o} exp (,e, cr(x}/F ) 
er 

(l.1O5} 

(1.106} 

The exponentials are used to fix up the dilation behavior of various 

terms in the Lagrangian to make it scale-symmetric; e.g., 

(1. 107} 

(immediately, one gets gerNN = ~/Fer}. Dilaton theory appears to 
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be too flexible to allow the· development of a rule for determining 

dim O , because multiplication by exp(t er/F ) permits us to 
n er 

'' 

arbitrarily change the dimension t of a given operator to (t + ,f, ) . 
n n 

We think that this problem exists with or without dilatons. 

In the above example, it is caused by the availability of a c-number 

F which has the same units as a mass. In a non-dilaton theory, 
er 

the limit of scale invariance (zero-mass limit) is unstable because 

it is impossible to banish all mass-like c-numbers in the process of 

renormalization. One finds that the dimension of a field can be 

"anomalous"( 40, 27 • 94) __ instead of·taking the free field value, the 

dimension becomes a function of the strength of a coupling constant 

in the theory. Therefore, we are faced with just as much flexibility 

as in a dilaton theory. 

Now, it might be argued that, since renormalized field 

theory predicts that the C (y)'s are contaminated with logarithms 
n 

(except for unrealistic superrenormalizable theories), it should be 

dis regarded and free field theory should serve as a guide. In that 

case, rules like (1. 91) are easy to explain, but it makes no di£- . 

ference whether dilatons are present or not. If the dimension of 

0 is changed through multiplication by exp(ter/F L the same 
n er 

factor must appear on the other side of the equation; (otherwise, 

the expansion is not valid for matrix elements involving er 

particles). 

Therefore, we do not believe that the treatment of scaling 

laws via operator-product expansions is connected with the manner 
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in which scale invariance is broken, unless the non- leading 

singularities are considered. Perhaps the magnitude of the non­

leading singularities is controlled by the magnitude of scale violation, 

and is therefore a means of distinguishing these possibilities.* To 

understand the leading singularities, we have to appeal to rules which 

look artificial at present; e.g. , if the O (including 8 ) 
a 1 a2 ••• a J µv 

are supposed to belong to an infinite representation of the conformal 

group, )!c)~, Eq. (1. 91} follows immediately. (6 B} 

Our investigation forms part of a program to discover the 

nature of the terms which break scale and chiral invariance in 

the energy density. Finding experiments which distinguish the 

various possibilities pr~sents a considerable challenge for theorists. 

These experiments need not be difficult to perform. For example, 

our discussion of t depends on measuring low-energy rrN phase 
u 

shifts with reasonable accuracy. At present, our knowledge of 

these amplitudes is almost adequate. 

,:c This works only for e + e - annihilation, and then only if the two­
photon term is small enough. In deep inelastic electroproduction, 
the traces discussed in the footnote to Eq. (1. 92} are likely to 
dominate the non-leading singularities. 

*)~ 

That is, they satisfy an algebra. 
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I I. LIMITS OF CONFORMAL AND CHIRAL INVARIANCE 

We proceed to develop a consistent, general theory to 

describe the consequences of combining broken conformal and chiral 

symmetry. Here we concentrate on understanding the constraints 

implied by symmetry arguments; the use of dispersion-theoretic 

methods is postponed to the next chapter. Remarks about some 

controversial contributions to this field are included. 

I I. 1. Realization of Scale Invariance with One Dilaton 

One of the characteristics of the meson spectrum which the 

quark model explains is the appearance of nonets. Each SU(3) octet 

is accompanied by a singlet, which can mix with the eight member 

of the octet via SU(3) violation. Experimental data are not good 

enough to demonstrate nonet structure for the scalar mesons. In 

particular, experiments do not even vaguely suggest the number of 

(JP, IG) = (O\ O+) resonances in the region of interest (below 1. 5 

or 2 GeV). Our interpretation of dilatons is that they are 
3

P 
0 

states of the quark model, so we expect that the nonet property 

holds for scalar mesons.~~ 

There is fairly strong evidence for the presence of some 

members, 6(960) and e'{l060) with quantum nu~bers (O+, 1-) and 

,:~ 
The opposite viewpoint would involve treating dilatons as scaiar 

gluons. The Lagrangian density would contain both quark and dilaton 
fields, following the idea that the rdle of dilatons as Nambu-Goldstone 

• particles differentiates them from other mesons. However, to be 
consistent, the whole pseudoscalar octet would have to be treated in 
the same fashion. 
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(O+, O+), of a possible scalar nonet. (79 ) Evidence for the cor­

responding strange particles x.(~1 GeV) is obscure. (
3

l) The ninth 

member could be the E:(700) meson, but its parameters depend on 

indirect and controversial analyses of data. (79 , 
81

) Assuming that 

an excited nonet of scalar mesons is too massive to concern us (if 

it exists), we are left with two (O+, O+) resonances, 8 = o- and e ',· 

which can give important contributions to unsubtracted dispersion 

relations for ( eµ,). 
µ, 

In the limit of scale invariance, SU(3) becomes an exact 

degeneracy symmetry, so the singlet and octet states are no longer 

mixed. The vacuum is SU(3) invariant, so from 

1 2 
- -3 F (k k - g k ) 

(f µ, \) µ, \) 
( 2. 1) 

we see that only the SU(3} singlet state has dilaton quality. For these 

reasons, we assume that there is only one dilaton. Since SU(3) x SU(3} 

also becomes an exact symmetry in the limit of scale invariance, 

there are nine massless Nambu-Goldstone bosons: the scalar singlet 

er and the pseudoscalar octet rr, K, 17. All other hadrons, including 

17 1 and the scalar octet, are supposed to remain massive and 

degenerate in hypercharge within SU(3) multiplets. 

It has been claimed(95) that theories in which conformal 

invariance is realized via a Nambu-Goldstone boson are self­

contradictory. These analyses involve taking the limit of scale 

invariance. None of the "proofs" apply when scale invariance is 

broken, so the contradictions obtained merely reflect an incorrect 
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limiting procedure. As pointed out by Callan and Carruthers, (96) 

the standard mistake is to assume that the Poincare generators are 

given by Eqs. (1. 9) and (1. 10) in the scale-invariant limit. This 

procedure ignores the presence of the dilaton pole at zero momentum 

transfer in ( 8 ) ; i. e. , the integrals in Eqs. ( 1. 9) and ( 1. 10) are µv . 

ill-defined in this limit. When scale invariance is broken, there is a 

potential exp(-m r)/ r due to O"-exchange. It contributes a term 
. (}'" 

proportional to 

lim J 3 .... 2 / J(m ) = V d x 'v ( exp( -m r} r} = 
Cf --> CX) (J" 

V 

lim f ~ __. I 
d 

d.:, •'v (exp(-m r} r} 
ra . -->OO er 

(2. 2) 

to the integral defining P in Eq. ( 1. 9), with J{m } = 0 for m i 0 • . o O" er 

and J{0) = -4,r. Hence, this definition of energy has a discontinuity 

at m = 0. To understand the limit of scale invariance, the ambiguity 
(}'" 

associated with the dilaton pole must be removed. 

It is convenient to write the PCDC hypothesis in the form>:< 

t + 
µv 

where ( t ) has no O"-pole. The trace of Eq. (2. 3) is 
µv 

2 
m er 

* 

(2. 3) 

( 2. 4) 

Eq. (2. 3) was suggested by M. Gell-Mann {private communication), 
who has also obtained the corresponding expressions for PCAC and 
PCTC. See footnote 29 of Re£. 77.· 
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The operator ta does not vanish, irrespective of the magnitude of 
a -

scale violation. Consider Eqs. (1. 9) and (1. 10) with m /. O; er 

substituting Eq. (2. 3) .and integrating by parts, we obtain(
77

) 

p = 
µ 

M = µ. \) 
3 rd X (x t - x t ) . µ ov v oµ 

(2. 5) 

(2. 6) 

Now there is no problem classifying states according to their masses 

and spins in the scale-invariant limit- -the offending er-pole is no 

longer present, so Eqs. (2. 5) and (2. 6) provide convergent definitions 

of the Poincare generato;rs for m = O. 
er 

The expressions (1. 16) and (1. 17) cannot be altered in this 

manner, so the integrations over d
3

x diverge in the limit m -+ O. 
er 

This formal difficulty also occurs when defining the axial charges F; 

in the limit of chiral symmetry. In practice, diffi~ulties in carrying 

out the integration over infinite 3-space are harmless, since we 

always consider commutator's [D, Q J and sums of commutators 

exp ia,D Q exp -icx;D for some operator Q. These expressions 

. 3-+ -+3-, 
contribute the well-behaved terms o (x), a o (x). . . . to the 

integrand. Unlike the SU(3) and Poincar~ generators, F;, D and .Kµ 

are not used to classify states.~:• 

::.i:c 

The chiral classification of states by Gilman and Harari (Ref. 86) is 
performed at infinite momentum, where the pole term may be removed. 
Another harmless difficulty associated with the d3x integration is 
involved in the definition of non-conserved charges. See Renner's book 
(Ref. 45) for a brief discussion and references. 
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Another way of discussing the effect of the o--pole in defining 

D and K is to state thit, µ 

pole term causes exp(iaD) 

in the limit of conformal invariance, the 

and exp(i ~ Kµ) to generate a µ .. 

continuum of degenerate vacua. As 8~ vanishes, the unique physical 

vacuum becomes a member of this continuum. However, it' cah still 

be distinguished because Poincar~ invariance is a degeneracy sym­

metry; i.e., the vacuum is invariant under Poincare transformations: 

(2. 7) 

with P and M given by Eqs. (2. 5) and (2. 6). Thus, the role of 
µ 1-J.\) 

the Poincar~ group as a subgroup of the conformal group is analogous 

to that of SU(3) as a s~bgroup of chiral SU(3) x SU(3). The Poincar~ 

and SU(3) groups provide classifications of particle states because 

their generators annihilate the vacuum. However, the other chiral 

and conformal generators produce degenerate vacua, so the cor­

responding classification schemes for particle states need not appear. 

The most interesting paradox connected with the limit m _, 0 
(J' 

was found by Renner.* In the limit of scale invariance, Eq. (1. 44) 
' 

gives 

i [P ,DJ = -P 
0 0 

(2. 8) 

implying 

eiaD P -iaD = ecx. p e 
0 0 

(2. 9) 

)!( 

Renner's observation was recorded by Ellis (Ref. 83). 
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If IN) is a nucleon state at rest, then defining b' )= exp(-iaD) ! N) , 

(2. 10) 

is apparently the result. Since 11¥) has the same quantum numbers 

as the nucleon, it should have an energy greater than or equal to ~• 

so transformations with a. ( 0 seem to be forbidden. This anomaly 

arises from an illegal interchange of limits in the equation(77) 

lim 2lim 
8µ .... 0 k .... 0 ( N(p + k) ] 9JJ. ! N(p) ) = MN 
µ µ 

( 2. 11) 

i.e. , the limit 8 µ .... 0 is non-uniform in the momentum transfer. 
µ 

The derivation of Eq. (2. 10) assumes that the scale-invariant limit of 

Eq. (1. 44) is uniform. (77 ' 96) 

In order to see whether the requirement 

(2.12) 

leads to any useful theorems, the effects of the breakdown of scale 

invariance must be included: 

eia,D(O) 8 (0,x') 
• 00 

(2. 13a) 

with t = 0 for w = c-number; the integrated form of this identity n 
. (77) 
lS 

iaD{0) p -iaD(0) e e 
0 
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If the. dimension ,t of the scale-violating part w of 8 is 
00 

unique, (apart from a c-number term), combination of Eqs. (2. 12) 

and (2. 13b) appears to yield 

which would imply ,f, ) -3 or ,t (-4. Making use of the constraints 

on ,t found by Wilson, (
4

0) we would deduce -3 ( {. { - 1, a result 

which is reasonable,* but not guaranteed by the above argument. 

The flaw in the above reasoning arises from neglect of the 

contribution of the di.s~onnected part, ( N jN) ( 0 I eiaDp e -ia,D ! 0 ), 
0 

to Eq. (2. 12). This term dominates the inequality because of the 

infinity associated with the integration in P '= f d3 
x 8 . The most 

0 • 0 0 

striking demonstration of the effect of this term occurs when chiral 

transformations are investigated in the same manner: 

representation of SU(2) x SU(2), (as in Eq. ( 1. 96)), 

* Wilson (Ref. 97) notes that many vertex functions commonly 
encountered in current algebra diverge unless this condition holds. 
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Using a principle analogous to Eq. (2. 12), we find 

(2.15) 

At first sight, this res.ult looks outrageous; in the free quark model 

== qisiq: (2. 16) 

(q I : i::33: I q) is the mass of an isodoublet quark. Closer inspection 

reveals that the mass term is normal-ordered, whereas the quantity 

which transforms as part of a (3, 3) + (3, 3) representation is 

q A. q. Eq. (2. 15) is correct because the left-hand side contains the 
a 

infinite disconnected part (NI N) ( 0 I I: 33 ! 0 ), which is negative. 

Apart from the irrelevant case of the limit of scale invariance, 

the disconnected part does not vanish. Therefore, the only way of 

making use of a principle like Eq. (2. 12) involves taking the vacuum 

expectation value of Eq. (2. 13a). Note that we do not attempt to 

..... 
apply Eq. (2.13b), because the integrand loses its dependence on x 

when the vacuum expectation value is taken; thus the integration by 

parts which converts. Eq. (2. 13a) into Eq. (2. 13b) gives an infinite 

answer, and produces surface terms which must not be neglected. 

From Eq. (2. 13a), we have* 

* A similar equation involving chiral transformations has been analyzed 
by Dashen (Ref. 55). 
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f( a) = ( o I eiaD e e -iaD Io) 
00 

-.-f a 4 = r, ( e 'n - e ~ ( 0 I w n I 0 ) 
n 

(2. 1 7) 

The condition d
2£ (O)/da

2 
) 0 ensures a local minimum at a= 0: 

= - i (o I [D, e~J Io> = R(O) > o . (2. 18a) 

with 

(2.18b) 

Eq. (2. 18a) is consistent with the assumption that R(k
2

) satisfies 

an unsubtracted Lehmann-Kallen representation: 

R(kz) = .!._ J d t Im ~(t) ' ( Im R(t) ; 0). 
,r t - k 

(2. 18c) 

This assumption is characteristic of a PCDC theory, in which matrix· 

elements of 0µ emphasize low frequencies. 
. µ 

For large positive a:. Eq. (2. 1 7) implies 

( 2. 19) 

If < 010 IO) vanishes, the first non-vanishing term (0 lwM. 10) o o 1n. 

fort increasing must be positive. Similarly, looking at the case in 
n 

which a. becomes a large, negative number, eithe'r there is a 
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positive c-number w
0

, or the first non-vanishing term (0 lwMax.lO) 

as ,e,n decreases is positive. We have no general method for 

imposing the constraint that f(a) have a global minimum a= 0. 

However, all consequences of this condition may be obtained if the 

decomposition of 8 into scale-preserving and scale-violating 
00 

pieces is not too complicated. 

In particular, we consider Eq. (1. 83) with the dimension t 
u 

of u assumed to be unique. Then 6 cannot vanish(lS)* because 

of the equations 

I; (t + 4) ( 0 I wn I 0) = 0 
n n 

and ( 0 I u IO):/- 0. Theories in which 6 = 0 is claimed actually 

assume that 6 i·s a c-number 6
0 

given by 

where we have substituted the result (0 I u I 0) Q;/ -3m 
2 
/(16 f 2) 

. ~ rr 

obtained by Gell -Mann.I) Oakes, and Renner. (49 ) For this model, 

Eq. (2. 17) implies -4( tu ( 0. 

( 2. 20) 

(2. 21) 

In another simple modelll u and 6 have unique dimensions 

tu' ,t 
O

. Then Eq. (2. 17) is equivalent to 

(2. 22) 

Eq, (2.22) does not contradict the SU(3) x SU(3) o--mode1(63 ) 

This point was also noticed by M. Gell-Mann (private communication). 
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(2. 23a) 

8 
where 'fl'/= t A. (er + i cj ) is a 3x3 matrix of fields (er , cj ) which 

a=0 a o a a a 

form a (3, j) + (3, 3) representation of SU(3) x SU(3), because there 

is an extra c-number term 

(2.23b) 

which is usually ignored. 

According to de Alwis and O'Donnel1~64, 99 )* if the operator 

term w breaking scale invariance in 8 has unique dimension ,f.,,, 
• 00 

then t is necessarily . -1. The assumption of de Alwis and 

O'Donnell, which they write in the ambiguous form 

11 Jiirl2. 0 (N' j 8 IN) = 
er oo 

( N' j rd-i~O 8 IN)", is easy to analyze 
er O 0 

when the correct relation 

lim lim _ lim lim 
~-- o f_,o (N(p + k) I e 

O O 
IN"(p) > =. k' _,o e~'-'o (N(p+ f) I 0

0 0 
!N(p) > 

(2. 24) 

* . 
Our analysis of this work was given in private correspondence with 

Drs. de Alwis and O'Donnell. See Ref. 98 for an alternative 
discussion with the same conclusion (for the case 6 = c-number). 
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is considered. For degeneracy symmetries, it is permissible to 

interchange momentum transfer and symmetry limits of matrix 

elements. However, Eq. (2. 11) demonstrates that spontaneously 

realized symmetries do not generally obey this rule. When it is 

remembered that a II smooth" definition of energy is obtained when 

the dilaton pole is first removed from 8 , as in Eq. (2. 5), we 
µv 

see that there is no reason preventing ( 8 ) from developing a 
00 

dilaton pole, in which case the limits in Eq. (2. 24) cannot be inter-

changed. In the language of de Alwis and O'Donnell, there is no 

way of distinguishing their assumption from the alternative 

11 lim ( N
I I 8 - S 8 µ I N ) = m _. 0 oo µ 

(J" 

( N
I l lim ( 8 - S 8 µ) I N ) 11 

m-->O oo µ 
(J" 

where s is, ~ priori, arbitrary. Their prescription gives 

s = {,l', + 1)/(,l',+4}, which does not help to determine t. 

( 2. 25} 

Although a large percentage of papers on broken scale 

invariance rely on formal arguments, the considerations of this 

section indicate that such reasoning has very limited application. In 

particular, "arguments" which can be formulated only in the limit 

of scale invariance should be ignored. However, if soft-dilaton 

theorems are being considered, there is no problem associated 

with the limit of scale invariance. By yielding exact theorems, 

this procedure often indicates the correct way to carry out the cor­

responding pole-dominance calculations. 
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II. 2. Width of a Single Dilaton 

For the moment, we ignore the fact that the dilaton mixes 

with the eighth member of the scalar octet, and imagine that it is· 

isolated. The effects of mixing will be considered in Section III. 1. 

