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ABsTrACT: The open-source software package SolidStateDetectors.jl to calculate the fields and
simulate the drifts of charge carriers in solid state detectors, especially in large volume high-purity
germanium detectors, together with the corresponding pulses, is introduced. The package can
perform all calculations in full 3D while it can also make use of detector symmetries. The effect of
the surroundings of a detector can also be studied. The package is programmed in the user friendly
and performance oriented language julia, such that 3D field calculations and drift simulations can
be executed efficiently and in parallel. The package was developed for high-purity germanium
detectors, but it can be adjusted by the user to other types of semiconductors. The verification of the
package is shown for an n-type segmented point-contact germanium detector. Additional features
of SolidStateDetectors.jl, which are under development are listed.
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1 Introduction

Semiconductor detectors are used widely in industry and in basic as well as applied science. They
play an important role in various nuclear and particle physics experiments. A special case are high-
purity germanium (HPGe) detectors, for which SolidStateDetectors.jl was originally developed. Due
to the extremely low impurity densities achieved for germanium, typically around 10'* per cubic
centimeter, these detectors can have volumes of several hundred cubic centimeters. Germanium
detectors are known for their good energy resolution, which is in many cases exploited by only
reading out one of two electrodes, often called “core”. Cylindrical geometries are common where
the core electrode is established either in a central bore hole or as a circular patch on one of the
end-plates. In order to minimize the capacitance of such a patch, it is often implemented as small as
possible and is called point-contact. Depending on the manufacturer, such detectors are also called
“Broad Energy Germanium” (BEGe) detectors.

In AGATA [1] and in GRETINA/GRETA [2, 3], arrays of segmented cylindrical HPGe detectors
are used for spectroscopic measurements using gamma-ray tracking. The outer surface, also called
mantle, of an AGATA detector, which is 10cm long and 8 cm in diameter, is divided into 36
electrodes and for a germanium detector, this is considered highly segmented. Low-background
experiments searching for neutrinoless double beta (0v35) decay [4, 5] or dark matter [6-8] as



well as experiments measuring coherent elastic neutrino-nucleus scattering [9-11] exploit the
radio-purity, the excellent energy resolution and the low energy threshold of point-contact HPGe
detectors. These detectors are usually not segmented and the point-contact is the only electrode
which is read out.

In modern experiments, not only the energies deposited in the detectors are recorded but also
the time development of the charges induced in the read out electrodes, the signals which form
pulses. Pulse shape analysis plays a central role to facilitate position reconstruction in segmented
detectors and background rejection in point-contact detectors. In particular, the rejection of events
with more than one energy deposition, i.e. multi-site events, in searches for OvSf decay reduces
the background induced by gamma-rays by about an order of magnitude [12], while keeping a high
efficiency for single-site events like OvB( decays. In the case of point-contact or BEGe detectors,
both GERDA [4, 12] and MajoraNA [5, 13] apply pulse shape discrimination based on the so called
A/E parameter, where A is the maximum of the current amplitude and E is the deposited energy.
In an alternative approach, artificial neural networks have been implemented to reject multi-site
events recorded in coaxial [12, 14] and BEGe [15] detectors. Based on the success of GErRDA [16]
and MarsoraNA [17] in achieving good sensitivity to OvBf decay, the next generation experiment
LEGEND [18] will, in its first phase, operate about 200 kg of HPGe detectors under low-background
conditions. In its second phase, LEGEND will be upgraded to 1000 kg.

A precise simulation of the detector pulses is essential to fully understand the effects of pulse-
shape discrimination techniques and their efficiencies, and to provide clean training samples for
neural networks. One of the technical applications of simulation is that, during the production
of detectors for LEGEND, the cutting of the available crystals can be optimized to make the
production of detectors with maximal masses and still reasonably small bias voltages possible. This
optimization has to take the active impurity profiles of the crystals into account. Thus, a simulation
package is needed, where not only the geometry but also any kind of impurity profile can easily
be implemented. In addition, the electric field calculation including the handling of undepleted
regions has to be fast, such that many scenarios can be studied in a reasonable amount of time.
However, the package is not an engineering tool. It does not provide any checks whether a detector
is technically feasible. The package provides the functionality to predict the response of a given
detector configuration in a given environment.

Previously published packages to simulate the pulses of HPGe detectors do not take the
detector environment into account. In addition, they are either not open source [19, 20] or difficult
to extend [21, 22]. The new open-source pulse-shape simulation package, SolidStateDetectors.jl,
fulfills all requirements of LEGEND related research activities and provides a modular software
environment that can easily be extended by the user for other applications like different HPGe
detector geometries or special silicon detectors.

2 Detector geometries and simulation procedure

The user defines the “world”, including the geometry of the detector and, optionally, its surroundings
as well as the electric boundary conditions in structured text configuration files. Constructive solid
geometry (CSQG) is used to define different shapes and to construct all objects. The coordinate
system, either cylindrical or Cartesian, is also defined in the configuration file as well as the



boundaries of the world. SolidStateDetectors.jl provides example configuration files for selected
common HPGe detectors, including a segmented true coaxial [23], a segmented BEGe [24] and
an inverted coaxial [25] detector.! It also provides an interface to read in configuration files from
Maisorana Siggen [22].