The only hadronic coupling constants of the dilaton which are 

- ab 
presently measurable ar.e u 1 u gcrNN and GO-'IT'IT 6 for protons 

and pions, (with a, b = is-ospin indices of the pions), where states are 

normalized invariantly. Applying PCDC to (NI e µIN) and 
µ 

(n- j e µ, I 'IT), and taking care to indicate the effects of scale violation, µ 

we have 

(2. 26) 

F G = 2m
2 + O(m2) er cr 'IT'IT ,r o- ( 2. 2 7) 

We investigate the pos.sibility that, in Eq. (2. 27), the scale-violating 

term is more important than the term 2m
2

. 
'IT 

Since pions are involved, it is natural to consider the appli-

cation of approximate chiral SU(2) x SU(2) symmetry. Let us define 

the axial form factors for the S-decay of a dilaton into a pion: 

- i {k + q), F (t) + i (k - q), G (t) , 
i'I. 0-'IT i'I. (J''IT (2. 28) 

2 
rhere t = (q - k) is the momentum transfer squared. The 

ivergence of Eq. (2. 28} is 
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1 "" 3 I o Der .. (t} = (cr(k} a ;,5 "- (0) 1r (q)) 

(2. 29} 

According to the PCAC hypothesis, D (t) satisfies an unsubtracted 
er iT 

dispersion relation,* 

D (t) = 
er rr 

m
2

G 
1T O" 1T 'IT 

2 
2£ (m - t) 

1T 'IT 

+ 1 rco 
1T ,.; 2 

9m 
'IT 

dt' ImD (t'} 
O"'IT 

t 1 
- t 

{2. 30) 

which is dominated by the pion pole in the region It I ~ m; .. At t = 0, 

we obtain the Goldberger-Treiman relation(BS, 15) 

(2£ ) -l G • 
rr er 1T 1T 

= m 
2 

F { 0) + 0{m 
2

) er er 1T 1T 
(2. 31) 

As noted in our introductory remarks in Section I. 4, the axial coupling 

constant, F (0), is an SU(3) x SU{3) Clebsch-Gordan coefficient in 
0-1T 

linear models £or chiral symmetry breaking. 

Current algebra allows further progress. Placing the equal­

time commutation relation 

>',< 
The pion decay constant £ is defined in Eq. (1. 65). 

1T 

{2. 32) 
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+ between rr states, the resulting formula 

1 = (4p )-lr (2rr)3t?d~I-~) I !(I !3'sl-i2(0) I rr+(p)) ,2-l<1!2<1+i2(0)!rr+(p))!21 
0 I l C> So 

(2. 33) 

becomes the Adler-Weisberger sum rule for rr rr scattering, Eq. (1.94), 

when PCAC is applied to ( I ia~3'5"- !rr{p)) in the limit pz -.co . For 

our purposes, it is more conveniel').t to consider just the p ->co step; 
z 

we display the er-contribution explicitly: 

1 = IF (0) j2 + {E: 1
, p, f, ... contributions) 

errr p _, co. 
z 

The E: 1 -contribution is negligible, (I' 1 A-::1 30 MeV}, and the 
E: ➔'IT 'IT 

p, f, . . . resonances contribute about ½: i.e., (82 • 86) 

IF (0) I A=1 1/ fl.-er TI" 

(2. 34) 

{2. 35} 

which corresponds to a er-width of several hundred MeV. Obviously, 

the PCDC relation (2. 27} is useless if we have correctly identified 

the dilaton as the resonance responsible for the satisfaction of 

Eq. (2. 34). Note that we are not claiming that Eq. {2. 27} is wrong. 

Now we consider the constraints placed on F (0) by the 
er'll' 

theory of broken scale invariance. At this point, we ignore the 

effects of symmetry violation, because the derivation of symmetric 

results is easier and more elegant. The calculation is performed 
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with mer= m(0-,8)= 0 and e: = 0 = ,/"J5A.; the corresponding 

analysis using pole dominance will be fully considered in Sections 

III. 1 and III. 2. 

According to Wilson's theory of broken scale invariance, ( 
4

0) 

the breakdown of chiral invariance is also a scale-violating effect. 

Therefore, in the limit of scale invariance, we have 

= 0 (2. 36) 

implying 

(2.37) 

It might be thought that Eq. (2. 37) should contain 3-gradient terms of 

the form ,p J Sa),.. in order to be generally correct, where :15 a"-

is an antisymmetric pseudotensor with dimension -2, {possibly the 

axial counterpart of the tensor current obeying PCTC. However, 

examination of the operator product [ 8µ.v (x,) J
5

"- (0) J reveals that 

the presence of such a term is inconsistent with the known expression 

for [Mµv j J 5"-(0) J; (see the next section). 

An important matrix element for our work is 

( 2. 38) 

We choose the form factor expansion{lS) 

(2. 39) 
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(where Eq. (1. 9) requires F 1 (0) = 1), because the dispersion 

theory of F 
1 

(t) and F 
2

(t) is simplified when the mass of the 

pion is neglected; intermediate states with (JP, I G) equal to 

(2+, O+) and (O+, O+} contribute to Im F 
1 

(t} and Im F 
2

(t) 

respectively. Applying the condition of scale invariance to the 

trace of Eq. (2. 39), 

we find (l 5) · 

(2. 40) 

(2. 41) 

Thus, the effects of scale violation are responsible £or the presence 

of the L9-duced scalar £or~ £actor, F 
2
(t), in Eq. (2. 39). 

From Eqs. (2. 29) and (2. 31), the formulae(l 5) 

G = o-,r ,r 
0 (2. 42) 

( 2. 43) 

are also valid in the limit of scale invariance. 

The spirit of the following analysis {l 5) resembles that of the 

original derivations of chiral-symmetric results by Nambu and his 

collaborators. (
54

) We begin by defining the time-ordered product 

(2. 44) 
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which contains the dilation current ,&µ {x), defined in Eq. { 1. 11). 

Since we are working in the fimit of scale invariance, (i.e. , 

al.l. ~ = 0), the divergence of Eq. {2. 44) takes the very simple form µ . 

{2.45) 

Substituting Eqs. {1. 65) and (2. 37), the right-hand side may be written 

(2. 46) 

In order to evaluate the left-hand side of Eq. {2. 45), we need 

consider only those contributions to AµA. (k, q) which are singular 

in k . The appropriate diagrams, which are displayed in Fig. 1, 
a, 

represent th.e amplitude 

i 2 • ' 2 2 
P , (k, q) = - -3 (k+ q), F F ( {k - q) ) (k k - g k )/k 

av/\. I\. o- <r'IT a v a\J 

{ 2. 4 7) 

In writing Eq. (2. 47), we have made use of Eqs. {2. 28) and (2. 39) 

for the vertices shown in Fig. 1, subject to the constraints (2. 41), 

( 2. 42) and (2. 43). The formula {1. 11) for the dilation current 

implies 
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-..c -

-----------·· 
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= 1 kµ. a! P ~ (k, q) + 0(k) 
V µ.v 

(2. 48) 

where the last step was included because it saves much labor when 

Eqs. (2. 4 7) and (2. 48) are combined: 

= (F F (0) + C 1
) q, + 0(k) 

O" 0"11" ,r /\. (2. 49) 

Combining Eqs. (2. 45), (2. 46) and (2. 49), we find(lS) 

F F (0) £ = ½ 
O" O" ,r ,r ( 2. 50) 

In Appendix C, we give methods of deriving this result where only 

the conservation equations 8µ. = 0, o V ;:,;
5 

= 0 are used, so the . µ V 

validity of Eq. (2. 37) in the limit of scale invariance is confirmed. 

We shall fully treat the question of the effects of scale 

breaking in Chapter I I I. However, at this point, we have some 

reasons for supposing that Eq. (2. 50) is roughly correct in the real 

world. Theories of spontaneous violation of a symmetry assume that 

the fundamental decay consta:r:i.t, (Fer for scale invariance, f,r for 

chiral SU(2) x SU(2) invariance), is practically unaffected by the 

magnitude of that symmetry violation. The main cause of 

uncertainty is the dependence of F (0) on the breakdown of scale 
0"11" 

invariance. Essentially, F (0) is an SU(3) x SU(3) Clebsch-Cordan 
0"11" 
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coefficient, so it may be slightly changed by mixing of the dilaton 

with e 1{1060) meson. Also, there is considerable ambiguity about 

the point t at which F {t } should be evaluated, because t 
0 ~~ 0 0 

can be 0{m
2 

). 'Here, a typical uncertainty involves the factor 
~ 

{l - m
2 

/mA 
2

). Therefore, Eq. {2. 50) should be applicable to 
~ 1 

the real world if one is prepared to tolerate a discrepancy involving 

factors of 1. 5 or 2. {l 5) This is not worse than the inaccuracies 

observed for many chiral SU{3) x SU{3)-symmetric results. {49 , lOO) 

In fact, SU{3) x SU{3) and scale breaking may be of the same 

magnitude: m
2 

is supposed to be not much larger than m
2 

~ ~ 

We can further investigate the accuracy of Eq. {2. 50) by 

considering Eq. (2. 39) in the limit of chiral SU{2) x SU{2) invariance, 

but with scale invariance broken. In order to proceed, we must 

assume the validity of Eq. {l. 57), or Eq. {2. 37) for >-.. = 0. As we 

have remarked in Section I. 3, Eq. {l. 57) is valid in the usual theory 

of broken chiral symmetry. Note that if it existed, the scalar 

operator s{x) defined in Eq. {l. 56) would necessarily vanish in the 

limit of scale invariance, have a dimension greater than -2, and, 

to affect our argument, belong to the {3, 3) + {3, 3) representation of 

SU{3} x SU{3), {for example}, rather than (1, 8) + {8, 1). To phrase 

our assumption another way, the energy density, not just the 

Hamiltonian and other Poincare generators, is supposed to be chiral 

invariant in the limit of chiral invariance; then F 
5
=0 gives 

[F 5 , 8 J = 0 
µ.v 

{ 2. 51) 
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As we shall demonstrate immediately, Eq. (2. 51} implies the 

. ( 15} 
constraint 

where 

F 2(0} = - 1/3 

A brief derivation of Eq. (2. 52) follows from the formula 

X. :>,'c a R, • (x} 
1\.1,l,\) 

= 0 

( 2. 52} 

(2._53} 

( 2. 54} 

is a retarded commutator made covariant by careful treatment of. the 

•• singularity at x = O. * Eq. (2. 51} has been assumed in writing 

Eq. (2. 53). Then 

implies 

lim 
q-,0 (ir(q'}!e {O)!ir(q}) = 0 

µv 

which may be combined with Eq. (2. 39} to yield Eq. {2. 52}. 

)!r: 

( 2. 55} 

( 2. 56} 

We presented this derivation in Ref. 77. Previously (Ref. 15}, we 
dealt with the less singular quantity Rfµ (x}, and the corresponding 

derivation may be found in Appendix C. The covariantization of 
quantities like R, is considered in Ref. 101. As long as the cur-

1\.IJ,\J 

rent is conserved, the question of covariance turns out to be 
irrelevant in the derivation of the soft- meson theorem, (here 
Eq. (2. 56}}. Following tradition, we add stars to symbols 'to denote 
that they have been made covariant. 
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In the limit of SU(2} x SU(2} invariance, the induced scalar 

form factor F 2(t} satisfies an unsubtracted dispersion relation, 
'' 

because Eq. {2. 40} shows that it is damped even more strongly than 

m µ at large t, and matrix elements of ( 8 µ ) satisfy unsubtracted 
µ µ 

dispersion.relations (PCDC hypothesis}. While er-dominance of 

mµ at small t does not appear to be a good approximation, the cor­
µ 

responding assumption for F 2(t) has a good chance of working, 

since F
2

(0) isproportionaltothegradientof '!11.: at t=0 :(l
5 , 77

} 

( 2. 5 7) 

with l t I 5-, m; . Note the~ consistency of Eq s. (2. 41}, (2. 52) and 

(2. 57). The property that the limits m
2 

.... 0, t .... 0 cannot be inter­
er 

changed is characteristic of theories involving a Nambu-Goldstone 

boson. We can identify the residue of the er-pole in Eq. (2. 57) 

with coupling constants of the dilaton:(l 5, 83) 

F G er eririr 
2 

:=:::! m 
er 

(2. 58) 

When Eqs. (2. 31) and (2. 58) are combined, we obtain Eq. (2. 50} as 

an approximate relation. 

2 
If we had neglected the 0(m ) term in Eq. (2. 27), Eq. (2. 50} 

er 

would have allowed us to write 

(2£ )-1 G 
Tr er 1T 1T 

2 =. 2m G (0) 
1T er ,r 

(naive} 
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unless the dilation appears as an extremely narrow resonance, i.e., 

IF (0) I<< 1, this relation violently contradicts the Goldberger­o-,r 

Treiman relation (2. 31). 

However, we may substitute the original Goldberger-Treiman 

relation (1. 66) and Eq. (2. 26) in Eq. (2. 50) to obtain(l 5) 

( 2. 59) 

Thus jF (0) I < < 1 would require the dilaton to couple weakly to 
(f1T 

nucleons. This is not possible if the dilaton is assumed to be the 

scalar particle exchanged in NN and ,r N scattering. Therefore, we 

conclude that Eq. (2. 27) is,, correct but useless--in practice, Eq. 

(2.. 58), {which is consistent with Eq. (2. 27)), should he used. 

Combining Eqs. (2. 26) and (2. 58), we derive the relation( 15 • 83 ) 

(2. 60) 

with g = G /2m . Thus o--exchange in ,r N and NN scattering 
(j 1T 1T (j 1T 'IT 1T 

can be compared with or predicted from the mass and width of the 

dilaton. The order of magnitude of these exchange forces indicates 

that the dilaton has a width of several hundred Me V. This agrees with 

the discussion based on the Adler-Weisberger sum rule for ,r,r 

scattering; ( see Eq. (2. 3 5) ). The positive sign of g / g NN 
(j 1T 1T (j 

as given by Eq., (2. 60) agrees with the sign obtain~d from the scalar-

exchange contribution to ,r I'{ scattering. 
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Following the prejudices established early in this chapter, 

we try fitting data for the €{700) meson to our formula. If the ·width 

of the e is taken to be 400 MeV, i.e. , 

2
/4 ~ 11 g € 1T1T lT 

Eq. (1.101) for g NN implies 
. € 

g e,r,r/ g eNN c::: l 

whereas the right-hand side of Eq. (2. 60) is 

(2. 61) 

(2. 62) 

(2. 63) 

In view of the uncertainty in the PCDC predictions which lead to 

Eq. (2. 60), the discrepancy between Eqs. (2. 62) and (2. 63} is not 

. . f' t (15) s1gn1 1can . 

Eq. {2. 58) may be related to the work of Chang and 

Freund. { 
102

) If the dilaton is treated as a 
3

P 
O 

state in the quark 

model, generalized W-spin symmetry predicts{l02) 

G = G crpp cr,r,r {2. 64} 

where crpp coupling is -g 
8 

G + k kQ G for a dilaton with 
a. o-pp a, .., crpp 

momentum \J.· PCDC applied to ( p I 8~ Ip) yields 

F G = Zm
2 

er crpp p 
(2. 65} 
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Chang and Freund showed that the disastrous conclusion 
2 2 

m = m 
p 1T 

follows from Eqs. (2. 27), (2. 64) and (2. 65), if one ignores all 

0(m2 ) terms; (that motivated their use of a 11 tenth11 piece in 
er 

Using Eqs. (2. 58) and (2. 65), we fini
15

) 

2 2 
G ~ (2m /m ) G crpp p • er er ,r,r (2. 66) 

The mass of the dilaton is not supposed to be much less than m , 
p 

so the effects of scale violation in Eq. (2. 65) are probably serious. 

Therefore, the deviation of Eq. (2. 66) from the W-spin result (2. 64) 

is not significant. 

The success 9f our calculation depends on the assumption 

that SU(2) x SU(2) is a much better symmetry than scale invariance. 

The same cannot be said for SU(3) x SU(3). The Goldberger-Treimal'l. 

relation for the er KK coupling is 

( 2. 6 7) 

Evidently, we cannot claim that the 0(~
2

) term is unimportant, 

especially if'we are considering a theory in which scale invariance i.s 

automatically realized in the limit of SU(3) x SU(3) symmetry, 

(i.e., o-> 0 when u .... 0 ). Also, mixing becomes important. 

It is amusing to compare our method of deriving G er ,r,r 

with that of Ellis, (83) wh.ich is phrased entirely in the language of 

effective non-linear Lagrangians. Ellis begins with the observation 

,. that an octet of pseudoscalar meson fields Ma obeying the non-linear 
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chiral transformation -law [F;, Mb] = i £ab (M) necessarily has 

dimension zero if Eq. ( 1. 57) is valid. By constructing chirally co-

variant derivatives D Ma = o Ma+ 
µ µ 

2 . 
O(M 8M), (where the exact form 

of O(M2 8M) does not concern us here), one can form chiral-

invariant kinetic energy terms T = 2
2 

D Ma DµMa. The dimension . . µ 

of T is -2, so an extra chiral-invariant factor* exp(-20-/F ) must 
cr 

be included to give a scale-invariant result. Proceeding in this man-

Ell . b . th . L . (103,104, 98) ner, 1s o ta1ns e meson1c agrang1an 

t, 

U exp{,f_., o-/F ) u er 

The first three tenns are scale-invariant, where the third term 

depends on the details of the symmetry violation given by the last 

two terms. In terms of the decomposition ( 1.83) of 8 , the 
oo 

(2. 68) 

fourth and fifth terms are - o and -u respectively. By assuming 

that 6 is a c-number, Ellis fixes the coefficients of the third and 

fourth terms, since £ must not contain an overall constant or 

a term linear in er. Note that, a priori, any value of ,f, is 
u 

* See Eqs. (1. 105-7). 
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is allowable. The factor U has the series expansion 

(2. 69) 

(i.e., dim U = 0). 

To calculate the o-rrrr • coupling constant, one finds the co-· 

efficient of ½ er rr
2 

in I., , replacing i8 by the appropriate 
µ 

momentum (as in the rules for Feynman diagrams): 

2 2 ½ m rr (,f, o-/F ) 
'Ir u (J" 

2 -1 2 
..... (2 P • P - ,e, m ) F ( ½ Ci'll' ) 

'Ir l 'Ir 2 u ,r o-

which implies 

F G 2 = m 
(J" (J",,. 'll' (J" 

(t + 2) u 
2 

m 
'Ir 

(2. 70) 

(2. 71) 

The term depending on m
2 

is obviously negligible.* To emphasize ,,. 
the lack of dependence of our calculation on t , we have always 

u 

omitted it. (l
5

, 
77

) Otherwise, Eqs. (2. 71) and (2. 58) are identical. 