The simulation can be divided into two main parts: 1) the calculation of the static electric
properties of a given experimental setup and 2) the drift of charge carriers inducing signals on
the electrodes. Both of these are implemented in the programming language julia in a modular
manner. The julia language has a high-level syntax leading to an easy to use environment but it is
still designed for high performance [26].

The electric field is calculated once for a given detector geometry at the beginning of the
simulation, based on the electric properties of the system. The main properties are the impurity
density profile of the crystal and the fixed potentials of the electrodes. In addition, the user can
define volumes with fixed charges on the detectors and surrounding materials at fixed electrical
potentials, like grounded holding structures. Similarly, the weighting potentials, which are used to
determine the signals induced on the electrodes by the charge carriers, are calculated once for each
detector configuration.

For an event-by-event simulation, the interaction of radiation with the detector and surrounding
material can be simulated with a dedicated software package like GEanT4 [27]. The positions of
the individual energy depositions (hits) of each event are used as input to the pulse generation.
SolidStateDetectors.jl provides flexible clustering of the input hits through the service package
Clustering.jl; this can be performed when the hits are read in. For each hit or cluster, the induced
charge carriers are drifted in user defined time steps, default is 1 ns, according to the previously
calculated electric field and the implemented drift velocity model. At each step, the induced signals
on the electrodes are computed using the weighting potentials.

3 Electric field and weighting potentials

The electric field, E(r), is calculated numerically as the first derivative of the electric potential,
@(r), which itself is calculated numerically according to Gauss’ law:

V (€€ (r)VO(r)) = —p(r), 3.1

where ¢ is the vacuum permittivity, €, (r) and p(r) describe the relative permittivity and the charge
density as functions of the position r. The input on €,(r), p(r) and the boundary conditions
is specified by the user in the configuration file. The charge density inside a detector has two
different components: p(r) = pimp(r) + pfix (1), Where pimp (r) is due to the impurity density of the
semiconductor and pg(T) is an optional fixed contribution, e.g. a charged surface layer.

The numerical calculation is performed using a successive over-relaxation (SOR) algorithm
on an adaptive grid with red-black division for parallelization. The two nearest neighbors in each
dimension are used to numerically update the potential, ®;, on the grid point i. At the boundary of
the world, a prescription how to update the potential of the point j, which is located on the boundary,

IThe latter is the baseline design for the LEGEND experiment because such detectors have excellent pulse-shape
discrimination properties and large masses.



is needed. An extra point j+1 is introduced, for which the user can choose for each axis individually
the prescription: reflecting (@41 = ®;_1), periodic (® ;41 = @), fixed (P4 = constant, normally
@, =0), decaying (®j41 = ®;d;/d 1, where d; (dj41) is the distance between point j and the
origin in this dimension). Reflective or periodic are good choices if the symmetries of a system are
to be used. Periodic is especially useful for the ¢-direction, where it allows to calculate the fields
of rotationally symmetric detectors in 2D instead of in full 3D.

At the beginning of the calculation, a very coarse grid is initiated. Once the SOR algorithm
has converged, i.e. changes are below a user defined value, grid points are inserted in a dimension if
the difference in potential for two neighboring points is above a user defined threshold . The default
number of such grid refinements is three. However, the user can set the number to a higher value to
ensure that the targeted precision given by the threshold is achieved. The gradual adaptive refinement
of the grid avoids large gradients between grid points and ensures fast convergence of the calculation
as it does not create a large number of points in volumes of moderately changing potentials. The
electric field at a given position between grid points is evaluated by linear interpolation.

There is an option that during an iteration within the SOR algorithm, grid points are marked as
undepleted. As the net charge carrier density is zero in the undepleted regions of a semiconductor,
Pimp(r) is set to zero for such grid points. This feature allows studying the development of
the depletion zone with increasing bias voltage for different detector geometries and impurity
distributions in order to optimize detector configurations. Especially point-contact detectors can,
depending on the impurity density profile, develop volumes which cannot be depleted. After a
crystal is produced, it is essential to cut it such that this problem is avoided. Simulation is the best
guide for this.

The weighting potential, ®;" (r), determines the size of the signal induced on the electrode i
as a function of r. It is calculated by solving

V (e (r)VO) (r)) =0 (3.2)

with the boundary conditions @} (r;) = 1 and @} (r;) = 0 for all r; on electrode i and all r; on
electrodes j # i. The same SOR algorithm as used to calculate the electric potential is used to
calculate the weighting potentials.

Figure 1 depicts the n-type segmented BEGe detector [24] which is used as an example
throughout this paper. This detector features a point contact (core) at the top end-plate. The
core electrode is surrounded by a ring covered with a passivation layer. It has a rather unusual
segmentation, which was chosen to study the signal development in BEGe detectors and makes
it particularly useful to verify a simulation package. This segmentation is four-fold: three equal
segments (1=red, 2=yellow, 3=grey) cover about one sixth of the surface each. The remaining
surface is covered by one large segment (4=magenta), which is closed at the bottom. The center of
the bottom plate is the origin of a cylindrical coordinate system with the z-axis pointing towards
the core contact. The left edge of segment 1, looking from the side, defines ¢ = 0°.

The electric potential and the electric field of the detector as simulated with SolidState Detectors.jl
are shown in figures 2a) and b) for the situation that the detector is surrounded by vacuum. The
high electric field underneath the core contact is typical for BEGe detectors. Figures 2c¢) and d)
show the weighting potentials for the core and segment 1 at ¢ = 10°.



Segment 3

Passivation Area

39 mm
15 mm s =0°
Jo=0°
40 mm
Core Segment 2
n++ contact
. Segment 1
75 mm Segment 4
(a) Top view. (b) Bottom view.

Figure 1. Schematic of the n-type segmented BEGe detector used to demonstrate the capabilities of
SolidStateDetectors.jl throughout the paper.
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Figure 2. a) Electric potential, b) electric field strength and field lines, ¢) weighting potential of the core and

d) weighting potential of segment 1 of the segmented n-type BEGe detector depicted in figure 1 at ¢ = 10°
as calculated with SolidStateDetectors.jl.



An infinitely long true-coaxial geometry was implemented to validate the numerical field
calculation by comparing the result obtained with SolidStateDetectors.jl to the analytical solution
available for this configuration. The inner (outer) radius of the germanium detector was set to 5 mm
(35 mm) and the charge density p(r) was defined as proportional to 72 inside the crystal and zero
elsewhere. The potential on the inner (outer) mantle was set to OV (10 V). The numerical calcu-
lation was performed using both cylindrical and Cartesian coordinates with boundary conditions
reflecting in z and periodic in ¢. The symmetries of the detector were used. After the default of
three refinements, the mean distance between grid points became (r: 0.47 mm, ¢: symmetric, z:
symmetric) for cylindrical coordinates and (x: 0.22 mm, y: 0.22 mm, z: symmetric) for Cartesian
coordinates, while the number of grid points became (r: 64) and (x: 322, y: 322). Such a detector
would normally be treated in cylindrical coordinates. The segmented BEGe detector, see figure 1,
was simulated in cylindrical coordinates and after three refinements the number of grid points
became 14410760 (r: 259, ¢: 260, z: 214).

A comparison of numerically and analytically calculated values of the electric potential is
presented in figure 3. The root mean square, RM S, difference between the numerical and analytical
solutions is very small for the calculation performed in Cartesian coordinates, RM S = 0.025 V, and
almost zero for cylindrical coordinates, RM S = 2.1 - 107° V. These results were obtained with the
automated termination of iterations and grid refinements. In both cases, the RM S could be further
reduced if iterations and grid refinements beyond the defaults were initiated. However, the precision
obtained with the defaults would be sufficient for any real-life detector.
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Figure 3. The electric potential in an infinitely long true-coaxial germanium detector as a function of the
radius as calculated in cylindrical and Cartesian coordinates with SolidStateDetectors.jl, SSD, compared to
the analytical solution.

The capacitance, C, of a detector can be calculated as C = 2W/ V2, where Vj is the applied
bias voltage and W is the energy stored in the generated electric field:

W = %60 /// € (r)|E(r)|dr. (3.3)
it

The integral becomes a sum over all grid points of the world.



The procedure is verified by comparing numerically to analytically calculated capacitance
values for the infinitely long true-coaxial detector and, in addition, for an infinitely long and
wide parallel plate detector. The ratios of the numerical (cyl = cylindrical coordinates, car =

Cartesian coordinates) and analytical (true) values are Cg;’f" Codd = 0.9997, Co™ /Cexx = 1.01,

CPe /PR — 1,006. These ratios asymptotically approach unity if the number of iterations and
grid refinements is increased beyond the default values. The comparisons described here are part
of the automatic tests, which are performed every time the source code of SolidStateDetectors.jl
is changed.

In SolidStateDetectors.jl, the relative permittivity €,(r) is a position dependent parameter.
This allows the user to implement the surroundings of the detector, e.g. infrared shields or support
structures in close proximity to the crystal. While HPGe detectors are typically operated in vacuum
cryostats, collaborations like GErpA [4] or LEGEND submerge their detectors directly in liquid
argon. Figure 4 demonstrates the importance of taking the surroundings of a detector into account.
Especially, volumes close to the passivated surfaces exhibit non-negligible differences in the electric
potential. The two cases investigated here, a copper shell and submersion in liquid argon, result
in a similar reduction of the potential inside the detector underneath the passivated ring. However,
the effect is stronger for the detector submerged in argon. The effect outside the detector is even
stronger than inside, especially for the copper shell. However, the effect is particularly important for
the case of submersion in liquid argon, where free radioactive ions can be attracted to the detector.
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Figure 4. a) and c) Electric potential inside the world volume simulated for the n-type segmented BEGe
detector shown in figure 1 as calculated for a) the scenario of a 2 mm thick copper shell surrounding the top
and the side of the detector at a distance of 10 mm from the surface and c) the detector being submerged
in liquid argon; b) and d) respective differences to the values obtained for the detector being surrounded by
vacuum: A®(r) = q)Cu/LAr(r) = ®vyeuum (T).