Some workers (Refs. 84 and 92} have taken the trouble to calculate 
this term using formalism which resembles ours. Note that the 
extra term is important if the o-KK coupling is being considered; but 
then mixing is also important. 



-83-

h 1 d t d th 
2 b .d • h W ereas we were e o iscover e m term y cons1 ering t e 
(J" 

relative magnitudes of symmetry violation, Ellis gets it from the 

"momentum dependence of the o-;r;r vertex," (in the jargon of users 

of effective Lagrangians). 

To conclude this section, we comment further on Eqs. (2. 41) 

and (2. 52), which, at first sight, contradict each other. As Eq. 

(2. 57) demonstrates, this behavior of F 
2

(t) at t == 0 is required 

in a consistent theory of spontaneous breakdown of s.cale and chiral 

invariance. However, we regard the difference between Eqs. (2. 41) 

and (2. 52) as significant only for dilaton theories. In the scale­

invariant limit of a theo;y with no dilatons, all masses vanish, so 

chiral invariance is no longer realized in the Nambu-Goldstone man­

ner and has no connection with soft-meson amplitudes. Therefore, 

this difference is significant only if the zero-mass limit of Eq." (2. 52) 

is supposed to be smooth, in spite of the infrared problem. This 

limit might be smooth for amplitudes which are vacuum-expectation 

values of an operator product expansion near the light cone, (i. e. , 

a long way off-mass-shell). However, Eq. (2. 52) is a low-energy 

result arising from the behavior of the operator product R, *(x) 
/\.fJ,V 

at large x
2

, so we expect that the difference between Eqs. (2. 41) 

and (2. 52) is generated by infrared effects if no dilatons are present. 

A contrary point of view has been expressed by Jackiw. (l0 5) 

He introduces the term S of Eq. (1. 56) in order to make the chiral-µv . 

invariant prediction for F 2(0) agree with the result of allowing 8 µ 
' µ 

to vanish, (even though he admits that the zero-mass limit might be 
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singular). In addition, this attitude requires ,f, = -1. It is possible 
u 

that these results are right. We can only prove that S vanishes 
!J.\) 

Provided that S has dimension 
l.l\J 

in the limit of scale invariance. 

greater than -4, it dqes not affect the leading singularities of 

operator product expansions. It contributes a scale-violating effect 

to deep inelastic neutrin? scattering, but this, would be swamped by 

the trace terms mentioned in the footnote to Eq. (1. 92). To have a 

hope of directly measuring its effects, one would have to perform the 

experiment v v -> anything hadronic. The current commutation 

relations impose constraints on S , but these are not strong enough 
µ. \) 

to allow any definite conclusions. Jackiw presents an example, the 

<r-model with a modified 8 , in which his conclusions are valid.~• 
µ.\) 

While these conclusions are plausible, the reasons given for accepting 

(77)*)~ 
them are not. 

It is also possible that S exists in a theory with dilatons. 
!J.\) 

However, it would be smaller than the term proposed by Jackiw, 

because the magnitude of scale violation is much smaller; (e.g. , 

Eq. (2. 52) would become F 2(0) = 

remains finite for m -,0). If it can be shown that the dimension of 
(J"' 

)'< 

'This model does not work in a dilaton theory because it must be 
supposed that l/2£'lt' van{shes in the scale-invariant limit; other­
wise S does not vanish in that limit. 

!J.\) 

*~· Jackiw1s work has also been criticized in Ref. 98, but only within 
the context of dilaton theory. Jackiw prefers not to entertain the 
idea that scale invariance could be spontaneously ~roken. 
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scalar operators {like s{x} i.n Eq. (1. 56}} i.s not greater than -2, 

then the presence of Sµv is not allowed in a theory of broken scale 

invariance. For the moment, we can only assume this. 

I I. 3. Conformal Invariance and Tensor Meson Dominance 

We examine the short-distance behavior of the commutator 

a 
,· of 8µv and 3-S\. The main uncertainty in this procedure involves 

identifying the "licensed operators 11 0 n which appear i.n the e~pansion 

( 1. 79}. We restrict our attention to operators with dimension greater 

than or equal to -4, since the corresponding C (x} are then suf-n 

ficiently singular to be of interest. 

down b~ Wilson, (40) we obtain* 

Applying the principles laid 
,,. 

2 aa - 6 a , log x ~5 ( 0) µv /\,a • 

2 a a13 
log x a 3(5 (0}+ ... 

{ 2. 7 2} 

... 

where a 
0 

is a differential operator which is conserved and 
µva f.J 

* 
The symbol + . . . - denotes separation of the scale-invariant 

and scale-violating contributions to the expansion. 
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traceless in the indices µ, v ; 

2 
a 

0
=6a a a a 

0 
- 3(a a g 

0 
+ a a g 

0 
+ a a 

0
g + a a 0 g ) a 

µva I-' µ v a I-' µ a v I-' v a µ I-' µ I-' v a v I-' µa 

(2. 73) 

+ 3(g g 0 + g_\)rvgµr.i>a
4 

- 2(8 o - g .. a
2

) (o aQ - g a2
). µa \) I-' u. I-' µ \) µv a I-' as 

Of the constant coefficients appearing in Eq. (2. 72), only r is 

• not determined by the hypotheses*--zero trace and divergence for the 

leading singularities, together with the equal-time commutation 

relations (ETCR) required by Poinca,,.r~ invariance. Further, these 

ETCR forbid scale-invariant contributions, of the form 

(2. 74) 

which would otherwise be allowed; ( 0; (x) is the axial part of a 
. 1-,L\) 

a a a (1,8) + (8,1) tensor (8 , 05 ) 1 8 ,where 8 isthe 
µv µv a = . . . 1.1.v 

tensor octet whose presence is indi.cated by the electroproduction 

data(lOb)). The singular functions E(-n)(x2) were defined by Eq. 

(1. 81), while illog x 211 obeys a log x
2 = -x E{-l)(x

2) ; {we might have 
µ µ 

* However, r must vanish for tu' -2. 
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written i'rr 0 (x
2

) instead of "log x 211 ). 

From this operator product expansion, we wish to determine 

whether the standard assumption(9, 68 , l0 7) 

(2. 75) 

should be believed. Since the K are secon<;l moments of e , the 
1-L 1-LV 

only terms in the expansion which can contribute involve a singularity 

(x) - 5 , i.e. , the last term of Eq. (2. 72), which corresponds to 

Jackiw1s term S appearing in 0 --see Eq. (1. 56). However, we 
1-LV 1-LV 

assume the usual theory of broken chiral sym.metry (r = 0), so Eq. 

(2. 75) is valid, and there are no Schwinger terms in [0 (0,x), 3(5 (0}] 
1-LV 1-L 

more singular than Be:? (x) . 

Starting with Eq. (2. 75), we may perform a calculation(77) 

which is analogous to our derivation of Eq. (2. 50). Again, we work 

in the limit of scale invariance, and defer to the next chapter 

discussion of a more realistic but less elegant approach involving 

dispersion relations. 

The appropriate time-ordered product is 

. J 4 ik•x I rfl' 3 I o M ,(k,q) = 1 d x e (0 T{J\. {x) 3'
5
,{0)) Ti (q) ), µv~ 1-LV ~ • { 2. 76) 

which obeys the identity 

(2. 77) 

because of Eq. (2. 75). Again, we must calculate the contributions to 

M " which are singular in k. From the definition ( 1. 12) of the µv~ • 
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conformal current ;J{. (x), it is easy to see that this involves second 
µv 

derivatives of the pole terms given by Eq. (2. 47): 

(2. 78} 

As in our previous calculation, the simplest way of evaluating 

an expression such as Eq. (2. 78) is to take the k v £actor inside the· 

derivatives: 

{ 2. 79} 

{The symmetry of P A. in (a,, v) considerably reduces the length 
. av 

of this expression). Combining Eqs. (2. 47}, (2. 77) and (2. 79), we 

have 

2i g , (F F (0} - (2£ )-l) = 4i q q, (F F 1(0} - (2£_.,.)-l F
1

1(0} ), (2. 80} 
µ/\, er (J"'lf ,r µ. /\, er (t'lf II 

which implies Eq. {2. 50) together with a new relation{77 ) 

F 1(0)/F { 0) = F
1 

'{0) crrr crrr 

The primes denote differentiation with respect to the momentum 

transfer squared. 

(2. 81) 
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If poles due to the A
1 

(1070) meson and the spin-2 SU(3) 

singlet, which corresponds to a mixture of the f( 1260) and f'( 1515) 

states, are supposed to dominate F (t) and F (t) respectively, 
(J"1T 1 

Eq. (2. 81) implies 

(2. 82) 

When the magnitude of SU(3) mass splitting is considered, the agree­

ment of this result with the observed meson spectrum is reasonable. 

However, it turns out that Eq. (2. 81) is strongly affected by scale­

violating effects, and the results of A
1 

and f dominance are not 

consistent. These considerations form the subject of the next 

chapter. 
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I I I. DISPERSION THEORY AND ESTIMATES OF SYMMETRY 
VIOLATION 

Soft-meson theorems are exact in the limit in which the cur­

rent which couples the meson to the vacuum is conserved. However, 

in the real world, these res~ts become approximate; one has to 

saturate unsubtracted dispersion relations for the channel 

characterized by the quantum numbers of the meson involved. 

Typically, only the meson pole itself is taken into account, because 

the evaluation of contributions of many-body intermediate states 

\ 

seems to be hopeless in the absence of a complete theory of strong 

interactions. In a few fortunate instances, one can directly substitute 

experimental cross-sections or phase shifts to obtain a relatively 

accurate estimate of the effects of symmetry violation. When 

trying to understand the nature of symmetry-violating terms in 8 , 
00 

the accurate saturation of such dispersion integrals in very important. 

It is evident that the application of conformal-invariant results 

to amplitudes in the real world requires a great deal of care: 

(i) Conformal symmetry is badly broken~ with no candidate 

for the dilaton below O. 5 GeV. We assume that the mass of the 

dilaton is significantly less than 1 GeV, (500 i mo-~800 MeV) . 
. 

(ii) This symmetry violation may be accompanied by mixing 

of the dilaton with other (JP, IG) = (O+, O+) mesons. 

Unfortunately, in attempting to obtain corrections for Eqs. (2. 50) 

and (2. 81), we cannot improve on the approximation of keeping only 

the meson pole. We try to make up for this deficiency by saturating 
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two different dispersion integrals £or the same quantity. By 

proceeding in this manner, we can give rough estimates of the 

uncertainties in our results. 

To conclude this chapter, predictions of the theory of broken 

chiral symmetry are re-examined. This is necessary, because the 

presence of a dilaton can affect low-energy theorems £or pseudo­

scalar meson amplitudes if more than one such meson is present. 

In particular, we show that, in the recent calculation of Cheng and 

(108) 
Dashen, the soft-pion theorem which they assume is still valid 

in a dilaton theory. This leads to an' alternative interpretation of 

their result. 

I I I. 1. Effects of Mixing 

A phenom.enological analysis of mixing in the nonet picture 

has been carried out by Carruthers. (89) From his results, we 

£ind(77) 

F Ri 102 MeV 
tr 

F ,Ri 68 MeV 
e: 

( 3. 1) 

These values correspo11;d to a small value of the coupling of the octet 

state to the vacuum via 8 when I er= e:) and J e: 1) are (roughly) 
IJ..\} 

ideally mixed. This feature of Carruthers' analysis is ensured by 

his use of SU(3) symmetry to ,relate coupling constants; i.. e. , it is 
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{correctly} supposed that SU{3) is realized as a degeneracy sym­

metry.,:, Eq. (3. l} is very approximate because PCDC £or baryons 

has been used. 

A good illustration of the effect of mixing is provided by 

PCDC for the matrix element ( c/ i eµ. I c/) :(77) 
f.L . 

= + 

. 3 
If the scalar nonet is taken to be a set of P

O 
states in the quark 

model, the apparent suppression of the e' .... -rr-rr mode relative to 

e i_. K K suggests that e' contains only strange quarks. Ellis {S 3) 

has pointed out that this standard picture implies 

= 0 {3.·3) 

because the corresponding quark diagram is disconnected. Thus 

Eq. (3. 2) shows that the € 1 pole provides an essential contribution 

to the unsubtracted dispersion relation for ( c/ I e: I c/). As the 

limit of conformal invariance is approached, the e I state loses 

its dilaton quality to the a state, and Eq. (3. 2) becomes 

= 

~/: 

2 
Zmc/ (3. 4) 

A recent claim {Ref. 109) that Carruthers' assumptions combined with 
Ward identities for the meson system give a large value £or the octet· 

coupling ( 8 ! 9/J-V I O) relative to the singlet coupling is incorrect; 

(add their Eqs. {63) and {64) to obtain a contradiction}. Also, their 
claim lu = -2 is a direct result of assuming Eq. {30} -- no Ward 
identities are needed. Unfortunately, Eq. {30} is not general valid, 
and is certainly not implied by SU(3) symmetry. 
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in agreement with Eq. (l. 77). 

(77) . · (83 110) 
Another obvious example 1s the sum rule ·' 

( 3. 5) 

Numerically, we observe 

2 2 m I F ·,. 
E: E: 

( 3. 6) 

so the contribution of the e: 1 pole to the sum rule is significant. 

Eq. (3. 5) tests the idea that 6 is a c-number. In that case, 

we have 

2 2 
m ,F 1 E: E: 

According to Gell-Mann, Oakes and Renner, (49) this vacuum 

expectation value is given by the approximate formula 

which gives the numerical result{77 ) 

- t {t + 4) ~ 5 u u 

(3. 7) 

(3. 8) 

(3. 9) 

. We think that the uncertainty in Eq. (3. 9) is sufficiently large to allow 

-3i,e,i-1. 
u 



-94-

We observe one more example in which the e:' contribution is 

important: the standard soft-dilaton theorems 

(3. 10) 

(3. 11) 

In some cases, it is expected that the e:' contribution is negli­

gible compared with that of the dilaton. Consider the usual 

method (l 5, 34 ) of estimating G ; (i.e., the derivation of Eq. (2. 58) 
0-1T1T 

by first obtaining Eq. (2 .. 52)). Neglecting the, mass of the pion, we 

combine an unsubtracted dispersion relation for F 2 (t), Eq. (2. 52) and 

the decomposition 

to obtain (77 ) 

1 = F G /m 2 + F , G , /m ,2 
- ~ J dt f (t)/t , 

cr cr1r1r cr e e 1r1r e 1r 

The contribution of the e I term is small; applying Eq. (2. 31 ), we 

record this observation in the form 

(3. 12) 

(3. 13) 

F 
8

, F 
8

, TI'(0) << F cr F cr1r(0) (3. 14) 

where the numerical difference involves a factor of about 10. If the 

continuum integral in Eq. (3. 13) is also insignificant, Eq. (2. 58) is 

obtained. and the prediction for the width of the dilaton is I' ~ , . cr-+1r1r 

1200 MeV. An optimistic view of the accuracy of this result might 

lead to the conclusion tlai it violates the Adler-Weisberger sum rule 
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for -rrrr scattering (Eq. (1. 94)). However, the next section is devoted 

to estimating G according to the method of collinear dispersion 
OTTTT . 

relations, (9 l) and there we conclude that our theory of broken scale· 

invariance is not in conflict with the TTTT sum rule. In the forthcoming 

calculation, it requires considerable effort, (recorded in Appendix D), 

to show that the e:' term may be neglected. 

III. 2. Collinear Dis1)ersion Relations and Violation of Conformal 

Invariance 

In this section, we apply collinear dispersion relations to 

obtain symmetry-breaking corrections to Eqs. (2, 50) and (2. 81 ). 

In current algebra, this is one of a number of available procedures 

for obtaining.the consequences of a given equal-time commutator. We 

pause briefly to examine the status of the method of collinear disper­

sion relations relative to the P --+ oo and low-energy approaches. z 

The standard example from current algebra is (l l l) 

(3. 15) 

where IN:\P) denotes a hadronic state with momentum P, helicity A, 

and spin, mass and internal quantum numbers N, and Fa (q) is given 

1. 3 .... -+ ,.,_a -+ 
by Jd x exp(iq. x) .Y

0 
(0, x). To evaluate the left-hand side of Eq. (3. 15), 

a complete set of states I I) is introduced via the identity I: I I) (I I = 1, 
I 

-+" 1-> -+ 
the result being a class of sum rules for each value of P = 2 (P 1 +P 2 ) 

Following the suggestion of Fubini and Furlan, (ll 2 ) take the 

limit P ... oo and interchange it with I:. This procedure is valid for 
z I 
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a ""' , 

"good II operators such as F (q). One advantage of considering such 

a limit is that only connected matrix elements* (I 11 I NA) with 
: o conn. 

fixed q
2 

= (PI-P)
2 

remain, so saturation of the sum rule is simpler 

I 21 2 -and, for q .$ m (0 , ~), PCAC may be applied. In terms of dis -

persion theory for the amplitude 

.... (3. 16) 

(with P = ½(P 1 +P 2 ), Q = ½(q1 +q2 ) ), the latter case corresponds to 

dispersing in two paths: 

(i) Associated with the sum over states I:, there is the path v = P. Q 
. I 

2 2 2 2 varying, witht = (P2 -P 1 ) = (q1 -q2), q 1 ::;;; 0, and q 2 ::-;; 0 all 

constant. 

(ii) Associated with PCAC, there is a path q~ varying (for i = 1 or 2 
l 

or both), with v and t held fixed. 

Disadvantages of the P = oo method are:· ' ' z 

(1) For good-bad commutators, Z diagrams may not vanish for 

P .... oo, ** and the method fails for bad-bad commutators. 
z 

(2) The method obviously does not apply if one of the states is the 

vacuum. 

A much smaller set of sum rules results from combining low­

energy theorems_with the appropriate unsubtracted dispersion rela­

tions. All of the q
2 = 0, P = oo rules may be expressed in this form. 

z ' 

In addition, (1) and (2) do not apply. So far, we have been restricted 

to this type of calculation. 

* That is, meson-creation and Z diagrams vanish. 

** Details are given in Ref. 44. 
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In 1968, Fubini and Furlan (9 l) introduced collinear dispersion 

relations, which involve a single dispersion path combining some of 

• the features of paths (i) and (ii). In terms of Eq. (3. 15 ), the complete 

-> 
set of intermediate states is introduced at P = 0 instead of at infinite 

momentum, so meson-creation and Z diagrams must be evaluated as 

well as direct-channel diagrams. This additional complication was 

accepted in order that the following dispersion path could be used: 

(iii) The variable is x, defined by q. = xP + k., (i = 1, 2), with 
l l 

2 2 
k

1
. P = 0 = k 2. P, t, k 1 and k 2 kept constant. In the Breit frame, 

- -P = 0, this prescription becomes qi= (xP 
0

, q}, so we obtain variable-

2 -qi , fixed-% sum rules. Meson amplitudes appear as the residues of 

poles in meson-creation diagrams. 

The advantages of this method are: 

(3) The lack of subtractions in each dispersion relation* is guaranteed 

by the existence of a Bjerken limit. We are now able to check this by 

looking at the short-distance behavior of the corresponding operator­

product expansi~n; (i.e., the theory of broken scale invariance pro­

vides an extension of the PCAC hypothesis to the Fourier transforms 

of retarded commutators containing oµ,~sµ)· 

(4) There are no anomalous thresholds on the first Riemann sheet. 

(5) The set of contributing states I I) is very restricted because of 

antular momentum and parity selection rules,· particularly for the 

case k. = O. 
l 

* Alternatively, the need for a subtraction may be indicated by scale 
invariance at short distances. 
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(6) The method does not depend on whether an operator is "good" 

or "bad". For this reason, von Hipp el and Kim ( l l 3) used collinear 

dispersion relations to relate meson-baryon scattering at threshold 

to (Bl [F;(o), aµa.~µ(O) J I B). 

(7) The method works if one of the states is the vacuum. 

Disadvantages of collinear dispersion relations are: 

( 8) The distance of the meson pole from the II soft-meson point" is 

often considerably larger than m
2
(o-, 8}, which is the corresponding 

distance for the P .... oo and low-energy approaches. z 

(9) Apart from simple poles, the meson-creation and Z diagrams 

are potentially important but difficult to estimate; in practice, they 

are "thrown away". However, if one of the states is the vacuum, 

all diagrams are meson-creation diagrams. Because of (5), the 

error involved in neglecting the cut diagrams is about the same as 

in derivations of Goldberger-Treiman relations for the currents 

involved. The calculations in this section are of the latter type. 

(10) There is a difficulty in evaluating the direct-channel cut contri­

butions, because q~ becomes large. The presp:iption given by 
l 

Fubini and Furlan, and followed by von Rippel and Kim, is to replace 

them with on-shell S-wave phase shifts, (i.e., q. 
2 

.... m. 2). This has 
l l 

no hope of· working unless the cut contribution is small, and is 

dominated by terms in the region q. 
2 = O(m. 2). (Then the approxi-

1 1 

mation is very good because it can be regarded as the application of 

PCAC to PCAC corrections). Unfortunately, there is no prescription 

which indicates when this is the case--a small value for the on-shell 
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estimate does not guarantee success, (although a large value would 

ensure failure). This problem does not arise if one state is the 

vacuum. 

We conclude that the P _, oo method should be applied when 
z 

both the initial and final states contain a single particle, while, 

collinear dispersion relations are more reliable if one state is the 

vacuum. Low-energy theorems are more limited in scope, but may 

be applied in both cases. 

We wish to evaluate 

I 
. 3 I o (0 [D(0), 2's>J0)J 1r (q)) = 

I . 3 I o (0 [K (0), a.5A.(0)] rr (q)) = µ, 

( 3. 1 7) 

0 (3. 18) 

in a dispersion-theoretic manner. Since D and K are moments µ 

of the bad operator 8 , and one of the states is the vacuum, ( 1) . µv 

and (2) forbid the P -, oo method. As an alternative to the low­
z 

energy approach already considered, we proceed to use collinear 

dispersion relations. All of the advantages (3-7) hold; of the dis-

' advantages, (10) does not apply, (8) is not serious, and (9) involves 

errors similar to those encountered in PCDC and o--dominance of 

The plan of the calculation is basica~ly simple: but the 

computational details are fairly complicated. Here, we describe 

how to arrive at the results; the full derivation is given in Appendix E. 

We consider the amplitude for a.5X. to interact with el-,t and 

form a pion: 
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(3. 19) 

Since TA. is a retarded commutator, it may be written as a dispersion 

relation along some path of integration in the s-t plane, where s 

and t are defined by 

s = 2 
t = (q-k) 

The prescription for a collinear dispersion relation is . . 

k = (zm ,0) 
1T 

q - (m , o) 
1T 

where z is the variable of integration in the dispersion relation. 

This condition specifies the path of integration to be the parabola 

2 
4m s = 

Tr 

2 2 
(t - s - m ) 

Tr 
( t ) 0) , 

(3. 20} 

(3. 21) 

(3. 22} 

in the s-t plane. The behavior of TA. at large z is determined by 

the leading singularity of the operator product [ eµµ(x}; z-;A. ( 0} J at 

short distances xµ, , (i.e. , the scale-violating part of Eq. (2. 72} }. 

This singularity goes like):< (x) -
3 

1 so, by dimensional analysis, it 

contributes a term 

* This turns out to be the case even if r does not vanish. 
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-1 
z (3. 23} 

to T >-..· This agrees with a formula proposed by Bjorken in a paper( 7 0} 

which implicitly contains many features of the theory of broken scale 

invariance: 

( 3. 24} 

where CA. is the equal-time commutator 

Eq. (3. 24} implies an unsubtracted dispersicm relation for x
1 

(z}, 

x1 (z) = . ! J dz' Im x1 (z'}/(z' - z) (3. 26) 

and a superconvergence-like relation for x
2 

(z), 

O = J dz Im x2 (z) (3. 27} 

Using methods a:q,alogous to those developed in Chapter II, 

the retarded commutator T )I. may be related to the equal-time 

,. commutators (3. 17) and (3. 18), implying the, low-energy theorems( 77} 

- z 

-1 z 

-2 

O(z} (3. 28) 

( 3. 29} 
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respectively. When combined with Eq. (3. 26), Eqs. (3. 28) and (3. 29) 

become sum rules. The derivation appears in Appendix E. 

The situation is illustrated in Fig. • 3. The solid, curved 

line represent·s the dispersion path given by Eq. (3. 22). Poles in the 

amplitude T )I. are indicated by dotted lines. The Bjorken limit is 

approached when s and t both become large and positive along 

the parabola. The collinear dispersion path crosses the pion-pole 

2 2 2 2 
line t = m at (0, m } and (4m , m ), where z takes the 

,r 1T 1T 1T 

values O, 2 respectively. These points are denoted by (a) and (b) 

in Fig. 3, and correspond to ·the dispersion diagrams (a) and (b) 

of Fig. 2. * The low-energy theorems (3.28 )and (3. 29) constrain the 

behavior of TA (z) in the vicinity of point (a). The singular terms 

-1 -2 
z and -z of Eqs. (3. 28) and (3. 29) are present because the 

pion-pole line passes through point (a). The dilaton-pole line 

s = m
2 

intersects the dispersion path at the points (c) = (m 
2

, 
~ ~ 

2 2 2 
(m - m ) ) · and (d) = (m , (m + m ) ) , which correspond to 

~ ,r ~ ~ 1T 

diagrams (c) and (d) of Fig. 2; z takes the values m/mrr, 

-mjm,r at these points. 

The amplitude for 8 µ to interact with two pions is projected µ 

anywhere along the pion-pole line t = m 
2 

except in the region 
• 1T 

0 ( s ( 4m 2 , which lies outside the physical regions for the process. 
1T 

,. Since the dispersion path (3. 22) passes through the edges of these 

physical regions, the residues of the pole diagrams (a) and (b) are 

* Here we need only the trace ga,v 8 in the limit of scale 
(X,\) 

invariance, Fig. 2 becomes Fig. 1. 
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(b) 

1T 

(d) 

Fig. 2 
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proportional to (;r(O} !.e~ I ;r(O}) and (0 I e/1 I ;r(O}, ;r(O}) respectively. 

Similarly, contributions to our dispersion integrals from the dilaton 

Pole at z = + m /m contain the form facto,rs F (t}, G (t} of er ;r · er;r er;r 

Eq. (2. 28} evaluated at the edges of the physical regions for the 

processes O"->iT + ,f, + v t and er + rr _, t + v l i.e. , at 
2· 

t = (m ± m ) . These observations are a direct consequence of er ;r 

the condition (3. 21} defining the collinear dispersion path. 

The amplitudes ( 0 I eµµ I ;r, Al) and (Al I eµµI ;r) appear 

at points on the A 1 -pole line above the z ) 0 and below the z ( 0 

branches of the dispersion path. However, since the spin of the A
1 

.· 

is not zero, the pion cannot be emitted in an S-wave. Therefore, 

these amplitudes vanish at threshold, i.e., on the curve given by 

Eq. (3. 22). Reflecting advantage (5} of using a collinear dispersion 

relation., only spin-0 states contribute to our sum rules. 

It is convenient to separate out the contributions of the pion 

and dilaton poles in the sum rules: 

x. (z) = x. (s, t) = ImX. - Im(rr-pole + er-pole). 
l 1 l , l 

(i = 1, 2) (3. 30) 

then, after performing the analysis described in Appendix E, we can 

rewrite Eqs. (3. 27), (3. 28) and (3. 29) as the exact sum rules<77) 

(3. 31) 
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(3. 32) 

= 
mF 

,r er 
2m ; J dz x 1 (z}/z

2 

er 
(3. 33) 

where we have established the notation 

F ( ± } = F ( ( m ± m ) 2) , 
er,r erir er ,r 

2 F 1 (±} = F 1 ((m 1 ±m)}, e 1r. e ,r e --T 

and so on. At first sight, these sum rules look complicated, but 

further inspection allows the derivation of simple, approximate 

results. 

( 3. 34) 

The reader may have noticed that the contributions from the 

e I pole have been absorbed in the definition of the x.(z), yet it is 
. l 

not obvious that this term is small. Isolating the e '-pole terms, 

we find that the axial form factors for the s-decay of e' into a 

pion are evaluated at points t = (m 1 ± m )
2 

close to the A
1 

pole 
E 1T 

at t = m A 
2

. • For this reason, the demonstration in Appendices D 
1 

and E that the e I term may be neglected is _essential. It is an 

unusual feature of our calculation that the inclusion of mixing is 

non-trivial. 
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The first simplification of Eqs. (3. 31), (3. 32} and (3. 33) 

involves the good approximation of keeping only the terms of lowest 

order in m 2. In order to understand the magnitude of the 
'IT 

continuum integrals and their dependence on m 
2

; an integration 
TI' 

variable such as s or t should be used instead of z. For 

example, the continuum integral of Eq. (3. 31) may be written 

00 a z 
= -2 J ds at Xz(s,, s) + O(m1T } 

0 

A similar analysis of the other continuum integrals yields 

00. 

O(m 
2

} J dz x 1 (z)/z = J ds x 1(s,s)/s + ' rr 
0 

2 2 co a 
O(m 

4
) J dz x 1 (z)/ z = ·-zm J ds at x 1(s,s)/s + 1T 'IT 

0 

(3. 35} 

(3. 36) 

(3. 3 7) 

Nothing u7;expected happens in Eqs. (3. 35) and (3. 36), but Eq. (3. 37} 

shows that there is a hidden factor 
2 

m'lr in Eq. (3. 33), (corresponding 

to the factor qµq\ in Eq. (2. 80)), which should be removed before 

symmetry limits are considered or continuum integrals are neglected. 

At this point,· we pause to compare our sum rules with the 

results obtained in Chapter I I. According to Eqs. (2. 41) and (2. 43), 
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F 
2

{t) _ and G o--rr{t) vanish in the limit of scale invariance. Since the 

x. {z) are proportional to 8µ and contain no O"-poles, they also 
1 µ 

vanish. Thus, the superconvergence sum rule (3. 31) reduces to the 

trivial equation O = O; we expected this because it was not derived 

from an equal-time commutation relation. Eq. (3.32} reduces to 

Eq. (2. 50)--both of these equations come from Eq. (2. 37). Finally, 

2 
when the artificial factor m is removed, Eq. (3. 33) becomes ;r 

= F F '(O) 
(J" (J"'IT 

(3. 38) 

which, when combined with Eq. (2. 50), yields Eq. (2. 81) as expected. 

We proceed with the approximation of neglecting terms of 

higher order in m 2. 
lT 

(3. 39) 

2 
is valid in the neighborhood of t = m . In particular, Eq. (3. 39) 

er 

implies(77) 

+ 
2 2 

O{m /m ) ~ ;r er (3. 40) 

m 2(F '(m 2. - G '(m 2)) = G ( 2) o- er1r er ) cr;r er er1r mer + 2/ 2 O(m m ) , ;r er (3. 41) 

2 2 2 2 
m (F 11 {m )-G 11 (m ))=ZG '{m) + o- cr;r er . cr-rr er er;r er 

2 4 
O{m /m ) , 

,r er (3. 42) 

and so on. Eqs. (3. 35), (3. 36), (3. 37), (3. 40) and (3. 41) allow the 

sum rules to be rewritten as follows:<77) 
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= 2£ F F (m 
2

) 
TI' (j (f''IT (j 

2f 
1T --1T 

1 ( 1 - 3 F 2 (0) ) = 2£ F F (m
2

) 
TT CT Cf'TT er 

= 2fF [2F 1 (m
2
)-F (m

2
)/m

2 J-
TT Cf' 0-TT Cf' Ci'Tl" O'" tr 

2£ 
Tr --1T 

co 
J ds :t x 1 (s, s)/s 
0 

2 4 + O(m /m ). 
1T er 

(3. 43) 

(3. 44) 

(3. 45} 

For the purposes. of comparison, we offer similar expressions 

which are equivalent to Eqs. (2. 52) and (3.13): 

- 1/3 + 

l = 2f F F (0) -
,r er crrr 

00 

; J ds 1 f(s')/ s 1
• + 

0 

,, (3. 46) 

0 (m 
2
/m 

2
) 

,r er (3. 4 7} 

where f(t) is given by the last two terms of Eq. (3. 12}. Eq. (3. 47) 

corresponds to the dispersion path t = Os s} 0 in Fig. 3., 

When Eq. (3. 46) is substituted in Eq. (3. 44), we fini 77) 

2 
1 = 2f F F (m ) 

TT G" (f'1T er 

f 00 

1T J - -1T 
0 

dx x (s, s)/s + 
1 

2 2 
O(m /m } . 

1T CT 
(3.48) 
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(Apart from the continuum term, Eq. (3. 43} happens to give the same 

answer}.* Comparing the continuum terms of Eqs. (3. 47} and (3. 48}, 

we observe that both involve semi-infinite paths of integration with 

apparently similar rates of convergence and similar sets of contri­

buting diagrams. So at this level, we are unable to determine that 

one continuum integral is significantly smaller than the other. 

However, numerical agreement of the results of ignoring 

the continuum integrals of both Eqs. (3. 47} and (3. 48} would be 

surprising. According to the usual estimates(86 ' ll 4} of the A 1 erTT 

coupling, the A 1 pole should cause considerable variation in Fer,r(t) 

between t = 0 and t = m 2
. In fact, Carruthers(89) has shown 

er 

that these estimates agree with the result of assuming A 1 -pole 

dominance of F (t), in which case we have errr 

2/ 2 - m m er A 1 
(3. 49} 

The corresponding dispersion relations appear in Appendix D. In 

Fig. 3, the relevant dispersion path is s = m 
2

, t ) O. The 
er 

variation of F {t} is mainly controlled by the magnitude of the 
er1T 

double pole in TA at Q = (mo-
2

, mA/>· The quantity of interest, 

If the term Sµv of Eq. (1. 56) were present, the left-hand sides of 
Eqs. (3. 47) and (3. 48} would be modified by the same scale-violating 
factor. Then the accidental agreement of the pole-dominance approxi­
mation for Eqs. (3. 43) and (3. 44} would be lost. The continuum 
integral of Eq. (3. 4~} is likely to converge more rapidly than that of 
Eq. (3. 43}. That is why our conclusions are drawn from Eq. (3. 44}, 
while Eq. (3 .. 43) is treated as a check on the consistency of our 
approximations. 



-111-

2 2 
Gcr,nr' is proportional to the residue of the double pole at P = (mo-, mil"). 

Whe continuum integrals are neglected, Eq. (3. 47) yields the usual 

formula 

F G ~ 
er o-rr1r 

2 
1n 

(}" 
(3. 50) 

whereas Eqs. (3. 48) and (3. 49) require 

F G ~ m 
2 

( 1 - m 
2 
/mA 

2
) 

o- IJ"irir cr cr l 
(3. 51) 

From the point of view of broken scale and chiral invariance, Eqs. 

(3. 50) and (3. 51) cannot be distinguished, because only terms 0(m 
2

) 
O' 

are determined by symmetry arguments. Numerically, the 

discrepancy between Eqs. (3. 50) and (3. 51) amounts to a factor of 

almost 2. 

Of course, this numerical difference could be removed by 

suitably weakening the assumptions--for example, a tenth scalar 

meson could be introduced. We do not believe that such a proc.edure 

is called £or at present. By saturating two different dispersion 

integrals, two estimates of G have resulted; the difference crrrrr 

between these estimates is a measure of the uncertainty involved in 

predicting G by argument_ s based on broken scale invariance. 
O'irir 

We observe that, when the restriction {2. 35) from the Adler-

Weisberger sum rule for ,r,r scattering is combined with 

phenomenological esti1:11ates* of dilaton-baryon couplings, Eq. { 3. 51) 

See Eq. (1. 101) and Refs. 89 and 90. 
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is strongly favored. Having observed the numerical failure of PCDC 

for (rr le:! rr ), it is less surprising that .r-pole dominance of F 2 (t) 

is such a crude approximation. However, we have no solid argu­

ments which allow us to explain why Eq. (3. 51) works much better 

than Eq. (3. 50). 

Since our analysis works so well for Eq. (3. 44), we try the 

same approximations for Eq. (3. 45), which involves the same path of 

integration. Ignoring the continuum integral, we find( 77) 

F 1'(0):;: - 3F 2
1 (0) + 2f F F (m 

2
) [ 2F '(m 

2
)/F (m 

2
) -

,r 0- (J"'lr (J" OiT (J" (J"'lr (J" 
-2] m • (J" 

( 3. 52) 

To estimate terms on the right-hand side of Eq. (3. 52), we follow the 

prescription which led to Eq. (3. 51): 

F '(m 
2
)/F (m \ ~ 

O"'lr (i O"'lr (J" 

3F
2

1(0).~ F G /m 4 
O" ' O"'lrTr (j 

~ -2 m 
(J" 

2 -1 
m} 

O" 

(3. 53) 

( 3. 54) 

(3. 55) 

Eq. (3. 54} is implied by A 1 dominance of F (t). In Eq. (3. 55), we 
O"'lr 

first estimate the slope of· F 2(t} using o--pole dominance, and then 

apply Eq. (3. 51). Eq. (3. 52) becomes{ 77) 
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Fl '(0) ~ 

2 2 
mA + mo-

1 ( 3. 56) 

Notice the strong dependence of F 
1

1 (0) on the magnitude of 

the violation of scale invariance. Scale-breaking effects are 

-2 
responsible for changing the scale-invariant estimate,~< F 

1
1(0) !::;:IDA , 

1 
by a factor of almost 3, This factor accounts for most of the 

discrepancy between Eq. (3. 56) and the prediction F 
1

1(0)-::::' mf -
2 

of £-dominance. Engels and Hohler(9o) have estimated the fNN 

coupling constants from backward dispersion relations for TI"N 

scattering, obtaining an answer which is three times the value 

predicted using £-dominance. (l l 5} The quoted error ( ~ 10 4) seems • 

a bit optimistic, but their work does encourage the suspicion that 

f mesons do not couple universally. Then Eq. (3. 56) is a reasonable 

result. 