Alpha and beta decays of contaminants on the passivated surfaces of germanium detectors
are known to be critical sources of background for rare event searches. Due to the special field
conditions underneath these surfaces such events can look like OvBS events. Thus, the knowledge
on possible changes in the electric field and in the behavior of the detectors due to the surrounding
medium, surrounding support structures and cables is important for the next generation of such
experiments, which rely on a substantial reduction of the background level compared to what has
been achieved so far.

4 Charge drift and induced signals

The drift velocity vectors are calculated separately for electrons and holes for each grid point using
the electric field and the respective electron or hole drift velocity model. The default drift velocity
models implemented in SolidStateDetectors.jl are based on the AGATA Detector Library [20, 28]
and are described in some detail in appendix A.

For each energy deposition, the drift paths are calculated for point-like electron and hole clouds,
using drift velocities, v/ (re/n), as interpolated linearly from the neighboring grid points. The
drift vector for each step is calculated as Ar,;, = V5 (re/5) At, where the step length, Az, can be
chosen by the user and is usually in the range of 1-10ns. The drift of a charge ends when it reaches
an electrode or a maximum number of steps have occurred. If |Ar,;;| is below a certain limit the
drift can also end inside the detector. For steps leading beyond the detector volume, the intersection
between the drift vector and the detector edge is determined. If the crossing point does not belong
to an electrode, the drift vector for this step is reduced to its component parallel to the surface. The
charge drift ends when the crossing point belongs to an electrode.

Charges can get trapped inside the bulk of a germanium detector or, more commonly, underneath
apassivated surface. The former is predicted by SolidStateDetectors.jl for volumes where the electric
field is close to zero. The latter can, in general, not be predicted. There are several known effects
like a surface charge-up or a surface channel, but there is no complete model for them. The user can,
however, define virtual volumes, in which the drift model can be modified to simulate such effects.
This is usually done after some effects have shown up in the data, which need to be understood.
In many cases, a reduction of drift speed along the surface provides a first insight into what is
happening.

The electric signals are the sum of the charges induced in the electrodes of the detector by all
drifting electrons and holes. The Shockley-Ramo theorem [29-31] is used to calculate the time
development of the induced charge, Q;(7), in each electrode i from r/;,(¢) and @ (r):

0i(t) = Qo [®F (rp (1) — @Y (re(1))], 4.1

where Qo is the absolute electric charge in the electron and hole clouds after separation of the
charge-carrier pairs.

Figure 5 shows the simulated drift trajectories and the signals induced in all electrodes for an
energy deposition in the bulk of the n-type segmented BEGe detector. The separate contributions
from electrons and holes show that the signal of the core electrode is dominated by the electron
drift in this type of detector due to the strong gradient of the weighting potential around the small
core electrode, see figure 2c).
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bulk of the n-type segmented BEGe detector at r = 25.0mm, z = 23.0mm, and ¢ = 80.0° as well as the
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electrons (holes) are shown as dashed (dotted) lines.



A positive collected charge is observed for segment 4, which is the collecting segment for this
event. The other segments show mirror pulses that return to zero after the drift is completed. The
amplitudes of the mirror pulses in segments 1 and 2 indicate that the position of the energy deposition
is closer to segment 1 than segment 2. The possibility to obtain 3D position information from fits
to the events in simulated pulse-shape libraries including all mirror pulses will be investigated in
the future.

The parameters which are used to calculate the drift velocities, see eq. (A.1) in appendix A,
are temperature dependent. The default values used in SolidStateDetectors.jl were determined for
the reference temperature of 78 K [20, 28]. However, germanium detectors are often operated at
other temperatures. The effect of the temperature on the drift velocities can be taken into account
by applying user defined model-dependent functions as described in appendix B.

5 Comparison of simulation to data

Data from the n-type segmented BEGe detector, see figure 1, were used to validate the simulation.
The detector was mounted with the core electrode on top in an electrically cooled aluminum
vacuum-cryostat with a continuously monitored temperature control system [32]. The detector was
irradiated in three measurement campaigns with '3 Ba, 13’Cs and ??3Th.