In the preceding analysis, our strongest assumption is that 

F (t) is dominated by the A
1 

pole in the region It I ( mA 2 .. To 
~ ' 1 

obtain an indirect test of this hypothesis, ( 89) we note that it implies 

F (0) 
crir 

2 ~ gA gA /ZmA 
1 {71" 1 

(3. 57) 

where F (0) is given by the Goldberger-T reiman relation (2. 31), 
0-71" 

* See Eq. (2. 81) 
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- .2..
2 

E: • (P + P ) g A is the A 1 crrr coupling, ,:c i::
1 

.. is the 
()" 1T 10"1T ' 

polarization of the A1 meson, and 

= (3. 58) 

would determine the rate for A1 -+ 'V + ,t if it were measurable. 

The standard method for estimating g A makes use of 
1 

Weinberg's first and second sum rules(llb) for SU(2) x SU(2) 

symmetry. From the theory of broken scale invariance, Wilson(_4 0) 

has shown that these relations converge in the limit of SU(2) x SU(2) 

symmetry. Therefore, we ,accept the usual saturation approximation, 

which implies the formulae(llb) 

+ (3.59) 

(3. 60) 

where 

= E: g µ p (3.61) 

0 + 
is proportional to the amplitude for p .... t + t . Within the 

theoretical and experimental uncertainties 11 data (79 ' ll 7) for this 

* The signs given for the momenta correspond to ,rA
1

-+ er. 
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process agree with the result of eliminating gA from Eqs. (3. 59) 
1 

and (3. 60): 

( 2£ )-1 -2 
,r (mp (3. 62) 

In addition, Eq. (3. 62) is consistent with the KSFR relation, (ll 8} 

p dominance of the electromagnetic form factor for pions, and 

(79)i.< 
measurements of the width of the p meson. Therefore, we 

are confident that the right-hand side of Eq. (3. 62) provides a good 

estimate for gA , so Eq. (3. 57) becomes 
1 

2 
m er 

-2 
(m 

p 
(3. 63) 

which agrees with a set .of formulae given by,Gilman and Harari. (
86

) 

Unfortunately, Eq. (3. 63) is rather difficult to test experi­

mentally. In ~rder to avoid A 1 _, p1T decay, it is necessary to find a 

neutral peak for A
1 
° ... ,r + ,r -rro, determine what proportion of it is due 

to threshold enhancement, (l 20) and isolate the o-(700) peak in the 

+ -rr 1r pair. The prediction rA ::: 30 - 60 MeV for r ::: 
1 .... o-,r rr .... rrrr 

300 - 600 MeV is consistent with present data. 

Our assumption of A 1 dominance is not invalidated by a 

remark of Ellis. {l04) I~ effective Lagrangian models for the A
1 

crrr 

r-
Theoretical reviews appear in Refs. 45 and 119. 
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coupling constant, the pion must couple via a derivative so that an 

Adler consistency condition is satisfied; (i.e. , the amplitude for 

A
1 

.... er + 8µ3-
5

µ must vanish when the momentum of aµa;Sµ vanishes). 

Ellis notes that the coupling 

(3. 64) 

is forbidden in conformally invariant models: the dilaton field :r 

always appears in the combination exp(-cr/F ) , so Eq. (3. 64) would 
()" 

imply the existence of gA F A 1 µ.a Tr , which is not allowed. On 
1 (1'1T ()" µ 

the other hand, it is obvious from Eq. (3. 57) that, according to our 

assumptions, 

invariance, 

g does not vanish, even in the limit of scale A 0"1T 1 

Let us rephrase the argument in terms of low-energy 

theorems. Defining 

i e • P DA (t) 
O" 1 O" 

with t = (PA 
1 

- p )2: 
O" ' 

PGAG gives 

The soft-dilaton theorems which could possil;>ly be relevant are* 

,:, 

(3. 65) 

(3. 66) 

These expressions are derived using techniques similar to those 
developed in G;hapter II; e.g., see the derivation of Eq. (2. 50). Since 
A 1 _, 0"1T is a P-wave decayp collinear dispersion relations may be 
written only for Eq. (3. 68); i.e .• aµ3<5 and e a cannot couple to the 
spin-1 state IA 1) when all 3-moment~ vani·sh':- The resulting change 
in Eq. (3. 72) is insignificant. 
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(3. 67) 

(3. 68} 

= 0 

All the soft-dilaton amplitudes vanishp in agreement with the argu­

ment given by Ellis. 

In order to continue the discussion, we need the form-factor 

expansion 

(3. 69) 

- e:, HA (t) 
i\. 1 (j 

The definitions (3. 65} and (3. 69} may be combined to yield 

DA (t) = (mA 
2 

- m 
2

) FA (t) - t GA (t) + HA (t) 
10" l er ' lcr lcr lcr 

(3. 70) 

Soft-dilaton amplitudes are obtained by setting the momentum 

µ, 
associated with 8µ equal to zero, so Eqs. (3. 67) and (3. 68) should 



be interpreted as follows: 

2 
DA (mA ) 

1 er 1 
0 (3.71) 

0 ( 3. 72) 

Comparing Eqs. (3. 66), (3. 71), and (3. 72), we se~ that Eq. (3. 72) is 

not useful, and the other theorems cannot be combined unless some 

. 2 
way is found to extrapolate from t = 0 to t = mA . Therefore, our 

1 
analysis from the point of view of low-energy theorems indicates that 

there is no theorem for 

introduced. 

unless extraneous assumptions are 

Evidentally, ·the trouble with the Lagrangian (3. 64) is that it 

does not allow for any t-dependence in DA {t) besides that due to 
1 er 

the pion pole. If that were true, then Eqs. (3. 66) and (3. 71) wruld 

imply that gA vanishes. 
1 (J"ll" 

In general, we have m right to expect 

pion pole dominance of DA (t) to work at t = m A 
2

, so it must be 
1 1 

possible to write an acceptable Lagrangian for the A
1 

erll" coupling 

using Ellis 1 s model. To obtain dependence of DA (no pion pole) 
lcr 

on t, the correct expression must involve two more derivatives than 

are present in Eq. (3. 64}. In order to circumvent Ellis 1 s argu-

ment, at least one of these extra derivatives must act on the dilaton 

field. In addition, the extrapolation is O(mA 
2

), not O(m 
2

), so 
1 er 

the mome~tum of the A 1 must be involved. With the help of these 

clues, we arrive at the allowed coupling 
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:f,'A == (F gA /mA 
2

) (acx.A
1

1-L _aµ.A
1
°).a 1ra exp(er/F), 

1 
il"->n. er er 

1 
er;r 1 µ a er 

(3. 73) 

which vanishes for n :::0, and is consistent with Eq. (3. 57) for n::: 1. 

The application of the method of collinear dispersion 

relations to related equal-time commutators is straightforward. 

Examples appear in Appendix F; these involve the dimension of the 

scale-violating terms in 8 . Unfortunately, the resulting sum rules are 
00 

are hard to saturate, or involve a coupling constant like( 77)* 

F G ~ (1 - l) er ererer m 
er 

2 ( 3. 7 4) 

for a unique scale-breaking dimension ,e,. 

So far, we have no indication that our scheme combining 

PCDC and PCAC is at variance with the facts. Now we examine the 

effect of our assumptions on the treatment of theorems for broken 

chiral symmetry. 

II I. 3. Magnitude of Breakdown of Chiral Symmetry 

Basic to our approach to the calculation of soft-meson 

amplitudes has been the idea that the violation of chiral SU(2) x SU(2) 

symmetry is much smaller than the breakdown of conformal 

invariance. For example, we have assumed that, in the real world, 

the induced scalar form factor F 2(t) is better approximated by 

Eq. (2. 52) than Eq. (2. 41). This implies that· G is O(m 2) er;r;r er 

Of course, PCDC for does not fix ,f, in Eq. (3. 74}. 
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4 2 
rather than 0(m ) or 0(m ) . 

(J" 1T 

However, the position of chiral SU(3) x SU(3) in the 

hierarchy of symmetries is less clear. The standard SU(3) x SU(3) 

calculation includes only poles due to the octet of pseudoscalar 

++ mesons. On the other hand, 0 poles are important in the event 

that 6 is a c-number, * or, more generally, that the magnitude of 

scale violation is. of the same order as the magnitude of SU(3) x SU(3) 

breaking, (i.e., 11 i5 .... o as u .... 0 11
). Our analysis is based on the latter 

model. Compared with theories in which there are no dilatons, our 

scheme has the following features: 

(i) Theorems connected with chiral SU(2) x SU(2) or physical SU(3) 

are not altered if the relevant extrapolations in momentum squared 

2 
are 0(m ). 

if 

(ii) The interpretation of results obtained by comparing such 

theorems with experimental information may be radically different. 

(iii) Any soft-meson theorem which does not belong to class (i), and 

which involves two pseudoscalar mesons which can form a (JP, IG) = 

+ + • 
(0 , 0 ) state at some stage, of the extrapolation procedure, may be 

drastically altered. 

To 1.llustrate the effect of the dilaton pole, let us consider 

the limits of chiral and scale invariance. In general, chiral 

calculations performed in the limit of scale invariance differ from 

the usual analyses with 8 µ =/ 0. In a scale-invariant theory, extra 
µ. 

insertions arise from diagrams in which the axial-vector current 

For example, see Eq. (3. 7). 
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can hook on to an external pion and turn it into a dilaton (and vice 

versa).* A good example is the threshold amplitude T(0) for 

forward il" + p s.cattering, where we show only the dependence on t, 

the square of the momentum transfer. According to the Adler 

• t d·t· (lZl) T(0) • h • th 1· ·t 0 cons1s ency con 1 10n, van1s es 1n e 1m1 m -, 
il" 

8 µ -:f. 0. In the limit of scale invariance, the extra insertion changes 
µ 

this result; instead, one obtains the formula {not to be applied to the 

real world) 

where the last equality follows from Eqs. (1. 78) and (2. 50). That there 

is no contradiction can be seen by explicitly displaying the o--pole in 

the non-scale-invariant 'll"+ p scattering amplitude: 

T{t) = 
2 

m 
(J" 

m 
2 

- t 
0-

+ T(t) {3.76) 

with T{0) = - go-NN 
2 
/MN for both ~-_t :/- 0 and el-_t = 0. The 

limits m 
2 

... 0, t ... 0 are not interchangeable in Eq. (3. 76). Since 
()" 

the Adler consistency condition is in excellent agreement with experi-

ment, chiral SU(Z) x SU(2) symmetry provides a much better 

description of the real world than does conformal symmetry .. 

~~ 

Consideration of such insertions was essential in the derivation of 
Eqs. (2. 50) and (2. 81); also, see Appendix G. 
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Because of the larger extrapolation associated with PCAC 

for kaons, it is difficult to check the Adler consistency condition for 

Kp . scattering. Examination of the tables given by von Hippel and 

Kim (ll 3) shows the importance of the extrapolation procedure in 

attempting to compare low-energy theorems with experiment. The 

poor agreement of the soft-kaon theorems with data for the scattering 

lengths encourages the idea that poles due to scalar mesons strongly 

affect the extrapolation. Theories of broken scale invariance apply 

here because we have shown that the relevant coupling constants 

are large; i.e., the presence of a dilaton pole can change the appli­

cation of chiral SU(3) x SU(3) to such amplitudes. 

Evidently, this viewpoint requires that SU(2) x S'Q(2) be 

regarded as a much better symmetry than SU(3) x SU(3), i.e. , 

Eq. (1. 52) holds with c '::I -1. 25, as proposed by Gell-Mann, Oakes, 

and Renner. (49) This has been challenged by Gaillard( 122) and 

(123) 
Brandt and Preparata, who prefer - c ( ( ,/2, a result based 

mainly on their analyses of K ,f,3 decay. The relevant quantities are* 

1 

J2 [ (k + q)µ f+(t) + (k-q) f (t)] , 

µ - (3. 77) 

(m 
2 

- m 
2

) f (t) = K ,r o 

See the exhaustive review of Gaillard and Chounet (Ref. 124). 
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+ 0 form £actors respectively. Often, 

experimental results are obtained with the help of the parameters 

X.+ = m 
2 

f'+(0)/f+(0), A. = m 
2 

£1 (0)/f (0), £(0) = f (0)/f+(0) , 
lT O lT O O , -

(3. 79) 

in terms of which the form £actors may be parametrized linearly. 

The. situation is illustrated in Fig. 4, where the scalar 

2 
form factor f

0 
(t) is plotted in the region 0 i t { mK . At t = 0 

(point A), Eq. (3.78)· implies 

= 1 
2 + 0( € ) • (3. 80) 

where € denotes SU(3) breaking (as in Eq. (1. 72) ), and the last 

equality follows from the Ademollo-Gatto theorem. (l 25) The soft­

pion result, ( 11 Callan-Treiman relation"), (60) 

(3.81) 

2 
involves the point t = ~, which lies well outside the physical decay 

region 

(3. 82) 

Eq. (3. 81) is given by the point CT, where the error bar stands for 

O(m,r 
2 
/~

2
) in a theory with c~-,Jz: Gaillard and Brandt and 
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Preparata claim O(m; /mK
2

} ~ 1, corresponding to c~O; then their 

2 
sum rule for f

0
(mK } gives: the point GBP. Using collinear 

dispersion relations, Banerjee(
126

} has obtained the sum rule 

,fl:+ C} 
r,r _ .1.c 

/\/" 2 

+ it-meson pole contribution ( 3. 83) 

which is extremely sensitive to changes in c. All estimates for the 

x,-meson pole contribution lie within the limits specified by the error 

bars which we have attached to the points (c~O} and (c~-1. 25) 1n 

Fig. 4. 

In practice, these theorems have to be extrapolated back to 

the point A, because the results of experiments are customarily 

quoted as values for ;(~) and>--+· (This circumstance is forced by 

the limited amount of available data per experiment). The formula 

2 
- m 

1T 

2 
m 

1T 

( 3. 84) 

connects these results with the<netical predictions for X. given by 
0 

the slope of the extrapolation curve at t = 0. Four of these curves 

are displayed in Fig. 4. 

If the confused experimental situation is supposed to favor 
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I ' 
' \ 

I ' I \ 
I \ 

I ', I \ 
I \ 

A~~~~-~ .L 
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Fig. 4 
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~(0) RJ -1 (3. 85) 

{where the latter value>:< is implied by K):<(890) dominance of f +(t) ) , 

only the curves (ii) (Gaillard-Brandt-Preparata) and (iii) (Banerjee) 

are allowed. However, from the point of view of dispersion th'eory 

for f (t), the dip in {iii) is very mysterious, and, according to 
0 

Eq. (3. 83), the point GBP should be extrapolated back to A along 

curve (iv), not (ii). Therefor~, we do not favor these alternatives; 

curve (iv) definitely contradicts the experiment. 

Two r·ecent experiments, (IZ7) with more data than in 

previous measurements, indicate 

(3. 86) 

Curve (i) fits these values .. In addition, it is slowly varying, as 

required by dispersion theory, and passes through the CT point, as 

expected in a theory with c ~ - ff. Of course, vector dominance 

fails. 

We doubt that data from Kt 3 decays can be reliably 

interpreted until all parameterizations are avoided, and the form 

factors f+ (t), • f
0

(t) are plotted as functions of t. However, we 

conclude that the Gaillard-Brandt-Preparata scheme does not work. 

)i( 

Practically all theories for X.+' (e.g .• Weinberg 1 s sum rules), predict 

this result, but these arguments are not compelling. Weinberg's sum 
rules for SU(3) x SU(3) are not necessarily valid--see Ref. 40. 
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I£ the term u breaking SU(3} x SU(3} in the energy density 

transforms as•:< (3, 3} + (3, 3}, SU(2} x SU(2} is a much better 

symmetry than SU(3}, (and vice versa}.· Otherwise, representations 

such as ( 8, 8) must be. considered. 

Recently, Cheng and Dashen(l08} obtained the result 

O" = (NI -NN 

by using ,rN phase shifts, a fixed-t dispersion relation, and the low­

energy theorem 

T(o' 0 , m1T2, m,,.2} __ 4f 2 "0( 4}" 
,r o-NN + m,,. (3. 88} 

for the amplitude 

( 2 ,2} 
T \J, VB' q ' q. = 

(3. 89) 

with q = p 1 + q 1 
- p, \J= .(p + p') • (q+q')/4MN' and \JB = -q•q'/2MN. 

Since 110 MeV is not much smaller than energies associated with 

SU( 3) breaking, they con.elude that SU(2) x SU(2) and SU(3) violations 

are comparable in magnitude, which is contrary to expectations that 

* A term transforming as (1, 8) + (8, 1} could also be present, (Ref. 
49}. It has a negligible effect on soft-pion results, but could affect 
soft-kaon calculations; see Ref. 128. 
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c is near -J2 . In a theory which does not contain dilatons, their 
. 

conclusion appears to be unavoidable. 

However, a different interpretation is available in a dilaton 

,. theory. (77 ) As a subgroup of SU(3) x SU(3), the physical SU(3) group 

is distinguished from other SU(3) groups in that its elements lea.ve 

the vacuum invariant. Then physical SU{3) is not spontaneously broken 

and perturbation theory in the SU(3} violating parameter makes sense: 

(NI c u8 In) + ~ = 215 MeV . (3. 90) 

This means that the dilaton state I er) must be invariant under 

physical SU(3) transformations in the limit of scale invariance. As 

scale invariance is broken, the dilaton qualtiy is distributed between 

the jer) and I e 1) states. Poles in ( u 8 ) due to the existence 

of !er) and I e') arise from the non-dilaton, or octet, quality 

of these states. On the other hand, matrix elements of u ' have 
0 

cr and e I poles due to the dilaton quality in I cr) and ! e 1 ) • There-

fore the magnitude of (NI u
0 

I N) is 0(m
11

2 
MN/mo-

2
), much larger 

than ( n I u. IN) . In g~neral, we e:,q:>ect 
1 

for all one-particle rest states I '¥) except, !er) and I 0-, 8 ) 0 

Because of these observations, there is no reason to abandon 

either the (3, 3) + (3, 3) form of the chiral SU(3) x SU(3) violating 

term in the energy density or the value -1. 25 for c, if there is a 
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dilaton. In order to apply Eq. (3. 87) in a dilaton theory, we should 

first check the validity of neglecting the terms 11 0(m 
4

) 11 in Eq. (3. 88), ,r 

2 
where the next order in m is given by ,r 

4 
"O(m )" = 

,r 

4 
m 

,r 
T(O, 0, 0, 0) + 11 0(m,r

6
)11 

aq2 aq'2 
( 3. 92) 

2 2 
The pion poles at q = q' 

2 = m do not contribute to Eq. (3. 92). 
'IT 

Parametrizing the failure of PCAC in terms of a "heavy pion", ir*, 

the contribution of the dilaton pole is 

(2f,r/m
0
.)

2 go-NN i Jd
4 

xeiq'•x (o-!T(8µ3'5µ(x), a\J 2<5 \J {O)) I 0) 

(no ,r poles) 

= o [~<2£,,>
4 

< o I aµ;,5µ 1 "* >2 /<m.-m,,*>
2

] , (3. 93) 

with ( 0 I oµJ 5 I ir*) = O(m 
2 
/2£ ) , so the correction terms have µ ,r ,r 

magnitude 0{4f 2 
M__ m 

4
/(m m *}

2
). Neglect of such terms appears ,r -·-N ,r o- ,r 

to be a satisfactory approximation; a corollary is that the cor-

responding terms for KiN scattering should not be thrown away: 

4 2 2 
mK/mo- = O(~ ). Therefore we use Eqs. (3. 87) and (3. 90) to 

obtain (Nlu
0

IN) = -1280 MeV and 

(3. 94) 
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Within the 20 % accuracy of Eq. (3. 94), we have 

so the formula 

suggests 5 = c-number and t =-3; however, 
u 

exclude the possibility -(NI o I N) = 0(MN). 

M 1 H!.'1...1 et. al. ( 129) ore recent y, uu er, 

estimate of crNN' obtaining 

crNN 60 MeV 

In a theory with c = - 1. 25, 'we find 

(NI u I N) ':: '430 MeV 

~ 

we are unable to 

have given another 

(3. 95) 

(3. 96) 

(3. 97) . 

so t would be -2 in a model with 5 = c-number. Hohler, et.~., u 

note that there are large uncertainties in the real parts of the 1rN 

scattering amplitudes which they need in their ca~culation. However, 

they are unable to make their evaluation consistent with the Cheng­

Dashen result. We have no explanation £or this. 

The estimates of O'NN given by Cheng and Dashen and 

Hb°hler, et., al., supersede the work of von Hippel and Kim~ (l l 3) 

who were first to make a serious attempt to find (NI u I N). 
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They attempted to saturate collinear dispersion relations for SU(3) 

generalizations of the amplitude T defined in Eq. (3. 89). * In terms 

of the function 

T(v) = 2 
T ( V , - V / 2 MB, 

2 
'J ' ( 3. 99) 

the forward amplitude for meson-baryon scattering at threshold is 

T(mM)' while the O"-commutator is given by the exact relation 

(3.100) 

These two quantities are connected by a collinear dispersion 

. (91 113) integral: ' 

00 

TI" 
s· (3. 101) 
-oo 

In order to make the continuum integral converge, it is necessary to 

make a subtraction at v = oo; this accounts for the appearance of the 

equal-time commutator 

(3. 102) 

The SU(3) indices of the current divergences are symmetrized. 
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where "Conn. 11 indicates tha.t only the connected part should be 

considered. Von Rippel and Kim obtained (NI u I N):: 0 and 

(J"NN :::: 22 MeV, in disagreement with the more recent results 

(3. 97) and especially (3. 87). 

The von Rippel-Kim result has always been regarded as 

doubtful because of the difficulty involved in accurately saturating the 

continuum integral. Their analysis involves the assumption 

Im T( \) ) :::::i Im A (. I \JI ) 
0 

(3. 103) 

where A ( 'J} is the S-wave meson-baryon scattering amplitude 
0 

in the s-channel. As noted in Section II I. 2, this procedure neglects 

meson-creation and Z diagrams (apart from obvious poles), and 

replaces the S-wave direct-channel cut contribution to 

by the S-wave s-channel cut contribution for MB .... MB. The 

rationale £or the latter step is that the only important cut terms are 

those with 
2 2 2 

lq I = \J = O(mM ). However, this method is clearly 

inferior to those of Cheng and Dashen and Hohler, et. al., which 

depend only on the accuracy of the data, (apart fr~m terms like 

ilQ(m 
4

) 11 in Eq. (3, 88) ). 
,r 

There is another aspect of the von Rippel-Kim analysis 

• which we question. The standard practice in this type of analysis is 
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to ignore the equal-time commutator C. Tlius, Fubini and Furlan{ 9 l) 

argue that C vanishes because the pion field 8µ3< 5µ should obey 

canonical commutation relations. In a theory of broken scale in 

invariance, this happens only if 8f.li5µ has dimension tu = -1. 

This assumption is completely arbitrary. The fact that 8µ3<5µ has a 

pion pole has nothing to do with its dimension, since 8µ3<
5 

exp(tcr/F ) 
fl. er 

couples pions to the vacuum with exactly the same strength; in £act, 

unless dilaton amplitudes are being investigated, these two pion 

fields are equally good candidates for smoothly extrapolating a pion 

amplitude of "off-mass-shell". 

A . . h • 1 • H" 1 d K" {ll 3)- -t various stages 1n t e1r ana ys1s, van 1ppe an 1m 

mention the fact that C. does not vanish in the quark model. How­

ever their argument that C is negligible is circular. In the quark 

model, C involves an overall constant of proportionality which 

contains the quark mass m so their estimate of C depends on one 1s q 

interpretation of the symbol '.Q'.lq• Von Hippel and Kim assume 

(3.105) 

as indicated by a non-relativistic quark model for the SU(3) x SU{3) -

violating term in 8 . Unfortunately, they also make use of their 
00 

main result (NI u
0 

jN) -::: - 215 MeV, which was computed 

assuming C = 0. 

When Eq. (3. 101) was first formulated, (9 l) i.t was 

accompanied by a statement that the usual soft-pion formula does not 

work if C is not small. This remark is not valid i.f the soft-pion 
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formula is written correctly, as in Eq. (3. 88). Ignoring the effects 

of o--poles for the moment, we can analyze· Eq. (3. 101) in the fol­

lowing manner: the continuum integral is 11 0(mM
4

)11
, while T{mM) 

- 2 and T(O) are "O(mM )". Now, it is essential to distinguish the 

threshold amplitude 

from the amplitude T(O, 0, mM
2

, m~) which Cheng and Dashen 

estimate. In fact, Eqs. (3. 88) and (3.101) imply 

(3. 106) 

(3. 107) 

This is the same order of magnitude as the o--commutator contri-

bution T{O) to Eq. (3. 101). 

These cbservaticns may be formulated in a more general 

fashion by applying Wilson's theory of approximate scale invariance at 

short distances. {40) Let us examine [ v(x), v(O) J as t varies. 
- u 

We wish to examine connected matrix elements of the equal-time com-

mutator [ v, v] » so only q-numbers involving a singularity x -s 

(s ~ 2) » are relevant. For t = •l, no q-numbers are available. u 
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For the other integer values of ,f, , we obtain the following short­
u 

distance expansions: 

+ ... ... + 

+ ' (t = -2)' u 

(-1) 2 c4 E (x)u(0) + ... ], 

(t = -3}, 
u 

(3., 108) 

(3. 109) 

where the dependence on internal quantum numbers has been sup-

pressed. The dimensionless numbers c. do not depend on the 
, . l 

magnitude of the violation of scale invariance, and have values 0(1) 

in models. In (3. 109), masses are normalized relative to M = 1 BeV, 
0 

and the term with coefficient c4 is a scale-violating contribution. 

The diagonal matrix e'iement C defined by Eq. (3. 102) receives 

contributions from all terms in Eqs. (3. 108) or (3. 109) except 

the term proportional to c 2. 

For ,fil = -2, we have no reason to suppose that c 1 vanishes, 

and so we obtain 

[8
0

v(x) ,v(0)Jx =0 
0 

(3.110) 

which cannot be ignored relative to the contribution from the er-term. 

For example, in a model containing canonical 0~, 0- fields, er, <j, 

( i. e., , dim er = dim </, = -1), formulae such as 
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2 [-'- ( ) J(O) J -- E(-1) (x-2) 4,r p X , y., I ' (3. 111) 

or the corresponding canonical commutation relations, imply 

(3.112) 

where the scalar and pseudoscalar densities are defined by 

u = 

V : (3.113) 

Apart from a difference in normalization factors, the model of Ellis(S3) 

gives the same result. 

The situation for ,f,, = -3 is more complicated, because there u· 

are two terms which may contribute to C: 

(the first term vanishes when integrated over 3-space). For example, 

. is obtained in the free quark model. Part of the 
4 

"O(m )" term M 

to be proportional to e .. , 
11 

which does not contribute to C because 
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of the self-stress theorem.* In the free quark model, the operator • 

product of Eq. (3. 109} has the form 

- (-1) 2 
= q(x) (is/ + m)E (x)} q(O) 

- rt (-1) 2 + q(O) ( (-iy, + m} E (x } } q(x) . 

. (3. 116) 

Applying the Taylor series expansion q(x} = q(O) + x•8q(O) + ... , 

we observe that if/ and m give rise to 8 and u , respectively, 
00 

in Eq. (3. 114). Actually, von Rippel and Kim incorrectly replace 

iv by [v, J d 3
x. (u

0 
+ cu8)] , so they obtain O{mM

6
) terms, which 

turn out to be very small because of the use of Eq. (3. 105). 

Entirely different structure is observed in a boson model 

in which the pseudoscalar density is given by 

(3. 117) 

for example. Then the right-hand side of Eq. (3. 114) contains the 
2 • 

quartic terms ~- exp(2cr/F er), exp(4cr/F er); in Ellis 1 model, the 

latter term gives the same situation as £or the case ,t = -2. With 
' u . . 

or without dilatons~ C cannot be neglected for \i = .. 3, either. 

* See Appendix A. To be consistent, Eq. (3. 105) should read 
3mq = ~-
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We conclude that the sum rules investigated by von Rippel and 

Kim do not specify the value of ( N ~u I N ), unless a separate investi­

gation demonstrates that .t has the canonical value -1; i.e. , the 
.U 

equal-time commutator being evaluated is 

E = (BI [:E\(O) + mJ F5(0), afJ.:;SA(O)] ! B) 

Conn. 

(3. 118) 

This observation does not greatly affect their comparison of theory 

with experiment for the meson-baryon scattering lengths. 

In dilaton theory,. 110(mj) 11
, "O(mJ)", . . . become 

2 2 4 2 . 
"0(mM /mer )", "0(mM /mer )1~ ••• , because of the presence of d1laton 

poles. Ellis (l 03)* has suggested that the approximation of von Rippel 

and Kim, Eq. (3. 103), is not valid because of rapid variation due to 

the er-pole. He presents a Lagrangian model which displays this 

variation, and he is able to fix an unknown constant such that the 

agreement between theory and experiment for scattering lengths 

obtained by von Rippel and Kim is not upset. However, the analysis 

mixes contributions from er-poles with phenomenological estimates 

of cut contributions. Since one cannot tell how much the o--pole 

contributes to the latter, some further comment seems necessary. 

Eqs. (3. 100), (3. 101) and (3. 118) imply the exact relation 

I Cont. 

Ellis does not alter the von Rippel-Kim assumption that C is 
negligible. 

(3. 119) 
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for the threshold amplitude T(mM}, with* 

00 

I Cont. J dv Im T(v) 
2 2 

v(v -mM) 

4 2 = O(mM /m M} . er o 
(3. 120} 

-ro 

In general, the other two terms in Eq. (3.119) are O(M mM
2
/m

2
)~ 

0 (j 

Taking Ellis' point of view, the von Rippel-Kim method fails i.f 

O(M mM2 /m 
2

) terms are introduced by the approximation (3. 
0

103). 
0 (j 

In theory, this is quite easy to arrange: the term 

P( 2 ,2) = v • VB• q , q Q (3. 121) 

vanishes on the collin~ar dispersion path: 

(3. 122) 

Thus theoretical manipulation generates an arbitrary amount of re­

scattering integral with magnitude O(M mM
2 
/m 

2
), depending 

0 (j 

2 2 
on which function Im Q( v. vB, mM. mM) one cares to choose. For 

2 2 . 
example, we could have Q proportional to T( v, YB' mM, mM), 1n 

' which case, the rescattering integral would be a linear combination of 

S- and P-wave MB amplitudes. Experimentally, the size of the 

* Compare Eq. (3. 93). 
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rescattering corrections found by von Hippel and Kim roughly 

indicates the contamination from 0(M m.: /m 
2

) terms. A good 
o M <J' 

• example is the re scattering integral for the s-channel isoscalar 

KN amplitude, which contributes about 3 GeV to Eq. (3. _119). 

Evidently, the indicated procedure is to make an estimate of 

the magnitude of ICont. , treat it as an uncertainty, and then attempt 

to isolate the 0(M
0 

mM
2 

/m<r
2

) terms, which should dominate. We 

restrict our attention to rrN scattering amplitudes, because we are 

confident that IC t may be safely ignored. The justification is the on. 
• 4 

same as that for the neglect of "0(m ) 11 terms in Eq. (3. 88), (the 
TI' 

theorem used by Cheng and Dashen). If a 0(t) is the t-channel 

isospin-0 scattering length, Eq. (3. 119) becomes 

- i E/m'fl' 
2 = (2£71')-

2 
(1 + m'fl'/~) 4rr a 0 (t) + "0(mrr 4) 11

• 

(3. 123} 

All estimates of a 0 (t) indicate that it is very small, although 

not everyone* agrees with the limits of uncertainty in the standard 

value 

a (t) = 
0 + 2 ( s) = 

3a3/2 - (0. 012 ± O. 004)/m 
TI' 

quoted in the review by Moorhouse. (l 30) Eq. (3 . .124) implies 

MeV 

* 
See the discussion by H'dhler, et. al., (ref. 129). 

(3.124) 

(3. 125) 
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which is an order of magnitude smaller than the value for er I\1N 

obtained by Cheng and Dashen; (see Eq. (3. 87) ). From the 

definition of E, Eq. {3. 118), we see that [o v{O,x), v(O, 0)] 
0 

does not vanish; in fact, its contribution to Eq. (3. 101) is as 

large as that of the o--term. Therefore, assuming that the 

dimension ,f, of u is unique, our previous analysis implies 
u 

(3. 126) 

Eq. (3. 126) assumes that there are no extra scalars of dimension -1 

in the operator product expansion [v(x), v(0)j ; otherwise, we would 

have tu~ -3/2. The important conclusion is that, if '\t is unique, it 

cannot equal -1. 

III. 4. Concluding Remarks 

Our final result, Eq. , ( 3. 126), provides a partial justification 

for assuming that the dilation operator D(0) commutes with the 

axial charge F
5

(0); (equivalently, S , defined by Eq. (1. 56), is 
µv 

not present in 8 , or, the constant r vanishes in Eq. (2. 72) ). 
µ.v 

At various stages in tl:le analysis, we have indicated that Eq. (3. 126) 

is the condition needed. In turn, this statement assumes that (u , v ) 
a a 

are the only spin-0 terms which break chiral invariance in an 

operator product expansion. This follows the suggestion of Wilson 

that only a limited set of "licensed" operators 0 (x) is present in 
n 

Eq. (1. 79). 

It is unfortunate that experiments on scalar mesons are not 

more definitive. Combined with the theoretical uncertainties of our 
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calculation, there is a lot of room for error. However, we have been 

able to show that the dilaton has a large width, but not necessarily 

so large that the Adlet-Wei sberger sum rule for ,r,r scattering is 

oversaturated. Our result for the spin-2 gravitational radius of 

the pion is less positive, since we can argue that it is reasonable 

as long as £-dominance does not work. The most striking feature 

of these results, (Eqs. (3. 50), (3. 51), and especially (3. 56} ), is 

the strong dependence on the magnitude of scale violation. One must 

be very careful to look for these deviations from tp.e standard soft­

meson result when the symmetry is so badly broken. 

Having observed that a dilaton couples strongly to both mesons 

and baryons, it' is natural to consider the effect of t-channel dilaton 

poles on theorems for meson-baryon scattering at low energies. Of 

particular interest are possible interpretations of the recent result of 

Cheng and Dashen(l08\ (see Eq. (3. 87)): 

(i) The breaking of SU(2) x SU(2) is almost as large as SU(3} 

violation, and the SU(3} x SU(3} breaking term u in 8 contains 
00 

representations other than (3, 3) + (3, 3) and (1, 8) + (8, 1) ; e.g., 

Cheng and Dashen adopt this proposal with u transforming like (8, 8). 

This is a respectable possibility which is hard to discount. 

(ii) SU(3) is a much better symmetry than SU(2} x SU{2), and u 

belongs to (3, 3) + (3, 3) ; (i.e., I c I ( ( ✓Z).( 122 • 123} This scheme 

has trouble explaining Kt 3 decay; (see Fig. 4). We do not regard 

it as a viable theory. 
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( iii) The SU(Z) x SU(Z) and SU(3) x SU(3} breaking terms in 0 
00 

transform under different representations of SU{3) x SU(3}. This 

model is usually dismissed as an ugly theory; purely experimental 

tests are very difficult to find. 

{iv} SU(2) x SU(2} is a much better symmetry than SU(3), u = -u
0

-cu8 

belongs to (3, 3) + (3, 3) with c"" -1. 25, and there is a dilaton. 

associated with approximate scale invariance. The magnitudes of 

scale and chiral SU(3) x SU(3) breaking are comparable. Thus, one 

imagines that 6 vanishes in the limit of chiral invariance; (o = c­

number is a special case favored by Ellis(S3 , 104>). This is the theory 

which we discuss in Section II I. 3. 

Except for scheme (ii), consistency of the sum rule (3.101) for the 

threshold amplitude, the· experimental value of the isospin-symmetric 

scattering length, and the Cheng-Dashen result requires t ~ -1. 
u 

Let us c·onclude by briefly mentioning some questions which 

have been raised about having c: -1. 25 and u belonging to 

(3, 3) + (3, 3). 

Recently, Dashen(SS) showed that the amplitude for K~--+ Zrr 

is 0( i} in a conventional (3, 3) + (3, 3} model, where e is a 

parameter indicating the magnitude of SU(3} x SU(3) violation. This 

is not necessarily a difficulty because there is an overall 

normalization factor which must be estimated by other means. The 

dilaton scheme (iv) provides another way out. Essentially, the 

result is that the amplitude is dominated by the er-pole. This 

justifies one of the assumptions of Dutta-Roy and Lapidus, (l 3 l) 

who also assume that the K 1 ° -K2 ° mass difference may be 
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calculated in this fashion. Experimentally, these assumptions work 

quite well. 