The signals from the core and segment electrodes were amplified with charge-sensitive pream-
plifiers and digitized with a sampling rate of 250 MHz. The core signal was inverted. The recorded
pulses were baseline subtracted and corrected for their preamplifier channel-specific decay. Signal
amplitudes were derived using a fixed-size window filter. Linear cross-talk between the core and
the segments as well as between segments was corrected for in an automated energy-calibration
procedure using calibration parameters obtained from single-segment events [24, 33, 34]. The
calibration was performed for each data set individually. The data were not corrected for differential
cross-talk. This kind of cross talk does not affect the measured energy but changes the shape of
the affected pulses. A model based on the first derivative of the charge pulses, the currents, was
developed [32] and applied to the simulation before a comparison to data.?

Each experimental setup, including the respective collimator and source encapsulation, were
implemented in GEaNT4. The hits in the detector as simulated with GEanT4 were clustered and the
induced charges were drifted using SolidStateDetectors.jl. The simulated pulses for the core and all
segments were convolved with the response function of the respective preamplifier.> The response
functions were measured by injecting test pulses with a rise-time of a few nanoseconds as input
to the preamplifiers and recording the resulting pulses. The decay of the preamplifier pulses was
included in the response function and was varied within uncertainties to reproduce the variations
observed in the data. Furthermore, the observed baseline noise was added to the simulated pulses.
The resulting pulses were used for comparisons to calibrated and cross-talk corrected data.

2The complete cross-talk model is that the vector of measured channel pulses, p™(r), at each time, ¢, is a linear
combinations of all true pulses, p?(¢) and their first derivatives, p™(t) = CL * p’ (t) + CD * dp*(t)/dt, where CL is the
linear and CD the differential cross-talk matrix.

3Charges always drift to the core or a segment electrode; the segment boundaries do not cause any deficit in charge
collection.
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5.1 Surface events

Photons from the 81 keV line of '*3Ba were used to study events close to the detector surface. The
data were collected by placing a collimated '*3Ba source on the side of the detector, which was kept
at the reference temperature of 78 K. The pulses from single-segment events in the (81 + 2) keV
energy interval were averaged to form so-called super-pulses in order to reduce the effect of noise
and to average out the spatial distribution of events due to the size of the beam spot. Figure 6 shows
a comparison of simulated to measured super-pulses for a measurement where the middle of the
mantle, z = 20.2 mm, was irradiated at ¢ = 47.2°. The super-pulses from simulation describe the
data reasonably well. The core pulse is very well simulated. The simulated pulse of the collecting
segment shows a slow-down at the end which is not observed in data and which is reflected in
the mirror pulses as simulated for the non-collecting segments. The average penetration depth of
81 keV photons in germanium is approximately 2.5 mm such that the energy was deposited close to
the surface and the holes were collected quickly. The electrons drift inwards along the (100) axis
and upwards along the (001) axis. As the drift was dominated by electrons, the results shown in
figure 6 validate the simulation procedure and the drift velocity model for electrons on the relevant
axes at a temperature of 78 K.

The simulation is shown for the case where charges were injected at the nominal (z, ¢) position
at a depth of 2.5 mm and the case where the charges induced by the individual hits as provided
by GeEant4 were drifted separately. The isotope '*3Ba also features four gamma lines at higher
energies (276, 303, 356 and 384 keV). These gammas penetrate deeper into the detector and can
create background events with a deposited energy of around 81 keV through Compton scattering.
The Geant4 simulation included these gammas. As for the data, such events were included in the
super-pulse formation. Nevertheless the super-pulses from charge injection and GEANT4 simulation
are basically indistinguishable. This confirms that the signal to background ratio is high enough and
that the detailed shapes of the initial charge clouds are effectively averaged out by forming super-
pulses for low energies. The remaining small differences between data and simulation observed for
the segments could be due to the lack of knowledge about the exact impurity density distribution
in the detector.* They could also be a hint that the parameters of the electron drift model are
slightly off. Such effects will be investigated in the future. Differential cross-talk was applied to
the simulation and is unlikely to be a major source of remaining differences, see next section.

5.2 Bulk events

Data taken with a Compton scanner [32] using a collimated 137Cs source mounted above the
detector were used to compare simulated to measured pulses from energy depositions in the bulk of
the detector. The Compton-scattered photons from the 662 keV line were detected by a cadmium
zinc telluride (CZT) pixel detector with a position resolution of about 0.5 mm and an energy
resolution of about 1% at the relevant energies. Events were selected which had coincident energy
depositions in the BEGe and CZT detectors with a total energy of (662 + 5) keV.

4The impurity density distribution as provided by the manufacturer was multiplied with 0.9 to adjust the overall pulse
length along the (100) axis. This is well within the uncertainty on the provided impurity density. No radial profile was
implemented.
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Figure 6. Measured and simulated super-pulses for interactions of 81keV photons from a collimated '*3Ba
source, placed on the side of the detector irradiating segment 1 at z = 20.2 mm and ¢ = 47.2°. The simulation
is shown for charge injection at the average depth of 2.5 mm and a full GEanT4 simulation. The top right insert
provides the segment numbering and the ¢ position of the interaction point on the (100) axis. Differential
cross-talk was applied to the simulation [32]. The scales of the y axes for the mirror pulses were chosen such
that remaining small differences between simulation and data become visible.

_12-



Events with two hits in the CZT detector were used to select energy deposits in specific regions
of the BEGe detector within (z = 1) mm, using a technique based on the reconstruction of Compton
cones [32]. The r and ¢ coordinates were taken from the source position. Super-pulses were
formed by an energy-weighted average of the pulses from the selected events after normalization.
Additional pulses from events with one hit in the CZT detector, which were compatible with the
previous super-pulses, were added to the averaging for the final super-pulses of the chosen volume
to further reduce the effect of noise in the data.

Figure 7 shows the simulated super-pulses for an example location at » = 25.5 mm compared to
the data. The simulation agrees reasonably well with the data. This validates the simulation in the
bulk of the detector, where the hole drift also plays an important role in the pulse formation. The
data is corrected for linear cross-talk. The simulation is shown with and without the application
of differential cross-talk [32]. Differential cross-talk is significant here because the time-structure
of the pulses for the core and the collecting segment are sufficiently different. It mostly affects
the segment pulses while the core pulse is basically not changed. The application of differential
cross-talk improves the description of the data by the simulation, especially the description of the
mirror pulses. The residual differences between the simulated and measured pulses of the collecting
segment might be due to the lack of knowledge on the exact impurity distribution, which is an input
to the simulation. They could also be an indication that the input parameters to the hole and the
electron drift models need to be adjusted. The relative mobilities of holes and electrons are not very
well known for germanium. Another effect to be investigated is diffusion and self-repulsion of the
charge cloud. This will be implemented in SolidStateDetectors.jl in the near future.

Overall, the description of the data by the simulation is quite good. A quantitative statement
can be obtained using pulse-shape analysis.

5.3 Pulse-shape analysis

One of the most common pulse-shape analysis techniques for point-contact detectors is based on
the so-called A/E parameter, where A is the maximum of the differentiated core pulse (i.e. current)
and E is the energy of the event. The performance of the simulation was tested using data, for
which an uncollimated >?Th source illuminated the detector from the side. It was placed 20 mm
away from the surface at z = 20.2 mm at the center of segment 1. Core pulses from a measurement
lasting about 9 hours were used to measure the A/E distribution in selected energy regions. The
simulated core pulses of events produced with GEaAnT4 for the experimental setup were smoothed
and numerically differentiated exactly like the pulses recorded for data.

In figure 8, a comparison of the simulated A/E distributions to data and is shown for events in
the double escape peak (DEP), single escape peak (SEP) and full energy peak (FEP) from 2615 keV
photons from the decay of 2°8T1. The position of the peak in the A/E distribution derived from the
208T] DEP was scaled to 1 for data and simulation. The scaling factor for the data was only 0.5%
larger than for the simulation. The simulated distributions describe the data quite well. However,
the simulated distribution of A/E for the FEP shows events which have A/FE larger than 1. Such
events do not occur in data. They originate from large energy depositions directly underneath the
core contact. This will be studied further.

The DEP from 2Tl was used to determine a cut in A/E, which separates single-site from
multi-site events. The FEP from 2'?Bi at 1621 keV was used to test the performance of this cut.
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Figure 7. Simulated super-pulses compared to super-pulses from Compton reconstructed events in the bulk
of the detector (r = 25.5mm, ¢ = 45.5°, z = 20.2mm). The data is corrected for linear cross-talk. The
simulation is shown with and without the application of differential cross-talk.
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Figure 8. Simulated A/E distributions compared to data for the a) double escape, b) single escape and c)
the full energy peak from 2615 keV photons originating from 2°TI decay.

The spectra observed in data and simulation are shown in figure 9 for the relevant energy range
together with the results of fits to the peaks, which were used to obtain survival fractions. When
choosing the A/E cut for a 90% survival fraction of events in the mostly single-site 2*®TI DEP, the
survival fraction of events in the mostly multi-site FEP at 1621 keV from 2'?Bi decays becomes
(12.3 + 1.5)% for data and (10.5 + 1.4)% for simulation in an analysis window of (1621 + 5) keV.
The values agree within statistical uncertainties.

The results of the study on A/E validate the simulation and encourage current and future

OvfpB decay experiments using HPGe detectors to evaluate the signal efficiency of their pulse-shape
discrimination with SolidStateDetectors.jl.

6 Developments

This paper represents the status of SolidStateDetectors.jl release v0.5. Substantial further develop-
ments are being incorporated in release v1.0, which is planned for the fall of 2021. The upcoming
features can be classified as related to physics processes, tools to present the results or technical
upgrades to further improve the ease of usage and the execution speed.

The implementation of the detector physics will be improved:

* In release v0.5, the drift of individual point charges is simulated and combined by superpo-
sition. The interactions between them are ignored. Release v1.0 will have the option to drift
charge clouds including the effects of self-repulsion and diffusion.