The most awkward problem in current algebra is the treatment 

of second-order electromagnetic processes in which the photons are 

not emitted. Whenever the effective electrodynamic Hamiltonian 

is supposed to cummute with F /, the wrong answer is obtained. 

•• Brandt and Preparata (l Z3) take this as evid~nce that SU(2) x SU( 2) 

is a very bad symmetry. However, there are at least two oth~r ways 

of proceeding: 

(a} There may be a term u 3 in 8 which is not electromagneitc 
00 

in origin. This scheme is attractive in that it provides a means of 

calculating the Cabibbo angle. (132} 

(b} The formal expression is divergent, and therefore needs a 

subtraction, the I= 1 tadpole. This solution is advocated by 

Wilson. ( 4o) 

(Dilaton theory does not affect this type of calculation). With the 

theoretical freedom provided by (a) and {b), there is no problem 

in taking SU(2) x SU(2} to be a very good symmetry. 

Although the non-vanishing rate for TI"o -,2 y was once a 

problem, it is now reasonably well understood. (Again, Brandt 

and Preparata claim that their point of view is supported}. Adler(l 33) 

and Bell and Jackiw(l 34) observed that the usual manipulations break 

down in spinor electrodynamics, and other models involving fermions. 

Because of the ,model-dependence of these investigations, there was 

some confusion as to their validity. The problem was put into 
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perspective by Wilson, ( 40) who demonstrated that the soft-ir0 
... 2 y 

amplitude is proportional to the function C (x, z) given by ,, 
(3. 127) 

so there is no reason for c-:::: - I. 25 to be inval~d in a theory of 

broken scale invariance. 

We can carry out a similar calculation for Ci-+ 2 y, 

("anomalous PCDC"). The usual argument gives a vanishing rate, 

because 

- ,/} 
rl-, = (3.128) 

is already scale-invariant, so the factor exp(o-/F ) cannot be added. 
er 

In fact, repeating the argument of Wilson for the dilation current, 

the soft-o- ... 2 y amplitude is proportional to 

ab o C , (x, z} I + ... 
IJ,Vl\.'I"} 

(3. 129) 

Thus, the symmetry-breaking scheme outlined in this thesis 

appears to be a viable theory. However, some alternatives are dif­

ficult to discount. 
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APPENDIX A 

ELEMENTARY TECHNICAL REMARKS 

One-particle states are normalized invariantly, 

3 3 -1, ..... 

(21r) 2p 6 (p ~p) , (bosons) , 
0 

= 

or occasionally to one particle per unit volume: 

'( '! )) 3 3 ..... ,..... • \ p p = (211') cS (p -p) , (bosons or £erm10ns) 

(A. 1) 

{A. 2) 

We have suppressed labels denoting spin or internal quantum numbers. 

We follow Sections 1 and 2 of ''Conventions and Notation" in the book by 

(44) 5 0 1 2 3 
Adler and Dashen, except for our y5 = y = y y y y . 

A useful theorem(l
3

) states that Jd3x s(x) = 0 implies s(x) = 0 

if s (x) is a local, spin-0 operator. To prove it, consider 

s (K) = 

the hypothesis becomes 

-+ 

s (K , 0) = 
0 

0 

(A. 3) 

(A. 4) 

2 2 
so Lorentz invariance implies s (K) = 0 for K > 0. If K is spacelike, 

[ 1jt) = s (K) ! 0) must vanish - - otherwise Kµ would be the momentum of 

the state j \j!). Since ( 'Vz I s (K) \ t 1 ) is an analytic continuation of 

(\j!
2 

t
1

ls(K)IO), s(K)jO)=O implies(l
35

)s(K)=O, i.e., s(x)=0. . . ' 

Let us briefly summarize canonical field theory for the stress­

energy tensor and scale and conformal transformations. One starts 
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from a Lagrangian density£ which is a function of fields \\I and a 

finite number of field derivatives: 

= (A. 5) 

Usually, only dependence on 'V and cl\\! is considered, but, as empha­

sized by Huggins, (lO) this restriction is entirely artificial. What 

matters is the form of the equations of motion, which are given by, 

e.g., 

(A. 6) 

for r = 2. 

The construction of the generators G of a transformation 
' a, 

with parameters aa proceeds via the Action Principle, Eq. (1. 20), 

with 

= 
(A. 7) 

An expression of the form 

G (a) = 
a 

J doµ ~ (x) 
CY µa 

(A. 8) 

results, where (e.g., for r = 2) 

= 

(A. 9) 

is a corresponding current, and 



(A. 10) 

is called the canonical energy-momentum tensor. 

This prescription uniquely fixes G. (within a unitary trans -
l 

formation induced by £ .... .t,, = 1, + oµ Vµ), but Eq. (A. 9} is not the 

only possible expression for the current '!I . This is important if µa 

the current has a physical interpretation as the source of electro -

magnetic, weak, or gravitational interactions. For example, the 

charge operator Q is obtained from the gauge transformation 

= i q v = 0 (A. 11) 

where q is the charge annihilated by ~·. However, the most general 

expression for the electromagnetic current is 

J (x) = µ, 

where 1 is an arbitrary, antisymmetric tensor. 
µv 

(A. 12) 

Now consider the group of PoincarJ transformations. Trans-

lations are characterized by 

= 0 = 6 X 
V 

so the canonical cur rent is T and the 4-momentum is 
µv 

= 

Lorentz transformations are given by (a:µv = -a: vµ) 

(A. 13) 

(A. 14) 

(A. 15) 
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where r,µ\! is the spin matrix of t; (e.g., r,µ\! = ! [ Yµ• y\!] for spin­

½ fields). From Eq. (A. 9), the canonical angular momentum density 

takes the form 

m ' = A.µ\! 
(A. 16) 

where 

i_)...µ\! = (A.17), 

is interpreted as the orbital angular momentum density, and the 

remainder J"f. is taken to be spin angular momentum density. 11.µ,\! 

Since gravity couples to energy, the gravitational current 0µ\! 

must also be a suitable energy-momentum density from which P may µ 
be formed; (see Eq. (1. 9) ). Therefore, it should be possible to con-

struct a candidate for the• symmetric tensor 0µ\! from T µ\! <f. T\!µ). 

According to the prescription given by Belinfante, (
4

) the appropriate 

construction is 

= T 
µ\! 

with 

= 

Then 

-f "\ µ,,:v 

(A. 18) 

(A. 1 9) 

(A. 20) 

differs from 'm)...~v by a term which vanishes upon integration over do'\ 

and therefore is an acceptable total angular momentum density, (even 
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though the expression for m~:~· resembles the classical formula 

- -x X p for @rbital angular momentum): 

= (A. 21) 

Eq. (A. 18) becomes a candidate for the gravitational current, but, as 

Huggins noted, (lO) this choice is not unique. In fact, the Belinfante 

prescription gives an extra term proportional to (a av - g o2
) '-6 2 

if µ µv 
c o2 ('-62

) is added to the Lagrangian, but the equations of motion are 

independent of the const--ant c. Similarly, different prescriptions can 

produce different 0 1s from the same 1., . Note that Eq. (A. 9) can be µv 

replaced by 

(A. 22) 

To treat scale and conformal transformations, it is necessary 

to decide how the fields If transform. In the standard approach, the 

fields transform as irreducible representations of the conformal 

group; (see Mack and Salam (9 ) for the details). For scale transforma­

tions, the answer, Eq. (1. 25), is obvious. In the notation of this 

appendix, we have 

= {A. 23) 

If the time-dependence of D, the generator of scale transformations, 

•• is ignored, then the values J, = - 3 /2, -1 for fermions and bosons 
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are obviously required by the canonical commutation relations (1. 2 7). 

When the time-dependence is included, we have 

i [D(x ), a r,6 (x)] 
0 0 

= i a [D(x ), cfi(x)] - i[D(x ), r,6(x)J 
O· 0 0 

= (- J, + 1 + x. a) a <I> - i[D(x ), ~(x)] 
0 0 

(A. 24) 

Evidently, the condition for a consistent theory is 

i[ D(x }, </>(x)] = 0 
0 

(A. 25 )' 

i.e., the divergence of the dilation current should contain no deriva­

tives. For this reason, Eq. (1. 23) is valid only for the new, im­

proved tensor defined in Eq. (1. 15). For conformal transformations, 

we have 

ox v v v 2 
-- = 2 X X -6 X ' 
oc;..._ A "-

(A. 26) 

where 'rCµ is a nilpotent matrix, (which vanishes for the low-spin 

,. fields considered here). Eq. (A. 22) may be used to construct the 

generators D and K and verify equations such as (A. 25). T.he µ 

resulting expressions look complicated, but, for all interesting 

theories, they reduce to Eqs. (1. 16) and (1. 17); (for r = 1, the most 

general treatment has been given by CCJ(lZ)). 

The various 0 's give matrix elements which have certain µv 

features in common. Typically, they differ only in terms like 

2 
k kV - g v k , where k is the momentum transfer. However, the µ µ. µ, 
simplest and most ge~eral treatment of (8 µ) ignores canonical field 

theory, and involves the direct use of Eqs. (1. 9) and (1. 10). Thus, 

Eqs. (1. 9) and (A. 2) imply 



(A. 27) 

where s denotes the spin component of a single-particle state, so the 

diagonal matrix element 

= (A. 28) 

is completely specified. Eq. (A. 28) implies the self-stress theorem: 

the diagonal matrix element of 6 .. for a single particle at rest vanishes. 
' 11 

When the momentum transfer k does not vanish, only terms µ, 
0(1) or O(k) are specified. Eq. (1. 75) is the general expression for 

spin-0 mesons, obtained by expanding in the available momenta P , k . µ, µ 
to form a symmetric second-rank tensor obeying kµ (0µ\J) = O. No 

extra constraints are implied by Eq. (1. 10). For spin-½ mesons, the 

same principles yield 

1 /.I j 1 • - 1 , [l 2 (N(P+ak,s) 6µ)0) N(P-ak,s)) =u(P+ak,s) 2 (yµP\J+yvPµ)G 1(k) 

+ (P P /M)G2 (k~) + (k kv-g vk
2

)G
3

(k
2

)]u(P-½k, s). µ, \) µ ' µ ' 

(A. 29) 

Eq. (A. 28) implies 

(A. 30) 

Until very recently, (l36) it was not realized (137) that Eq. (1. IO) pro­

vides a further constraint: 

(A. 31) 
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To demonstrate the truth of Eq. (A. 31 ), it is necessary to 

consider the boost operator 

M. 
lO 

= J 
3 • .... 

d x x. e (o, x) 
1 00 

From Eq. (A. 29), we obtain 

(A. 32) 

a , I I - , [ P0 J oki (p+k, s 0
00

(0) p,·s) k=O = p
0 

u(p, s )12'
0 

G 1(0)+ M G2 (0) yi u(p, s), 

(A. 33) 

and Eq. (A. 32) implies 

I 
3 I 

~(p+k,s'je (O)]p,s) .... k-0 = -i d k 3 (P +k',slM. jp,s).(A.34) 
ok1 oo - (2;r) 10 

Since the right-hand side of Eq. (A. 34) is the same for all theories, 

the value of G2 (0) must be universal. Therefore, we may use free 

field theory to evaluate it; Eq. (A. 31) is the result. 

Equations such a~ (1. 75) and (A. 29) are ne·eded when expanding 

('Vf I 0 ! t. ) in powers of the momentum transfer for multiparticle µ,v 1 

states I tf), I 'Vi). Examples of this type of calculation appear in 

. Section I. i and Appendix C. 
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APPENDIX B: ALGEBRA OF THE CONFORMAL GENERATORS 

The properties of 8 under Poincar~ transformations are 
µ, \) 

given by 

i[P , 8 (x)] = a 0 (x) , 
Cl µ \J a, µ. \J 

(B. 1) 

i[M,.,p_, 8 (x)] = (x aA.-xAa )e +g e(.l. +g e(.l. -g(.l. 8 -g(.l. 9 • 
'-'i-' µ,\J a. t-' ,.., a. µ\J aµ t-'\J ct\J t-'µ t-'\J aµ t-'µ O.\J 

The Poincar~ algebra 

[P , P ] = 0 
a, µ 

i [P , M ] = g P - g P 
a µ\J CX.\J µ aµ \J 

i[M M ] = g M -g M +g M -g M cw' µ,\) a,µ 13\) i3iJ (l,\) [3\) aµ 0,\) [3µ ' 

and part of its extension to the conformal algebra, 

i[P , D(x )] = -P + g J d3
xe/' , a. o - 0, oa /1. 

. r 3 A 
1[M,.p_, D(x )] = j d x(x g A. - x[3g )8-. , 

·I.II-' o a. ot-' oa. /1. 

i[P , K (x )] = 2[M -g D(x )+g J d 3
xx 9,AJ , 

a. 'f-1. o a. µ. a.µ o oa. 'iJ /1. 

(B. 2) 

(B. 3) · 

i[M,.,A.,K (x )]=g KR.(x )-gP. K (x )+Jd
3
x2x (x g A.-xA.g )0-.A, 

v...,- µ o a.i.;. t-' o t-'µ a, o µ o: at-' t-' oa. /\ 

(B. 4) 

are merely special cases of Eqs. (B. 1) and (B. 2 ). 

In order to obtain the rest of the conformal algebra, it is neces­

sary to consider local versions of Eqs. (B. 1) and (B. 2):(1 38 • 13 9) 

. 00 oi ij 00 ij X 
1[9 (x), 9 (y}]6(x -y ) = (8 (x)-6 (y)g )a. 6(x-y) 

0 0 J 

ax~xay[ kt,ij l(ax+aY) kl,ij 1 
- ku-i', j 'T'z - 2 0 0 Tl J ' 
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oo ij ij oi j oj i 
i[9 {x), 0 (y)]o{x -y ) = {8 0 (x)-0 (y)o -0 (y)o )o(x-y) 

0 0 0 X X 

(B. 5) 

with the latin indices i, j,... denoting spatial components 1, 2, 3. The 

conservation laws ( 1. 6) and ( 1. 7) have been taken into account. The 

"Schwinger terms" /j, kt(x, y) are local in time and bilocal in ;;_ and 

,-> 
0 

p (139) 
y. Boulware and Deser obtained the result (0 \ r 2 4 \ 0) f. 0, 

' 
which is analogous to Schwinger I s result ( 0 \ [J (0, ;;,), J. (0)] \ 0) f. O. ( 

69
) 

0 l 

There the resemblance ends, because the ,- are q-numbers in simple 
p 

models. For exampl~, in the free quark ~odel, we have 

3 3 i • kt 1 3 . + "k it it "k • ,t, ik ik • ,i SJ d xd y,-
3
J, (x, y) = aJ d xi q (gJ er +g crJ +gJ cr +g crJ )qo(x -y ) . 

• , 0 0 

(B. 6) 

The symmetry properti~s 

,-ij, kt(x, y) = (-l l ,-kl, ij(y, x) 
p p . 

ij, kt( ) ,. x, y 
p 

ji, kt, ) = 1" \X, y p (B. 7) 

are generally valid. 

The remaining equal-time commutators of the conformal alge­

bra depend on the model-dependent. terms ,- : • 
p 

i[D{x ), K 0 {x )] = -K0 (x )+Jd3xx2 e,"+zJ.Jd3xd3y[,-k
2

k, ii-½(ox+aYhkkl ,ii], 
0 0 0 /I. 0 0 
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i i " 3 3 ik •• 
i[D(x ),K (x )] = -K (x )+ZjJd xd yxkr

3 
,JJ 

0 0 0 

i[K0 (x ), K\x )] = 2 rd
3

x-x
2
xi8~ 

0 0 ..i I\. 

4J 
r•d3 d3 ( !:i + i !:i )( kk, mj kk, mj .!.(ax+aY) kk, mj) 

- J x y u.y g. y -u y. X ,-3 -Tz +2 Tl • 
J m 3m m J o o o 

(B. 8) 

• Note the explicit dependence on e{ in Eqs. (B. 7) and (B. 8 ). 

The r-dependent terms of Eq. (B. 8) usually vanish in simple 

models, (e. g. the quark model). For example, the virial theorem, 

Eq. (1. 60), and the assumption dim 0 . = -4 ,imply 
01 • 

(B. 9) 

The presence of q-nmnber r-dependent terms in [K , K ] would indi­µ \} 

cate the presence of an ·operator of dimension -1 in the short-distance 

expansion of 0 (x)9 ,..A (0). We know of no model with this property, 
µv """' 

so the relation 

[K (x ), K (x )] = 2Jd
3
xx

2
(x g -xJ )e/· + c-number (B. 10) µ o V o µ- 0\) OU /1. 

is probably correct. 

The apparent absence of r-dependence in the broken conformal 

algebra is not characteristic of algebras of coordinate generators. 

For example, consider the group of SL(3, R) transformations, 

x ....... x! = a .. x. ·, a .. real , det(a .. ) = l . 
l l lJ J lJ lJ 

(B. 11) 

The corresponding set of eight generators is formed by the total angu-

1 lar momentum Jk = z e: .. kM .. and the generators of skew transforma-
13 lJ 
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tions, 

· s 3 2 . Q . . (x ) = d x(x.0 .+x.0 . --3 6 .. xke k) . 
lJ O 1 OJ J 01 lJ 0 

(B. 12) 

Inspection of the formula 

• J 3 1 Q .. (x ) = 2 d x (8 .. - -3 6 .. 8kk) 
lJ O lJ lJ 

(B. 13) 

leads to the conclusion that consideration of the limit of SL(3, R) sym­

metry is meaningless. Therefore, it is not surprising if the equal­

time commutation relations for the SL(3, R) generators do not possess 

such a symmetry limit. Poincare invariance determines 

i[Mij'Mkt] = 6jkMit- 0ikMjt+'\tMjk- 0jtMik ' 

i[Mij' 0 kt] = 6jkQit- 0ik0 jt-l\t0 jk+0jlQik ' ( B. 14) 

.... .... ij, kt 
but [ Q, Q J depends on r3 , and is therefore .model-dependent. Re-

ferring to Eq. (B. 6), we see that the quark model possesses a special 

property: r 
3 

may be written in terms of the quark spin 

1 J 3 + Sk = - 4 e:. 'k d xq 0 .. q 
lJ lJ 

(B. 15) 

Equation (B. 15) leads to the observation of Dothan, Gell-Mann and 

(140) H H -, -, _, 

Ne'eman that [ Q, Q J is an orbital angular momentum L = J - S 

in the quark model (instead of a total angular momentum as implied by 

naive SL(3, R) invariance): 

i[Q .. , Qk'] = 6.kL. 0 +8.kL. ,+6. 0 L.k+6. 0 L.k 
• lJ ,i, J l'v 1 J-v 1-\., J J'v 1 

(B. 16) 

with Lij = e:ijkLk • 

Equation (B. 16) may serve as an abstract definition of orbital 

angular momentum. Assuming that the 3-momentum density 8 . has 
01 

-> 
dimension -4, the SL(3, R) generators, and hence L, commute with 

the dilation operator D. The transformation exp(-icx.D) also conserves 
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parity, isospin, G-parity, bi=l-ryon number and hypercharge, but does 

not commute with an operator which alters the radial wave £unction of 

a state; e.g. such an operator may have eigenvalues N, the "total 

quantum number" in the quark model of Feynman, Kislinger, and 

Ravndal ( 
141 

)_ Thus, exp(-iaD) would generate a tower of resonances 

p G -+ 

with the same (J , I , B, Y, L, ... ) and different (N, ... ) . An example 

of one of these towers may be: nucleon P 
11 

(940 ), ' Roper resonance 

P
11 

(1470), Roper recurrence P
11 

(1780), ... 