* Already in release v(.5, the electric potential and field as well as the drift velocity fields can

be calculated for undepleted regions of the detector. In release v1.0, the weighting potentials
will also be calculable for undepleted detectors.
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Figure 9. Energy spectra from events from 2?8Th a) data and b) simulation before and after the application
of an A/E cut providing a survival rate of ~ 90% for the 2°*T1 DEP. Shown is the energy range around the
208T] DEP and the 2'?Bi FEP. Survival rates were determined with fits performed with BAT,jl [35]. The
confidence intervals 1o-, 20- and 30 are shown for all fits.

* In release v0.5, the physics close to detector surfaces including the slow-down of charge
carriers and trapping can be implemented by the user using virtual volumes. In release v1.0,
a model will be implemented, where a charge cloud can be split and charges which come
too close to a surface will be stochastically trapped. The user will have to provide input
parameters like probabilities and what “too close” means in a configuration file. As these
parameters are not really known the user might want to develop fits of predictions to data in
order to determine them.

A number of tools in release v1.0 will help to better understand the detectors under study by
providing information derived from the simulation:

* Prediction of the full-depletion voltage;

* Pulse-lengths for user defined pulse intervals, e.g. from 5-95% amplitude level;
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* Isochrones, i.e. surfaces from which charge drifts result in equal pulse-lengths;
* Improved visualization capabilities.

The technical improvements encompass:

* Improved constructive solid geometry (CSG);

* Rotation, scaling and stretching of CSG primitives;

¢ Definition of surfaces;

» Distances to surfaces;

* Support for fast calculation of fields on GPUs;

» Usage of multi-threading beyond field calculations;

Extended documentation.

7 Summary

The open-source package SolidStateDetectors.jl has been introduced as a tool to simulate semicon-
ductor detectors. While special emphasis is given to germanium detectors, the package can also be
adjusted to simulate the response of silicon, or any other kind of semiconductor detector.

The package was programmed in the language julia with special care to ensure fast execution.
Constructive solid geometry is used to define a detector and its surroundings. The package can
handle three-dimensional calculations as required for segmented detectors as well as the usage of
symmetries for simpler devices.

An n-type segmented point-contact detector was used to demonstrate the capabilities of
SolidStateDetectors.jl and to successfully verify the simulation by comparing predictions to data.
For rare event searches, accurate pulse-shape simulations can help to verify background iden-
tification techniques and provide guidance during detector manufacturing. A number of ex-
tensions for SolidStateDetectors.jl are planned for the near future. As an open-source package,
SolidStateDetectors.jl is also open for improvements and extensions from the community.

A Drift velocity models

The drift velocity models were implemented for germanium with standard parameters applicable
for standard detectors [32]. These models should, however, be directly applicable for silicon for
the (100) and (111) axes, if the input parameters are adjusted. Further adjustments needed are
provided as footnotes.

The drift of the charge carriers is governed by the electric field and the axes-dependent mobility
tensors. The mobility tensors for electrons and holes are not fully known for germanium, but different
parametrizations exist to describe the experimental results. As default, the drift velocity models
from the AGATA Detector Library (ADL) [20, 28] have been implemented in SolidStateDetectors.jl.
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Germanium has a face-centered cubic crystal structure. When the electric field is aligned with
one of the three principal crystallographic axes, (100), (110) or (111), the drift velocity vector
is parallel to this axis. The longitudinal velocity, v;, describes the drift along these axes and is
parametrized in the following way:

Ho& _
(1+(&/80)P)IF

vi(E) = g, (A.1)

where & is the electric field strength, while ug, o, 8 and y,, are parameters which were obtained by
fits to measurements. The values of these parameters for electrons and holes for the (100) and (111)
axes are set in configuration files. This allows for their optimization for a given detector. From the
drift velocities along these two axes, the drift velocity of electrons and holes in any direction can
be derived. For the calculations presented in this paper, default parameters [21, 28] were used. In
the following, the coordinate system is chosen with the z axis, i.e. the symmetry axis of cylindrical
detectors, aligned with the (001) axis.

A default to calculate the general electron drift velocity [36] is implemented. The conduction
band in a germanium crystal reaches its minimal potential around the four equivalent (111) axes,
called valleys.> The electron drift velocity vector, v,, can be written as

V(&) =) Y U1 (A2)

J " ,[88—’)/]‘80
where y; is the tensor of inverted effective masses for the jth valley, n;/n is the fraction of carriers
in the jth valley, & is the normalized electric field vector and A (&) is a function of the magnitude

of the electric field. The sum provides the direction of the electron drift. The v ; tensors are obtained
by transforming the tensor of the inverted effective electron-masses

m;l 0 0
yo=| 0 m;' 0 (A.3)
0 0 m;!

from the coordinate system of the jth valley to the global xyz coordinates, i.e. y; = RJ‘.lyoR 7, where

the rotation matrices are R; = R (arccos \/%) R, (¢110+ jn/2). The angle between the (110) and
the y axis, ¢110, is set by the user for a given setup. The values m; = 1.64 and m, = 0.0819 [37] are
given in units of the electron rest mass.®
The deviation from an equal population of the valleys, n./n = 1/4 in germanium,? depends on
the electric field as [38]
n (&5vi€0)? n.\  ne

J
Y_rs ey e A4
n RO ETye 2w | (A9

where R(E) is a function of the electric field strength. If an electric field is applied along the
(100) axis, the conduction bands are equally populated and the calculation of A(E) using eq. (A.2)

5In silicon, the minimum of the conduction band is reached around the six equivalent (100) axes.

SDifferent values for the effective electron masses, m; = 0.98 and m; = 0.19 [37], and different R; to transform y
in silicon are used.

7In silicon, n /n = 1/6.
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reduces to A(E) = vl<1600>(8)/2.888. Likewise, using eq. (A.4) forn;/nineq. (A.2), R(E) can be

calculated along the (111) axis to be R(E) = —1.182 vl<16“>(8)/?[(8) +3.161.8 Here, v<100> and

(111)
Vle

coefficients depend only on the effective mass values in yg. Using these results together with

are the longitudinal electron-drift velocities along the respective axes. The three numerical

eq. (A.l), the electron drift velocity vector can be calculated as a function of the electric field
vector.

The default model to calculate the hole drift velocities in germanium [28] assumes that only
the heavy-hole valence band contributes to the hole mobility. The following functions are used to
calculate the components of the hole drift velocity depending on the mean wave vector of the heavy
holes, kg = (ko, 89, $o), in the direction of the electric field in local spherical coordinates:

vr (ko) = v, () [1 = Alko) (sin(6)* sin(2¢0)” + sin(260)*)] .

v (ko) = v (&) Q(ko) [2in(8y)* cos (o) sin(20)? + sin(460)] . (A.5)

vo (ko) = v, () Q(ko) sin(6o)” sin(4go)
The function A(kg) describes the different longitudinal velocities along the axes. The function
Q(ko) governs the deviation of the direction of the drift velocity vector from the direction of the
electric field vector. Their dependence on the mean wave number kg was obtained numerically [28]:

A(ko) = —0.01322k¢ + 0.41145k; — 0.23567k] + 0.04077k; ,

2 3 4 (A.6)
Q(ko) = 0.006550ko — 0.19946k; + 0.09859k; — 0.01559%; ,
where k¢ can be expressed using vy = v<”1>(8)/ <100>(8) as
ko(Vrel) = 9.2652 — 26.3467 vy + 29.6137 vr | — 12.3689 vrel (A7)

This parametrization, together with eq. (A.1) for v<100> (&) and v <111>(8) is used to calculate
the components of the hole drift velocity vectors with eq. (A.5). They are rotated from the local
coordinates to the global xyz coordinates as

Vx - Vo
Vi =|vy [= R (o + i #110) Ry(60) |ve | - (A.8)
Vs vy

The predictions of this model have been verified [28] with experimental data [39].

There are indications that the description of mobilities may not be adequate for high-precision
simulation of specific large volume detectors. If at all possible, the user is advised to adjust the
mobility parameters for the detector design under study.

B Temperature dependence of drift velocities

The parameters for electrons and holes used to calculate the longitudinal drift velocities for the
(100) and (111) axes according to eq. (A.1) depend on the temperature, 7. The default parameters

SThe expressions A(E) = v/ 1 (£)/1.962 and R(E) = ~3.925v{'% (&) /A(E) +7.325 result for silicon.
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apply to the reference temperature, 7y = 78 K. The simulation can be adjusted with four user defined
functions féioo) (T') and flfim (1), flf;lom(T) and flf;lm (T) to scale the longitudinal drift velocities
asvi(&,T) = fi(T)vi(8E, Tp) for electrons and holes, respectively.

Several functions f; ./, (T) are predefined. A specific function can be selected and its para-
meters can be defined in a dedicated configuration file. The scaling is defined for the two basic axes,
(100) and (111), and is propagated to all directions by the procedure described in appendix A. The
defaultis f; ./, (T) = 1 for all directions and electrons and holes, i.e. the default values are used for
all temperatures.

The most commonly used model for the T dependence only considers the scattering of the
electrons and holes off phonons in the crystal. It suggests a form of f; ./n(T) ~ T-3/% [40].
This is qualitatively supported by some measurements for electrons where an fi o(T) ~ T~!-¢
behavior was observed. However, for holes, an f; ,(T) ~ T~23 temperature dependence was
observed [41, 42]. Other simple analytical models exist for higher temperatures which also include
the temperature dependence of the saturation velocity in high fields [43]. For some configuration,
however, a Boltzmann-like temperature dependence of the drift time, fl‘e1 (T) = po+pre P2/ was
observed [44]; these data were incompatible with a power law. Any kind of functions f; .5 (T) can
be introduced with the recommendation that f; ./, (To) = 1 as long as the default parameters [20, 28]
for the drift models are used.

The effect of the temperature dependence of the drift velocities can be neglected for many
qualitative studies. However, the temperature dependence has to be taken into account for detailed
comparisons of simulated pulses to data.
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