-159-

APPENDIX C 

SOME LOW -ENERGY THEOREMS 

This appendix contains alternative derivations of Eqs. (2. 50) 

and (2. 52). We mentioned these derivations in Ref. 15, but gave no 

details. 

(2. 52 ). 

We begin with another derivation of F 2 (0) = - I /3, i.e., Eq. 

Scale invariance is broken (m /. 0), but we ignore the viola­a 

tion of chiral SU(2) X SU(2) symmetry. Using the method developed 

by Low(I 9) for bremsstrahlung, we expand the amplitude 

p 
µ,v = (C. l) 

in powers of k =p 1 + q -P2· 
-1 Born 

The 0(k ) terms, Pµv , are rep re-

sented by Feynman graphs in which eµv hooks on to external lines: 

+ u-channel nucleon Born term 

2 2 2 J F
1
(k) +(k k -g k )F

2
(k) 

µ, " µv 

(C. 2) 

The first term in Eq. (C. 2) is the s-channel nucleon Born term. The 
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u -channel term may be obtained from the s-channel term by writing 

the y-matrices in reverse order and substituting Pz ->p 1, k _, -k. The 

third term is generated by 8 hooking on to the pion to produce a 
µv 

pion pole. 

The non-singular O((k)O) and O(k) terms are represented by 

PContact with 
µv ' 

= (C. 3) 

Using the conservation lc).ws (1. 6) and (1. 7), we find 

PContact rz- - [i 
µv = "'" gNN,r u 2 'Y5 ul 2 gµv 

+ (qµkv + qvkµ- gµvq. k) d~ (Gl(t)+Gz(t) -F l(t)\=o]. (C. 4) 

To investigate the soft-pion limit, we dis card all O(q) terms: 

= s - and u-channel nucleon Born terms 

If we suppose that ~ 5, ep] = 0 is valid in the limit of chiral SU(Z) 

X SU(Z) invariance, the· standard soft-pion argument for terms O(q-l) 

and O((q)O) in P produces only the nucleon Born terms; hence, we 
µv 

obtain F 2 ( 0) = - 1 / 3, i. e. , E q. ( 2. 5 2). 

Now suppose that both scale and chiral transformations are 

symmetries of the world. If we define 

= . (C. 6) 

in this limit, the dilaton pole produces an extra term in the low-k 
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expansion: 

(C. 7) 

where 

is the amplitude for th~ process 1T +(q) + n(p 1 )-+ o(k) + p(p 2 ) . Since 

we are working in the limit of scale invariance, P: vanishes, im­

plying 

C(0, 0) = 0 (C. 9) 

Eq. (C. 9) is analogous to Adler's consistency condition {l2ll for ,rN 

s ca tte ring. 

We may obtain another consistency condition for C(0, 0) using 

conservation of the axial current. Thus, the amplitude 

= (C. 10) 

_obeys 

0 (C. 11) 

In the soft-pion limit, q -+ 0, the only contributions to the left-hand 

side of Eq. (C. 11) come from O(q- 1 ) term~ in Qµ: 

Q = µ 

(C. 12) 
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The first two terms arise from nucleon poles. The third term repre­

sents the contribution of a pion pole caused by -:J5µ hooking on to the 

external dilaton line and turning it into a pion line. This term is 

singular in q because the pion and dilaton are degenerate in the limit 

of scale invariance. The fourth term is constructed by allowing :J5µ 

to turn into a pion, thereby producing another pion pole. We have made 

use of Eqs. (2. 28) and (2. 34). 

Combining Eqs. (C. 11) and (C. 12), we find(l 5 ) 

C(O, 0) = (C.13). 

Consistency of the consistency conditions (C. 9) and (C. 13) requires 

(C. 14) 

which yields F F (0) f = ½ when Eq. (I. 78) is applied. 
O" 0"1r ,r 
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APPENDIX D: COLLINEAR DISPERSION RELATIONS 

AND THE PROBLEM OF MIXING 

The calculation in Section III. 2 is not complete without a de­

monstration that the e:' pole may be neglected. We have also treated 

this problem in ref. 77. 

We apply the method of collinear dispersion relations to evalu­

ate the equal-time commutator 

3 3 
(cr![F5 ,3' 5 \J Jlo> = o (D.l) 

+ + where a here r~fers to any (0 , 0 ) meson. The details will be sup-

pressed because our analysis is analogous to the tre.atment of Kt3 

decay given by Ademollo, Denardo, and Furlan(
142>. 

• According to Eq. (D. 1) and a standard Ward identify, the re­

tarded commutator 

2 J 4 -iq· x ( \ u. 3 3 I ) R (k, q) = (2£ /m )i d xe 9(x ) a(k) [ a· 3-
5 

(x), 3-
5 

(0)] 0 
\} 1T 1T O µ. \} 

satisfies the constraint 

R (k, 0-) = 0 . 
\} 

(D. 2) 

(D. 3) 

The· usual analysis of the large q behavior of R leads to the un-
o \} 

subtracted dispersion relation 

(D. 4) 

together with the superconvergence relation 

in the collinear frame k = (m , 0) , q = (ym , 0) . a a 

Separation of the pion poles at y = :!: m,r/mcr , 1 :!: m,r/m
0 
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from the imaginary part of R\l yields 

2 2 2 2 2 2 
1mv

1
(y) = rre:(y-l)o((y-1) -m /m )D (y m )/(m m 0 ) 

rr a arr a 'IT 

2 2 2 2 2 
+rre:(y)o(y -·m /m )[-Fo- ((1-y) m ) 

'IT (J rr (J 

2 2 2 
+G ((1-y) m )]/m +v

1
(y) , 

arr a • a 
(D. 6) 

2 2 2 2 2 2 
Im v

2 
{y) = -rre:{y-1 )o{(y-1) - m /m/'T )D (y m )/ (m m ) rr u cnr cr ircr 

2 2 2 2 2 
-rre:(y)o(y - m /.m )[F ((1-y) m ) 

'IT o- arr a 

(D. 7) 

so Eqs. (D. 4) and (D. 5) become 

m (G (+)-G (-)) = (m -Zm )F (+)-(m +2.m )F (-) 
a arr OTT a TT a,r cr 'IT O'TT 

2m 
3 

+ rr TT J dyv
1 

(y)/y ~ (D. 8.) 

z 
(D (+)-D (-))/m = F (+)+G (+)-F (-)-G (-) 

arr O'TT rr or. arr OTT arr 

2m m 
,r a J + rr dyv2 (y), (D. 9) 

where Eq. (D. 8) has been simplified by using Eq. (2. 29 ), the defini­

tion of D (t). In Eq. (D. 8 ), examination of the leading power in m 
crrr TT 

gives a result consistent with Eqs. {3. 40) and (3. 41 ). 

In the collinear frame, only 0 intermediate states contribute 

to Im R\). The coupling of the A
1 

(1070) meson to the axial current, 

( A 1 l~SA (0)\0) =. e:AgA
1

, is implicitly contained in the form factors 

tgA gA orr 
F (t) = F (0) - \ l z 

0''11' · OTT 2m (m -t) 
Al Al 

t dt' Im F (t') 

J (JTT 

+-:; t' (t' - t) , (D. 10) 
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-1 2 )-1 G (t) = -G (2£ ) (m -t 
O'TT O'TTTT TT TT 

(D. 11) 

where - ~ (a+n \. g A CYTT . is the A 1 arr coupling. The inequality needed 
1 

in Section III. 2 is 

F , (±) , G 1 (:!:) << F {m 
2

) , e: TT e: 7T CYTT (J 
(D. 12) 

to make it plausible, we must show that the effect of the A 1 e: 1
7T 

coupling is negligible. 

When e: 1 is the (0 +, o+) meson involved in Eqs. (D. 8) and (D. 9 ), 

the points at which F 1 (t) , G 1 (t) , and D 1 (t) are evaluated E:TT 81T • €7T 

2 
straddle the point t = mA . The.near degeneracy of e:'(1060) and 

1 
A

1 
(1070) gives 

(Fe: , TT ( +) + Fe: , rr ( - ) ) A pole ~ 0 ' 
. 1 

(D. 13) 

(D. 14) 

2 
whereas D 1 {t) does not have a pole near t = m , so Eq. (D. 9) 

e: TT Al 

becomes 

+ continuum integrals (D. 15) 

From PCAC, D 1 (t) and D (t) satisfy unsubtracted dispersion rela-
. e: TT arr 

tions; while we do not expect that the pion pole at t = m 
2 

dominates 
TT 

2 2 
dispersion integrals for D I and D at t = m I or m , the re-e: TT O"TT e: CT 

spective TT.:.pole terms should indicate the correct orders of magni.-

tude, i. e. , 
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D , (±) << D (0) , 
8 lT O'lT 

(D. 16) 

Therefore, gA 
8

,lT is very small and the A 1-pole terms in F
8

,;r(t) 
1 

and G , (t) do not affect the validity of Eq. (D. 12. ). 
€ iT 
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APPENDIX E: DERIVATION OF COLLINEAR SUM RULES 

This appendix contains some technical details associated with 

the collinear dispersion relations discussed in Section III. 2. The 

analysis begins with the retarded commutators 

TA (k, q) = iJ d
4
xeik• xe(xo)(O I [9:(x), 3i5A (0 )] \ir(q)) 

D ),..(k,q)= iJd4xeik•xe·(x
0

)(0j[~ (x),3'
5

),..(0)]\,r(q.)) 
µ µ 

. J 4 ik• x ( I rf.r \ K , (k, q) = 1 d xe 9(x ) 0 [A (x), 3<
5

, (0)J ,r(q)) 
µ\)11. 0 µ\) I\. -

(E. 1) 

(E. 2) 

(E. 3) 

which are related to the equal-time commutators in Eqs. (3. 17) and 

(3. 18) by the identities 

-ikµ.Dµ),.. (k, q) = i (0 \ [D(0 ), J 5),.. (0 )J \ 1T(q)> + TA (k, q) + 0(k) , (E. 4) 

-ik\)Kl-1\JA (k, q) = i(0 l [Kµ(o), J
5

;>,.. (O)J \1T(q))-2i aT;>,../akµ + 0(k). (E. 5) 

The singularities in k of D , and K , are given by deriva-
µ11. µ.\111. 

tives of the pion-pole term 

P , (k,q) = -i(k-q), (2f f 1
[(2(q-½k) (q-½k) -(k k -g k

2 )/6)F
1

(k2 ) 
ex.\) I\. . I\. 1T 0., \) 0., \) a.\) 

+(ka,k\J -gCX.\Jk
2 

)F 2 (k
2 

)]/ (2q• k-k
2

) (E. 6) 

with respect to k , so we obtain 

(E. 7) 

. \) (k ) .k\l( 2 .a a o. a a -
-1k Kµ\JA , q = 1 ---µ ok - o., --r.r ok ) P , +0(k) . o)< ex. I"' 8kjJ ~ j3 a. \)11. 

(E. 8) 

The substitution of Eq. (E, 6) in Eqs. (E. 7) and (E. 8) is simplified if 

the identities 

(E. 9) 
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\J a a µa. a a a a , µex. a a \) 
k ( 2 ak 8k - g J ak ) = ( 2 8k c)k - g J ok ) k 

µ a. ak 13 µ. ex. ak 13 

a.\! a µa. a µ.\) a 
- 2 g ok + 2 (g ok -g ok)' 

µ \) Ct, 

(E. 10) 

are first applied (compare this procedure with the scale-invariant 

version, given in Eqs. (2. 48) and (2. 79)). The results are 

(E. 11) 

(E. 12) 

Then Eqs. (3. 17), (3. ~8), (E. 4), (E. 5), (E. 11), and (E. 12) imply the 

low-energy theorems (3. 28) and (3. 29). 

Now we turn to the problem of constructing sum rules cor­

responding to these low-energy theorems 1 together with the evalua­

tion of the dispersion integrands. 

The imaginary part of TA is given by the formula 

1m TA= iqA rmx 1 +ikA rmx2 = ½(2TT>42J[(o\e:\r><r\J5AITT(q))o
4

(k-P1) 
. I 

-(0\3<5A. \r)(r\e:\TT(q))6
4

(q-k-PI)] • (E.13) 

Let us isolate the contribution of the pion pole at z = 0 in Eq. (E.13 ): 

Im xl (z) = ·-TT6(z)(2fTT)-l + Im xl (z) (E. 14) 

-1 -
ImX2 (z) = 1r6(z)(2£TT) +ImX2 (z). (E. 15) 

Then Eqs. (3. 26) and (3. 27) may be written 
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-1 1 J -x
1

(z) = (2£1Tz) +; dz'ImX
1
(z')/(z'-z), (E. 16) 

-1 1 J -0 = (2£,r) + rr dz Im X2 (z) (E. 1 7) 

Then, it is easy to combine Eqs. (E.16), (3.28), and (3.29), and ob­

tain the sum rules 

2£ ' 
,rrr J dz Im x

1 
(z)/z = (E. 18) 

(E. 19) 

± 
• In the collinear frame, only O states contribute to·the sum 

over a complete set o_f states \I) in Eq. (E. 13 ). We expect that the 

pion poles at z = 0, 2 and a-poles at z = ± m
1
/m,r will dominate, so 

these contributions are explicitly displayed: 
' 

- ,r e:(z) o (z - m /m } F F { (1-z} m ) 2 2 2 '[. 2 2 
er ,r er ~ ,r 

2 2] 2 2 + G ( (1-z) m ) m /m + x
1

(z) 
~ 1T er ,r 

( E.20) 

2 2] 2 2 +G ((1-z} m ) m /m + x 2 (z) 
cr,r . ,r er ,r 

(E. 21} 
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(the z = 0 contribution appears in Eqs. (E. 14) and (E. 15). Sum­

mation over cr is understood if more than one scalar meson contri­

butes. Diagrams which correspond to the pole terms are displayed 

in Fig. 2. 

The sum rules given in the main text, Eqs. (3. 31), (3. 32), 

and (3. 33), may be obtained from Eqs. (E.17), (E.18), and (E.19), 

respectively, by substituting Eqs. (E. 20) and (E. 21}. Notice the 

similarity between the er-pole terms of Eqs. (3. 33) and {D. 9)--in 

that case, the e I problem is easily handled .. (Note that there is no 

summation over er in Appendix D; that is why we can isolate the 

e I contribution and justiiy its neglect). 
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APPENDIX F: SUM RULES FOR DIMENSION 

In order to obtain soft-meson theorems which expHcitly in­

volve dimension, commutators such as [D, e:J or [F 5, 9~] must b·e 

considered. The cleanest example is Eq. (3. 5 ), but, even in that 

case, the conclusions are not strong. Therefore, we give just a bare 

outline of the techniques. 

Equation (3. 74) for Gocro may be derived as follows. Assum­

ing that the dimension of 9~, .t, is. unique (apart from a c-number 

. term), we have 

(F. l). 

The corresponding retarded commutator is 

.... ..,. 
restricted to the collinear frame k = (zm , 0 ), p = (m , 0). Isolating a a 

the dilaton poles, we find 

Im s ( z ) = ( Tr F / 2 >[ ( cr 1 e µ I cr ) ( 0 ( z - l )- 0 ( z ) )+ ( 0 I 9 µ l O' cr ) ( 0 ( z - 2 )- 0 ( z + 1 ) 7J+ s ( z ) ' 
0 µ ~ 

(F. 3) 

where the CJ-particles are understood to be at rest. 

With the usual justification for an unsubtracted dispersion re­

lation (valid for -l > - 7 /2 ), together with the low-energy theorem 

2 3 2 
S(z) = mcr F cr/z + (,f_. + 2 )mcr Fa + 0(z) (F. 4) 

obtained from Eq. (F. 1 ), we find 

(F. 5) 

Mixing effects may be small if er and € 1 are ideally mixed (or nearly 

so), because then the croe: 1 and OE:€ 1 graphs are disconnected. To ob-



-172-

tain the result implied by symmetry considerations alone, the continu­

wn integral is ignored, and (0 \ 0 µI cr, cr) is extrapolated back to µ 

2 2 
- 4mcr FcrG / 3m crcrcr cr (F. 6) 

Combining Eqs. (F. 5) and (F. 6), we obtain(77 ) 

2 
F

0
Gcrcrcr ~ (1-l)mcr (F. 7) 

It is amusing to derive this result using Ellis' Lagrangian 

model, Eq. (2. 68). The appropriate term from the Lagrangian is 

s,crcrcr = -a(aa//F!J- (OIUIO)(t
3

-16.t)(cr/Fcr)3 (F. 8) 

which simplifies to 

(F. 8) 

because of the mass formula 

(F. 10) 

Equation (F. 7) follows immediately. 

The equal time commutator 

(F. 11) 

looks promising until it is realized that the right-hand side is propor­

,. tional to the PCAC corrections. One can see this explicitly by apply­

ing collinear dispersion relations to the vacuum-to-pion matri?s- ele­

ment of Eq. (F. 11 ). The result is essentially Eq. (2. 71 ). 

A more indirect method involves attempts to evaluate 

Q(x) = [v{x), v(O)] (F. 12) 

at equal times (i.e., x = 0 ). The discussion following Eq. (3. 102) 
0 

--+ 

indicates that t is the most important factor determining Q(O, x) . 
. u 
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... . 
A sum rule for Q(O, x) is obtained by considering the Bjerken limit of 

the retarded commutator 

(F. 13) 

in the collinear frame. The simplest example appears to be \ A) = 

\K) , l B) = \ 0) , i.e., K 1J3 decay. However, practical difficulties 

are immediately evident, e.g. the K-pole contribution is obtained in 

the combination 

2 2 
f ( (mK + m ) ) - f ( (mK - m ) ) o rr o 'TT 

where f (t) is the scalar form factor given by Eq. (3. 78). 
0 

(F. 14) 
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